Merge branch 'v4l_for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mchehab...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / usb / core / message.c
1 /*
2 * message.c - synchronous message handling
3 */
4
5 #include <linux/pci.h> /* for scatterlist macros */
6 #include <linux/usb.h>
7 #include <linux/module.h>
8 #include <linux/slab.h>
9 #include <linux/init.h>
10 #include <linux/mm.h>
11 #include <linux/timer.h>
12 #include <linux/ctype.h>
13 #include <linux/nls.h>
14 #include <linux/device.h>
15 #include <linux/scatterlist.h>
16 #include <linux/usb/quirks.h>
17 #include <linux/usb/hcd.h> /* for usbcore internals */
18 #include <asm/byteorder.h>
19
20 #include "usb.h"
21
22 static void cancel_async_set_config(struct usb_device *udev);
23
24 struct api_context {
25 struct completion done;
26 int status;
27 };
28
29 static void usb_api_blocking_completion(struct urb *urb)
30 {
31 struct api_context *ctx = urb->context;
32
33 ctx->status = urb->status;
34 complete(&ctx->done);
35 }
36
37
38 /*
39 * Starts urb and waits for completion or timeout. Note that this call
40 * is NOT interruptible. Many device driver i/o requests should be
41 * interruptible and therefore these drivers should implement their
42 * own interruptible routines.
43 */
44 static int usb_start_wait_urb(struct urb *urb, int timeout, int *actual_length)
45 {
46 struct api_context ctx;
47 unsigned long expire;
48 int retval;
49
50 init_completion(&ctx.done);
51 urb->context = &ctx;
52 urb->actual_length = 0;
53 retval = usb_submit_urb(urb, GFP_NOIO);
54 if (unlikely(retval))
55 goto out;
56
57 expire = timeout ? msecs_to_jiffies(timeout) : MAX_SCHEDULE_TIMEOUT;
58 if (!wait_for_completion_timeout(&ctx.done, expire)) {
59 usb_kill_urb(urb);
60 retval = (ctx.status == -ENOENT ? -ETIMEDOUT : ctx.status);
61
62 dev_dbg(&urb->dev->dev,
63 "%s timed out on ep%d%s len=%u/%u\n",
64 current->comm,
65 usb_endpoint_num(&urb->ep->desc),
66 usb_urb_dir_in(urb) ? "in" : "out",
67 urb->actual_length,
68 urb->transfer_buffer_length);
69 } else
70 retval = ctx.status;
71 out:
72 if (actual_length)
73 *actual_length = urb->actual_length;
74
75 usb_free_urb(urb);
76 return retval;
77 }
78
79 /*-------------------------------------------------------------------*/
80 /* returns status (negative) or length (positive) */
81 static int usb_internal_control_msg(struct usb_device *usb_dev,
82 unsigned int pipe,
83 struct usb_ctrlrequest *cmd,
84 void *data, int len, int timeout)
85 {
86 struct urb *urb;
87 int retv;
88 int length;
89
90 urb = usb_alloc_urb(0, GFP_NOIO);
91 if (!urb)
92 return -ENOMEM;
93
94 usb_fill_control_urb(urb, usb_dev, pipe, (unsigned char *)cmd, data,
95 len, usb_api_blocking_completion, NULL);
96
97 retv = usb_start_wait_urb(urb, timeout, &length);
98 if (retv < 0)
99 return retv;
100 else
101 return length;
102 }
103
104 /**
105 * usb_control_msg - Builds a control urb, sends it off and waits for completion
106 * @dev: pointer to the usb device to send the message to
107 * @pipe: endpoint "pipe" to send the message to
108 * @request: USB message request value
109 * @requesttype: USB message request type value
110 * @value: USB message value
111 * @index: USB message index value
112 * @data: pointer to the data to send
113 * @size: length in bytes of the data to send
114 * @timeout: time in msecs to wait for the message to complete before timing
115 * out (if 0 the wait is forever)
116 *
117 * Context: !in_interrupt ()
118 *
119 * This function sends a simple control message to a specified endpoint and
120 * waits for the message to complete, or timeout.
121 *
122 * If successful, it returns the number of bytes transferred, otherwise a
123 * negative error number.
124 *
125 * Don't use this function from within an interrupt context, like a bottom half
126 * handler. If you need an asynchronous message, or need to send a message
127 * from within interrupt context, use usb_submit_urb().
128 * If a thread in your driver uses this call, make sure your disconnect()
129 * method can wait for it to complete. Since you don't have a handle on the
130 * URB used, you can't cancel the request.
131 */
132 int usb_control_msg(struct usb_device *dev, unsigned int pipe, __u8 request,
133 __u8 requesttype, __u16 value, __u16 index, void *data,
134 __u16 size, int timeout)
135 {
136 struct usb_ctrlrequest *dr;
137 int ret;
138
139 dr = kmalloc(sizeof(struct usb_ctrlrequest), GFP_NOIO);
140 if (!dr)
141 return -ENOMEM;
142
143 dr->bRequestType = requesttype;
144 dr->bRequest = request;
145 dr->wValue = cpu_to_le16(value);
146 dr->wIndex = cpu_to_le16(index);
147 dr->wLength = cpu_to_le16(size);
148
149 /* dbg("usb_control_msg"); */
150
151 ret = usb_internal_control_msg(dev, pipe, dr, data, size, timeout);
152
153 kfree(dr);
154
155 return ret;
156 }
157 EXPORT_SYMBOL_GPL(usb_control_msg);
158
159 /**
160 * usb_interrupt_msg - Builds an interrupt urb, sends it off and waits for completion
161 * @usb_dev: pointer to the usb device to send the message to
162 * @pipe: endpoint "pipe" to send the message to
163 * @data: pointer to the data to send
164 * @len: length in bytes of the data to send
165 * @actual_length: pointer to a location to put the actual length transferred
166 * in bytes
167 * @timeout: time in msecs to wait for the message to complete before
168 * timing out (if 0 the wait is forever)
169 *
170 * Context: !in_interrupt ()
171 *
172 * This function sends a simple interrupt message to a specified endpoint and
173 * waits for the message to complete, or timeout.
174 *
175 * If successful, it returns 0, otherwise a negative error number. The number
176 * of actual bytes transferred will be stored in the actual_length paramater.
177 *
178 * Don't use this function from within an interrupt context, like a bottom half
179 * handler. If you need an asynchronous message, or need to send a message
180 * from within interrupt context, use usb_submit_urb() If a thread in your
181 * driver uses this call, make sure your disconnect() method can wait for it to
182 * complete. Since you don't have a handle on the URB used, you can't cancel
183 * the request.
184 */
185 int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe,
186 void *data, int len, int *actual_length, int timeout)
187 {
188 return usb_bulk_msg(usb_dev, pipe, data, len, actual_length, timeout);
189 }
190 EXPORT_SYMBOL_GPL(usb_interrupt_msg);
191
192 /**
193 * usb_bulk_msg - Builds a bulk urb, sends it off and waits for completion
194 * @usb_dev: pointer to the usb device to send the message to
195 * @pipe: endpoint "pipe" to send the message to
196 * @data: pointer to the data to send
197 * @len: length in bytes of the data to send
198 * @actual_length: pointer to a location to put the actual length transferred
199 * in bytes
200 * @timeout: time in msecs to wait for the message to complete before
201 * timing out (if 0 the wait is forever)
202 *
203 * Context: !in_interrupt ()
204 *
205 * This function sends a simple bulk message to a specified endpoint
206 * and waits for the message to complete, or timeout.
207 *
208 * If successful, it returns 0, otherwise a negative error number. The number
209 * of actual bytes transferred will be stored in the actual_length paramater.
210 *
211 * Don't use this function from within an interrupt context, like a bottom half
212 * handler. If you need an asynchronous message, or need to send a message
213 * from within interrupt context, use usb_submit_urb() If a thread in your
214 * driver uses this call, make sure your disconnect() method can wait for it to
215 * complete. Since you don't have a handle on the URB used, you can't cancel
216 * the request.
217 *
218 * Because there is no usb_interrupt_msg() and no USBDEVFS_INTERRUPT ioctl,
219 * users are forced to abuse this routine by using it to submit URBs for
220 * interrupt endpoints. We will take the liberty of creating an interrupt URB
221 * (with the default interval) if the target is an interrupt endpoint.
222 */
223 int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe,
224 void *data, int len, int *actual_length, int timeout)
225 {
226 struct urb *urb;
227 struct usb_host_endpoint *ep;
228
229 ep = usb_pipe_endpoint(usb_dev, pipe);
230 if (!ep || len < 0)
231 return -EINVAL;
232
233 urb = usb_alloc_urb(0, GFP_KERNEL);
234 if (!urb)
235 return -ENOMEM;
236
237 if ((ep->desc.bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) ==
238 USB_ENDPOINT_XFER_INT) {
239 pipe = (pipe & ~(3 << 30)) | (PIPE_INTERRUPT << 30);
240 usb_fill_int_urb(urb, usb_dev, pipe, data, len,
241 usb_api_blocking_completion, NULL,
242 ep->desc.bInterval);
243 } else
244 usb_fill_bulk_urb(urb, usb_dev, pipe, data, len,
245 usb_api_blocking_completion, NULL);
246
247 return usb_start_wait_urb(urb, timeout, actual_length);
248 }
249 EXPORT_SYMBOL_GPL(usb_bulk_msg);
250
251 /*-------------------------------------------------------------------*/
252
253 static void sg_clean(struct usb_sg_request *io)
254 {
255 if (io->urbs) {
256 while (io->entries--)
257 usb_free_urb(io->urbs [io->entries]);
258 kfree(io->urbs);
259 io->urbs = NULL;
260 }
261 io->dev = NULL;
262 }
263
264 static void sg_complete(struct urb *urb)
265 {
266 struct usb_sg_request *io = urb->context;
267 int status = urb->status;
268
269 spin_lock(&io->lock);
270
271 /* In 2.5 we require hcds' endpoint queues not to progress after fault
272 * reports, until the completion callback (this!) returns. That lets
273 * device driver code (like this routine) unlink queued urbs first,
274 * if it needs to, since the HC won't work on them at all. So it's
275 * not possible for page N+1 to overwrite page N, and so on.
276 *
277 * That's only for "hard" faults; "soft" faults (unlinks) sometimes
278 * complete before the HCD can get requests away from hardware,
279 * though never during cleanup after a hard fault.
280 */
281 if (io->status
282 && (io->status != -ECONNRESET
283 || status != -ECONNRESET)
284 && urb->actual_length) {
285 dev_err(io->dev->bus->controller,
286 "dev %s ep%d%s scatterlist error %d/%d\n",
287 io->dev->devpath,
288 usb_endpoint_num(&urb->ep->desc),
289 usb_urb_dir_in(urb) ? "in" : "out",
290 status, io->status);
291 /* BUG (); */
292 }
293
294 if (io->status == 0 && status && status != -ECONNRESET) {
295 int i, found, retval;
296
297 io->status = status;
298
299 /* the previous urbs, and this one, completed already.
300 * unlink pending urbs so they won't rx/tx bad data.
301 * careful: unlink can sometimes be synchronous...
302 */
303 spin_unlock(&io->lock);
304 for (i = 0, found = 0; i < io->entries; i++) {
305 if (!io->urbs [i] || !io->urbs [i]->dev)
306 continue;
307 if (found) {
308 retval = usb_unlink_urb(io->urbs [i]);
309 if (retval != -EINPROGRESS &&
310 retval != -ENODEV &&
311 retval != -EBUSY &&
312 retval != -EIDRM)
313 dev_err(&io->dev->dev,
314 "%s, unlink --> %d\n",
315 __func__, retval);
316 } else if (urb == io->urbs [i])
317 found = 1;
318 }
319 spin_lock(&io->lock);
320 }
321
322 /* on the last completion, signal usb_sg_wait() */
323 io->bytes += urb->actual_length;
324 io->count--;
325 if (!io->count)
326 complete(&io->complete);
327
328 spin_unlock(&io->lock);
329 }
330
331
332 /**
333 * usb_sg_init - initializes scatterlist-based bulk/interrupt I/O request
334 * @io: request block being initialized. until usb_sg_wait() returns,
335 * treat this as a pointer to an opaque block of memory,
336 * @dev: the usb device that will send or receive the data
337 * @pipe: endpoint "pipe" used to transfer the data
338 * @period: polling rate for interrupt endpoints, in frames or
339 * (for high speed endpoints) microframes; ignored for bulk
340 * @sg: scatterlist entries
341 * @nents: how many entries in the scatterlist
342 * @length: how many bytes to send from the scatterlist, or zero to
343 * send every byte identified in the list.
344 * @mem_flags: SLAB_* flags affecting memory allocations in this call
345 *
346 * Returns zero for success, else a negative errno value. This initializes a
347 * scatter/gather request, allocating resources such as I/O mappings and urb
348 * memory (except maybe memory used by USB controller drivers).
349 *
350 * The request must be issued using usb_sg_wait(), which waits for the I/O to
351 * complete (or to be canceled) and then cleans up all resources allocated by
352 * usb_sg_init().
353 *
354 * The request may be canceled with usb_sg_cancel(), either before or after
355 * usb_sg_wait() is called.
356 */
357 int usb_sg_init(struct usb_sg_request *io, struct usb_device *dev,
358 unsigned pipe, unsigned period, struct scatterlist *sg,
359 int nents, size_t length, gfp_t mem_flags)
360 {
361 int i;
362 int urb_flags;
363 int use_sg;
364
365 if (!io || !dev || !sg
366 || usb_pipecontrol(pipe)
367 || usb_pipeisoc(pipe)
368 || nents <= 0)
369 return -EINVAL;
370
371 spin_lock_init(&io->lock);
372 io->dev = dev;
373 io->pipe = pipe;
374
375 if (dev->bus->sg_tablesize > 0) {
376 use_sg = true;
377 io->entries = 1;
378 } else {
379 use_sg = false;
380 io->entries = nents;
381 }
382
383 /* initialize all the urbs we'll use */
384 io->urbs = kmalloc(io->entries * sizeof *io->urbs, mem_flags);
385 if (!io->urbs)
386 goto nomem;
387
388 urb_flags = URB_NO_INTERRUPT;
389 if (usb_pipein(pipe))
390 urb_flags |= URB_SHORT_NOT_OK;
391
392 for_each_sg(sg, sg, io->entries, i) {
393 struct urb *urb;
394 unsigned len;
395
396 urb = usb_alloc_urb(0, mem_flags);
397 if (!urb) {
398 io->entries = i;
399 goto nomem;
400 }
401 io->urbs[i] = urb;
402
403 urb->dev = NULL;
404 urb->pipe = pipe;
405 urb->interval = period;
406 urb->transfer_flags = urb_flags;
407 urb->complete = sg_complete;
408 urb->context = io;
409 urb->sg = sg;
410
411 if (use_sg) {
412 /* There is no single transfer buffer */
413 urb->transfer_buffer = NULL;
414 urb->num_sgs = nents;
415
416 /* A length of zero means transfer the whole sg list */
417 len = length;
418 if (len == 0) {
419 struct scatterlist *sg2;
420 int j;
421
422 for_each_sg(sg, sg2, nents, j)
423 len += sg2->length;
424 }
425 } else {
426 /*
427 * Some systems can't use DMA; they use PIO instead.
428 * For their sakes, transfer_buffer is set whenever
429 * possible.
430 */
431 if (!PageHighMem(sg_page(sg)))
432 urb->transfer_buffer = sg_virt(sg);
433 else
434 urb->transfer_buffer = NULL;
435
436 len = sg->length;
437 if (length) {
438 len = min_t(size_t, len, length);
439 length -= len;
440 if (length == 0)
441 io->entries = i + 1;
442 }
443 }
444 urb->transfer_buffer_length = len;
445 }
446 io->urbs[--i]->transfer_flags &= ~URB_NO_INTERRUPT;
447
448 /* transaction state */
449 io->count = io->entries;
450 io->status = 0;
451 io->bytes = 0;
452 init_completion(&io->complete);
453 return 0;
454
455 nomem:
456 sg_clean(io);
457 return -ENOMEM;
458 }
459 EXPORT_SYMBOL_GPL(usb_sg_init);
460
461 /**
462 * usb_sg_wait - synchronously execute scatter/gather request
463 * @io: request block handle, as initialized with usb_sg_init().
464 * some fields become accessible when this call returns.
465 * Context: !in_interrupt ()
466 *
467 * This function blocks until the specified I/O operation completes. It
468 * leverages the grouping of the related I/O requests to get good transfer
469 * rates, by queueing the requests. At higher speeds, such queuing can
470 * significantly improve USB throughput.
471 *
472 * There are three kinds of completion for this function.
473 * (1) success, where io->status is zero. The number of io->bytes
474 * transferred is as requested.
475 * (2) error, where io->status is a negative errno value. The number
476 * of io->bytes transferred before the error is usually less
477 * than requested, and can be nonzero.
478 * (3) cancellation, a type of error with status -ECONNRESET that
479 * is initiated by usb_sg_cancel().
480 *
481 * When this function returns, all memory allocated through usb_sg_init() or
482 * this call will have been freed. The request block parameter may still be
483 * passed to usb_sg_cancel(), or it may be freed. It could also be
484 * reinitialized and then reused.
485 *
486 * Data Transfer Rates:
487 *
488 * Bulk transfers are valid for full or high speed endpoints.
489 * The best full speed data rate is 19 packets of 64 bytes each
490 * per frame, or 1216 bytes per millisecond.
491 * The best high speed data rate is 13 packets of 512 bytes each
492 * per microframe, or 52 KBytes per millisecond.
493 *
494 * The reason to use interrupt transfers through this API would most likely
495 * be to reserve high speed bandwidth, where up to 24 KBytes per millisecond
496 * could be transferred. That capability is less useful for low or full
497 * speed interrupt endpoints, which allow at most one packet per millisecond,
498 * of at most 8 or 64 bytes (respectively).
499 *
500 * It is not necessary to call this function to reserve bandwidth for devices
501 * under an xHCI host controller, as the bandwidth is reserved when the
502 * configuration or interface alt setting is selected.
503 */
504 void usb_sg_wait(struct usb_sg_request *io)
505 {
506 int i;
507 int entries = io->entries;
508
509 /* queue the urbs. */
510 spin_lock_irq(&io->lock);
511 i = 0;
512 while (i < entries && !io->status) {
513 int retval;
514
515 io->urbs[i]->dev = io->dev;
516 retval = usb_submit_urb(io->urbs [i], GFP_ATOMIC);
517
518 /* after we submit, let completions or cancelations fire;
519 * we handshake using io->status.
520 */
521 spin_unlock_irq(&io->lock);
522 switch (retval) {
523 /* maybe we retrying will recover */
524 case -ENXIO: /* hc didn't queue this one */
525 case -EAGAIN:
526 case -ENOMEM:
527 retval = 0;
528 yield();
529 break;
530
531 /* no error? continue immediately.
532 *
533 * NOTE: to work better with UHCI (4K I/O buffer may
534 * need 3K of TDs) it may be good to limit how many
535 * URBs are queued at once; N milliseconds?
536 */
537 case 0:
538 ++i;
539 cpu_relax();
540 break;
541
542 /* fail any uncompleted urbs */
543 default:
544 io->urbs[i]->status = retval;
545 dev_dbg(&io->dev->dev, "%s, submit --> %d\n",
546 __func__, retval);
547 usb_sg_cancel(io);
548 }
549 spin_lock_irq(&io->lock);
550 if (retval && (io->status == 0 || io->status == -ECONNRESET))
551 io->status = retval;
552 }
553 io->count -= entries - i;
554 if (io->count == 0)
555 complete(&io->complete);
556 spin_unlock_irq(&io->lock);
557
558 /* OK, yes, this could be packaged as non-blocking.
559 * So could the submit loop above ... but it's easier to
560 * solve neither problem than to solve both!
561 */
562 wait_for_completion(&io->complete);
563
564 sg_clean(io);
565 }
566 EXPORT_SYMBOL_GPL(usb_sg_wait);
567
568 /**
569 * usb_sg_cancel - stop scatter/gather i/o issued by usb_sg_wait()
570 * @io: request block, initialized with usb_sg_init()
571 *
572 * This stops a request after it has been started by usb_sg_wait().
573 * It can also prevents one initialized by usb_sg_init() from starting,
574 * so that call just frees resources allocated to the request.
575 */
576 void usb_sg_cancel(struct usb_sg_request *io)
577 {
578 unsigned long flags;
579
580 spin_lock_irqsave(&io->lock, flags);
581
582 /* shut everything down, if it didn't already */
583 if (!io->status) {
584 int i;
585
586 io->status = -ECONNRESET;
587 spin_unlock(&io->lock);
588 for (i = 0; i < io->entries; i++) {
589 int retval;
590
591 if (!io->urbs [i]->dev)
592 continue;
593 retval = usb_unlink_urb(io->urbs [i]);
594 if (retval != -EINPROGRESS
595 && retval != -ENODEV
596 && retval != -EBUSY
597 && retval != -EIDRM)
598 dev_warn(&io->dev->dev, "%s, unlink --> %d\n",
599 __func__, retval);
600 }
601 spin_lock(&io->lock);
602 }
603 spin_unlock_irqrestore(&io->lock, flags);
604 }
605 EXPORT_SYMBOL_GPL(usb_sg_cancel);
606
607 /*-------------------------------------------------------------------*/
608
609 /**
610 * usb_get_descriptor - issues a generic GET_DESCRIPTOR request
611 * @dev: the device whose descriptor is being retrieved
612 * @type: the descriptor type (USB_DT_*)
613 * @index: the number of the descriptor
614 * @buf: where to put the descriptor
615 * @size: how big is "buf"?
616 * Context: !in_interrupt ()
617 *
618 * Gets a USB descriptor. Convenience functions exist to simplify
619 * getting some types of descriptors. Use
620 * usb_get_string() or usb_string() for USB_DT_STRING.
621 * Device (USB_DT_DEVICE) and configuration descriptors (USB_DT_CONFIG)
622 * are part of the device structure.
623 * In addition to a number of USB-standard descriptors, some
624 * devices also use class-specific or vendor-specific descriptors.
625 *
626 * This call is synchronous, and may not be used in an interrupt context.
627 *
628 * Returns the number of bytes received on success, or else the status code
629 * returned by the underlying usb_control_msg() call.
630 */
631 int usb_get_descriptor(struct usb_device *dev, unsigned char type,
632 unsigned char index, void *buf, int size)
633 {
634 int i;
635 int result;
636
637 memset(buf, 0, size); /* Make sure we parse really received data */
638
639 for (i = 0; i < 3; ++i) {
640 /* retry on length 0 or error; some devices are flakey */
641 result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
642 USB_REQ_GET_DESCRIPTOR, USB_DIR_IN,
643 (type << 8) + index, 0, buf, size,
644 USB_CTRL_GET_TIMEOUT);
645 if (result <= 0 && result != -ETIMEDOUT)
646 continue;
647 if (result > 1 && ((u8 *)buf)[1] != type) {
648 result = -ENODATA;
649 continue;
650 }
651 break;
652 }
653 return result;
654 }
655 EXPORT_SYMBOL_GPL(usb_get_descriptor);
656
657 /**
658 * usb_get_string - gets a string descriptor
659 * @dev: the device whose string descriptor is being retrieved
660 * @langid: code for language chosen (from string descriptor zero)
661 * @index: the number of the descriptor
662 * @buf: where to put the string
663 * @size: how big is "buf"?
664 * Context: !in_interrupt ()
665 *
666 * Retrieves a string, encoded using UTF-16LE (Unicode, 16 bits per character,
667 * in little-endian byte order).
668 * The usb_string() function will often be a convenient way to turn
669 * these strings into kernel-printable form.
670 *
671 * Strings may be referenced in device, configuration, interface, or other
672 * descriptors, and could also be used in vendor-specific ways.
673 *
674 * This call is synchronous, and may not be used in an interrupt context.
675 *
676 * Returns the number of bytes received on success, or else the status code
677 * returned by the underlying usb_control_msg() call.
678 */
679 static int usb_get_string(struct usb_device *dev, unsigned short langid,
680 unsigned char index, void *buf, int size)
681 {
682 int i;
683 int result;
684
685 for (i = 0; i < 3; ++i) {
686 /* retry on length 0 or stall; some devices are flakey */
687 result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
688 USB_REQ_GET_DESCRIPTOR, USB_DIR_IN,
689 (USB_DT_STRING << 8) + index, langid, buf, size,
690 USB_CTRL_GET_TIMEOUT);
691 if (result == 0 || result == -EPIPE)
692 continue;
693 if (result > 1 && ((u8 *) buf)[1] != USB_DT_STRING) {
694 result = -ENODATA;
695 continue;
696 }
697 break;
698 }
699 return result;
700 }
701
702 static void usb_try_string_workarounds(unsigned char *buf, int *length)
703 {
704 int newlength, oldlength = *length;
705
706 for (newlength = 2; newlength + 1 < oldlength; newlength += 2)
707 if (!isprint(buf[newlength]) || buf[newlength + 1])
708 break;
709
710 if (newlength > 2) {
711 buf[0] = newlength;
712 *length = newlength;
713 }
714 }
715
716 static int usb_string_sub(struct usb_device *dev, unsigned int langid,
717 unsigned int index, unsigned char *buf)
718 {
719 int rc;
720
721 /* Try to read the string descriptor by asking for the maximum
722 * possible number of bytes */
723 if (dev->quirks & USB_QUIRK_STRING_FETCH_255)
724 rc = -EIO;
725 else
726 rc = usb_get_string(dev, langid, index, buf, 255);
727
728 /* If that failed try to read the descriptor length, then
729 * ask for just that many bytes */
730 if (rc < 2) {
731 rc = usb_get_string(dev, langid, index, buf, 2);
732 if (rc == 2)
733 rc = usb_get_string(dev, langid, index, buf, buf[0]);
734 }
735
736 if (rc >= 2) {
737 if (!buf[0] && !buf[1])
738 usb_try_string_workarounds(buf, &rc);
739
740 /* There might be extra junk at the end of the descriptor */
741 if (buf[0] < rc)
742 rc = buf[0];
743
744 rc = rc - (rc & 1); /* force a multiple of two */
745 }
746
747 if (rc < 2)
748 rc = (rc < 0 ? rc : -EINVAL);
749
750 return rc;
751 }
752
753 static int usb_get_langid(struct usb_device *dev, unsigned char *tbuf)
754 {
755 int err;
756
757 if (dev->have_langid)
758 return 0;
759
760 if (dev->string_langid < 0)
761 return -EPIPE;
762
763 err = usb_string_sub(dev, 0, 0, tbuf);
764
765 /* If the string was reported but is malformed, default to english
766 * (0x0409) */
767 if (err == -ENODATA || (err > 0 && err < 4)) {
768 dev->string_langid = 0x0409;
769 dev->have_langid = 1;
770 dev_err(&dev->dev,
771 "string descriptor 0 malformed (err = %d), "
772 "defaulting to 0x%04x\n",
773 err, dev->string_langid);
774 return 0;
775 }
776
777 /* In case of all other errors, we assume the device is not able to
778 * deal with strings at all. Set string_langid to -1 in order to
779 * prevent any string to be retrieved from the device */
780 if (err < 0) {
781 dev_err(&dev->dev, "string descriptor 0 read error: %d\n",
782 err);
783 dev->string_langid = -1;
784 return -EPIPE;
785 }
786
787 /* always use the first langid listed */
788 dev->string_langid = tbuf[2] | (tbuf[3] << 8);
789 dev->have_langid = 1;
790 dev_dbg(&dev->dev, "default language 0x%04x\n",
791 dev->string_langid);
792 return 0;
793 }
794
795 /**
796 * usb_string - returns UTF-8 version of a string descriptor
797 * @dev: the device whose string descriptor is being retrieved
798 * @index: the number of the descriptor
799 * @buf: where to put the string
800 * @size: how big is "buf"?
801 * Context: !in_interrupt ()
802 *
803 * This converts the UTF-16LE encoded strings returned by devices, from
804 * usb_get_string_descriptor(), to null-terminated UTF-8 encoded ones
805 * that are more usable in most kernel contexts. Note that this function
806 * chooses strings in the first language supported by the device.
807 *
808 * This call is synchronous, and may not be used in an interrupt context.
809 *
810 * Returns length of the string (>= 0) or usb_control_msg status (< 0).
811 */
812 int usb_string(struct usb_device *dev, int index, char *buf, size_t size)
813 {
814 unsigned char *tbuf;
815 int err;
816
817 if (dev->state == USB_STATE_SUSPENDED)
818 return -EHOSTUNREACH;
819 if (size <= 0 || !buf || !index)
820 return -EINVAL;
821 buf[0] = 0;
822 tbuf = kmalloc(256, GFP_NOIO);
823 if (!tbuf)
824 return -ENOMEM;
825
826 err = usb_get_langid(dev, tbuf);
827 if (err < 0)
828 goto errout;
829
830 err = usb_string_sub(dev, dev->string_langid, index, tbuf);
831 if (err < 0)
832 goto errout;
833
834 size--; /* leave room for trailing NULL char in output buffer */
835 err = utf16s_to_utf8s((wchar_t *) &tbuf[2], (err - 2) / 2,
836 UTF16_LITTLE_ENDIAN, buf, size);
837 buf[err] = 0;
838
839 if (tbuf[1] != USB_DT_STRING)
840 dev_dbg(&dev->dev,
841 "wrong descriptor type %02x for string %d (\"%s\")\n",
842 tbuf[1], index, buf);
843
844 errout:
845 kfree(tbuf);
846 return err;
847 }
848 EXPORT_SYMBOL_GPL(usb_string);
849
850 /* one UTF-8-encoded 16-bit character has at most three bytes */
851 #define MAX_USB_STRING_SIZE (127 * 3 + 1)
852
853 /**
854 * usb_cache_string - read a string descriptor and cache it for later use
855 * @udev: the device whose string descriptor is being read
856 * @index: the descriptor index
857 *
858 * Returns a pointer to a kmalloc'ed buffer containing the descriptor string,
859 * or NULL if the index is 0 or the string could not be read.
860 */
861 char *usb_cache_string(struct usb_device *udev, int index)
862 {
863 char *buf;
864 char *smallbuf = NULL;
865 int len;
866
867 if (index <= 0)
868 return NULL;
869
870 buf = kmalloc(MAX_USB_STRING_SIZE, GFP_NOIO);
871 if (buf) {
872 len = usb_string(udev, index, buf, MAX_USB_STRING_SIZE);
873 if (len > 0) {
874 smallbuf = kmalloc(++len, GFP_NOIO);
875 if (!smallbuf)
876 return buf;
877 memcpy(smallbuf, buf, len);
878 }
879 kfree(buf);
880 }
881 return smallbuf;
882 }
883
884 /*
885 * usb_get_device_descriptor - (re)reads the device descriptor (usbcore)
886 * @dev: the device whose device descriptor is being updated
887 * @size: how much of the descriptor to read
888 * Context: !in_interrupt ()
889 *
890 * Updates the copy of the device descriptor stored in the device structure,
891 * which dedicates space for this purpose.
892 *
893 * Not exported, only for use by the core. If drivers really want to read
894 * the device descriptor directly, they can call usb_get_descriptor() with
895 * type = USB_DT_DEVICE and index = 0.
896 *
897 * This call is synchronous, and may not be used in an interrupt context.
898 *
899 * Returns the number of bytes received on success, or else the status code
900 * returned by the underlying usb_control_msg() call.
901 */
902 int usb_get_device_descriptor(struct usb_device *dev, unsigned int size)
903 {
904 struct usb_device_descriptor *desc;
905 int ret;
906
907 if (size > sizeof(*desc))
908 return -EINVAL;
909 desc = kmalloc(sizeof(*desc), GFP_NOIO);
910 if (!desc)
911 return -ENOMEM;
912
913 ret = usb_get_descriptor(dev, USB_DT_DEVICE, 0, desc, size);
914 if (ret >= 0)
915 memcpy(&dev->descriptor, desc, size);
916 kfree(desc);
917 return ret;
918 }
919
920 /**
921 * usb_get_status - issues a GET_STATUS call
922 * @dev: the device whose status is being checked
923 * @type: USB_RECIP_*; for device, interface, or endpoint
924 * @target: zero (for device), else interface or endpoint number
925 * @data: pointer to two bytes of bitmap data
926 * Context: !in_interrupt ()
927 *
928 * Returns device, interface, or endpoint status. Normally only of
929 * interest to see if the device is self powered, or has enabled the
930 * remote wakeup facility; or whether a bulk or interrupt endpoint
931 * is halted ("stalled").
932 *
933 * Bits in these status bitmaps are set using the SET_FEATURE request,
934 * and cleared using the CLEAR_FEATURE request. The usb_clear_halt()
935 * function should be used to clear halt ("stall") status.
936 *
937 * This call is synchronous, and may not be used in an interrupt context.
938 *
939 * Returns the number of bytes received on success, or else the status code
940 * returned by the underlying usb_control_msg() call.
941 */
942 int usb_get_status(struct usb_device *dev, int type, int target, void *data)
943 {
944 int ret;
945 u16 *status = kmalloc(sizeof(*status), GFP_KERNEL);
946
947 if (!status)
948 return -ENOMEM;
949
950 ret = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
951 USB_REQ_GET_STATUS, USB_DIR_IN | type, 0, target, status,
952 sizeof(*status), USB_CTRL_GET_TIMEOUT);
953
954 *(u16 *)data = *status;
955 kfree(status);
956 return ret;
957 }
958 EXPORT_SYMBOL_GPL(usb_get_status);
959
960 /**
961 * usb_clear_halt - tells device to clear endpoint halt/stall condition
962 * @dev: device whose endpoint is halted
963 * @pipe: endpoint "pipe" being cleared
964 * Context: !in_interrupt ()
965 *
966 * This is used to clear halt conditions for bulk and interrupt endpoints,
967 * as reported by URB completion status. Endpoints that are halted are
968 * sometimes referred to as being "stalled". Such endpoints are unable
969 * to transmit or receive data until the halt status is cleared. Any URBs
970 * queued for such an endpoint should normally be unlinked by the driver
971 * before clearing the halt condition, as described in sections 5.7.5
972 * and 5.8.5 of the USB 2.0 spec.
973 *
974 * Note that control and isochronous endpoints don't halt, although control
975 * endpoints report "protocol stall" (for unsupported requests) using the
976 * same status code used to report a true stall.
977 *
978 * This call is synchronous, and may not be used in an interrupt context.
979 *
980 * Returns zero on success, or else the status code returned by the
981 * underlying usb_control_msg() call.
982 */
983 int usb_clear_halt(struct usb_device *dev, int pipe)
984 {
985 int result;
986 int endp = usb_pipeendpoint(pipe);
987
988 if (usb_pipein(pipe))
989 endp |= USB_DIR_IN;
990
991 /* we don't care if it wasn't halted first. in fact some devices
992 * (like some ibmcam model 1 units) seem to expect hosts to make
993 * this request for iso endpoints, which can't halt!
994 */
995 result = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
996 USB_REQ_CLEAR_FEATURE, USB_RECIP_ENDPOINT,
997 USB_ENDPOINT_HALT, endp, NULL, 0,
998 USB_CTRL_SET_TIMEOUT);
999
1000 /* don't un-halt or force to DATA0 except on success */
1001 if (result < 0)
1002 return result;
1003
1004 /* NOTE: seems like Microsoft and Apple don't bother verifying
1005 * the clear "took", so some devices could lock up if you check...
1006 * such as the Hagiwara FlashGate DUAL. So we won't bother.
1007 *
1008 * NOTE: make sure the logic here doesn't diverge much from
1009 * the copy in usb-storage, for as long as we need two copies.
1010 */
1011
1012 usb_reset_endpoint(dev, endp);
1013
1014 return 0;
1015 }
1016 EXPORT_SYMBOL_GPL(usb_clear_halt);
1017
1018 static int create_intf_ep_devs(struct usb_interface *intf)
1019 {
1020 struct usb_device *udev = interface_to_usbdev(intf);
1021 struct usb_host_interface *alt = intf->cur_altsetting;
1022 int i;
1023
1024 if (intf->ep_devs_created || intf->unregistering)
1025 return 0;
1026
1027 for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1028 (void) usb_create_ep_devs(&intf->dev, &alt->endpoint[i], udev);
1029 intf->ep_devs_created = 1;
1030 return 0;
1031 }
1032
1033 static void remove_intf_ep_devs(struct usb_interface *intf)
1034 {
1035 struct usb_host_interface *alt = intf->cur_altsetting;
1036 int i;
1037
1038 if (!intf->ep_devs_created)
1039 return;
1040
1041 for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1042 usb_remove_ep_devs(&alt->endpoint[i]);
1043 intf->ep_devs_created = 0;
1044 }
1045
1046 /**
1047 * usb_disable_endpoint -- Disable an endpoint by address
1048 * @dev: the device whose endpoint is being disabled
1049 * @epaddr: the endpoint's address. Endpoint number for output,
1050 * endpoint number + USB_DIR_IN for input
1051 * @reset_hardware: flag to erase any endpoint state stored in the
1052 * controller hardware
1053 *
1054 * Disables the endpoint for URB submission and nukes all pending URBs.
1055 * If @reset_hardware is set then also deallocates hcd/hardware state
1056 * for the endpoint.
1057 */
1058 void usb_disable_endpoint(struct usb_device *dev, unsigned int epaddr,
1059 bool reset_hardware)
1060 {
1061 unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK;
1062 struct usb_host_endpoint *ep;
1063
1064 if (!dev)
1065 return;
1066
1067 if (usb_endpoint_out(epaddr)) {
1068 ep = dev->ep_out[epnum];
1069 if (reset_hardware)
1070 dev->ep_out[epnum] = NULL;
1071 } else {
1072 ep = dev->ep_in[epnum];
1073 if (reset_hardware)
1074 dev->ep_in[epnum] = NULL;
1075 }
1076 if (ep) {
1077 ep->enabled = 0;
1078 usb_hcd_flush_endpoint(dev, ep);
1079 if (reset_hardware)
1080 usb_hcd_disable_endpoint(dev, ep);
1081 }
1082 }
1083
1084 /**
1085 * usb_reset_endpoint - Reset an endpoint's state.
1086 * @dev: the device whose endpoint is to be reset
1087 * @epaddr: the endpoint's address. Endpoint number for output,
1088 * endpoint number + USB_DIR_IN for input
1089 *
1090 * Resets any host-side endpoint state such as the toggle bit,
1091 * sequence number or current window.
1092 */
1093 void usb_reset_endpoint(struct usb_device *dev, unsigned int epaddr)
1094 {
1095 unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK;
1096 struct usb_host_endpoint *ep;
1097
1098 if (usb_endpoint_out(epaddr))
1099 ep = dev->ep_out[epnum];
1100 else
1101 ep = dev->ep_in[epnum];
1102 if (ep)
1103 usb_hcd_reset_endpoint(dev, ep);
1104 }
1105 EXPORT_SYMBOL_GPL(usb_reset_endpoint);
1106
1107
1108 /**
1109 * usb_disable_interface -- Disable all endpoints for an interface
1110 * @dev: the device whose interface is being disabled
1111 * @intf: pointer to the interface descriptor
1112 * @reset_hardware: flag to erase any endpoint state stored in the
1113 * controller hardware
1114 *
1115 * Disables all the endpoints for the interface's current altsetting.
1116 */
1117 void usb_disable_interface(struct usb_device *dev, struct usb_interface *intf,
1118 bool reset_hardware)
1119 {
1120 struct usb_host_interface *alt = intf->cur_altsetting;
1121 int i;
1122
1123 for (i = 0; i < alt->desc.bNumEndpoints; ++i) {
1124 usb_disable_endpoint(dev,
1125 alt->endpoint[i].desc.bEndpointAddress,
1126 reset_hardware);
1127 }
1128 }
1129
1130 /**
1131 * usb_disable_device - Disable all the endpoints for a USB device
1132 * @dev: the device whose endpoints are being disabled
1133 * @skip_ep0: 0 to disable endpoint 0, 1 to skip it.
1134 *
1135 * Disables all the device's endpoints, potentially including endpoint 0.
1136 * Deallocates hcd/hardware state for the endpoints (nuking all or most
1137 * pending urbs) and usbcore state for the interfaces, so that usbcore
1138 * must usb_set_configuration() before any interfaces could be used.
1139 */
1140 void usb_disable_device(struct usb_device *dev, int skip_ep0)
1141 {
1142 int i;
1143 struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1144
1145 /* getting rid of interfaces will disconnect
1146 * any drivers bound to them (a key side effect)
1147 */
1148 if (dev->actconfig) {
1149 /*
1150 * FIXME: In order to avoid self-deadlock involving the
1151 * bandwidth_mutex, we have to mark all the interfaces
1152 * before unregistering any of them.
1153 */
1154 for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++)
1155 dev->actconfig->interface[i]->unregistering = 1;
1156
1157 for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) {
1158 struct usb_interface *interface;
1159
1160 /* remove this interface if it has been registered */
1161 interface = dev->actconfig->interface[i];
1162 if (!device_is_registered(&interface->dev))
1163 continue;
1164 dev_dbg(&dev->dev, "unregistering interface %s\n",
1165 dev_name(&interface->dev));
1166 remove_intf_ep_devs(interface);
1167 device_del(&interface->dev);
1168 }
1169
1170 /* Now that the interfaces are unbound, nobody should
1171 * try to access them.
1172 */
1173 for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) {
1174 put_device(&dev->actconfig->interface[i]->dev);
1175 dev->actconfig->interface[i] = NULL;
1176 }
1177 dev->actconfig = NULL;
1178 if (dev->state == USB_STATE_CONFIGURED)
1179 usb_set_device_state(dev, USB_STATE_ADDRESS);
1180 }
1181
1182 dev_dbg(&dev->dev, "%s nuking %s URBs\n", __func__,
1183 skip_ep0 ? "non-ep0" : "all");
1184 if (hcd->driver->check_bandwidth) {
1185 /* First pass: Cancel URBs, leave endpoint pointers intact. */
1186 for (i = skip_ep0; i < 16; ++i) {
1187 usb_disable_endpoint(dev, i, false);
1188 usb_disable_endpoint(dev, i + USB_DIR_IN, false);
1189 }
1190 /* Remove endpoints from the host controller internal state */
1191 mutex_lock(hcd->bandwidth_mutex);
1192 usb_hcd_alloc_bandwidth(dev, NULL, NULL, NULL);
1193 mutex_unlock(hcd->bandwidth_mutex);
1194 /* Second pass: remove endpoint pointers */
1195 }
1196 for (i = skip_ep0; i < 16; ++i) {
1197 usb_disable_endpoint(dev, i, true);
1198 usb_disable_endpoint(dev, i + USB_DIR_IN, true);
1199 }
1200 }
1201
1202 /**
1203 * usb_enable_endpoint - Enable an endpoint for USB communications
1204 * @dev: the device whose interface is being enabled
1205 * @ep: the endpoint
1206 * @reset_ep: flag to reset the endpoint state
1207 *
1208 * Resets the endpoint state if asked, and sets dev->ep_{in,out} pointers.
1209 * For control endpoints, both the input and output sides are handled.
1210 */
1211 void usb_enable_endpoint(struct usb_device *dev, struct usb_host_endpoint *ep,
1212 bool reset_ep)
1213 {
1214 int epnum = usb_endpoint_num(&ep->desc);
1215 int is_out = usb_endpoint_dir_out(&ep->desc);
1216 int is_control = usb_endpoint_xfer_control(&ep->desc);
1217
1218 if (reset_ep)
1219 usb_hcd_reset_endpoint(dev, ep);
1220 if (is_out || is_control)
1221 dev->ep_out[epnum] = ep;
1222 if (!is_out || is_control)
1223 dev->ep_in[epnum] = ep;
1224 ep->enabled = 1;
1225 }
1226
1227 /**
1228 * usb_enable_interface - Enable all the endpoints for an interface
1229 * @dev: the device whose interface is being enabled
1230 * @intf: pointer to the interface descriptor
1231 * @reset_eps: flag to reset the endpoints' state
1232 *
1233 * Enables all the endpoints for the interface's current altsetting.
1234 */
1235 void usb_enable_interface(struct usb_device *dev,
1236 struct usb_interface *intf, bool reset_eps)
1237 {
1238 struct usb_host_interface *alt = intf->cur_altsetting;
1239 int i;
1240
1241 for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1242 usb_enable_endpoint(dev, &alt->endpoint[i], reset_eps);
1243 }
1244
1245 /**
1246 * usb_set_interface - Makes a particular alternate setting be current
1247 * @dev: the device whose interface is being updated
1248 * @interface: the interface being updated
1249 * @alternate: the setting being chosen.
1250 * Context: !in_interrupt ()
1251 *
1252 * This is used to enable data transfers on interfaces that may not
1253 * be enabled by default. Not all devices support such configurability.
1254 * Only the driver bound to an interface may change its setting.
1255 *
1256 * Within any given configuration, each interface may have several
1257 * alternative settings. These are often used to control levels of
1258 * bandwidth consumption. For example, the default setting for a high
1259 * speed interrupt endpoint may not send more than 64 bytes per microframe,
1260 * while interrupt transfers of up to 3KBytes per microframe are legal.
1261 * Also, isochronous endpoints may never be part of an
1262 * interface's default setting. To access such bandwidth, alternate
1263 * interface settings must be made current.
1264 *
1265 * Note that in the Linux USB subsystem, bandwidth associated with
1266 * an endpoint in a given alternate setting is not reserved until an URB
1267 * is submitted that needs that bandwidth. Some other operating systems
1268 * allocate bandwidth early, when a configuration is chosen.
1269 *
1270 * This call is synchronous, and may not be used in an interrupt context.
1271 * Also, drivers must not change altsettings while urbs are scheduled for
1272 * endpoints in that interface; all such urbs must first be completed
1273 * (perhaps forced by unlinking).
1274 *
1275 * Returns zero on success, or else the status code returned by the
1276 * underlying usb_control_msg() call.
1277 */
1278 int usb_set_interface(struct usb_device *dev, int interface, int alternate)
1279 {
1280 struct usb_interface *iface;
1281 struct usb_host_interface *alt;
1282 struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1283 int ret;
1284 int manual = 0;
1285 unsigned int epaddr;
1286 unsigned int pipe;
1287
1288 if (dev->state == USB_STATE_SUSPENDED)
1289 return -EHOSTUNREACH;
1290
1291 iface = usb_ifnum_to_if(dev, interface);
1292 if (!iface) {
1293 dev_dbg(&dev->dev, "selecting invalid interface %d\n",
1294 interface);
1295 return -EINVAL;
1296 }
1297 if (iface->unregistering)
1298 return -ENODEV;
1299
1300 alt = usb_altnum_to_altsetting(iface, alternate);
1301 if (!alt) {
1302 dev_warn(&dev->dev, "selecting invalid altsetting %d\n",
1303 alternate);
1304 return -EINVAL;
1305 }
1306
1307 /* Make sure we have enough bandwidth for this alternate interface.
1308 * Remove the current alt setting and add the new alt setting.
1309 */
1310 mutex_lock(hcd->bandwidth_mutex);
1311 /* Disable LPM, and re-enable it once the new alt setting is installed,
1312 * so that the xHCI driver can recalculate the U1/U2 timeouts.
1313 */
1314 if (usb_disable_lpm(dev)) {
1315 dev_err(&iface->dev, "%s Failed to disable LPM\n.", __func__);
1316 mutex_unlock(hcd->bandwidth_mutex);
1317 return -ENOMEM;
1318 }
1319 ret = usb_hcd_alloc_bandwidth(dev, NULL, iface->cur_altsetting, alt);
1320 if (ret < 0) {
1321 dev_info(&dev->dev, "Not enough bandwidth for altsetting %d\n",
1322 alternate);
1323 usb_enable_lpm(dev);
1324 mutex_unlock(hcd->bandwidth_mutex);
1325 return ret;
1326 }
1327
1328 if (dev->quirks & USB_QUIRK_NO_SET_INTF)
1329 ret = -EPIPE;
1330 else
1331 ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1332 USB_REQ_SET_INTERFACE, USB_RECIP_INTERFACE,
1333 alternate, interface, NULL, 0, 5000);
1334
1335 /* 9.4.10 says devices don't need this and are free to STALL the
1336 * request if the interface only has one alternate setting.
1337 */
1338 if (ret == -EPIPE && iface->num_altsetting == 1) {
1339 dev_dbg(&dev->dev,
1340 "manual set_interface for iface %d, alt %d\n",
1341 interface, alternate);
1342 manual = 1;
1343 } else if (ret < 0) {
1344 /* Re-instate the old alt setting */
1345 usb_hcd_alloc_bandwidth(dev, NULL, alt, iface->cur_altsetting);
1346 usb_enable_lpm(dev);
1347 mutex_unlock(hcd->bandwidth_mutex);
1348 return ret;
1349 }
1350 mutex_unlock(hcd->bandwidth_mutex);
1351
1352 /* FIXME drivers shouldn't need to replicate/bugfix the logic here
1353 * when they implement async or easily-killable versions of this or
1354 * other "should-be-internal" functions (like clear_halt).
1355 * should hcd+usbcore postprocess control requests?
1356 */
1357
1358 /* prevent submissions using previous endpoint settings */
1359 if (iface->cur_altsetting != alt) {
1360 remove_intf_ep_devs(iface);
1361 usb_remove_sysfs_intf_files(iface);
1362 }
1363 usb_disable_interface(dev, iface, true);
1364
1365 iface->cur_altsetting = alt;
1366
1367 /* Now that the interface is installed, re-enable LPM. */
1368 usb_unlocked_enable_lpm(dev);
1369
1370 /* If the interface only has one altsetting and the device didn't
1371 * accept the request, we attempt to carry out the equivalent action
1372 * by manually clearing the HALT feature for each endpoint in the
1373 * new altsetting.
1374 */
1375 if (manual) {
1376 int i;
1377
1378 for (i = 0; i < alt->desc.bNumEndpoints; i++) {
1379 epaddr = alt->endpoint[i].desc.bEndpointAddress;
1380 pipe = __create_pipe(dev,
1381 USB_ENDPOINT_NUMBER_MASK & epaddr) |
1382 (usb_endpoint_out(epaddr) ?
1383 USB_DIR_OUT : USB_DIR_IN);
1384
1385 usb_clear_halt(dev, pipe);
1386 }
1387 }
1388
1389 /* 9.1.1.5: reset toggles for all endpoints in the new altsetting
1390 *
1391 * Note:
1392 * Despite EP0 is always present in all interfaces/AS, the list of
1393 * endpoints from the descriptor does not contain EP0. Due to its
1394 * omnipresence one might expect EP0 being considered "affected" by
1395 * any SetInterface request and hence assume toggles need to be reset.
1396 * However, EP0 toggles are re-synced for every individual transfer
1397 * during the SETUP stage - hence EP0 toggles are "don't care" here.
1398 * (Likewise, EP0 never "halts" on well designed devices.)
1399 */
1400 usb_enable_interface(dev, iface, true);
1401 if (device_is_registered(&iface->dev)) {
1402 usb_create_sysfs_intf_files(iface);
1403 create_intf_ep_devs(iface);
1404 }
1405 return 0;
1406 }
1407 EXPORT_SYMBOL_GPL(usb_set_interface);
1408
1409 /**
1410 * usb_reset_configuration - lightweight device reset
1411 * @dev: the device whose configuration is being reset
1412 *
1413 * This issues a standard SET_CONFIGURATION request to the device using
1414 * the current configuration. The effect is to reset most USB-related
1415 * state in the device, including interface altsettings (reset to zero),
1416 * endpoint halts (cleared), and endpoint state (only for bulk and interrupt
1417 * endpoints). Other usbcore state is unchanged, including bindings of
1418 * usb device drivers to interfaces.
1419 *
1420 * Because this affects multiple interfaces, avoid using this with composite
1421 * (multi-interface) devices. Instead, the driver for each interface may
1422 * use usb_set_interface() on the interfaces it claims. Be careful though;
1423 * some devices don't support the SET_INTERFACE request, and others won't
1424 * reset all the interface state (notably endpoint state). Resetting the whole
1425 * configuration would affect other drivers' interfaces.
1426 *
1427 * The caller must own the device lock.
1428 *
1429 * Returns zero on success, else a negative error code.
1430 */
1431 int usb_reset_configuration(struct usb_device *dev)
1432 {
1433 int i, retval;
1434 struct usb_host_config *config;
1435 struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1436
1437 if (dev->state == USB_STATE_SUSPENDED)
1438 return -EHOSTUNREACH;
1439
1440 /* caller must have locked the device and must own
1441 * the usb bus readlock (so driver bindings are stable);
1442 * calls during probe() are fine
1443 */
1444
1445 for (i = 1; i < 16; ++i) {
1446 usb_disable_endpoint(dev, i, true);
1447 usb_disable_endpoint(dev, i + USB_DIR_IN, true);
1448 }
1449
1450 config = dev->actconfig;
1451 retval = 0;
1452 mutex_lock(hcd->bandwidth_mutex);
1453 /* Disable LPM, and re-enable it once the configuration is reset, so
1454 * that the xHCI driver can recalculate the U1/U2 timeouts.
1455 */
1456 if (usb_disable_lpm(dev)) {
1457 dev_err(&dev->dev, "%s Failed to disable LPM\n.", __func__);
1458 mutex_unlock(hcd->bandwidth_mutex);
1459 return -ENOMEM;
1460 }
1461 /* Make sure we have enough bandwidth for each alternate setting 0 */
1462 for (i = 0; i < config->desc.bNumInterfaces; i++) {
1463 struct usb_interface *intf = config->interface[i];
1464 struct usb_host_interface *alt;
1465
1466 alt = usb_altnum_to_altsetting(intf, 0);
1467 if (!alt)
1468 alt = &intf->altsetting[0];
1469 if (alt != intf->cur_altsetting)
1470 retval = usb_hcd_alloc_bandwidth(dev, NULL,
1471 intf->cur_altsetting, alt);
1472 if (retval < 0)
1473 break;
1474 }
1475 /* If not, reinstate the old alternate settings */
1476 if (retval < 0) {
1477 reset_old_alts:
1478 for (i--; i >= 0; i--) {
1479 struct usb_interface *intf = config->interface[i];
1480 struct usb_host_interface *alt;
1481
1482 alt = usb_altnum_to_altsetting(intf, 0);
1483 if (!alt)
1484 alt = &intf->altsetting[0];
1485 if (alt != intf->cur_altsetting)
1486 usb_hcd_alloc_bandwidth(dev, NULL,
1487 alt, intf->cur_altsetting);
1488 }
1489 usb_enable_lpm(dev);
1490 mutex_unlock(hcd->bandwidth_mutex);
1491 return retval;
1492 }
1493 retval = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1494 USB_REQ_SET_CONFIGURATION, 0,
1495 config->desc.bConfigurationValue, 0,
1496 NULL, 0, USB_CTRL_SET_TIMEOUT);
1497 if (retval < 0)
1498 goto reset_old_alts;
1499 mutex_unlock(hcd->bandwidth_mutex);
1500
1501 /* re-init hc/hcd interface/endpoint state */
1502 for (i = 0; i < config->desc.bNumInterfaces; i++) {
1503 struct usb_interface *intf = config->interface[i];
1504 struct usb_host_interface *alt;
1505
1506 alt = usb_altnum_to_altsetting(intf, 0);
1507
1508 /* No altsetting 0? We'll assume the first altsetting.
1509 * We could use a GetInterface call, but if a device is
1510 * so non-compliant that it doesn't have altsetting 0
1511 * then I wouldn't trust its reply anyway.
1512 */
1513 if (!alt)
1514 alt = &intf->altsetting[0];
1515
1516 if (alt != intf->cur_altsetting) {
1517 remove_intf_ep_devs(intf);
1518 usb_remove_sysfs_intf_files(intf);
1519 }
1520 intf->cur_altsetting = alt;
1521 usb_enable_interface(dev, intf, true);
1522 if (device_is_registered(&intf->dev)) {
1523 usb_create_sysfs_intf_files(intf);
1524 create_intf_ep_devs(intf);
1525 }
1526 }
1527 /* Now that the interfaces are installed, re-enable LPM. */
1528 usb_unlocked_enable_lpm(dev);
1529 return 0;
1530 }
1531 EXPORT_SYMBOL_GPL(usb_reset_configuration);
1532
1533 static void usb_release_interface(struct device *dev)
1534 {
1535 struct usb_interface *intf = to_usb_interface(dev);
1536 struct usb_interface_cache *intfc =
1537 altsetting_to_usb_interface_cache(intf->altsetting);
1538
1539 kref_put(&intfc->ref, usb_release_interface_cache);
1540 kfree(intf);
1541 }
1542
1543 #ifdef CONFIG_HOTPLUG
1544 static int usb_if_uevent(struct device *dev, struct kobj_uevent_env *env)
1545 {
1546 struct usb_device *usb_dev;
1547 struct usb_interface *intf;
1548 struct usb_host_interface *alt;
1549
1550 intf = to_usb_interface(dev);
1551 usb_dev = interface_to_usbdev(intf);
1552 alt = intf->cur_altsetting;
1553
1554 if (add_uevent_var(env, "INTERFACE=%d/%d/%d",
1555 alt->desc.bInterfaceClass,
1556 alt->desc.bInterfaceSubClass,
1557 alt->desc.bInterfaceProtocol))
1558 return -ENOMEM;
1559
1560 if (add_uevent_var(env,
1561 "MODALIAS=usb:"
1562 "v%04Xp%04Xd%04Xdc%02Xdsc%02Xdp%02Xic%02Xisc%02Xip%02X",
1563 le16_to_cpu(usb_dev->descriptor.idVendor),
1564 le16_to_cpu(usb_dev->descriptor.idProduct),
1565 le16_to_cpu(usb_dev->descriptor.bcdDevice),
1566 usb_dev->descriptor.bDeviceClass,
1567 usb_dev->descriptor.bDeviceSubClass,
1568 usb_dev->descriptor.bDeviceProtocol,
1569 alt->desc.bInterfaceClass,
1570 alt->desc.bInterfaceSubClass,
1571 alt->desc.bInterfaceProtocol))
1572 return -ENOMEM;
1573
1574 return 0;
1575 }
1576
1577 #else
1578
1579 static int usb_if_uevent(struct device *dev, struct kobj_uevent_env *env)
1580 {
1581 return -ENODEV;
1582 }
1583 #endif /* CONFIG_HOTPLUG */
1584
1585 struct device_type usb_if_device_type = {
1586 .name = "usb_interface",
1587 .release = usb_release_interface,
1588 .uevent = usb_if_uevent,
1589 };
1590
1591 static struct usb_interface_assoc_descriptor *find_iad(struct usb_device *dev,
1592 struct usb_host_config *config,
1593 u8 inum)
1594 {
1595 struct usb_interface_assoc_descriptor *retval = NULL;
1596 struct usb_interface_assoc_descriptor *intf_assoc;
1597 int first_intf;
1598 int last_intf;
1599 int i;
1600
1601 for (i = 0; (i < USB_MAXIADS && config->intf_assoc[i]); i++) {
1602 intf_assoc = config->intf_assoc[i];
1603 if (intf_assoc->bInterfaceCount == 0)
1604 continue;
1605
1606 first_intf = intf_assoc->bFirstInterface;
1607 last_intf = first_intf + (intf_assoc->bInterfaceCount - 1);
1608 if (inum >= first_intf && inum <= last_intf) {
1609 if (!retval)
1610 retval = intf_assoc;
1611 else
1612 dev_err(&dev->dev, "Interface #%d referenced"
1613 " by multiple IADs\n", inum);
1614 }
1615 }
1616
1617 return retval;
1618 }
1619
1620
1621 /*
1622 * Internal function to queue a device reset
1623 *
1624 * This is initialized into the workstruct in 'struct
1625 * usb_device->reset_ws' that is launched by
1626 * message.c:usb_set_configuration() when initializing each 'struct
1627 * usb_interface'.
1628 *
1629 * It is safe to get the USB device without reference counts because
1630 * the life cycle of @iface is bound to the life cycle of @udev. Then,
1631 * this function will be ran only if @iface is alive (and before
1632 * freeing it any scheduled instances of it will have been cancelled).
1633 *
1634 * We need to set a flag (usb_dev->reset_running) because when we call
1635 * the reset, the interfaces might be unbound. The current interface
1636 * cannot try to remove the queued work as it would cause a deadlock
1637 * (you cannot remove your work from within your executing
1638 * workqueue). This flag lets it know, so that
1639 * usb_cancel_queued_reset() doesn't try to do it.
1640 *
1641 * See usb_queue_reset_device() for more details
1642 */
1643 static void __usb_queue_reset_device(struct work_struct *ws)
1644 {
1645 int rc;
1646 struct usb_interface *iface =
1647 container_of(ws, struct usb_interface, reset_ws);
1648 struct usb_device *udev = interface_to_usbdev(iface);
1649
1650 rc = usb_lock_device_for_reset(udev, iface);
1651 if (rc >= 0) {
1652 iface->reset_running = 1;
1653 usb_reset_device(udev);
1654 iface->reset_running = 0;
1655 usb_unlock_device(udev);
1656 }
1657 }
1658
1659
1660 /*
1661 * usb_set_configuration - Makes a particular device setting be current
1662 * @dev: the device whose configuration is being updated
1663 * @configuration: the configuration being chosen.
1664 * Context: !in_interrupt(), caller owns the device lock
1665 *
1666 * This is used to enable non-default device modes. Not all devices
1667 * use this kind of configurability; many devices only have one
1668 * configuration.
1669 *
1670 * @configuration is the value of the configuration to be installed.
1671 * According to the USB spec (e.g. section 9.1.1.5), configuration values
1672 * must be non-zero; a value of zero indicates that the device in
1673 * unconfigured. However some devices erroneously use 0 as one of their
1674 * configuration values. To help manage such devices, this routine will
1675 * accept @configuration = -1 as indicating the device should be put in
1676 * an unconfigured state.
1677 *
1678 * USB device configurations may affect Linux interoperability,
1679 * power consumption and the functionality available. For example,
1680 * the default configuration is limited to using 100mA of bus power,
1681 * so that when certain device functionality requires more power,
1682 * and the device is bus powered, that functionality should be in some
1683 * non-default device configuration. Other device modes may also be
1684 * reflected as configuration options, such as whether two ISDN
1685 * channels are available independently; and choosing between open
1686 * standard device protocols (like CDC) or proprietary ones.
1687 *
1688 * Note that a non-authorized device (dev->authorized == 0) will only
1689 * be put in unconfigured mode.
1690 *
1691 * Note that USB has an additional level of device configurability,
1692 * associated with interfaces. That configurability is accessed using
1693 * usb_set_interface().
1694 *
1695 * This call is synchronous. The calling context must be able to sleep,
1696 * must own the device lock, and must not hold the driver model's USB
1697 * bus mutex; usb interface driver probe() methods cannot use this routine.
1698 *
1699 * Returns zero on success, or else the status code returned by the
1700 * underlying call that failed. On successful completion, each interface
1701 * in the original device configuration has been destroyed, and each one
1702 * in the new configuration has been probed by all relevant usb device
1703 * drivers currently known to the kernel.
1704 */
1705 int usb_set_configuration(struct usb_device *dev, int configuration)
1706 {
1707 int i, ret;
1708 struct usb_host_config *cp = NULL;
1709 struct usb_interface **new_interfaces = NULL;
1710 struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1711 int n, nintf;
1712
1713 if (dev->authorized == 0 || configuration == -1)
1714 configuration = 0;
1715 else {
1716 for (i = 0; i < dev->descriptor.bNumConfigurations; i++) {
1717 if (dev->config[i].desc.bConfigurationValue ==
1718 configuration) {
1719 cp = &dev->config[i];
1720 break;
1721 }
1722 }
1723 }
1724 if ((!cp && configuration != 0))
1725 return -EINVAL;
1726
1727 /* The USB spec says configuration 0 means unconfigured.
1728 * But if a device includes a configuration numbered 0,
1729 * we will accept it as a correctly configured state.
1730 * Use -1 if you really want to unconfigure the device.
1731 */
1732 if (cp && configuration == 0)
1733 dev_warn(&dev->dev, "config 0 descriptor??\n");
1734
1735 /* Allocate memory for new interfaces before doing anything else,
1736 * so that if we run out then nothing will have changed. */
1737 n = nintf = 0;
1738 if (cp) {
1739 nintf = cp->desc.bNumInterfaces;
1740 new_interfaces = kmalloc(nintf * sizeof(*new_interfaces),
1741 GFP_NOIO);
1742 if (!new_interfaces) {
1743 dev_err(&dev->dev, "Out of memory\n");
1744 return -ENOMEM;
1745 }
1746
1747 for (; n < nintf; ++n) {
1748 new_interfaces[n] = kzalloc(
1749 sizeof(struct usb_interface),
1750 GFP_NOIO);
1751 if (!new_interfaces[n]) {
1752 dev_err(&dev->dev, "Out of memory\n");
1753 ret = -ENOMEM;
1754 free_interfaces:
1755 while (--n >= 0)
1756 kfree(new_interfaces[n]);
1757 kfree(new_interfaces);
1758 return ret;
1759 }
1760 }
1761
1762 i = dev->bus_mA - cp->desc.bMaxPower * 2;
1763 if (i < 0)
1764 dev_warn(&dev->dev, "new config #%d exceeds power "
1765 "limit by %dmA\n",
1766 configuration, -i);
1767 }
1768
1769 /* Wake up the device so we can send it the Set-Config request */
1770 ret = usb_autoresume_device(dev);
1771 if (ret)
1772 goto free_interfaces;
1773
1774 /* if it's already configured, clear out old state first.
1775 * getting rid of old interfaces means unbinding their drivers.
1776 */
1777 if (dev->state != USB_STATE_ADDRESS)
1778 usb_disable_device(dev, 1); /* Skip ep0 */
1779
1780 /* Get rid of pending async Set-Config requests for this device */
1781 cancel_async_set_config(dev);
1782
1783 /* Make sure we have bandwidth (and available HCD resources) for this
1784 * configuration. Remove endpoints from the schedule if we're dropping
1785 * this configuration to set configuration 0. After this point, the
1786 * host controller will not allow submissions to dropped endpoints. If
1787 * this call fails, the device state is unchanged.
1788 */
1789 mutex_lock(hcd->bandwidth_mutex);
1790 /* Disable LPM, and re-enable it once the new configuration is
1791 * installed, so that the xHCI driver can recalculate the U1/U2
1792 * timeouts.
1793 */
1794 if (usb_disable_lpm(dev)) {
1795 dev_err(&dev->dev, "%s Failed to disable LPM\n.", __func__);
1796 mutex_unlock(hcd->bandwidth_mutex);
1797 return -ENOMEM;
1798 }
1799 ret = usb_hcd_alloc_bandwidth(dev, cp, NULL, NULL);
1800 if (ret < 0) {
1801 usb_enable_lpm(dev);
1802 mutex_unlock(hcd->bandwidth_mutex);
1803 usb_autosuspend_device(dev);
1804 goto free_interfaces;
1805 }
1806
1807 ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1808 USB_REQ_SET_CONFIGURATION, 0, configuration, 0,
1809 NULL, 0, USB_CTRL_SET_TIMEOUT);
1810 if (ret < 0) {
1811 /* All the old state is gone, so what else can we do?
1812 * The device is probably useless now anyway.
1813 */
1814 cp = NULL;
1815 }
1816
1817 dev->actconfig = cp;
1818 if (!cp) {
1819 usb_set_device_state(dev, USB_STATE_ADDRESS);
1820 usb_hcd_alloc_bandwidth(dev, NULL, NULL, NULL);
1821 usb_enable_lpm(dev);
1822 mutex_unlock(hcd->bandwidth_mutex);
1823 usb_autosuspend_device(dev);
1824 goto free_interfaces;
1825 }
1826 mutex_unlock(hcd->bandwidth_mutex);
1827 usb_set_device_state(dev, USB_STATE_CONFIGURED);
1828
1829 /* Initialize the new interface structures and the
1830 * hc/hcd/usbcore interface/endpoint state.
1831 */
1832 for (i = 0; i < nintf; ++i) {
1833 struct usb_interface_cache *intfc;
1834 struct usb_interface *intf;
1835 struct usb_host_interface *alt;
1836
1837 cp->interface[i] = intf = new_interfaces[i];
1838 intfc = cp->intf_cache[i];
1839 intf->altsetting = intfc->altsetting;
1840 intf->num_altsetting = intfc->num_altsetting;
1841 kref_get(&intfc->ref);
1842
1843 alt = usb_altnum_to_altsetting(intf, 0);
1844
1845 /* No altsetting 0? We'll assume the first altsetting.
1846 * We could use a GetInterface call, but if a device is
1847 * so non-compliant that it doesn't have altsetting 0
1848 * then I wouldn't trust its reply anyway.
1849 */
1850 if (!alt)
1851 alt = &intf->altsetting[0];
1852
1853 intf->intf_assoc =
1854 find_iad(dev, cp, alt->desc.bInterfaceNumber);
1855 intf->cur_altsetting = alt;
1856 usb_enable_interface(dev, intf, true);
1857 intf->dev.parent = &dev->dev;
1858 intf->dev.driver = NULL;
1859 intf->dev.bus = &usb_bus_type;
1860 intf->dev.type = &usb_if_device_type;
1861 intf->dev.groups = usb_interface_groups;
1862 intf->dev.dma_mask = dev->dev.dma_mask;
1863 INIT_WORK(&intf->reset_ws, __usb_queue_reset_device);
1864 intf->minor = -1;
1865 device_initialize(&intf->dev);
1866 pm_runtime_no_callbacks(&intf->dev);
1867 dev_set_name(&intf->dev, "%d-%s:%d.%d",
1868 dev->bus->busnum, dev->devpath,
1869 configuration, alt->desc.bInterfaceNumber);
1870 }
1871 kfree(new_interfaces);
1872
1873 if (cp->string == NULL &&
1874 !(dev->quirks & USB_QUIRK_CONFIG_INTF_STRINGS))
1875 cp->string = usb_cache_string(dev, cp->desc.iConfiguration);
1876
1877 /* Now that the interfaces are installed, re-enable LPM. */
1878 usb_unlocked_enable_lpm(dev);
1879
1880 /* Now that all the interfaces are set up, register them
1881 * to trigger binding of drivers to interfaces. probe()
1882 * routines may install different altsettings and may
1883 * claim() any interfaces not yet bound. Many class drivers
1884 * need that: CDC, audio, video, etc.
1885 */
1886 for (i = 0; i < nintf; ++i) {
1887 struct usb_interface *intf = cp->interface[i];
1888
1889 dev_dbg(&dev->dev,
1890 "adding %s (config #%d, interface %d)\n",
1891 dev_name(&intf->dev), configuration,
1892 intf->cur_altsetting->desc.bInterfaceNumber);
1893 device_enable_async_suspend(&intf->dev);
1894 ret = device_add(&intf->dev);
1895 if (ret != 0) {
1896 dev_err(&dev->dev, "device_add(%s) --> %d\n",
1897 dev_name(&intf->dev), ret);
1898 continue;
1899 }
1900 create_intf_ep_devs(intf);
1901 }
1902
1903 usb_autosuspend_device(dev);
1904 return 0;
1905 }
1906
1907 static LIST_HEAD(set_config_list);
1908 static DEFINE_SPINLOCK(set_config_lock);
1909
1910 struct set_config_request {
1911 struct usb_device *udev;
1912 int config;
1913 struct work_struct work;
1914 struct list_head node;
1915 };
1916
1917 /* Worker routine for usb_driver_set_configuration() */
1918 static void driver_set_config_work(struct work_struct *work)
1919 {
1920 struct set_config_request *req =
1921 container_of(work, struct set_config_request, work);
1922 struct usb_device *udev = req->udev;
1923
1924 usb_lock_device(udev);
1925 spin_lock(&set_config_lock);
1926 list_del(&req->node);
1927 spin_unlock(&set_config_lock);
1928
1929 if (req->config >= -1) /* Is req still valid? */
1930 usb_set_configuration(udev, req->config);
1931 usb_unlock_device(udev);
1932 usb_put_dev(udev);
1933 kfree(req);
1934 }
1935
1936 /* Cancel pending Set-Config requests for a device whose configuration
1937 * was just changed
1938 */
1939 static void cancel_async_set_config(struct usb_device *udev)
1940 {
1941 struct set_config_request *req;
1942
1943 spin_lock(&set_config_lock);
1944 list_for_each_entry(req, &set_config_list, node) {
1945 if (req->udev == udev)
1946 req->config = -999; /* Mark as cancelled */
1947 }
1948 spin_unlock(&set_config_lock);
1949 }
1950
1951 /**
1952 * usb_driver_set_configuration - Provide a way for drivers to change device configurations
1953 * @udev: the device whose configuration is being updated
1954 * @config: the configuration being chosen.
1955 * Context: In process context, must be able to sleep
1956 *
1957 * Device interface drivers are not allowed to change device configurations.
1958 * This is because changing configurations will destroy the interface the
1959 * driver is bound to and create new ones; it would be like a floppy-disk
1960 * driver telling the computer to replace the floppy-disk drive with a
1961 * tape drive!
1962 *
1963 * Still, in certain specialized circumstances the need may arise. This
1964 * routine gets around the normal restrictions by using a work thread to
1965 * submit the change-config request.
1966 *
1967 * Returns 0 if the request was successfully queued, error code otherwise.
1968 * The caller has no way to know whether the queued request will eventually
1969 * succeed.
1970 */
1971 int usb_driver_set_configuration(struct usb_device *udev, int config)
1972 {
1973 struct set_config_request *req;
1974
1975 req = kmalloc(sizeof(*req), GFP_KERNEL);
1976 if (!req)
1977 return -ENOMEM;
1978 req->udev = udev;
1979 req->config = config;
1980 INIT_WORK(&req->work, driver_set_config_work);
1981
1982 spin_lock(&set_config_lock);
1983 list_add(&req->node, &set_config_list);
1984 spin_unlock(&set_config_lock);
1985
1986 usb_get_dev(udev);
1987 schedule_work(&req->work);
1988 return 0;
1989 }
1990 EXPORT_SYMBOL_GPL(usb_driver_set_configuration);