usb: Initialize hcd->state roothubs.
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / usb / core / hcd.c
1 /*
2 * (C) Copyright Linus Torvalds 1999
3 * (C) Copyright Johannes Erdfelt 1999-2001
4 * (C) Copyright Andreas Gal 1999
5 * (C) Copyright Gregory P. Smith 1999
6 * (C) Copyright Deti Fliegl 1999
7 * (C) Copyright Randy Dunlap 2000
8 * (C) Copyright David Brownell 2000-2002
9 *
10 * This program is free software; you can redistribute it and/or modify it
11 * under the terms of the GNU General Public License as published by the
12 * Free Software Foundation; either version 2 of the License, or (at your
13 * option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful, but
16 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
17 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 * for more details.
19 *
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software Foundation,
22 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23 */
24
25 #include <linux/module.h>
26 #include <linux/version.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/completion.h>
30 #include <linux/utsname.h>
31 #include <linux/mm.h>
32 #include <asm/io.h>
33 #include <linux/device.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/mutex.h>
36 #include <asm/irq.h>
37 #include <asm/byteorder.h>
38 #include <asm/unaligned.h>
39 #include <linux/platform_device.h>
40 #include <linux/workqueue.h>
41
42 #include <linux/usb.h>
43 #include <linux/usb/hcd.h>
44
45 #include "usb.h"
46
47
48 /*-------------------------------------------------------------------------*/
49
50 /*
51 * USB Host Controller Driver framework
52 *
53 * Plugs into usbcore (usb_bus) and lets HCDs share code, minimizing
54 * HCD-specific behaviors/bugs.
55 *
56 * This does error checks, tracks devices and urbs, and delegates to a
57 * "hc_driver" only for code (and data) that really needs to know about
58 * hardware differences. That includes root hub registers, i/o queues,
59 * and so on ... but as little else as possible.
60 *
61 * Shared code includes most of the "root hub" code (these are emulated,
62 * though each HC's hardware works differently) and PCI glue, plus request
63 * tracking overhead. The HCD code should only block on spinlocks or on
64 * hardware handshaking; blocking on software events (such as other kernel
65 * threads releasing resources, or completing actions) is all generic.
66 *
67 * Happens the USB 2.0 spec says this would be invisible inside the "USBD",
68 * and includes mostly a "HCDI" (HCD Interface) along with some APIs used
69 * only by the hub driver ... and that neither should be seen or used by
70 * usb client device drivers.
71 *
72 * Contributors of ideas or unattributed patches include: David Brownell,
73 * Roman Weissgaerber, Rory Bolt, Greg Kroah-Hartman, ...
74 *
75 * HISTORY:
76 * 2002-02-21 Pull in most of the usb_bus support from usb.c; some
77 * associated cleanup. "usb_hcd" still != "usb_bus".
78 * 2001-12-12 Initial patch version for Linux 2.5.1 kernel.
79 */
80
81 /*-------------------------------------------------------------------------*/
82
83 /* Keep track of which host controller drivers are loaded */
84 unsigned long usb_hcds_loaded;
85 EXPORT_SYMBOL_GPL(usb_hcds_loaded);
86
87 /* host controllers we manage */
88 LIST_HEAD (usb_bus_list);
89 EXPORT_SYMBOL_GPL (usb_bus_list);
90
91 /* used when allocating bus numbers */
92 #define USB_MAXBUS 64
93 struct usb_busmap {
94 unsigned long busmap [USB_MAXBUS / (8*sizeof (unsigned long))];
95 };
96 static struct usb_busmap busmap;
97
98 /* used when updating list of hcds */
99 DEFINE_MUTEX(usb_bus_list_lock); /* exported only for usbfs */
100 EXPORT_SYMBOL_GPL (usb_bus_list_lock);
101
102 /* used for controlling access to virtual root hubs */
103 static DEFINE_SPINLOCK(hcd_root_hub_lock);
104
105 /* used when updating an endpoint's URB list */
106 static DEFINE_SPINLOCK(hcd_urb_list_lock);
107
108 /* used to protect against unlinking URBs after the device is gone */
109 static DEFINE_SPINLOCK(hcd_urb_unlink_lock);
110
111 /* wait queue for synchronous unlinks */
112 DECLARE_WAIT_QUEUE_HEAD(usb_kill_urb_queue);
113
114 static inline int is_root_hub(struct usb_device *udev)
115 {
116 return (udev->parent == NULL);
117 }
118
119 /*-------------------------------------------------------------------------*/
120
121 /*
122 * Sharable chunks of root hub code.
123 */
124
125 /*-------------------------------------------------------------------------*/
126
127 #define KERNEL_REL ((LINUX_VERSION_CODE >> 16) & 0x0ff)
128 #define KERNEL_VER ((LINUX_VERSION_CODE >> 8) & 0x0ff)
129
130 /* usb 3.0 root hub device descriptor */
131 static const u8 usb3_rh_dev_descriptor[18] = {
132 0x12, /* __u8 bLength; */
133 0x01, /* __u8 bDescriptorType; Device */
134 0x00, 0x03, /* __le16 bcdUSB; v3.0 */
135
136 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
137 0x00, /* __u8 bDeviceSubClass; */
138 0x03, /* __u8 bDeviceProtocol; USB 3.0 hub */
139 0x09, /* __u8 bMaxPacketSize0; 2^9 = 512 Bytes */
140
141 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation */
142 0x03, 0x00, /* __le16 idProduct; device 0x0003 */
143 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
144
145 0x03, /* __u8 iManufacturer; */
146 0x02, /* __u8 iProduct; */
147 0x01, /* __u8 iSerialNumber; */
148 0x01 /* __u8 bNumConfigurations; */
149 };
150
151 /* usb 2.0 root hub device descriptor */
152 static const u8 usb2_rh_dev_descriptor [18] = {
153 0x12, /* __u8 bLength; */
154 0x01, /* __u8 bDescriptorType; Device */
155 0x00, 0x02, /* __le16 bcdUSB; v2.0 */
156
157 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
158 0x00, /* __u8 bDeviceSubClass; */
159 0x00, /* __u8 bDeviceProtocol; [ usb 2.0 no TT ] */
160 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */
161
162 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation */
163 0x02, 0x00, /* __le16 idProduct; device 0x0002 */
164 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
165
166 0x03, /* __u8 iManufacturer; */
167 0x02, /* __u8 iProduct; */
168 0x01, /* __u8 iSerialNumber; */
169 0x01 /* __u8 bNumConfigurations; */
170 };
171
172 /* no usb 2.0 root hub "device qualifier" descriptor: one speed only */
173
174 /* usb 1.1 root hub device descriptor */
175 static const u8 usb11_rh_dev_descriptor [18] = {
176 0x12, /* __u8 bLength; */
177 0x01, /* __u8 bDescriptorType; Device */
178 0x10, 0x01, /* __le16 bcdUSB; v1.1 */
179
180 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
181 0x00, /* __u8 bDeviceSubClass; */
182 0x00, /* __u8 bDeviceProtocol; [ low/full speeds only ] */
183 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */
184
185 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation */
186 0x01, 0x00, /* __le16 idProduct; device 0x0001 */
187 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
188
189 0x03, /* __u8 iManufacturer; */
190 0x02, /* __u8 iProduct; */
191 0x01, /* __u8 iSerialNumber; */
192 0x01 /* __u8 bNumConfigurations; */
193 };
194
195
196 /*-------------------------------------------------------------------------*/
197
198 /* Configuration descriptors for our root hubs */
199
200 static const u8 fs_rh_config_descriptor [] = {
201
202 /* one configuration */
203 0x09, /* __u8 bLength; */
204 0x02, /* __u8 bDescriptorType; Configuration */
205 0x19, 0x00, /* __le16 wTotalLength; */
206 0x01, /* __u8 bNumInterfaces; (1) */
207 0x01, /* __u8 bConfigurationValue; */
208 0x00, /* __u8 iConfiguration; */
209 0xc0, /* __u8 bmAttributes;
210 Bit 7: must be set,
211 6: Self-powered,
212 5: Remote wakeup,
213 4..0: resvd */
214 0x00, /* __u8 MaxPower; */
215
216 /* USB 1.1:
217 * USB 2.0, single TT organization (mandatory):
218 * one interface, protocol 0
219 *
220 * USB 2.0, multiple TT organization (optional):
221 * two interfaces, protocols 1 (like single TT)
222 * and 2 (multiple TT mode) ... config is
223 * sometimes settable
224 * NOT IMPLEMENTED
225 */
226
227 /* one interface */
228 0x09, /* __u8 if_bLength; */
229 0x04, /* __u8 if_bDescriptorType; Interface */
230 0x00, /* __u8 if_bInterfaceNumber; */
231 0x00, /* __u8 if_bAlternateSetting; */
232 0x01, /* __u8 if_bNumEndpoints; */
233 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */
234 0x00, /* __u8 if_bInterfaceSubClass; */
235 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */
236 0x00, /* __u8 if_iInterface; */
237
238 /* one endpoint (status change endpoint) */
239 0x07, /* __u8 ep_bLength; */
240 0x05, /* __u8 ep_bDescriptorType; Endpoint */
241 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */
242 0x03, /* __u8 ep_bmAttributes; Interrupt */
243 0x02, 0x00, /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) */
244 0xff /* __u8 ep_bInterval; (255ms -- usb 2.0 spec) */
245 };
246
247 static const u8 hs_rh_config_descriptor [] = {
248
249 /* one configuration */
250 0x09, /* __u8 bLength; */
251 0x02, /* __u8 bDescriptorType; Configuration */
252 0x19, 0x00, /* __le16 wTotalLength; */
253 0x01, /* __u8 bNumInterfaces; (1) */
254 0x01, /* __u8 bConfigurationValue; */
255 0x00, /* __u8 iConfiguration; */
256 0xc0, /* __u8 bmAttributes;
257 Bit 7: must be set,
258 6: Self-powered,
259 5: Remote wakeup,
260 4..0: resvd */
261 0x00, /* __u8 MaxPower; */
262
263 /* USB 1.1:
264 * USB 2.0, single TT organization (mandatory):
265 * one interface, protocol 0
266 *
267 * USB 2.0, multiple TT organization (optional):
268 * two interfaces, protocols 1 (like single TT)
269 * and 2 (multiple TT mode) ... config is
270 * sometimes settable
271 * NOT IMPLEMENTED
272 */
273
274 /* one interface */
275 0x09, /* __u8 if_bLength; */
276 0x04, /* __u8 if_bDescriptorType; Interface */
277 0x00, /* __u8 if_bInterfaceNumber; */
278 0x00, /* __u8 if_bAlternateSetting; */
279 0x01, /* __u8 if_bNumEndpoints; */
280 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */
281 0x00, /* __u8 if_bInterfaceSubClass; */
282 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */
283 0x00, /* __u8 if_iInterface; */
284
285 /* one endpoint (status change endpoint) */
286 0x07, /* __u8 ep_bLength; */
287 0x05, /* __u8 ep_bDescriptorType; Endpoint */
288 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */
289 0x03, /* __u8 ep_bmAttributes; Interrupt */
290 /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
291 * see hub.c:hub_configure() for details. */
292 (USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
293 0x0c /* __u8 ep_bInterval; (256ms -- usb 2.0 spec) */
294 };
295
296 static const u8 ss_rh_config_descriptor[] = {
297 /* one configuration */
298 0x09, /* __u8 bLength; */
299 0x02, /* __u8 bDescriptorType; Configuration */
300 0x19, 0x00, /* __le16 wTotalLength; FIXME */
301 0x01, /* __u8 bNumInterfaces; (1) */
302 0x01, /* __u8 bConfigurationValue; */
303 0x00, /* __u8 iConfiguration; */
304 0xc0, /* __u8 bmAttributes;
305 Bit 7: must be set,
306 6: Self-powered,
307 5: Remote wakeup,
308 4..0: resvd */
309 0x00, /* __u8 MaxPower; */
310
311 /* one interface */
312 0x09, /* __u8 if_bLength; */
313 0x04, /* __u8 if_bDescriptorType; Interface */
314 0x00, /* __u8 if_bInterfaceNumber; */
315 0x00, /* __u8 if_bAlternateSetting; */
316 0x01, /* __u8 if_bNumEndpoints; */
317 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */
318 0x00, /* __u8 if_bInterfaceSubClass; */
319 0x00, /* __u8 if_bInterfaceProtocol; */
320 0x00, /* __u8 if_iInterface; */
321
322 /* one endpoint (status change endpoint) */
323 0x07, /* __u8 ep_bLength; */
324 0x05, /* __u8 ep_bDescriptorType; Endpoint */
325 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */
326 0x03, /* __u8 ep_bmAttributes; Interrupt */
327 /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
328 * see hub.c:hub_configure() for details. */
329 (USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
330 0x0c /* __u8 ep_bInterval; (256ms -- usb 2.0 spec) */
331 /*
332 * All 3.0 hubs should have an endpoint companion descriptor,
333 * but we're ignoring that for now. FIXME?
334 */
335 };
336
337 /*-------------------------------------------------------------------------*/
338
339 /**
340 * ascii2desc() - Helper routine for producing UTF-16LE string descriptors
341 * @s: Null-terminated ASCII (actually ISO-8859-1) string
342 * @buf: Buffer for USB string descriptor (header + UTF-16LE)
343 * @len: Length (in bytes; may be odd) of descriptor buffer.
344 *
345 * The return value is the number of bytes filled in: 2 + 2*strlen(s) or
346 * buflen, whichever is less.
347 *
348 * USB String descriptors can contain at most 126 characters; input
349 * strings longer than that are truncated.
350 */
351 static unsigned
352 ascii2desc(char const *s, u8 *buf, unsigned len)
353 {
354 unsigned n, t = 2 + 2*strlen(s);
355
356 if (t > 254)
357 t = 254; /* Longest possible UTF string descriptor */
358 if (len > t)
359 len = t;
360
361 t += USB_DT_STRING << 8; /* Now t is first 16 bits to store */
362
363 n = len;
364 while (n--) {
365 *buf++ = t;
366 if (!n--)
367 break;
368 *buf++ = t >> 8;
369 t = (unsigned char)*s++;
370 }
371 return len;
372 }
373
374 /**
375 * rh_string() - provides string descriptors for root hub
376 * @id: the string ID number (0: langids, 1: serial #, 2: product, 3: vendor)
377 * @hcd: the host controller for this root hub
378 * @data: buffer for output packet
379 * @len: length of the provided buffer
380 *
381 * Produces either a manufacturer, product or serial number string for the
382 * virtual root hub device.
383 * Returns the number of bytes filled in: the length of the descriptor or
384 * of the provided buffer, whichever is less.
385 */
386 static unsigned
387 rh_string(int id, struct usb_hcd const *hcd, u8 *data, unsigned len)
388 {
389 char buf[100];
390 char const *s;
391 static char const langids[4] = {4, USB_DT_STRING, 0x09, 0x04};
392
393 // language ids
394 switch (id) {
395 case 0:
396 /* Array of LANGID codes (0x0409 is MSFT-speak for "en-us") */
397 /* See http://www.usb.org/developers/docs/USB_LANGIDs.pdf */
398 if (len > 4)
399 len = 4;
400 memcpy(data, langids, len);
401 return len;
402 case 1:
403 /* Serial number */
404 s = hcd->self.bus_name;
405 break;
406 case 2:
407 /* Product name */
408 s = hcd->product_desc;
409 break;
410 case 3:
411 /* Manufacturer */
412 snprintf (buf, sizeof buf, "%s %s %s", init_utsname()->sysname,
413 init_utsname()->release, hcd->driver->description);
414 s = buf;
415 break;
416 default:
417 /* Can't happen; caller guarantees it */
418 return 0;
419 }
420
421 return ascii2desc(s, data, len);
422 }
423
424
425 /* Root hub control transfers execute synchronously */
426 static int rh_call_control (struct usb_hcd *hcd, struct urb *urb)
427 {
428 struct usb_ctrlrequest *cmd;
429 u16 typeReq, wValue, wIndex, wLength;
430 u8 *ubuf = urb->transfer_buffer;
431 u8 tbuf [sizeof (struct usb_hub_descriptor)]
432 __attribute__((aligned(4)));
433 const u8 *bufp = tbuf;
434 unsigned len = 0;
435 int status;
436 u8 patch_wakeup = 0;
437 u8 patch_protocol = 0;
438
439 might_sleep();
440
441 spin_lock_irq(&hcd_root_hub_lock);
442 status = usb_hcd_link_urb_to_ep(hcd, urb);
443 spin_unlock_irq(&hcd_root_hub_lock);
444 if (status)
445 return status;
446 urb->hcpriv = hcd; /* Indicate it's queued */
447
448 cmd = (struct usb_ctrlrequest *) urb->setup_packet;
449 typeReq = (cmd->bRequestType << 8) | cmd->bRequest;
450 wValue = le16_to_cpu (cmd->wValue);
451 wIndex = le16_to_cpu (cmd->wIndex);
452 wLength = le16_to_cpu (cmd->wLength);
453
454 if (wLength > urb->transfer_buffer_length)
455 goto error;
456
457 urb->actual_length = 0;
458 switch (typeReq) {
459
460 /* DEVICE REQUESTS */
461
462 /* The root hub's remote wakeup enable bit is implemented using
463 * driver model wakeup flags. If this system supports wakeup
464 * through USB, userspace may change the default "allow wakeup"
465 * policy through sysfs or these calls.
466 *
467 * Most root hubs support wakeup from downstream devices, for
468 * runtime power management (disabling USB clocks and reducing
469 * VBUS power usage). However, not all of them do so; silicon,
470 * board, and BIOS bugs here are not uncommon, so these can't
471 * be treated quite like external hubs.
472 *
473 * Likewise, not all root hubs will pass wakeup events upstream,
474 * to wake up the whole system. So don't assume root hub and
475 * controller capabilities are identical.
476 */
477
478 case DeviceRequest | USB_REQ_GET_STATUS:
479 tbuf [0] = (device_may_wakeup(&hcd->self.root_hub->dev)
480 << USB_DEVICE_REMOTE_WAKEUP)
481 | (1 << USB_DEVICE_SELF_POWERED);
482 tbuf [1] = 0;
483 len = 2;
484 break;
485 case DeviceOutRequest | USB_REQ_CLEAR_FEATURE:
486 if (wValue == USB_DEVICE_REMOTE_WAKEUP)
487 device_set_wakeup_enable(&hcd->self.root_hub->dev, 0);
488 else
489 goto error;
490 break;
491 case DeviceOutRequest | USB_REQ_SET_FEATURE:
492 if (device_can_wakeup(&hcd->self.root_hub->dev)
493 && wValue == USB_DEVICE_REMOTE_WAKEUP)
494 device_set_wakeup_enable(&hcd->self.root_hub->dev, 1);
495 else
496 goto error;
497 break;
498 case DeviceRequest | USB_REQ_GET_CONFIGURATION:
499 tbuf [0] = 1;
500 len = 1;
501 /* FALLTHROUGH */
502 case DeviceOutRequest | USB_REQ_SET_CONFIGURATION:
503 break;
504 case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
505 switch (wValue & 0xff00) {
506 case USB_DT_DEVICE << 8:
507 switch (hcd->driver->flags & HCD_MASK) {
508 case HCD_USB3:
509 bufp = usb3_rh_dev_descriptor;
510 break;
511 case HCD_USB2:
512 bufp = usb2_rh_dev_descriptor;
513 break;
514 case HCD_USB11:
515 bufp = usb11_rh_dev_descriptor;
516 break;
517 default:
518 goto error;
519 }
520 len = 18;
521 if (hcd->has_tt)
522 patch_protocol = 1;
523 break;
524 case USB_DT_CONFIG << 8:
525 switch (hcd->driver->flags & HCD_MASK) {
526 case HCD_USB3:
527 bufp = ss_rh_config_descriptor;
528 len = sizeof ss_rh_config_descriptor;
529 break;
530 case HCD_USB2:
531 bufp = hs_rh_config_descriptor;
532 len = sizeof hs_rh_config_descriptor;
533 break;
534 case HCD_USB11:
535 bufp = fs_rh_config_descriptor;
536 len = sizeof fs_rh_config_descriptor;
537 break;
538 default:
539 goto error;
540 }
541 if (device_can_wakeup(&hcd->self.root_hub->dev))
542 patch_wakeup = 1;
543 break;
544 case USB_DT_STRING << 8:
545 if ((wValue & 0xff) < 4)
546 urb->actual_length = rh_string(wValue & 0xff,
547 hcd, ubuf, wLength);
548 else /* unsupported IDs --> "protocol stall" */
549 goto error;
550 break;
551 default:
552 goto error;
553 }
554 break;
555 case DeviceRequest | USB_REQ_GET_INTERFACE:
556 tbuf [0] = 0;
557 len = 1;
558 /* FALLTHROUGH */
559 case DeviceOutRequest | USB_REQ_SET_INTERFACE:
560 break;
561 case DeviceOutRequest | USB_REQ_SET_ADDRESS:
562 // wValue == urb->dev->devaddr
563 dev_dbg (hcd->self.controller, "root hub device address %d\n",
564 wValue);
565 break;
566
567 /* INTERFACE REQUESTS (no defined feature/status flags) */
568
569 /* ENDPOINT REQUESTS */
570
571 case EndpointRequest | USB_REQ_GET_STATUS:
572 // ENDPOINT_HALT flag
573 tbuf [0] = 0;
574 tbuf [1] = 0;
575 len = 2;
576 /* FALLTHROUGH */
577 case EndpointOutRequest | USB_REQ_CLEAR_FEATURE:
578 case EndpointOutRequest | USB_REQ_SET_FEATURE:
579 dev_dbg (hcd->self.controller, "no endpoint features yet\n");
580 break;
581
582 /* CLASS REQUESTS (and errors) */
583
584 default:
585 /* non-generic request */
586 switch (typeReq) {
587 case GetHubStatus:
588 case GetPortStatus:
589 len = 4;
590 break;
591 case GetHubDescriptor:
592 len = sizeof (struct usb_hub_descriptor);
593 break;
594 }
595 status = hcd->driver->hub_control (hcd,
596 typeReq, wValue, wIndex,
597 tbuf, wLength);
598 break;
599 error:
600 /* "protocol stall" on error */
601 status = -EPIPE;
602 }
603
604 if (status) {
605 len = 0;
606 if (status != -EPIPE) {
607 dev_dbg (hcd->self.controller,
608 "CTRL: TypeReq=0x%x val=0x%x "
609 "idx=0x%x len=%d ==> %d\n",
610 typeReq, wValue, wIndex,
611 wLength, status);
612 }
613 }
614 if (len) {
615 if (urb->transfer_buffer_length < len)
616 len = urb->transfer_buffer_length;
617 urb->actual_length = len;
618 // always USB_DIR_IN, toward host
619 memcpy (ubuf, bufp, len);
620
621 /* report whether RH hardware supports remote wakeup */
622 if (patch_wakeup &&
623 len > offsetof (struct usb_config_descriptor,
624 bmAttributes))
625 ((struct usb_config_descriptor *)ubuf)->bmAttributes
626 |= USB_CONFIG_ATT_WAKEUP;
627
628 /* report whether RH hardware has an integrated TT */
629 if (patch_protocol &&
630 len > offsetof(struct usb_device_descriptor,
631 bDeviceProtocol))
632 ((struct usb_device_descriptor *) ubuf)->
633 bDeviceProtocol = 1;
634 }
635
636 /* any errors get returned through the urb completion */
637 spin_lock_irq(&hcd_root_hub_lock);
638 usb_hcd_unlink_urb_from_ep(hcd, urb);
639
640 /* This peculiar use of spinlocks echoes what real HC drivers do.
641 * Avoiding calls to local_irq_disable/enable makes the code
642 * RT-friendly.
643 */
644 spin_unlock(&hcd_root_hub_lock);
645 usb_hcd_giveback_urb(hcd, urb, status);
646 spin_lock(&hcd_root_hub_lock);
647
648 spin_unlock_irq(&hcd_root_hub_lock);
649 return 0;
650 }
651
652 /*-------------------------------------------------------------------------*/
653
654 /*
655 * Root Hub interrupt transfers are polled using a timer if the
656 * driver requests it; otherwise the driver is responsible for
657 * calling usb_hcd_poll_rh_status() when an event occurs.
658 *
659 * Completions are called in_interrupt(), but they may or may not
660 * be in_irq().
661 */
662 void usb_hcd_poll_rh_status(struct usb_hcd *hcd)
663 {
664 struct urb *urb;
665 int length;
666 unsigned long flags;
667 char buffer[6]; /* Any root hubs with > 31 ports? */
668
669 if (unlikely(!hcd->rh_pollable))
670 return;
671 if (!hcd->uses_new_polling && !hcd->status_urb)
672 return;
673
674 length = hcd->driver->hub_status_data(hcd, buffer);
675 if (length > 0) {
676
677 /* try to complete the status urb */
678 spin_lock_irqsave(&hcd_root_hub_lock, flags);
679 urb = hcd->status_urb;
680 if (urb) {
681 clear_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
682 hcd->status_urb = NULL;
683 urb->actual_length = length;
684 memcpy(urb->transfer_buffer, buffer, length);
685
686 usb_hcd_unlink_urb_from_ep(hcd, urb);
687 spin_unlock(&hcd_root_hub_lock);
688 usb_hcd_giveback_urb(hcd, urb, 0);
689 spin_lock(&hcd_root_hub_lock);
690 } else {
691 length = 0;
692 set_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
693 }
694 spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
695 }
696
697 /* The USB 2.0 spec says 256 ms. This is close enough and won't
698 * exceed that limit if HZ is 100. The math is more clunky than
699 * maybe expected, this is to make sure that all timers for USB devices
700 * fire at the same time to give the CPU a break inbetween */
701 if (hcd->uses_new_polling ? HCD_POLL_RH(hcd) :
702 (length == 0 && hcd->status_urb != NULL))
703 mod_timer (&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
704 }
705 EXPORT_SYMBOL_GPL(usb_hcd_poll_rh_status);
706
707 /* timer callback */
708 static void rh_timer_func (unsigned long _hcd)
709 {
710 usb_hcd_poll_rh_status((struct usb_hcd *) _hcd);
711 }
712
713 /*-------------------------------------------------------------------------*/
714
715 static int rh_queue_status (struct usb_hcd *hcd, struct urb *urb)
716 {
717 int retval;
718 unsigned long flags;
719 unsigned len = 1 + (urb->dev->maxchild / 8);
720
721 spin_lock_irqsave (&hcd_root_hub_lock, flags);
722 if (hcd->status_urb || urb->transfer_buffer_length < len) {
723 dev_dbg (hcd->self.controller, "not queuing rh status urb\n");
724 retval = -EINVAL;
725 goto done;
726 }
727
728 retval = usb_hcd_link_urb_to_ep(hcd, urb);
729 if (retval)
730 goto done;
731
732 hcd->status_urb = urb;
733 urb->hcpriv = hcd; /* indicate it's queued */
734 if (!hcd->uses_new_polling)
735 mod_timer(&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
736
737 /* If a status change has already occurred, report it ASAP */
738 else if (HCD_POLL_PENDING(hcd))
739 mod_timer(&hcd->rh_timer, jiffies);
740 retval = 0;
741 done:
742 spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
743 return retval;
744 }
745
746 static int rh_urb_enqueue (struct usb_hcd *hcd, struct urb *urb)
747 {
748 if (usb_endpoint_xfer_int(&urb->ep->desc))
749 return rh_queue_status (hcd, urb);
750 if (usb_endpoint_xfer_control(&urb->ep->desc))
751 return rh_call_control (hcd, urb);
752 return -EINVAL;
753 }
754
755 /*-------------------------------------------------------------------------*/
756
757 /* Unlinks of root-hub control URBs are legal, but they don't do anything
758 * since these URBs always execute synchronously.
759 */
760 static int usb_rh_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
761 {
762 unsigned long flags;
763 int rc;
764
765 spin_lock_irqsave(&hcd_root_hub_lock, flags);
766 rc = usb_hcd_check_unlink_urb(hcd, urb, status);
767 if (rc)
768 goto done;
769
770 if (usb_endpoint_num(&urb->ep->desc) == 0) { /* Control URB */
771 ; /* Do nothing */
772
773 } else { /* Status URB */
774 if (!hcd->uses_new_polling)
775 del_timer (&hcd->rh_timer);
776 if (urb == hcd->status_urb) {
777 hcd->status_urb = NULL;
778 usb_hcd_unlink_urb_from_ep(hcd, urb);
779
780 spin_unlock(&hcd_root_hub_lock);
781 usb_hcd_giveback_urb(hcd, urb, status);
782 spin_lock(&hcd_root_hub_lock);
783 }
784 }
785 done:
786 spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
787 return rc;
788 }
789
790
791
792 /*
793 * Show & store the current value of authorized_default
794 */
795 static ssize_t usb_host_authorized_default_show(struct device *dev,
796 struct device_attribute *attr,
797 char *buf)
798 {
799 struct usb_device *rh_usb_dev = to_usb_device(dev);
800 struct usb_bus *usb_bus = rh_usb_dev->bus;
801 struct usb_hcd *usb_hcd;
802
803 if (usb_bus == NULL) /* FIXME: not sure if this case is possible */
804 return -ENODEV;
805 usb_hcd = bus_to_hcd(usb_bus);
806 return snprintf(buf, PAGE_SIZE, "%u\n", usb_hcd->authorized_default);
807 }
808
809 static ssize_t usb_host_authorized_default_store(struct device *dev,
810 struct device_attribute *attr,
811 const char *buf, size_t size)
812 {
813 ssize_t result;
814 unsigned val;
815 struct usb_device *rh_usb_dev = to_usb_device(dev);
816 struct usb_bus *usb_bus = rh_usb_dev->bus;
817 struct usb_hcd *usb_hcd;
818
819 if (usb_bus == NULL) /* FIXME: not sure if this case is possible */
820 return -ENODEV;
821 usb_hcd = bus_to_hcd(usb_bus);
822 result = sscanf(buf, "%u\n", &val);
823 if (result == 1) {
824 usb_hcd->authorized_default = val? 1 : 0;
825 result = size;
826 }
827 else
828 result = -EINVAL;
829 return result;
830 }
831
832 static DEVICE_ATTR(authorized_default, 0644,
833 usb_host_authorized_default_show,
834 usb_host_authorized_default_store);
835
836
837 /* Group all the USB bus attributes */
838 static struct attribute *usb_bus_attrs[] = {
839 &dev_attr_authorized_default.attr,
840 NULL,
841 };
842
843 static struct attribute_group usb_bus_attr_group = {
844 .name = NULL, /* we want them in the same directory */
845 .attrs = usb_bus_attrs,
846 };
847
848
849
850 /*-------------------------------------------------------------------------*/
851
852 /**
853 * usb_bus_init - shared initialization code
854 * @bus: the bus structure being initialized
855 *
856 * This code is used to initialize a usb_bus structure, memory for which is
857 * separately managed.
858 */
859 static void usb_bus_init (struct usb_bus *bus)
860 {
861 memset (&bus->devmap, 0, sizeof(struct usb_devmap));
862
863 bus->devnum_next = 1;
864
865 bus->root_hub = NULL;
866 bus->busnum = -1;
867 bus->bandwidth_allocated = 0;
868 bus->bandwidth_int_reqs = 0;
869 bus->bandwidth_isoc_reqs = 0;
870
871 INIT_LIST_HEAD (&bus->bus_list);
872 }
873
874 /*-------------------------------------------------------------------------*/
875
876 /**
877 * usb_register_bus - registers the USB host controller with the usb core
878 * @bus: pointer to the bus to register
879 * Context: !in_interrupt()
880 *
881 * Assigns a bus number, and links the controller into usbcore data
882 * structures so that it can be seen by scanning the bus list.
883 */
884 static int usb_register_bus(struct usb_bus *bus)
885 {
886 int result = -E2BIG;
887 int busnum;
888
889 mutex_lock(&usb_bus_list_lock);
890 busnum = find_next_zero_bit (busmap.busmap, USB_MAXBUS, 1);
891 if (busnum >= USB_MAXBUS) {
892 printk (KERN_ERR "%s: too many buses\n", usbcore_name);
893 goto error_find_busnum;
894 }
895 set_bit (busnum, busmap.busmap);
896 bus->busnum = busnum;
897
898 /* Add it to the local list of buses */
899 list_add (&bus->bus_list, &usb_bus_list);
900 mutex_unlock(&usb_bus_list_lock);
901
902 usb_notify_add_bus(bus);
903
904 dev_info (bus->controller, "new USB bus registered, assigned bus "
905 "number %d\n", bus->busnum);
906 return 0;
907
908 error_find_busnum:
909 mutex_unlock(&usb_bus_list_lock);
910 return result;
911 }
912
913 /**
914 * usb_deregister_bus - deregisters the USB host controller
915 * @bus: pointer to the bus to deregister
916 * Context: !in_interrupt()
917 *
918 * Recycles the bus number, and unlinks the controller from usbcore data
919 * structures so that it won't be seen by scanning the bus list.
920 */
921 static void usb_deregister_bus (struct usb_bus *bus)
922 {
923 dev_info (bus->controller, "USB bus %d deregistered\n", bus->busnum);
924
925 /*
926 * NOTE: make sure that all the devices are removed by the
927 * controller code, as well as having it call this when cleaning
928 * itself up
929 */
930 mutex_lock(&usb_bus_list_lock);
931 list_del (&bus->bus_list);
932 mutex_unlock(&usb_bus_list_lock);
933
934 usb_notify_remove_bus(bus);
935
936 clear_bit (bus->busnum, busmap.busmap);
937 }
938
939 /**
940 * register_root_hub - called by usb_add_hcd() to register a root hub
941 * @hcd: host controller for this root hub
942 *
943 * This function registers the root hub with the USB subsystem. It sets up
944 * the device properly in the device tree and then calls usb_new_device()
945 * to register the usb device. It also assigns the root hub's USB address
946 * (always 1).
947 */
948 static int register_root_hub(struct usb_hcd *hcd)
949 {
950 struct device *parent_dev = hcd->self.controller;
951 struct usb_device *usb_dev = hcd->self.root_hub;
952 const int devnum = 1;
953 int retval;
954
955 usb_dev->devnum = devnum;
956 usb_dev->bus->devnum_next = devnum + 1;
957 memset (&usb_dev->bus->devmap.devicemap, 0,
958 sizeof usb_dev->bus->devmap.devicemap);
959 set_bit (devnum, usb_dev->bus->devmap.devicemap);
960 usb_set_device_state(usb_dev, USB_STATE_ADDRESS);
961
962 mutex_lock(&usb_bus_list_lock);
963
964 usb_dev->ep0.desc.wMaxPacketSize = cpu_to_le16(64);
965 retval = usb_get_device_descriptor(usb_dev, USB_DT_DEVICE_SIZE);
966 if (retval != sizeof usb_dev->descriptor) {
967 mutex_unlock(&usb_bus_list_lock);
968 dev_dbg (parent_dev, "can't read %s device descriptor %d\n",
969 dev_name(&usb_dev->dev), retval);
970 return (retval < 0) ? retval : -EMSGSIZE;
971 }
972
973 retval = usb_new_device (usb_dev);
974 if (retval) {
975 dev_err (parent_dev, "can't register root hub for %s, %d\n",
976 dev_name(&usb_dev->dev), retval);
977 }
978 mutex_unlock(&usb_bus_list_lock);
979
980 if (retval == 0) {
981 spin_lock_irq (&hcd_root_hub_lock);
982 hcd->rh_registered = 1;
983 spin_unlock_irq (&hcd_root_hub_lock);
984
985 /* Did the HC die before the root hub was registered? */
986 if (HCD_DEAD(hcd) || hcd->state == HC_STATE_HALT)
987 usb_hc_died (hcd); /* This time clean up */
988 }
989
990 return retval;
991 }
992
993
994 /*-------------------------------------------------------------------------*/
995
996 /**
997 * usb_calc_bus_time - approximate periodic transaction time in nanoseconds
998 * @speed: from dev->speed; USB_SPEED_{LOW,FULL,HIGH}
999 * @is_input: true iff the transaction sends data to the host
1000 * @isoc: true for isochronous transactions, false for interrupt ones
1001 * @bytecount: how many bytes in the transaction.
1002 *
1003 * Returns approximate bus time in nanoseconds for a periodic transaction.
1004 * See USB 2.0 spec section 5.11.3; only periodic transfers need to be
1005 * scheduled in software, this function is only used for such scheduling.
1006 */
1007 long usb_calc_bus_time (int speed, int is_input, int isoc, int bytecount)
1008 {
1009 unsigned long tmp;
1010
1011 switch (speed) {
1012 case USB_SPEED_LOW: /* INTR only */
1013 if (is_input) {
1014 tmp = (67667L * (31L + 10L * BitTime (bytecount))) / 1000L;
1015 return (64060L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp);
1016 } else {
1017 tmp = (66700L * (31L + 10L * BitTime (bytecount))) / 1000L;
1018 return (64107L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp);
1019 }
1020 case USB_SPEED_FULL: /* ISOC or INTR */
1021 if (isoc) {
1022 tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1023 return (((is_input) ? 7268L : 6265L) + BW_HOST_DELAY + tmp);
1024 } else {
1025 tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1026 return (9107L + BW_HOST_DELAY + tmp);
1027 }
1028 case USB_SPEED_HIGH: /* ISOC or INTR */
1029 // FIXME adjust for input vs output
1030 if (isoc)
1031 tmp = HS_NSECS_ISO (bytecount);
1032 else
1033 tmp = HS_NSECS (bytecount);
1034 return tmp;
1035 default:
1036 pr_debug ("%s: bogus device speed!\n", usbcore_name);
1037 return -1;
1038 }
1039 }
1040 EXPORT_SYMBOL_GPL(usb_calc_bus_time);
1041
1042
1043 /*-------------------------------------------------------------------------*/
1044
1045 /*
1046 * Generic HC operations.
1047 */
1048
1049 /*-------------------------------------------------------------------------*/
1050
1051 /**
1052 * usb_hcd_link_urb_to_ep - add an URB to its endpoint queue
1053 * @hcd: host controller to which @urb was submitted
1054 * @urb: URB being submitted
1055 *
1056 * Host controller drivers should call this routine in their enqueue()
1057 * method. The HCD's private spinlock must be held and interrupts must
1058 * be disabled. The actions carried out here are required for URB
1059 * submission, as well as for endpoint shutdown and for usb_kill_urb.
1060 *
1061 * Returns 0 for no error, otherwise a negative error code (in which case
1062 * the enqueue() method must fail). If no error occurs but enqueue() fails
1063 * anyway, it must call usb_hcd_unlink_urb_from_ep() before releasing
1064 * the private spinlock and returning.
1065 */
1066 int usb_hcd_link_urb_to_ep(struct usb_hcd *hcd, struct urb *urb)
1067 {
1068 int rc = 0;
1069
1070 spin_lock(&hcd_urb_list_lock);
1071
1072 /* Check that the URB isn't being killed */
1073 if (unlikely(atomic_read(&urb->reject))) {
1074 rc = -EPERM;
1075 goto done;
1076 }
1077
1078 if (unlikely(!urb->ep->enabled)) {
1079 rc = -ENOENT;
1080 goto done;
1081 }
1082
1083 if (unlikely(!urb->dev->can_submit)) {
1084 rc = -EHOSTUNREACH;
1085 goto done;
1086 }
1087
1088 /*
1089 * Check the host controller's state and add the URB to the
1090 * endpoint's queue.
1091 */
1092 if (HCD_RH_RUNNING(hcd)) {
1093 urb->unlinked = 0;
1094 list_add_tail(&urb->urb_list, &urb->ep->urb_list);
1095 } else {
1096 rc = -ESHUTDOWN;
1097 goto done;
1098 }
1099 done:
1100 spin_unlock(&hcd_urb_list_lock);
1101 return rc;
1102 }
1103 EXPORT_SYMBOL_GPL(usb_hcd_link_urb_to_ep);
1104
1105 /**
1106 * usb_hcd_check_unlink_urb - check whether an URB may be unlinked
1107 * @hcd: host controller to which @urb was submitted
1108 * @urb: URB being checked for unlinkability
1109 * @status: error code to store in @urb if the unlink succeeds
1110 *
1111 * Host controller drivers should call this routine in their dequeue()
1112 * method. The HCD's private spinlock must be held and interrupts must
1113 * be disabled. The actions carried out here are required for making
1114 * sure than an unlink is valid.
1115 *
1116 * Returns 0 for no error, otherwise a negative error code (in which case
1117 * the dequeue() method must fail). The possible error codes are:
1118 *
1119 * -EIDRM: @urb was not submitted or has already completed.
1120 * The completion function may not have been called yet.
1121 *
1122 * -EBUSY: @urb has already been unlinked.
1123 */
1124 int usb_hcd_check_unlink_urb(struct usb_hcd *hcd, struct urb *urb,
1125 int status)
1126 {
1127 struct list_head *tmp;
1128
1129 /* insist the urb is still queued */
1130 list_for_each(tmp, &urb->ep->urb_list) {
1131 if (tmp == &urb->urb_list)
1132 break;
1133 }
1134 if (tmp != &urb->urb_list)
1135 return -EIDRM;
1136
1137 /* Any status except -EINPROGRESS means something already started to
1138 * unlink this URB from the hardware. So there's no more work to do.
1139 */
1140 if (urb->unlinked)
1141 return -EBUSY;
1142 urb->unlinked = status;
1143
1144 /* IRQ setup can easily be broken so that USB controllers
1145 * never get completion IRQs ... maybe even the ones we need to
1146 * finish unlinking the initial failed usb_set_address()
1147 * or device descriptor fetch.
1148 */
1149 if (!HCD_SAW_IRQ(hcd) && !is_root_hub(urb->dev)) {
1150 dev_warn(hcd->self.controller, "Unlink after no-IRQ? "
1151 "Controller is probably using the wrong IRQ.\n");
1152 set_bit(HCD_FLAG_SAW_IRQ, &hcd->flags);
1153 }
1154
1155 return 0;
1156 }
1157 EXPORT_SYMBOL_GPL(usb_hcd_check_unlink_urb);
1158
1159 /**
1160 * usb_hcd_unlink_urb_from_ep - remove an URB from its endpoint queue
1161 * @hcd: host controller to which @urb was submitted
1162 * @urb: URB being unlinked
1163 *
1164 * Host controller drivers should call this routine before calling
1165 * usb_hcd_giveback_urb(). The HCD's private spinlock must be held and
1166 * interrupts must be disabled. The actions carried out here are required
1167 * for URB completion.
1168 */
1169 void usb_hcd_unlink_urb_from_ep(struct usb_hcd *hcd, struct urb *urb)
1170 {
1171 /* clear all state linking urb to this dev (and hcd) */
1172 spin_lock(&hcd_urb_list_lock);
1173 list_del_init(&urb->urb_list);
1174 spin_unlock(&hcd_urb_list_lock);
1175 }
1176 EXPORT_SYMBOL_GPL(usb_hcd_unlink_urb_from_ep);
1177
1178 /*
1179 * Some usb host controllers can only perform dma using a small SRAM area.
1180 * The usb core itself is however optimized for host controllers that can dma
1181 * using regular system memory - like pci devices doing bus mastering.
1182 *
1183 * To support host controllers with limited dma capabilites we provide dma
1184 * bounce buffers. This feature can be enabled using the HCD_LOCAL_MEM flag.
1185 * For this to work properly the host controller code must first use the
1186 * function dma_declare_coherent_memory() to point out which memory area
1187 * that should be used for dma allocations.
1188 *
1189 * The HCD_LOCAL_MEM flag then tells the usb code to allocate all data for
1190 * dma using dma_alloc_coherent() which in turn allocates from the memory
1191 * area pointed out with dma_declare_coherent_memory().
1192 *
1193 * So, to summarize...
1194 *
1195 * - We need "local" memory, canonical example being
1196 * a small SRAM on a discrete controller being the
1197 * only memory that the controller can read ...
1198 * (a) "normal" kernel memory is no good, and
1199 * (b) there's not enough to share
1200 *
1201 * - The only *portable* hook for such stuff in the
1202 * DMA framework is dma_declare_coherent_memory()
1203 *
1204 * - So we use that, even though the primary requirement
1205 * is that the memory be "local" (hence addressible
1206 * by that device), not "coherent".
1207 *
1208 */
1209
1210 static int hcd_alloc_coherent(struct usb_bus *bus,
1211 gfp_t mem_flags, dma_addr_t *dma_handle,
1212 void **vaddr_handle, size_t size,
1213 enum dma_data_direction dir)
1214 {
1215 unsigned char *vaddr;
1216
1217 if (*vaddr_handle == NULL) {
1218 WARN_ON_ONCE(1);
1219 return -EFAULT;
1220 }
1221
1222 vaddr = hcd_buffer_alloc(bus, size + sizeof(vaddr),
1223 mem_flags, dma_handle);
1224 if (!vaddr)
1225 return -ENOMEM;
1226
1227 /*
1228 * Store the virtual address of the buffer at the end
1229 * of the allocated dma buffer. The size of the buffer
1230 * may be uneven so use unaligned functions instead
1231 * of just rounding up. It makes sense to optimize for
1232 * memory footprint over access speed since the amount
1233 * of memory available for dma may be limited.
1234 */
1235 put_unaligned((unsigned long)*vaddr_handle,
1236 (unsigned long *)(vaddr + size));
1237
1238 if (dir == DMA_TO_DEVICE)
1239 memcpy(vaddr, *vaddr_handle, size);
1240
1241 *vaddr_handle = vaddr;
1242 return 0;
1243 }
1244
1245 static void hcd_free_coherent(struct usb_bus *bus, dma_addr_t *dma_handle,
1246 void **vaddr_handle, size_t size,
1247 enum dma_data_direction dir)
1248 {
1249 unsigned char *vaddr = *vaddr_handle;
1250
1251 vaddr = (void *)get_unaligned((unsigned long *)(vaddr + size));
1252
1253 if (dir == DMA_FROM_DEVICE)
1254 memcpy(vaddr, *vaddr_handle, size);
1255
1256 hcd_buffer_free(bus, size + sizeof(vaddr), *vaddr_handle, *dma_handle);
1257
1258 *vaddr_handle = vaddr;
1259 *dma_handle = 0;
1260 }
1261
1262 void usb_hcd_unmap_urb_setup_for_dma(struct usb_hcd *hcd, struct urb *urb)
1263 {
1264 if (urb->transfer_flags & URB_SETUP_MAP_SINGLE)
1265 dma_unmap_single(hcd->self.controller,
1266 urb->setup_dma,
1267 sizeof(struct usb_ctrlrequest),
1268 DMA_TO_DEVICE);
1269 else if (urb->transfer_flags & URB_SETUP_MAP_LOCAL)
1270 hcd_free_coherent(urb->dev->bus,
1271 &urb->setup_dma,
1272 (void **) &urb->setup_packet,
1273 sizeof(struct usb_ctrlrequest),
1274 DMA_TO_DEVICE);
1275
1276 /* Make it safe to call this routine more than once */
1277 urb->transfer_flags &= ~(URB_SETUP_MAP_SINGLE | URB_SETUP_MAP_LOCAL);
1278 }
1279 EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_setup_for_dma);
1280
1281 static void unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1282 {
1283 if (hcd->driver->unmap_urb_for_dma)
1284 hcd->driver->unmap_urb_for_dma(hcd, urb);
1285 else
1286 usb_hcd_unmap_urb_for_dma(hcd, urb);
1287 }
1288
1289 void usb_hcd_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1290 {
1291 enum dma_data_direction dir;
1292
1293 usb_hcd_unmap_urb_setup_for_dma(hcd, urb);
1294
1295 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1296 if (urb->transfer_flags & URB_DMA_MAP_SG)
1297 dma_unmap_sg(hcd->self.controller,
1298 urb->sg,
1299 urb->num_sgs,
1300 dir);
1301 else if (urb->transfer_flags & URB_DMA_MAP_PAGE)
1302 dma_unmap_page(hcd->self.controller,
1303 urb->transfer_dma,
1304 urb->transfer_buffer_length,
1305 dir);
1306 else if (urb->transfer_flags & URB_DMA_MAP_SINGLE)
1307 dma_unmap_single(hcd->self.controller,
1308 urb->transfer_dma,
1309 urb->transfer_buffer_length,
1310 dir);
1311 else if (urb->transfer_flags & URB_MAP_LOCAL)
1312 hcd_free_coherent(urb->dev->bus,
1313 &urb->transfer_dma,
1314 &urb->transfer_buffer,
1315 urb->transfer_buffer_length,
1316 dir);
1317
1318 /* Make it safe to call this routine more than once */
1319 urb->transfer_flags &= ~(URB_DMA_MAP_SG | URB_DMA_MAP_PAGE |
1320 URB_DMA_MAP_SINGLE | URB_MAP_LOCAL);
1321 }
1322 EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_for_dma);
1323
1324 static int map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1325 gfp_t mem_flags)
1326 {
1327 if (hcd->driver->map_urb_for_dma)
1328 return hcd->driver->map_urb_for_dma(hcd, urb, mem_flags);
1329 else
1330 return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1331 }
1332
1333 int usb_hcd_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1334 gfp_t mem_flags)
1335 {
1336 enum dma_data_direction dir;
1337 int ret = 0;
1338
1339 /* Map the URB's buffers for DMA access.
1340 * Lower level HCD code should use *_dma exclusively,
1341 * unless it uses pio or talks to another transport,
1342 * or uses the provided scatter gather list for bulk.
1343 */
1344
1345 if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1346 if (hcd->self.uses_pio_for_control)
1347 return ret;
1348 if (hcd->self.uses_dma) {
1349 urb->setup_dma = dma_map_single(
1350 hcd->self.controller,
1351 urb->setup_packet,
1352 sizeof(struct usb_ctrlrequest),
1353 DMA_TO_DEVICE);
1354 if (dma_mapping_error(hcd->self.controller,
1355 urb->setup_dma))
1356 return -EAGAIN;
1357 urb->transfer_flags |= URB_SETUP_MAP_SINGLE;
1358 } else if (hcd->driver->flags & HCD_LOCAL_MEM) {
1359 ret = hcd_alloc_coherent(
1360 urb->dev->bus, mem_flags,
1361 &urb->setup_dma,
1362 (void **)&urb->setup_packet,
1363 sizeof(struct usb_ctrlrequest),
1364 DMA_TO_DEVICE);
1365 if (ret)
1366 return ret;
1367 urb->transfer_flags |= URB_SETUP_MAP_LOCAL;
1368 }
1369 }
1370
1371 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1372 if (urb->transfer_buffer_length != 0
1373 && !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1374 if (hcd->self.uses_dma) {
1375 if (urb->num_sgs) {
1376 int n = dma_map_sg(
1377 hcd->self.controller,
1378 urb->sg,
1379 urb->num_sgs,
1380 dir);
1381 if (n <= 0)
1382 ret = -EAGAIN;
1383 else
1384 urb->transfer_flags |= URB_DMA_MAP_SG;
1385 if (n != urb->num_sgs) {
1386 urb->num_sgs = n;
1387 urb->transfer_flags |=
1388 URB_DMA_SG_COMBINED;
1389 }
1390 } else if (urb->sg) {
1391 struct scatterlist *sg = urb->sg;
1392 urb->transfer_dma = dma_map_page(
1393 hcd->self.controller,
1394 sg_page(sg),
1395 sg->offset,
1396 urb->transfer_buffer_length,
1397 dir);
1398 if (dma_mapping_error(hcd->self.controller,
1399 urb->transfer_dma))
1400 ret = -EAGAIN;
1401 else
1402 urb->transfer_flags |= URB_DMA_MAP_PAGE;
1403 } else {
1404 urb->transfer_dma = dma_map_single(
1405 hcd->self.controller,
1406 urb->transfer_buffer,
1407 urb->transfer_buffer_length,
1408 dir);
1409 if (dma_mapping_error(hcd->self.controller,
1410 urb->transfer_dma))
1411 ret = -EAGAIN;
1412 else
1413 urb->transfer_flags |= URB_DMA_MAP_SINGLE;
1414 }
1415 } else if (hcd->driver->flags & HCD_LOCAL_MEM) {
1416 ret = hcd_alloc_coherent(
1417 urb->dev->bus, mem_flags,
1418 &urb->transfer_dma,
1419 &urb->transfer_buffer,
1420 urb->transfer_buffer_length,
1421 dir);
1422 if (ret == 0)
1423 urb->transfer_flags |= URB_MAP_LOCAL;
1424 }
1425 if (ret && (urb->transfer_flags & (URB_SETUP_MAP_SINGLE |
1426 URB_SETUP_MAP_LOCAL)))
1427 usb_hcd_unmap_urb_for_dma(hcd, urb);
1428 }
1429 return ret;
1430 }
1431 EXPORT_SYMBOL_GPL(usb_hcd_map_urb_for_dma);
1432
1433 /*-------------------------------------------------------------------------*/
1434
1435 /* may be called in any context with a valid urb->dev usecount
1436 * caller surrenders "ownership" of urb
1437 * expects usb_submit_urb() to have sanity checked and conditioned all
1438 * inputs in the urb
1439 */
1440 int usb_hcd_submit_urb (struct urb *urb, gfp_t mem_flags)
1441 {
1442 int status;
1443 struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus);
1444
1445 /* increment urb's reference count as part of giving it to the HCD
1446 * (which will control it). HCD guarantees that it either returns
1447 * an error or calls giveback(), but not both.
1448 */
1449 usb_get_urb(urb);
1450 atomic_inc(&urb->use_count);
1451 atomic_inc(&urb->dev->urbnum);
1452 usbmon_urb_submit(&hcd->self, urb);
1453
1454 /* NOTE requirements on root-hub callers (usbfs and the hub
1455 * driver, for now): URBs' urb->transfer_buffer must be
1456 * valid and usb_buffer_{sync,unmap}() not be needed, since
1457 * they could clobber root hub response data. Also, control
1458 * URBs must be submitted in process context with interrupts
1459 * enabled.
1460 */
1461
1462 if (is_root_hub(urb->dev)) {
1463 status = rh_urb_enqueue(hcd, urb);
1464 } else {
1465 status = map_urb_for_dma(hcd, urb, mem_flags);
1466 if (likely(status == 0)) {
1467 status = hcd->driver->urb_enqueue(hcd, urb, mem_flags);
1468 if (unlikely(status))
1469 unmap_urb_for_dma(hcd, urb);
1470 }
1471 }
1472
1473 if (unlikely(status)) {
1474 usbmon_urb_submit_error(&hcd->self, urb, status);
1475 urb->hcpriv = NULL;
1476 INIT_LIST_HEAD(&urb->urb_list);
1477 atomic_dec(&urb->use_count);
1478 atomic_dec(&urb->dev->urbnum);
1479 if (atomic_read(&urb->reject))
1480 wake_up(&usb_kill_urb_queue);
1481 usb_put_urb(urb);
1482 }
1483 return status;
1484 }
1485
1486 /*-------------------------------------------------------------------------*/
1487
1488 /* this makes the hcd giveback() the urb more quickly, by kicking it
1489 * off hardware queues (which may take a while) and returning it as
1490 * soon as practical. we've already set up the urb's return status,
1491 * but we can't know if the callback completed already.
1492 */
1493 static int unlink1(struct usb_hcd *hcd, struct urb *urb, int status)
1494 {
1495 int value;
1496
1497 if (is_root_hub(urb->dev))
1498 value = usb_rh_urb_dequeue(hcd, urb, status);
1499 else {
1500
1501 /* The only reason an HCD might fail this call is if
1502 * it has not yet fully queued the urb to begin with.
1503 * Such failures should be harmless. */
1504 value = hcd->driver->urb_dequeue(hcd, urb, status);
1505 }
1506 return value;
1507 }
1508
1509 /*
1510 * called in any context
1511 *
1512 * caller guarantees urb won't be recycled till both unlink()
1513 * and the urb's completion function return
1514 */
1515 int usb_hcd_unlink_urb (struct urb *urb, int status)
1516 {
1517 struct usb_hcd *hcd;
1518 int retval = -EIDRM;
1519 unsigned long flags;
1520
1521 /* Prevent the device and bus from going away while
1522 * the unlink is carried out. If they are already gone
1523 * then urb->use_count must be 0, since disconnected
1524 * devices can't have any active URBs.
1525 */
1526 spin_lock_irqsave(&hcd_urb_unlink_lock, flags);
1527 if (atomic_read(&urb->use_count) > 0) {
1528 retval = 0;
1529 usb_get_dev(urb->dev);
1530 }
1531 spin_unlock_irqrestore(&hcd_urb_unlink_lock, flags);
1532 if (retval == 0) {
1533 hcd = bus_to_hcd(urb->dev->bus);
1534 retval = unlink1(hcd, urb, status);
1535 usb_put_dev(urb->dev);
1536 }
1537
1538 if (retval == 0)
1539 retval = -EINPROGRESS;
1540 else if (retval != -EIDRM && retval != -EBUSY)
1541 dev_dbg(&urb->dev->dev, "hcd_unlink_urb %p fail %d\n",
1542 urb, retval);
1543 return retval;
1544 }
1545
1546 /*-------------------------------------------------------------------------*/
1547
1548 /**
1549 * usb_hcd_giveback_urb - return URB from HCD to device driver
1550 * @hcd: host controller returning the URB
1551 * @urb: urb being returned to the USB device driver.
1552 * @status: completion status code for the URB.
1553 * Context: in_interrupt()
1554 *
1555 * This hands the URB from HCD to its USB device driver, using its
1556 * completion function. The HCD has freed all per-urb resources
1557 * (and is done using urb->hcpriv). It also released all HCD locks;
1558 * the device driver won't cause problems if it frees, modifies,
1559 * or resubmits this URB.
1560 *
1561 * If @urb was unlinked, the value of @status will be overridden by
1562 * @urb->unlinked. Erroneous short transfers are detected in case
1563 * the HCD hasn't checked for them.
1564 */
1565 void usb_hcd_giveback_urb(struct usb_hcd *hcd, struct urb *urb, int status)
1566 {
1567 urb->hcpriv = NULL;
1568 if (unlikely(urb->unlinked))
1569 status = urb->unlinked;
1570 else if (unlikely((urb->transfer_flags & URB_SHORT_NOT_OK) &&
1571 urb->actual_length < urb->transfer_buffer_length &&
1572 !status))
1573 status = -EREMOTEIO;
1574
1575 unmap_urb_for_dma(hcd, urb);
1576 usbmon_urb_complete(&hcd->self, urb, status);
1577 usb_unanchor_urb(urb);
1578
1579 /* pass ownership to the completion handler */
1580 urb->status = status;
1581 urb->complete (urb);
1582 atomic_dec (&urb->use_count);
1583 if (unlikely(atomic_read(&urb->reject)))
1584 wake_up (&usb_kill_urb_queue);
1585 usb_put_urb (urb);
1586 }
1587 EXPORT_SYMBOL_GPL(usb_hcd_giveback_urb);
1588
1589 /*-------------------------------------------------------------------------*/
1590
1591 /* Cancel all URBs pending on this endpoint and wait for the endpoint's
1592 * queue to drain completely. The caller must first insure that no more
1593 * URBs can be submitted for this endpoint.
1594 */
1595 void usb_hcd_flush_endpoint(struct usb_device *udev,
1596 struct usb_host_endpoint *ep)
1597 {
1598 struct usb_hcd *hcd;
1599 struct urb *urb;
1600
1601 if (!ep)
1602 return;
1603 might_sleep();
1604 hcd = bus_to_hcd(udev->bus);
1605
1606 /* No more submits can occur */
1607 spin_lock_irq(&hcd_urb_list_lock);
1608 rescan:
1609 list_for_each_entry (urb, &ep->urb_list, urb_list) {
1610 int is_in;
1611
1612 if (urb->unlinked)
1613 continue;
1614 usb_get_urb (urb);
1615 is_in = usb_urb_dir_in(urb);
1616 spin_unlock(&hcd_urb_list_lock);
1617
1618 /* kick hcd */
1619 unlink1(hcd, urb, -ESHUTDOWN);
1620 dev_dbg (hcd->self.controller,
1621 "shutdown urb %p ep%d%s%s\n",
1622 urb, usb_endpoint_num(&ep->desc),
1623 is_in ? "in" : "out",
1624 ({ char *s;
1625
1626 switch (usb_endpoint_type(&ep->desc)) {
1627 case USB_ENDPOINT_XFER_CONTROL:
1628 s = ""; break;
1629 case USB_ENDPOINT_XFER_BULK:
1630 s = "-bulk"; break;
1631 case USB_ENDPOINT_XFER_INT:
1632 s = "-intr"; break;
1633 default:
1634 s = "-iso"; break;
1635 };
1636 s;
1637 }));
1638 usb_put_urb (urb);
1639
1640 /* list contents may have changed */
1641 spin_lock(&hcd_urb_list_lock);
1642 goto rescan;
1643 }
1644 spin_unlock_irq(&hcd_urb_list_lock);
1645
1646 /* Wait until the endpoint queue is completely empty */
1647 while (!list_empty (&ep->urb_list)) {
1648 spin_lock_irq(&hcd_urb_list_lock);
1649
1650 /* The list may have changed while we acquired the spinlock */
1651 urb = NULL;
1652 if (!list_empty (&ep->urb_list)) {
1653 urb = list_entry (ep->urb_list.prev, struct urb,
1654 urb_list);
1655 usb_get_urb (urb);
1656 }
1657 spin_unlock_irq(&hcd_urb_list_lock);
1658
1659 if (urb) {
1660 usb_kill_urb (urb);
1661 usb_put_urb (urb);
1662 }
1663 }
1664 }
1665
1666 /**
1667 * usb_hcd_alloc_bandwidth - check whether a new bandwidth setting exceeds
1668 * the bus bandwidth
1669 * @udev: target &usb_device
1670 * @new_config: new configuration to install
1671 * @cur_alt: the current alternate interface setting
1672 * @new_alt: alternate interface setting that is being installed
1673 *
1674 * To change configurations, pass in the new configuration in new_config,
1675 * and pass NULL for cur_alt and new_alt.
1676 *
1677 * To reset a device's configuration (put the device in the ADDRESSED state),
1678 * pass in NULL for new_config, cur_alt, and new_alt.
1679 *
1680 * To change alternate interface settings, pass in NULL for new_config,
1681 * pass in the current alternate interface setting in cur_alt,
1682 * and pass in the new alternate interface setting in new_alt.
1683 *
1684 * Returns an error if the requested bandwidth change exceeds the
1685 * bus bandwidth or host controller internal resources.
1686 */
1687 int usb_hcd_alloc_bandwidth(struct usb_device *udev,
1688 struct usb_host_config *new_config,
1689 struct usb_host_interface *cur_alt,
1690 struct usb_host_interface *new_alt)
1691 {
1692 int num_intfs, i, j;
1693 struct usb_host_interface *alt = NULL;
1694 int ret = 0;
1695 struct usb_hcd *hcd;
1696 struct usb_host_endpoint *ep;
1697
1698 hcd = bus_to_hcd(udev->bus);
1699 if (!hcd->driver->check_bandwidth)
1700 return 0;
1701
1702 /* Configuration is being removed - set configuration 0 */
1703 if (!new_config && !cur_alt) {
1704 for (i = 1; i < 16; ++i) {
1705 ep = udev->ep_out[i];
1706 if (ep)
1707 hcd->driver->drop_endpoint(hcd, udev, ep);
1708 ep = udev->ep_in[i];
1709 if (ep)
1710 hcd->driver->drop_endpoint(hcd, udev, ep);
1711 }
1712 hcd->driver->check_bandwidth(hcd, udev);
1713 return 0;
1714 }
1715 /* Check if the HCD says there's enough bandwidth. Enable all endpoints
1716 * each interface's alt setting 0 and ask the HCD to check the bandwidth
1717 * of the bus. There will always be bandwidth for endpoint 0, so it's
1718 * ok to exclude it.
1719 */
1720 if (new_config) {
1721 num_intfs = new_config->desc.bNumInterfaces;
1722 /* Remove endpoints (except endpoint 0, which is always on the
1723 * schedule) from the old config from the schedule
1724 */
1725 for (i = 1; i < 16; ++i) {
1726 ep = udev->ep_out[i];
1727 if (ep) {
1728 ret = hcd->driver->drop_endpoint(hcd, udev, ep);
1729 if (ret < 0)
1730 goto reset;
1731 }
1732 ep = udev->ep_in[i];
1733 if (ep) {
1734 ret = hcd->driver->drop_endpoint(hcd, udev, ep);
1735 if (ret < 0)
1736 goto reset;
1737 }
1738 }
1739 for (i = 0; i < num_intfs; ++i) {
1740 struct usb_host_interface *first_alt;
1741 int iface_num;
1742
1743 first_alt = &new_config->intf_cache[i]->altsetting[0];
1744 iface_num = first_alt->desc.bInterfaceNumber;
1745 /* Set up endpoints for alternate interface setting 0 */
1746 alt = usb_find_alt_setting(new_config, iface_num, 0);
1747 if (!alt)
1748 /* No alt setting 0? Pick the first setting. */
1749 alt = first_alt;
1750
1751 for (j = 0; j < alt->desc.bNumEndpoints; j++) {
1752 ret = hcd->driver->add_endpoint(hcd, udev, &alt->endpoint[j]);
1753 if (ret < 0)
1754 goto reset;
1755 }
1756 }
1757 }
1758 if (cur_alt && new_alt) {
1759 struct usb_interface *iface = usb_ifnum_to_if(udev,
1760 cur_alt->desc.bInterfaceNumber);
1761
1762 if (iface->resetting_device) {
1763 /*
1764 * The USB core just reset the device, so the xHCI host
1765 * and the device will think alt setting 0 is installed.
1766 * However, the USB core will pass in the alternate
1767 * setting installed before the reset as cur_alt. Dig
1768 * out the alternate setting 0 structure, or the first
1769 * alternate setting if a broken device doesn't have alt
1770 * setting 0.
1771 */
1772 cur_alt = usb_altnum_to_altsetting(iface, 0);
1773 if (!cur_alt)
1774 cur_alt = &iface->altsetting[0];
1775 }
1776
1777 /* Drop all the endpoints in the current alt setting */
1778 for (i = 0; i < cur_alt->desc.bNumEndpoints; i++) {
1779 ret = hcd->driver->drop_endpoint(hcd, udev,
1780 &cur_alt->endpoint[i]);
1781 if (ret < 0)
1782 goto reset;
1783 }
1784 /* Add all the endpoints in the new alt setting */
1785 for (i = 0; i < new_alt->desc.bNumEndpoints; i++) {
1786 ret = hcd->driver->add_endpoint(hcd, udev,
1787 &new_alt->endpoint[i]);
1788 if (ret < 0)
1789 goto reset;
1790 }
1791 }
1792 ret = hcd->driver->check_bandwidth(hcd, udev);
1793 reset:
1794 if (ret < 0)
1795 hcd->driver->reset_bandwidth(hcd, udev);
1796 return ret;
1797 }
1798
1799 /* Disables the endpoint: synchronizes with the hcd to make sure all
1800 * endpoint state is gone from hardware. usb_hcd_flush_endpoint() must
1801 * have been called previously. Use for set_configuration, set_interface,
1802 * driver removal, physical disconnect.
1803 *
1804 * example: a qh stored in ep->hcpriv, holding state related to endpoint
1805 * type, maxpacket size, toggle, halt status, and scheduling.
1806 */
1807 void usb_hcd_disable_endpoint(struct usb_device *udev,
1808 struct usb_host_endpoint *ep)
1809 {
1810 struct usb_hcd *hcd;
1811
1812 might_sleep();
1813 hcd = bus_to_hcd(udev->bus);
1814 if (hcd->driver->endpoint_disable)
1815 hcd->driver->endpoint_disable(hcd, ep);
1816 }
1817
1818 /**
1819 * usb_hcd_reset_endpoint - reset host endpoint state
1820 * @udev: USB device.
1821 * @ep: the endpoint to reset.
1822 *
1823 * Resets any host endpoint state such as the toggle bit, sequence
1824 * number and current window.
1825 */
1826 void usb_hcd_reset_endpoint(struct usb_device *udev,
1827 struct usb_host_endpoint *ep)
1828 {
1829 struct usb_hcd *hcd = bus_to_hcd(udev->bus);
1830
1831 if (hcd->driver->endpoint_reset)
1832 hcd->driver->endpoint_reset(hcd, ep);
1833 else {
1834 int epnum = usb_endpoint_num(&ep->desc);
1835 int is_out = usb_endpoint_dir_out(&ep->desc);
1836 int is_control = usb_endpoint_xfer_control(&ep->desc);
1837
1838 usb_settoggle(udev, epnum, is_out, 0);
1839 if (is_control)
1840 usb_settoggle(udev, epnum, !is_out, 0);
1841 }
1842 }
1843
1844 /**
1845 * usb_alloc_streams - allocate bulk endpoint stream IDs.
1846 * @interface: alternate setting that includes all endpoints.
1847 * @eps: array of endpoints that need streams.
1848 * @num_eps: number of endpoints in the array.
1849 * @num_streams: number of streams to allocate.
1850 * @mem_flags: flags hcd should use to allocate memory.
1851 *
1852 * Sets up a group of bulk endpoints to have num_streams stream IDs available.
1853 * Drivers may queue multiple transfers to different stream IDs, which may
1854 * complete in a different order than they were queued.
1855 */
1856 int usb_alloc_streams(struct usb_interface *interface,
1857 struct usb_host_endpoint **eps, unsigned int num_eps,
1858 unsigned int num_streams, gfp_t mem_flags)
1859 {
1860 struct usb_hcd *hcd;
1861 struct usb_device *dev;
1862 int i;
1863
1864 dev = interface_to_usbdev(interface);
1865 hcd = bus_to_hcd(dev->bus);
1866 if (!hcd->driver->alloc_streams || !hcd->driver->free_streams)
1867 return -EINVAL;
1868 if (dev->speed != USB_SPEED_SUPER)
1869 return -EINVAL;
1870
1871 /* Streams only apply to bulk endpoints. */
1872 for (i = 0; i < num_eps; i++)
1873 if (!usb_endpoint_xfer_bulk(&eps[i]->desc))
1874 return -EINVAL;
1875
1876 return hcd->driver->alloc_streams(hcd, dev, eps, num_eps,
1877 num_streams, mem_flags);
1878 }
1879 EXPORT_SYMBOL_GPL(usb_alloc_streams);
1880
1881 /**
1882 * usb_free_streams - free bulk endpoint stream IDs.
1883 * @interface: alternate setting that includes all endpoints.
1884 * @eps: array of endpoints to remove streams from.
1885 * @num_eps: number of endpoints in the array.
1886 * @mem_flags: flags hcd should use to allocate memory.
1887 *
1888 * Reverts a group of bulk endpoints back to not using stream IDs.
1889 * Can fail if we are given bad arguments, or HCD is broken.
1890 */
1891 void usb_free_streams(struct usb_interface *interface,
1892 struct usb_host_endpoint **eps, unsigned int num_eps,
1893 gfp_t mem_flags)
1894 {
1895 struct usb_hcd *hcd;
1896 struct usb_device *dev;
1897 int i;
1898
1899 dev = interface_to_usbdev(interface);
1900 hcd = bus_to_hcd(dev->bus);
1901 if (dev->speed != USB_SPEED_SUPER)
1902 return;
1903
1904 /* Streams only apply to bulk endpoints. */
1905 for (i = 0; i < num_eps; i++)
1906 if (!usb_endpoint_xfer_bulk(&eps[i]->desc))
1907 return;
1908
1909 hcd->driver->free_streams(hcd, dev, eps, num_eps, mem_flags);
1910 }
1911 EXPORT_SYMBOL_GPL(usb_free_streams);
1912
1913 /* Protect against drivers that try to unlink URBs after the device
1914 * is gone, by waiting until all unlinks for @udev are finished.
1915 * Since we don't currently track URBs by device, simply wait until
1916 * nothing is running in the locked region of usb_hcd_unlink_urb().
1917 */
1918 void usb_hcd_synchronize_unlinks(struct usb_device *udev)
1919 {
1920 spin_lock_irq(&hcd_urb_unlink_lock);
1921 spin_unlock_irq(&hcd_urb_unlink_lock);
1922 }
1923
1924 /*-------------------------------------------------------------------------*/
1925
1926 /* called in any context */
1927 int usb_hcd_get_frame_number (struct usb_device *udev)
1928 {
1929 struct usb_hcd *hcd = bus_to_hcd(udev->bus);
1930
1931 if (!HCD_RH_RUNNING(hcd))
1932 return -ESHUTDOWN;
1933 return hcd->driver->get_frame_number (hcd);
1934 }
1935
1936 /*-------------------------------------------------------------------------*/
1937
1938 #ifdef CONFIG_PM
1939
1940 int hcd_bus_suspend(struct usb_device *rhdev, pm_message_t msg)
1941 {
1942 struct usb_hcd *hcd = container_of(rhdev->bus, struct usb_hcd, self);
1943 int status;
1944 int old_state = hcd->state;
1945
1946 dev_dbg(&rhdev->dev, "bus %s%s\n",
1947 (msg.event & PM_EVENT_AUTO ? "auto-" : ""), "suspend");
1948 if (HCD_DEAD(hcd)) {
1949 dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "suspend");
1950 return 0;
1951 }
1952
1953 if (!hcd->driver->bus_suspend) {
1954 status = -ENOENT;
1955 } else {
1956 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
1957 hcd->state = HC_STATE_QUIESCING;
1958 status = hcd->driver->bus_suspend(hcd);
1959 }
1960 if (status == 0) {
1961 usb_set_device_state(rhdev, USB_STATE_SUSPENDED);
1962 hcd->state = HC_STATE_SUSPENDED;
1963 } else {
1964 spin_lock_irq(&hcd_root_hub_lock);
1965 if (!HCD_DEAD(hcd)) {
1966 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
1967 hcd->state = old_state;
1968 }
1969 spin_unlock_irq(&hcd_root_hub_lock);
1970 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
1971 "suspend", status);
1972 }
1973 return status;
1974 }
1975
1976 int hcd_bus_resume(struct usb_device *rhdev, pm_message_t msg)
1977 {
1978 struct usb_hcd *hcd = container_of(rhdev->bus, struct usb_hcd, self);
1979 int status;
1980 int old_state = hcd->state;
1981
1982 dev_dbg(&rhdev->dev, "usb %s%s\n",
1983 (msg.event & PM_EVENT_AUTO ? "auto-" : ""), "resume");
1984 if (HCD_DEAD(hcd)) {
1985 dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "resume");
1986 return 0;
1987 }
1988 if (!hcd->driver->bus_resume)
1989 return -ENOENT;
1990 if (HCD_RH_RUNNING(hcd))
1991 return 0;
1992
1993 hcd->state = HC_STATE_RESUMING;
1994 status = hcd->driver->bus_resume(hcd);
1995 clear_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
1996 if (status == 0) {
1997 /* TRSMRCY = 10 msec */
1998 msleep(10);
1999 spin_lock_irq(&hcd_root_hub_lock);
2000 if (!HCD_DEAD(hcd)) {
2001 usb_set_device_state(rhdev, rhdev->actconfig
2002 ? USB_STATE_CONFIGURED
2003 : USB_STATE_ADDRESS);
2004 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2005 hcd->state = HC_STATE_RUNNING;
2006 }
2007 spin_unlock_irq(&hcd_root_hub_lock);
2008 } else {
2009 hcd->state = old_state;
2010 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
2011 "resume", status);
2012 if (status != -ESHUTDOWN)
2013 usb_hc_died(hcd);
2014 }
2015 return status;
2016 }
2017
2018 #endif /* CONFIG_PM */
2019
2020 #ifdef CONFIG_USB_SUSPEND
2021
2022 /* Workqueue routine for root-hub remote wakeup */
2023 static void hcd_resume_work(struct work_struct *work)
2024 {
2025 struct usb_hcd *hcd = container_of(work, struct usb_hcd, wakeup_work);
2026 struct usb_device *udev = hcd->self.root_hub;
2027
2028 usb_lock_device(udev);
2029 usb_remote_wakeup(udev);
2030 usb_unlock_device(udev);
2031 }
2032
2033 /**
2034 * usb_hcd_resume_root_hub - called by HCD to resume its root hub
2035 * @hcd: host controller for this root hub
2036 *
2037 * The USB host controller calls this function when its root hub is
2038 * suspended (with the remote wakeup feature enabled) and a remote
2039 * wakeup request is received. The routine submits a workqueue request
2040 * to resume the root hub (that is, manage its downstream ports again).
2041 */
2042 void usb_hcd_resume_root_hub (struct usb_hcd *hcd)
2043 {
2044 unsigned long flags;
2045
2046 spin_lock_irqsave (&hcd_root_hub_lock, flags);
2047 if (hcd->rh_registered) {
2048 set_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
2049 queue_work(pm_wq, &hcd->wakeup_work);
2050 }
2051 spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2052 }
2053 EXPORT_SYMBOL_GPL(usb_hcd_resume_root_hub);
2054
2055 #endif /* CONFIG_USB_SUSPEND */
2056
2057 /*-------------------------------------------------------------------------*/
2058
2059 #ifdef CONFIG_USB_OTG
2060
2061 /**
2062 * usb_bus_start_enum - start immediate enumeration (for OTG)
2063 * @bus: the bus (must use hcd framework)
2064 * @port_num: 1-based number of port; usually bus->otg_port
2065 * Context: in_interrupt()
2066 *
2067 * Starts enumeration, with an immediate reset followed later by
2068 * khubd identifying and possibly configuring the device.
2069 * This is needed by OTG controller drivers, where it helps meet
2070 * HNP protocol timing requirements for starting a port reset.
2071 */
2072 int usb_bus_start_enum(struct usb_bus *bus, unsigned port_num)
2073 {
2074 struct usb_hcd *hcd;
2075 int status = -EOPNOTSUPP;
2076
2077 /* NOTE: since HNP can't start by grabbing the bus's address0_sem,
2078 * boards with root hubs hooked up to internal devices (instead of
2079 * just the OTG port) may need more attention to resetting...
2080 */
2081 hcd = container_of (bus, struct usb_hcd, self);
2082 if (port_num && hcd->driver->start_port_reset)
2083 status = hcd->driver->start_port_reset(hcd, port_num);
2084
2085 /* run khubd shortly after (first) root port reset finishes;
2086 * it may issue others, until at least 50 msecs have passed.
2087 */
2088 if (status == 0)
2089 mod_timer(&hcd->rh_timer, jiffies + msecs_to_jiffies(10));
2090 return status;
2091 }
2092 EXPORT_SYMBOL_GPL(usb_bus_start_enum);
2093
2094 #endif
2095
2096 /*-------------------------------------------------------------------------*/
2097
2098 /**
2099 * usb_hcd_irq - hook IRQs to HCD framework (bus glue)
2100 * @irq: the IRQ being raised
2101 * @__hcd: pointer to the HCD whose IRQ is being signaled
2102 *
2103 * If the controller isn't HALTed, calls the driver's irq handler.
2104 * Checks whether the controller is now dead.
2105 */
2106 irqreturn_t usb_hcd_irq (int irq, void *__hcd)
2107 {
2108 struct usb_hcd *hcd = __hcd;
2109 unsigned long flags;
2110 irqreturn_t rc;
2111
2112 /* IRQF_DISABLED doesn't work correctly with shared IRQs
2113 * when the first handler doesn't use it. So let's just
2114 * assume it's never used.
2115 */
2116 local_irq_save(flags);
2117
2118 if (unlikely(HCD_DEAD(hcd) || !HCD_HW_ACCESSIBLE(hcd))) {
2119 rc = IRQ_NONE;
2120 } else if (hcd->driver->irq(hcd) == IRQ_NONE) {
2121 rc = IRQ_NONE;
2122 } else {
2123 set_bit(HCD_FLAG_SAW_IRQ, &hcd->flags);
2124
2125 if (unlikely(hcd->state == HC_STATE_HALT))
2126 usb_hc_died(hcd);
2127 rc = IRQ_HANDLED;
2128 }
2129
2130 local_irq_restore(flags);
2131 return rc;
2132 }
2133 EXPORT_SYMBOL_GPL(usb_hcd_irq);
2134
2135 /*-------------------------------------------------------------------------*/
2136
2137 /**
2138 * usb_hc_died - report abnormal shutdown of a host controller (bus glue)
2139 * @hcd: pointer to the HCD representing the controller
2140 *
2141 * This is called by bus glue to report a USB host controller that died
2142 * while operations may still have been pending. It's called automatically
2143 * by the PCI glue, so only glue for non-PCI busses should need to call it.
2144 */
2145 void usb_hc_died (struct usb_hcd *hcd)
2146 {
2147 unsigned long flags;
2148
2149 dev_err (hcd->self.controller, "HC died; cleaning up\n");
2150
2151 spin_lock_irqsave (&hcd_root_hub_lock, flags);
2152 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2153 set_bit(HCD_FLAG_DEAD, &hcd->flags);
2154 if (hcd->rh_registered) {
2155 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2156
2157 /* make khubd clean up old urbs and devices */
2158 usb_set_device_state (hcd->self.root_hub,
2159 USB_STATE_NOTATTACHED);
2160 usb_kick_khubd (hcd->self.root_hub);
2161 }
2162 spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2163 }
2164 EXPORT_SYMBOL_GPL (usb_hc_died);
2165
2166 /*-------------------------------------------------------------------------*/
2167
2168 /**
2169 * usb_create_hcd - create and initialize an HCD structure
2170 * @driver: HC driver that will use this hcd
2171 * @dev: device for this HC, stored in hcd->self.controller
2172 * @bus_name: value to store in hcd->self.bus_name
2173 * Context: !in_interrupt()
2174 *
2175 * Allocate a struct usb_hcd, with extra space at the end for the
2176 * HC driver's private data. Initialize the generic members of the
2177 * hcd structure.
2178 *
2179 * If memory is unavailable, returns NULL.
2180 */
2181 struct usb_hcd *usb_create_hcd (const struct hc_driver *driver,
2182 struct device *dev, const char *bus_name)
2183 {
2184 struct usb_hcd *hcd;
2185
2186 hcd = kzalloc(sizeof(*hcd) + driver->hcd_priv_size, GFP_KERNEL);
2187 if (!hcd) {
2188 dev_dbg (dev, "hcd alloc failed\n");
2189 return NULL;
2190 }
2191 dev_set_drvdata(dev, hcd);
2192 kref_init(&hcd->kref);
2193
2194 usb_bus_init(&hcd->self);
2195 hcd->self.controller = dev;
2196 hcd->self.bus_name = bus_name;
2197 hcd->self.uses_dma = (dev->dma_mask != NULL);
2198
2199 init_timer(&hcd->rh_timer);
2200 hcd->rh_timer.function = rh_timer_func;
2201 hcd->rh_timer.data = (unsigned long) hcd;
2202 #ifdef CONFIG_USB_SUSPEND
2203 INIT_WORK(&hcd->wakeup_work, hcd_resume_work);
2204 #endif
2205 mutex_init(&hcd->bandwidth_mutex);
2206
2207 hcd->driver = driver;
2208 hcd->product_desc = (driver->product_desc) ? driver->product_desc :
2209 "USB Host Controller";
2210 return hcd;
2211 }
2212 EXPORT_SYMBOL_GPL(usb_create_hcd);
2213
2214 static void hcd_release (struct kref *kref)
2215 {
2216 struct usb_hcd *hcd = container_of (kref, struct usb_hcd, kref);
2217
2218 kfree(hcd);
2219 }
2220
2221 struct usb_hcd *usb_get_hcd (struct usb_hcd *hcd)
2222 {
2223 if (hcd)
2224 kref_get (&hcd->kref);
2225 return hcd;
2226 }
2227 EXPORT_SYMBOL_GPL(usb_get_hcd);
2228
2229 void usb_put_hcd (struct usb_hcd *hcd)
2230 {
2231 if (hcd)
2232 kref_put (&hcd->kref, hcd_release);
2233 }
2234 EXPORT_SYMBOL_GPL(usb_put_hcd);
2235
2236 /**
2237 * usb_add_hcd - finish generic HCD structure initialization and register
2238 * @hcd: the usb_hcd structure to initialize
2239 * @irqnum: Interrupt line to allocate
2240 * @irqflags: Interrupt type flags
2241 *
2242 * Finish the remaining parts of generic HCD initialization: allocate the
2243 * buffers of consistent memory, register the bus, request the IRQ line,
2244 * and call the driver's reset() and start() routines.
2245 */
2246 int usb_add_hcd(struct usb_hcd *hcd,
2247 unsigned int irqnum, unsigned long irqflags)
2248 {
2249 int retval;
2250 struct usb_device *rhdev;
2251
2252 dev_info(hcd->self.controller, "%s\n", hcd->product_desc);
2253
2254 hcd->authorized_default = hcd->wireless? 0 : 1;
2255 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
2256
2257 /* HC is in reset state, but accessible. Now do the one-time init,
2258 * bottom up so that hcds can customize the root hubs before khubd
2259 * starts talking to them. (Note, bus id is assigned early too.)
2260 */
2261 if ((retval = hcd_buffer_create(hcd)) != 0) {
2262 dev_dbg(hcd->self.controller, "pool alloc failed\n");
2263 return retval;
2264 }
2265
2266 if ((retval = usb_register_bus(&hcd->self)) < 0)
2267 goto err_register_bus;
2268
2269 if ((rhdev = usb_alloc_dev(NULL, &hcd->self, 0)) == NULL) {
2270 dev_err(hcd->self.controller, "unable to allocate root hub\n");
2271 retval = -ENOMEM;
2272 goto err_allocate_root_hub;
2273 }
2274 hcd->self.root_hub = rhdev;
2275
2276 switch (hcd->driver->flags & HCD_MASK) {
2277 case HCD_USB11:
2278 rhdev->speed = USB_SPEED_FULL;
2279 break;
2280 case HCD_USB2:
2281 rhdev->speed = USB_SPEED_HIGH;
2282 break;
2283 case HCD_USB3:
2284 rhdev->speed = USB_SPEED_SUPER;
2285 break;
2286 default:
2287 goto err_set_rh_speed;
2288 }
2289
2290 /* wakeup flag init defaults to "everything works" for root hubs,
2291 * but drivers can override it in reset() if needed, along with
2292 * recording the overall controller's system wakeup capability.
2293 */
2294 device_init_wakeup(&rhdev->dev, 1);
2295
2296 /* HCD_FLAG_RH_RUNNING doesn't matter until the root hub is
2297 * registered. But since the controller can die at any time,
2298 * let's initialize the flag before touching the hardware.
2299 */
2300 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2301
2302 /* "reset" is misnamed; its role is now one-time init. the controller
2303 * should already have been reset (and boot firmware kicked off etc).
2304 */
2305 if (hcd->driver->reset && (retval = hcd->driver->reset(hcd)) < 0) {
2306 dev_err(hcd->self.controller, "can't setup\n");
2307 goto err_hcd_driver_setup;
2308 }
2309 hcd->rh_pollable = 1;
2310
2311 /* NOTE: root hub and controller capabilities may not be the same */
2312 if (device_can_wakeup(hcd->self.controller)
2313 && device_can_wakeup(&hcd->self.root_hub->dev))
2314 dev_dbg(hcd->self.controller, "supports USB remote wakeup\n");
2315
2316 /* enable irqs just before we start the controller */
2317 if (hcd->driver->irq) {
2318
2319 /* IRQF_DISABLED doesn't work as advertised when used together
2320 * with IRQF_SHARED. As usb_hcd_irq() will always disable
2321 * interrupts we can remove it here.
2322 */
2323 if (irqflags & IRQF_SHARED)
2324 irqflags &= ~IRQF_DISABLED;
2325
2326 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
2327 hcd->driver->description, hcd->self.busnum);
2328 retval = request_irq(irqnum, &usb_hcd_irq, irqflags,
2329 hcd->irq_descr, hcd);
2330 if (retval != 0) {
2331 dev_err(hcd->self.controller,
2332 "request interrupt %d failed\n",
2333 irqnum);
2334 goto err_request_irq;
2335 }
2336 hcd->irq = irqnum;
2337 dev_info(hcd->self.controller, "irq %d, %s 0x%08llx\n", irqnum,
2338 (hcd->driver->flags & HCD_MEMORY) ?
2339 "io mem" : "io base",
2340 (unsigned long long)hcd->rsrc_start);
2341 } else {
2342 hcd->irq = -1;
2343 if (hcd->rsrc_start)
2344 dev_info(hcd->self.controller, "%s 0x%08llx\n",
2345 (hcd->driver->flags & HCD_MEMORY) ?
2346 "io mem" : "io base",
2347 (unsigned long long)hcd->rsrc_start);
2348 }
2349
2350 hcd->state = HC_STATE_RUNNING;
2351 retval = hcd->driver->start(hcd);
2352 if (retval < 0) {
2353 dev_err(hcd->self.controller, "startup error %d\n", retval);
2354 goto err_hcd_driver_start;
2355 }
2356
2357 /* starting here, usbcore will pay attention to this root hub */
2358 rhdev->bus_mA = min(500u, hcd->power_budget);
2359 if ((retval = register_root_hub(hcd)) != 0)
2360 goto err_register_root_hub;
2361
2362 retval = sysfs_create_group(&rhdev->dev.kobj, &usb_bus_attr_group);
2363 if (retval < 0) {
2364 printk(KERN_ERR "Cannot register USB bus sysfs attributes: %d\n",
2365 retval);
2366 goto error_create_attr_group;
2367 }
2368 if (hcd->uses_new_polling && HCD_POLL_RH(hcd))
2369 usb_hcd_poll_rh_status(hcd);
2370 return retval;
2371
2372 error_create_attr_group:
2373 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2374 if (HC_IS_RUNNING(hcd->state))
2375 hcd->state = HC_STATE_QUIESCING;
2376 spin_lock_irq(&hcd_root_hub_lock);
2377 hcd->rh_registered = 0;
2378 spin_unlock_irq(&hcd_root_hub_lock);
2379
2380 #ifdef CONFIG_USB_SUSPEND
2381 cancel_work_sync(&hcd->wakeup_work);
2382 #endif
2383 mutex_lock(&usb_bus_list_lock);
2384 usb_disconnect(&rhdev); /* Sets rhdev to NULL */
2385 mutex_unlock(&usb_bus_list_lock);
2386 err_register_root_hub:
2387 hcd->rh_pollable = 0;
2388 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2389 del_timer_sync(&hcd->rh_timer);
2390 hcd->driver->stop(hcd);
2391 hcd->state = HC_STATE_HALT;
2392 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2393 del_timer_sync(&hcd->rh_timer);
2394 err_hcd_driver_start:
2395 if (hcd->irq >= 0)
2396 free_irq(irqnum, hcd);
2397 err_request_irq:
2398 err_hcd_driver_setup:
2399 err_set_rh_speed:
2400 usb_put_dev(hcd->self.root_hub);
2401 err_allocate_root_hub:
2402 usb_deregister_bus(&hcd->self);
2403 err_register_bus:
2404 hcd_buffer_destroy(hcd);
2405 return retval;
2406 }
2407 EXPORT_SYMBOL_GPL(usb_add_hcd);
2408
2409 /**
2410 * usb_remove_hcd - shutdown processing for generic HCDs
2411 * @hcd: the usb_hcd structure to remove
2412 * Context: !in_interrupt()
2413 *
2414 * Disconnects the root hub, then reverses the effects of usb_add_hcd(),
2415 * invoking the HCD's stop() method.
2416 */
2417 void usb_remove_hcd(struct usb_hcd *hcd)
2418 {
2419 struct usb_device *rhdev = hcd->self.root_hub;
2420
2421 dev_info(hcd->self.controller, "remove, state %x\n", hcd->state);
2422
2423 usb_get_dev(rhdev);
2424 sysfs_remove_group(&rhdev->dev.kobj, &usb_bus_attr_group);
2425
2426 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2427 if (HC_IS_RUNNING (hcd->state))
2428 hcd->state = HC_STATE_QUIESCING;
2429
2430 dev_dbg(hcd->self.controller, "roothub graceful disconnect\n");
2431 spin_lock_irq (&hcd_root_hub_lock);
2432 hcd->rh_registered = 0;
2433 spin_unlock_irq (&hcd_root_hub_lock);
2434
2435 #ifdef CONFIG_USB_SUSPEND
2436 cancel_work_sync(&hcd->wakeup_work);
2437 #endif
2438
2439 mutex_lock(&usb_bus_list_lock);
2440 usb_disconnect(&rhdev); /* Sets rhdev to NULL */
2441 mutex_unlock(&usb_bus_list_lock);
2442
2443 /* Prevent any more root-hub status calls from the timer.
2444 * The HCD might still restart the timer (if a port status change
2445 * interrupt occurs), but usb_hcd_poll_rh_status() won't invoke
2446 * the hub_status_data() callback.
2447 */
2448 hcd->rh_pollable = 0;
2449 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2450 del_timer_sync(&hcd->rh_timer);
2451
2452 hcd->driver->stop(hcd);
2453 hcd->state = HC_STATE_HALT;
2454
2455 /* In case the HCD restarted the timer, stop it again. */
2456 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2457 del_timer_sync(&hcd->rh_timer);
2458
2459 if (hcd->irq >= 0)
2460 free_irq(hcd->irq, hcd);
2461
2462 usb_put_dev(hcd->self.root_hub);
2463 usb_deregister_bus(&hcd->self);
2464 hcd_buffer_destroy(hcd);
2465 }
2466 EXPORT_SYMBOL_GPL(usb_remove_hcd);
2467
2468 void
2469 usb_hcd_platform_shutdown(struct platform_device* dev)
2470 {
2471 struct usb_hcd *hcd = platform_get_drvdata(dev);
2472
2473 if (hcd->driver->shutdown)
2474 hcd->driver->shutdown(hcd);
2475 }
2476 EXPORT_SYMBOL_GPL(usb_hcd_platform_shutdown);
2477
2478 /*-------------------------------------------------------------------------*/
2479
2480 #if defined(CONFIG_USB_MON) || defined(CONFIG_USB_MON_MODULE)
2481
2482 struct usb_mon_operations *mon_ops;
2483
2484 /*
2485 * The registration is unlocked.
2486 * We do it this way because we do not want to lock in hot paths.
2487 *
2488 * Notice that the code is minimally error-proof. Because usbmon needs
2489 * symbols from usbcore, usbcore gets referenced and cannot be unloaded first.
2490 */
2491
2492 int usb_mon_register (struct usb_mon_operations *ops)
2493 {
2494
2495 if (mon_ops)
2496 return -EBUSY;
2497
2498 mon_ops = ops;
2499 mb();
2500 return 0;
2501 }
2502 EXPORT_SYMBOL_GPL (usb_mon_register);
2503
2504 void usb_mon_deregister (void)
2505 {
2506
2507 if (mon_ops == NULL) {
2508 printk(KERN_ERR "USB: monitor was not registered\n");
2509 return;
2510 }
2511 mon_ops = NULL;
2512 mb();
2513 }
2514 EXPORT_SYMBOL_GPL (usb_mon_deregister);
2515
2516 #endif /* CONFIG_USB_MON || CONFIG_USB_MON_MODULE */