7e77bd2118ad6c1b8dd0cd600fb2075e66564ff4
[GitHub/moto-9609/android_kernel_motorola_exynos9610.git] / drivers / tty / tty_io.c
1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 */
4
5 /*
6 * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
7 * or rs-channels. It also implements echoing, cooked mode etc.
8 *
9 * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
10 *
11 * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
12 * tty_struct and tty_queue structures. Previously there was an array
13 * of 256 tty_struct's which was statically allocated, and the
14 * tty_queue structures were allocated at boot time. Both are now
15 * dynamically allocated only when the tty is open.
16 *
17 * Also restructured routines so that there is more of a separation
18 * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
19 * the low-level tty routines (serial.c, pty.c, console.c). This
20 * makes for cleaner and more compact code. -TYT, 9/17/92
21 *
22 * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
23 * which can be dynamically activated and de-activated by the line
24 * discipline handling modules (like SLIP).
25 *
26 * NOTE: pay no attention to the line discipline code (yet); its
27 * interface is still subject to change in this version...
28 * -- TYT, 1/31/92
29 *
30 * Added functionality to the OPOST tty handling. No delays, but all
31 * other bits should be there.
32 * -- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
33 *
34 * Rewrote canonical mode and added more termios flags.
35 * -- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
36 *
37 * Reorganized FASYNC support so mouse code can share it.
38 * -- ctm@ardi.com, 9Sep95
39 *
40 * New TIOCLINUX variants added.
41 * -- mj@k332.feld.cvut.cz, 19-Nov-95
42 *
43 * Restrict vt switching via ioctl()
44 * -- grif@cs.ucr.edu, 5-Dec-95
45 *
46 * Move console and virtual terminal code to more appropriate files,
47 * implement CONFIG_VT and generalize console device interface.
48 * -- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
49 *
50 * Rewrote tty_init_dev and tty_release_dev to eliminate races.
51 * -- Bill Hawes <whawes@star.net>, June 97
52 *
53 * Added devfs support.
54 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
55 *
56 * Added support for a Unix98-style ptmx device.
57 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
58 *
59 * Reduced memory usage for older ARM systems
60 * -- Russell King <rmk@arm.linux.org.uk>
61 *
62 * Move do_SAK() into process context. Less stack use in devfs functions.
63 * alloc_tty_struct() always uses kmalloc()
64 * -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
65 */
66
67 #include <linux/types.h>
68 #include <linux/major.h>
69 #include <linux/errno.h>
70 #include <linux/signal.h>
71 #include <linux/fcntl.h>
72 #include <linux/sched/signal.h>
73 #include <linux/sched/task.h>
74 #include <linux/interrupt.h>
75 #include <linux/tty.h>
76 #include <linux/tty_driver.h>
77 #include <linux/tty_flip.h>
78 #include <linux/devpts_fs.h>
79 #include <linux/file.h>
80 #include <linux/fdtable.h>
81 #include <linux/console.h>
82 #include <linux/timer.h>
83 #include <linux/ctype.h>
84 #include <linux/kd.h>
85 #include <linux/mm.h>
86 #include <linux/string.h>
87 #include <linux/slab.h>
88 #include <linux/poll.h>
89 #include <linux/proc_fs.h>
90 #include <linux/init.h>
91 #include <linux/module.h>
92 #include <linux/device.h>
93 #include <linux/wait.h>
94 #include <linux/bitops.h>
95 #include <linux/delay.h>
96 #include <linux/seq_file.h>
97 #include <linux/serial.h>
98 #include <linux/ratelimit.h>
99
100 #include <linux/uaccess.h>
101
102 #include <linux/kbd_kern.h>
103 #include <linux/vt_kern.h>
104 #include <linux/selection.h>
105
106 #include <linux/kmod.h>
107 #include <linux/nsproxy.h>
108
109 #undef TTY_DEBUG_HANGUP
110 #ifdef TTY_DEBUG_HANGUP
111 # define tty_debug_hangup(tty, f, args...) tty_debug(tty, f, ##args)
112 #else
113 # define tty_debug_hangup(tty, f, args...) do { } while (0)
114 #endif
115
116 #define TTY_PARANOIA_CHECK 1
117 #define CHECK_TTY_COUNT 1
118
119 struct ktermios tty_std_termios = { /* for the benefit of tty drivers */
120 .c_iflag = ICRNL | IXON,
121 .c_oflag = OPOST | ONLCR,
122 .c_cflag = B38400 | CS8 | CREAD | HUPCL,
123 .c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
124 ECHOCTL | ECHOKE | IEXTEN,
125 .c_cc = INIT_C_CC,
126 .c_ispeed = 38400,
127 .c_ospeed = 38400,
128 /* .c_line = N_TTY, */
129 };
130
131 EXPORT_SYMBOL(tty_std_termios);
132
133 /* This list gets poked at by procfs and various bits of boot up code. This
134 could do with some rationalisation such as pulling the tty proc function
135 into this file */
136
137 LIST_HEAD(tty_drivers); /* linked list of tty drivers */
138
139 /* Mutex to protect creating and releasing a tty */
140 DEFINE_MUTEX(tty_mutex);
141
142 static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *);
143 static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *);
144 ssize_t redirected_tty_write(struct file *, const char __user *,
145 size_t, loff_t *);
146 static unsigned int tty_poll(struct file *, poll_table *);
147 static int tty_open(struct inode *, struct file *);
148 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
149 #ifdef CONFIG_COMPAT
150 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
151 unsigned long arg);
152 #else
153 #define tty_compat_ioctl NULL
154 #endif
155 static int __tty_fasync(int fd, struct file *filp, int on);
156 static int tty_fasync(int fd, struct file *filp, int on);
157 static void release_tty(struct tty_struct *tty, int idx);
158
159 /**
160 * free_tty_struct - free a disused tty
161 * @tty: tty struct to free
162 *
163 * Free the write buffers, tty queue and tty memory itself.
164 *
165 * Locking: none. Must be called after tty is definitely unused
166 */
167
168 static void free_tty_struct(struct tty_struct *tty)
169 {
170 tty_ldisc_deinit(tty);
171 put_device(tty->dev);
172 kfree(tty->write_buf);
173 tty->magic = 0xDEADDEAD;
174 kfree(tty);
175 }
176
177 static inline struct tty_struct *file_tty(struct file *file)
178 {
179 return ((struct tty_file_private *)file->private_data)->tty;
180 }
181
182 int tty_alloc_file(struct file *file)
183 {
184 struct tty_file_private *priv;
185
186 priv = kmalloc(sizeof(*priv), GFP_KERNEL);
187 if (!priv)
188 return -ENOMEM;
189
190 file->private_data = priv;
191
192 return 0;
193 }
194
195 /* Associate a new file with the tty structure */
196 void tty_add_file(struct tty_struct *tty, struct file *file)
197 {
198 struct tty_file_private *priv = file->private_data;
199
200 priv->tty = tty;
201 priv->file = file;
202
203 spin_lock(&tty->files_lock);
204 list_add(&priv->list, &tty->tty_files);
205 spin_unlock(&tty->files_lock);
206 }
207
208 /**
209 * tty_free_file - free file->private_data
210 *
211 * This shall be used only for fail path handling when tty_add_file was not
212 * called yet.
213 */
214 void tty_free_file(struct file *file)
215 {
216 struct tty_file_private *priv = file->private_data;
217
218 file->private_data = NULL;
219 kfree(priv);
220 }
221
222 /* Delete file from its tty */
223 static void tty_del_file(struct file *file)
224 {
225 struct tty_file_private *priv = file->private_data;
226 struct tty_struct *tty = priv->tty;
227
228 spin_lock(&tty->files_lock);
229 list_del(&priv->list);
230 spin_unlock(&tty->files_lock);
231 tty_free_file(file);
232 }
233
234 /**
235 * tty_name - return tty naming
236 * @tty: tty structure
237 *
238 * Convert a tty structure into a name. The name reflects the kernel
239 * naming policy and if udev is in use may not reflect user space
240 *
241 * Locking: none
242 */
243
244 const char *tty_name(const struct tty_struct *tty)
245 {
246 if (!tty) /* Hmm. NULL pointer. That's fun. */
247 return "NULL tty";
248 return tty->name;
249 }
250
251 EXPORT_SYMBOL(tty_name);
252
253 const char *tty_driver_name(const struct tty_struct *tty)
254 {
255 if (!tty || !tty->driver)
256 return "";
257 return tty->driver->name;
258 }
259
260 static int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
261 const char *routine)
262 {
263 #ifdef TTY_PARANOIA_CHECK
264 if (!tty) {
265 pr_warn("(%d:%d): %s: NULL tty\n",
266 imajor(inode), iminor(inode), routine);
267 return 1;
268 }
269 if (tty->magic != TTY_MAGIC) {
270 pr_warn("(%d:%d): %s: bad magic number\n",
271 imajor(inode), iminor(inode), routine);
272 return 1;
273 }
274 #endif
275 return 0;
276 }
277
278 /* Caller must hold tty_lock */
279 static int check_tty_count(struct tty_struct *tty, const char *routine)
280 {
281 #ifdef CHECK_TTY_COUNT
282 struct list_head *p;
283 int count = 0, kopen_count = 0;
284
285 spin_lock(&tty->files_lock);
286 list_for_each(p, &tty->tty_files) {
287 count++;
288 }
289 spin_unlock(&tty->files_lock);
290 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
291 tty->driver->subtype == PTY_TYPE_SLAVE &&
292 tty->link && tty->link->count)
293 count++;
294 if (tty_port_kopened(tty->port))
295 kopen_count++;
296 if (tty->count != (count + kopen_count)) {
297 tty_warn(tty, "%s: tty->count(%d) != (#fd's(%d) + #kopen's(%d))\n",
298 routine, tty->count, count, kopen_count);
299 return (count + kopen_count);
300 }
301 #endif
302 return 0;
303 }
304
305 /**
306 * get_tty_driver - find device of a tty
307 * @dev_t: device identifier
308 * @index: returns the index of the tty
309 *
310 * This routine returns a tty driver structure, given a device number
311 * and also passes back the index number.
312 *
313 * Locking: caller must hold tty_mutex
314 */
315
316 static struct tty_driver *get_tty_driver(dev_t device, int *index)
317 {
318 struct tty_driver *p;
319
320 list_for_each_entry(p, &tty_drivers, tty_drivers) {
321 dev_t base = MKDEV(p->major, p->minor_start);
322 if (device < base || device >= base + p->num)
323 continue;
324 *index = device - base;
325 return tty_driver_kref_get(p);
326 }
327 return NULL;
328 }
329
330 /**
331 * tty_dev_name_to_number - return dev_t for device name
332 * @name: user space name of device under /dev
333 * @number: pointer to dev_t that this function will populate
334 *
335 * This function converts device names like ttyS0 or ttyUSB1 into dev_t
336 * like (4, 64) or (188, 1). If no corresponding driver is registered then
337 * the function returns -ENODEV.
338 *
339 * Locking: this acquires tty_mutex to protect the tty_drivers list from
340 * being modified while we are traversing it, and makes sure to
341 * release it before exiting.
342 */
343 int tty_dev_name_to_number(const char *name, dev_t *number)
344 {
345 struct tty_driver *p;
346 int ret;
347 int index, prefix_length = 0;
348 const char *str;
349
350 for (str = name; *str && !isdigit(*str); str++)
351 ;
352
353 if (!*str)
354 return -EINVAL;
355
356 ret = kstrtoint(str, 10, &index);
357 if (ret)
358 return ret;
359
360 prefix_length = str - name;
361 mutex_lock(&tty_mutex);
362
363 list_for_each_entry(p, &tty_drivers, tty_drivers)
364 if (prefix_length == strlen(p->name) && strncmp(name,
365 p->name, prefix_length) == 0) {
366 if (index < p->num) {
367 *number = MKDEV(p->major, p->minor_start + index);
368 goto out;
369 }
370 }
371
372 /* if here then driver wasn't found */
373 ret = -ENODEV;
374 out:
375 mutex_unlock(&tty_mutex);
376 return ret;
377 }
378 EXPORT_SYMBOL_GPL(tty_dev_name_to_number);
379
380 #ifdef CONFIG_CONSOLE_POLL
381
382 /**
383 * tty_find_polling_driver - find device of a polled tty
384 * @name: name string to match
385 * @line: pointer to resulting tty line nr
386 *
387 * This routine returns a tty driver structure, given a name
388 * and the condition that the tty driver is capable of polled
389 * operation.
390 */
391 struct tty_driver *tty_find_polling_driver(char *name, int *line)
392 {
393 struct tty_driver *p, *res = NULL;
394 int tty_line = 0;
395 int len;
396 char *str, *stp;
397
398 for (str = name; *str; str++)
399 if ((*str >= '0' && *str <= '9') || *str == ',')
400 break;
401 if (!*str)
402 return NULL;
403
404 len = str - name;
405 tty_line = simple_strtoul(str, &str, 10);
406
407 mutex_lock(&tty_mutex);
408 /* Search through the tty devices to look for a match */
409 list_for_each_entry(p, &tty_drivers, tty_drivers) {
410 if (strncmp(name, p->name, len) != 0)
411 continue;
412 stp = str;
413 if (*stp == ',')
414 stp++;
415 if (*stp == '\0')
416 stp = NULL;
417
418 if (tty_line >= 0 && tty_line < p->num && p->ops &&
419 p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) {
420 res = tty_driver_kref_get(p);
421 *line = tty_line;
422 break;
423 }
424 }
425 mutex_unlock(&tty_mutex);
426
427 return res;
428 }
429 EXPORT_SYMBOL_GPL(tty_find_polling_driver);
430 #endif
431
432 static ssize_t hung_up_tty_read(struct file *file, char __user *buf,
433 size_t count, loff_t *ppos)
434 {
435 return 0;
436 }
437
438 static ssize_t hung_up_tty_write(struct file *file, const char __user *buf,
439 size_t count, loff_t *ppos)
440 {
441 return -EIO;
442 }
443
444 /* No kernel lock held - none needed ;) */
445 static unsigned int hung_up_tty_poll(struct file *filp, poll_table *wait)
446 {
447 return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM;
448 }
449
450 static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
451 unsigned long arg)
452 {
453 return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
454 }
455
456 static long hung_up_tty_compat_ioctl(struct file *file,
457 unsigned int cmd, unsigned long arg)
458 {
459 return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
460 }
461
462 static int hung_up_tty_fasync(int fd, struct file *file, int on)
463 {
464 return -ENOTTY;
465 }
466
467 static void tty_show_fdinfo(struct seq_file *m, struct file *file)
468 {
469 struct tty_struct *tty = file_tty(file);
470
471 if (tty && tty->ops && tty->ops->show_fdinfo)
472 tty->ops->show_fdinfo(tty, m);
473 }
474
475 static const struct file_operations tty_fops = {
476 .llseek = no_llseek,
477 .read = tty_read,
478 .write = tty_write,
479 .poll = tty_poll,
480 .unlocked_ioctl = tty_ioctl,
481 .compat_ioctl = tty_compat_ioctl,
482 .open = tty_open,
483 .release = tty_release,
484 .fasync = tty_fasync,
485 .show_fdinfo = tty_show_fdinfo,
486 };
487
488 static const struct file_operations console_fops = {
489 .llseek = no_llseek,
490 .read = tty_read,
491 .write = redirected_tty_write,
492 .poll = tty_poll,
493 .unlocked_ioctl = tty_ioctl,
494 .compat_ioctl = tty_compat_ioctl,
495 .open = tty_open,
496 .release = tty_release,
497 .fasync = tty_fasync,
498 };
499
500 static const struct file_operations hung_up_tty_fops = {
501 .llseek = no_llseek,
502 .read = hung_up_tty_read,
503 .write = hung_up_tty_write,
504 .poll = hung_up_tty_poll,
505 .unlocked_ioctl = hung_up_tty_ioctl,
506 .compat_ioctl = hung_up_tty_compat_ioctl,
507 .release = tty_release,
508 .fasync = hung_up_tty_fasync,
509 };
510
511 static DEFINE_SPINLOCK(redirect_lock);
512 static struct file *redirect;
513
514 /**
515 * tty_wakeup - request more data
516 * @tty: terminal
517 *
518 * Internal and external helper for wakeups of tty. This function
519 * informs the line discipline if present that the driver is ready
520 * to receive more output data.
521 */
522
523 void tty_wakeup(struct tty_struct *tty)
524 {
525 struct tty_ldisc *ld;
526
527 if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
528 ld = tty_ldisc_ref(tty);
529 if (ld) {
530 if (ld->ops->write_wakeup)
531 ld->ops->write_wakeup(tty);
532 tty_ldisc_deref(ld);
533 }
534 }
535 wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
536 }
537
538 EXPORT_SYMBOL_GPL(tty_wakeup);
539
540 /**
541 * __tty_hangup - actual handler for hangup events
542 * @work: tty device
543 *
544 * This can be called by a "kworker" kernel thread. That is process
545 * synchronous but doesn't hold any locks, so we need to make sure we
546 * have the appropriate locks for what we're doing.
547 *
548 * The hangup event clears any pending redirections onto the hung up
549 * device. It ensures future writes will error and it does the needed
550 * line discipline hangup and signal delivery. The tty object itself
551 * remains intact.
552 *
553 * Locking:
554 * BTM
555 * redirect lock for undoing redirection
556 * file list lock for manipulating list of ttys
557 * tty_ldiscs_lock from called functions
558 * termios_rwsem resetting termios data
559 * tasklist_lock to walk task list for hangup event
560 * ->siglock to protect ->signal/->sighand
561 */
562 static void __tty_hangup(struct tty_struct *tty, int exit_session)
563 {
564 struct file *cons_filp = NULL;
565 struct file *filp, *f = NULL;
566 struct tty_file_private *priv;
567 int closecount = 0, n;
568 int refs;
569
570 if (!tty)
571 return;
572
573
574 spin_lock(&redirect_lock);
575 if (redirect && file_tty(redirect) == tty) {
576 f = redirect;
577 redirect = NULL;
578 }
579 spin_unlock(&redirect_lock);
580
581 tty_lock(tty);
582
583 if (test_bit(TTY_HUPPED, &tty->flags)) {
584 tty_unlock(tty);
585 return;
586 }
587
588 /* inuse_filps is protected by the single tty lock,
589 this really needs to change if we want to flush the
590 workqueue with the lock held */
591 check_tty_count(tty, "tty_hangup");
592
593 spin_lock(&tty->files_lock);
594 /* This breaks for file handles being sent over AF_UNIX sockets ? */
595 list_for_each_entry(priv, &tty->tty_files, list) {
596 filp = priv->file;
597 if (filp->f_op->write == redirected_tty_write)
598 cons_filp = filp;
599 if (filp->f_op->write != tty_write)
600 continue;
601 closecount++;
602 __tty_fasync(-1, filp, 0); /* can't block */
603 filp->f_op = &hung_up_tty_fops;
604 }
605 spin_unlock(&tty->files_lock);
606
607 refs = tty_signal_session_leader(tty, exit_session);
608 /* Account for the p->signal references we killed */
609 while (refs--)
610 tty_kref_put(tty);
611
612 tty_ldisc_hangup(tty, cons_filp != NULL);
613
614 spin_lock_irq(&tty->ctrl_lock);
615 clear_bit(TTY_THROTTLED, &tty->flags);
616 clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
617 put_pid(tty->session);
618 put_pid(tty->pgrp);
619 tty->session = NULL;
620 tty->pgrp = NULL;
621 tty->ctrl_status = 0;
622 spin_unlock_irq(&tty->ctrl_lock);
623
624 /*
625 * If one of the devices matches a console pointer, we
626 * cannot just call hangup() because that will cause
627 * tty->count and state->count to go out of sync.
628 * So we just call close() the right number of times.
629 */
630 if (cons_filp) {
631 if (tty->ops->close)
632 for (n = 0; n < closecount; n++)
633 tty->ops->close(tty, cons_filp);
634 } else if (tty->ops->hangup)
635 tty->ops->hangup(tty);
636 /*
637 * We don't want to have driver/ldisc interactions beyond the ones
638 * we did here. The driver layer expects no calls after ->hangup()
639 * from the ldisc side, which is now guaranteed.
640 */
641 set_bit(TTY_HUPPED, &tty->flags);
642 tty_unlock(tty);
643
644 if (f)
645 fput(f);
646 }
647
648 static void do_tty_hangup(struct work_struct *work)
649 {
650 struct tty_struct *tty =
651 container_of(work, struct tty_struct, hangup_work);
652
653 __tty_hangup(tty, 0);
654 }
655
656 /**
657 * tty_hangup - trigger a hangup event
658 * @tty: tty to hangup
659 *
660 * A carrier loss (virtual or otherwise) has occurred on this like
661 * schedule a hangup sequence to run after this event.
662 */
663
664 void tty_hangup(struct tty_struct *tty)
665 {
666 tty_debug_hangup(tty, "hangup\n");
667 schedule_work(&tty->hangup_work);
668 }
669
670 EXPORT_SYMBOL(tty_hangup);
671
672 /**
673 * tty_vhangup - process vhangup
674 * @tty: tty to hangup
675 *
676 * The user has asked via system call for the terminal to be hung up.
677 * We do this synchronously so that when the syscall returns the process
678 * is complete. That guarantee is necessary for security reasons.
679 */
680
681 void tty_vhangup(struct tty_struct *tty)
682 {
683 tty_debug_hangup(tty, "vhangup\n");
684 __tty_hangup(tty, 0);
685 }
686
687 EXPORT_SYMBOL(tty_vhangup);
688
689
690 /**
691 * tty_vhangup_self - process vhangup for own ctty
692 *
693 * Perform a vhangup on the current controlling tty
694 */
695
696 void tty_vhangup_self(void)
697 {
698 struct tty_struct *tty;
699
700 tty = get_current_tty();
701 if (tty) {
702 tty_vhangup(tty);
703 tty_kref_put(tty);
704 }
705 }
706
707 /**
708 * tty_vhangup_session - hangup session leader exit
709 * @tty: tty to hangup
710 *
711 * The session leader is exiting and hanging up its controlling terminal.
712 * Every process in the foreground process group is signalled SIGHUP.
713 *
714 * We do this synchronously so that when the syscall returns the process
715 * is complete. That guarantee is necessary for security reasons.
716 */
717
718 void tty_vhangup_session(struct tty_struct *tty)
719 {
720 tty_debug_hangup(tty, "session hangup\n");
721 __tty_hangup(tty, 1);
722 }
723
724 /**
725 * tty_hung_up_p - was tty hung up
726 * @filp: file pointer of tty
727 *
728 * Return true if the tty has been subject to a vhangup or a carrier
729 * loss
730 */
731
732 int tty_hung_up_p(struct file *filp)
733 {
734 return (filp && filp->f_op == &hung_up_tty_fops);
735 }
736
737 EXPORT_SYMBOL(tty_hung_up_p);
738
739 /**
740 * stop_tty - propagate flow control
741 * @tty: tty to stop
742 *
743 * Perform flow control to the driver. May be called
744 * on an already stopped device and will not re-call the driver
745 * method.
746 *
747 * This functionality is used by both the line disciplines for
748 * halting incoming flow and by the driver. It may therefore be
749 * called from any context, may be under the tty atomic_write_lock
750 * but not always.
751 *
752 * Locking:
753 * flow_lock
754 */
755
756 void __stop_tty(struct tty_struct *tty)
757 {
758 if (tty->stopped)
759 return;
760 tty->stopped = 1;
761 if (tty->ops->stop)
762 tty->ops->stop(tty);
763 }
764
765 void stop_tty(struct tty_struct *tty)
766 {
767 unsigned long flags;
768
769 spin_lock_irqsave(&tty->flow_lock, flags);
770 __stop_tty(tty);
771 spin_unlock_irqrestore(&tty->flow_lock, flags);
772 }
773 EXPORT_SYMBOL(stop_tty);
774
775 /**
776 * start_tty - propagate flow control
777 * @tty: tty to start
778 *
779 * Start a tty that has been stopped if at all possible. If this
780 * tty was previous stopped and is now being started, the driver
781 * start method is invoked and the line discipline woken.
782 *
783 * Locking:
784 * flow_lock
785 */
786
787 void __start_tty(struct tty_struct *tty)
788 {
789 if (!tty->stopped || tty->flow_stopped)
790 return;
791 tty->stopped = 0;
792 if (tty->ops->start)
793 tty->ops->start(tty);
794 tty_wakeup(tty);
795 }
796
797 void start_tty(struct tty_struct *tty)
798 {
799 unsigned long flags;
800
801 spin_lock_irqsave(&tty->flow_lock, flags);
802 __start_tty(tty);
803 spin_unlock_irqrestore(&tty->flow_lock, flags);
804 }
805 EXPORT_SYMBOL(start_tty);
806
807 static void tty_update_time(struct timespec *time)
808 {
809 unsigned long sec = get_seconds();
810
811 /*
812 * We only care if the two values differ in anything other than the
813 * lower three bits (i.e every 8 seconds). If so, then we can update
814 * the time of the tty device, otherwise it could be construded as a
815 * security leak to let userspace know the exact timing of the tty.
816 */
817 if ((sec ^ time->tv_sec) & ~7)
818 time->tv_sec = sec;
819 }
820
821 /**
822 * tty_read - read method for tty device files
823 * @file: pointer to tty file
824 * @buf: user buffer
825 * @count: size of user buffer
826 * @ppos: unused
827 *
828 * Perform the read system call function on this terminal device. Checks
829 * for hung up devices before calling the line discipline method.
830 *
831 * Locking:
832 * Locks the line discipline internally while needed. Multiple
833 * read calls may be outstanding in parallel.
834 */
835
836 static ssize_t tty_read(struct file *file, char __user *buf, size_t count,
837 loff_t *ppos)
838 {
839 int i;
840 struct inode *inode = file_inode(file);
841 struct tty_struct *tty = file_tty(file);
842 struct tty_ldisc *ld;
843
844 if (tty_paranoia_check(tty, inode, "tty_read"))
845 return -EIO;
846 if (!tty || tty_io_error(tty))
847 return -EIO;
848
849 /* We want to wait for the line discipline to sort out in this
850 situation */
851 ld = tty_ldisc_ref_wait(tty);
852 if (!ld)
853 return hung_up_tty_read(file, buf, count, ppos);
854 if (ld->ops->read)
855 i = ld->ops->read(tty, file, buf, count);
856 else
857 i = -EIO;
858 tty_ldisc_deref(ld);
859
860 if (i > 0)
861 tty_update_time(&inode->i_atime);
862
863 return i;
864 }
865
866 static void tty_write_unlock(struct tty_struct *tty)
867 {
868 mutex_unlock(&tty->atomic_write_lock);
869 wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
870 }
871
872 static int tty_write_lock(struct tty_struct *tty, int ndelay)
873 {
874 if (!mutex_trylock(&tty->atomic_write_lock)) {
875 if (ndelay)
876 return -EAGAIN;
877 if (mutex_lock_interruptible(&tty->atomic_write_lock))
878 return -ERESTARTSYS;
879 }
880 return 0;
881 }
882
883 /*
884 * Split writes up in sane blocksizes to avoid
885 * denial-of-service type attacks
886 */
887 static inline ssize_t do_tty_write(
888 ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
889 struct tty_struct *tty,
890 struct file *file,
891 const char __user *buf,
892 size_t count)
893 {
894 ssize_t ret, written = 0;
895 unsigned int chunk;
896
897 ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
898 if (ret < 0)
899 return ret;
900
901 /*
902 * We chunk up writes into a temporary buffer. This
903 * simplifies low-level drivers immensely, since they
904 * don't have locking issues and user mode accesses.
905 *
906 * But if TTY_NO_WRITE_SPLIT is set, we should use a
907 * big chunk-size..
908 *
909 * The default chunk-size is 2kB, because the NTTY
910 * layer has problems with bigger chunks. It will
911 * claim to be able to handle more characters than
912 * it actually does.
913 *
914 * FIXME: This can probably go away now except that 64K chunks
915 * are too likely to fail unless switched to vmalloc...
916 */
917 chunk = 2048;
918 if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
919 chunk = 65536;
920 if (count < chunk)
921 chunk = count;
922
923 /* write_buf/write_cnt is protected by the atomic_write_lock mutex */
924 if (tty->write_cnt < chunk) {
925 unsigned char *buf_chunk;
926
927 if (chunk < 1024)
928 chunk = 1024;
929
930 buf_chunk = kmalloc(chunk, GFP_KERNEL);
931 if (!buf_chunk) {
932 ret = -ENOMEM;
933 goto out;
934 }
935 kfree(tty->write_buf);
936 tty->write_cnt = chunk;
937 tty->write_buf = buf_chunk;
938 }
939
940 /* Do the write .. */
941 for (;;) {
942 size_t size = count;
943 if (size > chunk)
944 size = chunk;
945 ret = -EFAULT;
946 if (copy_from_user(tty->write_buf, buf, size))
947 break;
948 ret = write(tty, file, tty->write_buf, size);
949 if (ret <= 0)
950 break;
951 written += ret;
952 buf += ret;
953 count -= ret;
954 if (!count)
955 break;
956 ret = -ERESTARTSYS;
957 if (signal_pending(current))
958 break;
959 cond_resched();
960 }
961 if (written) {
962 tty_update_time(&file_inode(file)->i_mtime);
963 ret = written;
964 }
965 out:
966 tty_write_unlock(tty);
967 return ret;
968 }
969
970 /**
971 * tty_write_message - write a message to a certain tty, not just the console.
972 * @tty: the destination tty_struct
973 * @msg: the message to write
974 *
975 * This is used for messages that need to be redirected to a specific tty.
976 * We don't put it into the syslog queue right now maybe in the future if
977 * really needed.
978 *
979 * We must still hold the BTM and test the CLOSING flag for the moment.
980 */
981
982 void tty_write_message(struct tty_struct *tty, char *msg)
983 {
984 if (tty) {
985 mutex_lock(&tty->atomic_write_lock);
986 tty_lock(tty);
987 if (tty->ops->write && tty->count > 0)
988 tty->ops->write(tty, msg, strlen(msg));
989 tty_unlock(tty);
990 tty_write_unlock(tty);
991 }
992 return;
993 }
994
995
996 /**
997 * tty_write - write method for tty device file
998 * @file: tty file pointer
999 * @buf: user data to write
1000 * @count: bytes to write
1001 * @ppos: unused
1002 *
1003 * Write data to a tty device via the line discipline.
1004 *
1005 * Locking:
1006 * Locks the line discipline as required
1007 * Writes to the tty driver are serialized by the atomic_write_lock
1008 * and are then processed in chunks to the device. The line discipline
1009 * write method will not be invoked in parallel for each device.
1010 */
1011
1012 static ssize_t tty_write(struct file *file, const char __user *buf,
1013 size_t count, loff_t *ppos)
1014 {
1015 struct tty_struct *tty = file_tty(file);
1016 struct tty_ldisc *ld;
1017 ssize_t ret;
1018
1019 if (tty_paranoia_check(tty, file_inode(file), "tty_write"))
1020 return -EIO;
1021 if (!tty || !tty->ops->write || tty_io_error(tty))
1022 return -EIO;
1023 /* Short term debug to catch buggy drivers */
1024 if (tty->ops->write_room == NULL)
1025 tty_err(tty, "missing write_room method\n");
1026 ld = tty_ldisc_ref_wait(tty);
1027 if (!ld)
1028 return hung_up_tty_write(file, buf, count, ppos);
1029 if (!ld->ops->write)
1030 ret = -EIO;
1031 else
1032 ret = do_tty_write(ld->ops->write, tty, file, buf, count);
1033 tty_ldisc_deref(ld);
1034 return ret;
1035 }
1036
1037 ssize_t redirected_tty_write(struct file *file, const char __user *buf,
1038 size_t count, loff_t *ppos)
1039 {
1040 struct file *p = NULL;
1041
1042 spin_lock(&redirect_lock);
1043 if (redirect)
1044 p = get_file(redirect);
1045 spin_unlock(&redirect_lock);
1046
1047 if (p) {
1048 ssize_t res;
1049 res = vfs_write(p, buf, count, &p->f_pos);
1050 fput(p);
1051 return res;
1052 }
1053 return tty_write(file, buf, count, ppos);
1054 }
1055
1056 /**
1057 * tty_send_xchar - send priority character
1058 *
1059 * Send a high priority character to the tty even if stopped
1060 *
1061 * Locking: none for xchar method, write ordering for write method.
1062 */
1063
1064 int tty_send_xchar(struct tty_struct *tty, char ch)
1065 {
1066 int was_stopped = tty->stopped;
1067
1068 if (tty->ops->send_xchar) {
1069 down_read(&tty->termios_rwsem);
1070 tty->ops->send_xchar(tty, ch);
1071 up_read(&tty->termios_rwsem);
1072 return 0;
1073 }
1074
1075 if (tty_write_lock(tty, 0) < 0)
1076 return -ERESTARTSYS;
1077
1078 down_read(&tty->termios_rwsem);
1079 if (was_stopped)
1080 start_tty(tty);
1081 tty->ops->write(tty, &ch, 1);
1082 if (was_stopped)
1083 stop_tty(tty);
1084 up_read(&tty->termios_rwsem);
1085 tty_write_unlock(tty);
1086 return 0;
1087 }
1088
1089 static char ptychar[] = "pqrstuvwxyzabcde";
1090
1091 /**
1092 * pty_line_name - generate name for a pty
1093 * @driver: the tty driver in use
1094 * @index: the minor number
1095 * @p: output buffer of at least 6 bytes
1096 *
1097 * Generate a name from a driver reference and write it to the output
1098 * buffer.
1099 *
1100 * Locking: None
1101 */
1102 static void pty_line_name(struct tty_driver *driver, int index, char *p)
1103 {
1104 int i = index + driver->name_base;
1105 /* ->name is initialized to "ttyp", but "tty" is expected */
1106 sprintf(p, "%s%c%x",
1107 driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1108 ptychar[i >> 4 & 0xf], i & 0xf);
1109 }
1110
1111 /**
1112 * tty_line_name - generate name for a tty
1113 * @driver: the tty driver in use
1114 * @index: the minor number
1115 * @p: output buffer of at least 7 bytes
1116 *
1117 * Generate a name from a driver reference and write it to the output
1118 * buffer.
1119 *
1120 * Locking: None
1121 */
1122 static ssize_t tty_line_name(struct tty_driver *driver, int index, char *p)
1123 {
1124 if (driver->flags & TTY_DRIVER_UNNUMBERED_NODE)
1125 return sprintf(p, "%s", driver->name);
1126 else
1127 return sprintf(p, "%s%d", driver->name,
1128 index + driver->name_base);
1129 }
1130
1131 /**
1132 * tty_driver_lookup_tty() - find an existing tty, if any
1133 * @driver: the driver for the tty
1134 * @idx: the minor number
1135 *
1136 * Return the tty, if found. If not found, return NULL or ERR_PTR() if the
1137 * driver lookup() method returns an error.
1138 *
1139 * Locking: tty_mutex must be held. If the tty is found, bump the tty kref.
1140 */
1141 static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver,
1142 struct file *file, int idx)
1143 {
1144 struct tty_struct *tty;
1145
1146 if (driver->ops->lookup)
1147 if (!file)
1148 tty = ERR_PTR(-EIO);
1149 else
1150 tty = driver->ops->lookup(driver, file, idx);
1151 else
1152 tty = driver->ttys[idx];
1153
1154 if (!IS_ERR(tty))
1155 tty_kref_get(tty);
1156 return tty;
1157 }
1158
1159 /**
1160 * tty_init_termios - helper for termios setup
1161 * @tty: the tty to set up
1162 *
1163 * Initialise the termios structures for this tty. Thus runs under
1164 * the tty_mutex currently so we can be relaxed about ordering.
1165 */
1166
1167 void tty_init_termios(struct tty_struct *tty)
1168 {
1169 struct ktermios *tp;
1170 int idx = tty->index;
1171
1172 if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1173 tty->termios = tty->driver->init_termios;
1174 else {
1175 /* Check for lazy saved data */
1176 tp = tty->driver->termios[idx];
1177 if (tp != NULL) {
1178 tty->termios = *tp;
1179 tty->termios.c_line = tty->driver->init_termios.c_line;
1180 } else
1181 tty->termios = tty->driver->init_termios;
1182 }
1183 /* Compatibility until drivers always set this */
1184 tty->termios.c_ispeed = tty_termios_input_baud_rate(&tty->termios);
1185 tty->termios.c_ospeed = tty_termios_baud_rate(&tty->termios);
1186 }
1187 EXPORT_SYMBOL_GPL(tty_init_termios);
1188
1189 int tty_standard_install(struct tty_driver *driver, struct tty_struct *tty)
1190 {
1191 tty_init_termios(tty);
1192 tty_driver_kref_get(driver);
1193 tty->count++;
1194 driver->ttys[tty->index] = tty;
1195 return 0;
1196 }
1197 EXPORT_SYMBOL_GPL(tty_standard_install);
1198
1199 /**
1200 * tty_driver_install_tty() - install a tty entry in the driver
1201 * @driver: the driver for the tty
1202 * @tty: the tty
1203 *
1204 * Install a tty object into the driver tables. The tty->index field
1205 * will be set by the time this is called. This method is responsible
1206 * for ensuring any need additional structures are allocated and
1207 * configured.
1208 *
1209 * Locking: tty_mutex for now
1210 */
1211 static int tty_driver_install_tty(struct tty_driver *driver,
1212 struct tty_struct *tty)
1213 {
1214 return driver->ops->install ? driver->ops->install(driver, tty) :
1215 tty_standard_install(driver, tty);
1216 }
1217
1218 /**
1219 * tty_driver_remove_tty() - remove a tty from the driver tables
1220 * @driver: the driver for the tty
1221 * @idx: the minor number
1222 *
1223 * Remvoe a tty object from the driver tables. The tty->index field
1224 * will be set by the time this is called.
1225 *
1226 * Locking: tty_mutex for now
1227 */
1228 static void tty_driver_remove_tty(struct tty_driver *driver, struct tty_struct *tty)
1229 {
1230 if (driver->ops->remove)
1231 driver->ops->remove(driver, tty);
1232 else
1233 driver->ttys[tty->index] = NULL;
1234 }
1235
1236 /*
1237 * tty_reopen() - fast re-open of an open tty
1238 * @tty - the tty to open
1239 *
1240 * Return 0 on success, -errno on error.
1241 * Re-opens on master ptys are not allowed and return -EIO.
1242 *
1243 * Locking: Caller must hold tty_lock
1244 */
1245 static int tty_reopen(struct tty_struct *tty)
1246 {
1247 struct tty_driver *driver = tty->driver;
1248
1249 if (driver->type == TTY_DRIVER_TYPE_PTY &&
1250 driver->subtype == PTY_TYPE_MASTER)
1251 return -EIO;
1252
1253 if (!tty->count)
1254 return -EAGAIN;
1255
1256 if (test_bit(TTY_EXCLUSIVE, &tty->flags) && !capable(CAP_SYS_ADMIN))
1257 return -EBUSY;
1258
1259 tty->count++;
1260
1261 if (!tty->ldisc)
1262 return tty_ldisc_reinit(tty, tty->termios.c_line);
1263
1264 return 0;
1265 }
1266
1267 /**
1268 * tty_init_dev - initialise a tty device
1269 * @driver: tty driver we are opening a device on
1270 * @idx: device index
1271 * @ret_tty: returned tty structure
1272 *
1273 * Prepare a tty device. This may not be a "new" clean device but
1274 * could also be an active device. The pty drivers require special
1275 * handling because of this.
1276 *
1277 * Locking:
1278 * The function is called under the tty_mutex, which
1279 * protects us from the tty struct or driver itself going away.
1280 *
1281 * On exit the tty device has the line discipline attached and
1282 * a reference count of 1. If a pair was created for pty/tty use
1283 * and the other was a pty master then it too has a reference count of 1.
1284 *
1285 * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1286 * failed open. The new code protects the open with a mutex, so it's
1287 * really quite straightforward. The mutex locking can probably be
1288 * relaxed for the (most common) case of reopening a tty.
1289 */
1290
1291 struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx)
1292 {
1293 struct tty_struct *tty;
1294 int retval;
1295
1296 /*
1297 * First time open is complex, especially for PTY devices.
1298 * This code guarantees that either everything succeeds and the
1299 * TTY is ready for operation, or else the table slots are vacated
1300 * and the allocated memory released. (Except that the termios
1301 * may be retained.)
1302 */
1303
1304 if (!try_module_get(driver->owner))
1305 return ERR_PTR(-ENODEV);
1306
1307 tty = alloc_tty_struct(driver, idx);
1308 if (!tty) {
1309 retval = -ENOMEM;
1310 goto err_module_put;
1311 }
1312
1313 tty_lock(tty);
1314 retval = tty_driver_install_tty(driver, tty);
1315 if (retval < 0)
1316 goto err_free_tty;
1317
1318 if (!tty->port)
1319 tty->port = driver->ports[idx];
1320
1321 WARN_RATELIMIT(!tty->port,
1322 "%s: %s driver does not set tty->port. This will crash the kernel later. Fix the driver!\n",
1323 __func__, tty->driver->name);
1324
1325 retval = tty_ldisc_lock(tty, 5 * HZ);
1326 if (retval)
1327 goto err_release_lock;
1328 tty->port->itty = tty;
1329
1330 /*
1331 * Structures all installed ... call the ldisc open routines.
1332 * If we fail here just call release_tty to clean up. No need
1333 * to decrement the use counts, as release_tty doesn't care.
1334 */
1335 retval = tty_ldisc_setup(tty, tty->link);
1336 if (retval)
1337 goto err_release_tty;
1338 tty_ldisc_unlock(tty);
1339 /* Return the tty locked so that it cannot vanish under the caller */
1340 return tty;
1341
1342 err_free_tty:
1343 tty_unlock(tty);
1344 free_tty_struct(tty);
1345 err_module_put:
1346 module_put(driver->owner);
1347 return ERR_PTR(retval);
1348
1349 /* call the tty release_tty routine to clean out this slot */
1350 err_release_tty:
1351 tty_ldisc_unlock(tty);
1352 tty_info_ratelimited(tty, "ldisc open failed (%d), clearing slot %d\n",
1353 retval, idx);
1354 err_release_lock:
1355 tty_unlock(tty);
1356 release_tty(tty, idx);
1357 return ERR_PTR(retval);
1358 }
1359
1360 static void tty_free_termios(struct tty_struct *tty)
1361 {
1362 struct ktermios *tp;
1363 int idx = tty->index;
1364
1365 /* If the port is going to reset then it has no termios to save */
1366 if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1367 return;
1368
1369 /* Stash the termios data */
1370 tp = tty->driver->termios[idx];
1371 if (tp == NULL) {
1372 tp = kmalloc(sizeof(struct ktermios), GFP_KERNEL);
1373 if (tp == NULL)
1374 return;
1375 tty->driver->termios[idx] = tp;
1376 }
1377 *tp = tty->termios;
1378 }
1379
1380 /**
1381 * tty_flush_works - flush all works of a tty/pty pair
1382 * @tty: tty device to flush works for (or either end of a pty pair)
1383 *
1384 * Sync flush all works belonging to @tty (and the 'other' tty).
1385 */
1386 static void tty_flush_works(struct tty_struct *tty)
1387 {
1388 flush_work(&tty->SAK_work);
1389 flush_work(&tty->hangup_work);
1390 if (tty->link) {
1391 flush_work(&tty->link->SAK_work);
1392 flush_work(&tty->link->hangup_work);
1393 }
1394 }
1395
1396 /**
1397 * release_one_tty - release tty structure memory
1398 * @kref: kref of tty we are obliterating
1399 *
1400 * Releases memory associated with a tty structure, and clears out the
1401 * driver table slots. This function is called when a device is no longer
1402 * in use. It also gets called when setup of a device fails.
1403 *
1404 * Locking:
1405 * takes the file list lock internally when working on the list
1406 * of ttys that the driver keeps.
1407 *
1408 * This method gets called from a work queue so that the driver private
1409 * cleanup ops can sleep (needed for USB at least)
1410 */
1411 static void release_one_tty(struct work_struct *work)
1412 {
1413 struct tty_struct *tty =
1414 container_of(work, struct tty_struct, hangup_work);
1415 struct tty_driver *driver = tty->driver;
1416 struct module *owner = driver->owner;
1417
1418 if (tty->ops->cleanup)
1419 tty->ops->cleanup(tty);
1420
1421 tty->magic = 0;
1422 tty_driver_kref_put(driver);
1423 module_put(owner);
1424
1425 spin_lock(&tty->files_lock);
1426 list_del_init(&tty->tty_files);
1427 spin_unlock(&tty->files_lock);
1428
1429 put_pid(tty->pgrp);
1430 put_pid(tty->session);
1431 free_tty_struct(tty);
1432 }
1433
1434 static void queue_release_one_tty(struct kref *kref)
1435 {
1436 struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1437
1438 /* The hangup queue is now free so we can reuse it rather than
1439 waste a chunk of memory for each port */
1440 INIT_WORK(&tty->hangup_work, release_one_tty);
1441 schedule_work(&tty->hangup_work);
1442 }
1443
1444 /**
1445 * tty_kref_put - release a tty kref
1446 * @tty: tty device
1447 *
1448 * Release a reference to a tty device and if need be let the kref
1449 * layer destruct the object for us
1450 */
1451
1452 void tty_kref_put(struct tty_struct *tty)
1453 {
1454 if (tty)
1455 kref_put(&tty->kref, queue_release_one_tty);
1456 }
1457 EXPORT_SYMBOL(tty_kref_put);
1458
1459 /**
1460 * release_tty - release tty structure memory
1461 *
1462 * Release both @tty and a possible linked partner (think pty pair),
1463 * and decrement the refcount of the backing module.
1464 *
1465 * Locking:
1466 * tty_mutex
1467 * takes the file list lock internally when working on the list
1468 * of ttys that the driver keeps.
1469 *
1470 */
1471 static void release_tty(struct tty_struct *tty, int idx)
1472 {
1473 /* This should always be true but check for the moment */
1474 WARN_ON(tty->index != idx);
1475 WARN_ON(!mutex_is_locked(&tty_mutex));
1476 if (tty->ops->shutdown)
1477 tty->ops->shutdown(tty);
1478 tty_free_termios(tty);
1479 tty_driver_remove_tty(tty->driver, tty);
1480 tty->port->itty = NULL;
1481 if (tty->link)
1482 tty->link->port->itty = NULL;
1483 tty_buffer_cancel_work(tty->port);
1484 if (tty->link)
1485 tty_buffer_cancel_work(tty->link->port);
1486
1487 tty_kref_put(tty->link);
1488 tty_kref_put(tty);
1489 }
1490
1491 /**
1492 * tty_release_checks - check a tty before real release
1493 * @tty: tty to check
1494 * @o_tty: link of @tty (if any)
1495 * @idx: index of the tty
1496 *
1497 * Performs some paranoid checking before true release of the @tty.
1498 * This is a no-op unless TTY_PARANOIA_CHECK is defined.
1499 */
1500 static int tty_release_checks(struct tty_struct *tty, int idx)
1501 {
1502 #ifdef TTY_PARANOIA_CHECK
1503 if (idx < 0 || idx >= tty->driver->num) {
1504 tty_debug(tty, "bad idx %d\n", idx);
1505 return -1;
1506 }
1507
1508 /* not much to check for devpts */
1509 if (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)
1510 return 0;
1511
1512 if (tty != tty->driver->ttys[idx]) {
1513 tty_debug(tty, "bad driver table[%d] = %p\n",
1514 idx, tty->driver->ttys[idx]);
1515 return -1;
1516 }
1517 if (tty->driver->other) {
1518 struct tty_struct *o_tty = tty->link;
1519
1520 if (o_tty != tty->driver->other->ttys[idx]) {
1521 tty_debug(tty, "bad other table[%d] = %p\n",
1522 idx, tty->driver->other->ttys[idx]);
1523 return -1;
1524 }
1525 if (o_tty->link != tty) {
1526 tty_debug(tty, "bad link = %p\n", o_tty->link);
1527 return -1;
1528 }
1529 }
1530 #endif
1531 return 0;
1532 }
1533
1534 /**
1535 * tty_kclose - closes tty opened by tty_kopen
1536 * @tty: tty device
1537 *
1538 * Performs the final steps to release and free a tty device. It is the
1539 * same as tty_release_struct except that it also resets TTY_PORT_KOPENED
1540 * flag on tty->port.
1541 */
1542 void tty_kclose(struct tty_struct *tty)
1543 {
1544 /*
1545 * Ask the line discipline code to release its structures
1546 */
1547 tty_ldisc_release(tty);
1548
1549 /* Wait for pending work before tty destruction commmences */
1550 tty_flush_works(tty);
1551
1552 tty_debug_hangup(tty, "freeing structure\n");
1553 /*
1554 * The release_tty function takes care of the details of clearing
1555 * the slots and preserving the termios structure. The tty_unlock_pair
1556 * should be safe as we keep a kref while the tty is locked (so the
1557 * unlock never unlocks a freed tty).
1558 */
1559 mutex_lock(&tty_mutex);
1560 tty_port_set_kopened(tty->port, 0);
1561 release_tty(tty, tty->index);
1562 mutex_unlock(&tty_mutex);
1563 }
1564 EXPORT_SYMBOL_GPL(tty_kclose);
1565
1566 /**
1567 * tty_release_struct - release a tty struct
1568 * @tty: tty device
1569 * @idx: index of the tty
1570 *
1571 * Performs the final steps to release and free a tty device. It is
1572 * roughly the reverse of tty_init_dev.
1573 */
1574 void tty_release_struct(struct tty_struct *tty, int idx)
1575 {
1576 /*
1577 * Ask the line discipline code to release its structures
1578 */
1579 tty_ldisc_release(tty);
1580
1581 /* Wait for pending work before tty destruction commmences */
1582 tty_flush_works(tty);
1583
1584 tty_debug_hangup(tty, "freeing structure\n");
1585 /*
1586 * The release_tty function takes care of the details of clearing
1587 * the slots and preserving the termios structure. The tty_unlock_pair
1588 * should be safe as we keep a kref while the tty is locked (so the
1589 * unlock never unlocks a freed tty).
1590 */
1591 mutex_lock(&tty_mutex);
1592 release_tty(tty, idx);
1593 mutex_unlock(&tty_mutex);
1594 }
1595 EXPORT_SYMBOL_GPL(tty_release_struct);
1596
1597 /**
1598 * tty_release - vfs callback for close
1599 * @inode: inode of tty
1600 * @filp: file pointer for handle to tty
1601 *
1602 * Called the last time each file handle is closed that references
1603 * this tty. There may however be several such references.
1604 *
1605 * Locking:
1606 * Takes bkl. See tty_release_dev
1607 *
1608 * Even releasing the tty structures is a tricky business.. We have
1609 * to be very careful that the structures are all released at the
1610 * same time, as interrupts might otherwise get the wrong pointers.
1611 *
1612 * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1613 * lead to double frees or releasing memory still in use.
1614 */
1615
1616 int tty_release(struct inode *inode, struct file *filp)
1617 {
1618 struct tty_struct *tty = file_tty(filp);
1619 struct tty_struct *o_tty = NULL;
1620 int do_sleep, final;
1621 int idx;
1622 long timeout = 0;
1623 int once = 1;
1624
1625 if (tty_paranoia_check(tty, inode, __func__))
1626 return 0;
1627
1628 tty_lock(tty);
1629 check_tty_count(tty, __func__);
1630
1631 __tty_fasync(-1, filp, 0);
1632
1633 idx = tty->index;
1634 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1635 tty->driver->subtype == PTY_TYPE_MASTER)
1636 o_tty = tty->link;
1637
1638 if (tty_release_checks(tty, idx)) {
1639 tty_unlock(tty);
1640 return 0;
1641 }
1642
1643 tty_debug_hangup(tty, "releasing (count=%d)\n", tty->count);
1644
1645 if (tty->ops->close)
1646 tty->ops->close(tty, filp);
1647
1648 /* If tty is pty master, lock the slave pty (stable lock order) */
1649 tty_lock_slave(o_tty);
1650
1651 /*
1652 * Sanity check: if tty->count is going to zero, there shouldn't be
1653 * any waiters on tty->read_wait or tty->write_wait. We test the
1654 * wait queues and kick everyone out _before_ actually starting to
1655 * close. This ensures that we won't block while releasing the tty
1656 * structure.
1657 *
1658 * The test for the o_tty closing is necessary, since the master and
1659 * slave sides may close in any order. If the slave side closes out
1660 * first, its count will be one, since the master side holds an open.
1661 * Thus this test wouldn't be triggered at the time the slave closed,
1662 * so we do it now.
1663 */
1664 while (1) {
1665 do_sleep = 0;
1666
1667 if (tty->count <= 1) {
1668 if (waitqueue_active(&tty->read_wait)) {
1669 wake_up_poll(&tty->read_wait, POLLIN);
1670 do_sleep++;
1671 }
1672 if (waitqueue_active(&tty->write_wait)) {
1673 wake_up_poll(&tty->write_wait, POLLOUT);
1674 do_sleep++;
1675 }
1676 }
1677 if (o_tty && o_tty->count <= 1) {
1678 if (waitqueue_active(&o_tty->read_wait)) {
1679 wake_up_poll(&o_tty->read_wait, POLLIN);
1680 do_sleep++;
1681 }
1682 if (waitqueue_active(&o_tty->write_wait)) {
1683 wake_up_poll(&o_tty->write_wait, POLLOUT);
1684 do_sleep++;
1685 }
1686 }
1687 if (!do_sleep)
1688 break;
1689
1690 if (once) {
1691 once = 0;
1692 tty_warn(tty, "read/write wait queue active!\n");
1693 }
1694 schedule_timeout_killable(timeout);
1695 if (timeout < 120 * HZ)
1696 timeout = 2 * timeout + 1;
1697 else
1698 timeout = MAX_SCHEDULE_TIMEOUT;
1699 }
1700
1701 if (o_tty) {
1702 if (--o_tty->count < 0) {
1703 tty_warn(tty, "bad slave count (%d)\n", o_tty->count);
1704 o_tty->count = 0;
1705 }
1706 }
1707 if (--tty->count < 0) {
1708 tty_warn(tty, "bad tty->count (%d)\n", tty->count);
1709 tty->count = 0;
1710 }
1711
1712 /*
1713 * We've decremented tty->count, so we need to remove this file
1714 * descriptor off the tty->tty_files list; this serves two
1715 * purposes:
1716 * - check_tty_count sees the correct number of file descriptors
1717 * associated with this tty.
1718 * - do_tty_hangup no longer sees this file descriptor as
1719 * something that needs to be handled for hangups.
1720 */
1721 tty_del_file(filp);
1722
1723 /*
1724 * Perform some housekeeping before deciding whether to return.
1725 *
1726 * If _either_ side is closing, make sure there aren't any
1727 * processes that still think tty or o_tty is their controlling
1728 * tty.
1729 */
1730 if (!tty->count) {
1731 read_lock(&tasklist_lock);
1732 session_clear_tty(tty->session);
1733 if (o_tty)
1734 session_clear_tty(o_tty->session);
1735 read_unlock(&tasklist_lock);
1736 }
1737
1738 /* check whether both sides are closing ... */
1739 final = !tty->count && !(o_tty && o_tty->count);
1740
1741 tty_unlock_slave(o_tty);
1742 tty_unlock(tty);
1743
1744 /* At this point, the tty->count == 0 should ensure a dead tty
1745 cannot be re-opened by a racing opener */
1746
1747 if (!final)
1748 return 0;
1749
1750 tty_debug_hangup(tty, "final close\n");
1751
1752 tty_release_struct(tty, idx);
1753 return 0;
1754 }
1755
1756 /**
1757 * tty_open_current_tty - get locked tty of current task
1758 * @device: device number
1759 * @filp: file pointer to tty
1760 * @return: locked tty of the current task iff @device is /dev/tty
1761 *
1762 * Performs a re-open of the current task's controlling tty.
1763 *
1764 * We cannot return driver and index like for the other nodes because
1765 * devpts will not work then. It expects inodes to be from devpts FS.
1766 */
1767 static struct tty_struct *tty_open_current_tty(dev_t device, struct file *filp)
1768 {
1769 struct tty_struct *tty;
1770 int retval;
1771
1772 if (device != MKDEV(TTYAUX_MAJOR, 0))
1773 return NULL;
1774
1775 tty = get_current_tty();
1776 if (!tty)
1777 return ERR_PTR(-ENXIO);
1778
1779 filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1780 /* noctty = 1; */
1781 tty_lock(tty);
1782 tty_kref_put(tty); /* safe to drop the kref now */
1783
1784 retval = tty_reopen(tty);
1785 if (retval < 0) {
1786 tty_unlock(tty);
1787 tty = ERR_PTR(retval);
1788 }
1789 return tty;
1790 }
1791
1792 /**
1793 * tty_lookup_driver - lookup a tty driver for a given device file
1794 * @device: device number
1795 * @filp: file pointer to tty
1796 * @index: index for the device in the @return driver
1797 * @return: driver for this inode (with increased refcount)
1798 *
1799 * If @return is not erroneous, the caller is responsible to decrement the
1800 * refcount by tty_driver_kref_put.
1801 *
1802 * Locking: tty_mutex protects get_tty_driver
1803 */
1804 static struct tty_driver *tty_lookup_driver(dev_t device, struct file *filp,
1805 int *index)
1806 {
1807 struct tty_driver *driver;
1808
1809 switch (device) {
1810 #ifdef CONFIG_VT
1811 case MKDEV(TTY_MAJOR, 0): {
1812 extern struct tty_driver *console_driver;
1813 driver = tty_driver_kref_get(console_driver);
1814 *index = fg_console;
1815 break;
1816 }
1817 #endif
1818 case MKDEV(TTYAUX_MAJOR, 1): {
1819 struct tty_driver *console_driver = console_device(index);
1820 if (console_driver) {
1821 driver = tty_driver_kref_get(console_driver);
1822 if (driver && filp) {
1823 /* Don't let /dev/console block */
1824 filp->f_flags |= O_NONBLOCK;
1825 break;
1826 }
1827 }
1828 return ERR_PTR(-ENODEV);
1829 }
1830 default:
1831 driver = get_tty_driver(device, index);
1832 if (!driver)
1833 return ERR_PTR(-ENODEV);
1834 break;
1835 }
1836 return driver;
1837 }
1838
1839 /**
1840 * tty_kopen - open a tty device for kernel
1841 * @device: dev_t of device to open
1842 *
1843 * Opens tty exclusively for kernel. Performs the driver lookup,
1844 * makes sure it's not already opened and performs the first-time
1845 * tty initialization.
1846 *
1847 * Returns the locked initialized &tty_struct
1848 *
1849 * Claims the global tty_mutex to serialize:
1850 * - concurrent first-time tty initialization
1851 * - concurrent tty driver removal w/ lookup
1852 * - concurrent tty removal from driver table
1853 */
1854 struct tty_struct *tty_kopen(dev_t device)
1855 {
1856 struct tty_struct *tty;
1857 struct tty_driver *driver = NULL;
1858 int index = -1;
1859
1860 mutex_lock(&tty_mutex);
1861 driver = tty_lookup_driver(device, NULL, &index);
1862 if (IS_ERR(driver)) {
1863 mutex_unlock(&tty_mutex);
1864 return ERR_CAST(driver);
1865 }
1866
1867 /* check whether we're reopening an existing tty */
1868 tty = tty_driver_lookup_tty(driver, NULL, index);
1869 if (IS_ERR(tty))
1870 goto out;
1871
1872 if (tty) {
1873 /* drop kref from tty_driver_lookup_tty() */
1874 tty_kref_put(tty);
1875 tty = ERR_PTR(-EBUSY);
1876 } else { /* tty_init_dev returns tty with the tty_lock held */
1877 tty = tty_init_dev(driver, index);
1878 if (IS_ERR(tty))
1879 goto out;
1880 tty_port_set_kopened(tty->port, 1);
1881 }
1882 out:
1883 mutex_unlock(&tty_mutex);
1884 tty_driver_kref_put(driver);
1885 return tty;
1886 }
1887 EXPORT_SYMBOL_GPL(tty_kopen);
1888
1889 /**
1890 * tty_open_by_driver - open a tty device
1891 * @device: dev_t of device to open
1892 * @inode: inode of device file
1893 * @filp: file pointer to tty
1894 *
1895 * Performs the driver lookup, checks for a reopen, or otherwise
1896 * performs the first-time tty initialization.
1897 *
1898 * Returns the locked initialized or re-opened &tty_struct
1899 *
1900 * Claims the global tty_mutex to serialize:
1901 * - concurrent first-time tty initialization
1902 * - concurrent tty driver removal w/ lookup
1903 * - concurrent tty removal from driver table
1904 */
1905 static struct tty_struct *tty_open_by_driver(dev_t device, struct inode *inode,
1906 struct file *filp)
1907 {
1908 struct tty_struct *tty;
1909 struct tty_driver *driver = NULL;
1910 int index = -1;
1911 int retval;
1912
1913 mutex_lock(&tty_mutex);
1914 driver = tty_lookup_driver(device, filp, &index);
1915 if (IS_ERR(driver)) {
1916 mutex_unlock(&tty_mutex);
1917 return ERR_CAST(driver);
1918 }
1919
1920 /* check whether we're reopening an existing tty */
1921 tty = tty_driver_lookup_tty(driver, filp, index);
1922 if (IS_ERR(tty)) {
1923 mutex_unlock(&tty_mutex);
1924 goto out;
1925 }
1926
1927 if (tty) {
1928 if (tty_port_kopened(tty->port)) {
1929 tty_kref_put(tty);
1930 mutex_unlock(&tty_mutex);
1931 tty = ERR_PTR(-EBUSY);
1932 goto out;
1933 }
1934 mutex_unlock(&tty_mutex);
1935 retval = tty_lock_interruptible(tty);
1936 tty_kref_put(tty); /* drop kref from tty_driver_lookup_tty() */
1937 if (retval) {
1938 if (retval == -EINTR)
1939 retval = -ERESTARTSYS;
1940 tty = ERR_PTR(retval);
1941 goto out;
1942 }
1943 retval = tty_reopen(tty);
1944 if (retval < 0) {
1945 tty_unlock(tty);
1946 tty = ERR_PTR(retval);
1947 }
1948 } else { /* Returns with the tty_lock held for now */
1949 tty = tty_init_dev(driver, index);
1950 mutex_unlock(&tty_mutex);
1951 }
1952 out:
1953 tty_driver_kref_put(driver);
1954 return tty;
1955 }
1956
1957 /**
1958 * tty_open - open a tty device
1959 * @inode: inode of device file
1960 * @filp: file pointer to tty
1961 *
1962 * tty_open and tty_release keep up the tty count that contains the
1963 * number of opens done on a tty. We cannot use the inode-count, as
1964 * different inodes might point to the same tty.
1965 *
1966 * Open-counting is needed for pty masters, as well as for keeping
1967 * track of serial lines: DTR is dropped when the last close happens.
1968 * (This is not done solely through tty->count, now. - Ted 1/27/92)
1969 *
1970 * The termios state of a pty is reset on first open so that
1971 * settings don't persist across reuse.
1972 *
1973 * Locking: tty_mutex protects tty, tty_lookup_driver and tty_init_dev.
1974 * tty->count should protect the rest.
1975 * ->siglock protects ->signal/->sighand
1976 *
1977 * Note: the tty_unlock/lock cases without a ref are only safe due to
1978 * tty_mutex
1979 */
1980
1981 static int tty_open(struct inode *inode, struct file *filp)
1982 {
1983 struct tty_struct *tty;
1984 int noctty, retval;
1985 dev_t device = inode->i_rdev;
1986 unsigned saved_flags = filp->f_flags;
1987
1988 nonseekable_open(inode, filp);
1989
1990 retry_open:
1991 retval = tty_alloc_file(filp);
1992 if (retval)
1993 return -ENOMEM;
1994
1995 tty = tty_open_current_tty(device, filp);
1996 if (!tty)
1997 tty = tty_open_by_driver(device, inode, filp);
1998
1999 if (IS_ERR(tty)) {
2000 tty_free_file(filp);
2001 retval = PTR_ERR(tty);
2002 if (retval != -EAGAIN || signal_pending(current))
2003 return retval;
2004 schedule();
2005 goto retry_open;
2006 }
2007
2008 tty_add_file(tty, filp);
2009
2010 check_tty_count(tty, __func__);
2011 tty_debug_hangup(tty, "opening (count=%d)\n", tty->count);
2012
2013 if (tty->ops->open)
2014 retval = tty->ops->open(tty, filp);
2015 else
2016 retval = -ENODEV;
2017 filp->f_flags = saved_flags;
2018
2019 if (retval) {
2020 tty_debug_hangup(tty, "open error %d, releasing\n", retval);
2021
2022 tty_unlock(tty); /* need to call tty_release without BTM */
2023 tty_release(inode, filp);
2024 if (retval != -ERESTARTSYS)
2025 return retval;
2026
2027 if (signal_pending(current))
2028 return retval;
2029
2030 schedule();
2031 /*
2032 * Need to reset f_op in case a hangup happened.
2033 */
2034 if (tty_hung_up_p(filp))
2035 filp->f_op = &tty_fops;
2036 goto retry_open;
2037 }
2038 clear_bit(TTY_HUPPED, &tty->flags);
2039
2040 noctty = (filp->f_flags & O_NOCTTY) ||
2041 (IS_ENABLED(CONFIG_VT) && device == MKDEV(TTY_MAJOR, 0)) ||
2042 device == MKDEV(TTYAUX_MAJOR, 1) ||
2043 (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2044 tty->driver->subtype == PTY_TYPE_MASTER);
2045 if (!noctty)
2046 tty_open_proc_set_tty(filp, tty);
2047 tty_unlock(tty);
2048 return 0;
2049 }
2050
2051
2052
2053 /**
2054 * tty_poll - check tty status
2055 * @filp: file being polled
2056 * @wait: poll wait structures to update
2057 *
2058 * Call the line discipline polling method to obtain the poll
2059 * status of the device.
2060 *
2061 * Locking: locks called line discipline but ldisc poll method
2062 * may be re-entered freely by other callers.
2063 */
2064
2065 static unsigned int tty_poll(struct file *filp, poll_table *wait)
2066 {
2067 struct tty_struct *tty = file_tty(filp);
2068 struct tty_ldisc *ld;
2069 int ret = 0;
2070
2071 if (tty_paranoia_check(tty, file_inode(filp), "tty_poll"))
2072 return 0;
2073
2074 ld = tty_ldisc_ref_wait(tty);
2075 if (!ld)
2076 return hung_up_tty_poll(filp, wait);
2077 if (ld->ops->poll)
2078 ret = ld->ops->poll(tty, filp, wait);
2079 tty_ldisc_deref(ld);
2080 return ret;
2081 }
2082
2083 static int __tty_fasync(int fd, struct file *filp, int on)
2084 {
2085 struct tty_struct *tty = file_tty(filp);
2086 unsigned long flags;
2087 int retval = 0;
2088
2089 if (tty_paranoia_check(tty, file_inode(filp), "tty_fasync"))
2090 goto out;
2091
2092 retval = fasync_helper(fd, filp, on, &tty->fasync);
2093 if (retval <= 0)
2094 goto out;
2095
2096 if (on) {
2097 enum pid_type type;
2098 struct pid *pid;
2099
2100 spin_lock_irqsave(&tty->ctrl_lock, flags);
2101 if (tty->pgrp) {
2102 pid = tty->pgrp;
2103 type = PIDTYPE_PGID;
2104 } else {
2105 pid = task_pid(current);
2106 type = PIDTYPE_PID;
2107 }
2108 get_pid(pid);
2109 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2110 __f_setown(filp, pid, type, 0);
2111 put_pid(pid);
2112 retval = 0;
2113 }
2114 out:
2115 return retval;
2116 }
2117
2118 static int tty_fasync(int fd, struct file *filp, int on)
2119 {
2120 struct tty_struct *tty = file_tty(filp);
2121 int retval = -ENOTTY;
2122
2123 tty_lock(tty);
2124 if (!tty_hung_up_p(filp))
2125 retval = __tty_fasync(fd, filp, on);
2126 tty_unlock(tty);
2127
2128 return retval;
2129 }
2130
2131 /**
2132 * tiocsti - fake input character
2133 * @tty: tty to fake input into
2134 * @p: pointer to character
2135 *
2136 * Fake input to a tty device. Does the necessary locking and
2137 * input management.
2138 *
2139 * FIXME: does not honour flow control ??
2140 *
2141 * Locking:
2142 * Called functions take tty_ldiscs_lock
2143 * current->signal->tty check is safe without locks
2144 *
2145 * FIXME: may race normal receive processing
2146 */
2147
2148 static int tiocsti(struct tty_struct *tty, char __user *p)
2149 {
2150 char ch, mbz = 0;
2151 struct tty_ldisc *ld;
2152
2153 if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2154 return -EPERM;
2155 if (get_user(ch, p))
2156 return -EFAULT;
2157 tty_audit_tiocsti(tty, ch);
2158 ld = tty_ldisc_ref_wait(tty);
2159 if (!ld)
2160 return -EIO;
2161 ld->ops->receive_buf(tty, &ch, &mbz, 1);
2162 tty_ldisc_deref(ld);
2163 return 0;
2164 }
2165
2166 /**
2167 * tiocgwinsz - implement window query ioctl
2168 * @tty; tty
2169 * @arg: user buffer for result
2170 *
2171 * Copies the kernel idea of the window size into the user buffer.
2172 *
2173 * Locking: tty->winsize_mutex is taken to ensure the winsize data
2174 * is consistent.
2175 */
2176
2177 static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
2178 {
2179 int err;
2180
2181 mutex_lock(&tty->winsize_mutex);
2182 err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2183 mutex_unlock(&tty->winsize_mutex);
2184
2185 return err ? -EFAULT: 0;
2186 }
2187
2188 /**
2189 * tty_do_resize - resize event
2190 * @tty: tty being resized
2191 * @rows: rows (character)
2192 * @cols: cols (character)
2193 *
2194 * Update the termios variables and send the necessary signals to
2195 * peform a terminal resize correctly
2196 */
2197
2198 int tty_do_resize(struct tty_struct *tty, struct winsize *ws)
2199 {
2200 struct pid *pgrp;
2201
2202 /* Lock the tty */
2203 mutex_lock(&tty->winsize_mutex);
2204 if (!memcmp(ws, &tty->winsize, sizeof(*ws)))
2205 goto done;
2206
2207 /* Signal the foreground process group */
2208 pgrp = tty_get_pgrp(tty);
2209 if (pgrp)
2210 kill_pgrp(pgrp, SIGWINCH, 1);
2211 put_pid(pgrp);
2212
2213 tty->winsize = *ws;
2214 done:
2215 mutex_unlock(&tty->winsize_mutex);
2216 return 0;
2217 }
2218 EXPORT_SYMBOL(tty_do_resize);
2219
2220 /**
2221 * tiocswinsz - implement window size set ioctl
2222 * @tty; tty side of tty
2223 * @arg: user buffer for result
2224 *
2225 * Copies the user idea of the window size to the kernel. Traditionally
2226 * this is just advisory information but for the Linux console it
2227 * actually has driver level meaning and triggers a VC resize.
2228 *
2229 * Locking:
2230 * Driver dependent. The default do_resize method takes the
2231 * tty termios mutex and ctrl_lock. The console takes its own lock
2232 * then calls into the default method.
2233 */
2234
2235 static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg)
2236 {
2237 struct winsize tmp_ws;
2238 if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2239 return -EFAULT;
2240
2241 if (tty->ops->resize)
2242 return tty->ops->resize(tty, &tmp_ws);
2243 else
2244 return tty_do_resize(tty, &tmp_ws);
2245 }
2246
2247 /**
2248 * tioccons - allow admin to move logical console
2249 * @file: the file to become console
2250 *
2251 * Allow the administrator to move the redirected console device
2252 *
2253 * Locking: uses redirect_lock to guard the redirect information
2254 */
2255
2256 static int tioccons(struct file *file)
2257 {
2258 if (!capable(CAP_SYS_ADMIN))
2259 return -EPERM;
2260 if (file->f_op->write == redirected_tty_write) {
2261 struct file *f;
2262 spin_lock(&redirect_lock);
2263 f = redirect;
2264 redirect = NULL;
2265 spin_unlock(&redirect_lock);
2266 if (f)
2267 fput(f);
2268 return 0;
2269 }
2270 spin_lock(&redirect_lock);
2271 if (redirect) {
2272 spin_unlock(&redirect_lock);
2273 return -EBUSY;
2274 }
2275 redirect = get_file(file);
2276 spin_unlock(&redirect_lock);
2277 return 0;
2278 }
2279
2280 /**
2281 * fionbio - non blocking ioctl
2282 * @file: file to set blocking value
2283 * @p: user parameter
2284 *
2285 * Historical tty interfaces had a blocking control ioctl before
2286 * the generic functionality existed. This piece of history is preserved
2287 * in the expected tty API of posix OS's.
2288 *
2289 * Locking: none, the open file handle ensures it won't go away.
2290 */
2291
2292 static int fionbio(struct file *file, int __user *p)
2293 {
2294 int nonblock;
2295
2296 if (get_user(nonblock, p))
2297 return -EFAULT;
2298
2299 spin_lock(&file->f_lock);
2300 if (nonblock)
2301 file->f_flags |= O_NONBLOCK;
2302 else
2303 file->f_flags &= ~O_NONBLOCK;
2304 spin_unlock(&file->f_lock);
2305 return 0;
2306 }
2307
2308 /**
2309 * tiocsetd - set line discipline
2310 * @tty: tty device
2311 * @p: pointer to user data
2312 *
2313 * Set the line discipline according to user request.
2314 *
2315 * Locking: see tty_set_ldisc, this function is just a helper
2316 */
2317
2318 static int tiocsetd(struct tty_struct *tty, int __user *p)
2319 {
2320 int disc;
2321 int ret;
2322
2323 if (get_user(disc, p))
2324 return -EFAULT;
2325
2326 ret = tty_set_ldisc(tty, disc);
2327
2328 return ret;
2329 }
2330
2331 /**
2332 * tiocgetd - get line discipline
2333 * @tty: tty device
2334 * @p: pointer to user data
2335 *
2336 * Retrieves the line discipline id directly from the ldisc.
2337 *
2338 * Locking: waits for ldisc reference (in case the line discipline
2339 * is changing or the tty is being hungup)
2340 */
2341
2342 static int tiocgetd(struct tty_struct *tty, int __user *p)
2343 {
2344 struct tty_ldisc *ld;
2345 int ret;
2346
2347 ld = tty_ldisc_ref_wait(tty);
2348 if (!ld)
2349 return -EIO;
2350 ret = put_user(ld->ops->num, p);
2351 tty_ldisc_deref(ld);
2352 return ret;
2353 }
2354
2355 /**
2356 * send_break - performed time break
2357 * @tty: device to break on
2358 * @duration: timeout in mS
2359 *
2360 * Perform a timed break on hardware that lacks its own driver level
2361 * timed break functionality.
2362 *
2363 * Locking:
2364 * atomic_write_lock serializes
2365 *
2366 */
2367
2368 static int send_break(struct tty_struct *tty, unsigned int duration)
2369 {
2370 int retval;
2371
2372 if (tty->ops->break_ctl == NULL)
2373 return 0;
2374
2375 if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2376 retval = tty->ops->break_ctl(tty, duration);
2377 else {
2378 /* Do the work ourselves */
2379 if (tty_write_lock(tty, 0) < 0)
2380 return -EINTR;
2381 retval = tty->ops->break_ctl(tty, -1);
2382 if (retval)
2383 goto out;
2384 if (!signal_pending(current))
2385 msleep_interruptible(duration);
2386 retval = tty->ops->break_ctl(tty, 0);
2387 out:
2388 tty_write_unlock(tty);
2389 if (signal_pending(current))
2390 retval = -EINTR;
2391 }
2392 return retval;
2393 }
2394
2395 /**
2396 * tty_tiocmget - get modem status
2397 * @tty: tty device
2398 * @file: user file pointer
2399 * @p: pointer to result
2400 *
2401 * Obtain the modem status bits from the tty driver if the feature
2402 * is supported. Return -EINVAL if it is not available.
2403 *
2404 * Locking: none (up to the driver)
2405 */
2406
2407 static int tty_tiocmget(struct tty_struct *tty, int __user *p)
2408 {
2409 int retval = -EINVAL;
2410
2411 if (tty->ops->tiocmget) {
2412 retval = tty->ops->tiocmget(tty);
2413
2414 if (retval >= 0)
2415 retval = put_user(retval, p);
2416 }
2417 return retval;
2418 }
2419
2420 /**
2421 * tty_tiocmset - set modem status
2422 * @tty: tty device
2423 * @cmd: command - clear bits, set bits or set all
2424 * @p: pointer to desired bits
2425 *
2426 * Set the modem status bits from the tty driver if the feature
2427 * is supported. Return -EINVAL if it is not available.
2428 *
2429 * Locking: none (up to the driver)
2430 */
2431
2432 static int tty_tiocmset(struct tty_struct *tty, unsigned int cmd,
2433 unsigned __user *p)
2434 {
2435 int retval;
2436 unsigned int set, clear, val;
2437
2438 if (tty->ops->tiocmset == NULL)
2439 return -EINVAL;
2440
2441 retval = get_user(val, p);
2442 if (retval)
2443 return retval;
2444 set = clear = 0;
2445 switch (cmd) {
2446 case TIOCMBIS:
2447 set = val;
2448 break;
2449 case TIOCMBIC:
2450 clear = val;
2451 break;
2452 case TIOCMSET:
2453 set = val;
2454 clear = ~val;
2455 break;
2456 }
2457 set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2458 clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2459 return tty->ops->tiocmset(tty, set, clear);
2460 }
2461
2462 static int tty_tiocgicount(struct tty_struct *tty, void __user *arg)
2463 {
2464 int retval = -EINVAL;
2465 struct serial_icounter_struct icount;
2466 memset(&icount, 0, sizeof(icount));
2467 if (tty->ops->get_icount)
2468 retval = tty->ops->get_icount(tty, &icount);
2469 if (retval != 0)
2470 return retval;
2471 if (copy_to_user(arg, &icount, sizeof(icount)))
2472 return -EFAULT;
2473 return 0;
2474 }
2475
2476 static void tty_warn_deprecated_flags(struct serial_struct __user *ss)
2477 {
2478 static DEFINE_RATELIMIT_STATE(depr_flags,
2479 DEFAULT_RATELIMIT_INTERVAL,
2480 DEFAULT_RATELIMIT_BURST);
2481 char comm[TASK_COMM_LEN];
2482 int flags;
2483
2484 if (get_user(flags, &ss->flags))
2485 return;
2486
2487 flags &= ASYNC_DEPRECATED;
2488
2489 if (flags && __ratelimit(&depr_flags))
2490 pr_warn("%s: '%s' is using deprecated serial flags (with no effect): %.8x\n",
2491 __func__, get_task_comm(comm, current), flags);
2492 }
2493
2494 /*
2495 * if pty, return the slave side (real_tty)
2496 * otherwise, return self
2497 */
2498 static struct tty_struct *tty_pair_get_tty(struct tty_struct *tty)
2499 {
2500 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2501 tty->driver->subtype == PTY_TYPE_MASTER)
2502 tty = tty->link;
2503 return tty;
2504 }
2505
2506 /*
2507 * Split this up, as gcc can choke on it otherwise..
2508 */
2509 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2510 {
2511 struct tty_struct *tty = file_tty(file);
2512 struct tty_struct *real_tty;
2513 void __user *p = (void __user *)arg;
2514 int retval;
2515 struct tty_ldisc *ld;
2516
2517 if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2518 return -EINVAL;
2519
2520 real_tty = tty_pair_get_tty(tty);
2521
2522 /*
2523 * Factor out some common prep work
2524 */
2525 switch (cmd) {
2526 case TIOCSETD:
2527 case TIOCSBRK:
2528 case TIOCCBRK:
2529 case TCSBRK:
2530 case TCSBRKP:
2531 retval = tty_check_change(tty);
2532 if (retval)
2533 return retval;
2534 if (cmd != TIOCCBRK) {
2535 tty_wait_until_sent(tty, 0);
2536 if (signal_pending(current))
2537 return -EINTR;
2538 }
2539 break;
2540 }
2541
2542 /*
2543 * Now do the stuff.
2544 */
2545 switch (cmd) {
2546 case TIOCSTI:
2547 return tiocsti(tty, p);
2548 case TIOCGWINSZ:
2549 return tiocgwinsz(real_tty, p);
2550 case TIOCSWINSZ:
2551 return tiocswinsz(real_tty, p);
2552 case TIOCCONS:
2553 return real_tty != tty ? -EINVAL : tioccons(file);
2554 case FIONBIO:
2555 return fionbio(file, p);
2556 case TIOCEXCL:
2557 set_bit(TTY_EXCLUSIVE, &tty->flags);
2558 return 0;
2559 case TIOCNXCL:
2560 clear_bit(TTY_EXCLUSIVE, &tty->flags);
2561 return 0;
2562 case TIOCGEXCL:
2563 {
2564 int excl = test_bit(TTY_EXCLUSIVE, &tty->flags);
2565 return put_user(excl, (int __user *)p);
2566 }
2567 case TIOCGETD:
2568 return tiocgetd(tty, p);
2569 case TIOCSETD:
2570 return tiocsetd(tty, p);
2571 case TIOCVHANGUP:
2572 if (!capable(CAP_SYS_ADMIN))
2573 return -EPERM;
2574 tty_vhangup(tty);
2575 return 0;
2576 case TIOCGDEV:
2577 {
2578 unsigned int ret = new_encode_dev(tty_devnum(real_tty));
2579 return put_user(ret, (unsigned int __user *)p);
2580 }
2581 /*
2582 * Break handling
2583 */
2584 case TIOCSBRK: /* Turn break on, unconditionally */
2585 if (tty->ops->break_ctl)
2586 return tty->ops->break_ctl(tty, -1);
2587 return 0;
2588 case TIOCCBRK: /* Turn break off, unconditionally */
2589 if (tty->ops->break_ctl)
2590 return tty->ops->break_ctl(tty, 0);
2591 return 0;
2592 case TCSBRK: /* SVID version: non-zero arg --> no break */
2593 /* non-zero arg means wait for all output data
2594 * to be sent (performed above) but don't send break.
2595 * This is used by the tcdrain() termios function.
2596 */
2597 if (!arg)
2598 return send_break(tty, 250);
2599 return 0;
2600 case TCSBRKP: /* support for POSIX tcsendbreak() */
2601 return send_break(tty, arg ? arg*100 : 250);
2602
2603 case TIOCMGET:
2604 return tty_tiocmget(tty, p);
2605 case TIOCMSET:
2606 case TIOCMBIC:
2607 case TIOCMBIS:
2608 return tty_tiocmset(tty, cmd, p);
2609 case TIOCGICOUNT:
2610 retval = tty_tiocgicount(tty, p);
2611 /* For the moment allow fall through to the old method */
2612 if (retval != -EINVAL)
2613 return retval;
2614 break;
2615 case TCFLSH:
2616 switch (arg) {
2617 case TCIFLUSH:
2618 case TCIOFLUSH:
2619 /* flush tty buffer and allow ldisc to process ioctl */
2620 tty_buffer_flush(tty, NULL);
2621 break;
2622 }
2623 break;
2624 case TIOCSSERIAL:
2625 tty_warn_deprecated_flags(p);
2626 break;
2627 case TIOCGPTPEER:
2628 /* Special because the struct file is needed */
2629 return ptm_open_peer(file, tty, (int)arg);
2630 default:
2631 retval = tty_jobctrl_ioctl(tty, real_tty, file, cmd, arg);
2632 if (retval != -ENOIOCTLCMD)
2633 return retval;
2634 }
2635 if (tty->ops->ioctl) {
2636 retval = tty->ops->ioctl(tty, cmd, arg);
2637 if (retval != -ENOIOCTLCMD)
2638 return retval;
2639 }
2640 ld = tty_ldisc_ref_wait(tty);
2641 if (!ld)
2642 return hung_up_tty_ioctl(file, cmd, arg);
2643 retval = -EINVAL;
2644 if (ld->ops->ioctl) {
2645 retval = ld->ops->ioctl(tty, file, cmd, arg);
2646 if (retval == -ENOIOCTLCMD)
2647 retval = -ENOTTY;
2648 }
2649 tty_ldisc_deref(ld);
2650 return retval;
2651 }
2652
2653 #ifdef CONFIG_COMPAT
2654 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
2655 unsigned long arg)
2656 {
2657 struct tty_struct *tty = file_tty(file);
2658 struct tty_ldisc *ld;
2659 int retval = -ENOIOCTLCMD;
2660
2661 if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2662 return -EINVAL;
2663
2664 if (tty->ops->compat_ioctl) {
2665 retval = tty->ops->compat_ioctl(tty, cmd, arg);
2666 if (retval != -ENOIOCTLCMD)
2667 return retval;
2668 }
2669
2670 ld = tty_ldisc_ref_wait(tty);
2671 if (!ld)
2672 return hung_up_tty_compat_ioctl(file, cmd, arg);
2673 if (ld->ops->compat_ioctl)
2674 retval = ld->ops->compat_ioctl(tty, file, cmd, arg);
2675 else
2676 retval = n_tty_compat_ioctl_helper(tty, file, cmd, arg);
2677 tty_ldisc_deref(ld);
2678
2679 return retval;
2680 }
2681 #endif
2682
2683 static int this_tty(const void *t, struct file *file, unsigned fd)
2684 {
2685 if (likely(file->f_op->read != tty_read))
2686 return 0;
2687 return file_tty(file) != t ? 0 : fd + 1;
2688 }
2689
2690 /*
2691 * This implements the "Secure Attention Key" --- the idea is to
2692 * prevent trojan horses by killing all processes associated with this
2693 * tty when the user hits the "Secure Attention Key". Required for
2694 * super-paranoid applications --- see the Orange Book for more details.
2695 *
2696 * This code could be nicer; ideally it should send a HUP, wait a few
2697 * seconds, then send a INT, and then a KILL signal. But you then
2698 * have to coordinate with the init process, since all processes associated
2699 * with the current tty must be dead before the new getty is allowed
2700 * to spawn.
2701 *
2702 * Now, if it would be correct ;-/ The current code has a nasty hole -
2703 * it doesn't catch files in flight. We may send the descriptor to ourselves
2704 * via AF_UNIX socket, close it and later fetch from socket. FIXME.
2705 *
2706 * Nasty bug: do_SAK is being called in interrupt context. This can
2707 * deadlock. We punt it up to process context. AKPM - 16Mar2001
2708 */
2709 void __do_SAK(struct tty_struct *tty)
2710 {
2711 #ifdef TTY_SOFT_SAK
2712 tty_hangup(tty);
2713 #else
2714 struct task_struct *g, *p;
2715 struct pid *session;
2716 int i;
2717
2718 if (!tty)
2719 return;
2720 session = tty->session;
2721
2722 tty_ldisc_flush(tty);
2723
2724 tty_driver_flush_buffer(tty);
2725
2726 read_lock(&tasklist_lock);
2727 /* Kill the entire session */
2728 do_each_pid_task(session, PIDTYPE_SID, p) {
2729 tty_notice(tty, "SAK: killed process %d (%s): by session\n",
2730 task_pid_nr(p), p->comm);
2731 send_sig(SIGKILL, p, 1);
2732 } while_each_pid_task(session, PIDTYPE_SID, p);
2733
2734 /* Now kill any processes that happen to have the tty open */
2735 do_each_thread(g, p) {
2736 if (p->signal->tty == tty) {
2737 tty_notice(tty, "SAK: killed process %d (%s): by controlling tty\n",
2738 task_pid_nr(p), p->comm);
2739 send_sig(SIGKILL, p, 1);
2740 continue;
2741 }
2742 task_lock(p);
2743 i = iterate_fd(p->files, 0, this_tty, tty);
2744 if (i != 0) {
2745 tty_notice(tty, "SAK: killed process %d (%s): by fd#%d\n",
2746 task_pid_nr(p), p->comm, i - 1);
2747 force_sig(SIGKILL, p);
2748 }
2749 task_unlock(p);
2750 } while_each_thread(g, p);
2751 read_unlock(&tasklist_lock);
2752 #endif
2753 }
2754
2755 static void do_SAK_work(struct work_struct *work)
2756 {
2757 struct tty_struct *tty =
2758 container_of(work, struct tty_struct, SAK_work);
2759 __do_SAK(tty);
2760 }
2761
2762 /*
2763 * The tq handling here is a little racy - tty->SAK_work may already be queued.
2764 * Fortunately we don't need to worry, because if ->SAK_work is already queued,
2765 * the values which we write to it will be identical to the values which it
2766 * already has. --akpm
2767 */
2768 void do_SAK(struct tty_struct *tty)
2769 {
2770 if (!tty)
2771 return;
2772 schedule_work(&tty->SAK_work);
2773 }
2774
2775 EXPORT_SYMBOL(do_SAK);
2776
2777 static int dev_match_devt(struct device *dev, const void *data)
2778 {
2779 const dev_t *devt = data;
2780 return dev->devt == *devt;
2781 }
2782
2783 /* Must put_device() after it's unused! */
2784 static struct device *tty_get_device(struct tty_struct *tty)
2785 {
2786 dev_t devt = tty_devnum(tty);
2787 return class_find_device(tty_class, NULL, &devt, dev_match_devt);
2788 }
2789
2790
2791 /**
2792 * alloc_tty_struct
2793 *
2794 * This subroutine allocates and initializes a tty structure.
2795 *
2796 * Locking: none - tty in question is not exposed at this point
2797 */
2798
2799 struct tty_struct *alloc_tty_struct(struct tty_driver *driver, int idx)
2800 {
2801 struct tty_struct *tty;
2802
2803 tty = kzalloc(sizeof(*tty), GFP_KERNEL);
2804 if (!tty)
2805 return NULL;
2806
2807 kref_init(&tty->kref);
2808 tty->magic = TTY_MAGIC;
2809 tty_ldisc_init(tty);
2810 tty->session = NULL;
2811 tty->pgrp = NULL;
2812 mutex_init(&tty->legacy_mutex);
2813 mutex_init(&tty->throttle_mutex);
2814 init_rwsem(&tty->termios_rwsem);
2815 mutex_init(&tty->winsize_mutex);
2816 init_ldsem(&tty->ldisc_sem);
2817 init_waitqueue_head(&tty->write_wait);
2818 init_waitqueue_head(&tty->read_wait);
2819 INIT_WORK(&tty->hangup_work, do_tty_hangup);
2820 mutex_init(&tty->atomic_write_lock);
2821 spin_lock_init(&tty->ctrl_lock);
2822 spin_lock_init(&tty->flow_lock);
2823 spin_lock_init(&tty->files_lock);
2824 INIT_LIST_HEAD(&tty->tty_files);
2825 INIT_WORK(&tty->SAK_work, do_SAK_work);
2826
2827 tty->driver = driver;
2828 tty->ops = driver->ops;
2829 tty->index = idx;
2830 tty_line_name(driver, idx, tty->name);
2831 tty->dev = tty_get_device(tty);
2832
2833 return tty;
2834 }
2835
2836 /**
2837 * tty_put_char - write one character to a tty
2838 * @tty: tty
2839 * @ch: character
2840 *
2841 * Write one byte to the tty using the provided put_char method
2842 * if present. Returns the number of characters successfully output.
2843 *
2844 * Note: the specific put_char operation in the driver layer may go
2845 * away soon. Don't call it directly, use this method
2846 */
2847
2848 int tty_put_char(struct tty_struct *tty, unsigned char ch)
2849 {
2850 if (tty->ops->put_char)
2851 return tty->ops->put_char(tty, ch);
2852 return tty->ops->write(tty, &ch, 1);
2853 }
2854 EXPORT_SYMBOL_GPL(tty_put_char);
2855
2856 struct class *tty_class;
2857
2858 static int tty_cdev_add(struct tty_driver *driver, dev_t dev,
2859 unsigned int index, unsigned int count)
2860 {
2861 int err;
2862
2863 /* init here, since reused cdevs cause crashes */
2864 driver->cdevs[index] = cdev_alloc();
2865 if (!driver->cdevs[index])
2866 return -ENOMEM;
2867 driver->cdevs[index]->ops = &tty_fops;
2868 driver->cdevs[index]->owner = driver->owner;
2869 err = cdev_add(driver->cdevs[index], dev, count);
2870 if (err)
2871 kobject_put(&driver->cdevs[index]->kobj);
2872 return err;
2873 }
2874
2875 /**
2876 * tty_register_device - register a tty device
2877 * @driver: the tty driver that describes the tty device
2878 * @index: the index in the tty driver for this tty device
2879 * @device: a struct device that is associated with this tty device.
2880 * This field is optional, if there is no known struct device
2881 * for this tty device it can be set to NULL safely.
2882 *
2883 * Returns a pointer to the struct device for this tty device
2884 * (or ERR_PTR(-EFOO) on error).
2885 *
2886 * This call is required to be made to register an individual tty device
2887 * if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set. If
2888 * that bit is not set, this function should not be called by a tty
2889 * driver.
2890 *
2891 * Locking: ??
2892 */
2893
2894 struct device *tty_register_device(struct tty_driver *driver, unsigned index,
2895 struct device *device)
2896 {
2897 return tty_register_device_attr(driver, index, device, NULL, NULL);
2898 }
2899 EXPORT_SYMBOL(tty_register_device);
2900
2901 static void tty_device_create_release(struct device *dev)
2902 {
2903 dev_dbg(dev, "releasing...\n");
2904 kfree(dev);
2905 }
2906
2907 /**
2908 * tty_register_device_attr - register a tty device
2909 * @driver: the tty driver that describes the tty device
2910 * @index: the index in the tty driver for this tty device
2911 * @device: a struct device that is associated with this tty device.
2912 * This field is optional, if there is no known struct device
2913 * for this tty device it can be set to NULL safely.
2914 * @drvdata: Driver data to be set to device.
2915 * @attr_grp: Attribute group to be set on device.
2916 *
2917 * Returns a pointer to the struct device for this tty device
2918 * (or ERR_PTR(-EFOO) on error).
2919 *
2920 * This call is required to be made to register an individual tty device
2921 * if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set. If
2922 * that bit is not set, this function should not be called by a tty
2923 * driver.
2924 *
2925 * Locking: ??
2926 */
2927 struct device *tty_register_device_attr(struct tty_driver *driver,
2928 unsigned index, struct device *device,
2929 void *drvdata,
2930 const struct attribute_group **attr_grp)
2931 {
2932 char name[64];
2933 dev_t devt = MKDEV(driver->major, driver->minor_start) + index;
2934 struct ktermios *tp;
2935 struct device *dev;
2936 int retval;
2937
2938 if (index >= driver->num) {
2939 pr_err("%s: Attempt to register invalid tty line number (%d)\n",
2940 driver->name, index);
2941 return ERR_PTR(-EINVAL);
2942 }
2943
2944 if (driver->type == TTY_DRIVER_TYPE_PTY)
2945 pty_line_name(driver, index, name);
2946 else
2947 tty_line_name(driver, index, name);
2948
2949 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2950 if (!dev)
2951 return ERR_PTR(-ENOMEM);
2952
2953 dev->devt = devt;
2954 dev->class = tty_class;
2955 dev->parent = device;
2956 dev->release = tty_device_create_release;
2957 dev_set_name(dev, "%s", name);
2958 dev->groups = attr_grp;
2959 dev_set_drvdata(dev, drvdata);
2960
2961 dev_set_uevent_suppress(dev, 1);
2962
2963 retval = device_register(dev);
2964 if (retval)
2965 goto err_put;
2966
2967 if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
2968 /*
2969 * Free any saved termios data so that the termios state is
2970 * reset when reusing a minor number.
2971 */
2972 tp = driver->termios[index];
2973 if (tp) {
2974 driver->termios[index] = NULL;
2975 kfree(tp);
2976 }
2977
2978 retval = tty_cdev_add(driver, devt, index, 1);
2979 if (retval)
2980 goto err_del;
2981 }
2982
2983 dev_set_uevent_suppress(dev, 0);
2984 kobject_uevent(&dev->kobj, KOBJ_ADD);
2985
2986 return dev;
2987
2988 err_del:
2989 device_del(dev);
2990 err_put:
2991 put_device(dev);
2992
2993 return ERR_PTR(retval);
2994 }
2995 EXPORT_SYMBOL_GPL(tty_register_device_attr);
2996
2997 /**
2998 * tty_unregister_device - unregister a tty device
2999 * @driver: the tty driver that describes the tty device
3000 * @index: the index in the tty driver for this tty device
3001 *
3002 * If a tty device is registered with a call to tty_register_device() then
3003 * this function must be called when the tty device is gone.
3004 *
3005 * Locking: ??
3006 */
3007
3008 void tty_unregister_device(struct tty_driver *driver, unsigned index)
3009 {
3010 device_destroy(tty_class,
3011 MKDEV(driver->major, driver->minor_start) + index);
3012 if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3013 cdev_del(driver->cdevs[index]);
3014 driver->cdevs[index] = NULL;
3015 }
3016 }
3017 EXPORT_SYMBOL(tty_unregister_device);
3018
3019 /**
3020 * __tty_alloc_driver -- allocate tty driver
3021 * @lines: count of lines this driver can handle at most
3022 * @owner: module which is responsible for this driver
3023 * @flags: some of TTY_DRIVER_* flags, will be set in driver->flags
3024 *
3025 * This should not be called directly, some of the provided macros should be
3026 * used instead. Use IS_ERR and friends on @retval.
3027 */
3028 struct tty_driver *__tty_alloc_driver(unsigned int lines, struct module *owner,
3029 unsigned long flags)
3030 {
3031 struct tty_driver *driver;
3032 unsigned int cdevs = 1;
3033 int err;
3034
3035 if (!lines || (flags & TTY_DRIVER_UNNUMBERED_NODE && lines > 1))
3036 return ERR_PTR(-EINVAL);
3037
3038 driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL);
3039 if (!driver)
3040 return ERR_PTR(-ENOMEM);
3041
3042 kref_init(&driver->kref);
3043 driver->magic = TTY_DRIVER_MAGIC;
3044 driver->num = lines;
3045 driver->owner = owner;
3046 driver->flags = flags;
3047
3048 if (!(flags & TTY_DRIVER_DEVPTS_MEM)) {
3049 driver->ttys = kcalloc(lines, sizeof(*driver->ttys),
3050 GFP_KERNEL);
3051 driver->termios = kcalloc(lines, sizeof(*driver->termios),
3052 GFP_KERNEL);
3053 if (!driver->ttys || !driver->termios) {
3054 err = -ENOMEM;
3055 goto err_free_all;
3056 }
3057 }
3058
3059 if (!(flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3060 driver->ports = kcalloc(lines, sizeof(*driver->ports),
3061 GFP_KERNEL);
3062 if (!driver->ports) {
3063 err = -ENOMEM;
3064 goto err_free_all;
3065 }
3066 cdevs = lines;
3067 }
3068
3069 driver->cdevs = kcalloc(cdevs, sizeof(*driver->cdevs), GFP_KERNEL);
3070 if (!driver->cdevs) {
3071 err = -ENOMEM;
3072 goto err_free_all;
3073 }
3074
3075 return driver;
3076 err_free_all:
3077 kfree(driver->ports);
3078 kfree(driver->ttys);
3079 kfree(driver->termios);
3080 kfree(driver->cdevs);
3081 kfree(driver);
3082 return ERR_PTR(err);
3083 }
3084 EXPORT_SYMBOL(__tty_alloc_driver);
3085
3086 static void destruct_tty_driver(struct kref *kref)
3087 {
3088 struct tty_driver *driver = container_of(kref, struct tty_driver, kref);
3089 int i;
3090 struct ktermios *tp;
3091
3092 if (driver->flags & TTY_DRIVER_INSTALLED) {
3093 for (i = 0; i < driver->num; i++) {
3094 tp = driver->termios[i];
3095 if (tp) {
3096 driver->termios[i] = NULL;
3097 kfree(tp);
3098 }
3099 if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
3100 tty_unregister_device(driver, i);
3101 }
3102 proc_tty_unregister_driver(driver);
3103 if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)
3104 cdev_del(driver->cdevs[0]);
3105 }
3106 kfree(driver->cdevs);
3107 kfree(driver->ports);
3108 kfree(driver->termios);
3109 kfree(driver->ttys);
3110 kfree(driver);
3111 }
3112
3113 void tty_driver_kref_put(struct tty_driver *driver)
3114 {
3115 kref_put(&driver->kref, destruct_tty_driver);
3116 }
3117 EXPORT_SYMBOL(tty_driver_kref_put);
3118
3119 void tty_set_operations(struct tty_driver *driver,
3120 const struct tty_operations *op)
3121 {
3122 driver->ops = op;
3123 };
3124 EXPORT_SYMBOL(tty_set_operations);
3125
3126 void put_tty_driver(struct tty_driver *d)
3127 {
3128 tty_driver_kref_put(d);
3129 }
3130 EXPORT_SYMBOL(put_tty_driver);
3131
3132 /*
3133 * Called by a tty driver to register itself.
3134 */
3135 int tty_register_driver(struct tty_driver *driver)
3136 {
3137 int error;
3138 int i;
3139 dev_t dev;
3140 struct device *d;
3141
3142 if (!driver->major) {
3143 error = alloc_chrdev_region(&dev, driver->minor_start,
3144 driver->num, driver->name);
3145 if (!error) {
3146 driver->major = MAJOR(dev);
3147 driver->minor_start = MINOR(dev);
3148 }
3149 } else {
3150 dev = MKDEV(driver->major, driver->minor_start);
3151 error = register_chrdev_region(dev, driver->num, driver->name);
3152 }
3153 if (error < 0)
3154 goto err;
3155
3156 if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC) {
3157 error = tty_cdev_add(driver, dev, 0, driver->num);
3158 if (error)
3159 goto err_unreg_char;
3160 }
3161
3162 mutex_lock(&tty_mutex);
3163 list_add(&driver->tty_drivers, &tty_drivers);
3164 mutex_unlock(&tty_mutex);
3165
3166 if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
3167 for (i = 0; i < driver->num; i++) {
3168 d = tty_register_device(driver, i, NULL);
3169 if (IS_ERR(d)) {
3170 error = PTR_ERR(d);
3171 goto err_unreg_devs;
3172 }
3173 }
3174 }
3175 proc_tty_register_driver(driver);
3176 driver->flags |= TTY_DRIVER_INSTALLED;
3177 return 0;
3178
3179 err_unreg_devs:
3180 for (i--; i >= 0; i--)
3181 tty_unregister_device(driver, i);
3182
3183 mutex_lock(&tty_mutex);
3184 list_del(&driver->tty_drivers);
3185 mutex_unlock(&tty_mutex);
3186
3187 err_unreg_char:
3188 unregister_chrdev_region(dev, driver->num);
3189 err:
3190 return error;
3191 }
3192 EXPORT_SYMBOL(tty_register_driver);
3193
3194 /*
3195 * Called by a tty driver to unregister itself.
3196 */
3197 int tty_unregister_driver(struct tty_driver *driver)
3198 {
3199 #if 0
3200 /* FIXME */
3201 if (driver->refcount)
3202 return -EBUSY;
3203 #endif
3204 unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3205 driver->num);
3206 mutex_lock(&tty_mutex);
3207 list_del(&driver->tty_drivers);
3208 mutex_unlock(&tty_mutex);
3209 return 0;
3210 }
3211
3212 EXPORT_SYMBOL(tty_unregister_driver);
3213
3214 dev_t tty_devnum(struct tty_struct *tty)
3215 {
3216 return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3217 }
3218 EXPORT_SYMBOL(tty_devnum);
3219
3220 void tty_default_fops(struct file_operations *fops)
3221 {
3222 *fops = tty_fops;
3223 }
3224
3225 static char *tty_devnode(struct device *dev, umode_t *mode)
3226 {
3227 if (!mode)
3228 return NULL;
3229 if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) ||
3230 dev->devt == MKDEV(TTYAUX_MAJOR, 2))
3231 *mode = 0666;
3232 return NULL;
3233 }
3234
3235 static int __init tty_class_init(void)
3236 {
3237 tty_class = class_create(THIS_MODULE, "tty");
3238 if (IS_ERR(tty_class))
3239 return PTR_ERR(tty_class);
3240 tty_class->devnode = tty_devnode;
3241 return 0;
3242 }
3243
3244 postcore_initcall(tty_class_init);
3245
3246 /* 3/2004 jmc: why do these devices exist? */
3247 static struct cdev tty_cdev, console_cdev;
3248
3249 static ssize_t show_cons_active(struct device *dev,
3250 struct device_attribute *attr, char *buf)
3251 {
3252 struct console *cs[16];
3253 int i = 0;
3254 struct console *c;
3255 ssize_t count = 0;
3256
3257 console_lock();
3258 for_each_console(c) {
3259 if (!c->device)
3260 continue;
3261 if (!c->write)
3262 continue;
3263 if ((c->flags & CON_ENABLED) == 0)
3264 continue;
3265 cs[i++] = c;
3266 if (i >= ARRAY_SIZE(cs))
3267 break;
3268 }
3269 while (i--) {
3270 int index = cs[i]->index;
3271 struct tty_driver *drv = cs[i]->device(cs[i], &index);
3272
3273 /* don't resolve tty0 as some programs depend on it */
3274 if (drv && (cs[i]->index > 0 || drv->major != TTY_MAJOR))
3275 count += tty_line_name(drv, index, buf + count);
3276 else
3277 count += sprintf(buf + count, "%s%d",
3278 cs[i]->name, cs[i]->index);
3279
3280 count += sprintf(buf + count, "%c", i ? ' ':'\n');
3281 }
3282 console_unlock();
3283
3284 return count;
3285 }
3286 static DEVICE_ATTR(active, S_IRUGO, show_cons_active, NULL);
3287
3288 static struct attribute *cons_dev_attrs[] = {
3289 &dev_attr_active.attr,
3290 NULL
3291 };
3292
3293 ATTRIBUTE_GROUPS(cons_dev);
3294
3295 static struct device *consdev;
3296
3297 void console_sysfs_notify(void)
3298 {
3299 if (consdev)
3300 sysfs_notify(&consdev->kobj, NULL, "active");
3301 }
3302
3303 /*
3304 * Ok, now we can initialize the rest of the tty devices and can count
3305 * on memory allocations, interrupts etc..
3306 */
3307 int __init tty_init(void)
3308 {
3309 cdev_init(&tty_cdev, &tty_fops);
3310 if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3311 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3312 panic("Couldn't register /dev/tty driver\n");
3313 device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL, "tty");
3314
3315 cdev_init(&console_cdev, &console_fops);
3316 if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3317 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3318 panic("Couldn't register /dev/console driver\n");
3319 consdev = device_create_with_groups(tty_class, NULL,
3320 MKDEV(TTYAUX_MAJOR, 1), NULL,
3321 cons_dev_groups, "console");
3322 if (IS_ERR(consdev))
3323 consdev = NULL;
3324
3325 #ifdef CONFIG_VT
3326 vty_init(&console_fops);
3327 #endif
3328 return 0;
3329 }
3330