Merge branch 'sched-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / tty / rocket.c
1 /*
2 * RocketPort device driver for Linux
3 *
4 * Written by Theodore Ts'o, 1995, 1996, 1997, 1998, 1999, 2000.
5 *
6 * Copyright (C) 1995, 1996, 1997, 1998, 1999, 2000, 2003 by Comtrol, Inc.
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License as
10 * published by the Free Software Foundation; either version 2 of the
11 * License, or (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 */
22
23 /*
24 * Kernel Synchronization:
25 *
26 * This driver has 2 kernel control paths - exception handlers (calls into the driver
27 * from user mode) and the timer bottom half (tasklet). This is a polled driver, interrupts
28 * are not used.
29 *
30 * Critical data:
31 * - rp_table[], accessed through passed "info" pointers, is a global (static) array of
32 * serial port state information and the xmit_buf circular buffer. Protected by
33 * a per port spinlock.
34 * - xmit_flags[], an array of ints indexed by line (port) number, indicating that there
35 * is data to be transmitted. Protected by atomic bit operations.
36 * - rp_num_ports, int indicating number of open ports, protected by atomic operations.
37 *
38 * rp_write() and rp_write_char() functions use a per port semaphore to protect against
39 * simultaneous access to the same port by more than one process.
40 */
41
42 /****** Defines ******/
43 #define ROCKET_PARANOIA_CHECK
44 #define ROCKET_DISABLE_SIMUSAGE
45
46 #undef ROCKET_SOFT_FLOW
47 #undef ROCKET_DEBUG_OPEN
48 #undef ROCKET_DEBUG_INTR
49 #undef ROCKET_DEBUG_WRITE
50 #undef ROCKET_DEBUG_FLOW
51 #undef ROCKET_DEBUG_THROTTLE
52 #undef ROCKET_DEBUG_WAIT_UNTIL_SENT
53 #undef ROCKET_DEBUG_RECEIVE
54 #undef ROCKET_DEBUG_HANGUP
55 #undef REV_PCI_ORDER
56 #undef ROCKET_DEBUG_IO
57
58 #define POLL_PERIOD HZ/100 /* Polling period .01 seconds (10ms) */
59
60 /****** Kernel includes ******/
61
62 #include <linux/module.h>
63 #include <linux/errno.h>
64 #include <linux/major.h>
65 #include <linux/kernel.h>
66 #include <linux/signal.h>
67 #include <linux/slab.h>
68 #include <linux/mm.h>
69 #include <linux/sched.h>
70 #include <linux/timer.h>
71 #include <linux/interrupt.h>
72 #include <linux/tty.h>
73 #include <linux/tty_driver.h>
74 #include <linux/tty_flip.h>
75 #include <linux/serial.h>
76 #include <linux/string.h>
77 #include <linux/fcntl.h>
78 #include <linux/ptrace.h>
79 #include <linux/mutex.h>
80 #include <linux/ioport.h>
81 #include <linux/delay.h>
82 #include <linux/completion.h>
83 #include <linux/wait.h>
84 #include <linux/pci.h>
85 #include <linux/uaccess.h>
86 #include <linux/atomic.h>
87 #include <asm/unaligned.h>
88 #include <linux/bitops.h>
89 #include <linux/spinlock.h>
90 #include <linux/init.h>
91
92 /****** RocketPort includes ******/
93
94 #include "rocket_int.h"
95 #include "rocket.h"
96
97 #define ROCKET_VERSION "2.09"
98 #define ROCKET_DATE "12-June-2003"
99
100 /****** RocketPort Local Variables ******/
101
102 static void rp_do_poll(unsigned long dummy);
103
104 static struct tty_driver *rocket_driver;
105
106 static struct rocket_version driver_version = {
107 ROCKET_VERSION, ROCKET_DATE
108 };
109
110 static struct r_port *rp_table[MAX_RP_PORTS]; /* The main repository of serial port state information. */
111 static unsigned int xmit_flags[NUM_BOARDS]; /* Bit significant, indicates port had data to transmit. */
112 /* eg. Bit 0 indicates port 0 has xmit data, ... */
113 static atomic_t rp_num_ports_open; /* Number of serial ports open */
114 static DEFINE_TIMER(rocket_timer, rp_do_poll, 0, 0);
115
116 static unsigned long board1; /* ISA addresses, retrieved from rocketport.conf */
117 static unsigned long board2;
118 static unsigned long board3;
119 static unsigned long board4;
120 static unsigned long controller;
121 static bool support_low_speed;
122 static unsigned long modem1;
123 static unsigned long modem2;
124 static unsigned long modem3;
125 static unsigned long modem4;
126 static unsigned long pc104_1[8];
127 static unsigned long pc104_2[8];
128 static unsigned long pc104_3[8];
129 static unsigned long pc104_4[8];
130 static unsigned long *pc104[4] = { pc104_1, pc104_2, pc104_3, pc104_4 };
131
132 static int rp_baud_base[NUM_BOARDS]; /* Board config info (Someday make a per-board structure) */
133 static unsigned long rcktpt_io_addr[NUM_BOARDS];
134 static int rcktpt_type[NUM_BOARDS];
135 static int is_PCI[NUM_BOARDS];
136 static rocketModel_t rocketModel[NUM_BOARDS];
137 static int max_board;
138 static const struct tty_port_operations rocket_port_ops;
139
140 /*
141 * The following arrays define the interrupt bits corresponding to each AIOP.
142 * These bits are different between the ISA and regular PCI boards and the
143 * Universal PCI boards.
144 */
145
146 static Word_t aiop_intr_bits[AIOP_CTL_SIZE] = {
147 AIOP_INTR_BIT_0,
148 AIOP_INTR_BIT_1,
149 AIOP_INTR_BIT_2,
150 AIOP_INTR_BIT_3
151 };
152
153 static Word_t upci_aiop_intr_bits[AIOP_CTL_SIZE] = {
154 UPCI_AIOP_INTR_BIT_0,
155 UPCI_AIOP_INTR_BIT_1,
156 UPCI_AIOP_INTR_BIT_2,
157 UPCI_AIOP_INTR_BIT_3
158 };
159
160 static Byte_t RData[RDATASIZE] = {
161 0x00, 0x09, 0xf6, 0x82,
162 0x02, 0x09, 0x86, 0xfb,
163 0x04, 0x09, 0x00, 0x0a,
164 0x06, 0x09, 0x01, 0x0a,
165 0x08, 0x09, 0x8a, 0x13,
166 0x0a, 0x09, 0xc5, 0x11,
167 0x0c, 0x09, 0x86, 0x85,
168 0x0e, 0x09, 0x20, 0x0a,
169 0x10, 0x09, 0x21, 0x0a,
170 0x12, 0x09, 0x41, 0xff,
171 0x14, 0x09, 0x82, 0x00,
172 0x16, 0x09, 0x82, 0x7b,
173 0x18, 0x09, 0x8a, 0x7d,
174 0x1a, 0x09, 0x88, 0x81,
175 0x1c, 0x09, 0x86, 0x7a,
176 0x1e, 0x09, 0x84, 0x81,
177 0x20, 0x09, 0x82, 0x7c,
178 0x22, 0x09, 0x0a, 0x0a
179 };
180
181 static Byte_t RRegData[RREGDATASIZE] = {
182 0x00, 0x09, 0xf6, 0x82, /* 00: Stop Rx processor */
183 0x08, 0x09, 0x8a, 0x13, /* 04: Tx software flow control */
184 0x0a, 0x09, 0xc5, 0x11, /* 08: XON char */
185 0x0c, 0x09, 0x86, 0x85, /* 0c: XANY */
186 0x12, 0x09, 0x41, 0xff, /* 10: Rx mask char */
187 0x14, 0x09, 0x82, 0x00, /* 14: Compare/Ignore #0 */
188 0x16, 0x09, 0x82, 0x7b, /* 18: Compare #1 */
189 0x18, 0x09, 0x8a, 0x7d, /* 1c: Compare #2 */
190 0x1a, 0x09, 0x88, 0x81, /* 20: Interrupt #1 */
191 0x1c, 0x09, 0x86, 0x7a, /* 24: Ignore/Replace #1 */
192 0x1e, 0x09, 0x84, 0x81, /* 28: Interrupt #2 */
193 0x20, 0x09, 0x82, 0x7c, /* 2c: Ignore/Replace #2 */
194 0x22, 0x09, 0x0a, 0x0a /* 30: Rx FIFO Enable */
195 };
196
197 static CONTROLLER_T sController[CTL_SIZE] = {
198 {-1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, {0, 0, 0, 0},
199 {0, 0, 0, 0}, {-1, -1, -1, -1}, {0, 0, 0, 0}},
200 {-1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, {0, 0, 0, 0},
201 {0, 0, 0, 0}, {-1, -1, -1, -1}, {0, 0, 0, 0}},
202 {-1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, {0, 0, 0, 0},
203 {0, 0, 0, 0}, {-1, -1, -1, -1}, {0, 0, 0, 0}},
204 {-1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, {0, 0, 0, 0},
205 {0, 0, 0, 0}, {-1, -1, -1, -1}, {0, 0, 0, 0}}
206 };
207
208 static Byte_t sBitMapClrTbl[8] = {
209 0xfe, 0xfd, 0xfb, 0xf7, 0xef, 0xdf, 0xbf, 0x7f
210 };
211
212 static Byte_t sBitMapSetTbl[8] = {
213 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80
214 };
215
216 static int sClockPrescale = 0x14;
217
218 /*
219 * Line number is the ttySIx number (x), the Minor number. We
220 * assign them sequentially, starting at zero. The following
221 * array keeps track of the line number assigned to a given board/aiop/channel.
222 */
223 static unsigned char lineNumbers[MAX_RP_PORTS];
224 static unsigned long nextLineNumber;
225
226 /***** RocketPort Static Prototypes *********/
227 static int __init init_ISA(int i);
228 static void rp_wait_until_sent(struct tty_struct *tty, int timeout);
229 static void rp_flush_buffer(struct tty_struct *tty);
230 static void rmSpeakerReset(CONTROLLER_T * CtlP, unsigned long model);
231 static unsigned char GetLineNumber(int ctrl, int aiop, int ch);
232 static unsigned char SetLineNumber(int ctrl, int aiop, int ch);
233 static void rp_start(struct tty_struct *tty);
234 static int sInitChan(CONTROLLER_T * CtlP, CHANNEL_T * ChP, int AiopNum,
235 int ChanNum);
236 static void sSetInterfaceMode(CHANNEL_T * ChP, Byte_t mode);
237 static void sFlushRxFIFO(CHANNEL_T * ChP);
238 static void sFlushTxFIFO(CHANNEL_T * ChP);
239 static void sEnInterrupts(CHANNEL_T * ChP, Word_t Flags);
240 static void sDisInterrupts(CHANNEL_T * ChP, Word_t Flags);
241 static void sModemReset(CONTROLLER_T * CtlP, int chan, int on);
242 static void sPCIModemReset(CONTROLLER_T * CtlP, int chan, int on);
243 static int sWriteTxPrioByte(CHANNEL_T * ChP, Byte_t Data);
244 static int sPCIInitController(CONTROLLER_T * CtlP, int CtlNum,
245 ByteIO_t * AiopIOList, int AiopIOListSize,
246 WordIO_t ConfigIO, int IRQNum, Byte_t Frequency,
247 int PeriodicOnly, int altChanRingIndicator,
248 int UPCIRingInd);
249 static int sInitController(CONTROLLER_T * CtlP, int CtlNum, ByteIO_t MudbacIO,
250 ByteIO_t * AiopIOList, int AiopIOListSize,
251 int IRQNum, Byte_t Frequency, int PeriodicOnly);
252 static int sReadAiopID(ByteIO_t io);
253 static int sReadAiopNumChan(WordIO_t io);
254
255 MODULE_AUTHOR("Theodore Ts'o");
256 MODULE_DESCRIPTION("Comtrol RocketPort driver");
257 module_param(board1, ulong, 0);
258 MODULE_PARM_DESC(board1, "I/O port for (ISA) board #1");
259 module_param(board2, ulong, 0);
260 MODULE_PARM_DESC(board2, "I/O port for (ISA) board #2");
261 module_param(board3, ulong, 0);
262 MODULE_PARM_DESC(board3, "I/O port for (ISA) board #3");
263 module_param(board4, ulong, 0);
264 MODULE_PARM_DESC(board4, "I/O port for (ISA) board #4");
265 module_param(controller, ulong, 0);
266 MODULE_PARM_DESC(controller, "I/O port for (ISA) rocketport controller");
267 module_param(support_low_speed, bool, 0);
268 MODULE_PARM_DESC(support_low_speed, "1 means support 50 baud, 0 means support 460400 baud");
269 module_param(modem1, ulong, 0);
270 MODULE_PARM_DESC(modem1, "1 means (ISA) board #1 is a RocketModem");
271 module_param(modem2, ulong, 0);
272 MODULE_PARM_DESC(modem2, "1 means (ISA) board #2 is a RocketModem");
273 module_param(modem3, ulong, 0);
274 MODULE_PARM_DESC(modem3, "1 means (ISA) board #3 is a RocketModem");
275 module_param(modem4, ulong, 0);
276 MODULE_PARM_DESC(modem4, "1 means (ISA) board #4 is a RocketModem");
277 module_param_array(pc104_1, ulong, NULL, 0);
278 MODULE_PARM_DESC(pc104_1, "set interface types for ISA(PC104) board #1 (e.g. pc104_1=232,232,485,485,...");
279 module_param_array(pc104_2, ulong, NULL, 0);
280 MODULE_PARM_DESC(pc104_2, "set interface types for ISA(PC104) board #2 (e.g. pc104_2=232,232,485,485,...");
281 module_param_array(pc104_3, ulong, NULL, 0);
282 MODULE_PARM_DESC(pc104_3, "set interface types for ISA(PC104) board #3 (e.g. pc104_3=232,232,485,485,...");
283 module_param_array(pc104_4, ulong, NULL, 0);
284 MODULE_PARM_DESC(pc104_4, "set interface types for ISA(PC104) board #4 (e.g. pc104_4=232,232,485,485,...");
285
286 static int rp_init(void);
287 static void rp_cleanup_module(void);
288
289 module_init(rp_init);
290 module_exit(rp_cleanup_module);
291
292
293 MODULE_LICENSE("Dual BSD/GPL");
294
295 /*************************************************************************/
296 /* Module code starts here */
297
298 static inline int rocket_paranoia_check(struct r_port *info,
299 const char *routine)
300 {
301 #ifdef ROCKET_PARANOIA_CHECK
302 if (!info)
303 return 1;
304 if (info->magic != RPORT_MAGIC) {
305 printk(KERN_WARNING "Warning: bad magic number for rocketport "
306 "struct in %s\n", routine);
307 return 1;
308 }
309 #endif
310 return 0;
311 }
312
313
314 /* Serial port receive data function. Called (from timer poll) when an AIOPIC signals
315 * that receive data is present on a serial port. Pulls data from FIFO, moves it into the
316 * tty layer.
317 */
318 static void rp_do_receive(struct r_port *info,
319 struct tty_struct *tty,
320 CHANNEL_t * cp, unsigned int ChanStatus)
321 {
322 unsigned int CharNStat;
323 int ToRecv, wRecv, space;
324 unsigned char *cbuf;
325
326 ToRecv = sGetRxCnt(cp);
327 #ifdef ROCKET_DEBUG_INTR
328 printk(KERN_INFO "rp_do_receive(%d)...\n", ToRecv);
329 #endif
330 if (ToRecv == 0)
331 return;
332
333 /*
334 * if status indicates there are errored characters in the
335 * FIFO, then enter status mode (a word in FIFO holds
336 * character and status).
337 */
338 if (ChanStatus & (RXFOVERFL | RXBREAK | RXFRAME | RXPARITY)) {
339 if (!(ChanStatus & STATMODE)) {
340 #ifdef ROCKET_DEBUG_RECEIVE
341 printk(KERN_INFO "Entering STATMODE...\n");
342 #endif
343 ChanStatus |= STATMODE;
344 sEnRxStatusMode(cp);
345 }
346 }
347
348 /*
349 * if we previously entered status mode, then read down the
350 * FIFO one word at a time, pulling apart the character and
351 * the status. Update error counters depending on status
352 */
353 if (ChanStatus & STATMODE) {
354 #ifdef ROCKET_DEBUG_RECEIVE
355 printk(KERN_INFO "Ignore %x, read %x...\n",
356 info->ignore_status_mask, info->read_status_mask);
357 #endif
358 while (ToRecv) {
359 char flag;
360
361 CharNStat = sInW(sGetTxRxDataIO(cp));
362 #ifdef ROCKET_DEBUG_RECEIVE
363 printk(KERN_INFO "%x...\n", CharNStat);
364 #endif
365 if (CharNStat & STMBREAKH)
366 CharNStat &= ~(STMFRAMEH | STMPARITYH);
367 if (CharNStat & info->ignore_status_mask) {
368 ToRecv--;
369 continue;
370 }
371 CharNStat &= info->read_status_mask;
372 if (CharNStat & STMBREAKH)
373 flag = TTY_BREAK;
374 else if (CharNStat & STMPARITYH)
375 flag = TTY_PARITY;
376 else if (CharNStat & STMFRAMEH)
377 flag = TTY_FRAME;
378 else if (CharNStat & STMRCVROVRH)
379 flag = TTY_OVERRUN;
380 else
381 flag = TTY_NORMAL;
382 tty_insert_flip_char(tty, CharNStat & 0xff, flag);
383 ToRecv--;
384 }
385
386 /*
387 * after we've emptied the FIFO in status mode, turn
388 * status mode back off
389 */
390 if (sGetRxCnt(cp) == 0) {
391 #ifdef ROCKET_DEBUG_RECEIVE
392 printk(KERN_INFO "Status mode off.\n");
393 #endif
394 sDisRxStatusMode(cp);
395 }
396 } else {
397 /*
398 * we aren't in status mode, so read down the FIFO two
399 * characters at time by doing repeated word IO
400 * transfer.
401 */
402 space = tty_prepare_flip_string(tty, &cbuf, ToRecv);
403 if (space < ToRecv) {
404 #ifdef ROCKET_DEBUG_RECEIVE
405 printk(KERN_INFO "rp_do_receive:insufficient space ToRecv=%d space=%d\n", ToRecv, space);
406 #endif
407 if (space <= 0)
408 return;
409 ToRecv = space;
410 }
411 wRecv = ToRecv >> 1;
412 if (wRecv)
413 sInStrW(sGetTxRxDataIO(cp), (unsigned short *) cbuf, wRecv);
414 if (ToRecv & 1)
415 cbuf[ToRecv - 1] = sInB(sGetTxRxDataIO(cp));
416 }
417 /* Push the data up to the tty layer */
418 tty_flip_buffer_push(tty);
419 }
420
421 /*
422 * Serial port transmit data function. Called from the timer polling loop as a
423 * result of a bit set in xmit_flags[], indicating data (from the tty layer) is ready
424 * to be sent out the serial port. Data is buffered in rp_table[line].xmit_buf, it is
425 * moved to the port's xmit FIFO. *info is critical data, protected by spinlocks.
426 */
427 static void rp_do_transmit(struct r_port *info)
428 {
429 int c;
430 CHANNEL_t *cp = &info->channel;
431 struct tty_struct *tty;
432 unsigned long flags;
433
434 #ifdef ROCKET_DEBUG_INTR
435 printk(KERN_DEBUG "%s\n", __func__);
436 #endif
437 if (!info)
438 return;
439 tty = tty_port_tty_get(&info->port);
440
441 if (tty == NULL) {
442 printk(KERN_WARNING "rp: WARNING %s called with tty==NULL\n", __func__);
443 clear_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]);
444 return;
445 }
446
447 spin_lock_irqsave(&info->slock, flags);
448 info->xmit_fifo_room = TXFIFO_SIZE - sGetTxCnt(cp);
449
450 /* Loop sending data to FIFO until done or FIFO full */
451 while (1) {
452 if (tty->stopped || tty->hw_stopped)
453 break;
454 c = min(info->xmit_fifo_room, info->xmit_cnt);
455 c = min(c, XMIT_BUF_SIZE - info->xmit_tail);
456 if (c <= 0 || info->xmit_fifo_room <= 0)
457 break;
458 sOutStrW(sGetTxRxDataIO(cp), (unsigned short *) (info->xmit_buf + info->xmit_tail), c / 2);
459 if (c & 1)
460 sOutB(sGetTxRxDataIO(cp), info->xmit_buf[info->xmit_tail + c - 1]);
461 info->xmit_tail += c;
462 info->xmit_tail &= XMIT_BUF_SIZE - 1;
463 info->xmit_cnt -= c;
464 info->xmit_fifo_room -= c;
465 #ifdef ROCKET_DEBUG_INTR
466 printk(KERN_INFO "tx %d chars...\n", c);
467 #endif
468 }
469
470 if (info->xmit_cnt == 0)
471 clear_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]);
472
473 if (info->xmit_cnt < WAKEUP_CHARS) {
474 tty_wakeup(tty);
475 #ifdef ROCKETPORT_HAVE_POLL_WAIT
476 wake_up_interruptible(&tty->poll_wait);
477 #endif
478 }
479
480 spin_unlock_irqrestore(&info->slock, flags);
481 tty_kref_put(tty);
482
483 #ifdef ROCKET_DEBUG_INTR
484 printk(KERN_DEBUG "(%d,%d,%d,%d)...\n", info->xmit_cnt, info->xmit_head,
485 info->xmit_tail, info->xmit_fifo_room);
486 #endif
487 }
488
489 /*
490 * Called when a serial port signals it has read data in it's RX FIFO.
491 * It checks what interrupts are pending and services them, including
492 * receiving serial data.
493 */
494 static void rp_handle_port(struct r_port *info)
495 {
496 CHANNEL_t *cp;
497 struct tty_struct *tty;
498 unsigned int IntMask, ChanStatus;
499
500 if (!info)
501 return;
502
503 if ((info->port.flags & ASYNC_INITIALIZED) == 0) {
504 printk(KERN_WARNING "rp: WARNING: rp_handle_port called with "
505 "info->flags & NOT_INIT\n");
506 return;
507 }
508 tty = tty_port_tty_get(&info->port);
509 if (!tty) {
510 printk(KERN_WARNING "rp: WARNING: rp_handle_port called with "
511 "tty==NULL\n");
512 return;
513 }
514 cp = &info->channel;
515
516 IntMask = sGetChanIntID(cp) & info->intmask;
517 #ifdef ROCKET_DEBUG_INTR
518 printk(KERN_INFO "rp_interrupt %02x...\n", IntMask);
519 #endif
520 ChanStatus = sGetChanStatus(cp);
521 if (IntMask & RXF_TRIG) { /* Rx FIFO trigger level */
522 rp_do_receive(info, tty, cp, ChanStatus);
523 }
524 if (IntMask & DELTA_CD) { /* CD change */
525 #if (defined(ROCKET_DEBUG_OPEN) || defined(ROCKET_DEBUG_INTR) || defined(ROCKET_DEBUG_HANGUP))
526 printk(KERN_INFO "ttyR%d CD now %s...\n", info->line,
527 (ChanStatus & CD_ACT) ? "on" : "off");
528 #endif
529 if (!(ChanStatus & CD_ACT) && info->cd_status) {
530 #ifdef ROCKET_DEBUG_HANGUP
531 printk(KERN_INFO "CD drop, calling hangup.\n");
532 #endif
533 tty_hangup(tty);
534 }
535 info->cd_status = (ChanStatus & CD_ACT) ? 1 : 0;
536 wake_up_interruptible(&info->port.open_wait);
537 }
538 #ifdef ROCKET_DEBUG_INTR
539 if (IntMask & DELTA_CTS) { /* CTS change */
540 printk(KERN_INFO "CTS change...\n");
541 }
542 if (IntMask & DELTA_DSR) { /* DSR change */
543 printk(KERN_INFO "DSR change...\n");
544 }
545 #endif
546 tty_kref_put(tty);
547 }
548
549 /*
550 * The top level polling routine. Repeats every 1/100 HZ (10ms).
551 */
552 static void rp_do_poll(unsigned long dummy)
553 {
554 CONTROLLER_t *ctlp;
555 int ctrl, aiop, ch, line;
556 unsigned int xmitmask, i;
557 unsigned int CtlMask;
558 unsigned char AiopMask;
559 Word_t bit;
560
561 /* Walk through all the boards (ctrl's) */
562 for (ctrl = 0; ctrl < max_board; ctrl++) {
563 if (rcktpt_io_addr[ctrl] <= 0)
564 continue;
565
566 /* Get a ptr to the board's control struct */
567 ctlp = sCtlNumToCtlPtr(ctrl);
568
569 /* Get the interrupt status from the board */
570 #ifdef CONFIG_PCI
571 if (ctlp->BusType == isPCI)
572 CtlMask = sPCIGetControllerIntStatus(ctlp);
573 else
574 #endif
575 CtlMask = sGetControllerIntStatus(ctlp);
576
577 /* Check if any AIOP read bits are set */
578 for (aiop = 0; CtlMask; aiop++) {
579 bit = ctlp->AiopIntrBits[aiop];
580 if (CtlMask & bit) {
581 CtlMask &= ~bit;
582 AiopMask = sGetAiopIntStatus(ctlp, aiop);
583
584 /* Check if any port read bits are set */
585 for (ch = 0; AiopMask; AiopMask >>= 1, ch++) {
586 if (AiopMask & 1) {
587
588 /* Get the line number (/dev/ttyRx number). */
589 /* Read the data from the port. */
590 line = GetLineNumber(ctrl, aiop, ch);
591 rp_handle_port(rp_table[line]);
592 }
593 }
594 }
595 }
596
597 xmitmask = xmit_flags[ctrl];
598
599 /*
600 * xmit_flags contains bit-significant flags, indicating there is data
601 * to xmit on the port. Bit 0 is port 0 on this board, bit 1 is port
602 * 1, ... (32 total possible). The variable i has the aiop and ch
603 * numbers encoded in it (port 0-7 are aiop0, 8-15 are aiop1, etc).
604 */
605 if (xmitmask) {
606 for (i = 0; i < rocketModel[ctrl].numPorts; i++) {
607 if (xmitmask & (1 << i)) {
608 aiop = (i & 0x18) >> 3;
609 ch = i & 0x07;
610 line = GetLineNumber(ctrl, aiop, ch);
611 rp_do_transmit(rp_table[line]);
612 }
613 }
614 }
615 }
616
617 /*
618 * Reset the timer so we get called at the next clock tick (10ms).
619 */
620 if (atomic_read(&rp_num_ports_open))
621 mod_timer(&rocket_timer, jiffies + POLL_PERIOD);
622 }
623
624 /*
625 * Initializes the r_port structure for a port, as well as enabling the port on
626 * the board.
627 * Inputs: board, aiop, chan numbers
628 */
629 static void init_r_port(int board, int aiop, int chan, struct pci_dev *pci_dev)
630 {
631 unsigned rocketMode;
632 struct r_port *info;
633 int line;
634 CONTROLLER_T *ctlp;
635
636 /* Get the next available line number */
637 line = SetLineNumber(board, aiop, chan);
638
639 ctlp = sCtlNumToCtlPtr(board);
640
641 /* Get a r_port struct for the port, fill it in and save it globally, indexed by line number */
642 info = kzalloc(sizeof (struct r_port), GFP_KERNEL);
643 if (!info) {
644 printk(KERN_ERR "Couldn't allocate info struct for line #%d\n",
645 line);
646 return;
647 }
648
649 info->magic = RPORT_MAGIC;
650 info->line = line;
651 info->ctlp = ctlp;
652 info->board = board;
653 info->aiop = aiop;
654 info->chan = chan;
655 tty_port_init(&info->port);
656 info->port.ops = &rocket_port_ops;
657 init_completion(&info->close_wait);
658 info->flags &= ~ROCKET_MODE_MASK;
659 switch (pc104[board][line]) {
660 case 422:
661 info->flags |= ROCKET_MODE_RS422;
662 break;
663 case 485:
664 info->flags |= ROCKET_MODE_RS485;
665 break;
666 case 232:
667 default:
668 info->flags |= ROCKET_MODE_RS232;
669 break;
670 }
671
672 info->intmask = RXF_TRIG | TXFIFO_MT | SRC_INT | DELTA_CD | DELTA_CTS | DELTA_DSR;
673 if (sInitChan(ctlp, &info->channel, aiop, chan) == 0) {
674 printk(KERN_ERR "RocketPort sInitChan(%d, %d, %d) failed!\n",
675 board, aiop, chan);
676 kfree(info);
677 return;
678 }
679
680 rocketMode = info->flags & ROCKET_MODE_MASK;
681
682 if ((info->flags & ROCKET_RTS_TOGGLE) || (rocketMode == ROCKET_MODE_RS485))
683 sEnRTSToggle(&info->channel);
684 else
685 sDisRTSToggle(&info->channel);
686
687 if (ctlp->boardType == ROCKET_TYPE_PC104) {
688 switch (rocketMode) {
689 case ROCKET_MODE_RS485:
690 sSetInterfaceMode(&info->channel, InterfaceModeRS485);
691 break;
692 case ROCKET_MODE_RS422:
693 sSetInterfaceMode(&info->channel, InterfaceModeRS422);
694 break;
695 case ROCKET_MODE_RS232:
696 default:
697 if (info->flags & ROCKET_RTS_TOGGLE)
698 sSetInterfaceMode(&info->channel, InterfaceModeRS232T);
699 else
700 sSetInterfaceMode(&info->channel, InterfaceModeRS232);
701 break;
702 }
703 }
704 spin_lock_init(&info->slock);
705 mutex_init(&info->write_mtx);
706 rp_table[line] = info;
707 tty_register_device(rocket_driver, line, pci_dev ? &pci_dev->dev :
708 NULL);
709 }
710
711 /*
712 * Configures a rocketport port according to its termio settings. Called from
713 * user mode into the driver (exception handler). *info CD manipulation is spinlock protected.
714 */
715 static void configure_r_port(struct tty_struct *tty, struct r_port *info,
716 struct ktermios *old_termios)
717 {
718 unsigned cflag;
719 unsigned long flags;
720 unsigned rocketMode;
721 int bits, baud, divisor;
722 CHANNEL_t *cp;
723 struct ktermios *t = tty->termios;
724
725 cp = &info->channel;
726 cflag = t->c_cflag;
727
728 /* Byte size and parity */
729 if ((cflag & CSIZE) == CS8) {
730 sSetData8(cp);
731 bits = 10;
732 } else {
733 sSetData7(cp);
734 bits = 9;
735 }
736 if (cflag & CSTOPB) {
737 sSetStop2(cp);
738 bits++;
739 } else {
740 sSetStop1(cp);
741 }
742
743 if (cflag & PARENB) {
744 sEnParity(cp);
745 bits++;
746 if (cflag & PARODD) {
747 sSetOddParity(cp);
748 } else {
749 sSetEvenParity(cp);
750 }
751 } else {
752 sDisParity(cp);
753 }
754
755 /* baud rate */
756 baud = tty_get_baud_rate(tty);
757 if (!baud)
758 baud = 9600;
759 divisor = ((rp_baud_base[info->board] + (baud >> 1)) / baud) - 1;
760 if ((divisor >= 8192 || divisor < 0) && old_termios) {
761 baud = tty_termios_baud_rate(old_termios);
762 if (!baud)
763 baud = 9600;
764 divisor = (rp_baud_base[info->board] / baud) - 1;
765 }
766 if (divisor >= 8192 || divisor < 0) {
767 baud = 9600;
768 divisor = (rp_baud_base[info->board] / baud) - 1;
769 }
770 info->cps = baud / bits;
771 sSetBaud(cp, divisor);
772
773 /* FIXME: Should really back compute a baud rate from the divisor */
774 tty_encode_baud_rate(tty, baud, baud);
775
776 if (cflag & CRTSCTS) {
777 info->intmask |= DELTA_CTS;
778 sEnCTSFlowCtl(cp);
779 } else {
780 info->intmask &= ~DELTA_CTS;
781 sDisCTSFlowCtl(cp);
782 }
783 if (cflag & CLOCAL) {
784 info->intmask &= ~DELTA_CD;
785 } else {
786 spin_lock_irqsave(&info->slock, flags);
787 if (sGetChanStatus(cp) & CD_ACT)
788 info->cd_status = 1;
789 else
790 info->cd_status = 0;
791 info->intmask |= DELTA_CD;
792 spin_unlock_irqrestore(&info->slock, flags);
793 }
794
795 /*
796 * Handle software flow control in the board
797 */
798 #ifdef ROCKET_SOFT_FLOW
799 if (I_IXON(tty)) {
800 sEnTxSoftFlowCtl(cp);
801 if (I_IXANY(tty)) {
802 sEnIXANY(cp);
803 } else {
804 sDisIXANY(cp);
805 }
806 sSetTxXONChar(cp, START_CHAR(tty));
807 sSetTxXOFFChar(cp, STOP_CHAR(tty));
808 } else {
809 sDisTxSoftFlowCtl(cp);
810 sDisIXANY(cp);
811 sClrTxXOFF(cp);
812 }
813 #endif
814
815 /*
816 * Set up ignore/read mask words
817 */
818 info->read_status_mask = STMRCVROVRH | 0xFF;
819 if (I_INPCK(tty))
820 info->read_status_mask |= STMFRAMEH | STMPARITYH;
821 if (I_BRKINT(tty) || I_PARMRK(tty))
822 info->read_status_mask |= STMBREAKH;
823
824 /*
825 * Characters to ignore
826 */
827 info->ignore_status_mask = 0;
828 if (I_IGNPAR(tty))
829 info->ignore_status_mask |= STMFRAMEH | STMPARITYH;
830 if (I_IGNBRK(tty)) {
831 info->ignore_status_mask |= STMBREAKH;
832 /*
833 * If we're ignoring parity and break indicators,
834 * ignore overruns too. (For real raw support).
835 */
836 if (I_IGNPAR(tty))
837 info->ignore_status_mask |= STMRCVROVRH;
838 }
839
840 rocketMode = info->flags & ROCKET_MODE_MASK;
841
842 if ((info->flags & ROCKET_RTS_TOGGLE)
843 || (rocketMode == ROCKET_MODE_RS485))
844 sEnRTSToggle(cp);
845 else
846 sDisRTSToggle(cp);
847
848 sSetRTS(&info->channel);
849
850 if (cp->CtlP->boardType == ROCKET_TYPE_PC104) {
851 switch (rocketMode) {
852 case ROCKET_MODE_RS485:
853 sSetInterfaceMode(cp, InterfaceModeRS485);
854 break;
855 case ROCKET_MODE_RS422:
856 sSetInterfaceMode(cp, InterfaceModeRS422);
857 break;
858 case ROCKET_MODE_RS232:
859 default:
860 if (info->flags & ROCKET_RTS_TOGGLE)
861 sSetInterfaceMode(cp, InterfaceModeRS232T);
862 else
863 sSetInterfaceMode(cp, InterfaceModeRS232);
864 break;
865 }
866 }
867 }
868
869 static int carrier_raised(struct tty_port *port)
870 {
871 struct r_port *info = container_of(port, struct r_port, port);
872 return (sGetChanStatusLo(&info->channel) & CD_ACT) ? 1 : 0;
873 }
874
875 static void dtr_rts(struct tty_port *port, int on)
876 {
877 struct r_port *info = container_of(port, struct r_port, port);
878 if (on) {
879 sSetDTR(&info->channel);
880 sSetRTS(&info->channel);
881 } else {
882 sClrDTR(&info->channel);
883 sClrRTS(&info->channel);
884 }
885 }
886
887 /*
888 * Exception handler that opens a serial port. Creates xmit_buf storage, fills in
889 * port's r_port struct. Initializes the port hardware.
890 */
891 static int rp_open(struct tty_struct *tty, struct file *filp)
892 {
893 struct r_port *info;
894 struct tty_port *port;
895 int retval;
896 CHANNEL_t *cp;
897 unsigned long page;
898
899 info = rp_table[tty->index];
900 if (info == NULL)
901 return -ENXIO;
902 port = &info->port;
903
904 page = __get_free_page(GFP_KERNEL);
905 if (!page)
906 return -ENOMEM;
907
908 if (port->flags & ASYNC_CLOSING) {
909 retval = wait_for_completion_interruptible(&info->close_wait);
910 free_page(page);
911 if (retval)
912 return retval;
913 return ((port->flags & ASYNC_HUP_NOTIFY) ? -EAGAIN : -ERESTARTSYS);
914 }
915
916 /*
917 * We must not sleep from here until the port is marked fully in use.
918 */
919 if (info->xmit_buf)
920 free_page(page);
921 else
922 info->xmit_buf = (unsigned char *) page;
923
924 tty->driver_data = info;
925 tty_port_tty_set(port, tty);
926
927 if (port->count++ == 0) {
928 atomic_inc(&rp_num_ports_open);
929
930 #ifdef ROCKET_DEBUG_OPEN
931 printk(KERN_INFO "rocket mod++ = %d...\n",
932 atomic_read(&rp_num_ports_open));
933 #endif
934 }
935 #ifdef ROCKET_DEBUG_OPEN
936 printk(KERN_INFO "rp_open ttyR%d, count=%d\n", info->line, info->port.count);
937 #endif
938
939 /*
940 * Info->count is now 1; so it's safe to sleep now.
941 */
942 if (!test_bit(ASYNCB_INITIALIZED, &port->flags)) {
943 cp = &info->channel;
944 sSetRxTrigger(cp, TRIG_1);
945 if (sGetChanStatus(cp) & CD_ACT)
946 info->cd_status = 1;
947 else
948 info->cd_status = 0;
949 sDisRxStatusMode(cp);
950 sFlushRxFIFO(cp);
951 sFlushTxFIFO(cp);
952
953 sEnInterrupts(cp, (TXINT_EN | MCINT_EN | RXINT_EN | SRCINT_EN | CHANINT_EN));
954 sSetRxTrigger(cp, TRIG_1);
955
956 sGetChanStatus(cp);
957 sDisRxStatusMode(cp);
958 sClrTxXOFF(cp);
959
960 sDisCTSFlowCtl(cp);
961 sDisTxSoftFlowCtl(cp);
962
963 sEnRxFIFO(cp);
964 sEnTransmit(cp);
965
966 set_bit(ASYNCB_INITIALIZED, &info->port.flags);
967
968 /*
969 * Set up the tty->alt_speed kludge
970 */
971 if ((info->flags & ROCKET_SPD_MASK) == ROCKET_SPD_HI)
972 tty->alt_speed = 57600;
973 if ((info->flags & ROCKET_SPD_MASK) == ROCKET_SPD_VHI)
974 tty->alt_speed = 115200;
975 if ((info->flags & ROCKET_SPD_MASK) == ROCKET_SPD_SHI)
976 tty->alt_speed = 230400;
977 if ((info->flags & ROCKET_SPD_MASK) == ROCKET_SPD_WARP)
978 tty->alt_speed = 460800;
979
980 configure_r_port(tty, info, NULL);
981 if (tty->termios->c_cflag & CBAUD) {
982 sSetDTR(cp);
983 sSetRTS(cp);
984 }
985 }
986 /* Starts (or resets) the maint polling loop */
987 mod_timer(&rocket_timer, jiffies + POLL_PERIOD);
988
989 retval = tty_port_block_til_ready(port, tty, filp);
990 if (retval) {
991 #ifdef ROCKET_DEBUG_OPEN
992 printk(KERN_INFO "rp_open returning after block_til_ready with %d\n", retval);
993 #endif
994 return retval;
995 }
996 return 0;
997 }
998
999 /*
1000 * Exception handler that closes a serial port. info->port.count is considered critical.
1001 */
1002 static void rp_close(struct tty_struct *tty, struct file *filp)
1003 {
1004 struct r_port *info = tty->driver_data;
1005 struct tty_port *port = &info->port;
1006 int timeout;
1007 CHANNEL_t *cp;
1008
1009 if (rocket_paranoia_check(info, "rp_close"))
1010 return;
1011
1012 #ifdef ROCKET_DEBUG_OPEN
1013 printk(KERN_INFO "rp_close ttyR%d, count = %d\n", info->line, info->port.count);
1014 #endif
1015
1016 if (tty_port_close_start(port, tty, filp) == 0)
1017 return;
1018
1019 mutex_lock(&port->mutex);
1020 cp = &info->channel;
1021 /*
1022 * Before we drop DTR, make sure the UART transmitter
1023 * has completely drained; this is especially
1024 * important if there is a transmit FIFO!
1025 */
1026 timeout = (sGetTxCnt(cp) + 1) * HZ / info->cps;
1027 if (timeout == 0)
1028 timeout = 1;
1029 rp_wait_until_sent(tty, timeout);
1030 clear_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]);
1031
1032 sDisTransmit(cp);
1033 sDisInterrupts(cp, (TXINT_EN | MCINT_EN | RXINT_EN | SRCINT_EN | CHANINT_EN));
1034 sDisCTSFlowCtl(cp);
1035 sDisTxSoftFlowCtl(cp);
1036 sClrTxXOFF(cp);
1037 sFlushRxFIFO(cp);
1038 sFlushTxFIFO(cp);
1039 sClrRTS(cp);
1040 if (C_HUPCL(tty))
1041 sClrDTR(cp);
1042
1043 rp_flush_buffer(tty);
1044
1045 tty_ldisc_flush(tty);
1046
1047 clear_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]);
1048
1049 /* We can't yet use tty_port_close_end as the buffer handling in this
1050 driver is a bit different to the usual */
1051
1052 if (port->blocked_open) {
1053 if (port->close_delay) {
1054 msleep_interruptible(jiffies_to_msecs(port->close_delay));
1055 }
1056 wake_up_interruptible(&port->open_wait);
1057 } else {
1058 if (info->xmit_buf) {
1059 free_page((unsigned long) info->xmit_buf);
1060 info->xmit_buf = NULL;
1061 }
1062 }
1063 spin_lock_irq(&port->lock);
1064 info->port.flags &= ~(ASYNC_INITIALIZED | ASYNC_CLOSING | ASYNC_NORMAL_ACTIVE);
1065 tty->closing = 0;
1066 spin_unlock_irq(&port->lock);
1067 mutex_unlock(&port->mutex);
1068 tty_port_tty_set(port, NULL);
1069
1070 wake_up_interruptible(&port->close_wait);
1071 complete_all(&info->close_wait);
1072 atomic_dec(&rp_num_ports_open);
1073
1074 #ifdef ROCKET_DEBUG_OPEN
1075 printk(KERN_INFO "rocket mod-- = %d...\n",
1076 atomic_read(&rp_num_ports_open));
1077 printk(KERN_INFO "rp_close ttyR%d complete shutdown\n", info->line);
1078 #endif
1079
1080 }
1081
1082 static void rp_set_termios(struct tty_struct *tty,
1083 struct ktermios *old_termios)
1084 {
1085 struct r_port *info = tty->driver_data;
1086 CHANNEL_t *cp;
1087 unsigned cflag;
1088
1089 if (rocket_paranoia_check(info, "rp_set_termios"))
1090 return;
1091
1092 cflag = tty->termios->c_cflag;
1093
1094 /*
1095 * This driver doesn't support CS5 or CS6
1096 */
1097 if (((cflag & CSIZE) == CS5) || ((cflag & CSIZE) == CS6))
1098 tty->termios->c_cflag =
1099 ((cflag & ~CSIZE) | (old_termios->c_cflag & CSIZE));
1100 /* Or CMSPAR */
1101 tty->termios->c_cflag &= ~CMSPAR;
1102
1103 configure_r_port(tty, info, old_termios);
1104
1105 cp = &info->channel;
1106
1107 /* Handle transition to B0 status */
1108 if ((old_termios->c_cflag & CBAUD) && !(tty->termios->c_cflag & CBAUD)) {
1109 sClrDTR(cp);
1110 sClrRTS(cp);
1111 }
1112
1113 /* Handle transition away from B0 status */
1114 if (!(old_termios->c_cflag & CBAUD) && (tty->termios->c_cflag & CBAUD)) {
1115 if (!tty->hw_stopped || !(tty->termios->c_cflag & CRTSCTS))
1116 sSetRTS(cp);
1117 sSetDTR(cp);
1118 }
1119
1120 if ((old_termios->c_cflag & CRTSCTS) && !(tty->termios->c_cflag & CRTSCTS)) {
1121 tty->hw_stopped = 0;
1122 rp_start(tty);
1123 }
1124 }
1125
1126 static int rp_break(struct tty_struct *tty, int break_state)
1127 {
1128 struct r_port *info = tty->driver_data;
1129 unsigned long flags;
1130
1131 if (rocket_paranoia_check(info, "rp_break"))
1132 return -EINVAL;
1133
1134 spin_lock_irqsave(&info->slock, flags);
1135 if (break_state == -1)
1136 sSendBreak(&info->channel);
1137 else
1138 sClrBreak(&info->channel);
1139 spin_unlock_irqrestore(&info->slock, flags);
1140 return 0;
1141 }
1142
1143 /*
1144 * sGetChanRI used to be a macro in rocket_int.h. When the functionality for
1145 * the UPCI boards was added, it was decided to make this a function because
1146 * the macro was getting too complicated. All cases except the first one
1147 * (UPCIRingInd) are taken directly from the original macro.
1148 */
1149 static int sGetChanRI(CHANNEL_T * ChP)
1150 {
1151 CONTROLLER_t *CtlP = ChP->CtlP;
1152 int ChanNum = ChP->ChanNum;
1153 int RingInd = 0;
1154
1155 if (CtlP->UPCIRingInd)
1156 RingInd = !(sInB(CtlP->UPCIRingInd) & sBitMapSetTbl[ChanNum]);
1157 else if (CtlP->AltChanRingIndicator)
1158 RingInd = sInB((ByteIO_t) (ChP->ChanStat + 8)) & DSR_ACT;
1159 else if (CtlP->boardType == ROCKET_TYPE_PC104)
1160 RingInd = !(sInB(CtlP->AiopIO[3]) & sBitMapSetTbl[ChanNum]);
1161
1162 return RingInd;
1163 }
1164
1165 /********************************************************************************************/
1166 /* Here are the routines used by rp_ioctl. These are all called from exception handlers. */
1167
1168 /*
1169 * Returns the state of the serial modem control lines. These next 2 functions
1170 * are the way kernel versions > 2.5 handle modem control lines rather than IOCTLs.
1171 */
1172 static int rp_tiocmget(struct tty_struct *tty)
1173 {
1174 struct r_port *info = tty->driver_data;
1175 unsigned int control, result, ChanStatus;
1176
1177 ChanStatus = sGetChanStatusLo(&info->channel);
1178 control = info->channel.TxControl[3];
1179 result = ((control & SET_RTS) ? TIOCM_RTS : 0) |
1180 ((control & SET_DTR) ? TIOCM_DTR : 0) |
1181 ((ChanStatus & CD_ACT) ? TIOCM_CAR : 0) |
1182 (sGetChanRI(&info->channel) ? TIOCM_RNG : 0) |
1183 ((ChanStatus & DSR_ACT) ? TIOCM_DSR : 0) |
1184 ((ChanStatus & CTS_ACT) ? TIOCM_CTS : 0);
1185
1186 return result;
1187 }
1188
1189 /*
1190 * Sets the modem control lines
1191 */
1192 static int rp_tiocmset(struct tty_struct *tty,
1193 unsigned int set, unsigned int clear)
1194 {
1195 struct r_port *info = tty->driver_data;
1196
1197 if (set & TIOCM_RTS)
1198 info->channel.TxControl[3] |= SET_RTS;
1199 if (set & TIOCM_DTR)
1200 info->channel.TxControl[3] |= SET_DTR;
1201 if (clear & TIOCM_RTS)
1202 info->channel.TxControl[3] &= ~SET_RTS;
1203 if (clear & TIOCM_DTR)
1204 info->channel.TxControl[3] &= ~SET_DTR;
1205
1206 out32(info->channel.IndexAddr, info->channel.TxControl);
1207 return 0;
1208 }
1209
1210 static int get_config(struct r_port *info, struct rocket_config __user *retinfo)
1211 {
1212 struct rocket_config tmp;
1213
1214 if (!retinfo)
1215 return -EFAULT;
1216 memset(&tmp, 0, sizeof (tmp));
1217 mutex_lock(&info->port.mutex);
1218 tmp.line = info->line;
1219 tmp.flags = info->flags;
1220 tmp.close_delay = info->port.close_delay;
1221 tmp.closing_wait = info->port.closing_wait;
1222 tmp.port = rcktpt_io_addr[(info->line >> 5) & 3];
1223 mutex_unlock(&info->port.mutex);
1224
1225 if (copy_to_user(retinfo, &tmp, sizeof (*retinfo)))
1226 return -EFAULT;
1227 return 0;
1228 }
1229
1230 static int set_config(struct tty_struct *tty, struct r_port *info,
1231 struct rocket_config __user *new_info)
1232 {
1233 struct rocket_config new_serial;
1234
1235 if (copy_from_user(&new_serial, new_info, sizeof (new_serial)))
1236 return -EFAULT;
1237
1238 mutex_lock(&info->port.mutex);
1239 if (!capable(CAP_SYS_ADMIN))
1240 {
1241 if ((new_serial.flags & ~ROCKET_USR_MASK) != (info->flags & ~ROCKET_USR_MASK)) {
1242 mutex_unlock(&info->port.mutex);
1243 return -EPERM;
1244 }
1245 info->flags = ((info->flags & ~ROCKET_USR_MASK) | (new_serial.flags & ROCKET_USR_MASK));
1246 configure_r_port(tty, info, NULL);
1247 mutex_unlock(&info->port.mutex);
1248 return 0;
1249 }
1250
1251 info->flags = ((info->flags & ~ROCKET_FLAGS) | (new_serial.flags & ROCKET_FLAGS));
1252 info->port.close_delay = new_serial.close_delay;
1253 info->port.closing_wait = new_serial.closing_wait;
1254
1255 if ((info->flags & ROCKET_SPD_MASK) == ROCKET_SPD_HI)
1256 tty->alt_speed = 57600;
1257 if ((info->flags & ROCKET_SPD_MASK) == ROCKET_SPD_VHI)
1258 tty->alt_speed = 115200;
1259 if ((info->flags & ROCKET_SPD_MASK) == ROCKET_SPD_SHI)
1260 tty->alt_speed = 230400;
1261 if ((info->flags & ROCKET_SPD_MASK) == ROCKET_SPD_WARP)
1262 tty->alt_speed = 460800;
1263 mutex_unlock(&info->port.mutex);
1264
1265 configure_r_port(tty, info, NULL);
1266 return 0;
1267 }
1268
1269 /*
1270 * This function fills in a rocket_ports struct with information
1271 * about what boards/ports are in the system. This info is passed
1272 * to user space. See setrocket.c where the info is used to create
1273 * the /dev/ttyRx ports.
1274 */
1275 static int get_ports(struct r_port *info, struct rocket_ports __user *retports)
1276 {
1277 struct rocket_ports tmp;
1278 int board;
1279
1280 if (!retports)
1281 return -EFAULT;
1282 memset(&tmp, 0, sizeof (tmp));
1283 tmp.tty_major = rocket_driver->major;
1284
1285 for (board = 0; board < 4; board++) {
1286 tmp.rocketModel[board].model = rocketModel[board].model;
1287 strcpy(tmp.rocketModel[board].modelString, rocketModel[board].modelString);
1288 tmp.rocketModel[board].numPorts = rocketModel[board].numPorts;
1289 tmp.rocketModel[board].loadrm2 = rocketModel[board].loadrm2;
1290 tmp.rocketModel[board].startingPortNumber = rocketModel[board].startingPortNumber;
1291 }
1292 if (copy_to_user(retports, &tmp, sizeof (*retports)))
1293 return -EFAULT;
1294 return 0;
1295 }
1296
1297 static int reset_rm2(struct r_port *info, void __user *arg)
1298 {
1299 int reset;
1300
1301 if (!capable(CAP_SYS_ADMIN))
1302 return -EPERM;
1303
1304 if (copy_from_user(&reset, arg, sizeof (int)))
1305 return -EFAULT;
1306 if (reset)
1307 reset = 1;
1308
1309 if (rcktpt_type[info->board] != ROCKET_TYPE_MODEMII &&
1310 rcktpt_type[info->board] != ROCKET_TYPE_MODEMIII)
1311 return -EINVAL;
1312
1313 if (info->ctlp->BusType == isISA)
1314 sModemReset(info->ctlp, info->chan, reset);
1315 else
1316 sPCIModemReset(info->ctlp, info->chan, reset);
1317
1318 return 0;
1319 }
1320
1321 static int get_version(struct r_port *info, struct rocket_version __user *retvers)
1322 {
1323 if (copy_to_user(retvers, &driver_version, sizeof (*retvers)))
1324 return -EFAULT;
1325 return 0;
1326 }
1327
1328 /* IOCTL call handler into the driver */
1329 static int rp_ioctl(struct tty_struct *tty,
1330 unsigned int cmd, unsigned long arg)
1331 {
1332 struct r_port *info = tty->driver_data;
1333 void __user *argp = (void __user *)arg;
1334 int ret = 0;
1335
1336 if (cmd != RCKP_GET_PORTS && rocket_paranoia_check(info, "rp_ioctl"))
1337 return -ENXIO;
1338
1339 switch (cmd) {
1340 case RCKP_GET_STRUCT:
1341 if (copy_to_user(argp, info, sizeof (struct r_port)))
1342 ret = -EFAULT;
1343 break;
1344 case RCKP_GET_CONFIG:
1345 ret = get_config(info, argp);
1346 break;
1347 case RCKP_SET_CONFIG:
1348 ret = set_config(tty, info, argp);
1349 break;
1350 case RCKP_GET_PORTS:
1351 ret = get_ports(info, argp);
1352 break;
1353 case RCKP_RESET_RM2:
1354 ret = reset_rm2(info, argp);
1355 break;
1356 case RCKP_GET_VERSION:
1357 ret = get_version(info, argp);
1358 break;
1359 default:
1360 ret = -ENOIOCTLCMD;
1361 }
1362 return ret;
1363 }
1364
1365 static void rp_send_xchar(struct tty_struct *tty, char ch)
1366 {
1367 struct r_port *info = tty->driver_data;
1368 CHANNEL_t *cp;
1369
1370 if (rocket_paranoia_check(info, "rp_send_xchar"))
1371 return;
1372
1373 cp = &info->channel;
1374 if (sGetTxCnt(cp))
1375 sWriteTxPrioByte(cp, ch);
1376 else
1377 sWriteTxByte(sGetTxRxDataIO(cp), ch);
1378 }
1379
1380 static void rp_throttle(struct tty_struct *tty)
1381 {
1382 struct r_port *info = tty->driver_data;
1383
1384 #ifdef ROCKET_DEBUG_THROTTLE
1385 printk(KERN_INFO "throttle %s: %d....\n", tty->name,
1386 tty->ldisc.chars_in_buffer(tty));
1387 #endif
1388
1389 if (rocket_paranoia_check(info, "rp_throttle"))
1390 return;
1391
1392 if (I_IXOFF(tty))
1393 rp_send_xchar(tty, STOP_CHAR(tty));
1394
1395 sClrRTS(&info->channel);
1396 }
1397
1398 static void rp_unthrottle(struct tty_struct *tty)
1399 {
1400 struct r_port *info = tty->driver_data;
1401 #ifdef ROCKET_DEBUG_THROTTLE
1402 printk(KERN_INFO "unthrottle %s: %d....\n", tty->name,
1403 tty->ldisc.chars_in_buffer(tty));
1404 #endif
1405
1406 if (rocket_paranoia_check(info, "rp_throttle"))
1407 return;
1408
1409 if (I_IXOFF(tty))
1410 rp_send_xchar(tty, START_CHAR(tty));
1411
1412 sSetRTS(&info->channel);
1413 }
1414
1415 /*
1416 * ------------------------------------------------------------
1417 * rp_stop() and rp_start()
1418 *
1419 * This routines are called before setting or resetting tty->stopped.
1420 * They enable or disable transmitter interrupts, as necessary.
1421 * ------------------------------------------------------------
1422 */
1423 static void rp_stop(struct tty_struct *tty)
1424 {
1425 struct r_port *info = tty->driver_data;
1426
1427 #ifdef ROCKET_DEBUG_FLOW
1428 printk(KERN_INFO "stop %s: %d %d....\n", tty->name,
1429 info->xmit_cnt, info->xmit_fifo_room);
1430 #endif
1431
1432 if (rocket_paranoia_check(info, "rp_stop"))
1433 return;
1434
1435 if (sGetTxCnt(&info->channel))
1436 sDisTransmit(&info->channel);
1437 }
1438
1439 static void rp_start(struct tty_struct *tty)
1440 {
1441 struct r_port *info = tty->driver_data;
1442
1443 #ifdef ROCKET_DEBUG_FLOW
1444 printk(KERN_INFO "start %s: %d %d....\n", tty->name,
1445 info->xmit_cnt, info->xmit_fifo_room);
1446 #endif
1447
1448 if (rocket_paranoia_check(info, "rp_stop"))
1449 return;
1450
1451 sEnTransmit(&info->channel);
1452 set_bit((info->aiop * 8) + info->chan,
1453 (void *) &xmit_flags[info->board]);
1454 }
1455
1456 /*
1457 * rp_wait_until_sent() --- wait until the transmitter is empty
1458 */
1459 static void rp_wait_until_sent(struct tty_struct *tty, int timeout)
1460 {
1461 struct r_port *info = tty->driver_data;
1462 CHANNEL_t *cp;
1463 unsigned long orig_jiffies;
1464 int check_time, exit_time;
1465 int txcnt;
1466
1467 if (rocket_paranoia_check(info, "rp_wait_until_sent"))
1468 return;
1469
1470 cp = &info->channel;
1471
1472 orig_jiffies = jiffies;
1473 #ifdef ROCKET_DEBUG_WAIT_UNTIL_SENT
1474 printk(KERN_INFO "In RP_wait_until_sent(%d) (jiff=%lu)...\n", timeout,
1475 jiffies);
1476 printk(KERN_INFO "cps=%d...\n", info->cps);
1477 #endif
1478 while (1) {
1479 txcnt = sGetTxCnt(cp);
1480 if (!txcnt) {
1481 if (sGetChanStatusLo(cp) & TXSHRMT)
1482 break;
1483 check_time = (HZ / info->cps) / 5;
1484 } else {
1485 check_time = HZ * txcnt / info->cps;
1486 }
1487 if (timeout) {
1488 exit_time = orig_jiffies + timeout - jiffies;
1489 if (exit_time <= 0)
1490 break;
1491 if (exit_time < check_time)
1492 check_time = exit_time;
1493 }
1494 if (check_time == 0)
1495 check_time = 1;
1496 #ifdef ROCKET_DEBUG_WAIT_UNTIL_SENT
1497 printk(KERN_INFO "txcnt = %d (jiff=%lu,check=%d)...\n", txcnt,
1498 jiffies, check_time);
1499 #endif
1500 msleep_interruptible(jiffies_to_msecs(check_time));
1501 if (signal_pending(current))
1502 break;
1503 }
1504 __set_current_state(TASK_RUNNING);
1505 #ifdef ROCKET_DEBUG_WAIT_UNTIL_SENT
1506 printk(KERN_INFO "txcnt = %d (jiff=%lu)...done\n", txcnt, jiffies);
1507 #endif
1508 }
1509
1510 /*
1511 * rp_hangup() --- called by tty_hangup() when a hangup is signaled.
1512 */
1513 static void rp_hangup(struct tty_struct *tty)
1514 {
1515 CHANNEL_t *cp;
1516 struct r_port *info = tty->driver_data;
1517 unsigned long flags;
1518
1519 if (rocket_paranoia_check(info, "rp_hangup"))
1520 return;
1521
1522 #if (defined(ROCKET_DEBUG_OPEN) || defined(ROCKET_DEBUG_HANGUP))
1523 printk(KERN_INFO "rp_hangup of ttyR%d...\n", info->line);
1524 #endif
1525 rp_flush_buffer(tty);
1526 spin_lock_irqsave(&info->port.lock, flags);
1527 if (info->port.flags & ASYNC_CLOSING) {
1528 spin_unlock_irqrestore(&info->port.lock, flags);
1529 return;
1530 }
1531 if (info->port.count)
1532 atomic_dec(&rp_num_ports_open);
1533 clear_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]);
1534 spin_unlock_irqrestore(&info->port.lock, flags);
1535
1536 tty_port_hangup(&info->port);
1537
1538 cp = &info->channel;
1539 sDisRxFIFO(cp);
1540 sDisTransmit(cp);
1541 sDisInterrupts(cp, (TXINT_EN | MCINT_EN | RXINT_EN | SRCINT_EN | CHANINT_EN));
1542 sDisCTSFlowCtl(cp);
1543 sDisTxSoftFlowCtl(cp);
1544 sClrTxXOFF(cp);
1545 clear_bit(ASYNCB_INITIALIZED, &info->port.flags);
1546
1547 wake_up_interruptible(&info->port.open_wait);
1548 }
1549
1550 /*
1551 * Exception handler - write char routine. The RocketPort driver uses a
1552 * double-buffering strategy, with the twist that if the in-memory CPU
1553 * buffer is empty, and there's space in the transmit FIFO, the
1554 * writing routines will write directly to transmit FIFO.
1555 * Write buffer and counters protected by spinlocks
1556 */
1557 static int rp_put_char(struct tty_struct *tty, unsigned char ch)
1558 {
1559 struct r_port *info = tty->driver_data;
1560 CHANNEL_t *cp;
1561 unsigned long flags;
1562
1563 if (rocket_paranoia_check(info, "rp_put_char"))
1564 return 0;
1565
1566 /*
1567 * Grab the port write mutex, locking out other processes that try to
1568 * write to this port
1569 */
1570 mutex_lock(&info->write_mtx);
1571
1572 #ifdef ROCKET_DEBUG_WRITE
1573 printk(KERN_INFO "rp_put_char %c...\n", ch);
1574 #endif
1575
1576 spin_lock_irqsave(&info->slock, flags);
1577 cp = &info->channel;
1578
1579 if (!tty->stopped && !tty->hw_stopped && info->xmit_fifo_room == 0)
1580 info->xmit_fifo_room = TXFIFO_SIZE - sGetTxCnt(cp);
1581
1582 if (tty->stopped || tty->hw_stopped || info->xmit_fifo_room == 0 || info->xmit_cnt != 0) {
1583 info->xmit_buf[info->xmit_head++] = ch;
1584 info->xmit_head &= XMIT_BUF_SIZE - 1;
1585 info->xmit_cnt++;
1586 set_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]);
1587 } else {
1588 sOutB(sGetTxRxDataIO(cp), ch);
1589 info->xmit_fifo_room--;
1590 }
1591 spin_unlock_irqrestore(&info->slock, flags);
1592 mutex_unlock(&info->write_mtx);
1593 return 1;
1594 }
1595
1596 /*
1597 * Exception handler - write routine, called when user app writes to the device.
1598 * A per port write mutex is used to protect from another process writing to
1599 * this port at the same time. This other process could be running on the other CPU
1600 * or get control of the CPU if the copy_from_user() blocks due to a page fault (swapped out).
1601 * Spinlocks protect the info xmit members.
1602 */
1603 static int rp_write(struct tty_struct *tty,
1604 const unsigned char *buf, int count)
1605 {
1606 struct r_port *info = tty->driver_data;
1607 CHANNEL_t *cp;
1608 const unsigned char *b;
1609 int c, retval = 0;
1610 unsigned long flags;
1611
1612 if (count <= 0 || rocket_paranoia_check(info, "rp_write"))
1613 return 0;
1614
1615 if (mutex_lock_interruptible(&info->write_mtx))
1616 return -ERESTARTSYS;
1617
1618 #ifdef ROCKET_DEBUG_WRITE
1619 printk(KERN_INFO "rp_write %d chars...\n", count);
1620 #endif
1621 cp = &info->channel;
1622
1623 if (!tty->stopped && !tty->hw_stopped && info->xmit_fifo_room < count)
1624 info->xmit_fifo_room = TXFIFO_SIZE - sGetTxCnt(cp);
1625
1626 /*
1627 * If the write queue for the port is empty, and there is FIFO space, stuff bytes
1628 * into FIFO. Use the write queue for temp storage.
1629 */
1630 if (!tty->stopped && !tty->hw_stopped && info->xmit_cnt == 0 && info->xmit_fifo_room > 0) {
1631 c = min(count, info->xmit_fifo_room);
1632 b = buf;
1633
1634 /* Push data into FIFO, 2 bytes at a time */
1635 sOutStrW(sGetTxRxDataIO(cp), (unsigned short *) b, c / 2);
1636
1637 /* If there is a byte remaining, write it */
1638 if (c & 1)
1639 sOutB(sGetTxRxDataIO(cp), b[c - 1]);
1640
1641 retval += c;
1642 buf += c;
1643 count -= c;
1644
1645 spin_lock_irqsave(&info->slock, flags);
1646 info->xmit_fifo_room -= c;
1647 spin_unlock_irqrestore(&info->slock, flags);
1648 }
1649
1650 /* If count is zero, we wrote it all and are done */
1651 if (!count)
1652 goto end;
1653
1654 /* Write remaining data into the port's xmit_buf */
1655 while (1) {
1656 /* Hung up ? */
1657 if (!test_bit(ASYNCB_NORMAL_ACTIVE, &info->port.flags))
1658 goto end;
1659 c = min(count, XMIT_BUF_SIZE - info->xmit_cnt - 1);
1660 c = min(c, XMIT_BUF_SIZE - info->xmit_head);
1661 if (c <= 0)
1662 break;
1663
1664 b = buf;
1665 memcpy(info->xmit_buf + info->xmit_head, b, c);
1666
1667 spin_lock_irqsave(&info->slock, flags);
1668 info->xmit_head =
1669 (info->xmit_head + c) & (XMIT_BUF_SIZE - 1);
1670 info->xmit_cnt += c;
1671 spin_unlock_irqrestore(&info->slock, flags);
1672
1673 buf += c;
1674 count -= c;
1675 retval += c;
1676 }
1677
1678 if ((retval > 0) && !tty->stopped && !tty->hw_stopped)
1679 set_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]);
1680
1681 end:
1682 if (info->xmit_cnt < WAKEUP_CHARS) {
1683 tty_wakeup(tty);
1684 #ifdef ROCKETPORT_HAVE_POLL_WAIT
1685 wake_up_interruptible(&tty->poll_wait);
1686 #endif
1687 }
1688 mutex_unlock(&info->write_mtx);
1689 return retval;
1690 }
1691
1692 /*
1693 * Return the number of characters that can be sent. We estimate
1694 * only using the in-memory transmit buffer only, and ignore the
1695 * potential space in the transmit FIFO.
1696 */
1697 static int rp_write_room(struct tty_struct *tty)
1698 {
1699 struct r_port *info = tty->driver_data;
1700 int ret;
1701
1702 if (rocket_paranoia_check(info, "rp_write_room"))
1703 return 0;
1704
1705 ret = XMIT_BUF_SIZE - info->xmit_cnt - 1;
1706 if (ret < 0)
1707 ret = 0;
1708 #ifdef ROCKET_DEBUG_WRITE
1709 printk(KERN_INFO "rp_write_room returns %d...\n", ret);
1710 #endif
1711 return ret;
1712 }
1713
1714 /*
1715 * Return the number of characters in the buffer. Again, this only
1716 * counts those characters in the in-memory transmit buffer.
1717 */
1718 static int rp_chars_in_buffer(struct tty_struct *tty)
1719 {
1720 struct r_port *info = tty->driver_data;
1721
1722 if (rocket_paranoia_check(info, "rp_chars_in_buffer"))
1723 return 0;
1724
1725 #ifdef ROCKET_DEBUG_WRITE
1726 printk(KERN_INFO "rp_chars_in_buffer returns %d...\n", info->xmit_cnt);
1727 #endif
1728 return info->xmit_cnt;
1729 }
1730
1731 /*
1732 * Flushes the TX fifo for a port, deletes data in the xmit_buf stored in the
1733 * r_port struct for the port. Note that spinlock are used to protect info members,
1734 * do not call this function if the spinlock is already held.
1735 */
1736 static void rp_flush_buffer(struct tty_struct *tty)
1737 {
1738 struct r_port *info = tty->driver_data;
1739 CHANNEL_t *cp;
1740 unsigned long flags;
1741
1742 if (rocket_paranoia_check(info, "rp_flush_buffer"))
1743 return;
1744
1745 spin_lock_irqsave(&info->slock, flags);
1746 info->xmit_cnt = info->xmit_head = info->xmit_tail = 0;
1747 spin_unlock_irqrestore(&info->slock, flags);
1748
1749 #ifdef ROCKETPORT_HAVE_POLL_WAIT
1750 wake_up_interruptible(&tty->poll_wait);
1751 #endif
1752 tty_wakeup(tty);
1753
1754 cp = &info->channel;
1755 sFlushTxFIFO(cp);
1756 }
1757
1758 #ifdef CONFIG_PCI
1759
1760 static struct pci_device_id __devinitdata __used rocket_pci_ids[] = {
1761 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_ANY_ID) },
1762 { }
1763 };
1764 MODULE_DEVICE_TABLE(pci, rocket_pci_ids);
1765
1766 /*
1767 * Called when a PCI card is found. Retrieves and stores model information,
1768 * init's aiopic and serial port hardware.
1769 * Inputs: i is the board number (0-n)
1770 */
1771 static __init int register_PCI(int i, struct pci_dev *dev)
1772 {
1773 int num_aiops, aiop, max_num_aiops, num_chan, chan;
1774 unsigned int aiopio[MAX_AIOPS_PER_BOARD];
1775 CONTROLLER_t *ctlp;
1776
1777 int fast_clock = 0;
1778 int altChanRingIndicator = 0;
1779 int ports_per_aiop = 8;
1780 WordIO_t ConfigIO = 0;
1781 ByteIO_t UPCIRingInd = 0;
1782
1783 if (!dev || pci_enable_device(dev))
1784 return 0;
1785
1786 rcktpt_io_addr[i] = pci_resource_start(dev, 0);
1787
1788 rcktpt_type[i] = ROCKET_TYPE_NORMAL;
1789 rocketModel[i].loadrm2 = 0;
1790 rocketModel[i].startingPortNumber = nextLineNumber;
1791
1792 /* Depending on the model, set up some config variables */
1793 switch (dev->device) {
1794 case PCI_DEVICE_ID_RP4QUAD:
1795 max_num_aiops = 1;
1796 ports_per_aiop = 4;
1797 rocketModel[i].model = MODEL_RP4QUAD;
1798 strcpy(rocketModel[i].modelString, "RocketPort 4 port w/quad cable");
1799 rocketModel[i].numPorts = 4;
1800 break;
1801 case PCI_DEVICE_ID_RP8OCTA:
1802 max_num_aiops = 1;
1803 rocketModel[i].model = MODEL_RP8OCTA;
1804 strcpy(rocketModel[i].modelString, "RocketPort 8 port w/octa cable");
1805 rocketModel[i].numPorts = 8;
1806 break;
1807 case PCI_DEVICE_ID_URP8OCTA:
1808 max_num_aiops = 1;
1809 rocketModel[i].model = MODEL_UPCI_RP8OCTA;
1810 strcpy(rocketModel[i].modelString, "RocketPort UPCI 8 port w/octa cable");
1811 rocketModel[i].numPorts = 8;
1812 break;
1813 case PCI_DEVICE_ID_RP8INTF:
1814 max_num_aiops = 1;
1815 rocketModel[i].model = MODEL_RP8INTF;
1816 strcpy(rocketModel[i].modelString, "RocketPort 8 port w/external I/F");
1817 rocketModel[i].numPorts = 8;
1818 break;
1819 case PCI_DEVICE_ID_URP8INTF:
1820 max_num_aiops = 1;
1821 rocketModel[i].model = MODEL_UPCI_RP8INTF;
1822 strcpy(rocketModel[i].modelString, "RocketPort UPCI 8 port w/external I/F");
1823 rocketModel[i].numPorts = 8;
1824 break;
1825 case PCI_DEVICE_ID_RP8J:
1826 max_num_aiops = 1;
1827 rocketModel[i].model = MODEL_RP8J;
1828 strcpy(rocketModel[i].modelString, "RocketPort 8 port w/RJ11 connectors");
1829 rocketModel[i].numPorts = 8;
1830 break;
1831 case PCI_DEVICE_ID_RP4J:
1832 max_num_aiops = 1;
1833 ports_per_aiop = 4;
1834 rocketModel[i].model = MODEL_RP4J;
1835 strcpy(rocketModel[i].modelString, "RocketPort 4 port w/RJ45 connectors");
1836 rocketModel[i].numPorts = 4;
1837 break;
1838 case PCI_DEVICE_ID_RP8SNI:
1839 max_num_aiops = 1;
1840 rocketModel[i].model = MODEL_RP8SNI;
1841 strcpy(rocketModel[i].modelString, "RocketPort 8 port w/ custom DB78");
1842 rocketModel[i].numPorts = 8;
1843 break;
1844 case PCI_DEVICE_ID_RP16SNI:
1845 max_num_aiops = 2;
1846 rocketModel[i].model = MODEL_RP16SNI;
1847 strcpy(rocketModel[i].modelString, "RocketPort 16 port w/ custom DB78");
1848 rocketModel[i].numPorts = 16;
1849 break;
1850 case PCI_DEVICE_ID_RP16INTF:
1851 max_num_aiops = 2;
1852 rocketModel[i].model = MODEL_RP16INTF;
1853 strcpy(rocketModel[i].modelString, "RocketPort 16 port w/external I/F");
1854 rocketModel[i].numPorts = 16;
1855 break;
1856 case PCI_DEVICE_ID_URP16INTF:
1857 max_num_aiops = 2;
1858 rocketModel[i].model = MODEL_UPCI_RP16INTF;
1859 strcpy(rocketModel[i].modelString, "RocketPort UPCI 16 port w/external I/F");
1860 rocketModel[i].numPorts = 16;
1861 break;
1862 case PCI_DEVICE_ID_CRP16INTF:
1863 max_num_aiops = 2;
1864 rocketModel[i].model = MODEL_CPCI_RP16INTF;
1865 strcpy(rocketModel[i].modelString, "RocketPort Compact PCI 16 port w/external I/F");
1866 rocketModel[i].numPorts = 16;
1867 break;
1868 case PCI_DEVICE_ID_RP32INTF:
1869 max_num_aiops = 4;
1870 rocketModel[i].model = MODEL_RP32INTF;
1871 strcpy(rocketModel[i].modelString, "RocketPort 32 port w/external I/F");
1872 rocketModel[i].numPorts = 32;
1873 break;
1874 case PCI_DEVICE_ID_URP32INTF:
1875 max_num_aiops = 4;
1876 rocketModel[i].model = MODEL_UPCI_RP32INTF;
1877 strcpy(rocketModel[i].modelString, "RocketPort UPCI 32 port w/external I/F");
1878 rocketModel[i].numPorts = 32;
1879 break;
1880 case PCI_DEVICE_ID_RPP4:
1881 max_num_aiops = 1;
1882 ports_per_aiop = 4;
1883 altChanRingIndicator++;
1884 fast_clock++;
1885 rocketModel[i].model = MODEL_RPP4;
1886 strcpy(rocketModel[i].modelString, "RocketPort Plus 4 port");
1887 rocketModel[i].numPorts = 4;
1888 break;
1889 case PCI_DEVICE_ID_RPP8:
1890 max_num_aiops = 2;
1891 ports_per_aiop = 4;
1892 altChanRingIndicator++;
1893 fast_clock++;
1894 rocketModel[i].model = MODEL_RPP8;
1895 strcpy(rocketModel[i].modelString, "RocketPort Plus 8 port");
1896 rocketModel[i].numPorts = 8;
1897 break;
1898 case PCI_DEVICE_ID_RP2_232:
1899 max_num_aiops = 1;
1900 ports_per_aiop = 2;
1901 altChanRingIndicator++;
1902 fast_clock++;
1903 rocketModel[i].model = MODEL_RP2_232;
1904 strcpy(rocketModel[i].modelString, "RocketPort Plus 2 port RS232");
1905 rocketModel[i].numPorts = 2;
1906 break;
1907 case PCI_DEVICE_ID_RP2_422:
1908 max_num_aiops = 1;
1909 ports_per_aiop = 2;
1910 altChanRingIndicator++;
1911 fast_clock++;
1912 rocketModel[i].model = MODEL_RP2_422;
1913 strcpy(rocketModel[i].modelString, "RocketPort Plus 2 port RS422");
1914 rocketModel[i].numPorts = 2;
1915 break;
1916 case PCI_DEVICE_ID_RP6M:
1917
1918 max_num_aiops = 1;
1919 ports_per_aiop = 6;
1920
1921 /* If revision is 1, the rocketmodem flash must be loaded.
1922 * If it is 2 it is a "socketed" version. */
1923 if (dev->revision == 1) {
1924 rcktpt_type[i] = ROCKET_TYPE_MODEMII;
1925 rocketModel[i].loadrm2 = 1;
1926 } else {
1927 rcktpt_type[i] = ROCKET_TYPE_MODEM;
1928 }
1929
1930 rocketModel[i].model = MODEL_RP6M;
1931 strcpy(rocketModel[i].modelString, "RocketModem 6 port");
1932 rocketModel[i].numPorts = 6;
1933 break;
1934 case PCI_DEVICE_ID_RP4M:
1935 max_num_aiops = 1;
1936 ports_per_aiop = 4;
1937 if (dev->revision == 1) {
1938 rcktpt_type[i] = ROCKET_TYPE_MODEMII;
1939 rocketModel[i].loadrm2 = 1;
1940 } else {
1941 rcktpt_type[i] = ROCKET_TYPE_MODEM;
1942 }
1943
1944 rocketModel[i].model = MODEL_RP4M;
1945 strcpy(rocketModel[i].modelString, "RocketModem 4 port");
1946 rocketModel[i].numPorts = 4;
1947 break;
1948 default:
1949 max_num_aiops = 0;
1950 break;
1951 }
1952
1953 /*
1954 * Check for UPCI boards.
1955 */
1956
1957 switch (dev->device) {
1958 case PCI_DEVICE_ID_URP32INTF:
1959 case PCI_DEVICE_ID_URP8INTF:
1960 case PCI_DEVICE_ID_URP16INTF:
1961 case PCI_DEVICE_ID_CRP16INTF:
1962 case PCI_DEVICE_ID_URP8OCTA:
1963 rcktpt_io_addr[i] = pci_resource_start(dev, 2);
1964 ConfigIO = pci_resource_start(dev, 1);
1965 if (dev->device == PCI_DEVICE_ID_URP8OCTA) {
1966 UPCIRingInd = rcktpt_io_addr[i] + _PCI_9030_RING_IND;
1967
1968 /*
1969 * Check for octa or quad cable.
1970 */
1971 if (!
1972 (sInW(ConfigIO + _PCI_9030_GPIO_CTRL) &
1973 PCI_GPIO_CTRL_8PORT)) {
1974 ports_per_aiop = 4;
1975 rocketModel[i].numPorts = 4;
1976 }
1977 }
1978 break;
1979 case PCI_DEVICE_ID_UPCI_RM3_8PORT:
1980 max_num_aiops = 1;
1981 rocketModel[i].model = MODEL_UPCI_RM3_8PORT;
1982 strcpy(rocketModel[i].modelString, "RocketModem III 8 port");
1983 rocketModel[i].numPorts = 8;
1984 rcktpt_io_addr[i] = pci_resource_start(dev, 2);
1985 UPCIRingInd = rcktpt_io_addr[i] + _PCI_9030_RING_IND;
1986 ConfigIO = pci_resource_start(dev, 1);
1987 rcktpt_type[i] = ROCKET_TYPE_MODEMIII;
1988 break;
1989 case PCI_DEVICE_ID_UPCI_RM3_4PORT:
1990 max_num_aiops = 1;
1991 rocketModel[i].model = MODEL_UPCI_RM3_4PORT;
1992 strcpy(rocketModel[i].modelString, "RocketModem III 4 port");
1993 rocketModel[i].numPorts = 4;
1994 rcktpt_io_addr[i] = pci_resource_start(dev, 2);
1995 UPCIRingInd = rcktpt_io_addr[i] + _PCI_9030_RING_IND;
1996 ConfigIO = pci_resource_start(dev, 1);
1997 rcktpt_type[i] = ROCKET_TYPE_MODEMIII;
1998 break;
1999 default:
2000 break;
2001 }
2002
2003 if (fast_clock) {
2004 sClockPrescale = 0x12; /* mod 2 (divide by 3) */
2005 rp_baud_base[i] = 921600;
2006 } else {
2007 /*
2008 * If support_low_speed is set, use the slow clock
2009 * prescale, which supports 50 bps
2010 */
2011 if (support_low_speed) {
2012 /* mod 9 (divide by 10) prescale */
2013 sClockPrescale = 0x19;
2014 rp_baud_base[i] = 230400;
2015 } else {
2016 /* mod 4 (divide by 5) prescale */
2017 sClockPrescale = 0x14;
2018 rp_baud_base[i] = 460800;
2019 }
2020 }
2021
2022 for (aiop = 0; aiop < max_num_aiops; aiop++)
2023 aiopio[aiop] = rcktpt_io_addr[i] + (aiop * 0x40);
2024 ctlp = sCtlNumToCtlPtr(i);
2025 num_aiops = sPCIInitController(ctlp, i, aiopio, max_num_aiops, ConfigIO, 0, FREQ_DIS, 0, altChanRingIndicator, UPCIRingInd);
2026 for (aiop = 0; aiop < max_num_aiops; aiop++)
2027 ctlp->AiopNumChan[aiop] = ports_per_aiop;
2028
2029 dev_info(&dev->dev, "comtrol PCI controller #%d found at "
2030 "address %04lx, %d AIOP(s) (%s), creating ttyR%d - %ld\n",
2031 i, rcktpt_io_addr[i], num_aiops, rocketModel[i].modelString,
2032 rocketModel[i].startingPortNumber,
2033 rocketModel[i].startingPortNumber + rocketModel[i].numPorts-1);
2034
2035 if (num_aiops <= 0) {
2036 rcktpt_io_addr[i] = 0;
2037 return (0);
2038 }
2039 is_PCI[i] = 1;
2040
2041 /* Reset the AIOPIC, init the serial ports */
2042 for (aiop = 0; aiop < num_aiops; aiop++) {
2043 sResetAiopByNum(ctlp, aiop);
2044 num_chan = ports_per_aiop;
2045 for (chan = 0; chan < num_chan; chan++)
2046 init_r_port(i, aiop, chan, dev);
2047 }
2048
2049 /* Rocket modems must be reset */
2050 if ((rcktpt_type[i] == ROCKET_TYPE_MODEM) ||
2051 (rcktpt_type[i] == ROCKET_TYPE_MODEMII) ||
2052 (rcktpt_type[i] == ROCKET_TYPE_MODEMIII)) {
2053 num_chan = ports_per_aiop;
2054 for (chan = 0; chan < num_chan; chan++)
2055 sPCIModemReset(ctlp, chan, 1);
2056 msleep(500);
2057 for (chan = 0; chan < num_chan; chan++)
2058 sPCIModemReset(ctlp, chan, 0);
2059 msleep(500);
2060 rmSpeakerReset(ctlp, rocketModel[i].model);
2061 }
2062 return (1);
2063 }
2064
2065 /*
2066 * Probes for PCI cards, inits them if found
2067 * Input: board_found = number of ISA boards already found, or the
2068 * starting board number
2069 * Returns: Number of PCI boards found
2070 */
2071 static int __init init_PCI(int boards_found)
2072 {
2073 struct pci_dev *dev = NULL;
2074 int count = 0;
2075
2076 /* Work through the PCI device list, pulling out ours */
2077 while ((dev = pci_get_device(PCI_VENDOR_ID_RP, PCI_ANY_ID, dev))) {
2078 if (register_PCI(count + boards_found, dev))
2079 count++;
2080 }
2081 return (count);
2082 }
2083
2084 #endif /* CONFIG_PCI */
2085
2086 /*
2087 * Probes for ISA cards
2088 * Input: i = the board number to look for
2089 * Returns: 1 if board found, 0 else
2090 */
2091 static int __init init_ISA(int i)
2092 {
2093 int num_aiops, num_chan = 0, total_num_chan = 0;
2094 int aiop, chan;
2095 unsigned int aiopio[MAX_AIOPS_PER_BOARD];
2096 CONTROLLER_t *ctlp;
2097 char *type_string;
2098
2099 /* If io_addr is zero, no board configured */
2100 if (rcktpt_io_addr[i] == 0)
2101 return (0);
2102
2103 /* Reserve the IO region */
2104 if (!request_region(rcktpt_io_addr[i], 64, "Comtrol RocketPort")) {
2105 printk(KERN_ERR "Unable to reserve IO region for configured "
2106 "ISA RocketPort at address 0x%lx, board not "
2107 "installed...\n", rcktpt_io_addr[i]);
2108 rcktpt_io_addr[i] = 0;
2109 return (0);
2110 }
2111
2112 ctlp = sCtlNumToCtlPtr(i);
2113
2114 ctlp->boardType = rcktpt_type[i];
2115
2116 switch (rcktpt_type[i]) {
2117 case ROCKET_TYPE_PC104:
2118 type_string = "(PC104)";
2119 break;
2120 case ROCKET_TYPE_MODEM:
2121 type_string = "(RocketModem)";
2122 break;
2123 case ROCKET_TYPE_MODEMII:
2124 type_string = "(RocketModem II)";
2125 break;
2126 default:
2127 type_string = "";
2128 break;
2129 }
2130
2131 /*
2132 * If support_low_speed is set, use the slow clock prescale,
2133 * which supports 50 bps
2134 */
2135 if (support_low_speed) {
2136 sClockPrescale = 0x19; /* mod 9 (divide by 10) prescale */
2137 rp_baud_base[i] = 230400;
2138 } else {
2139 sClockPrescale = 0x14; /* mod 4 (divide by 5) prescale */
2140 rp_baud_base[i] = 460800;
2141 }
2142
2143 for (aiop = 0; aiop < MAX_AIOPS_PER_BOARD; aiop++)
2144 aiopio[aiop] = rcktpt_io_addr[i] + (aiop * 0x400);
2145
2146 num_aiops = sInitController(ctlp, i, controller + (i * 0x400), aiopio, MAX_AIOPS_PER_BOARD, 0, FREQ_DIS, 0);
2147
2148 if (ctlp->boardType == ROCKET_TYPE_PC104) {
2149 sEnAiop(ctlp, 2); /* only one AIOPIC, but these */
2150 sEnAiop(ctlp, 3); /* CSels used for other stuff */
2151 }
2152
2153 /* If something went wrong initing the AIOP's release the ISA IO memory */
2154 if (num_aiops <= 0) {
2155 release_region(rcktpt_io_addr[i], 64);
2156 rcktpt_io_addr[i] = 0;
2157 return (0);
2158 }
2159
2160 rocketModel[i].startingPortNumber = nextLineNumber;
2161
2162 for (aiop = 0; aiop < num_aiops; aiop++) {
2163 sResetAiopByNum(ctlp, aiop);
2164 sEnAiop(ctlp, aiop);
2165 num_chan = sGetAiopNumChan(ctlp, aiop);
2166 total_num_chan += num_chan;
2167 for (chan = 0; chan < num_chan; chan++)
2168 init_r_port(i, aiop, chan, NULL);
2169 }
2170 is_PCI[i] = 0;
2171 if ((rcktpt_type[i] == ROCKET_TYPE_MODEM) || (rcktpt_type[i] == ROCKET_TYPE_MODEMII)) {
2172 num_chan = sGetAiopNumChan(ctlp, 0);
2173 total_num_chan = num_chan;
2174 for (chan = 0; chan < num_chan; chan++)
2175 sModemReset(ctlp, chan, 1);
2176 msleep(500);
2177 for (chan = 0; chan < num_chan; chan++)
2178 sModemReset(ctlp, chan, 0);
2179 msleep(500);
2180 strcpy(rocketModel[i].modelString, "RocketModem ISA");
2181 } else {
2182 strcpy(rocketModel[i].modelString, "RocketPort ISA");
2183 }
2184 rocketModel[i].numPorts = total_num_chan;
2185 rocketModel[i].model = MODEL_ISA;
2186
2187 printk(KERN_INFO "RocketPort ISA card #%d found at 0x%lx - %d AIOPs %s\n",
2188 i, rcktpt_io_addr[i], num_aiops, type_string);
2189
2190 printk(KERN_INFO "Installing %s, creating /dev/ttyR%d - %ld\n",
2191 rocketModel[i].modelString,
2192 rocketModel[i].startingPortNumber,
2193 rocketModel[i].startingPortNumber +
2194 rocketModel[i].numPorts - 1);
2195
2196 return (1);
2197 }
2198
2199 static const struct tty_operations rocket_ops = {
2200 .open = rp_open,
2201 .close = rp_close,
2202 .write = rp_write,
2203 .put_char = rp_put_char,
2204 .write_room = rp_write_room,
2205 .chars_in_buffer = rp_chars_in_buffer,
2206 .flush_buffer = rp_flush_buffer,
2207 .ioctl = rp_ioctl,
2208 .throttle = rp_throttle,
2209 .unthrottle = rp_unthrottle,
2210 .set_termios = rp_set_termios,
2211 .stop = rp_stop,
2212 .start = rp_start,
2213 .hangup = rp_hangup,
2214 .break_ctl = rp_break,
2215 .send_xchar = rp_send_xchar,
2216 .wait_until_sent = rp_wait_until_sent,
2217 .tiocmget = rp_tiocmget,
2218 .tiocmset = rp_tiocmset,
2219 };
2220
2221 static const struct tty_port_operations rocket_port_ops = {
2222 .carrier_raised = carrier_raised,
2223 .dtr_rts = dtr_rts,
2224 };
2225
2226 /*
2227 * The module "startup" routine; it's run when the module is loaded.
2228 */
2229 static int __init rp_init(void)
2230 {
2231 int ret = -ENOMEM, pci_boards_found, isa_boards_found, i;
2232
2233 printk(KERN_INFO "RocketPort device driver module, version %s, %s\n",
2234 ROCKET_VERSION, ROCKET_DATE);
2235
2236 rocket_driver = alloc_tty_driver(MAX_RP_PORTS);
2237 if (!rocket_driver)
2238 goto err;
2239
2240 /*
2241 * If board 1 is non-zero, there is at least one ISA configured. If controller is
2242 * zero, use the default controller IO address of board1 + 0x40.
2243 */
2244 if (board1) {
2245 if (controller == 0)
2246 controller = board1 + 0x40;
2247 } else {
2248 controller = 0; /* Used as a flag, meaning no ISA boards */
2249 }
2250
2251 /* If an ISA card is configured, reserve the 4 byte IO space for the Mudbac controller */
2252 if (controller && (!request_region(controller, 4, "Comtrol RocketPort"))) {
2253 printk(KERN_ERR "Unable to reserve IO region for first "
2254 "configured ISA RocketPort controller 0x%lx. "
2255 "Driver exiting\n", controller);
2256 ret = -EBUSY;
2257 goto err_tty;
2258 }
2259
2260 /* Store ISA variable retrieved from command line or .conf file. */
2261 rcktpt_io_addr[0] = board1;
2262 rcktpt_io_addr[1] = board2;
2263 rcktpt_io_addr[2] = board3;
2264 rcktpt_io_addr[3] = board4;
2265
2266 rcktpt_type[0] = modem1 ? ROCKET_TYPE_MODEM : ROCKET_TYPE_NORMAL;
2267 rcktpt_type[0] = pc104_1[0] ? ROCKET_TYPE_PC104 : rcktpt_type[0];
2268 rcktpt_type[1] = modem2 ? ROCKET_TYPE_MODEM : ROCKET_TYPE_NORMAL;
2269 rcktpt_type[1] = pc104_2[0] ? ROCKET_TYPE_PC104 : rcktpt_type[1];
2270 rcktpt_type[2] = modem3 ? ROCKET_TYPE_MODEM : ROCKET_TYPE_NORMAL;
2271 rcktpt_type[2] = pc104_3[0] ? ROCKET_TYPE_PC104 : rcktpt_type[2];
2272 rcktpt_type[3] = modem4 ? ROCKET_TYPE_MODEM : ROCKET_TYPE_NORMAL;
2273 rcktpt_type[3] = pc104_4[0] ? ROCKET_TYPE_PC104 : rcktpt_type[3];
2274
2275 /*
2276 * Set up the tty driver structure and then register this
2277 * driver with the tty layer.
2278 */
2279
2280 rocket_driver->flags = TTY_DRIVER_DYNAMIC_DEV;
2281 rocket_driver->name = "ttyR";
2282 rocket_driver->driver_name = "Comtrol RocketPort";
2283 rocket_driver->major = TTY_ROCKET_MAJOR;
2284 rocket_driver->minor_start = 0;
2285 rocket_driver->type = TTY_DRIVER_TYPE_SERIAL;
2286 rocket_driver->subtype = SERIAL_TYPE_NORMAL;
2287 rocket_driver->init_termios = tty_std_termios;
2288 rocket_driver->init_termios.c_cflag =
2289 B9600 | CS8 | CREAD | HUPCL | CLOCAL;
2290 rocket_driver->init_termios.c_ispeed = 9600;
2291 rocket_driver->init_termios.c_ospeed = 9600;
2292 #ifdef ROCKET_SOFT_FLOW
2293 rocket_driver->flags |= TTY_DRIVER_REAL_RAW;
2294 #endif
2295 tty_set_operations(rocket_driver, &rocket_ops);
2296
2297 ret = tty_register_driver(rocket_driver);
2298 if (ret < 0) {
2299 printk(KERN_ERR "Couldn't install tty RocketPort driver\n");
2300 goto err_controller;
2301 }
2302
2303 #ifdef ROCKET_DEBUG_OPEN
2304 printk(KERN_INFO "RocketPort driver is major %d\n", rocket_driver.major);
2305 #endif
2306
2307 /*
2308 * OK, let's probe each of the controllers looking for boards. Any boards found
2309 * will be initialized here.
2310 */
2311 isa_boards_found = 0;
2312 pci_boards_found = 0;
2313
2314 for (i = 0; i < NUM_BOARDS; i++) {
2315 if (init_ISA(i))
2316 isa_boards_found++;
2317 }
2318
2319 #ifdef CONFIG_PCI
2320 if (isa_boards_found < NUM_BOARDS)
2321 pci_boards_found = init_PCI(isa_boards_found);
2322 #endif
2323
2324 max_board = pci_boards_found + isa_boards_found;
2325
2326 if (max_board == 0) {
2327 printk(KERN_ERR "No rocketport ports found; unloading driver\n");
2328 ret = -ENXIO;
2329 goto err_ttyu;
2330 }
2331
2332 return 0;
2333 err_ttyu:
2334 tty_unregister_driver(rocket_driver);
2335 err_controller:
2336 if (controller)
2337 release_region(controller, 4);
2338 err_tty:
2339 put_tty_driver(rocket_driver);
2340 err:
2341 return ret;
2342 }
2343
2344
2345 static void rp_cleanup_module(void)
2346 {
2347 int retval;
2348 int i;
2349
2350 del_timer_sync(&rocket_timer);
2351
2352 retval = tty_unregister_driver(rocket_driver);
2353 if (retval)
2354 printk(KERN_ERR "Error %d while trying to unregister "
2355 "rocketport driver\n", -retval);
2356
2357 for (i = 0; i < MAX_RP_PORTS; i++)
2358 if (rp_table[i]) {
2359 tty_unregister_device(rocket_driver, i);
2360 kfree(rp_table[i]);
2361 }
2362
2363 put_tty_driver(rocket_driver);
2364
2365 for (i = 0; i < NUM_BOARDS; i++) {
2366 if (rcktpt_io_addr[i] <= 0 || is_PCI[i])
2367 continue;
2368 release_region(rcktpt_io_addr[i], 64);
2369 }
2370 if (controller)
2371 release_region(controller, 4);
2372 }
2373
2374 /***************************************************************************
2375 Function: sInitController
2376 Purpose: Initialization of controller global registers and controller
2377 structure.
2378 Call: sInitController(CtlP,CtlNum,MudbacIO,AiopIOList,AiopIOListSize,
2379 IRQNum,Frequency,PeriodicOnly)
2380 CONTROLLER_T *CtlP; Ptr to controller structure
2381 int CtlNum; Controller number
2382 ByteIO_t MudbacIO; Mudbac base I/O address.
2383 ByteIO_t *AiopIOList; List of I/O addresses for each AIOP.
2384 This list must be in the order the AIOPs will be found on the
2385 controller. Once an AIOP in the list is not found, it is
2386 assumed that there are no more AIOPs on the controller.
2387 int AiopIOListSize; Number of addresses in AiopIOList
2388 int IRQNum; Interrupt Request number. Can be any of the following:
2389 0: Disable global interrupts
2390 3: IRQ 3
2391 4: IRQ 4
2392 5: IRQ 5
2393 9: IRQ 9
2394 10: IRQ 10
2395 11: IRQ 11
2396 12: IRQ 12
2397 15: IRQ 15
2398 Byte_t Frequency: A flag identifying the frequency
2399 of the periodic interrupt, can be any one of the following:
2400 FREQ_DIS - periodic interrupt disabled
2401 FREQ_137HZ - 137 Hertz
2402 FREQ_69HZ - 69 Hertz
2403 FREQ_34HZ - 34 Hertz
2404 FREQ_17HZ - 17 Hertz
2405 FREQ_9HZ - 9 Hertz
2406 FREQ_4HZ - 4 Hertz
2407 If IRQNum is set to 0 the Frequency parameter is
2408 overidden, it is forced to a value of FREQ_DIS.
2409 int PeriodicOnly: 1 if all interrupts except the periodic
2410 interrupt are to be blocked.
2411 0 is both the periodic interrupt and
2412 other channel interrupts are allowed.
2413 If IRQNum is set to 0 the PeriodicOnly parameter is
2414 overidden, it is forced to a value of 0.
2415 Return: int: Number of AIOPs on the controller, or CTLID_NULL if controller
2416 initialization failed.
2417
2418 Comments:
2419 If periodic interrupts are to be disabled but AIOP interrupts
2420 are allowed, set Frequency to FREQ_DIS and PeriodicOnly to 0.
2421
2422 If interrupts are to be completely disabled set IRQNum to 0.
2423
2424 Setting Frequency to FREQ_DIS and PeriodicOnly to 1 is an
2425 invalid combination.
2426
2427 This function performs initialization of global interrupt modes,
2428 but it does not actually enable global interrupts. To enable
2429 and disable global interrupts use functions sEnGlobalInt() and
2430 sDisGlobalInt(). Enabling of global interrupts is normally not
2431 done until all other initializations are complete.
2432
2433 Even if interrupts are globally enabled, they must also be
2434 individually enabled for each channel that is to generate
2435 interrupts.
2436
2437 Warnings: No range checking on any of the parameters is done.
2438
2439 No context switches are allowed while executing this function.
2440
2441 After this function all AIOPs on the controller are disabled,
2442 they can be enabled with sEnAiop().
2443 */
2444 static int sInitController(CONTROLLER_T * CtlP, int CtlNum, ByteIO_t MudbacIO,
2445 ByteIO_t * AiopIOList, int AiopIOListSize,
2446 int IRQNum, Byte_t Frequency, int PeriodicOnly)
2447 {
2448 int i;
2449 ByteIO_t io;
2450 int done;
2451
2452 CtlP->AiopIntrBits = aiop_intr_bits;
2453 CtlP->AltChanRingIndicator = 0;
2454 CtlP->CtlNum = CtlNum;
2455 CtlP->CtlID = CTLID_0001; /* controller release 1 */
2456 CtlP->BusType = isISA;
2457 CtlP->MBaseIO = MudbacIO;
2458 CtlP->MReg1IO = MudbacIO + 1;
2459 CtlP->MReg2IO = MudbacIO + 2;
2460 CtlP->MReg3IO = MudbacIO + 3;
2461 #if 1
2462 CtlP->MReg2 = 0; /* interrupt disable */
2463 CtlP->MReg3 = 0; /* no periodic interrupts */
2464 #else
2465 if (sIRQMap[IRQNum] == 0) { /* interrupts globally disabled */
2466 CtlP->MReg2 = 0; /* interrupt disable */
2467 CtlP->MReg3 = 0; /* no periodic interrupts */
2468 } else {
2469 CtlP->MReg2 = sIRQMap[IRQNum]; /* set IRQ number */
2470 CtlP->MReg3 = Frequency; /* set frequency */
2471 if (PeriodicOnly) { /* periodic interrupt only */
2472 CtlP->MReg3 |= PERIODIC_ONLY;
2473 }
2474 }
2475 #endif
2476 sOutB(CtlP->MReg2IO, CtlP->MReg2);
2477 sOutB(CtlP->MReg3IO, CtlP->MReg3);
2478 sControllerEOI(CtlP); /* clear EOI if warm init */
2479 /* Init AIOPs */
2480 CtlP->NumAiop = 0;
2481 for (i = done = 0; i < AiopIOListSize; i++) {
2482 io = AiopIOList[i];
2483 CtlP->AiopIO[i] = (WordIO_t) io;
2484 CtlP->AiopIntChanIO[i] = io + _INT_CHAN;
2485 sOutB(CtlP->MReg2IO, CtlP->MReg2 | (i & 0x03)); /* AIOP index */
2486 sOutB(MudbacIO, (Byte_t) (io >> 6)); /* set up AIOP I/O in MUDBAC */
2487 if (done)
2488 continue;
2489 sEnAiop(CtlP, i); /* enable the AIOP */
2490 CtlP->AiopID[i] = sReadAiopID(io); /* read AIOP ID */
2491 if (CtlP->AiopID[i] == AIOPID_NULL) /* if AIOP does not exist */
2492 done = 1; /* done looking for AIOPs */
2493 else {
2494 CtlP->AiopNumChan[i] = sReadAiopNumChan((WordIO_t) io); /* num channels in AIOP */
2495 sOutW((WordIO_t) io + _INDX_ADDR, _CLK_PRE); /* clock prescaler */
2496 sOutB(io + _INDX_DATA, sClockPrescale);
2497 CtlP->NumAiop++; /* bump count of AIOPs */
2498 }
2499 sDisAiop(CtlP, i); /* disable AIOP */
2500 }
2501
2502 if (CtlP->NumAiop == 0)
2503 return (-1);
2504 else
2505 return (CtlP->NumAiop);
2506 }
2507
2508 /***************************************************************************
2509 Function: sPCIInitController
2510 Purpose: Initialization of controller global registers and controller
2511 structure.
2512 Call: sPCIInitController(CtlP,CtlNum,AiopIOList,AiopIOListSize,
2513 IRQNum,Frequency,PeriodicOnly)
2514 CONTROLLER_T *CtlP; Ptr to controller structure
2515 int CtlNum; Controller number
2516 ByteIO_t *AiopIOList; List of I/O addresses for each AIOP.
2517 This list must be in the order the AIOPs will be found on the
2518 controller. Once an AIOP in the list is not found, it is
2519 assumed that there are no more AIOPs on the controller.
2520 int AiopIOListSize; Number of addresses in AiopIOList
2521 int IRQNum; Interrupt Request number. Can be any of the following:
2522 0: Disable global interrupts
2523 3: IRQ 3
2524 4: IRQ 4
2525 5: IRQ 5
2526 9: IRQ 9
2527 10: IRQ 10
2528 11: IRQ 11
2529 12: IRQ 12
2530 15: IRQ 15
2531 Byte_t Frequency: A flag identifying the frequency
2532 of the periodic interrupt, can be any one of the following:
2533 FREQ_DIS - periodic interrupt disabled
2534 FREQ_137HZ - 137 Hertz
2535 FREQ_69HZ - 69 Hertz
2536 FREQ_34HZ - 34 Hertz
2537 FREQ_17HZ - 17 Hertz
2538 FREQ_9HZ - 9 Hertz
2539 FREQ_4HZ - 4 Hertz
2540 If IRQNum is set to 0 the Frequency parameter is
2541 overidden, it is forced to a value of FREQ_DIS.
2542 int PeriodicOnly: 1 if all interrupts except the periodic
2543 interrupt are to be blocked.
2544 0 is both the periodic interrupt and
2545 other channel interrupts are allowed.
2546 If IRQNum is set to 0 the PeriodicOnly parameter is
2547 overidden, it is forced to a value of 0.
2548 Return: int: Number of AIOPs on the controller, or CTLID_NULL if controller
2549 initialization failed.
2550
2551 Comments:
2552 If periodic interrupts are to be disabled but AIOP interrupts
2553 are allowed, set Frequency to FREQ_DIS and PeriodicOnly to 0.
2554
2555 If interrupts are to be completely disabled set IRQNum to 0.
2556
2557 Setting Frequency to FREQ_DIS and PeriodicOnly to 1 is an
2558 invalid combination.
2559
2560 This function performs initialization of global interrupt modes,
2561 but it does not actually enable global interrupts. To enable
2562 and disable global interrupts use functions sEnGlobalInt() and
2563 sDisGlobalInt(). Enabling of global interrupts is normally not
2564 done until all other initializations are complete.
2565
2566 Even if interrupts are globally enabled, they must also be
2567 individually enabled for each channel that is to generate
2568 interrupts.
2569
2570 Warnings: No range checking on any of the parameters is done.
2571
2572 No context switches are allowed while executing this function.
2573
2574 After this function all AIOPs on the controller are disabled,
2575 they can be enabled with sEnAiop().
2576 */
2577 static int sPCIInitController(CONTROLLER_T * CtlP, int CtlNum,
2578 ByteIO_t * AiopIOList, int AiopIOListSize,
2579 WordIO_t ConfigIO, int IRQNum, Byte_t Frequency,
2580 int PeriodicOnly, int altChanRingIndicator,
2581 int UPCIRingInd)
2582 {
2583 int i;
2584 ByteIO_t io;
2585
2586 CtlP->AltChanRingIndicator = altChanRingIndicator;
2587 CtlP->UPCIRingInd = UPCIRingInd;
2588 CtlP->CtlNum = CtlNum;
2589 CtlP->CtlID = CTLID_0001; /* controller release 1 */
2590 CtlP->BusType = isPCI; /* controller release 1 */
2591
2592 if (ConfigIO) {
2593 CtlP->isUPCI = 1;
2594 CtlP->PCIIO = ConfigIO + _PCI_9030_INT_CTRL;
2595 CtlP->PCIIO2 = ConfigIO + _PCI_9030_GPIO_CTRL;
2596 CtlP->AiopIntrBits = upci_aiop_intr_bits;
2597 } else {
2598 CtlP->isUPCI = 0;
2599 CtlP->PCIIO =
2600 (WordIO_t) ((ByteIO_t) AiopIOList[0] + _PCI_INT_FUNC);
2601 CtlP->AiopIntrBits = aiop_intr_bits;
2602 }
2603
2604 sPCIControllerEOI(CtlP); /* clear EOI if warm init */
2605 /* Init AIOPs */
2606 CtlP->NumAiop = 0;
2607 for (i = 0; i < AiopIOListSize; i++) {
2608 io = AiopIOList[i];
2609 CtlP->AiopIO[i] = (WordIO_t) io;
2610 CtlP->AiopIntChanIO[i] = io + _INT_CHAN;
2611
2612 CtlP->AiopID[i] = sReadAiopID(io); /* read AIOP ID */
2613 if (CtlP->AiopID[i] == AIOPID_NULL) /* if AIOP does not exist */
2614 break; /* done looking for AIOPs */
2615
2616 CtlP->AiopNumChan[i] = sReadAiopNumChan((WordIO_t) io); /* num channels in AIOP */
2617 sOutW((WordIO_t) io + _INDX_ADDR, _CLK_PRE); /* clock prescaler */
2618 sOutB(io + _INDX_DATA, sClockPrescale);
2619 CtlP->NumAiop++; /* bump count of AIOPs */
2620 }
2621
2622 if (CtlP->NumAiop == 0)
2623 return (-1);
2624 else
2625 return (CtlP->NumAiop);
2626 }
2627
2628 /***************************************************************************
2629 Function: sReadAiopID
2630 Purpose: Read the AIOP idenfication number directly from an AIOP.
2631 Call: sReadAiopID(io)
2632 ByteIO_t io: AIOP base I/O address
2633 Return: int: Flag AIOPID_XXXX if a valid AIOP is found, where X
2634 is replace by an identifying number.
2635 Flag AIOPID_NULL if no valid AIOP is found
2636 Warnings: No context switches are allowed while executing this function.
2637
2638 */
2639 static int sReadAiopID(ByteIO_t io)
2640 {
2641 Byte_t AiopID; /* ID byte from AIOP */
2642
2643 sOutB(io + _CMD_REG, RESET_ALL); /* reset AIOP */
2644 sOutB(io + _CMD_REG, 0x0);
2645 AiopID = sInW(io + _CHN_STAT0) & 0x07;
2646 if (AiopID == 0x06)
2647 return (1);
2648 else /* AIOP does not exist */
2649 return (-1);
2650 }
2651
2652 /***************************************************************************
2653 Function: sReadAiopNumChan
2654 Purpose: Read the number of channels available in an AIOP directly from
2655 an AIOP.
2656 Call: sReadAiopNumChan(io)
2657 WordIO_t io: AIOP base I/O address
2658 Return: int: The number of channels available
2659 Comments: The number of channels is determined by write/reads from identical
2660 offsets within the SRAM address spaces for channels 0 and 4.
2661 If the channel 4 space is mirrored to channel 0 it is a 4 channel
2662 AIOP, otherwise it is an 8 channel.
2663 Warnings: No context switches are allowed while executing this function.
2664 */
2665 static int sReadAiopNumChan(WordIO_t io)
2666 {
2667 Word_t x;
2668 static Byte_t R[4] = { 0x00, 0x00, 0x34, 0x12 };
2669
2670 /* write to chan 0 SRAM */
2671 out32((DWordIO_t) io + _INDX_ADDR, R);
2672 sOutW(io + _INDX_ADDR, 0); /* read from SRAM, chan 0 */
2673 x = sInW(io + _INDX_DATA);
2674 sOutW(io + _INDX_ADDR, 0x4000); /* read from SRAM, chan 4 */
2675 if (x != sInW(io + _INDX_DATA)) /* if different must be 8 chan */
2676 return (8);
2677 else
2678 return (4);
2679 }
2680
2681 /***************************************************************************
2682 Function: sInitChan
2683 Purpose: Initialization of a channel and channel structure
2684 Call: sInitChan(CtlP,ChP,AiopNum,ChanNum)
2685 CONTROLLER_T *CtlP; Ptr to controller structure
2686 CHANNEL_T *ChP; Ptr to channel structure
2687 int AiopNum; AIOP number within controller
2688 int ChanNum; Channel number within AIOP
2689 Return: int: 1 if initialization succeeded, 0 if it fails because channel
2690 number exceeds number of channels available in AIOP.
2691 Comments: This function must be called before a channel can be used.
2692 Warnings: No range checking on any of the parameters is done.
2693
2694 No context switches are allowed while executing this function.
2695 */
2696 static int sInitChan(CONTROLLER_T * CtlP, CHANNEL_T * ChP, int AiopNum,
2697 int ChanNum)
2698 {
2699 int i;
2700 WordIO_t AiopIO;
2701 WordIO_t ChIOOff;
2702 Byte_t *ChR;
2703 Word_t ChOff;
2704 static Byte_t R[4];
2705 int brd9600;
2706
2707 if (ChanNum >= CtlP->AiopNumChan[AiopNum])
2708 return 0; /* exceeds num chans in AIOP */
2709
2710 /* Channel, AIOP, and controller identifiers */
2711 ChP->CtlP = CtlP;
2712 ChP->ChanID = CtlP->AiopID[AiopNum];
2713 ChP->AiopNum = AiopNum;
2714 ChP->ChanNum = ChanNum;
2715
2716 /* Global direct addresses */
2717 AiopIO = CtlP->AiopIO[AiopNum];
2718 ChP->Cmd = (ByteIO_t) AiopIO + _CMD_REG;
2719 ChP->IntChan = (ByteIO_t) AiopIO + _INT_CHAN;
2720 ChP->IntMask = (ByteIO_t) AiopIO + _INT_MASK;
2721 ChP->IndexAddr = (DWordIO_t) AiopIO + _INDX_ADDR;
2722 ChP->IndexData = AiopIO + _INDX_DATA;
2723
2724 /* Channel direct addresses */
2725 ChIOOff = AiopIO + ChP->ChanNum * 2;
2726 ChP->TxRxData = ChIOOff + _TD0;
2727 ChP->ChanStat = ChIOOff + _CHN_STAT0;
2728 ChP->TxRxCount = ChIOOff + _FIFO_CNT0;
2729 ChP->IntID = (ByteIO_t) AiopIO + ChP->ChanNum + _INT_ID0;
2730
2731 /* Initialize the channel from the RData array */
2732 for (i = 0; i < RDATASIZE; i += 4) {
2733 R[0] = RData[i];
2734 R[1] = RData[i + 1] + 0x10 * ChanNum;
2735 R[2] = RData[i + 2];
2736 R[3] = RData[i + 3];
2737 out32(ChP->IndexAddr, R);
2738 }
2739
2740 ChR = ChP->R;
2741 for (i = 0; i < RREGDATASIZE; i += 4) {
2742 ChR[i] = RRegData[i];
2743 ChR[i + 1] = RRegData[i + 1] + 0x10 * ChanNum;
2744 ChR[i + 2] = RRegData[i + 2];
2745 ChR[i + 3] = RRegData[i + 3];
2746 }
2747
2748 /* Indexed registers */
2749 ChOff = (Word_t) ChanNum *0x1000;
2750
2751 if (sClockPrescale == 0x14)
2752 brd9600 = 47;
2753 else
2754 brd9600 = 23;
2755
2756 ChP->BaudDiv[0] = (Byte_t) (ChOff + _BAUD);
2757 ChP->BaudDiv[1] = (Byte_t) ((ChOff + _BAUD) >> 8);
2758 ChP->BaudDiv[2] = (Byte_t) brd9600;
2759 ChP->BaudDiv[3] = (Byte_t) (brd9600 >> 8);
2760 out32(ChP->IndexAddr, ChP->BaudDiv);
2761
2762 ChP->TxControl[0] = (Byte_t) (ChOff + _TX_CTRL);
2763 ChP->TxControl[1] = (Byte_t) ((ChOff + _TX_CTRL) >> 8);
2764 ChP->TxControl[2] = 0;
2765 ChP->TxControl[3] = 0;
2766 out32(ChP->IndexAddr, ChP->TxControl);
2767
2768 ChP->RxControl[0] = (Byte_t) (ChOff + _RX_CTRL);
2769 ChP->RxControl[1] = (Byte_t) ((ChOff + _RX_CTRL) >> 8);
2770 ChP->RxControl[2] = 0;
2771 ChP->RxControl[3] = 0;
2772 out32(ChP->IndexAddr, ChP->RxControl);
2773
2774 ChP->TxEnables[0] = (Byte_t) (ChOff + _TX_ENBLS);
2775 ChP->TxEnables[1] = (Byte_t) ((ChOff + _TX_ENBLS) >> 8);
2776 ChP->TxEnables[2] = 0;
2777 ChP->TxEnables[3] = 0;
2778 out32(ChP->IndexAddr, ChP->TxEnables);
2779
2780 ChP->TxCompare[0] = (Byte_t) (ChOff + _TXCMP1);
2781 ChP->TxCompare[1] = (Byte_t) ((ChOff + _TXCMP1) >> 8);
2782 ChP->TxCompare[2] = 0;
2783 ChP->TxCompare[3] = 0;
2784 out32(ChP->IndexAddr, ChP->TxCompare);
2785
2786 ChP->TxReplace1[0] = (Byte_t) (ChOff + _TXREP1B1);
2787 ChP->TxReplace1[1] = (Byte_t) ((ChOff + _TXREP1B1) >> 8);
2788 ChP->TxReplace1[2] = 0;
2789 ChP->TxReplace1[3] = 0;
2790 out32(ChP->IndexAddr, ChP->TxReplace1);
2791
2792 ChP->TxReplace2[0] = (Byte_t) (ChOff + _TXREP2);
2793 ChP->TxReplace2[1] = (Byte_t) ((ChOff + _TXREP2) >> 8);
2794 ChP->TxReplace2[2] = 0;
2795 ChP->TxReplace2[3] = 0;
2796 out32(ChP->IndexAddr, ChP->TxReplace2);
2797
2798 ChP->TxFIFOPtrs = ChOff + _TXF_OUTP;
2799 ChP->TxFIFO = ChOff + _TX_FIFO;
2800
2801 sOutB(ChP->Cmd, (Byte_t) ChanNum | RESTXFCNT); /* apply reset Tx FIFO count */
2802 sOutB(ChP->Cmd, (Byte_t) ChanNum); /* remove reset Tx FIFO count */
2803 sOutW((WordIO_t) ChP->IndexAddr, ChP->TxFIFOPtrs); /* clear Tx in/out ptrs */
2804 sOutW(ChP->IndexData, 0);
2805 ChP->RxFIFOPtrs = ChOff + _RXF_OUTP;
2806 ChP->RxFIFO = ChOff + _RX_FIFO;
2807
2808 sOutB(ChP->Cmd, (Byte_t) ChanNum | RESRXFCNT); /* apply reset Rx FIFO count */
2809 sOutB(ChP->Cmd, (Byte_t) ChanNum); /* remove reset Rx FIFO count */
2810 sOutW((WordIO_t) ChP->IndexAddr, ChP->RxFIFOPtrs); /* clear Rx out ptr */
2811 sOutW(ChP->IndexData, 0);
2812 sOutW((WordIO_t) ChP->IndexAddr, ChP->RxFIFOPtrs + 2); /* clear Rx in ptr */
2813 sOutW(ChP->IndexData, 0);
2814 ChP->TxPrioCnt = ChOff + _TXP_CNT;
2815 sOutW((WordIO_t) ChP->IndexAddr, ChP->TxPrioCnt);
2816 sOutB(ChP->IndexData, 0);
2817 ChP->TxPrioPtr = ChOff + _TXP_PNTR;
2818 sOutW((WordIO_t) ChP->IndexAddr, ChP->TxPrioPtr);
2819 sOutB(ChP->IndexData, 0);
2820 ChP->TxPrioBuf = ChOff + _TXP_BUF;
2821 sEnRxProcessor(ChP); /* start the Rx processor */
2822
2823 return 1;
2824 }
2825
2826 /***************************************************************************
2827 Function: sStopRxProcessor
2828 Purpose: Stop the receive processor from processing a channel.
2829 Call: sStopRxProcessor(ChP)
2830 CHANNEL_T *ChP; Ptr to channel structure
2831
2832 Comments: The receive processor can be started again with sStartRxProcessor().
2833 This function causes the receive processor to skip over the
2834 stopped channel. It does not stop it from processing other channels.
2835
2836 Warnings: No context switches are allowed while executing this function.
2837
2838 Do not leave the receive processor stopped for more than one
2839 character time.
2840
2841 After calling this function a delay of 4 uS is required to ensure
2842 that the receive processor is no longer processing this channel.
2843 */
2844 static void sStopRxProcessor(CHANNEL_T * ChP)
2845 {
2846 Byte_t R[4];
2847
2848 R[0] = ChP->R[0];
2849 R[1] = ChP->R[1];
2850 R[2] = 0x0a;
2851 R[3] = ChP->R[3];
2852 out32(ChP->IndexAddr, R);
2853 }
2854
2855 /***************************************************************************
2856 Function: sFlushRxFIFO
2857 Purpose: Flush the Rx FIFO
2858 Call: sFlushRxFIFO(ChP)
2859 CHANNEL_T *ChP; Ptr to channel structure
2860 Return: void
2861 Comments: To prevent data from being enqueued or dequeued in the Tx FIFO
2862 while it is being flushed the receive processor is stopped
2863 and the transmitter is disabled. After these operations a
2864 4 uS delay is done before clearing the pointers to allow
2865 the receive processor to stop. These items are handled inside
2866 this function.
2867 Warnings: No context switches are allowed while executing this function.
2868 */
2869 static void sFlushRxFIFO(CHANNEL_T * ChP)
2870 {
2871 int i;
2872 Byte_t Ch; /* channel number within AIOP */
2873 int RxFIFOEnabled; /* 1 if Rx FIFO enabled */
2874
2875 if (sGetRxCnt(ChP) == 0) /* Rx FIFO empty */
2876 return; /* don't need to flush */
2877
2878 RxFIFOEnabled = 0;
2879 if (ChP->R[0x32] == 0x08) { /* Rx FIFO is enabled */
2880 RxFIFOEnabled = 1;
2881 sDisRxFIFO(ChP); /* disable it */
2882 for (i = 0; i < 2000 / 200; i++) /* delay 2 uS to allow proc to disable FIFO */
2883 sInB(ChP->IntChan); /* depends on bus i/o timing */
2884 }
2885 sGetChanStatus(ChP); /* clear any pending Rx errors in chan stat */
2886 Ch = (Byte_t) sGetChanNum(ChP);
2887 sOutB(ChP->Cmd, Ch | RESRXFCNT); /* apply reset Rx FIFO count */
2888 sOutB(ChP->Cmd, Ch); /* remove reset Rx FIFO count */
2889 sOutW((WordIO_t) ChP->IndexAddr, ChP->RxFIFOPtrs); /* clear Rx out ptr */
2890 sOutW(ChP->IndexData, 0);
2891 sOutW((WordIO_t) ChP->IndexAddr, ChP->RxFIFOPtrs + 2); /* clear Rx in ptr */
2892 sOutW(ChP->IndexData, 0);
2893 if (RxFIFOEnabled)
2894 sEnRxFIFO(ChP); /* enable Rx FIFO */
2895 }
2896
2897 /***************************************************************************
2898 Function: sFlushTxFIFO
2899 Purpose: Flush the Tx FIFO
2900 Call: sFlushTxFIFO(ChP)
2901 CHANNEL_T *ChP; Ptr to channel structure
2902 Return: void
2903 Comments: To prevent data from being enqueued or dequeued in the Tx FIFO
2904 while it is being flushed the receive processor is stopped
2905 and the transmitter is disabled. After these operations a
2906 4 uS delay is done before clearing the pointers to allow
2907 the receive processor to stop. These items are handled inside
2908 this function.
2909 Warnings: No context switches are allowed while executing this function.
2910 */
2911 static void sFlushTxFIFO(CHANNEL_T * ChP)
2912 {
2913 int i;
2914 Byte_t Ch; /* channel number within AIOP */
2915 int TxEnabled; /* 1 if transmitter enabled */
2916
2917 if (sGetTxCnt(ChP) == 0) /* Tx FIFO empty */
2918 return; /* don't need to flush */
2919
2920 TxEnabled = 0;
2921 if (ChP->TxControl[3] & TX_ENABLE) {
2922 TxEnabled = 1;
2923 sDisTransmit(ChP); /* disable transmitter */
2924 }
2925 sStopRxProcessor(ChP); /* stop Rx processor */
2926 for (i = 0; i < 4000 / 200; i++) /* delay 4 uS to allow proc to stop */
2927 sInB(ChP->IntChan); /* depends on bus i/o timing */
2928 Ch = (Byte_t) sGetChanNum(ChP);
2929 sOutB(ChP->Cmd, Ch | RESTXFCNT); /* apply reset Tx FIFO count */
2930 sOutB(ChP->Cmd, Ch); /* remove reset Tx FIFO count */
2931 sOutW((WordIO_t) ChP->IndexAddr, ChP->TxFIFOPtrs); /* clear Tx in/out ptrs */
2932 sOutW(ChP->IndexData, 0);
2933 if (TxEnabled)
2934 sEnTransmit(ChP); /* enable transmitter */
2935 sStartRxProcessor(ChP); /* restart Rx processor */
2936 }
2937
2938 /***************************************************************************
2939 Function: sWriteTxPrioByte
2940 Purpose: Write a byte of priority transmit data to a channel
2941 Call: sWriteTxPrioByte(ChP,Data)
2942 CHANNEL_T *ChP; Ptr to channel structure
2943 Byte_t Data; The transmit data byte
2944
2945 Return: int: 1 if the bytes is successfully written, otherwise 0.
2946
2947 Comments: The priority byte is transmitted before any data in the Tx FIFO.
2948
2949 Warnings: No context switches are allowed while executing this function.
2950 */
2951 static int sWriteTxPrioByte(CHANNEL_T * ChP, Byte_t Data)
2952 {
2953 Byte_t DWBuf[4]; /* buffer for double word writes */
2954 Word_t *WordPtr; /* must be far because Win SS != DS */
2955 register DWordIO_t IndexAddr;
2956
2957 if (sGetTxCnt(ChP) > 1) { /* write it to Tx priority buffer */
2958 IndexAddr = ChP->IndexAddr;
2959 sOutW((WordIO_t) IndexAddr, ChP->TxPrioCnt); /* get priority buffer status */
2960 if (sInB((ByteIO_t) ChP->IndexData) & PRI_PEND) /* priority buffer busy */
2961 return (0); /* nothing sent */
2962
2963 WordPtr = (Word_t *) (&DWBuf[0]);
2964 *WordPtr = ChP->TxPrioBuf; /* data byte address */
2965
2966 DWBuf[2] = Data; /* data byte value */
2967 out32(IndexAddr, DWBuf); /* write it out */
2968
2969 *WordPtr = ChP->TxPrioCnt; /* Tx priority count address */
2970
2971 DWBuf[2] = PRI_PEND + 1; /* indicate 1 byte pending */
2972 DWBuf[3] = 0; /* priority buffer pointer */
2973 out32(IndexAddr, DWBuf); /* write it out */
2974 } else { /* write it to Tx FIFO */
2975
2976 sWriteTxByte(sGetTxRxDataIO(ChP), Data);
2977 }
2978 return (1); /* 1 byte sent */
2979 }
2980
2981 /***************************************************************************
2982 Function: sEnInterrupts
2983 Purpose: Enable one or more interrupts for a channel
2984 Call: sEnInterrupts(ChP,Flags)
2985 CHANNEL_T *ChP; Ptr to channel structure
2986 Word_t Flags: Interrupt enable flags, can be any combination
2987 of the following flags:
2988 TXINT_EN: Interrupt on Tx FIFO empty
2989 RXINT_EN: Interrupt on Rx FIFO at trigger level (see
2990 sSetRxTrigger())
2991 SRCINT_EN: Interrupt on SRC (Special Rx Condition)
2992 MCINT_EN: Interrupt on modem input change
2993 CHANINT_EN: Allow channel interrupt signal to the AIOP's
2994 Interrupt Channel Register.
2995 Return: void
2996 Comments: If an interrupt enable flag is set in Flags, that interrupt will be
2997 enabled. If an interrupt enable flag is not set in Flags, that
2998 interrupt will not be changed. Interrupts can be disabled with
2999 function sDisInterrupts().
3000
3001 This function sets the appropriate bit for the channel in the AIOP's
3002 Interrupt Mask Register if the CHANINT_EN flag is set. This allows
3003 this channel's bit to be set in the AIOP's Interrupt Channel Register.
3004
3005 Interrupts must also be globally enabled before channel interrupts
3006 will be passed on to the host. This is done with function
3007 sEnGlobalInt().
3008
3009 In some cases it may be desirable to disable interrupts globally but
3010 enable channel interrupts. This would allow the global interrupt
3011 status register to be used to determine which AIOPs need service.
3012 */
3013 static void sEnInterrupts(CHANNEL_T * ChP, Word_t Flags)
3014 {
3015 Byte_t Mask; /* Interrupt Mask Register */
3016
3017 ChP->RxControl[2] |=
3018 ((Byte_t) Flags & (RXINT_EN | SRCINT_EN | MCINT_EN));
3019
3020 out32(ChP->IndexAddr, ChP->RxControl);
3021
3022 ChP->TxControl[2] |= ((Byte_t) Flags & TXINT_EN);
3023
3024 out32(ChP->IndexAddr, ChP->TxControl);
3025
3026 if (Flags & CHANINT_EN) {
3027 Mask = sInB(ChP->IntMask) | sBitMapSetTbl[ChP->ChanNum];
3028 sOutB(ChP->IntMask, Mask);
3029 }
3030 }
3031
3032 /***************************************************************************
3033 Function: sDisInterrupts
3034 Purpose: Disable one or more interrupts for a channel
3035 Call: sDisInterrupts(ChP,Flags)
3036 CHANNEL_T *ChP; Ptr to channel structure
3037 Word_t Flags: Interrupt flags, can be any combination
3038 of the following flags:
3039 TXINT_EN: Interrupt on Tx FIFO empty
3040 RXINT_EN: Interrupt on Rx FIFO at trigger level (see
3041 sSetRxTrigger())
3042 SRCINT_EN: Interrupt on SRC (Special Rx Condition)
3043 MCINT_EN: Interrupt on modem input change
3044 CHANINT_EN: Disable channel interrupt signal to the
3045 AIOP's Interrupt Channel Register.
3046 Return: void
3047 Comments: If an interrupt flag is set in Flags, that interrupt will be
3048 disabled. If an interrupt flag is not set in Flags, that
3049 interrupt will not be changed. Interrupts can be enabled with
3050 function sEnInterrupts().
3051
3052 This function clears the appropriate bit for the channel in the AIOP's
3053 Interrupt Mask Register if the CHANINT_EN flag is set. This blocks
3054 this channel's bit from being set in the AIOP's Interrupt Channel
3055 Register.
3056 */
3057 static void sDisInterrupts(CHANNEL_T * ChP, Word_t Flags)
3058 {
3059 Byte_t Mask; /* Interrupt Mask Register */
3060
3061 ChP->RxControl[2] &=
3062 ~((Byte_t) Flags & (RXINT_EN | SRCINT_EN | MCINT_EN));
3063 out32(ChP->IndexAddr, ChP->RxControl);
3064 ChP->TxControl[2] &= ~((Byte_t) Flags & TXINT_EN);
3065 out32(ChP->IndexAddr, ChP->TxControl);
3066
3067 if (Flags & CHANINT_EN) {
3068 Mask = sInB(ChP->IntMask) & sBitMapClrTbl[ChP->ChanNum];
3069 sOutB(ChP->IntMask, Mask);
3070 }
3071 }
3072
3073 static void sSetInterfaceMode(CHANNEL_T * ChP, Byte_t mode)
3074 {
3075 sOutB(ChP->CtlP->AiopIO[2], (mode & 0x18) | ChP->ChanNum);
3076 }
3077
3078 /*
3079 * Not an official SSCI function, but how to reset RocketModems.
3080 * ISA bus version
3081 */
3082 static void sModemReset(CONTROLLER_T * CtlP, int chan, int on)
3083 {
3084 ByteIO_t addr;
3085 Byte_t val;
3086
3087 addr = CtlP->AiopIO[0] + 0x400;
3088 val = sInB(CtlP->MReg3IO);
3089 /* if AIOP[1] is not enabled, enable it */
3090 if ((val & 2) == 0) {
3091 val = sInB(CtlP->MReg2IO);
3092 sOutB(CtlP->MReg2IO, (val & 0xfc) | (1 & 0x03));
3093 sOutB(CtlP->MBaseIO, (unsigned char) (addr >> 6));
3094 }
3095
3096 sEnAiop(CtlP, 1);
3097 if (!on)
3098 addr += 8;
3099 sOutB(addr + chan, 0); /* apply or remove reset */
3100 sDisAiop(CtlP, 1);
3101 }
3102
3103 /*
3104 * Not an official SSCI function, but how to reset RocketModems.
3105 * PCI bus version
3106 */
3107 static void sPCIModemReset(CONTROLLER_T * CtlP, int chan, int on)
3108 {
3109 ByteIO_t addr;
3110
3111 addr = CtlP->AiopIO[0] + 0x40; /* 2nd AIOP */
3112 if (!on)
3113 addr += 8;
3114 sOutB(addr + chan, 0); /* apply or remove reset */
3115 }
3116
3117 /* Resets the speaker controller on RocketModem II and III devices */
3118 static void rmSpeakerReset(CONTROLLER_T * CtlP, unsigned long model)
3119 {
3120 ByteIO_t addr;
3121
3122 /* RocketModem II speaker control is at the 8th port location of offset 0x40 */
3123 if ((model == MODEL_RP4M) || (model == MODEL_RP6M)) {
3124 addr = CtlP->AiopIO[0] + 0x4F;
3125 sOutB(addr, 0);
3126 }
3127
3128 /* RocketModem III speaker control is at the 1st port location of offset 0x80 */
3129 if ((model == MODEL_UPCI_RM3_8PORT)
3130 || (model == MODEL_UPCI_RM3_4PORT)) {
3131 addr = CtlP->AiopIO[0] + 0x88;
3132 sOutB(addr, 0);
3133 }
3134 }
3135
3136 /* Returns the line number given the controller (board), aiop and channel number */
3137 static unsigned char GetLineNumber(int ctrl, int aiop, int ch)
3138 {
3139 return lineNumbers[(ctrl << 5) | (aiop << 3) | ch];
3140 }
3141
3142 /*
3143 * Stores the line number associated with a given controller (board), aiop
3144 * and channel number.
3145 * Returns: The line number assigned
3146 */
3147 static unsigned char SetLineNumber(int ctrl, int aiop, int ch)
3148 {
3149 lineNumbers[(ctrl << 5) | (aiop << 3) | ch] = nextLineNumber++;
3150 return (nextLineNumber - 1);
3151 }