Merge branch 'x86-process-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[GitHub/LineageOS/android_kernel_motorola_exynos9610.git] / drivers / thermal / cpu_cooling.c
1 /*
2 * linux/drivers/thermal/cpu_cooling.c
3 *
4 * Copyright (C) 2012 Samsung Electronics Co., Ltd(http://www.samsung.com)
5 * Copyright (C) 2012 Amit Daniel <amit.kachhap@linaro.org>
6 *
7 * Copyright (C) 2014 Viresh Kumar <viresh.kumar@linaro.org>
8 *
9 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; version 2 of the License.
13 *
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License along
20 * with this program; if not, write to the Free Software Foundation, Inc.,
21 * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
22 *
23 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
24 */
25 #include <linux/module.h>
26 #include <linux/thermal.h>
27 #include <linux/cpufreq.h>
28 #include <linux/err.h>
29 #include <linux/idr.h>
30 #include <linux/pm_opp.h>
31 #include <linux/slab.h>
32 #include <linux/cpu.h>
33 #include <linux/cpu_cooling.h>
34
35 #include <trace/events/thermal.h>
36
37 /*
38 * Cooling state <-> CPUFreq frequency
39 *
40 * Cooling states are translated to frequencies throughout this driver and this
41 * is the relation between them.
42 *
43 * Highest cooling state corresponds to lowest possible frequency.
44 *
45 * i.e.
46 * level 0 --> 1st Max Freq
47 * level 1 --> 2nd Max Freq
48 * ...
49 */
50
51 /**
52 * struct power_table - frequency to power conversion
53 * @frequency: frequency in KHz
54 * @power: power in mW
55 *
56 * This structure is built when the cooling device registers and helps
57 * in translating frequency to power and viceversa.
58 */
59 struct power_table {
60 u32 frequency;
61 u32 power;
62 };
63
64 /**
65 * struct cpufreq_cooling_device - data for cooling device with cpufreq
66 * @id: unique integer value corresponding to each cpufreq_cooling_device
67 * registered.
68 * @cool_dev: thermal_cooling_device pointer to keep track of the
69 * registered cooling device.
70 * @cpufreq_state: integer value representing the current state of cpufreq
71 * cooling devices.
72 * @clipped_freq: integer value representing the absolute value of the clipped
73 * frequency.
74 * @max_level: maximum cooling level. One less than total number of valid
75 * cpufreq frequencies.
76 * @allowed_cpus: all the cpus involved for this cpufreq_cooling_device.
77 * @node: list_head to link all cpufreq_cooling_device together.
78 * @last_load: load measured by the latest call to cpufreq_get_requested_power()
79 * @time_in_idle: previous reading of the absolute time that this cpu was idle
80 * @time_in_idle_timestamp: wall time of the last invocation of
81 * get_cpu_idle_time_us()
82 * @dyn_power_table: array of struct power_table for frequency to power
83 * conversion, sorted in ascending order.
84 * @dyn_power_table_entries: number of entries in the @dyn_power_table array
85 * @cpu_dev: the first cpu_device from @allowed_cpus that has OPPs registered
86 * @plat_get_static_power: callback to calculate the static power
87 *
88 * This structure is required for keeping information of each registered
89 * cpufreq_cooling_device.
90 */
91 struct cpufreq_cooling_device {
92 int id;
93 struct thermal_cooling_device *cool_dev;
94 unsigned int cpufreq_state;
95 unsigned int clipped_freq;
96 unsigned int max_level;
97 unsigned int *freq_table; /* In descending order */
98 struct cpumask allowed_cpus;
99 struct list_head node;
100 u32 last_load;
101 u64 *time_in_idle;
102 u64 *time_in_idle_timestamp;
103 struct power_table *dyn_power_table;
104 int dyn_power_table_entries;
105 struct device *cpu_dev;
106 get_static_t plat_get_static_power;
107 };
108 static DEFINE_IDA(cpufreq_ida);
109
110 static DEFINE_MUTEX(cooling_list_lock);
111 static LIST_HEAD(cpufreq_dev_list);
112
113 /* Below code defines functions to be used for cpufreq as cooling device */
114
115 /**
116 * get_level: Find the level for a particular frequency
117 * @cpufreq_dev: cpufreq_dev for which the property is required
118 * @freq: Frequency
119 *
120 * Return: level on success, THERMAL_CSTATE_INVALID on error.
121 */
122 static unsigned long get_level(struct cpufreq_cooling_device *cpufreq_dev,
123 unsigned int freq)
124 {
125 unsigned long level;
126
127 for (level = 0; level <= cpufreq_dev->max_level; level++) {
128 if (freq == cpufreq_dev->freq_table[level])
129 return level;
130
131 if (freq > cpufreq_dev->freq_table[level])
132 break;
133 }
134
135 return THERMAL_CSTATE_INVALID;
136 }
137
138 /**
139 * cpufreq_cooling_get_level - for a given cpu, return the cooling level.
140 * @cpu: cpu for which the level is required
141 * @freq: the frequency of interest
142 *
143 * This function will match the cooling level corresponding to the
144 * requested @freq and return it.
145 *
146 * Return: The matched cooling level on success or THERMAL_CSTATE_INVALID
147 * otherwise.
148 */
149 unsigned long cpufreq_cooling_get_level(unsigned int cpu, unsigned int freq)
150 {
151 struct cpufreq_cooling_device *cpufreq_dev;
152
153 mutex_lock(&cooling_list_lock);
154 list_for_each_entry(cpufreq_dev, &cpufreq_dev_list, node) {
155 if (cpumask_test_cpu(cpu, &cpufreq_dev->allowed_cpus)) {
156 mutex_unlock(&cooling_list_lock);
157 return get_level(cpufreq_dev, freq);
158 }
159 }
160 mutex_unlock(&cooling_list_lock);
161
162 pr_err("%s: cpu:%d not part of any cooling device\n", __func__, cpu);
163 return THERMAL_CSTATE_INVALID;
164 }
165 EXPORT_SYMBOL_GPL(cpufreq_cooling_get_level);
166
167 /**
168 * cpufreq_thermal_notifier - notifier callback for cpufreq policy change.
169 * @nb: struct notifier_block * with callback info.
170 * @event: value showing cpufreq event for which this function invoked.
171 * @data: callback-specific data
172 *
173 * Callback to hijack the notification on cpufreq policy transition.
174 * Every time there is a change in policy, we will intercept and
175 * update the cpufreq policy with thermal constraints.
176 *
177 * Return: 0 (success)
178 */
179 static int cpufreq_thermal_notifier(struct notifier_block *nb,
180 unsigned long event, void *data)
181 {
182 struct cpufreq_policy *policy = data;
183 unsigned long clipped_freq;
184 struct cpufreq_cooling_device *cpufreq_dev;
185
186 if (event != CPUFREQ_ADJUST)
187 return NOTIFY_DONE;
188
189 mutex_lock(&cooling_list_lock);
190 list_for_each_entry(cpufreq_dev, &cpufreq_dev_list, node) {
191 if (!cpumask_test_cpu(policy->cpu, &cpufreq_dev->allowed_cpus))
192 continue;
193
194 /*
195 * policy->max is the maximum allowed frequency defined by user
196 * and clipped_freq is the maximum that thermal constraints
197 * allow.
198 *
199 * If clipped_freq is lower than policy->max, then we need to
200 * readjust policy->max.
201 *
202 * But, if clipped_freq is greater than policy->max, we don't
203 * need to do anything.
204 */
205 clipped_freq = cpufreq_dev->clipped_freq;
206
207 if (policy->max > clipped_freq)
208 cpufreq_verify_within_limits(policy, 0, clipped_freq);
209 break;
210 }
211 mutex_unlock(&cooling_list_lock);
212
213 return NOTIFY_OK;
214 }
215
216 /**
217 * build_dyn_power_table() - create a dynamic power to frequency table
218 * @cpufreq_device: the cpufreq cooling device in which to store the table
219 * @capacitance: dynamic power coefficient for these cpus
220 *
221 * Build a dynamic power to frequency table for this cpu and store it
222 * in @cpufreq_device. This table will be used in cpu_power_to_freq() and
223 * cpu_freq_to_power() to convert between power and frequency
224 * efficiently. Power is stored in mW, frequency in KHz. The
225 * resulting table is in ascending order.
226 *
227 * Return: 0 on success, -EINVAL if there are no OPPs for any CPUs,
228 * -ENOMEM if we run out of memory or -EAGAIN if an OPP was
229 * added/enabled while the function was executing.
230 */
231 static int build_dyn_power_table(struct cpufreq_cooling_device *cpufreq_device,
232 u32 capacitance)
233 {
234 struct power_table *power_table;
235 struct dev_pm_opp *opp;
236 struct device *dev = NULL;
237 int num_opps = 0, cpu, i, ret = 0;
238 unsigned long freq;
239
240 for_each_cpu(cpu, &cpufreq_device->allowed_cpus) {
241 dev = get_cpu_device(cpu);
242 if (!dev) {
243 dev_warn(&cpufreq_device->cool_dev->device,
244 "No cpu device for cpu %d\n", cpu);
245 continue;
246 }
247
248 num_opps = dev_pm_opp_get_opp_count(dev);
249 if (num_opps > 0)
250 break;
251 else if (num_opps < 0)
252 return num_opps;
253 }
254
255 if (num_opps == 0)
256 return -EINVAL;
257
258 power_table = kcalloc(num_opps, sizeof(*power_table), GFP_KERNEL);
259 if (!power_table)
260 return -ENOMEM;
261
262 for (freq = 0, i = 0;
263 opp = dev_pm_opp_find_freq_ceil(dev, &freq), !IS_ERR(opp);
264 freq++, i++) {
265 u32 freq_mhz, voltage_mv;
266 u64 power;
267
268 if (i >= num_opps) {
269 ret = -EAGAIN;
270 goto free_power_table;
271 }
272
273 freq_mhz = freq / 1000000;
274 voltage_mv = dev_pm_opp_get_voltage(opp) / 1000;
275 dev_pm_opp_put(opp);
276
277 /*
278 * Do the multiplication with MHz and millivolt so as
279 * to not overflow.
280 */
281 power = (u64)capacitance * freq_mhz * voltage_mv * voltage_mv;
282 do_div(power, 1000000000);
283
284 /* frequency is stored in power_table in KHz */
285 power_table[i].frequency = freq / 1000;
286
287 /* power is stored in mW */
288 power_table[i].power = power;
289 }
290
291 if (i != num_opps) {
292 ret = PTR_ERR(opp);
293 goto free_power_table;
294 }
295
296 cpufreq_device->cpu_dev = dev;
297 cpufreq_device->dyn_power_table = power_table;
298 cpufreq_device->dyn_power_table_entries = i;
299
300 return 0;
301
302 free_power_table:
303 kfree(power_table);
304
305 return ret;
306 }
307
308 static u32 cpu_freq_to_power(struct cpufreq_cooling_device *cpufreq_device,
309 u32 freq)
310 {
311 int i;
312 struct power_table *pt = cpufreq_device->dyn_power_table;
313
314 for (i = 1; i < cpufreq_device->dyn_power_table_entries; i++)
315 if (freq < pt[i].frequency)
316 break;
317
318 return pt[i - 1].power;
319 }
320
321 static u32 cpu_power_to_freq(struct cpufreq_cooling_device *cpufreq_device,
322 u32 power)
323 {
324 int i;
325 struct power_table *pt = cpufreq_device->dyn_power_table;
326
327 for (i = 1; i < cpufreq_device->dyn_power_table_entries; i++)
328 if (power < pt[i].power)
329 break;
330
331 return pt[i - 1].frequency;
332 }
333
334 /**
335 * get_load() - get load for a cpu since last updated
336 * @cpufreq_device: &struct cpufreq_cooling_device for this cpu
337 * @cpu: cpu number
338 * @cpu_idx: index of the cpu in cpufreq_device->allowed_cpus
339 *
340 * Return: The average load of cpu @cpu in percentage since this
341 * function was last called.
342 */
343 static u32 get_load(struct cpufreq_cooling_device *cpufreq_device, int cpu,
344 int cpu_idx)
345 {
346 u32 load;
347 u64 now, now_idle, delta_time, delta_idle;
348
349 now_idle = get_cpu_idle_time(cpu, &now, 0);
350 delta_idle = now_idle - cpufreq_device->time_in_idle[cpu_idx];
351 delta_time = now - cpufreq_device->time_in_idle_timestamp[cpu_idx];
352
353 if (delta_time <= delta_idle)
354 load = 0;
355 else
356 load = div64_u64(100 * (delta_time - delta_idle), delta_time);
357
358 cpufreq_device->time_in_idle[cpu_idx] = now_idle;
359 cpufreq_device->time_in_idle_timestamp[cpu_idx] = now;
360
361 return load;
362 }
363
364 /**
365 * get_static_power() - calculate the static power consumed by the cpus
366 * @cpufreq_device: struct &cpufreq_cooling_device for this cpu cdev
367 * @tz: thermal zone device in which we're operating
368 * @freq: frequency in KHz
369 * @power: pointer in which to store the calculated static power
370 *
371 * Calculate the static power consumed by the cpus described by
372 * @cpu_actor running at frequency @freq. This function relies on a
373 * platform specific function that should have been provided when the
374 * actor was registered. If it wasn't, the static power is assumed to
375 * be negligible. The calculated static power is stored in @power.
376 *
377 * Return: 0 on success, -E* on failure.
378 */
379 static int get_static_power(struct cpufreq_cooling_device *cpufreq_device,
380 struct thermal_zone_device *tz, unsigned long freq,
381 u32 *power)
382 {
383 struct dev_pm_opp *opp;
384 unsigned long voltage;
385 struct cpumask *cpumask = &cpufreq_device->allowed_cpus;
386 unsigned long freq_hz = freq * 1000;
387
388 if (!cpufreq_device->plat_get_static_power ||
389 !cpufreq_device->cpu_dev) {
390 *power = 0;
391 return 0;
392 }
393
394 opp = dev_pm_opp_find_freq_exact(cpufreq_device->cpu_dev, freq_hz,
395 true);
396 if (IS_ERR(opp)) {
397 dev_warn_ratelimited(cpufreq_device->cpu_dev,
398 "Failed to find OPP for frequency %lu: %ld\n",
399 freq_hz, PTR_ERR(opp));
400 return -EINVAL;
401 }
402
403 voltage = dev_pm_opp_get_voltage(opp);
404 dev_pm_opp_put(opp);
405
406 if (voltage == 0) {
407 dev_err_ratelimited(cpufreq_device->cpu_dev,
408 "Failed to get voltage for frequency %lu\n",
409 freq_hz);
410 return -EINVAL;
411 }
412
413 return cpufreq_device->plat_get_static_power(cpumask, tz->passive_delay,
414 voltage, power);
415 }
416
417 /**
418 * get_dynamic_power() - calculate the dynamic power
419 * @cpufreq_device: &cpufreq_cooling_device for this cdev
420 * @freq: current frequency
421 *
422 * Return: the dynamic power consumed by the cpus described by
423 * @cpufreq_device.
424 */
425 static u32 get_dynamic_power(struct cpufreq_cooling_device *cpufreq_device,
426 unsigned long freq)
427 {
428 u32 raw_cpu_power;
429
430 raw_cpu_power = cpu_freq_to_power(cpufreq_device, freq);
431 return (raw_cpu_power * cpufreq_device->last_load) / 100;
432 }
433
434 /* cpufreq cooling device callback functions are defined below */
435
436 /**
437 * cpufreq_get_max_state - callback function to get the max cooling state.
438 * @cdev: thermal cooling device pointer.
439 * @state: fill this variable with the max cooling state.
440 *
441 * Callback for the thermal cooling device to return the cpufreq
442 * max cooling state.
443 *
444 * Return: 0 on success, an error code otherwise.
445 */
446 static int cpufreq_get_max_state(struct thermal_cooling_device *cdev,
447 unsigned long *state)
448 {
449 struct cpufreq_cooling_device *cpufreq_device = cdev->devdata;
450
451 *state = cpufreq_device->max_level;
452 return 0;
453 }
454
455 /**
456 * cpufreq_get_cur_state - callback function to get the current cooling state.
457 * @cdev: thermal cooling device pointer.
458 * @state: fill this variable with the current cooling state.
459 *
460 * Callback for the thermal cooling device to return the cpufreq
461 * current cooling state.
462 *
463 * Return: 0 on success, an error code otherwise.
464 */
465 static int cpufreq_get_cur_state(struct thermal_cooling_device *cdev,
466 unsigned long *state)
467 {
468 struct cpufreq_cooling_device *cpufreq_device = cdev->devdata;
469
470 *state = cpufreq_device->cpufreq_state;
471
472 return 0;
473 }
474
475 /**
476 * cpufreq_set_cur_state - callback function to set the current cooling state.
477 * @cdev: thermal cooling device pointer.
478 * @state: set this variable to the current cooling state.
479 *
480 * Callback for the thermal cooling device to change the cpufreq
481 * current cooling state.
482 *
483 * Return: 0 on success, an error code otherwise.
484 */
485 static int cpufreq_set_cur_state(struct thermal_cooling_device *cdev,
486 unsigned long state)
487 {
488 struct cpufreq_cooling_device *cpufreq_device = cdev->devdata;
489 unsigned int cpu = cpumask_any(&cpufreq_device->allowed_cpus);
490 unsigned int clip_freq;
491
492 /* Request state should be less than max_level */
493 if (WARN_ON(state > cpufreq_device->max_level))
494 return -EINVAL;
495
496 /* Check if the old cooling action is same as new cooling action */
497 if (cpufreq_device->cpufreq_state == state)
498 return 0;
499
500 clip_freq = cpufreq_device->freq_table[state];
501 cpufreq_device->cpufreq_state = state;
502 cpufreq_device->clipped_freq = clip_freq;
503
504 cpufreq_update_policy(cpu);
505
506 return 0;
507 }
508
509 /**
510 * cpufreq_get_requested_power() - get the current power
511 * @cdev: &thermal_cooling_device pointer
512 * @tz: a valid thermal zone device pointer
513 * @power: pointer in which to store the resulting power
514 *
515 * Calculate the current power consumption of the cpus in milliwatts
516 * and store it in @power. This function should actually calculate
517 * the requested power, but it's hard to get the frequency that
518 * cpufreq would have assigned if there were no thermal limits.
519 * Instead, we calculate the current power on the assumption that the
520 * immediate future will look like the immediate past.
521 *
522 * We use the current frequency and the average load since this
523 * function was last called. In reality, there could have been
524 * multiple opps since this function was last called and that affects
525 * the load calculation. While it's not perfectly accurate, this
526 * simplification is good enough and works. REVISIT this, as more
527 * complex code may be needed if experiments show that it's not
528 * accurate enough.
529 *
530 * Return: 0 on success, -E* if getting the static power failed.
531 */
532 static int cpufreq_get_requested_power(struct thermal_cooling_device *cdev,
533 struct thermal_zone_device *tz,
534 u32 *power)
535 {
536 unsigned long freq;
537 int i = 0, cpu, ret;
538 u32 static_power, dynamic_power, total_load = 0;
539 struct cpufreq_cooling_device *cpufreq_device = cdev->devdata;
540 u32 *load_cpu = NULL;
541
542 cpu = cpumask_any_and(&cpufreq_device->allowed_cpus, cpu_online_mask);
543
544 /*
545 * All the CPUs are offline, thus the requested power by
546 * the cdev is 0
547 */
548 if (cpu >= nr_cpu_ids) {
549 *power = 0;
550 return 0;
551 }
552
553 freq = cpufreq_quick_get(cpu);
554
555 if (trace_thermal_power_cpu_get_power_enabled()) {
556 u32 ncpus = cpumask_weight(&cpufreq_device->allowed_cpus);
557
558 load_cpu = kcalloc(ncpus, sizeof(*load_cpu), GFP_KERNEL);
559 }
560
561 for_each_cpu(cpu, &cpufreq_device->allowed_cpus) {
562 u32 load;
563
564 if (cpu_online(cpu))
565 load = get_load(cpufreq_device, cpu, i);
566 else
567 load = 0;
568
569 total_load += load;
570 if (trace_thermal_power_cpu_limit_enabled() && load_cpu)
571 load_cpu[i] = load;
572
573 i++;
574 }
575
576 cpufreq_device->last_load = total_load;
577
578 dynamic_power = get_dynamic_power(cpufreq_device, freq);
579 ret = get_static_power(cpufreq_device, tz, freq, &static_power);
580 if (ret) {
581 kfree(load_cpu);
582 return ret;
583 }
584
585 if (load_cpu) {
586 trace_thermal_power_cpu_get_power(
587 &cpufreq_device->allowed_cpus,
588 freq, load_cpu, i, dynamic_power, static_power);
589
590 kfree(load_cpu);
591 }
592
593 *power = static_power + dynamic_power;
594 return 0;
595 }
596
597 /**
598 * cpufreq_state2power() - convert a cpu cdev state to power consumed
599 * @cdev: &thermal_cooling_device pointer
600 * @tz: a valid thermal zone device pointer
601 * @state: cooling device state to be converted
602 * @power: pointer in which to store the resulting power
603 *
604 * Convert cooling device state @state into power consumption in
605 * milliwatts assuming 100% load. Store the calculated power in
606 * @power.
607 *
608 * Return: 0 on success, -EINVAL if the cooling device state could not
609 * be converted into a frequency or other -E* if there was an error
610 * when calculating the static power.
611 */
612 static int cpufreq_state2power(struct thermal_cooling_device *cdev,
613 struct thermal_zone_device *tz,
614 unsigned long state, u32 *power)
615 {
616 unsigned int freq, num_cpus;
617 cpumask_var_t cpumask;
618 u32 static_power, dynamic_power;
619 int ret;
620 struct cpufreq_cooling_device *cpufreq_device = cdev->devdata;
621
622 if (!alloc_cpumask_var(&cpumask, GFP_KERNEL))
623 return -ENOMEM;
624
625 cpumask_and(cpumask, &cpufreq_device->allowed_cpus, cpu_online_mask);
626 num_cpus = cpumask_weight(cpumask);
627
628 /* None of our cpus are online, so no power */
629 if (num_cpus == 0) {
630 *power = 0;
631 ret = 0;
632 goto out;
633 }
634
635 freq = cpufreq_device->freq_table[state];
636 if (!freq) {
637 ret = -EINVAL;
638 goto out;
639 }
640
641 dynamic_power = cpu_freq_to_power(cpufreq_device, freq) * num_cpus;
642 ret = get_static_power(cpufreq_device, tz, freq, &static_power);
643 if (ret)
644 goto out;
645
646 *power = static_power + dynamic_power;
647 out:
648 free_cpumask_var(cpumask);
649 return ret;
650 }
651
652 /**
653 * cpufreq_power2state() - convert power to a cooling device state
654 * @cdev: &thermal_cooling_device pointer
655 * @tz: a valid thermal zone device pointer
656 * @power: power in milliwatts to be converted
657 * @state: pointer in which to store the resulting state
658 *
659 * Calculate a cooling device state for the cpus described by @cdev
660 * that would allow them to consume at most @power mW and store it in
661 * @state. Note that this calculation depends on external factors
662 * such as the cpu load or the current static power. Calling this
663 * function with the same power as input can yield different cooling
664 * device states depending on those external factors.
665 *
666 * Return: 0 on success, -ENODEV if no cpus are online or -EINVAL if
667 * the calculated frequency could not be converted to a valid state.
668 * The latter should not happen unless the frequencies available to
669 * cpufreq have changed since the initialization of the cpu cooling
670 * device.
671 */
672 static int cpufreq_power2state(struct thermal_cooling_device *cdev,
673 struct thermal_zone_device *tz, u32 power,
674 unsigned long *state)
675 {
676 unsigned int cpu, cur_freq, target_freq;
677 int ret;
678 s32 dyn_power;
679 u32 last_load, normalised_power, static_power;
680 struct cpufreq_cooling_device *cpufreq_device = cdev->devdata;
681
682 cpu = cpumask_any_and(&cpufreq_device->allowed_cpus, cpu_online_mask);
683
684 /* None of our cpus are online */
685 if (cpu >= nr_cpu_ids)
686 return -ENODEV;
687
688 cur_freq = cpufreq_quick_get(cpu);
689 ret = get_static_power(cpufreq_device, tz, cur_freq, &static_power);
690 if (ret)
691 return ret;
692
693 dyn_power = power - static_power;
694 dyn_power = dyn_power > 0 ? dyn_power : 0;
695 last_load = cpufreq_device->last_load ?: 1;
696 normalised_power = (dyn_power * 100) / last_load;
697 target_freq = cpu_power_to_freq(cpufreq_device, normalised_power);
698
699 *state = cpufreq_cooling_get_level(cpu, target_freq);
700 if (*state == THERMAL_CSTATE_INVALID) {
701 dev_err_ratelimited(&cdev->device,
702 "Failed to convert %dKHz for cpu %d into a cdev state\n",
703 target_freq, cpu);
704 return -EINVAL;
705 }
706
707 trace_thermal_power_cpu_limit(&cpufreq_device->allowed_cpus,
708 target_freq, *state, power);
709 return 0;
710 }
711
712 /* Bind cpufreq callbacks to thermal cooling device ops */
713
714 static struct thermal_cooling_device_ops cpufreq_cooling_ops = {
715 .get_max_state = cpufreq_get_max_state,
716 .get_cur_state = cpufreq_get_cur_state,
717 .set_cur_state = cpufreq_set_cur_state,
718 };
719
720 static struct thermal_cooling_device_ops cpufreq_power_cooling_ops = {
721 .get_max_state = cpufreq_get_max_state,
722 .get_cur_state = cpufreq_get_cur_state,
723 .set_cur_state = cpufreq_set_cur_state,
724 .get_requested_power = cpufreq_get_requested_power,
725 .state2power = cpufreq_state2power,
726 .power2state = cpufreq_power2state,
727 };
728
729 /* Notifier for cpufreq policy change */
730 static struct notifier_block thermal_cpufreq_notifier_block = {
731 .notifier_call = cpufreq_thermal_notifier,
732 };
733
734 static unsigned int find_next_max(struct cpufreq_frequency_table *table,
735 unsigned int prev_max)
736 {
737 struct cpufreq_frequency_table *pos;
738 unsigned int max = 0;
739
740 cpufreq_for_each_valid_entry(pos, table) {
741 if (pos->frequency > max && pos->frequency < prev_max)
742 max = pos->frequency;
743 }
744
745 return max;
746 }
747
748 /**
749 * __cpufreq_cooling_register - helper function to create cpufreq cooling device
750 * @np: a valid struct device_node to the cooling device device tree node
751 * @clip_cpus: cpumask of cpus where the frequency constraints will happen.
752 * Normally this should be same as cpufreq policy->related_cpus.
753 * @capacitance: dynamic power coefficient for these cpus
754 * @plat_static_func: function to calculate the static power consumed by these
755 * cpus (optional)
756 *
757 * This interface function registers the cpufreq cooling device with the name
758 * "thermal-cpufreq-%x". This api can support multiple instances of cpufreq
759 * cooling devices. It also gives the opportunity to link the cooling device
760 * with a device tree node, in order to bind it via the thermal DT code.
761 *
762 * Return: a valid struct thermal_cooling_device pointer on success,
763 * on failure, it returns a corresponding ERR_PTR().
764 */
765 static struct thermal_cooling_device *
766 __cpufreq_cooling_register(struct device_node *np,
767 const struct cpumask *clip_cpus, u32 capacitance,
768 get_static_t plat_static_func)
769 {
770 struct cpufreq_policy *policy;
771 struct thermal_cooling_device *cool_dev;
772 struct cpufreq_cooling_device *cpufreq_dev;
773 char dev_name[THERMAL_NAME_LENGTH];
774 struct cpufreq_frequency_table *pos, *table;
775 cpumask_var_t temp_mask;
776 unsigned int freq, i, num_cpus;
777 int ret;
778 struct thermal_cooling_device_ops *cooling_ops;
779 bool first;
780
781 if (!alloc_cpumask_var(&temp_mask, GFP_KERNEL))
782 return ERR_PTR(-ENOMEM);
783
784 cpumask_and(temp_mask, clip_cpus, cpu_online_mask);
785 policy = cpufreq_cpu_get(cpumask_first(temp_mask));
786 if (!policy) {
787 pr_debug("%s: CPUFreq policy not found\n", __func__);
788 cool_dev = ERR_PTR(-EPROBE_DEFER);
789 goto free_cpumask;
790 }
791
792 table = policy->freq_table;
793 if (!table) {
794 pr_debug("%s: CPUFreq table not found\n", __func__);
795 cool_dev = ERR_PTR(-ENODEV);
796 goto put_policy;
797 }
798
799 cpufreq_dev = kzalloc(sizeof(*cpufreq_dev), GFP_KERNEL);
800 if (!cpufreq_dev) {
801 cool_dev = ERR_PTR(-ENOMEM);
802 goto put_policy;
803 }
804
805 num_cpus = cpumask_weight(clip_cpus);
806 cpufreq_dev->time_in_idle = kcalloc(num_cpus,
807 sizeof(*cpufreq_dev->time_in_idle),
808 GFP_KERNEL);
809 if (!cpufreq_dev->time_in_idle) {
810 cool_dev = ERR_PTR(-ENOMEM);
811 goto free_cdev;
812 }
813
814 cpufreq_dev->time_in_idle_timestamp =
815 kcalloc(num_cpus, sizeof(*cpufreq_dev->time_in_idle_timestamp),
816 GFP_KERNEL);
817 if (!cpufreq_dev->time_in_idle_timestamp) {
818 cool_dev = ERR_PTR(-ENOMEM);
819 goto free_time_in_idle;
820 }
821
822 /* Find max levels */
823 cpufreq_for_each_valid_entry(pos, table)
824 cpufreq_dev->max_level++;
825
826 cpufreq_dev->freq_table = kmalloc(sizeof(*cpufreq_dev->freq_table) *
827 cpufreq_dev->max_level, GFP_KERNEL);
828 if (!cpufreq_dev->freq_table) {
829 cool_dev = ERR_PTR(-ENOMEM);
830 goto free_time_in_idle_timestamp;
831 }
832
833 /* max_level is an index, not a counter */
834 cpufreq_dev->max_level--;
835
836 cpumask_copy(&cpufreq_dev->allowed_cpus, clip_cpus);
837
838 if (capacitance) {
839 cpufreq_dev->plat_get_static_power = plat_static_func;
840
841 ret = build_dyn_power_table(cpufreq_dev, capacitance);
842 if (ret) {
843 cool_dev = ERR_PTR(ret);
844 goto free_table;
845 }
846
847 cooling_ops = &cpufreq_power_cooling_ops;
848 } else {
849 cooling_ops = &cpufreq_cooling_ops;
850 }
851
852 ret = ida_simple_get(&cpufreq_ida, 0, 0, GFP_KERNEL);
853 if (ret < 0) {
854 cool_dev = ERR_PTR(ret);
855 goto free_power_table;
856 }
857 cpufreq_dev->id = ret;
858
859 /* Fill freq-table in descending order of frequencies */
860 for (i = 0, freq = -1; i <= cpufreq_dev->max_level; i++) {
861 freq = find_next_max(table, freq);
862 cpufreq_dev->freq_table[i] = freq;
863
864 /* Warn for duplicate entries */
865 if (!freq)
866 pr_warn("%s: table has duplicate entries\n", __func__);
867 else
868 pr_debug("%s: freq:%u KHz\n", __func__, freq);
869 }
870
871 snprintf(dev_name, sizeof(dev_name), "thermal-cpufreq-%d",
872 cpufreq_dev->id);
873
874 cool_dev = thermal_of_cooling_device_register(np, dev_name, cpufreq_dev,
875 cooling_ops);
876 if (IS_ERR(cool_dev))
877 goto remove_ida;
878
879 cpufreq_dev->clipped_freq = cpufreq_dev->freq_table[0];
880 cpufreq_dev->cool_dev = cool_dev;
881
882 mutex_lock(&cooling_list_lock);
883 /* Register the notifier for first cpufreq cooling device */
884 first = list_empty(&cpufreq_dev_list);
885 list_add(&cpufreq_dev->node, &cpufreq_dev_list);
886 mutex_unlock(&cooling_list_lock);
887
888 if (first)
889 cpufreq_register_notifier(&thermal_cpufreq_notifier_block,
890 CPUFREQ_POLICY_NOTIFIER);
891
892 goto put_policy;
893
894 remove_ida:
895 ida_simple_remove(&cpufreq_ida, cpufreq_dev->id);
896 free_power_table:
897 kfree(cpufreq_dev->dyn_power_table);
898 free_table:
899 kfree(cpufreq_dev->freq_table);
900 free_time_in_idle_timestamp:
901 kfree(cpufreq_dev->time_in_idle_timestamp);
902 free_time_in_idle:
903 kfree(cpufreq_dev->time_in_idle);
904 free_cdev:
905 kfree(cpufreq_dev);
906 put_policy:
907 cpufreq_cpu_put(policy);
908 free_cpumask:
909 free_cpumask_var(temp_mask);
910 return cool_dev;
911 }
912
913 /**
914 * cpufreq_cooling_register - function to create cpufreq cooling device.
915 * @clip_cpus: cpumask of cpus where the frequency constraints will happen.
916 *
917 * This interface function registers the cpufreq cooling device with the name
918 * "thermal-cpufreq-%x". This api can support multiple instances of cpufreq
919 * cooling devices.
920 *
921 * Return: a valid struct thermal_cooling_device pointer on success,
922 * on failure, it returns a corresponding ERR_PTR().
923 */
924 struct thermal_cooling_device *
925 cpufreq_cooling_register(const struct cpumask *clip_cpus)
926 {
927 return __cpufreq_cooling_register(NULL, clip_cpus, 0, NULL);
928 }
929 EXPORT_SYMBOL_GPL(cpufreq_cooling_register);
930
931 /**
932 * of_cpufreq_cooling_register - function to create cpufreq cooling device.
933 * @np: a valid struct device_node to the cooling device device tree node
934 * @clip_cpus: cpumask of cpus where the frequency constraints will happen.
935 *
936 * This interface function registers the cpufreq cooling device with the name
937 * "thermal-cpufreq-%x". This api can support multiple instances of cpufreq
938 * cooling devices. Using this API, the cpufreq cooling device will be
939 * linked to the device tree node provided.
940 *
941 * Return: a valid struct thermal_cooling_device pointer on success,
942 * on failure, it returns a corresponding ERR_PTR().
943 */
944 struct thermal_cooling_device *
945 of_cpufreq_cooling_register(struct device_node *np,
946 const struct cpumask *clip_cpus)
947 {
948 if (!np)
949 return ERR_PTR(-EINVAL);
950
951 return __cpufreq_cooling_register(np, clip_cpus, 0, NULL);
952 }
953 EXPORT_SYMBOL_GPL(of_cpufreq_cooling_register);
954
955 /**
956 * cpufreq_power_cooling_register() - create cpufreq cooling device with power extensions
957 * @clip_cpus: cpumask of cpus where the frequency constraints will happen
958 * @capacitance: dynamic power coefficient for these cpus
959 * @plat_static_func: function to calculate the static power consumed by these
960 * cpus (optional)
961 *
962 * This interface function registers the cpufreq cooling device with
963 * the name "thermal-cpufreq-%x". This api can support multiple
964 * instances of cpufreq cooling devices. Using this function, the
965 * cooling device will implement the power extensions by using a
966 * simple cpu power model. The cpus must have registered their OPPs
967 * using the OPP library.
968 *
969 * An optional @plat_static_func may be provided to calculate the
970 * static power consumed by these cpus. If the platform's static
971 * power consumption is unknown or negligible, make it NULL.
972 *
973 * Return: a valid struct thermal_cooling_device pointer on success,
974 * on failure, it returns a corresponding ERR_PTR().
975 */
976 struct thermal_cooling_device *
977 cpufreq_power_cooling_register(const struct cpumask *clip_cpus, u32 capacitance,
978 get_static_t plat_static_func)
979 {
980 return __cpufreq_cooling_register(NULL, clip_cpus, capacitance,
981 plat_static_func);
982 }
983 EXPORT_SYMBOL(cpufreq_power_cooling_register);
984
985 /**
986 * of_cpufreq_power_cooling_register() - create cpufreq cooling device with power extensions
987 * @np: a valid struct device_node to the cooling device device tree node
988 * @clip_cpus: cpumask of cpus where the frequency constraints will happen
989 * @capacitance: dynamic power coefficient for these cpus
990 * @plat_static_func: function to calculate the static power consumed by these
991 * cpus (optional)
992 *
993 * This interface function registers the cpufreq cooling device with
994 * the name "thermal-cpufreq-%x". This api can support multiple
995 * instances of cpufreq cooling devices. Using this API, the cpufreq
996 * cooling device will be linked to the device tree node provided.
997 * Using this function, the cooling device will implement the power
998 * extensions by using a simple cpu power model. The cpus must have
999 * registered their OPPs using the OPP library.
1000 *
1001 * An optional @plat_static_func may be provided to calculate the
1002 * static power consumed by these cpus. If the platform's static
1003 * power consumption is unknown or negligible, make it NULL.
1004 *
1005 * Return: a valid struct thermal_cooling_device pointer on success,
1006 * on failure, it returns a corresponding ERR_PTR().
1007 */
1008 struct thermal_cooling_device *
1009 of_cpufreq_power_cooling_register(struct device_node *np,
1010 const struct cpumask *clip_cpus,
1011 u32 capacitance,
1012 get_static_t plat_static_func)
1013 {
1014 if (!np)
1015 return ERR_PTR(-EINVAL);
1016
1017 return __cpufreq_cooling_register(np, clip_cpus, capacitance,
1018 plat_static_func);
1019 }
1020 EXPORT_SYMBOL(of_cpufreq_power_cooling_register);
1021
1022 /**
1023 * cpufreq_cooling_unregister - function to remove cpufreq cooling device.
1024 * @cdev: thermal cooling device pointer.
1025 *
1026 * This interface function unregisters the "thermal-cpufreq-%x" cooling device.
1027 */
1028 void cpufreq_cooling_unregister(struct thermal_cooling_device *cdev)
1029 {
1030 struct cpufreq_cooling_device *cpufreq_dev;
1031 bool last;
1032
1033 if (!cdev)
1034 return;
1035
1036 cpufreq_dev = cdev->devdata;
1037
1038 mutex_lock(&cooling_list_lock);
1039 list_del(&cpufreq_dev->node);
1040 /* Unregister the notifier for the last cpufreq cooling device */
1041 last = list_empty(&cpufreq_dev_list);
1042 mutex_unlock(&cooling_list_lock);
1043
1044 if (last)
1045 cpufreq_unregister_notifier(&thermal_cpufreq_notifier_block,
1046 CPUFREQ_POLICY_NOTIFIER);
1047
1048 thermal_cooling_device_unregister(cpufreq_dev->cool_dev);
1049 ida_simple_remove(&cpufreq_ida, cpufreq_dev->id);
1050 kfree(cpufreq_dev->dyn_power_table);
1051 kfree(cpufreq_dev->time_in_idle_timestamp);
1052 kfree(cpufreq_dev->time_in_idle);
1053 kfree(cpufreq_dev->freq_table);
1054 kfree(cpufreq_dev);
1055 }
1056 EXPORT_SYMBOL_GPL(cpufreq_cooling_unregister);