percpu-refcount: Add percpu-refcount.o to obj-y
[GitHub/exynos8895/android_kernel_samsung_universal8895.git] / drivers / target / target_core_transport.c
1 /*******************************************************************************
2 * Filename: target_core_transport.c
3 *
4 * This file contains the Generic Target Engine Core.
5 *
6 * (c) Copyright 2002-2013 Datera, Inc.
7 *
8 * Nicholas A. Bellinger <nab@kernel.org>
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2 of the License, or
13 * (at your option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
23 *
24 ******************************************************************************/
25
26 #include <linux/net.h>
27 #include <linux/delay.h>
28 #include <linux/string.h>
29 #include <linux/timer.h>
30 #include <linux/slab.h>
31 #include <linux/spinlock.h>
32 #include <linux/kthread.h>
33 #include <linux/in.h>
34 #include <linux/cdrom.h>
35 #include <linux/module.h>
36 #include <linux/ratelimit.h>
37 #include <asm/unaligned.h>
38 #include <net/sock.h>
39 #include <net/tcp.h>
40 #include <scsi/scsi.h>
41 #include <scsi/scsi_cmnd.h>
42 #include <scsi/scsi_tcq.h>
43
44 #include <target/target_core_base.h>
45 #include <target/target_core_backend.h>
46 #include <target/target_core_fabric.h>
47 #include <target/target_core_configfs.h>
48
49 #include "target_core_internal.h"
50 #include "target_core_alua.h"
51 #include "target_core_pr.h"
52 #include "target_core_ua.h"
53
54 #define CREATE_TRACE_POINTS
55 #include <trace/events/target.h>
56
57 static struct workqueue_struct *target_completion_wq;
58 static struct kmem_cache *se_sess_cache;
59 struct kmem_cache *se_ua_cache;
60 struct kmem_cache *t10_pr_reg_cache;
61 struct kmem_cache *t10_alua_lu_gp_cache;
62 struct kmem_cache *t10_alua_lu_gp_mem_cache;
63 struct kmem_cache *t10_alua_tg_pt_gp_cache;
64 struct kmem_cache *t10_alua_tg_pt_gp_mem_cache;
65
66 static void transport_complete_task_attr(struct se_cmd *cmd);
67 static void transport_handle_queue_full(struct se_cmd *cmd,
68 struct se_device *dev);
69 static int transport_put_cmd(struct se_cmd *cmd);
70 static void target_complete_ok_work(struct work_struct *work);
71
72 int init_se_kmem_caches(void)
73 {
74 se_sess_cache = kmem_cache_create("se_sess_cache",
75 sizeof(struct se_session), __alignof__(struct se_session),
76 0, NULL);
77 if (!se_sess_cache) {
78 pr_err("kmem_cache_create() for struct se_session"
79 " failed\n");
80 goto out;
81 }
82 se_ua_cache = kmem_cache_create("se_ua_cache",
83 sizeof(struct se_ua), __alignof__(struct se_ua),
84 0, NULL);
85 if (!se_ua_cache) {
86 pr_err("kmem_cache_create() for struct se_ua failed\n");
87 goto out_free_sess_cache;
88 }
89 t10_pr_reg_cache = kmem_cache_create("t10_pr_reg_cache",
90 sizeof(struct t10_pr_registration),
91 __alignof__(struct t10_pr_registration), 0, NULL);
92 if (!t10_pr_reg_cache) {
93 pr_err("kmem_cache_create() for struct t10_pr_registration"
94 " failed\n");
95 goto out_free_ua_cache;
96 }
97 t10_alua_lu_gp_cache = kmem_cache_create("t10_alua_lu_gp_cache",
98 sizeof(struct t10_alua_lu_gp), __alignof__(struct t10_alua_lu_gp),
99 0, NULL);
100 if (!t10_alua_lu_gp_cache) {
101 pr_err("kmem_cache_create() for t10_alua_lu_gp_cache"
102 " failed\n");
103 goto out_free_pr_reg_cache;
104 }
105 t10_alua_lu_gp_mem_cache = kmem_cache_create("t10_alua_lu_gp_mem_cache",
106 sizeof(struct t10_alua_lu_gp_member),
107 __alignof__(struct t10_alua_lu_gp_member), 0, NULL);
108 if (!t10_alua_lu_gp_mem_cache) {
109 pr_err("kmem_cache_create() for t10_alua_lu_gp_mem_"
110 "cache failed\n");
111 goto out_free_lu_gp_cache;
112 }
113 t10_alua_tg_pt_gp_cache = kmem_cache_create("t10_alua_tg_pt_gp_cache",
114 sizeof(struct t10_alua_tg_pt_gp),
115 __alignof__(struct t10_alua_tg_pt_gp), 0, NULL);
116 if (!t10_alua_tg_pt_gp_cache) {
117 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
118 "cache failed\n");
119 goto out_free_lu_gp_mem_cache;
120 }
121 t10_alua_tg_pt_gp_mem_cache = kmem_cache_create(
122 "t10_alua_tg_pt_gp_mem_cache",
123 sizeof(struct t10_alua_tg_pt_gp_member),
124 __alignof__(struct t10_alua_tg_pt_gp_member),
125 0, NULL);
126 if (!t10_alua_tg_pt_gp_mem_cache) {
127 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
128 "mem_t failed\n");
129 goto out_free_tg_pt_gp_cache;
130 }
131
132 target_completion_wq = alloc_workqueue("target_completion",
133 WQ_MEM_RECLAIM, 0);
134 if (!target_completion_wq)
135 goto out_free_tg_pt_gp_mem_cache;
136
137 return 0;
138
139 out_free_tg_pt_gp_mem_cache:
140 kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache);
141 out_free_tg_pt_gp_cache:
142 kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
143 out_free_lu_gp_mem_cache:
144 kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
145 out_free_lu_gp_cache:
146 kmem_cache_destroy(t10_alua_lu_gp_cache);
147 out_free_pr_reg_cache:
148 kmem_cache_destroy(t10_pr_reg_cache);
149 out_free_ua_cache:
150 kmem_cache_destroy(se_ua_cache);
151 out_free_sess_cache:
152 kmem_cache_destroy(se_sess_cache);
153 out:
154 return -ENOMEM;
155 }
156
157 void release_se_kmem_caches(void)
158 {
159 destroy_workqueue(target_completion_wq);
160 kmem_cache_destroy(se_sess_cache);
161 kmem_cache_destroy(se_ua_cache);
162 kmem_cache_destroy(t10_pr_reg_cache);
163 kmem_cache_destroy(t10_alua_lu_gp_cache);
164 kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
165 kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
166 kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache);
167 }
168
169 /* This code ensures unique mib indexes are handed out. */
170 static DEFINE_SPINLOCK(scsi_mib_index_lock);
171 static u32 scsi_mib_index[SCSI_INDEX_TYPE_MAX];
172
173 /*
174 * Allocate a new row index for the entry type specified
175 */
176 u32 scsi_get_new_index(scsi_index_t type)
177 {
178 u32 new_index;
179
180 BUG_ON((type < 0) || (type >= SCSI_INDEX_TYPE_MAX));
181
182 spin_lock(&scsi_mib_index_lock);
183 new_index = ++scsi_mib_index[type];
184 spin_unlock(&scsi_mib_index_lock);
185
186 return new_index;
187 }
188
189 void transport_subsystem_check_init(void)
190 {
191 int ret;
192 static int sub_api_initialized;
193
194 if (sub_api_initialized)
195 return;
196
197 ret = request_module("target_core_iblock");
198 if (ret != 0)
199 pr_err("Unable to load target_core_iblock\n");
200
201 ret = request_module("target_core_file");
202 if (ret != 0)
203 pr_err("Unable to load target_core_file\n");
204
205 ret = request_module("target_core_pscsi");
206 if (ret != 0)
207 pr_err("Unable to load target_core_pscsi\n");
208
209 sub_api_initialized = 1;
210 }
211
212 struct se_session *transport_init_session(void)
213 {
214 struct se_session *se_sess;
215
216 se_sess = kmem_cache_zalloc(se_sess_cache, GFP_KERNEL);
217 if (!se_sess) {
218 pr_err("Unable to allocate struct se_session from"
219 " se_sess_cache\n");
220 return ERR_PTR(-ENOMEM);
221 }
222 INIT_LIST_HEAD(&se_sess->sess_list);
223 INIT_LIST_HEAD(&se_sess->sess_acl_list);
224 INIT_LIST_HEAD(&se_sess->sess_cmd_list);
225 INIT_LIST_HEAD(&se_sess->sess_wait_list);
226 spin_lock_init(&se_sess->sess_cmd_lock);
227 kref_init(&se_sess->sess_kref);
228
229 return se_sess;
230 }
231 EXPORT_SYMBOL(transport_init_session);
232
233 int transport_alloc_session_tags(struct se_session *se_sess,
234 unsigned int tag_num, unsigned int tag_size)
235 {
236 int rc;
237
238 se_sess->sess_cmd_map = kzalloc(tag_num * tag_size, GFP_KERNEL);
239 if (!se_sess->sess_cmd_map) {
240 pr_err("Unable to allocate se_sess->sess_cmd_map\n");
241 return -ENOMEM;
242 }
243
244 rc = percpu_ida_init(&se_sess->sess_tag_pool, tag_num);
245 if (rc < 0) {
246 pr_err("Unable to init se_sess->sess_tag_pool,"
247 " tag_num: %u\n", tag_num);
248 kfree(se_sess->sess_cmd_map);
249 se_sess->sess_cmd_map = NULL;
250 return -ENOMEM;
251 }
252
253 return 0;
254 }
255 EXPORT_SYMBOL(transport_alloc_session_tags);
256
257 struct se_session *transport_init_session_tags(unsigned int tag_num,
258 unsigned int tag_size)
259 {
260 struct se_session *se_sess;
261 int rc;
262
263 se_sess = transport_init_session();
264 if (IS_ERR(se_sess))
265 return se_sess;
266
267 rc = transport_alloc_session_tags(se_sess, tag_num, tag_size);
268 if (rc < 0) {
269 transport_free_session(se_sess);
270 return ERR_PTR(-ENOMEM);
271 }
272
273 return se_sess;
274 }
275 EXPORT_SYMBOL(transport_init_session_tags);
276
277 /*
278 * Called with spin_lock_irqsave(&struct se_portal_group->session_lock called.
279 */
280 void __transport_register_session(
281 struct se_portal_group *se_tpg,
282 struct se_node_acl *se_nacl,
283 struct se_session *se_sess,
284 void *fabric_sess_ptr)
285 {
286 unsigned char buf[PR_REG_ISID_LEN];
287
288 se_sess->se_tpg = se_tpg;
289 se_sess->fabric_sess_ptr = fabric_sess_ptr;
290 /*
291 * Used by struct se_node_acl's under ConfigFS to locate active se_session-t
292 *
293 * Only set for struct se_session's that will actually be moving I/O.
294 * eg: *NOT* discovery sessions.
295 */
296 if (se_nacl) {
297 /*
298 * If the fabric module supports an ISID based TransportID,
299 * save this value in binary from the fabric I_T Nexus now.
300 */
301 if (se_tpg->se_tpg_tfo->sess_get_initiator_sid != NULL) {
302 memset(&buf[0], 0, PR_REG_ISID_LEN);
303 se_tpg->se_tpg_tfo->sess_get_initiator_sid(se_sess,
304 &buf[0], PR_REG_ISID_LEN);
305 se_sess->sess_bin_isid = get_unaligned_be64(&buf[0]);
306 }
307 kref_get(&se_nacl->acl_kref);
308
309 spin_lock_irq(&se_nacl->nacl_sess_lock);
310 /*
311 * The se_nacl->nacl_sess pointer will be set to the
312 * last active I_T Nexus for each struct se_node_acl.
313 */
314 se_nacl->nacl_sess = se_sess;
315
316 list_add_tail(&se_sess->sess_acl_list,
317 &se_nacl->acl_sess_list);
318 spin_unlock_irq(&se_nacl->nacl_sess_lock);
319 }
320 list_add_tail(&se_sess->sess_list, &se_tpg->tpg_sess_list);
321
322 pr_debug("TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n",
323 se_tpg->se_tpg_tfo->get_fabric_name(), se_sess->fabric_sess_ptr);
324 }
325 EXPORT_SYMBOL(__transport_register_session);
326
327 void transport_register_session(
328 struct se_portal_group *se_tpg,
329 struct se_node_acl *se_nacl,
330 struct se_session *se_sess,
331 void *fabric_sess_ptr)
332 {
333 unsigned long flags;
334
335 spin_lock_irqsave(&se_tpg->session_lock, flags);
336 __transport_register_session(se_tpg, se_nacl, se_sess, fabric_sess_ptr);
337 spin_unlock_irqrestore(&se_tpg->session_lock, flags);
338 }
339 EXPORT_SYMBOL(transport_register_session);
340
341 static void target_release_session(struct kref *kref)
342 {
343 struct se_session *se_sess = container_of(kref,
344 struct se_session, sess_kref);
345 struct se_portal_group *se_tpg = se_sess->se_tpg;
346
347 se_tpg->se_tpg_tfo->close_session(se_sess);
348 }
349
350 void target_get_session(struct se_session *se_sess)
351 {
352 kref_get(&se_sess->sess_kref);
353 }
354 EXPORT_SYMBOL(target_get_session);
355
356 void target_put_session(struct se_session *se_sess)
357 {
358 struct se_portal_group *tpg = se_sess->se_tpg;
359
360 if (tpg->se_tpg_tfo->put_session != NULL) {
361 tpg->se_tpg_tfo->put_session(se_sess);
362 return;
363 }
364 kref_put(&se_sess->sess_kref, target_release_session);
365 }
366 EXPORT_SYMBOL(target_put_session);
367
368 static void target_complete_nacl(struct kref *kref)
369 {
370 struct se_node_acl *nacl = container_of(kref,
371 struct se_node_acl, acl_kref);
372
373 complete(&nacl->acl_free_comp);
374 }
375
376 void target_put_nacl(struct se_node_acl *nacl)
377 {
378 kref_put(&nacl->acl_kref, target_complete_nacl);
379 }
380
381 void transport_deregister_session_configfs(struct se_session *se_sess)
382 {
383 struct se_node_acl *se_nacl;
384 unsigned long flags;
385 /*
386 * Used by struct se_node_acl's under ConfigFS to locate active struct se_session
387 */
388 se_nacl = se_sess->se_node_acl;
389 if (se_nacl) {
390 spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
391 if (se_nacl->acl_stop == 0)
392 list_del(&se_sess->sess_acl_list);
393 /*
394 * If the session list is empty, then clear the pointer.
395 * Otherwise, set the struct se_session pointer from the tail
396 * element of the per struct se_node_acl active session list.
397 */
398 if (list_empty(&se_nacl->acl_sess_list))
399 se_nacl->nacl_sess = NULL;
400 else {
401 se_nacl->nacl_sess = container_of(
402 se_nacl->acl_sess_list.prev,
403 struct se_session, sess_acl_list);
404 }
405 spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
406 }
407 }
408 EXPORT_SYMBOL(transport_deregister_session_configfs);
409
410 void transport_free_session(struct se_session *se_sess)
411 {
412 if (se_sess->sess_cmd_map) {
413 percpu_ida_destroy(&se_sess->sess_tag_pool);
414 kfree(se_sess->sess_cmd_map);
415 }
416 kmem_cache_free(se_sess_cache, se_sess);
417 }
418 EXPORT_SYMBOL(transport_free_session);
419
420 void transport_deregister_session(struct se_session *se_sess)
421 {
422 struct se_portal_group *se_tpg = se_sess->se_tpg;
423 struct target_core_fabric_ops *se_tfo;
424 struct se_node_acl *se_nacl;
425 unsigned long flags;
426 bool comp_nacl = true;
427
428 if (!se_tpg) {
429 transport_free_session(se_sess);
430 return;
431 }
432 se_tfo = se_tpg->se_tpg_tfo;
433
434 spin_lock_irqsave(&se_tpg->session_lock, flags);
435 list_del(&se_sess->sess_list);
436 se_sess->se_tpg = NULL;
437 se_sess->fabric_sess_ptr = NULL;
438 spin_unlock_irqrestore(&se_tpg->session_lock, flags);
439
440 /*
441 * Determine if we need to do extra work for this initiator node's
442 * struct se_node_acl if it had been previously dynamically generated.
443 */
444 se_nacl = se_sess->se_node_acl;
445
446 spin_lock_irqsave(&se_tpg->acl_node_lock, flags);
447 if (se_nacl && se_nacl->dynamic_node_acl) {
448 if (!se_tfo->tpg_check_demo_mode_cache(se_tpg)) {
449 list_del(&se_nacl->acl_list);
450 se_tpg->num_node_acls--;
451 spin_unlock_irqrestore(&se_tpg->acl_node_lock, flags);
452 core_tpg_wait_for_nacl_pr_ref(se_nacl);
453 core_free_device_list_for_node(se_nacl, se_tpg);
454 se_tfo->tpg_release_fabric_acl(se_tpg, se_nacl);
455
456 comp_nacl = false;
457 spin_lock_irqsave(&se_tpg->acl_node_lock, flags);
458 }
459 }
460 spin_unlock_irqrestore(&se_tpg->acl_node_lock, flags);
461
462 pr_debug("TARGET_CORE[%s]: Deregistered fabric_sess\n",
463 se_tpg->se_tpg_tfo->get_fabric_name());
464 /*
465 * If last kref is dropping now for an explict NodeACL, awake sleeping
466 * ->acl_free_comp caller to wakeup configfs se_node_acl->acl_group
467 * removal context.
468 */
469 if (se_nacl && comp_nacl == true)
470 target_put_nacl(se_nacl);
471
472 transport_free_session(se_sess);
473 }
474 EXPORT_SYMBOL(transport_deregister_session);
475
476 /*
477 * Called with cmd->t_state_lock held.
478 */
479 static void target_remove_from_state_list(struct se_cmd *cmd)
480 {
481 struct se_device *dev = cmd->se_dev;
482 unsigned long flags;
483
484 if (!dev)
485 return;
486
487 if (cmd->transport_state & CMD_T_BUSY)
488 return;
489
490 spin_lock_irqsave(&dev->execute_task_lock, flags);
491 if (cmd->state_active) {
492 list_del(&cmd->state_list);
493 cmd->state_active = false;
494 }
495 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
496 }
497
498 static int transport_cmd_check_stop(struct se_cmd *cmd, bool remove_from_lists,
499 bool write_pending)
500 {
501 unsigned long flags;
502
503 spin_lock_irqsave(&cmd->t_state_lock, flags);
504 if (write_pending)
505 cmd->t_state = TRANSPORT_WRITE_PENDING;
506
507 if (remove_from_lists) {
508 target_remove_from_state_list(cmd);
509
510 /*
511 * Clear struct se_cmd->se_lun before the handoff to FE.
512 */
513 cmd->se_lun = NULL;
514 }
515
516 /*
517 * Determine if frontend context caller is requesting the stopping of
518 * this command for frontend exceptions.
519 */
520 if (cmd->transport_state & CMD_T_STOP) {
521 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08x\n",
522 __func__, __LINE__,
523 cmd->se_tfo->get_task_tag(cmd));
524
525 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
526
527 complete(&cmd->t_transport_stop_comp);
528 return 1;
529 }
530
531 cmd->transport_state &= ~CMD_T_ACTIVE;
532 if (remove_from_lists) {
533 /*
534 * Some fabric modules like tcm_loop can release
535 * their internally allocated I/O reference now and
536 * struct se_cmd now.
537 *
538 * Fabric modules are expected to return '1' here if the
539 * se_cmd being passed is released at this point,
540 * or zero if not being released.
541 */
542 if (cmd->se_tfo->check_stop_free != NULL) {
543 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
544 return cmd->se_tfo->check_stop_free(cmd);
545 }
546 }
547
548 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
549 return 0;
550 }
551
552 static int transport_cmd_check_stop_to_fabric(struct se_cmd *cmd)
553 {
554 return transport_cmd_check_stop(cmd, true, false);
555 }
556
557 static void transport_lun_remove_cmd(struct se_cmd *cmd)
558 {
559 struct se_lun *lun = cmd->se_lun;
560
561 if (!lun || !cmd->lun_ref_active)
562 return;
563
564 percpu_ref_put(&lun->lun_ref);
565 }
566
567 void transport_cmd_finish_abort(struct se_cmd *cmd, int remove)
568 {
569 if (transport_cmd_check_stop_to_fabric(cmd))
570 return;
571 if (remove)
572 transport_put_cmd(cmd);
573 }
574
575 static void target_complete_failure_work(struct work_struct *work)
576 {
577 struct se_cmd *cmd = container_of(work, struct se_cmd, work);
578
579 transport_generic_request_failure(cmd,
580 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE);
581 }
582
583 /*
584 * Used when asking transport to copy Sense Data from the underlying
585 * Linux/SCSI struct scsi_cmnd
586 */
587 static unsigned char *transport_get_sense_buffer(struct se_cmd *cmd)
588 {
589 struct se_device *dev = cmd->se_dev;
590
591 WARN_ON(!cmd->se_lun);
592
593 if (!dev)
594 return NULL;
595
596 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION)
597 return NULL;
598
599 cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER;
600
601 pr_debug("HBA_[%u]_PLUG[%s]: Requesting sense for SAM STATUS: 0x%02x\n",
602 dev->se_hba->hba_id, dev->transport->name, cmd->scsi_status);
603 return cmd->sense_buffer;
604 }
605
606 void target_complete_cmd(struct se_cmd *cmd, u8 scsi_status)
607 {
608 struct se_device *dev = cmd->se_dev;
609 int success = scsi_status == GOOD;
610 unsigned long flags;
611
612 cmd->scsi_status = scsi_status;
613
614
615 spin_lock_irqsave(&cmd->t_state_lock, flags);
616 cmd->transport_state &= ~CMD_T_BUSY;
617
618 if (dev && dev->transport->transport_complete) {
619 dev->transport->transport_complete(cmd,
620 cmd->t_data_sg,
621 transport_get_sense_buffer(cmd));
622 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE)
623 success = 1;
624 }
625
626 /*
627 * See if we are waiting to complete for an exception condition.
628 */
629 if (cmd->transport_state & CMD_T_REQUEST_STOP) {
630 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
631 complete(&cmd->task_stop_comp);
632 return;
633 }
634
635 if (!success)
636 cmd->transport_state |= CMD_T_FAILED;
637
638 /*
639 * Check for case where an explict ABORT_TASK has been received
640 * and transport_wait_for_tasks() will be waiting for completion..
641 */
642 if (cmd->transport_state & CMD_T_ABORTED &&
643 cmd->transport_state & CMD_T_STOP) {
644 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
645 complete(&cmd->t_transport_stop_comp);
646 return;
647 } else if (cmd->transport_state & CMD_T_FAILED) {
648 INIT_WORK(&cmd->work, target_complete_failure_work);
649 } else {
650 INIT_WORK(&cmd->work, target_complete_ok_work);
651 }
652
653 cmd->t_state = TRANSPORT_COMPLETE;
654 cmd->transport_state |= (CMD_T_COMPLETE | CMD_T_ACTIVE);
655 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
656
657 queue_work(target_completion_wq, &cmd->work);
658 }
659 EXPORT_SYMBOL(target_complete_cmd);
660
661 static void target_add_to_state_list(struct se_cmd *cmd)
662 {
663 struct se_device *dev = cmd->se_dev;
664 unsigned long flags;
665
666 spin_lock_irqsave(&dev->execute_task_lock, flags);
667 if (!cmd->state_active) {
668 list_add_tail(&cmd->state_list, &dev->state_list);
669 cmd->state_active = true;
670 }
671 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
672 }
673
674 /*
675 * Handle QUEUE_FULL / -EAGAIN and -ENOMEM status
676 */
677 static void transport_write_pending_qf(struct se_cmd *cmd);
678 static void transport_complete_qf(struct se_cmd *cmd);
679
680 void target_qf_do_work(struct work_struct *work)
681 {
682 struct se_device *dev = container_of(work, struct se_device,
683 qf_work_queue);
684 LIST_HEAD(qf_cmd_list);
685 struct se_cmd *cmd, *cmd_tmp;
686
687 spin_lock_irq(&dev->qf_cmd_lock);
688 list_splice_init(&dev->qf_cmd_list, &qf_cmd_list);
689 spin_unlock_irq(&dev->qf_cmd_lock);
690
691 list_for_each_entry_safe(cmd, cmd_tmp, &qf_cmd_list, se_qf_node) {
692 list_del(&cmd->se_qf_node);
693 atomic_dec(&dev->dev_qf_count);
694 smp_mb__after_atomic_dec();
695
696 pr_debug("Processing %s cmd: %p QUEUE_FULL in work queue"
697 " context: %s\n", cmd->se_tfo->get_fabric_name(), cmd,
698 (cmd->t_state == TRANSPORT_COMPLETE_QF_OK) ? "COMPLETE_OK" :
699 (cmd->t_state == TRANSPORT_COMPLETE_QF_WP) ? "WRITE_PENDING"
700 : "UNKNOWN");
701
702 if (cmd->t_state == TRANSPORT_COMPLETE_QF_WP)
703 transport_write_pending_qf(cmd);
704 else if (cmd->t_state == TRANSPORT_COMPLETE_QF_OK)
705 transport_complete_qf(cmd);
706 }
707 }
708
709 unsigned char *transport_dump_cmd_direction(struct se_cmd *cmd)
710 {
711 switch (cmd->data_direction) {
712 case DMA_NONE:
713 return "NONE";
714 case DMA_FROM_DEVICE:
715 return "READ";
716 case DMA_TO_DEVICE:
717 return "WRITE";
718 case DMA_BIDIRECTIONAL:
719 return "BIDI";
720 default:
721 break;
722 }
723
724 return "UNKNOWN";
725 }
726
727 void transport_dump_dev_state(
728 struct se_device *dev,
729 char *b,
730 int *bl)
731 {
732 *bl += sprintf(b + *bl, "Status: ");
733 if (dev->export_count)
734 *bl += sprintf(b + *bl, "ACTIVATED");
735 else
736 *bl += sprintf(b + *bl, "DEACTIVATED");
737
738 *bl += sprintf(b + *bl, " Max Queue Depth: %d", dev->queue_depth);
739 *bl += sprintf(b + *bl, " SectorSize: %u HwMaxSectors: %u\n",
740 dev->dev_attrib.block_size,
741 dev->dev_attrib.hw_max_sectors);
742 *bl += sprintf(b + *bl, " ");
743 }
744
745 void transport_dump_vpd_proto_id(
746 struct t10_vpd *vpd,
747 unsigned char *p_buf,
748 int p_buf_len)
749 {
750 unsigned char buf[VPD_TMP_BUF_SIZE];
751 int len;
752
753 memset(buf, 0, VPD_TMP_BUF_SIZE);
754 len = sprintf(buf, "T10 VPD Protocol Identifier: ");
755
756 switch (vpd->protocol_identifier) {
757 case 0x00:
758 sprintf(buf+len, "Fibre Channel\n");
759 break;
760 case 0x10:
761 sprintf(buf+len, "Parallel SCSI\n");
762 break;
763 case 0x20:
764 sprintf(buf+len, "SSA\n");
765 break;
766 case 0x30:
767 sprintf(buf+len, "IEEE 1394\n");
768 break;
769 case 0x40:
770 sprintf(buf+len, "SCSI Remote Direct Memory Access"
771 " Protocol\n");
772 break;
773 case 0x50:
774 sprintf(buf+len, "Internet SCSI (iSCSI)\n");
775 break;
776 case 0x60:
777 sprintf(buf+len, "SAS Serial SCSI Protocol\n");
778 break;
779 case 0x70:
780 sprintf(buf+len, "Automation/Drive Interface Transport"
781 " Protocol\n");
782 break;
783 case 0x80:
784 sprintf(buf+len, "AT Attachment Interface ATA/ATAPI\n");
785 break;
786 default:
787 sprintf(buf+len, "Unknown 0x%02x\n",
788 vpd->protocol_identifier);
789 break;
790 }
791
792 if (p_buf)
793 strncpy(p_buf, buf, p_buf_len);
794 else
795 pr_debug("%s", buf);
796 }
797
798 void
799 transport_set_vpd_proto_id(struct t10_vpd *vpd, unsigned char *page_83)
800 {
801 /*
802 * Check if the Protocol Identifier Valid (PIV) bit is set..
803 *
804 * from spc3r23.pdf section 7.5.1
805 */
806 if (page_83[1] & 0x80) {
807 vpd->protocol_identifier = (page_83[0] & 0xf0);
808 vpd->protocol_identifier_set = 1;
809 transport_dump_vpd_proto_id(vpd, NULL, 0);
810 }
811 }
812 EXPORT_SYMBOL(transport_set_vpd_proto_id);
813
814 int transport_dump_vpd_assoc(
815 struct t10_vpd *vpd,
816 unsigned char *p_buf,
817 int p_buf_len)
818 {
819 unsigned char buf[VPD_TMP_BUF_SIZE];
820 int ret = 0;
821 int len;
822
823 memset(buf, 0, VPD_TMP_BUF_SIZE);
824 len = sprintf(buf, "T10 VPD Identifier Association: ");
825
826 switch (vpd->association) {
827 case 0x00:
828 sprintf(buf+len, "addressed logical unit\n");
829 break;
830 case 0x10:
831 sprintf(buf+len, "target port\n");
832 break;
833 case 0x20:
834 sprintf(buf+len, "SCSI target device\n");
835 break;
836 default:
837 sprintf(buf+len, "Unknown 0x%02x\n", vpd->association);
838 ret = -EINVAL;
839 break;
840 }
841
842 if (p_buf)
843 strncpy(p_buf, buf, p_buf_len);
844 else
845 pr_debug("%s", buf);
846
847 return ret;
848 }
849
850 int transport_set_vpd_assoc(struct t10_vpd *vpd, unsigned char *page_83)
851 {
852 /*
853 * The VPD identification association..
854 *
855 * from spc3r23.pdf Section 7.6.3.1 Table 297
856 */
857 vpd->association = (page_83[1] & 0x30);
858 return transport_dump_vpd_assoc(vpd, NULL, 0);
859 }
860 EXPORT_SYMBOL(transport_set_vpd_assoc);
861
862 int transport_dump_vpd_ident_type(
863 struct t10_vpd *vpd,
864 unsigned char *p_buf,
865 int p_buf_len)
866 {
867 unsigned char buf[VPD_TMP_BUF_SIZE];
868 int ret = 0;
869 int len;
870
871 memset(buf, 0, VPD_TMP_BUF_SIZE);
872 len = sprintf(buf, "T10 VPD Identifier Type: ");
873
874 switch (vpd->device_identifier_type) {
875 case 0x00:
876 sprintf(buf+len, "Vendor specific\n");
877 break;
878 case 0x01:
879 sprintf(buf+len, "T10 Vendor ID based\n");
880 break;
881 case 0x02:
882 sprintf(buf+len, "EUI-64 based\n");
883 break;
884 case 0x03:
885 sprintf(buf+len, "NAA\n");
886 break;
887 case 0x04:
888 sprintf(buf+len, "Relative target port identifier\n");
889 break;
890 case 0x08:
891 sprintf(buf+len, "SCSI name string\n");
892 break;
893 default:
894 sprintf(buf+len, "Unsupported: 0x%02x\n",
895 vpd->device_identifier_type);
896 ret = -EINVAL;
897 break;
898 }
899
900 if (p_buf) {
901 if (p_buf_len < strlen(buf)+1)
902 return -EINVAL;
903 strncpy(p_buf, buf, p_buf_len);
904 } else {
905 pr_debug("%s", buf);
906 }
907
908 return ret;
909 }
910
911 int transport_set_vpd_ident_type(struct t10_vpd *vpd, unsigned char *page_83)
912 {
913 /*
914 * The VPD identifier type..
915 *
916 * from spc3r23.pdf Section 7.6.3.1 Table 298
917 */
918 vpd->device_identifier_type = (page_83[1] & 0x0f);
919 return transport_dump_vpd_ident_type(vpd, NULL, 0);
920 }
921 EXPORT_SYMBOL(transport_set_vpd_ident_type);
922
923 int transport_dump_vpd_ident(
924 struct t10_vpd *vpd,
925 unsigned char *p_buf,
926 int p_buf_len)
927 {
928 unsigned char buf[VPD_TMP_BUF_SIZE];
929 int ret = 0;
930
931 memset(buf, 0, VPD_TMP_BUF_SIZE);
932
933 switch (vpd->device_identifier_code_set) {
934 case 0x01: /* Binary */
935 snprintf(buf, sizeof(buf),
936 "T10 VPD Binary Device Identifier: %s\n",
937 &vpd->device_identifier[0]);
938 break;
939 case 0x02: /* ASCII */
940 snprintf(buf, sizeof(buf),
941 "T10 VPD ASCII Device Identifier: %s\n",
942 &vpd->device_identifier[0]);
943 break;
944 case 0x03: /* UTF-8 */
945 snprintf(buf, sizeof(buf),
946 "T10 VPD UTF-8 Device Identifier: %s\n",
947 &vpd->device_identifier[0]);
948 break;
949 default:
950 sprintf(buf, "T10 VPD Device Identifier encoding unsupported:"
951 " 0x%02x", vpd->device_identifier_code_set);
952 ret = -EINVAL;
953 break;
954 }
955
956 if (p_buf)
957 strncpy(p_buf, buf, p_buf_len);
958 else
959 pr_debug("%s", buf);
960
961 return ret;
962 }
963
964 int
965 transport_set_vpd_ident(struct t10_vpd *vpd, unsigned char *page_83)
966 {
967 static const char hex_str[] = "0123456789abcdef";
968 int j = 0, i = 4; /* offset to start of the identifier */
969
970 /*
971 * The VPD Code Set (encoding)
972 *
973 * from spc3r23.pdf Section 7.6.3.1 Table 296
974 */
975 vpd->device_identifier_code_set = (page_83[0] & 0x0f);
976 switch (vpd->device_identifier_code_set) {
977 case 0x01: /* Binary */
978 vpd->device_identifier[j++] =
979 hex_str[vpd->device_identifier_type];
980 while (i < (4 + page_83[3])) {
981 vpd->device_identifier[j++] =
982 hex_str[(page_83[i] & 0xf0) >> 4];
983 vpd->device_identifier[j++] =
984 hex_str[page_83[i] & 0x0f];
985 i++;
986 }
987 break;
988 case 0x02: /* ASCII */
989 case 0x03: /* UTF-8 */
990 while (i < (4 + page_83[3]))
991 vpd->device_identifier[j++] = page_83[i++];
992 break;
993 default:
994 break;
995 }
996
997 return transport_dump_vpd_ident(vpd, NULL, 0);
998 }
999 EXPORT_SYMBOL(transport_set_vpd_ident);
1000
1001 sense_reason_t
1002 target_cmd_size_check(struct se_cmd *cmd, unsigned int size)
1003 {
1004 struct se_device *dev = cmd->se_dev;
1005
1006 if (cmd->unknown_data_length) {
1007 cmd->data_length = size;
1008 } else if (size != cmd->data_length) {
1009 pr_warn("TARGET_CORE[%s]: Expected Transfer Length:"
1010 " %u does not match SCSI CDB Length: %u for SAM Opcode:"
1011 " 0x%02x\n", cmd->se_tfo->get_fabric_name(),
1012 cmd->data_length, size, cmd->t_task_cdb[0]);
1013
1014 if (cmd->data_direction == DMA_TO_DEVICE) {
1015 pr_err("Rejecting underflow/overflow"
1016 " WRITE data\n");
1017 return TCM_INVALID_CDB_FIELD;
1018 }
1019 /*
1020 * Reject READ_* or WRITE_* with overflow/underflow for
1021 * type SCF_SCSI_DATA_CDB.
1022 */
1023 if (dev->dev_attrib.block_size != 512) {
1024 pr_err("Failing OVERFLOW/UNDERFLOW for LBA op"
1025 " CDB on non 512-byte sector setup subsystem"
1026 " plugin: %s\n", dev->transport->name);
1027 /* Returns CHECK_CONDITION + INVALID_CDB_FIELD */
1028 return TCM_INVALID_CDB_FIELD;
1029 }
1030 /*
1031 * For the overflow case keep the existing fabric provided
1032 * ->data_length. Otherwise for the underflow case, reset
1033 * ->data_length to the smaller SCSI expected data transfer
1034 * length.
1035 */
1036 if (size > cmd->data_length) {
1037 cmd->se_cmd_flags |= SCF_OVERFLOW_BIT;
1038 cmd->residual_count = (size - cmd->data_length);
1039 } else {
1040 cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
1041 cmd->residual_count = (cmd->data_length - size);
1042 cmd->data_length = size;
1043 }
1044 }
1045
1046 return 0;
1047
1048 }
1049
1050 /*
1051 * Used by fabric modules containing a local struct se_cmd within their
1052 * fabric dependent per I/O descriptor.
1053 */
1054 void transport_init_se_cmd(
1055 struct se_cmd *cmd,
1056 struct target_core_fabric_ops *tfo,
1057 struct se_session *se_sess,
1058 u32 data_length,
1059 int data_direction,
1060 int task_attr,
1061 unsigned char *sense_buffer)
1062 {
1063 INIT_LIST_HEAD(&cmd->se_delayed_node);
1064 INIT_LIST_HEAD(&cmd->se_qf_node);
1065 INIT_LIST_HEAD(&cmd->se_cmd_list);
1066 INIT_LIST_HEAD(&cmd->state_list);
1067 init_completion(&cmd->t_transport_stop_comp);
1068 init_completion(&cmd->cmd_wait_comp);
1069 init_completion(&cmd->task_stop_comp);
1070 spin_lock_init(&cmd->t_state_lock);
1071 cmd->transport_state = CMD_T_DEV_ACTIVE;
1072
1073 cmd->se_tfo = tfo;
1074 cmd->se_sess = se_sess;
1075 cmd->data_length = data_length;
1076 cmd->data_direction = data_direction;
1077 cmd->sam_task_attr = task_attr;
1078 cmd->sense_buffer = sense_buffer;
1079
1080 cmd->state_active = false;
1081 }
1082 EXPORT_SYMBOL(transport_init_se_cmd);
1083
1084 static sense_reason_t
1085 transport_check_alloc_task_attr(struct se_cmd *cmd)
1086 {
1087 struct se_device *dev = cmd->se_dev;
1088
1089 /*
1090 * Check if SAM Task Attribute emulation is enabled for this
1091 * struct se_device storage object
1092 */
1093 if (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV)
1094 return 0;
1095
1096 if (cmd->sam_task_attr == MSG_ACA_TAG) {
1097 pr_debug("SAM Task Attribute ACA"
1098 " emulation is not supported\n");
1099 return TCM_INVALID_CDB_FIELD;
1100 }
1101 /*
1102 * Used to determine when ORDERED commands should go from
1103 * Dormant to Active status.
1104 */
1105 cmd->se_ordered_id = atomic_inc_return(&dev->dev_ordered_id);
1106 smp_mb__after_atomic_inc();
1107 pr_debug("Allocated se_ordered_id: %u for Task Attr: 0x%02x on %s\n",
1108 cmd->se_ordered_id, cmd->sam_task_attr,
1109 dev->transport->name);
1110 return 0;
1111 }
1112
1113 sense_reason_t
1114 target_setup_cmd_from_cdb(struct se_cmd *cmd, unsigned char *cdb)
1115 {
1116 struct se_device *dev = cmd->se_dev;
1117 sense_reason_t ret;
1118
1119 /*
1120 * Ensure that the received CDB is less than the max (252 + 8) bytes
1121 * for VARIABLE_LENGTH_CMD
1122 */
1123 if (scsi_command_size(cdb) > SCSI_MAX_VARLEN_CDB_SIZE) {
1124 pr_err("Received SCSI CDB with command_size: %d that"
1125 " exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n",
1126 scsi_command_size(cdb), SCSI_MAX_VARLEN_CDB_SIZE);
1127 return TCM_INVALID_CDB_FIELD;
1128 }
1129 /*
1130 * If the received CDB is larger than TCM_MAX_COMMAND_SIZE,
1131 * allocate the additional extended CDB buffer now.. Otherwise
1132 * setup the pointer from __t_task_cdb to t_task_cdb.
1133 */
1134 if (scsi_command_size(cdb) > sizeof(cmd->__t_task_cdb)) {
1135 cmd->t_task_cdb = kzalloc(scsi_command_size(cdb),
1136 GFP_KERNEL);
1137 if (!cmd->t_task_cdb) {
1138 pr_err("Unable to allocate cmd->t_task_cdb"
1139 " %u > sizeof(cmd->__t_task_cdb): %lu ops\n",
1140 scsi_command_size(cdb),
1141 (unsigned long)sizeof(cmd->__t_task_cdb));
1142 return TCM_OUT_OF_RESOURCES;
1143 }
1144 } else
1145 cmd->t_task_cdb = &cmd->__t_task_cdb[0];
1146 /*
1147 * Copy the original CDB into cmd->
1148 */
1149 memcpy(cmd->t_task_cdb, cdb, scsi_command_size(cdb));
1150
1151 trace_target_sequencer_start(cmd);
1152
1153 /*
1154 * Check for an existing UNIT ATTENTION condition
1155 */
1156 ret = target_scsi3_ua_check(cmd);
1157 if (ret)
1158 return ret;
1159
1160 ret = target_alua_state_check(cmd);
1161 if (ret)
1162 return ret;
1163
1164 ret = target_check_reservation(cmd);
1165 if (ret) {
1166 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
1167 return ret;
1168 }
1169
1170 ret = dev->transport->parse_cdb(cmd);
1171 if (ret)
1172 return ret;
1173
1174 ret = transport_check_alloc_task_attr(cmd);
1175 if (ret)
1176 return ret;
1177
1178 cmd->se_cmd_flags |= SCF_SUPPORTED_SAM_OPCODE;
1179
1180 spin_lock(&cmd->se_lun->lun_sep_lock);
1181 if (cmd->se_lun->lun_sep)
1182 cmd->se_lun->lun_sep->sep_stats.cmd_pdus++;
1183 spin_unlock(&cmd->se_lun->lun_sep_lock);
1184 return 0;
1185 }
1186 EXPORT_SYMBOL(target_setup_cmd_from_cdb);
1187
1188 /*
1189 * Used by fabric module frontends to queue tasks directly.
1190 * Many only be used from process context only
1191 */
1192 int transport_handle_cdb_direct(
1193 struct se_cmd *cmd)
1194 {
1195 sense_reason_t ret;
1196
1197 if (!cmd->se_lun) {
1198 dump_stack();
1199 pr_err("cmd->se_lun is NULL\n");
1200 return -EINVAL;
1201 }
1202 if (in_interrupt()) {
1203 dump_stack();
1204 pr_err("transport_generic_handle_cdb cannot be called"
1205 " from interrupt context\n");
1206 return -EINVAL;
1207 }
1208 /*
1209 * Set TRANSPORT_NEW_CMD state and CMD_T_ACTIVE to ensure that
1210 * outstanding descriptors are handled correctly during shutdown via
1211 * transport_wait_for_tasks()
1212 *
1213 * Also, we don't take cmd->t_state_lock here as we only expect
1214 * this to be called for initial descriptor submission.
1215 */
1216 cmd->t_state = TRANSPORT_NEW_CMD;
1217 cmd->transport_state |= CMD_T_ACTIVE;
1218
1219 /*
1220 * transport_generic_new_cmd() is already handling QUEUE_FULL,
1221 * so follow TRANSPORT_NEW_CMD processing thread context usage
1222 * and call transport_generic_request_failure() if necessary..
1223 */
1224 ret = transport_generic_new_cmd(cmd);
1225 if (ret)
1226 transport_generic_request_failure(cmd, ret);
1227 return 0;
1228 }
1229 EXPORT_SYMBOL(transport_handle_cdb_direct);
1230
1231 sense_reason_t
1232 transport_generic_map_mem_to_cmd(struct se_cmd *cmd, struct scatterlist *sgl,
1233 u32 sgl_count, struct scatterlist *sgl_bidi, u32 sgl_bidi_count)
1234 {
1235 if (!sgl || !sgl_count)
1236 return 0;
1237
1238 /*
1239 * Reject SCSI data overflow with map_mem_to_cmd() as incoming
1240 * scatterlists already have been set to follow what the fabric
1241 * passes for the original expected data transfer length.
1242 */
1243 if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) {
1244 pr_warn("Rejecting SCSI DATA overflow for fabric using"
1245 " SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC\n");
1246 return TCM_INVALID_CDB_FIELD;
1247 }
1248
1249 cmd->t_data_sg = sgl;
1250 cmd->t_data_nents = sgl_count;
1251
1252 if (sgl_bidi && sgl_bidi_count) {
1253 cmd->t_bidi_data_sg = sgl_bidi;
1254 cmd->t_bidi_data_nents = sgl_bidi_count;
1255 }
1256 cmd->se_cmd_flags |= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC;
1257 return 0;
1258 }
1259
1260 /*
1261 * target_submit_cmd_map_sgls - lookup unpacked lun and submit uninitialized
1262 * se_cmd + use pre-allocated SGL memory.
1263 *
1264 * @se_cmd: command descriptor to submit
1265 * @se_sess: associated se_sess for endpoint
1266 * @cdb: pointer to SCSI CDB
1267 * @sense: pointer to SCSI sense buffer
1268 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1269 * @data_length: fabric expected data transfer length
1270 * @task_addr: SAM task attribute
1271 * @data_dir: DMA data direction
1272 * @flags: flags for command submission from target_sc_flags_tables
1273 * @sgl: struct scatterlist memory for unidirectional mapping
1274 * @sgl_count: scatterlist count for unidirectional mapping
1275 * @sgl_bidi: struct scatterlist memory for bidirectional READ mapping
1276 * @sgl_bidi_count: scatterlist count for bidirectional READ mapping
1277 *
1278 * Returns non zero to signal active I/O shutdown failure. All other
1279 * setup exceptions will be returned as a SCSI CHECK_CONDITION response,
1280 * but still return zero here.
1281 *
1282 * This may only be called from process context, and also currently
1283 * assumes internal allocation of fabric payload buffer by target-core.
1284 */
1285 int target_submit_cmd_map_sgls(struct se_cmd *se_cmd, struct se_session *se_sess,
1286 unsigned char *cdb, unsigned char *sense, u32 unpacked_lun,
1287 u32 data_length, int task_attr, int data_dir, int flags,
1288 struct scatterlist *sgl, u32 sgl_count,
1289 struct scatterlist *sgl_bidi, u32 sgl_bidi_count)
1290 {
1291 struct se_portal_group *se_tpg;
1292 sense_reason_t rc;
1293 int ret;
1294
1295 se_tpg = se_sess->se_tpg;
1296 BUG_ON(!se_tpg);
1297 BUG_ON(se_cmd->se_tfo || se_cmd->se_sess);
1298 BUG_ON(in_interrupt());
1299 /*
1300 * Initialize se_cmd for target operation. From this point
1301 * exceptions are handled by sending exception status via
1302 * target_core_fabric_ops->queue_status() callback
1303 */
1304 transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess,
1305 data_length, data_dir, task_attr, sense);
1306 if (flags & TARGET_SCF_UNKNOWN_SIZE)
1307 se_cmd->unknown_data_length = 1;
1308 /*
1309 * Obtain struct se_cmd->cmd_kref reference and add new cmd to
1310 * se_sess->sess_cmd_list. A second kref_get here is necessary
1311 * for fabrics using TARGET_SCF_ACK_KREF that expect a second
1312 * kref_put() to happen during fabric packet acknowledgement.
1313 */
1314 ret = target_get_sess_cmd(se_sess, se_cmd, (flags & TARGET_SCF_ACK_KREF));
1315 if (ret)
1316 return ret;
1317 /*
1318 * Signal bidirectional data payloads to target-core
1319 */
1320 if (flags & TARGET_SCF_BIDI_OP)
1321 se_cmd->se_cmd_flags |= SCF_BIDI;
1322 /*
1323 * Locate se_lun pointer and attach it to struct se_cmd
1324 */
1325 rc = transport_lookup_cmd_lun(se_cmd, unpacked_lun);
1326 if (rc) {
1327 transport_send_check_condition_and_sense(se_cmd, rc, 0);
1328 target_put_sess_cmd(se_sess, se_cmd);
1329 return 0;
1330 }
1331
1332 rc = target_setup_cmd_from_cdb(se_cmd, cdb);
1333 if (rc != 0) {
1334 transport_generic_request_failure(se_cmd, rc);
1335 return 0;
1336 }
1337 /*
1338 * When a non zero sgl_count has been passed perform SGL passthrough
1339 * mapping for pre-allocated fabric memory instead of having target
1340 * core perform an internal SGL allocation..
1341 */
1342 if (sgl_count != 0) {
1343 BUG_ON(!sgl);
1344
1345 /*
1346 * A work-around for tcm_loop as some userspace code via
1347 * scsi-generic do not memset their associated read buffers,
1348 * so go ahead and do that here for type non-data CDBs. Also
1349 * note that this is currently guaranteed to be a single SGL
1350 * for this case by target core in target_setup_cmd_from_cdb()
1351 * -> transport_generic_cmd_sequencer().
1352 */
1353 if (!(se_cmd->se_cmd_flags & SCF_SCSI_DATA_CDB) &&
1354 se_cmd->data_direction == DMA_FROM_DEVICE) {
1355 unsigned char *buf = NULL;
1356
1357 if (sgl)
1358 buf = kmap(sg_page(sgl)) + sgl->offset;
1359
1360 if (buf) {
1361 memset(buf, 0, sgl->length);
1362 kunmap(sg_page(sgl));
1363 }
1364 }
1365
1366 rc = transport_generic_map_mem_to_cmd(se_cmd, sgl, sgl_count,
1367 sgl_bidi, sgl_bidi_count);
1368 if (rc != 0) {
1369 transport_generic_request_failure(se_cmd, rc);
1370 return 0;
1371 }
1372 }
1373 /*
1374 * Check if we need to delay processing because of ALUA
1375 * Active/NonOptimized primary access state..
1376 */
1377 core_alua_check_nonop_delay(se_cmd);
1378
1379 transport_handle_cdb_direct(se_cmd);
1380 return 0;
1381 }
1382 EXPORT_SYMBOL(target_submit_cmd_map_sgls);
1383
1384 /*
1385 * target_submit_cmd - lookup unpacked lun and submit uninitialized se_cmd
1386 *
1387 * @se_cmd: command descriptor to submit
1388 * @se_sess: associated se_sess for endpoint
1389 * @cdb: pointer to SCSI CDB
1390 * @sense: pointer to SCSI sense buffer
1391 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1392 * @data_length: fabric expected data transfer length
1393 * @task_addr: SAM task attribute
1394 * @data_dir: DMA data direction
1395 * @flags: flags for command submission from target_sc_flags_tables
1396 *
1397 * Returns non zero to signal active I/O shutdown failure. All other
1398 * setup exceptions will be returned as a SCSI CHECK_CONDITION response,
1399 * but still return zero here.
1400 *
1401 * This may only be called from process context, and also currently
1402 * assumes internal allocation of fabric payload buffer by target-core.
1403 *
1404 * It also assumes interal target core SGL memory allocation.
1405 */
1406 int target_submit_cmd(struct se_cmd *se_cmd, struct se_session *se_sess,
1407 unsigned char *cdb, unsigned char *sense, u32 unpacked_lun,
1408 u32 data_length, int task_attr, int data_dir, int flags)
1409 {
1410 return target_submit_cmd_map_sgls(se_cmd, se_sess, cdb, sense,
1411 unpacked_lun, data_length, task_attr, data_dir,
1412 flags, NULL, 0, NULL, 0);
1413 }
1414 EXPORT_SYMBOL(target_submit_cmd);
1415
1416 static void target_complete_tmr_failure(struct work_struct *work)
1417 {
1418 struct se_cmd *se_cmd = container_of(work, struct se_cmd, work);
1419
1420 se_cmd->se_tmr_req->response = TMR_LUN_DOES_NOT_EXIST;
1421 se_cmd->se_tfo->queue_tm_rsp(se_cmd);
1422
1423 transport_cmd_check_stop_to_fabric(se_cmd);
1424 }
1425
1426 /**
1427 * target_submit_tmr - lookup unpacked lun and submit uninitialized se_cmd
1428 * for TMR CDBs
1429 *
1430 * @se_cmd: command descriptor to submit
1431 * @se_sess: associated se_sess for endpoint
1432 * @sense: pointer to SCSI sense buffer
1433 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1434 * @fabric_context: fabric context for TMR req
1435 * @tm_type: Type of TM request
1436 * @gfp: gfp type for caller
1437 * @tag: referenced task tag for TMR_ABORT_TASK
1438 * @flags: submit cmd flags
1439 *
1440 * Callable from all contexts.
1441 **/
1442
1443 int target_submit_tmr(struct se_cmd *se_cmd, struct se_session *se_sess,
1444 unsigned char *sense, u32 unpacked_lun,
1445 void *fabric_tmr_ptr, unsigned char tm_type,
1446 gfp_t gfp, unsigned int tag, int flags)
1447 {
1448 struct se_portal_group *se_tpg;
1449 int ret;
1450
1451 se_tpg = se_sess->se_tpg;
1452 BUG_ON(!se_tpg);
1453
1454 transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess,
1455 0, DMA_NONE, MSG_SIMPLE_TAG, sense);
1456 /*
1457 * FIXME: Currently expect caller to handle se_cmd->se_tmr_req
1458 * allocation failure.
1459 */
1460 ret = core_tmr_alloc_req(se_cmd, fabric_tmr_ptr, tm_type, gfp);
1461 if (ret < 0)
1462 return -ENOMEM;
1463
1464 if (tm_type == TMR_ABORT_TASK)
1465 se_cmd->se_tmr_req->ref_task_tag = tag;
1466
1467 /* See target_submit_cmd for commentary */
1468 ret = target_get_sess_cmd(se_sess, se_cmd, (flags & TARGET_SCF_ACK_KREF));
1469 if (ret) {
1470 core_tmr_release_req(se_cmd->se_tmr_req);
1471 return ret;
1472 }
1473
1474 ret = transport_lookup_tmr_lun(se_cmd, unpacked_lun);
1475 if (ret) {
1476 /*
1477 * For callback during failure handling, push this work off
1478 * to process context with TMR_LUN_DOES_NOT_EXIST status.
1479 */
1480 INIT_WORK(&se_cmd->work, target_complete_tmr_failure);
1481 schedule_work(&se_cmd->work);
1482 return 0;
1483 }
1484 transport_generic_handle_tmr(se_cmd);
1485 return 0;
1486 }
1487 EXPORT_SYMBOL(target_submit_tmr);
1488
1489 /*
1490 * If the cmd is active, request it to be stopped and sleep until it
1491 * has completed.
1492 */
1493 bool target_stop_cmd(struct se_cmd *cmd, unsigned long *flags)
1494 {
1495 bool was_active = false;
1496
1497 if (cmd->transport_state & CMD_T_BUSY) {
1498 cmd->transport_state |= CMD_T_REQUEST_STOP;
1499 spin_unlock_irqrestore(&cmd->t_state_lock, *flags);
1500
1501 pr_debug("cmd %p waiting to complete\n", cmd);
1502 wait_for_completion(&cmd->task_stop_comp);
1503 pr_debug("cmd %p stopped successfully\n", cmd);
1504
1505 spin_lock_irqsave(&cmd->t_state_lock, *flags);
1506 cmd->transport_state &= ~CMD_T_REQUEST_STOP;
1507 cmd->transport_state &= ~CMD_T_BUSY;
1508 was_active = true;
1509 }
1510
1511 return was_active;
1512 }
1513
1514 /*
1515 * Handle SAM-esque emulation for generic transport request failures.
1516 */
1517 void transport_generic_request_failure(struct se_cmd *cmd,
1518 sense_reason_t sense_reason)
1519 {
1520 int ret = 0;
1521
1522 pr_debug("-----[ Storage Engine Exception for cmd: %p ITT: 0x%08x"
1523 " CDB: 0x%02x\n", cmd, cmd->se_tfo->get_task_tag(cmd),
1524 cmd->t_task_cdb[0]);
1525 pr_debug("-----[ i_state: %d t_state: %d sense_reason: %d\n",
1526 cmd->se_tfo->get_cmd_state(cmd),
1527 cmd->t_state, sense_reason);
1528 pr_debug("-----[ CMD_T_ACTIVE: %d CMD_T_STOP: %d CMD_T_SENT: %d\n",
1529 (cmd->transport_state & CMD_T_ACTIVE) != 0,
1530 (cmd->transport_state & CMD_T_STOP) != 0,
1531 (cmd->transport_state & CMD_T_SENT) != 0);
1532
1533 /*
1534 * For SAM Task Attribute emulation for failed struct se_cmd
1535 */
1536 transport_complete_task_attr(cmd);
1537 /*
1538 * Handle special case for COMPARE_AND_WRITE failure, where the
1539 * callback is expected to drop the per device ->caw_mutex.
1540 */
1541 if ((cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) &&
1542 cmd->transport_complete_callback)
1543 cmd->transport_complete_callback(cmd);
1544
1545 switch (sense_reason) {
1546 case TCM_NON_EXISTENT_LUN:
1547 case TCM_UNSUPPORTED_SCSI_OPCODE:
1548 case TCM_INVALID_CDB_FIELD:
1549 case TCM_INVALID_PARAMETER_LIST:
1550 case TCM_PARAMETER_LIST_LENGTH_ERROR:
1551 case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
1552 case TCM_UNKNOWN_MODE_PAGE:
1553 case TCM_WRITE_PROTECTED:
1554 case TCM_ADDRESS_OUT_OF_RANGE:
1555 case TCM_CHECK_CONDITION_ABORT_CMD:
1556 case TCM_CHECK_CONDITION_UNIT_ATTENTION:
1557 case TCM_CHECK_CONDITION_NOT_READY:
1558 break;
1559 case TCM_OUT_OF_RESOURCES:
1560 sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
1561 break;
1562 case TCM_RESERVATION_CONFLICT:
1563 /*
1564 * No SENSE Data payload for this case, set SCSI Status
1565 * and queue the response to $FABRIC_MOD.
1566 *
1567 * Uses linux/include/scsi/scsi.h SAM status codes defs
1568 */
1569 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
1570 /*
1571 * For UA Interlock Code 11b, a RESERVATION CONFLICT will
1572 * establish a UNIT ATTENTION with PREVIOUS RESERVATION
1573 * CONFLICT STATUS.
1574 *
1575 * See spc4r17, section 7.4.6 Control Mode Page, Table 349
1576 */
1577 if (cmd->se_sess &&
1578 cmd->se_dev->dev_attrib.emulate_ua_intlck_ctrl == 2)
1579 core_scsi3_ua_allocate(cmd->se_sess->se_node_acl,
1580 cmd->orig_fe_lun, 0x2C,
1581 ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS);
1582
1583 trace_target_cmd_complete(cmd);
1584 ret = cmd->se_tfo-> queue_status(cmd);
1585 if (ret == -EAGAIN || ret == -ENOMEM)
1586 goto queue_full;
1587 goto check_stop;
1588 default:
1589 pr_err("Unknown transport error for CDB 0x%02x: %d\n",
1590 cmd->t_task_cdb[0], sense_reason);
1591 sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
1592 break;
1593 }
1594
1595 ret = transport_send_check_condition_and_sense(cmd, sense_reason, 0);
1596 if (ret == -EAGAIN || ret == -ENOMEM)
1597 goto queue_full;
1598
1599 check_stop:
1600 transport_lun_remove_cmd(cmd);
1601 if (!transport_cmd_check_stop_to_fabric(cmd))
1602 ;
1603 return;
1604
1605 queue_full:
1606 cmd->t_state = TRANSPORT_COMPLETE_QF_OK;
1607 transport_handle_queue_full(cmd, cmd->se_dev);
1608 }
1609 EXPORT_SYMBOL(transport_generic_request_failure);
1610
1611 void __target_execute_cmd(struct se_cmd *cmd)
1612 {
1613 sense_reason_t ret;
1614
1615 if (cmd->execute_cmd) {
1616 ret = cmd->execute_cmd(cmd);
1617 if (ret) {
1618 spin_lock_irq(&cmd->t_state_lock);
1619 cmd->transport_state &= ~(CMD_T_BUSY|CMD_T_SENT);
1620 spin_unlock_irq(&cmd->t_state_lock);
1621
1622 transport_generic_request_failure(cmd, ret);
1623 }
1624 }
1625 }
1626
1627 static bool target_handle_task_attr(struct se_cmd *cmd)
1628 {
1629 struct se_device *dev = cmd->se_dev;
1630
1631 if (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV)
1632 return false;
1633
1634 /*
1635 * Check for the existence of HEAD_OF_QUEUE, and if true return 1
1636 * to allow the passed struct se_cmd list of tasks to the front of the list.
1637 */
1638 switch (cmd->sam_task_attr) {
1639 case MSG_HEAD_TAG:
1640 pr_debug("Added HEAD_OF_QUEUE for CDB: 0x%02x, "
1641 "se_ordered_id: %u\n",
1642 cmd->t_task_cdb[0], cmd->se_ordered_id);
1643 return false;
1644 case MSG_ORDERED_TAG:
1645 atomic_inc(&dev->dev_ordered_sync);
1646 smp_mb__after_atomic_inc();
1647
1648 pr_debug("Added ORDERED for CDB: 0x%02x to ordered list, "
1649 " se_ordered_id: %u\n",
1650 cmd->t_task_cdb[0], cmd->se_ordered_id);
1651
1652 /*
1653 * Execute an ORDERED command if no other older commands
1654 * exist that need to be completed first.
1655 */
1656 if (!atomic_read(&dev->simple_cmds))
1657 return false;
1658 break;
1659 default:
1660 /*
1661 * For SIMPLE and UNTAGGED Task Attribute commands
1662 */
1663 atomic_inc(&dev->simple_cmds);
1664 smp_mb__after_atomic_inc();
1665 break;
1666 }
1667
1668 if (atomic_read(&dev->dev_ordered_sync) == 0)
1669 return false;
1670
1671 spin_lock(&dev->delayed_cmd_lock);
1672 list_add_tail(&cmd->se_delayed_node, &dev->delayed_cmd_list);
1673 spin_unlock(&dev->delayed_cmd_lock);
1674
1675 pr_debug("Added CDB: 0x%02x Task Attr: 0x%02x to"
1676 " delayed CMD list, se_ordered_id: %u\n",
1677 cmd->t_task_cdb[0], cmd->sam_task_attr,
1678 cmd->se_ordered_id);
1679 return true;
1680 }
1681
1682 void target_execute_cmd(struct se_cmd *cmd)
1683 {
1684 /*
1685 * If the received CDB has aleady been aborted stop processing it here.
1686 */
1687 if (transport_check_aborted_status(cmd, 1))
1688 return;
1689
1690 /*
1691 * Determine if frontend context caller is requesting the stopping of
1692 * this command for frontend exceptions.
1693 */
1694 spin_lock_irq(&cmd->t_state_lock);
1695 if (cmd->transport_state & CMD_T_STOP) {
1696 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08x\n",
1697 __func__, __LINE__,
1698 cmd->se_tfo->get_task_tag(cmd));
1699
1700 spin_unlock_irq(&cmd->t_state_lock);
1701 complete(&cmd->t_transport_stop_comp);
1702 return;
1703 }
1704
1705 cmd->t_state = TRANSPORT_PROCESSING;
1706 cmd->transport_state |= CMD_T_ACTIVE|CMD_T_BUSY|CMD_T_SENT;
1707 spin_unlock_irq(&cmd->t_state_lock);
1708
1709 if (target_handle_task_attr(cmd)) {
1710 spin_lock_irq(&cmd->t_state_lock);
1711 cmd->transport_state &= ~CMD_T_BUSY|CMD_T_SENT;
1712 spin_unlock_irq(&cmd->t_state_lock);
1713 return;
1714 }
1715
1716 __target_execute_cmd(cmd);
1717 }
1718 EXPORT_SYMBOL(target_execute_cmd);
1719
1720 /*
1721 * Process all commands up to the last received ORDERED task attribute which
1722 * requires another blocking boundary
1723 */
1724 static void target_restart_delayed_cmds(struct se_device *dev)
1725 {
1726 for (;;) {
1727 struct se_cmd *cmd;
1728
1729 spin_lock(&dev->delayed_cmd_lock);
1730 if (list_empty(&dev->delayed_cmd_list)) {
1731 spin_unlock(&dev->delayed_cmd_lock);
1732 break;
1733 }
1734
1735 cmd = list_entry(dev->delayed_cmd_list.next,
1736 struct se_cmd, se_delayed_node);
1737 list_del(&cmd->se_delayed_node);
1738 spin_unlock(&dev->delayed_cmd_lock);
1739
1740 __target_execute_cmd(cmd);
1741
1742 if (cmd->sam_task_attr == MSG_ORDERED_TAG)
1743 break;
1744 }
1745 }
1746
1747 /*
1748 * Called from I/O completion to determine which dormant/delayed
1749 * and ordered cmds need to have their tasks added to the execution queue.
1750 */
1751 static void transport_complete_task_attr(struct se_cmd *cmd)
1752 {
1753 struct se_device *dev = cmd->se_dev;
1754
1755 if (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV)
1756 return;
1757
1758 if (cmd->sam_task_attr == MSG_SIMPLE_TAG) {
1759 atomic_dec(&dev->simple_cmds);
1760 smp_mb__after_atomic_dec();
1761 dev->dev_cur_ordered_id++;
1762 pr_debug("Incremented dev->dev_cur_ordered_id: %u for"
1763 " SIMPLE: %u\n", dev->dev_cur_ordered_id,
1764 cmd->se_ordered_id);
1765 } else if (cmd->sam_task_attr == MSG_HEAD_TAG) {
1766 dev->dev_cur_ordered_id++;
1767 pr_debug("Incremented dev_cur_ordered_id: %u for"
1768 " HEAD_OF_QUEUE: %u\n", dev->dev_cur_ordered_id,
1769 cmd->se_ordered_id);
1770 } else if (cmd->sam_task_attr == MSG_ORDERED_TAG) {
1771 atomic_dec(&dev->dev_ordered_sync);
1772 smp_mb__after_atomic_dec();
1773
1774 dev->dev_cur_ordered_id++;
1775 pr_debug("Incremented dev_cur_ordered_id: %u for ORDERED:"
1776 " %u\n", dev->dev_cur_ordered_id, cmd->se_ordered_id);
1777 }
1778
1779 target_restart_delayed_cmds(dev);
1780 }
1781
1782 static void transport_complete_qf(struct se_cmd *cmd)
1783 {
1784 int ret = 0;
1785
1786 transport_complete_task_attr(cmd);
1787
1788 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
1789 trace_target_cmd_complete(cmd);
1790 ret = cmd->se_tfo->queue_status(cmd);
1791 if (ret)
1792 goto out;
1793 }
1794
1795 switch (cmd->data_direction) {
1796 case DMA_FROM_DEVICE:
1797 trace_target_cmd_complete(cmd);
1798 ret = cmd->se_tfo->queue_data_in(cmd);
1799 break;
1800 case DMA_TO_DEVICE:
1801 if (cmd->se_cmd_flags & SCF_BIDI) {
1802 ret = cmd->se_tfo->queue_data_in(cmd);
1803 if (ret < 0)
1804 break;
1805 }
1806 /* Fall through for DMA_TO_DEVICE */
1807 case DMA_NONE:
1808 trace_target_cmd_complete(cmd);
1809 ret = cmd->se_tfo->queue_status(cmd);
1810 break;
1811 default:
1812 break;
1813 }
1814
1815 out:
1816 if (ret < 0) {
1817 transport_handle_queue_full(cmd, cmd->se_dev);
1818 return;
1819 }
1820 transport_lun_remove_cmd(cmd);
1821 transport_cmd_check_stop_to_fabric(cmd);
1822 }
1823
1824 static void transport_handle_queue_full(
1825 struct se_cmd *cmd,
1826 struct se_device *dev)
1827 {
1828 spin_lock_irq(&dev->qf_cmd_lock);
1829 list_add_tail(&cmd->se_qf_node, &cmd->se_dev->qf_cmd_list);
1830 atomic_inc(&dev->dev_qf_count);
1831 smp_mb__after_atomic_inc();
1832 spin_unlock_irq(&cmd->se_dev->qf_cmd_lock);
1833
1834 schedule_work(&cmd->se_dev->qf_work_queue);
1835 }
1836
1837 static void target_complete_ok_work(struct work_struct *work)
1838 {
1839 struct se_cmd *cmd = container_of(work, struct se_cmd, work);
1840 int ret;
1841
1842 /*
1843 * Check if we need to move delayed/dormant tasks from cmds on the
1844 * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task
1845 * Attribute.
1846 */
1847 transport_complete_task_attr(cmd);
1848
1849 /*
1850 * Check to schedule QUEUE_FULL work, or execute an existing
1851 * cmd->transport_qf_callback()
1852 */
1853 if (atomic_read(&cmd->se_dev->dev_qf_count) != 0)
1854 schedule_work(&cmd->se_dev->qf_work_queue);
1855
1856 /*
1857 * Check if we need to send a sense buffer from
1858 * the struct se_cmd in question.
1859 */
1860 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
1861 WARN_ON(!cmd->scsi_status);
1862 ret = transport_send_check_condition_and_sense(
1863 cmd, 0, 1);
1864 if (ret == -EAGAIN || ret == -ENOMEM)
1865 goto queue_full;
1866
1867 transport_lun_remove_cmd(cmd);
1868 transport_cmd_check_stop_to_fabric(cmd);
1869 return;
1870 }
1871 /*
1872 * Check for a callback, used by amongst other things
1873 * XDWRITE_READ_10 and COMPARE_AND_WRITE emulation.
1874 */
1875 if (cmd->transport_complete_callback) {
1876 sense_reason_t rc;
1877
1878 rc = cmd->transport_complete_callback(cmd);
1879 if (!rc && !(cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE_POST)) {
1880 return;
1881 } else if (rc) {
1882 ret = transport_send_check_condition_and_sense(cmd,
1883 rc, 0);
1884 if (ret == -EAGAIN || ret == -ENOMEM)
1885 goto queue_full;
1886
1887 transport_lun_remove_cmd(cmd);
1888 transport_cmd_check_stop_to_fabric(cmd);
1889 return;
1890 }
1891 }
1892
1893 switch (cmd->data_direction) {
1894 case DMA_FROM_DEVICE:
1895 spin_lock(&cmd->se_lun->lun_sep_lock);
1896 if (cmd->se_lun->lun_sep) {
1897 cmd->se_lun->lun_sep->sep_stats.tx_data_octets +=
1898 cmd->data_length;
1899 }
1900 spin_unlock(&cmd->se_lun->lun_sep_lock);
1901
1902 trace_target_cmd_complete(cmd);
1903 ret = cmd->se_tfo->queue_data_in(cmd);
1904 if (ret == -EAGAIN || ret == -ENOMEM)
1905 goto queue_full;
1906 break;
1907 case DMA_TO_DEVICE:
1908 spin_lock(&cmd->se_lun->lun_sep_lock);
1909 if (cmd->se_lun->lun_sep) {
1910 cmd->se_lun->lun_sep->sep_stats.rx_data_octets +=
1911 cmd->data_length;
1912 }
1913 spin_unlock(&cmd->se_lun->lun_sep_lock);
1914 /*
1915 * Check if we need to send READ payload for BIDI-COMMAND
1916 */
1917 if (cmd->se_cmd_flags & SCF_BIDI) {
1918 spin_lock(&cmd->se_lun->lun_sep_lock);
1919 if (cmd->se_lun->lun_sep) {
1920 cmd->se_lun->lun_sep->sep_stats.tx_data_octets +=
1921 cmd->data_length;
1922 }
1923 spin_unlock(&cmd->se_lun->lun_sep_lock);
1924 ret = cmd->se_tfo->queue_data_in(cmd);
1925 if (ret == -EAGAIN || ret == -ENOMEM)
1926 goto queue_full;
1927 break;
1928 }
1929 /* Fall through for DMA_TO_DEVICE */
1930 case DMA_NONE:
1931 trace_target_cmd_complete(cmd);
1932 ret = cmd->se_tfo->queue_status(cmd);
1933 if (ret == -EAGAIN || ret == -ENOMEM)
1934 goto queue_full;
1935 break;
1936 default:
1937 break;
1938 }
1939
1940 transport_lun_remove_cmd(cmd);
1941 transport_cmd_check_stop_to_fabric(cmd);
1942 return;
1943
1944 queue_full:
1945 pr_debug("Handling complete_ok QUEUE_FULL: se_cmd: %p,"
1946 " data_direction: %d\n", cmd, cmd->data_direction);
1947 cmd->t_state = TRANSPORT_COMPLETE_QF_OK;
1948 transport_handle_queue_full(cmd, cmd->se_dev);
1949 }
1950
1951 static inline void transport_free_sgl(struct scatterlist *sgl, int nents)
1952 {
1953 struct scatterlist *sg;
1954 int count;
1955
1956 for_each_sg(sgl, sg, nents, count)
1957 __free_page(sg_page(sg));
1958
1959 kfree(sgl);
1960 }
1961
1962 static inline void transport_reset_sgl_orig(struct se_cmd *cmd)
1963 {
1964 /*
1965 * Check for saved t_data_sg that may be used for COMPARE_AND_WRITE
1966 * emulation, and free + reset pointers if necessary..
1967 */
1968 if (!cmd->t_data_sg_orig)
1969 return;
1970
1971 kfree(cmd->t_data_sg);
1972 cmd->t_data_sg = cmd->t_data_sg_orig;
1973 cmd->t_data_sg_orig = NULL;
1974 cmd->t_data_nents = cmd->t_data_nents_orig;
1975 cmd->t_data_nents_orig = 0;
1976 }
1977
1978 static inline void transport_free_pages(struct se_cmd *cmd)
1979 {
1980 if (cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) {
1981 transport_reset_sgl_orig(cmd);
1982 return;
1983 }
1984 transport_reset_sgl_orig(cmd);
1985
1986 transport_free_sgl(cmd->t_data_sg, cmd->t_data_nents);
1987 cmd->t_data_sg = NULL;
1988 cmd->t_data_nents = 0;
1989
1990 transport_free_sgl(cmd->t_bidi_data_sg, cmd->t_bidi_data_nents);
1991 cmd->t_bidi_data_sg = NULL;
1992 cmd->t_bidi_data_nents = 0;
1993 }
1994
1995 /**
1996 * transport_release_cmd - free a command
1997 * @cmd: command to free
1998 *
1999 * This routine unconditionally frees a command, and reference counting
2000 * or list removal must be done in the caller.
2001 */
2002 static int transport_release_cmd(struct se_cmd *cmd)
2003 {
2004 BUG_ON(!cmd->se_tfo);
2005
2006 if (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)
2007 core_tmr_release_req(cmd->se_tmr_req);
2008 if (cmd->t_task_cdb != cmd->__t_task_cdb)
2009 kfree(cmd->t_task_cdb);
2010 /*
2011 * If this cmd has been setup with target_get_sess_cmd(), drop
2012 * the kref and call ->release_cmd() in kref callback.
2013 */
2014 return target_put_sess_cmd(cmd->se_sess, cmd);
2015 }
2016
2017 /**
2018 * transport_put_cmd - release a reference to a command
2019 * @cmd: command to release
2020 *
2021 * This routine releases our reference to the command and frees it if possible.
2022 */
2023 static int transport_put_cmd(struct se_cmd *cmd)
2024 {
2025 transport_free_pages(cmd);
2026 return transport_release_cmd(cmd);
2027 }
2028
2029 void *transport_kmap_data_sg(struct se_cmd *cmd)
2030 {
2031 struct scatterlist *sg = cmd->t_data_sg;
2032 struct page **pages;
2033 int i;
2034
2035 /*
2036 * We need to take into account a possible offset here for fabrics like
2037 * tcm_loop who may be using a contig buffer from the SCSI midlayer for
2038 * control CDBs passed as SGLs via transport_generic_map_mem_to_cmd()
2039 */
2040 if (!cmd->t_data_nents)
2041 return NULL;
2042
2043 BUG_ON(!sg);
2044 if (cmd->t_data_nents == 1)
2045 return kmap(sg_page(sg)) + sg->offset;
2046
2047 /* >1 page. use vmap */
2048 pages = kmalloc(sizeof(*pages) * cmd->t_data_nents, GFP_KERNEL);
2049 if (!pages)
2050 return NULL;
2051
2052 /* convert sg[] to pages[] */
2053 for_each_sg(cmd->t_data_sg, sg, cmd->t_data_nents, i) {
2054 pages[i] = sg_page(sg);
2055 }
2056
2057 cmd->t_data_vmap = vmap(pages, cmd->t_data_nents, VM_MAP, PAGE_KERNEL);
2058 kfree(pages);
2059 if (!cmd->t_data_vmap)
2060 return NULL;
2061
2062 return cmd->t_data_vmap + cmd->t_data_sg[0].offset;
2063 }
2064 EXPORT_SYMBOL(transport_kmap_data_sg);
2065
2066 void transport_kunmap_data_sg(struct se_cmd *cmd)
2067 {
2068 if (!cmd->t_data_nents) {
2069 return;
2070 } else if (cmd->t_data_nents == 1) {
2071 kunmap(sg_page(cmd->t_data_sg));
2072 return;
2073 }
2074
2075 vunmap(cmd->t_data_vmap);
2076 cmd->t_data_vmap = NULL;
2077 }
2078 EXPORT_SYMBOL(transport_kunmap_data_sg);
2079
2080 int
2081 target_alloc_sgl(struct scatterlist **sgl, unsigned int *nents, u32 length,
2082 bool zero_page)
2083 {
2084 struct scatterlist *sg;
2085 struct page *page;
2086 gfp_t zero_flag = (zero_page) ? __GFP_ZERO : 0;
2087 unsigned int nent;
2088 int i = 0;
2089
2090 nent = DIV_ROUND_UP(length, PAGE_SIZE);
2091 sg = kmalloc(sizeof(struct scatterlist) * nent, GFP_KERNEL);
2092 if (!sg)
2093 return -ENOMEM;
2094
2095 sg_init_table(sg, nent);
2096
2097 while (length) {
2098 u32 page_len = min_t(u32, length, PAGE_SIZE);
2099 page = alloc_page(GFP_KERNEL | zero_flag);
2100 if (!page)
2101 goto out;
2102
2103 sg_set_page(&sg[i], page, page_len, 0);
2104 length -= page_len;
2105 i++;
2106 }
2107 *sgl = sg;
2108 *nents = nent;
2109 return 0;
2110
2111 out:
2112 while (i > 0) {
2113 i--;
2114 __free_page(sg_page(&sg[i]));
2115 }
2116 kfree(sg);
2117 return -ENOMEM;
2118 }
2119
2120 /*
2121 * Allocate any required resources to execute the command. For writes we
2122 * might not have the payload yet, so notify the fabric via a call to
2123 * ->write_pending instead. Otherwise place it on the execution queue.
2124 */
2125 sense_reason_t
2126 transport_generic_new_cmd(struct se_cmd *cmd)
2127 {
2128 int ret = 0;
2129
2130 /*
2131 * Determine is the TCM fabric module has already allocated physical
2132 * memory, and is directly calling transport_generic_map_mem_to_cmd()
2133 * beforehand.
2134 */
2135 if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) &&
2136 cmd->data_length) {
2137 bool zero_flag = !(cmd->se_cmd_flags & SCF_SCSI_DATA_CDB);
2138
2139 if ((cmd->se_cmd_flags & SCF_BIDI) ||
2140 (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE)) {
2141 u32 bidi_length;
2142
2143 if (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE)
2144 bidi_length = cmd->t_task_nolb *
2145 cmd->se_dev->dev_attrib.block_size;
2146 else
2147 bidi_length = cmd->data_length;
2148
2149 ret = target_alloc_sgl(&cmd->t_bidi_data_sg,
2150 &cmd->t_bidi_data_nents,
2151 bidi_length, zero_flag);
2152 if (ret < 0)
2153 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2154 }
2155
2156 ret = target_alloc_sgl(&cmd->t_data_sg, &cmd->t_data_nents,
2157 cmd->data_length, zero_flag);
2158 if (ret < 0)
2159 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2160 }
2161 /*
2162 * If this command is not a write we can execute it right here,
2163 * for write buffers we need to notify the fabric driver first
2164 * and let it call back once the write buffers are ready.
2165 */
2166 target_add_to_state_list(cmd);
2167 if (cmd->data_direction != DMA_TO_DEVICE) {
2168 target_execute_cmd(cmd);
2169 return 0;
2170 }
2171 transport_cmd_check_stop(cmd, false, true);
2172
2173 ret = cmd->se_tfo->write_pending(cmd);
2174 if (ret == -EAGAIN || ret == -ENOMEM)
2175 goto queue_full;
2176
2177 /* fabric drivers should only return -EAGAIN or -ENOMEM as error */
2178 WARN_ON(ret);
2179
2180 return (!ret) ? 0 : TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2181
2182 queue_full:
2183 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", cmd);
2184 cmd->t_state = TRANSPORT_COMPLETE_QF_WP;
2185 transport_handle_queue_full(cmd, cmd->se_dev);
2186 return 0;
2187 }
2188 EXPORT_SYMBOL(transport_generic_new_cmd);
2189
2190 static void transport_write_pending_qf(struct se_cmd *cmd)
2191 {
2192 int ret;
2193
2194 ret = cmd->se_tfo->write_pending(cmd);
2195 if (ret == -EAGAIN || ret == -ENOMEM) {
2196 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n",
2197 cmd);
2198 transport_handle_queue_full(cmd, cmd->se_dev);
2199 }
2200 }
2201
2202 int transport_generic_free_cmd(struct se_cmd *cmd, int wait_for_tasks)
2203 {
2204 unsigned long flags;
2205 int ret = 0;
2206
2207 if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD)) {
2208 if (wait_for_tasks && (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
2209 transport_wait_for_tasks(cmd);
2210
2211 ret = transport_release_cmd(cmd);
2212 } else {
2213 if (wait_for_tasks)
2214 transport_wait_for_tasks(cmd);
2215 /*
2216 * Handle WRITE failure case where transport_generic_new_cmd()
2217 * has already added se_cmd to state_list, but fabric has
2218 * failed command before I/O submission.
2219 */
2220 if (cmd->state_active) {
2221 spin_lock_irqsave(&cmd->t_state_lock, flags);
2222 target_remove_from_state_list(cmd);
2223 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2224 }
2225
2226 if (cmd->se_lun)
2227 transport_lun_remove_cmd(cmd);
2228
2229 ret = transport_put_cmd(cmd);
2230 }
2231 return ret;
2232 }
2233 EXPORT_SYMBOL(transport_generic_free_cmd);
2234
2235 /* target_get_sess_cmd - Add command to active ->sess_cmd_list
2236 * @se_sess: session to reference
2237 * @se_cmd: command descriptor to add
2238 * @ack_kref: Signal that fabric will perform an ack target_put_sess_cmd()
2239 */
2240 int target_get_sess_cmd(struct se_session *se_sess, struct se_cmd *se_cmd,
2241 bool ack_kref)
2242 {
2243 unsigned long flags;
2244 int ret = 0;
2245
2246 kref_init(&se_cmd->cmd_kref);
2247 /*
2248 * Add a second kref if the fabric caller is expecting to handle
2249 * fabric acknowledgement that requires two target_put_sess_cmd()
2250 * invocations before se_cmd descriptor release.
2251 */
2252 if (ack_kref == true) {
2253 kref_get(&se_cmd->cmd_kref);
2254 se_cmd->se_cmd_flags |= SCF_ACK_KREF;
2255 }
2256
2257 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2258 if (se_sess->sess_tearing_down) {
2259 ret = -ESHUTDOWN;
2260 goto out;
2261 }
2262 list_add_tail(&se_cmd->se_cmd_list, &se_sess->sess_cmd_list);
2263 out:
2264 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2265 return ret;
2266 }
2267 EXPORT_SYMBOL(target_get_sess_cmd);
2268
2269 static void target_release_cmd_kref(struct kref *kref)
2270 {
2271 struct se_cmd *se_cmd = container_of(kref, struct se_cmd, cmd_kref);
2272 struct se_session *se_sess = se_cmd->se_sess;
2273
2274 if (list_empty(&se_cmd->se_cmd_list)) {
2275 spin_unlock(&se_sess->sess_cmd_lock);
2276 se_cmd->se_tfo->release_cmd(se_cmd);
2277 return;
2278 }
2279 if (se_sess->sess_tearing_down && se_cmd->cmd_wait_set) {
2280 spin_unlock(&se_sess->sess_cmd_lock);
2281 complete(&se_cmd->cmd_wait_comp);
2282 return;
2283 }
2284 list_del(&se_cmd->se_cmd_list);
2285 spin_unlock(&se_sess->sess_cmd_lock);
2286
2287 se_cmd->se_tfo->release_cmd(se_cmd);
2288 }
2289
2290 /* target_put_sess_cmd - Check for active I/O shutdown via kref_put
2291 * @se_sess: session to reference
2292 * @se_cmd: command descriptor to drop
2293 */
2294 int target_put_sess_cmd(struct se_session *se_sess, struct se_cmd *se_cmd)
2295 {
2296 return kref_put_spinlock_irqsave(&se_cmd->cmd_kref, target_release_cmd_kref,
2297 &se_sess->sess_cmd_lock);
2298 }
2299 EXPORT_SYMBOL(target_put_sess_cmd);
2300
2301 /* target_sess_cmd_list_set_waiting - Flag all commands in
2302 * sess_cmd_list to complete cmd_wait_comp. Set
2303 * sess_tearing_down so no more commands are queued.
2304 * @se_sess: session to flag
2305 */
2306 void target_sess_cmd_list_set_waiting(struct se_session *se_sess)
2307 {
2308 struct se_cmd *se_cmd;
2309 unsigned long flags;
2310
2311 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2312 if (se_sess->sess_tearing_down) {
2313 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2314 return;
2315 }
2316 se_sess->sess_tearing_down = 1;
2317 list_splice_init(&se_sess->sess_cmd_list, &se_sess->sess_wait_list);
2318
2319 list_for_each_entry(se_cmd, &se_sess->sess_wait_list, se_cmd_list)
2320 se_cmd->cmd_wait_set = 1;
2321
2322 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2323 }
2324 EXPORT_SYMBOL(target_sess_cmd_list_set_waiting);
2325
2326 /* target_wait_for_sess_cmds - Wait for outstanding descriptors
2327 * @se_sess: session to wait for active I/O
2328 */
2329 void target_wait_for_sess_cmds(struct se_session *se_sess)
2330 {
2331 struct se_cmd *se_cmd, *tmp_cmd;
2332 unsigned long flags;
2333
2334 list_for_each_entry_safe(se_cmd, tmp_cmd,
2335 &se_sess->sess_wait_list, se_cmd_list) {
2336 list_del(&se_cmd->se_cmd_list);
2337
2338 pr_debug("Waiting for se_cmd: %p t_state: %d, fabric state:"
2339 " %d\n", se_cmd, se_cmd->t_state,
2340 se_cmd->se_tfo->get_cmd_state(se_cmd));
2341
2342 wait_for_completion(&se_cmd->cmd_wait_comp);
2343 pr_debug("After cmd_wait_comp: se_cmd: %p t_state: %d"
2344 " fabric state: %d\n", se_cmd, se_cmd->t_state,
2345 se_cmd->se_tfo->get_cmd_state(se_cmd));
2346
2347 se_cmd->se_tfo->release_cmd(se_cmd);
2348 }
2349
2350 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2351 WARN_ON(!list_empty(&se_sess->sess_cmd_list));
2352 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2353
2354 }
2355 EXPORT_SYMBOL(target_wait_for_sess_cmds);
2356
2357 static int transport_clear_lun_ref_thread(void *p)
2358 {
2359 struct se_lun *lun = p;
2360
2361 percpu_ref_kill(&lun->lun_ref);
2362
2363 wait_for_completion(&lun->lun_ref_comp);
2364 complete(&lun->lun_shutdown_comp);
2365
2366 return 0;
2367 }
2368
2369 int transport_clear_lun_ref(struct se_lun *lun)
2370 {
2371 struct task_struct *kt;
2372
2373 kt = kthread_run(transport_clear_lun_ref_thread, lun,
2374 "tcm_cl_%u", lun->unpacked_lun);
2375 if (IS_ERR(kt)) {
2376 pr_err("Unable to start clear_lun thread\n");
2377 return PTR_ERR(kt);
2378 }
2379 wait_for_completion(&lun->lun_shutdown_comp);
2380
2381 return 0;
2382 }
2383
2384 /**
2385 * transport_wait_for_tasks - wait for completion to occur
2386 * @cmd: command to wait
2387 *
2388 * Called from frontend fabric context to wait for storage engine
2389 * to pause and/or release frontend generated struct se_cmd.
2390 */
2391 bool transport_wait_for_tasks(struct se_cmd *cmd)
2392 {
2393 unsigned long flags;
2394
2395 spin_lock_irqsave(&cmd->t_state_lock, flags);
2396 if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD) &&
2397 !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) {
2398 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2399 return false;
2400 }
2401
2402 if (!(cmd->se_cmd_flags & SCF_SUPPORTED_SAM_OPCODE) &&
2403 !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) {
2404 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2405 return false;
2406 }
2407
2408 if (!(cmd->transport_state & CMD_T_ACTIVE)) {
2409 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2410 return false;
2411 }
2412
2413 cmd->transport_state |= CMD_T_STOP;
2414
2415 pr_debug("wait_for_tasks: Stopping %p ITT: 0x%08x"
2416 " i_state: %d, t_state: %d, CMD_T_STOP\n",
2417 cmd, cmd->se_tfo->get_task_tag(cmd),
2418 cmd->se_tfo->get_cmd_state(cmd), cmd->t_state);
2419
2420 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2421
2422 wait_for_completion(&cmd->t_transport_stop_comp);
2423
2424 spin_lock_irqsave(&cmd->t_state_lock, flags);
2425 cmd->transport_state &= ~(CMD_T_ACTIVE | CMD_T_STOP);
2426
2427 pr_debug("wait_for_tasks: Stopped wait_for_completion("
2428 "&cmd->t_transport_stop_comp) for ITT: 0x%08x\n",
2429 cmd->se_tfo->get_task_tag(cmd));
2430
2431 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2432
2433 return true;
2434 }
2435 EXPORT_SYMBOL(transport_wait_for_tasks);
2436
2437 static int transport_get_sense_codes(
2438 struct se_cmd *cmd,
2439 u8 *asc,
2440 u8 *ascq)
2441 {
2442 *asc = cmd->scsi_asc;
2443 *ascq = cmd->scsi_ascq;
2444
2445 return 0;
2446 }
2447
2448 int
2449 transport_send_check_condition_and_sense(struct se_cmd *cmd,
2450 sense_reason_t reason, int from_transport)
2451 {
2452 unsigned char *buffer = cmd->sense_buffer;
2453 unsigned long flags;
2454 u8 asc = 0, ascq = 0;
2455
2456 spin_lock_irqsave(&cmd->t_state_lock, flags);
2457 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
2458 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2459 return 0;
2460 }
2461 cmd->se_cmd_flags |= SCF_SENT_CHECK_CONDITION;
2462 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2463
2464 if (!reason && from_transport)
2465 goto after_reason;
2466
2467 if (!from_transport)
2468 cmd->se_cmd_flags |= SCF_EMULATED_TASK_SENSE;
2469
2470 /*
2471 * Actual SENSE DATA, see SPC-3 7.23.2 SPC_SENSE_KEY_OFFSET uses
2472 * SENSE KEY values from include/scsi/scsi.h
2473 */
2474 switch (reason) {
2475 case TCM_NO_SENSE:
2476 /* CURRENT ERROR */
2477 buffer[0] = 0x70;
2478 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2479 /* Not Ready */
2480 buffer[SPC_SENSE_KEY_OFFSET] = NOT_READY;
2481 /* NO ADDITIONAL SENSE INFORMATION */
2482 buffer[SPC_ASC_KEY_OFFSET] = 0;
2483 buffer[SPC_ASCQ_KEY_OFFSET] = 0;
2484 break;
2485 case TCM_NON_EXISTENT_LUN:
2486 /* CURRENT ERROR */
2487 buffer[0] = 0x70;
2488 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2489 /* ILLEGAL REQUEST */
2490 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2491 /* LOGICAL UNIT NOT SUPPORTED */
2492 buffer[SPC_ASC_KEY_OFFSET] = 0x25;
2493 break;
2494 case TCM_UNSUPPORTED_SCSI_OPCODE:
2495 case TCM_SECTOR_COUNT_TOO_MANY:
2496 /* CURRENT ERROR */
2497 buffer[0] = 0x70;
2498 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2499 /* ILLEGAL REQUEST */
2500 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2501 /* INVALID COMMAND OPERATION CODE */
2502 buffer[SPC_ASC_KEY_OFFSET] = 0x20;
2503 break;
2504 case TCM_UNKNOWN_MODE_PAGE:
2505 /* CURRENT ERROR */
2506 buffer[0] = 0x70;
2507 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2508 /* ILLEGAL REQUEST */
2509 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2510 /* INVALID FIELD IN CDB */
2511 buffer[SPC_ASC_KEY_OFFSET] = 0x24;
2512 break;
2513 case TCM_CHECK_CONDITION_ABORT_CMD:
2514 /* CURRENT ERROR */
2515 buffer[0] = 0x70;
2516 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2517 /* ABORTED COMMAND */
2518 buffer[SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
2519 /* BUS DEVICE RESET FUNCTION OCCURRED */
2520 buffer[SPC_ASC_KEY_OFFSET] = 0x29;
2521 buffer[SPC_ASCQ_KEY_OFFSET] = 0x03;
2522 break;
2523 case TCM_INCORRECT_AMOUNT_OF_DATA:
2524 /* CURRENT ERROR */
2525 buffer[0] = 0x70;
2526 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2527 /* ABORTED COMMAND */
2528 buffer[SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
2529 /* WRITE ERROR */
2530 buffer[SPC_ASC_KEY_OFFSET] = 0x0c;
2531 /* NOT ENOUGH UNSOLICITED DATA */
2532 buffer[SPC_ASCQ_KEY_OFFSET] = 0x0d;
2533 break;
2534 case TCM_INVALID_CDB_FIELD:
2535 /* CURRENT ERROR */
2536 buffer[0] = 0x70;
2537 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2538 /* ILLEGAL REQUEST */
2539 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2540 /* INVALID FIELD IN CDB */
2541 buffer[SPC_ASC_KEY_OFFSET] = 0x24;
2542 break;
2543 case TCM_INVALID_PARAMETER_LIST:
2544 /* CURRENT ERROR */
2545 buffer[0] = 0x70;
2546 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2547 /* ILLEGAL REQUEST */
2548 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2549 /* INVALID FIELD IN PARAMETER LIST */
2550 buffer[SPC_ASC_KEY_OFFSET] = 0x26;
2551 break;
2552 case TCM_PARAMETER_LIST_LENGTH_ERROR:
2553 /* CURRENT ERROR */
2554 buffer[0] = 0x70;
2555 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2556 /* ILLEGAL REQUEST */
2557 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2558 /* PARAMETER LIST LENGTH ERROR */
2559 buffer[SPC_ASC_KEY_OFFSET] = 0x1a;
2560 break;
2561 case TCM_UNEXPECTED_UNSOLICITED_DATA:
2562 /* CURRENT ERROR */
2563 buffer[0] = 0x70;
2564 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2565 /* ABORTED COMMAND */
2566 buffer[SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
2567 /* WRITE ERROR */
2568 buffer[SPC_ASC_KEY_OFFSET] = 0x0c;
2569 /* UNEXPECTED_UNSOLICITED_DATA */
2570 buffer[SPC_ASCQ_KEY_OFFSET] = 0x0c;
2571 break;
2572 case TCM_SERVICE_CRC_ERROR:
2573 /* CURRENT ERROR */
2574 buffer[0] = 0x70;
2575 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2576 /* ABORTED COMMAND */
2577 buffer[SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
2578 /* PROTOCOL SERVICE CRC ERROR */
2579 buffer[SPC_ASC_KEY_OFFSET] = 0x47;
2580 /* N/A */
2581 buffer[SPC_ASCQ_KEY_OFFSET] = 0x05;
2582 break;
2583 case TCM_SNACK_REJECTED:
2584 /* CURRENT ERROR */
2585 buffer[0] = 0x70;
2586 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2587 /* ABORTED COMMAND */
2588 buffer[SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
2589 /* READ ERROR */
2590 buffer[SPC_ASC_KEY_OFFSET] = 0x11;
2591 /* FAILED RETRANSMISSION REQUEST */
2592 buffer[SPC_ASCQ_KEY_OFFSET] = 0x13;
2593 break;
2594 case TCM_WRITE_PROTECTED:
2595 /* CURRENT ERROR */
2596 buffer[0] = 0x70;
2597 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2598 /* DATA PROTECT */
2599 buffer[SPC_SENSE_KEY_OFFSET] = DATA_PROTECT;
2600 /* WRITE PROTECTED */
2601 buffer[SPC_ASC_KEY_OFFSET] = 0x27;
2602 break;
2603 case TCM_ADDRESS_OUT_OF_RANGE:
2604 /* CURRENT ERROR */
2605 buffer[0] = 0x70;
2606 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2607 /* ILLEGAL REQUEST */
2608 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2609 /* LOGICAL BLOCK ADDRESS OUT OF RANGE */
2610 buffer[SPC_ASC_KEY_OFFSET] = 0x21;
2611 break;
2612 case TCM_CHECK_CONDITION_UNIT_ATTENTION:
2613 /* CURRENT ERROR */
2614 buffer[0] = 0x70;
2615 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2616 /* UNIT ATTENTION */
2617 buffer[SPC_SENSE_KEY_OFFSET] = UNIT_ATTENTION;
2618 core_scsi3_ua_for_check_condition(cmd, &asc, &ascq);
2619 buffer[SPC_ASC_KEY_OFFSET] = asc;
2620 buffer[SPC_ASCQ_KEY_OFFSET] = ascq;
2621 break;
2622 case TCM_CHECK_CONDITION_NOT_READY:
2623 /* CURRENT ERROR */
2624 buffer[0] = 0x70;
2625 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2626 /* Not Ready */
2627 buffer[SPC_SENSE_KEY_OFFSET] = NOT_READY;
2628 transport_get_sense_codes(cmd, &asc, &ascq);
2629 buffer[SPC_ASC_KEY_OFFSET] = asc;
2630 buffer[SPC_ASCQ_KEY_OFFSET] = ascq;
2631 break;
2632 case TCM_MISCOMPARE_VERIFY:
2633 /* CURRENT ERROR */
2634 buffer[0] = 0x70;
2635 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2636 buffer[SPC_SENSE_KEY_OFFSET] = MISCOMPARE;
2637 /* MISCOMPARE DURING VERIFY OPERATION */
2638 buffer[SPC_ASC_KEY_OFFSET] = 0x1d;
2639 buffer[SPC_ASCQ_KEY_OFFSET] = 0x00;
2640 break;
2641 case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
2642 default:
2643 /* CURRENT ERROR */
2644 buffer[0] = 0x70;
2645 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2646 /*
2647 * Returning ILLEGAL REQUEST would cause immediate IO errors on
2648 * Solaris initiators. Returning NOT READY instead means the
2649 * operations will be retried a finite number of times and we
2650 * can survive intermittent errors.
2651 */
2652 buffer[SPC_SENSE_KEY_OFFSET] = NOT_READY;
2653 /* LOGICAL UNIT COMMUNICATION FAILURE */
2654 buffer[SPC_ASC_KEY_OFFSET] = 0x08;
2655 break;
2656 }
2657 /*
2658 * This code uses linux/include/scsi/scsi.h SAM status codes!
2659 */
2660 cmd->scsi_status = SAM_STAT_CHECK_CONDITION;
2661 /*
2662 * Automatically padded, this value is encoded in the fabric's
2663 * data_length response PDU containing the SCSI defined sense data.
2664 */
2665 cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER;
2666
2667 after_reason:
2668 trace_target_cmd_complete(cmd);
2669 return cmd->se_tfo->queue_status(cmd);
2670 }
2671 EXPORT_SYMBOL(transport_send_check_condition_and_sense);
2672
2673 int transport_check_aborted_status(struct se_cmd *cmd, int send_status)
2674 {
2675 if (!(cmd->transport_state & CMD_T_ABORTED))
2676 return 0;
2677
2678 if (!send_status || (cmd->se_cmd_flags & SCF_SENT_DELAYED_TAS))
2679 return 1;
2680
2681 pr_debug("Sending delayed SAM_STAT_TASK_ABORTED status for CDB: 0x%02x ITT: 0x%08x\n",
2682 cmd->t_task_cdb[0], cmd->se_tfo->get_task_tag(cmd));
2683
2684 cmd->se_cmd_flags |= SCF_SENT_DELAYED_TAS;
2685 cmd->scsi_status = SAM_STAT_TASK_ABORTED;
2686 trace_target_cmd_complete(cmd);
2687 cmd->se_tfo->queue_status(cmd);
2688
2689 return 1;
2690 }
2691 EXPORT_SYMBOL(transport_check_aborted_status);
2692
2693 void transport_send_task_abort(struct se_cmd *cmd)
2694 {
2695 unsigned long flags;
2696
2697 spin_lock_irqsave(&cmd->t_state_lock, flags);
2698 if (cmd->se_cmd_flags & (SCF_SENT_CHECK_CONDITION | SCF_SENT_DELAYED_TAS)) {
2699 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2700 return;
2701 }
2702 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2703
2704 /*
2705 * If there are still expected incoming fabric WRITEs, we wait
2706 * until until they have completed before sending a TASK_ABORTED
2707 * response. This response with TASK_ABORTED status will be
2708 * queued back to fabric module by transport_check_aborted_status().
2709 */
2710 if (cmd->data_direction == DMA_TO_DEVICE) {
2711 if (cmd->se_tfo->write_pending_status(cmd) != 0) {
2712 cmd->transport_state |= CMD_T_ABORTED;
2713 smp_mb__after_atomic_inc();
2714 return;
2715 }
2716 }
2717 cmd->scsi_status = SAM_STAT_TASK_ABORTED;
2718
2719 transport_lun_remove_cmd(cmd);
2720
2721 pr_debug("Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x,"
2722 " ITT: 0x%08x\n", cmd->t_task_cdb[0],
2723 cmd->se_tfo->get_task_tag(cmd));
2724
2725 trace_target_cmd_complete(cmd);
2726 cmd->se_tfo->queue_status(cmd);
2727 }
2728
2729 static void target_tmr_work(struct work_struct *work)
2730 {
2731 struct se_cmd *cmd = container_of(work, struct se_cmd, work);
2732 struct se_device *dev = cmd->se_dev;
2733 struct se_tmr_req *tmr = cmd->se_tmr_req;
2734 int ret;
2735
2736 switch (tmr->function) {
2737 case TMR_ABORT_TASK:
2738 core_tmr_abort_task(dev, tmr, cmd->se_sess);
2739 break;
2740 case TMR_ABORT_TASK_SET:
2741 case TMR_CLEAR_ACA:
2742 case TMR_CLEAR_TASK_SET:
2743 tmr->response = TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED;
2744 break;
2745 case TMR_LUN_RESET:
2746 ret = core_tmr_lun_reset(dev, tmr, NULL, NULL);
2747 tmr->response = (!ret) ? TMR_FUNCTION_COMPLETE :
2748 TMR_FUNCTION_REJECTED;
2749 break;
2750 case TMR_TARGET_WARM_RESET:
2751 tmr->response = TMR_FUNCTION_REJECTED;
2752 break;
2753 case TMR_TARGET_COLD_RESET:
2754 tmr->response = TMR_FUNCTION_REJECTED;
2755 break;
2756 default:
2757 pr_err("Uknown TMR function: 0x%02x.\n",
2758 tmr->function);
2759 tmr->response = TMR_FUNCTION_REJECTED;
2760 break;
2761 }
2762
2763 cmd->t_state = TRANSPORT_ISTATE_PROCESSING;
2764 cmd->se_tfo->queue_tm_rsp(cmd);
2765
2766 transport_cmd_check_stop_to_fabric(cmd);
2767 }
2768
2769 int transport_generic_handle_tmr(
2770 struct se_cmd *cmd)
2771 {
2772 INIT_WORK(&cmd->work, target_tmr_work);
2773 queue_work(cmd->se_dev->tmr_wq, &cmd->work);
2774 return 0;
2775 }
2776 EXPORT_SYMBOL(transport_generic_handle_tmr);