ARM: at91: fix board-rm9200-dt after sys_timer conversion
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / target / target_core_transport.c
1 /*******************************************************************************
2 * Filename: target_core_transport.c
3 *
4 * This file contains the Generic Target Engine Core.
5 *
6 * (c) Copyright 2002-2012 RisingTide Systems LLC.
7 *
8 * Nicholas A. Bellinger <nab@kernel.org>
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2 of the License, or
13 * (at your option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
23 *
24 ******************************************************************************/
25
26 #include <linux/net.h>
27 #include <linux/delay.h>
28 #include <linux/string.h>
29 #include <linux/timer.h>
30 #include <linux/slab.h>
31 #include <linux/blkdev.h>
32 #include <linux/spinlock.h>
33 #include <linux/kthread.h>
34 #include <linux/in.h>
35 #include <linux/cdrom.h>
36 #include <linux/module.h>
37 #include <linux/ratelimit.h>
38 #include <asm/unaligned.h>
39 #include <net/sock.h>
40 #include <net/tcp.h>
41 #include <scsi/scsi.h>
42 #include <scsi/scsi_cmnd.h>
43 #include <scsi/scsi_tcq.h>
44
45 #include <target/target_core_base.h>
46 #include <target/target_core_backend.h>
47 #include <target/target_core_fabric.h>
48 #include <target/target_core_configfs.h>
49
50 #include "target_core_internal.h"
51 #include "target_core_alua.h"
52 #include "target_core_pr.h"
53 #include "target_core_ua.h"
54
55 static struct workqueue_struct *target_completion_wq;
56 static struct kmem_cache *se_sess_cache;
57 struct kmem_cache *se_ua_cache;
58 struct kmem_cache *t10_pr_reg_cache;
59 struct kmem_cache *t10_alua_lu_gp_cache;
60 struct kmem_cache *t10_alua_lu_gp_mem_cache;
61 struct kmem_cache *t10_alua_tg_pt_gp_cache;
62 struct kmem_cache *t10_alua_tg_pt_gp_mem_cache;
63
64 static void transport_complete_task_attr(struct se_cmd *cmd);
65 static void transport_handle_queue_full(struct se_cmd *cmd,
66 struct se_device *dev);
67 static int transport_generic_get_mem(struct se_cmd *cmd);
68 static int target_get_sess_cmd(struct se_session *, struct se_cmd *, bool);
69 static void transport_put_cmd(struct se_cmd *cmd);
70 static void target_complete_ok_work(struct work_struct *work);
71
72 int init_se_kmem_caches(void)
73 {
74 se_sess_cache = kmem_cache_create("se_sess_cache",
75 sizeof(struct se_session), __alignof__(struct se_session),
76 0, NULL);
77 if (!se_sess_cache) {
78 pr_err("kmem_cache_create() for struct se_session"
79 " failed\n");
80 goto out;
81 }
82 se_ua_cache = kmem_cache_create("se_ua_cache",
83 sizeof(struct se_ua), __alignof__(struct se_ua),
84 0, NULL);
85 if (!se_ua_cache) {
86 pr_err("kmem_cache_create() for struct se_ua failed\n");
87 goto out_free_sess_cache;
88 }
89 t10_pr_reg_cache = kmem_cache_create("t10_pr_reg_cache",
90 sizeof(struct t10_pr_registration),
91 __alignof__(struct t10_pr_registration), 0, NULL);
92 if (!t10_pr_reg_cache) {
93 pr_err("kmem_cache_create() for struct t10_pr_registration"
94 " failed\n");
95 goto out_free_ua_cache;
96 }
97 t10_alua_lu_gp_cache = kmem_cache_create("t10_alua_lu_gp_cache",
98 sizeof(struct t10_alua_lu_gp), __alignof__(struct t10_alua_lu_gp),
99 0, NULL);
100 if (!t10_alua_lu_gp_cache) {
101 pr_err("kmem_cache_create() for t10_alua_lu_gp_cache"
102 " failed\n");
103 goto out_free_pr_reg_cache;
104 }
105 t10_alua_lu_gp_mem_cache = kmem_cache_create("t10_alua_lu_gp_mem_cache",
106 sizeof(struct t10_alua_lu_gp_member),
107 __alignof__(struct t10_alua_lu_gp_member), 0, NULL);
108 if (!t10_alua_lu_gp_mem_cache) {
109 pr_err("kmem_cache_create() for t10_alua_lu_gp_mem_"
110 "cache failed\n");
111 goto out_free_lu_gp_cache;
112 }
113 t10_alua_tg_pt_gp_cache = kmem_cache_create("t10_alua_tg_pt_gp_cache",
114 sizeof(struct t10_alua_tg_pt_gp),
115 __alignof__(struct t10_alua_tg_pt_gp), 0, NULL);
116 if (!t10_alua_tg_pt_gp_cache) {
117 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
118 "cache failed\n");
119 goto out_free_lu_gp_mem_cache;
120 }
121 t10_alua_tg_pt_gp_mem_cache = kmem_cache_create(
122 "t10_alua_tg_pt_gp_mem_cache",
123 sizeof(struct t10_alua_tg_pt_gp_member),
124 __alignof__(struct t10_alua_tg_pt_gp_member),
125 0, NULL);
126 if (!t10_alua_tg_pt_gp_mem_cache) {
127 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
128 "mem_t failed\n");
129 goto out_free_tg_pt_gp_cache;
130 }
131
132 target_completion_wq = alloc_workqueue("target_completion",
133 WQ_MEM_RECLAIM, 0);
134 if (!target_completion_wq)
135 goto out_free_tg_pt_gp_mem_cache;
136
137 return 0;
138
139 out_free_tg_pt_gp_mem_cache:
140 kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache);
141 out_free_tg_pt_gp_cache:
142 kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
143 out_free_lu_gp_mem_cache:
144 kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
145 out_free_lu_gp_cache:
146 kmem_cache_destroy(t10_alua_lu_gp_cache);
147 out_free_pr_reg_cache:
148 kmem_cache_destroy(t10_pr_reg_cache);
149 out_free_ua_cache:
150 kmem_cache_destroy(se_ua_cache);
151 out_free_sess_cache:
152 kmem_cache_destroy(se_sess_cache);
153 out:
154 return -ENOMEM;
155 }
156
157 void release_se_kmem_caches(void)
158 {
159 destroy_workqueue(target_completion_wq);
160 kmem_cache_destroy(se_sess_cache);
161 kmem_cache_destroy(se_ua_cache);
162 kmem_cache_destroy(t10_pr_reg_cache);
163 kmem_cache_destroy(t10_alua_lu_gp_cache);
164 kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
165 kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
166 kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache);
167 }
168
169 /* This code ensures unique mib indexes are handed out. */
170 static DEFINE_SPINLOCK(scsi_mib_index_lock);
171 static u32 scsi_mib_index[SCSI_INDEX_TYPE_MAX];
172
173 /*
174 * Allocate a new row index for the entry type specified
175 */
176 u32 scsi_get_new_index(scsi_index_t type)
177 {
178 u32 new_index;
179
180 BUG_ON((type < 0) || (type >= SCSI_INDEX_TYPE_MAX));
181
182 spin_lock(&scsi_mib_index_lock);
183 new_index = ++scsi_mib_index[type];
184 spin_unlock(&scsi_mib_index_lock);
185
186 return new_index;
187 }
188
189 void transport_subsystem_check_init(void)
190 {
191 int ret;
192 static int sub_api_initialized;
193
194 if (sub_api_initialized)
195 return;
196
197 ret = request_module("target_core_iblock");
198 if (ret != 0)
199 pr_err("Unable to load target_core_iblock\n");
200
201 ret = request_module("target_core_file");
202 if (ret != 0)
203 pr_err("Unable to load target_core_file\n");
204
205 ret = request_module("target_core_pscsi");
206 if (ret != 0)
207 pr_err("Unable to load target_core_pscsi\n");
208
209 sub_api_initialized = 1;
210 }
211
212 struct se_session *transport_init_session(void)
213 {
214 struct se_session *se_sess;
215
216 se_sess = kmem_cache_zalloc(se_sess_cache, GFP_KERNEL);
217 if (!se_sess) {
218 pr_err("Unable to allocate struct se_session from"
219 " se_sess_cache\n");
220 return ERR_PTR(-ENOMEM);
221 }
222 INIT_LIST_HEAD(&se_sess->sess_list);
223 INIT_LIST_HEAD(&se_sess->sess_acl_list);
224 INIT_LIST_HEAD(&se_sess->sess_cmd_list);
225 spin_lock_init(&se_sess->sess_cmd_lock);
226 kref_init(&se_sess->sess_kref);
227
228 return se_sess;
229 }
230 EXPORT_SYMBOL(transport_init_session);
231
232 /*
233 * Called with spin_lock_irqsave(&struct se_portal_group->session_lock called.
234 */
235 void __transport_register_session(
236 struct se_portal_group *se_tpg,
237 struct se_node_acl *se_nacl,
238 struct se_session *se_sess,
239 void *fabric_sess_ptr)
240 {
241 unsigned char buf[PR_REG_ISID_LEN];
242
243 se_sess->se_tpg = se_tpg;
244 se_sess->fabric_sess_ptr = fabric_sess_ptr;
245 /*
246 * Used by struct se_node_acl's under ConfigFS to locate active se_session-t
247 *
248 * Only set for struct se_session's that will actually be moving I/O.
249 * eg: *NOT* discovery sessions.
250 */
251 if (se_nacl) {
252 /*
253 * If the fabric module supports an ISID based TransportID,
254 * save this value in binary from the fabric I_T Nexus now.
255 */
256 if (se_tpg->se_tpg_tfo->sess_get_initiator_sid != NULL) {
257 memset(&buf[0], 0, PR_REG_ISID_LEN);
258 se_tpg->se_tpg_tfo->sess_get_initiator_sid(se_sess,
259 &buf[0], PR_REG_ISID_LEN);
260 se_sess->sess_bin_isid = get_unaligned_be64(&buf[0]);
261 }
262 kref_get(&se_nacl->acl_kref);
263
264 spin_lock_irq(&se_nacl->nacl_sess_lock);
265 /*
266 * The se_nacl->nacl_sess pointer will be set to the
267 * last active I_T Nexus for each struct se_node_acl.
268 */
269 se_nacl->nacl_sess = se_sess;
270
271 list_add_tail(&se_sess->sess_acl_list,
272 &se_nacl->acl_sess_list);
273 spin_unlock_irq(&se_nacl->nacl_sess_lock);
274 }
275 list_add_tail(&se_sess->sess_list, &se_tpg->tpg_sess_list);
276
277 pr_debug("TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n",
278 se_tpg->se_tpg_tfo->get_fabric_name(), se_sess->fabric_sess_ptr);
279 }
280 EXPORT_SYMBOL(__transport_register_session);
281
282 void transport_register_session(
283 struct se_portal_group *se_tpg,
284 struct se_node_acl *se_nacl,
285 struct se_session *se_sess,
286 void *fabric_sess_ptr)
287 {
288 unsigned long flags;
289
290 spin_lock_irqsave(&se_tpg->session_lock, flags);
291 __transport_register_session(se_tpg, se_nacl, se_sess, fabric_sess_ptr);
292 spin_unlock_irqrestore(&se_tpg->session_lock, flags);
293 }
294 EXPORT_SYMBOL(transport_register_session);
295
296 static void target_release_session(struct kref *kref)
297 {
298 struct se_session *se_sess = container_of(kref,
299 struct se_session, sess_kref);
300 struct se_portal_group *se_tpg = se_sess->se_tpg;
301
302 se_tpg->se_tpg_tfo->close_session(se_sess);
303 }
304
305 void target_get_session(struct se_session *se_sess)
306 {
307 kref_get(&se_sess->sess_kref);
308 }
309 EXPORT_SYMBOL(target_get_session);
310
311 void target_put_session(struct se_session *se_sess)
312 {
313 struct se_portal_group *tpg = se_sess->se_tpg;
314
315 if (tpg->se_tpg_tfo->put_session != NULL) {
316 tpg->se_tpg_tfo->put_session(se_sess);
317 return;
318 }
319 kref_put(&se_sess->sess_kref, target_release_session);
320 }
321 EXPORT_SYMBOL(target_put_session);
322
323 static void target_complete_nacl(struct kref *kref)
324 {
325 struct se_node_acl *nacl = container_of(kref,
326 struct se_node_acl, acl_kref);
327
328 complete(&nacl->acl_free_comp);
329 }
330
331 void target_put_nacl(struct se_node_acl *nacl)
332 {
333 kref_put(&nacl->acl_kref, target_complete_nacl);
334 }
335
336 void transport_deregister_session_configfs(struct se_session *se_sess)
337 {
338 struct se_node_acl *se_nacl;
339 unsigned long flags;
340 /*
341 * Used by struct se_node_acl's under ConfigFS to locate active struct se_session
342 */
343 se_nacl = se_sess->se_node_acl;
344 if (se_nacl) {
345 spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
346 if (se_nacl->acl_stop == 0)
347 list_del(&se_sess->sess_acl_list);
348 /*
349 * If the session list is empty, then clear the pointer.
350 * Otherwise, set the struct se_session pointer from the tail
351 * element of the per struct se_node_acl active session list.
352 */
353 if (list_empty(&se_nacl->acl_sess_list))
354 se_nacl->nacl_sess = NULL;
355 else {
356 se_nacl->nacl_sess = container_of(
357 se_nacl->acl_sess_list.prev,
358 struct se_session, sess_acl_list);
359 }
360 spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
361 }
362 }
363 EXPORT_SYMBOL(transport_deregister_session_configfs);
364
365 void transport_free_session(struct se_session *se_sess)
366 {
367 kmem_cache_free(se_sess_cache, se_sess);
368 }
369 EXPORT_SYMBOL(transport_free_session);
370
371 void transport_deregister_session(struct se_session *se_sess)
372 {
373 struct se_portal_group *se_tpg = se_sess->se_tpg;
374 struct target_core_fabric_ops *se_tfo;
375 struct se_node_acl *se_nacl;
376 unsigned long flags;
377 bool comp_nacl = true;
378
379 if (!se_tpg) {
380 transport_free_session(se_sess);
381 return;
382 }
383 se_tfo = se_tpg->se_tpg_tfo;
384
385 spin_lock_irqsave(&se_tpg->session_lock, flags);
386 list_del(&se_sess->sess_list);
387 se_sess->se_tpg = NULL;
388 se_sess->fabric_sess_ptr = NULL;
389 spin_unlock_irqrestore(&se_tpg->session_lock, flags);
390
391 /*
392 * Determine if we need to do extra work for this initiator node's
393 * struct se_node_acl if it had been previously dynamically generated.
394 */
395 se_nacl = se_sess->se_node_acl;
396
397 spin_lock_irqsave(&se_tpg->acl_node_lock, flags);
398 if (se_nacl && se_nacl->dynamic_node_acl) {
399 if (!se_tfo->tpg_check_demo_mode_cache(se_tpg)) {
400 list_del(&se_nacl->acl_list);
401 se_tpg->num_node_acls--;
402 spin_unlock_irqrestore(&se_tpg->acl_node_lock, flags);
403 core_tpg_wait_for_nacl_pr_ref(se_nacl);
404 core_free_device_list_for_node(se_nacl, se_tpg);
405 se_tfo->tpg_release_fabric_acl(se_tpg, se_nacl);
406
407 comp_nacl = false;
408 spin_lock_irqsave(&se_tpg->acl_node_lock, flags);
409 }
410 }
411 spin_unlock_irqrestore(&se_tpg->acl_node_lock, flags);
412
413 pr_debug("TARGET_CORE[%s]: Deregistered fabric_sess\n",
414 se_tpg->se_tpg_tfo->get_fabric_name());
415 /*
416 * If last kref is dropping now for an explict NodeACL, awake sleeping
417 * ->acl_free_comp caller to wakeup configfs se_node_acl->acl_group
418 * removal context.
419 */
420 if (se_nacl && comp_nacl == true)
421 target_put_nacl(se_nacl);
422
423 transport_free_session(se_sess);
424 }
425 EXPORT_SYMBOL(transport_deregister_session);
426
427 /*
428 * Called with cmd->t_state_lock held.
429 */
430 static void target_remove_from_state_list(struct se_cmd *cmd)
431 {
432 struct se_device *dev = cmd->se_dev;
433 unsigned long flags;
434
435 if (!dev)
436 return;
437
438 if (cmd->transport_state & CMD_T_BUSY)
439 return;
440
441 spin_lock_irqsave(&dev->execute_task_lock, flags);
442 if (cmd->state_active) {
443 list_del(&cmd->state_list);
444 cmd->state_active = false;
445 }
446 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
447 }
448
449 static int transport_cmd_check_stop(struct se_cmd *cmd, bool remove_from_lists)
450 {
451 unsigned long flags;
452
453 spin_lock_irqsave(&cmd->t_state_lock, flags);
454 /*
455 * Determine if IOCTL context caller in requesting the stopping of this
456 * command for LUN shutdown purposes.
457 */
458 if (cmd->transport_state & CMD_T_LUN_STOP) {
459 pr_debug("%s:%d CMD_T_LUN_STOP for ITT: 0x%08x\n",
460 __func__, __LINE__, cmd->se_tfo->get_task_tag(cmd));
461
462 cmd->transport_state &= ~CMD_T_ACTIVE;
463 if (remove_from_lists)
464 target_remove_from_state_list(cmd);
465 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
466
467 complete(&cmd->transport_lun_stop_comp);
468 return 1;
469 }
470
471 if (remove_from_lists) {
472 target_remove_from_state_list(cmd);
473
474 /*
475 * Clear struct se_cmd->se_lun before the handoff to FE.
476 */
477 cmd->se_lun = NULL;
478 }
479
480 /*
481 * Determine if frontend context caller is requesting the stopping of
482 * this command for frontend exceptions.
483 */
484 if (cmd->transport_state & CMD_T_STOP) {
485 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08x\n",
486 __func__, __LINE__,
487 cmd->se_tfo->get_task_tag(cmd));
488
489 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
490
491 complete(&cmd->t_transport_stop_comp);
492 return 1;
493 }
494
495 cmd->transport_state &= ~CMD_T_ACTIVE;
496 if (remove_from_lists) {
497 /*
498 * Some fabric modules like tcm_loop can release
499 * their internally allocated I/O reference now and
500 * struct se_cmd now.
501 *
502 * Fabric modules are expected to return '1' here if the
503 * se_cmd being passed is released at this point,
504 * or zero if not being released.
505 */
506 if (cmd->se_tfo->check_stop_free != NULL) {
507 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
508 return cmd->se_tfo->check_stop_free(cmd);
509 }
510 }
511
512 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
513 return 0;
514 }
515
516 static int transport_cmd_check_stop_to_fabric(struct se_cmd *cmd)
517 {
518 return transport_cmd_check_stop(cmd, true);
519 }
520
521 static void transport_lun_remove_cmd(struct se_cmd *cmd)
522 {
523 struct se_lun *lun = cmd->se_lun;
524 unsigned long flags;
525
526 if (!lun)
527 return;
528
529 spin_lock_irqsave(&cmd->t_state_lock, flags);
530 if (cmd->transport_state & CMD_T_DEV_ACTIVE) {
531 cmd->transport_state &= ~CMD_T_DEV_ACTIVE;
532 target_remove_from_state_list(cmd);
533 }
534 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
535
536 spin_lock_irqsave(&lun->lun_cmd_lock, flags);
537 if (!list_empty(&cmd->se_lun_node))
538 list_del_init(&cmd->se_lun_node);
539 spin_unlock_irqrestore(&lun->lun_cmd_lock, flags);
540 }
541
542 void transport_cmd_finish_abort(struct se_cmd *cmd, int remove)
543 {
544 if (!(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
545 transport_lun_remove_cmd(cmd);
546
547 if (transport_cmd_check_stop_to_fabric(cmd))
548 return;
549 if (remove)
550 transport_put_cmd(cmd);
551 }
552
553 static void target_complete_failure_work(struct work_struct *work)
554 {
555 struct se_cmd *cmd = container_of(work, struct se_cmd, work);
556
557 transport_generic_request_failure(cmd,
558 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE);
559 }
560
561 /*
562 * Used when asking transport to copy Sense Data from the underlying
563 * Linux/SCSI struct scsi_cmnd
564 */
565 static unsigned char *transport_get_sense_buffer(struct se_cmd *cmd)
566 {
567 struct se_device *dev = cmd->se_dev;
568
569 WARN_ON(!cmd->se_lun);
570
571 if (!dev)
572 return NULL;
573
574 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION)
575 return NULL;
576
577 cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER;
578
579 pr_debug("HBA_[%u]_PLUG[%s]: Requesting sense for SAM STATUS: 0x%02x\n",
580 dev->se_hba->hba_id, dev->transport->name, cmd->scsi_status);
581 return cmd->sense_buffer;
582 }
583
584 void target_complete_cmd(struct se_cmd *cmd, u8 scsi_status)
585 {
586 struct se_device *dev = cmd->se_dev;
587 int success = scsi_status == GOOD;
588 unsigned long flags;
589
590 cmd->scsi_status = scsi_status;
591
592
593 spin_lock_irqsave(&cmd->t_state_lock, flags);
594 cmd->transport_state &= ~CMD_T_BUSY;
595
596 if (dev && dev->transport->transport_complete) {
597 dev->transport->transport_complete(cmd,
598 cmd->t_data_sg,
599 transport_get_sense_buffer(cmd));
600 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE)
601 success = 1;
602 }
603
604 /*
605 * See if we are waiting to complete for an exception condition.
606 */
607 if (cmd->transport_state & CMD_T_REQUEST_STOP) {
608 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
609 complete(&cmd->task_stop_comp);
610 return;
611 }
612
613 if (!success)
614 cmd->transport_state |= CMD_T_FAILED;
615
616 /*
617 * Check for case where an explict ABORT_TASK has been received
618 * and transport_wait_for_tasks() will be waiting for completion..
619 */
620 if (cmd->transport_state & CMD_T_ABORTED &&
621 cmd->transport_state & CMD_T_STOP) {
622 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
623 complete(&cmd->t_transport_stop_comp);
624 return;
625 } else if (cmd->transport_state & CMD_T_FAILED) {
626 INIT_WORK(&cmd->work, target_complete_failure_work);
627 } else {
628 INIT_WORK(&cmd->work, target_complete_ok_work);
629 }
630
631 cmd->t_state = TRANSPORT_COMPLETE;
632 cmd->transport_state |= (CMD_T_COMPLETE | CMD_T_ACTIVE);
633 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
634
635 queue_work(target_completion_wq, &cmd->work);
636 }
637 EXPORT_SYMBOL(target_complete_cmd);
638
639 static void target_add_to_state_list(struct se_cmd *cmd)
640 {
641 struct se_device *dev = cmd->se_dev;
642 unsigned long flags;
643
644 spin_lock_irqsave(&dev->execute_task_lock, flags);
645 if (!cmd->state_active) {
646 list_add_tail(&cmd->state_list, &dev->state_list);
647 cmd->state_active = true;
648 }
649 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
650 }
651
652 /*
653 * Handle QUEUE_FULL / -EAGAIN and -ENOMEM status
654 */
655 static void transport_write_pending_qf(struct se_cmd *cmd);
656 static void transport_complete_qf(struct se_cmd *cmd);
657
658 void target_qf_do_work(struct work_struct *work)
659 {
660 struct se_device *dev = container_of(work, struct se_device,
661 qf_work_queue);
662 LIST_HEAD(qf_cmd_list);
663 struct se_cmd *cmd, *cmd_tmp;
664
665 spin_lock_irq(&dev->qf_cmd_lock);
666 list_splice_init(&dev->qf_cmd_list, &qf_cmd_list);
667 spin_unlock_irq(&dev->qf_cmd_lock);
668
669 list_for_each_entry_safe(cmd, cmd_tmp, &qf_cmd_list, se_qf_node) {
670 list_del(&cmd->se_qf_node);
671 atomic_dec(&dev->dev_qf_count);
672 smp_mb__after_atomic_dec();
673
674 pr_debug("Processing %s cmd: %p QUEUE_FULL in work queue"
675 " context: %s\n", cmd->se_tfo->get_fabric_name(), cmd,
676 (cmd->t_state == TRANSPORT_COMPLETE_QF_OK) ? "COMPLETE_OK" :
677 (cmd->t_state == TRANSPORT_COMPLETE_QF_WP) ? "WRITE_PENDING"
678 : "UNKNOWN");
679
680 if (cmd->t_state == TRANSPORT_COMPLETE_QF_WP)
681 transport_write_pending_qf(cmd);
682 else if (cmd->t_state == TRANSPORT_COMPLETE_QF_OK)
683 transport_complete_qf(cmd);
684 }
685 }
686
687 unsigned char *transport_dump_cmd_direction(struct se_cmd *cmd)
688 {
689 switch (cmd->data_direction) {
690 case DMA_NONE:
691 return "NONE";
692 case DMA_FROM_DEVICE:
693 return "READ";
694 case DMA_TO_DEVICE:
695 return "WRITE";
696 case DMA_BIDIRECTIONAL:
697 return "BIDI";
698 default:
699 break;
700 }
701
702 return "UNKNOWN";
703 }
704
705 void transport_dump_dev_state(
706 struct se_device *dev,
707 char *b,
708 int *bl)
709 {
710 *bl += sprintf(b + *bl, "Status: ");
711 if (dev->export_count)
712 *bl += sprintf(b + *bl, "ACTIVATED");
713 else
714 *bl += sprintf(b + *bl, "DEACTIVATED");
715
716 *bl += sprintf(b + *bl, " Max Queue Depth: %d", dev->queue_depth);
717 *bl += sprintf(b + *bl, " SectorSize: %u HwMaxSectors: %u\n",
718 dev->dev_attrib.block_size,
719 dev->dev_attrib.hw_max_sectors);
720 *bl += sprintf(b + *bl, " ");
721 }
722
723 void transport_dump_vpd_proto_id(
724 struct t10_vpd *vpd,
725 unsigned char *p_buf,
726 int p_buf_len)
727 {
728 unsigned char buf[VPD_TMP_BUF_SIZE];
729 int len;
730
731 memset(buf, 0, VPD_TMP_BUF_SIZE);
732 len = sprintf(buf, "T10 VPD Protocol Identifier: ");
733
734 switch (vpd->protocol_identifier) {
735 case 0x00:
736 sprintf(buf+len, "Fibre Channel\n");
737 break;
738 case 0x10:
739 sprintf(buf+len, "Parallel SCSI\n");
740 break;
741 case 0x20:
742 sprintf(buf+len, "SSA\n");
743 break;
744 case 0x30:
745 sprintf(buf+len, "IEEE 1394\n");
746 break;
747 case 0x40:
748 sprintf(buf+len, "SCSI Remote Direct Memory Access"
749 " Protocol\n");
750 break;
751 case 0x50:
752 sprintf(buf+len, "Internet SCSI (iSCSI)\n");
753 break;
754 case 0x60:
755 sprintf(buf+len, "SAS Serial SCSI Protocol\n");
756 break;
757 case 0x70:
758 sprintf(buf+len, "Automation/Drive Interface Transport"
759 " Protocol\n");
760 break;
761 case 0x80:
762 sprintf(buf+len, "AT Attachment Interface ATA/ATAPI\n");
763 break;
764 default:
765 sprintf(buf+len, "Unknown 0x%02x\n",
766 vpd->protocol_identifier);
767 break;
768 }
769
770 if (p_buf)
771 strncpy(p_buf, buf, p_buf_len);
772 else
773 pr_debug("%s", buf);
774 }
775
776 void
777 transport_set_vpd_proto_id(struct t10_vpd *vpd, unsigned char *page_83)
778 {
779 /*
780 * Check if the Protocol Identifier Valid (PIV) bit is set..
781 *
782 * from spc3r23.pdf section 7.5.1
783 */
784 if (page_83[1] & 0x80) {
785 vpd->protocol_identifier = (page_83[0] & 0xf0);
786 vpd->protocol_identifier_set = 1;
787 transport_dump_vpd_proto_id(vpd, NULL, 0);
788 }
789 }
790 EXPORT_SYMBOL(transport_set_vpd_proto_id);
791
792 int transport_dump_vpd_assoc(
793 struct t10_vpd *vpd,
794 unsigned char *p_buf,
795 int p_buf_len)
796 {
797 unsigned char buf[VPD_TMP_BUF_SIZE];
798 int ret = 0;
799 int len;
800
801 memset(buf, 0, VPD_TMP_BUF_SIZE);
802 len = sprintf(buf, "T10 VPD Identifier Association: ");
803
804 switch (vpd->association) {
805 case 0x00:
806 sprintf(buf+len, "addressed logical unit\n");
807 break;
808 case 0x10:
809 sprintf(buf+len, "target port\n");
810 break;
811 case 0x20:
812 sprintf(buf+len, "SCSI target device\n");
813 break;
814 default:
815 sprintf(buf+len, "Unknown 0x%02x\n", vpd->association);
816 ret = -EINVAL;
817 break;
818 }
819
820 if (p_buf)
821 strncpy(p_buf, buf, p_buf_len);
822 else
823 pr_debug("%s", buf);
824
825 return ret;
826 }
827
828 int transport_set_vpd_assoc(struct t10_vpd *vpd, unsigned char *page_83)
829 {
830 /*
831 * The VPD identification association..
832 *
833 * from spc3r23.pdf Section 7.6.3.1 Table 297
834 */
835 vpd->association = (page_83[1] & 0x30);
836 return transport_dump_vpd_assoc(vpd, NULL, 0);
837 }
838 EXPORT_SYMBOL(transport_set_vpd_assoc);
839
840 int transport_dump_vpd_ident_type(
841 struct t10_vpd *vpd,
842 unsigned char *p_buf,
843 int p_buf_len)
844 {
845 unsigned char buf[VPD_TMP_BUF_SIZE];
846 int ret = 0;
847 int len;
848
849 memset(buf, 0, VPD_TMP_BUF_SIZE);
850 len = sprintf(buf, "T10 VPD Identifier Type: ");
851
852 switch (vpd->device_identifier_type) {
853 case 0x00:
854 sprintf(buf+len, "Vendor specific\n");
855 break;
856 case 0x01:
857 sprintf(buf+len, "T10 Vendor ID based\n");
858 break;
859 case 0x02:
860 sprintf(buf+len, "EUI-64 based\n");
861 break;
862 case 0x03:
863 sprintf(buf+len, "NAA\n");
864 break;
865 case 0x04:
866 sprintf(buf+len, "Relative target port identifier\n");
867 break;
868 case 0x08:
869 sprintf(buf+len, "SCSI name string\n");
870 break;
871 default:
872 sprintf(buf+len, "Unsupported: 0x%02x\n",
873 vpd->device_identifier_type);
874 ret = -EINVAL;
875 break;
876 }
877
878 if (p_buf) {
879 if (p_buf_len < strlen(buf)+1)
880 return -EINVAL;
881 strncpy(p_buf, buf, p_buf_len);
882 } else {
883 pr_debug("%s", buf);
884 }
885
886 return ret;
887 }
888
889 int transport_set_vpd_ident_type(struct t10_vpd *vpd, unsigned char *page_83)
890 {
891 /*
892 * The VPD identifier type..
893 *
894 * from spc3r23.pdf Section 7.6.3.1 Table 298
895 */
896 vpd->device_identifier_type = (page_83[1] & 0x0f);
897 return transport_dump_vpd_ident_type(vpd, NULL, 0);
898 }
899 EXPORT_SYMBOL(transport_set_vpd_ident_type);
900
901 int transport_dump_vpd_ident(
902 struct t10_vpd *vpd,
903 unsigned char *p_buf,
904 int p_buf_len)
905 {
906 unsigned char buf[VPD_TMP_BUF_SIZE];
907 int ret = 0;
908
909 memset(buf, 0, VPD_TMP_BUF_SIZE);
910
911 switch (vpd->device_identifier_code_set) {
912 case 0x01: /* Binary */
913 sprintf(buf, "T10 VPD Binary Device Identifier: %s\n",
914 &vpd->device_identifier[0]);
915 break;
916 case 0x02: /* ASCII */
917 sprintf(buf, "T10 VPD ASCII Device Identifier: %s\n",
918 &vpd->device_identifier[0]);
919 break;
920 case 0x03: /* UTF-8 */
921 sprintf(buf, "T10 VPD UTF-8 Device Identifier: %s\n",
922 &vpd->device_identifier[0]);
923 break;
924 default:
925 sprintf(buf, "T10 VPD Device Identifier encoding unsupported:"
926 " 0x%02x", vpd->device_identifier_code_set);
927 ret = -EINVAL;
928 break;
929 }
930
931 if (p_buf)
932 strncpy(p_buf, buf, p_buf_len);
933 else
934 pr_debug("%s", buf);
935
936 return ret;
937 }
938
939 int
940 transport_set_vpd_ident(struct t10_vpd *vpd, unsigned char *page_83)
941 {
942 static const char hex_str[] = "0123456789abcdef";
943 int j = 0, i = 4; /* offset to start of the identifier */
944
945 /*
946 * The VPD Code Set (encoding)
947 *
948 * from spc3r23.pdf Section 7.6.3.1 Table 296
949 */
950 vpd->device_identifier_code_set = (page_83[0] & 0x0f);
951 switch (vpd->device_identifier_code_set) {
952 case 0x01: /* Binary */
953 vpd->device_identifier[j++] =
954 hex_str[vpd->device_identifier_type];
955 while (i < (4 + page_83[3])) {
956 vpd->device_identifier[j++] =
957 hex_str[(page_83[i] & 0xf0) >> 4];
958 vpd->device_identifier[j++] =
959 hex_str[page_83[i] & 0x0f];
960 i++;
961 }
962 break;
963 case 0x02: /* ASCII */
964 case 0x03: /* UTF-8 */
965 while (i < (4 + page_83[3]))
966 vpd->device_identifier[j++] = page_83[i++];
967 break;
968 default:
969 break;
970 }
971
972 return transport_dump_vpd_ident(vpd, NULL, 0);
973 }
974 EXPORT_SYMBOL(transport_set_vpd_ident);
975
976 sense_reason_t
977 target_cmd_size_check(struct se_cmd *cmd, unsigned int size)
978 {
979 struct se_device *dev = cmd->se_dev;
980
981 if (cmd->unknown_data_length) {
982 cmd->data_length = size;
983 } else if (size != cmd->data_length) {
984 pr_warn("TARGET_CORE[%s]: Expected Transfer Length:"
985 " %u does not match SCSI CDB Length: %u for SAM Opcode:"
986 " 0x%02x\n", cmd->se_tfo->get_fabric_name(),
987 cmd->data_length, size, cmd->t_task_cdb[0]);
988
989 if (cmd->data_direction == DMA_TO_DEVICE) {
990 pr_err("Rejecting underflow/overflow"
991 " WRITE data\n");
992 return TCM_INVALID_CDB_FIELD;
993 }
994 /*
995 * Reject READ_* or WRITE_* with overflow/underflow for
996 * type SCF_SCSI_DATA_CDB.
997 */
998 if (dev->dev_attrib.block_size != 512) {
999 pr_err("Failing OVERFLOW/UNDERFLOW for LBA op"
1000 " CDB on non 512-byte sector setup subsystem"
1001 " plugin: %s\n", dev->transport->name);
1002 /* Returns CHECK_CONDITION + INVALID_CDB_FIELD */
1003 return TCM_INVALID_CDB_FIELD;
1004 }
1005 /*
1006 * For the overflow case keep the existing fabric provided
1007 * ->data_length. Otherwise for the underflow case, reset
1008 * ->data_length to the smaller SCSI expected data transfer
1009 * length.
1010 */
1011 if (size > cmd->data_length) {
1012 cmd->se_cmd_flags |= SCF_OVERFLOW_BIT;
1013 cmd->residual_count = (size - cmd->data_length);
1014 } else {
1015 cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
1016 cmd->residual_count = (cmd->data_length - size);
1017 cmd->data_length = size;
1018 }
1019 }
1020
1021 return 0;
1022
1023 }
1024
1025 /*
1026 * Used by fabric modules containing a local struct se_cmd within their
1027 * fabric dependent per I/O descriptor.
1028 */
1029 void transport_init_se_cmd(
1030 struct se_cmd *cmd,
1031 struct target_core_fabric_ops *tfo,
1032 struct se_session *se_sess,
1033 u32 data_length,
1034 int data_direction,
1035 int task_attr,
1036 unsigned char *sense_buffer)
1037 {
1038 INIT_LIST_HEAD(&cmd->se_lun_node);
1039 INIT_LIST_HEAD(&cmd->se_delayed_node);
1040 INIT_LIST_HEAD(&cmd->se_qf_node);
1041 INIT_LIST_HEAD(&cmd->se_cmd_list);
1042 INIT_LIST_HEAD(&cmd->state_list);
1043 init_completion(&cmd->transport_lun_fe_stop_comp);
1044 init_completion(&cmd->transport_lun_stop_comp);
1045 init_completion(&cmd->t_transport_stop_comp);
1046 init_completion(&cmd->cmd_wait_comp);
1047 init_completion(&cmd->task_stop_comp);
1048 spin_lock_init(&cmd->t_state_lock);
1049 cmd->transport_state = CMD_T_DEV_ACTIVE;
1050
1051 cmd->se_tfo = tfo;
1052 cmd->se_sess = se_sess;
1053 cmd->data_length = data_length;
1054 cmd->data_direction = data_direction;
1055 cmd->sam_task_attr = task_attr;
1056 cmd->sense_buffer = sense_buffer;
1057
1058 cmd->state_active = false;
1059 }
1060 EXPORT_SYMBOL(transport_init_se_cmd);
1061
1062 static sense_reason_t
1063 transport_check_alloc_task_attr(struct se_cmd *cmd)
1064 {
1065 struct se_device *dev = cmd->se_dev;
1066
1067 /*
1068 * Check if SAM Task Attribute emulation is enabled for this
1069 * struct se_device storage object
1070 */
1071 if (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV)
1072 return 0;
1073
1074 if (cmd->sam_task_attr == MSG_ACA_TAG) {
1075 pr_debug("SAM Task Attribute ACA"
1076 " emulation is not supported\n");
1077 return TCM_INVALID_CDB_FIELD;
1078 }
1079 /*
1080 * Used to determine when ORDERED commands should go from
1081 * Dormant to Active status.
1082 */
1083 cmd->se_ordered_id = atomic_inc_return(&dev->dev_ordered_id);
1084 smp_mb__after_atomic_inc();
1085 pr_debug("Allocated se_ordered_id: %u for Task Attr: 0x%02x on %s\n",
1086 cmd->se_ordered_id, cmd->sam_task_attr,
1087 dev->transport->name);
1088 return 0;
1089 }
1090
1091 sense_reason_t
1092 target_setup_cmd_from_cdb(struct se_cmd *cmd, unsigned char *cdb)
1093 {
1094 struct se_device *dev = cmd->se_dev;
1095 unsigned long flags;
1096 sense_reason_t ret;
1097
1098 /*
1099 * Ensure that the received CDB is less than the max (252 + 8) bytes
1100 * for VARIABLE_LENGTH_CMD
1101 */
1102 if (scsi_command_size(cdb) > SCSI_MAX_VARLEN_CDB_SIZE) {
1103 pr_err("Received SCSI CDB with command_size: %d that"
1104 " exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n",
1105 scsi_command_size(cdb), SCSI_MAX_VARLEN_CDB_SIZE);
1106 return TCM_INVALID_CDB_FIELD;
1107 }
1108 /*
1109 * If the received CDB is larger than TCM_MAX_COMMAND_SIZE,
1110 * allocate the additional extended CDB buffer now.. Otherwise
1111 * setup the pointer from __t_task_cdb to t_task_cdb.
1112 */
1113 if (scsi_command_size(cdb) > sizeof(cmd->__t_task_cdb)) {
1114 cmd->t_task_cdb = kzalloc(scsi_command_size(cdb),
1115 GFP_KERNEL);
1116 if (!cmd->t_task_cdb) {
1117 pr_err("Unable to allocate cmd->t_task_cdb"
1118 " %u > sizeof(cmd->__t_task_cdb): %lu ops\n",
1119 scsi_command_size(cdb),
1120 (unsigned long)sizeof(cmd->__t_task_cdb));
1121 return TCM_OUT_OF_RESOURCES;
1122 }
1123 } else
1124 cmd->t_task_cdb = &cmd->__t_task_cdb[0];
1125 /*
1126 * Copy the original CDB into cmd->
1127 */
1128 memcpy(cmd->t_task_cdb, cdb, scsi_command_size(cdb));
1129
1130 /*
1131 * Check for an existing UNIT ATTENTION condition
1132 */
1133 ret = target_scsi3_ua_check(cmd);
1134 if (ret)
1135 return ret;
1136
1137 ret = target_alua_state_check(cmd);
1138 if (ret)
1139 return ret;
1140
1141 ret = target_check_reservation(cmd);
1142 if (ret)
1143 return ret;
1144
1145 ret = dev->transport->parse_cdb(cmd);
1146 if (ret)
1147 return ret;
1148
1149 ret = transport_check_alloc_task_attr(cmd);
1150 if (ret)
1151 return ret;
1152
1153 spin_lock_irqsave(&cmd->t_state_lock, flags);
1154 cmd->se_cmd_flags |= SCF_SUPPORTED_SAM_OPCODE;
1155 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
1156
1157 spin_lock(&cmd->se_lun->lun_sep_lock);
1158 if (cmd->se_lun->lun_sep)
1159 cmd->se_lun->lun_sep->sep_stats.cmd_pdus++;
1160 spin_unlock(&cmd->se_lun->lun_sep_lock);
1161 return 0;
1162 }
1163 EXPORT_SYMBOL(target_setup_cmd_from_cdb);
1164
1165 /*
1166 * Used by fabric module frontends to queue tasks directly.
1167 * Many only be used from process context only
1168 */
1169 int transport_handle_cdb_direct(
1170 struct se_cmd *cmd)
1171 {
1172 sense_reason_t ret;
1173
1174 if (!cmd->se_lun) {
1175 dump_stack();
1176 pr_err("cmd->se_lun is NULL\n");
1177 return -EINVAL;
1178 }
1179 if (in_interrupt()) {
1180 dump_stack();
1181 pr_err("transport_generic_handle_cdb cannot be called"
1182 " from interrupt context\n");
1183 return -EINVAL;
1184 }
1185 /*
1186 * Set TRANSPORT_NEW_CMD state and CMD_T_ACTIVE to ensure that
1187 * outstanding descriptors are handled correctly during shutdown via
1188 * transport_wait_for_tasks()
1189 *
1190 * Also, we don't take cmd->t_state_lock here as we only expect
1191 * this to be called for initial descriptor submission.
1192 */
1193 cmd->t_state = TRANSPORT_NEW_CMD;
1194 cmd->transport_state |= CMD_T_ACTIVE;
1195
1196 /*
1197 * transport_generic_new_cmd() is already handling QUEUE_FULL,
1198 * so follow TRANSPORT_NEW_CMD processing thread context usage
1199 * and call transport_generic_request_failure() if necessary..
1200 */
1201 ret = transport_generic_new_cmd(cmd);
1202 if (ret)
1203 transport_generic_request_failure(cmd, ret);
1204 return 0;
1205 }
1206 EXPORT_SYMBOL(transport_handle_cdb_direct);
1207
1208 static sense_reason_t
1209 transport_generic_map_mem_to_cmd(struct se_cmd *cmd, struct scatterlist *sgl,
1210 u32 sgl_count, struct scatterlist *sgl_bidi, u32 sgl_bidi_count)
1211 {
1212 if (!sgl || !sgl_count)
1213 return 0;
1214
1215 /*
1216 * Reject SCSI data overflow with map_mem_to_cmd() as incoming
1217 * scatterlists already have been set to follow what the fabric
1218 * passes for the original expected data transfer length.
1219 */
1220 if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) {
1221 pr_warn("Rejecting SCSI DATA overflow for fabric using"
1222 " SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC\n");
1223 return TCM_INVALID_CDB_FIELD;
1224 }
1225
1226 cmd->t_data_sg = sgl;
1227 cmd->t_data_nents = sgl_count;
1228
1229 if (sgl_bidi && sgl_bidi_count) {
1230 cmd->t_bidi_data_sg = sgl_bidi;
1231 cmd->t_bidi_data_nents = sgl_bidi_count;
1232 }
1233 cmd->se_cmd_flags |= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC;
1234 return 0;
1235 }
1236
1237 /*
1238 * target_submit_cmd_map_sgls - lookup unpacked lun and submit uninitialized
1239 * se_cmd + use pre-allocated SGL memory.
1240 *
1241 * @se_cmd: command descriptor to submit
1242 * @se_sess: associated se_sess for endpoint
1243 * @cdb: pointer to SCSI CDB
1244 * @sense: pointer to SCSI sense buffer
1245 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1246 * @data_length: fabric expected data transfer length
1247 * @task_addr: SAM task attribute
1248 * @data_dir: DMA data direction
1249 * @flags: flags for command submission from target_sc_flags_tables
1250 * @sgl: struct scatterlist memory for unidirectional mapping
1251 * @sgl_count: scatterlist count for unidirectional mapping
1252 * @sgl_bidi: struct scatterlist memory for bidirectional READ mapping
1253 * @sgl_bidi_count: scatterlist count for bidirectional READ mapping
1254 *
1255 * Returns non zero to signal active I/O shutdown failure. All other
1256 * setup exceptions will be returned as a SCSI CHECK_CONDITION response,
1257 * but still return zero here.
1258 *
1259 * This may only be called from process context, and also currently
1260 * assumes internal allocation of fabric payload buffer by target-core.
1261 */
1262 int target_submit_cmd_map_sgls(struct se_cmd *se_cmd, struct se_session *se_sess,
1263 unsigned char *cdb, unsigned char *sense, u32 unpacked_lun,
1264 u32 data_length, int task_attr, int data_dir, int flags,
1265 struct scatterlist *sgl, u32 sgl_count,
1266 struct scatterlist *sgl_bidi, u32 sgl_bidi_count)
1267 {
1268 struct se_portal_group *se_tpg;
1269 sense_reason_t rc;
1270 int ret;
1271
1272 se_tpg = se_sess->se_tpg;
1273 BUG_ON(!se_tpg);
1274 BUG_ON(se_cmd->se_tfo || se_cmd->se_sess);
1275 BUG_ON(in_interrupt());
1276 /*
1277 * Initialize se_cmd for target operation. From this point
1278 * exceptions are handled by sending exception status via
1279 * target_core_fabric_ops->queue_status() callback
1280 */
1281 transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess,
1282 data_length, data_dir, task_attr, sense);
1283 if (flags & TARGET_SCF_UNKNOWN_SIZE)
1284 se_cmd->unknown_data_length = 1;
1285 /*
1286 * Obtain struct se_cmd->cmd_kref reference and add new cmd to
1287 * se_sess->sess_cmd_list. A second kref_get here is necessary
1288 * for fabrics using TARGET_SCF_ACK_KREF that expect a second
1289 * kref_put() to happen during fabric packet acknowledgement.
1290 */
1291 ret = target_get_sess_cmd(se_sess, se_cmd, (flags & TARGET_SCF_ACK_KREF));
1292 if (ret)
1293 return ret;
1294 /*
1295 * Signal bidirectional data payloads to target-core
1296 */
1297 if (flags & TARGET_SCF_BIDI_OP)
1298 se_cmd->se_cmd_flags |= SCF_BIDI;
1299 /*
1300 * Locate se_lun pointer and attach it to struct se_cmd
1301 */
1302 rc = transport_lookup_cmd_lun(se_cmd, unpacked_lun);
1303 if (rc) {
1304 transport_send_check_condition_and_sense(se_cmd, rc, 0);
1305 target_put_sess_cmd(se_sess, se_cmd);
1306 return 0;
1307 }
1308
1309 rc = target_setup_cmd_from_cdb(se_cmd, cdb);
1310 if (rc != 0) {
1311 transport_generic_request_failure(se_cmd, rc);
1312 return 0;
1313 }
1314 /*
1315 * When a non zero sgl_count has been passed perform SGL passthrough
1316 * mapping for pre-allocated fabric memory instead of having target
1317 * core perform an internal SGL allocation..
1318 */
1319 if (sgl_count != 0) {
1320 BUG_ON(!sgl);
1321
1322 /*
1323 * A work-around for tcm_loop as some userspace code via
1324 * scsi-generic do not memset their associated read buffers,
1325 * so go ahead and do that here for type non-data CDBs. Also
1326 * note that this is currently guaranteed to be a single SGL
1327 * for this case by target core in target_setup_cmd_from_cdb()
1328 * -> transport_generic_cmd_sequencer().
1329 */
1330 if (!(se_cmd->se_cmd_flags & SCF_SCSI_DATA_CDB) &&
1331 se_cmd->data_direction == DMA_FROM_DEVICE) {
1332 unsigned char *buf = NULL;
1333
1334 if (sgl)
1335 buf = kmap(sg_page(sgl)) + sgl->offset;
1336
1337 if (buf) {
1338 memset(buf, 0, sgl->length);
1339 kunmap(sg_page(sgl));
1340 }
1341 }
1342
1343 rc = transport_generic_map_mem_to_cmd(se_cmd, sgl, sgl_count,
1344 sgl_bidi, sgl_bidi_count);
1345 if (rc != 0) {
1346 transport_generic_request_failure(se_cmd, rc);
1347 return 0;
1348 }
1349 }
1350 /*
1351 * Check if we need to delay processing because of ALUA
1352 * Active/NonOptimized primary access state..
1353 */
1354 core_alua_check_nonop_delay(se_cmd);
1355
1356 transport_handle_cdb_direct(se_cmd);
1357 return 0;
1358 }
1359 EXPORT_SYMBOL(target_submit_cmd_map_sgls);
1360
1361 /*
1362 * target_submit_cmd - lookup unpacked lun and submit uninitialized se_cmd
1363 *
1364 * @se_cmd: command descriptor to submit
1365 * @se_sess: associated se_sess for endpoint
1366 * @cdb: pointer to SCSI CDB
1367 * @sense: pointer to SCSI sense buffer
1368 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1369 * @data_length: fabric expected data transfer length
1370 * @task_addr: SAM task attribute
1371 * @data_dir: DMA data direction
1372 * @flags: flags for command submission from target_sc_flags_tables
1373 *
1374 * Returns non zero to signal active I/O shutdown failure. All other
1375 * setup exceptions will be returned as a SCSI CHECK_CONDITION response,
1376 * but still return zero here.
1377 *
1378 * This may only be called from process context, and also currently
1379 * assumes internal allocation of fabric payload buffer by target-core.
1380 *
1381 * It also assumes interal target core SGL memory allocation.
1382 */
1383 int target_submit_cmd(struct se_cmd *se_cmd, struct se_session *se_sess,
1384 unsigned char *cdb, unsigned char *sense, u32 unpacked_lun,
1385 u32 data_length, int task_attr, int data_dir, int flags)
1386 {
1387 return target_submit_cmd_map_sgls(se_cmd, se_sess, cdb, sense,
1388 unpacked_lun, data_length, task_attr, data_dir,
1389 flags, NULL, 0, NULL, 0);
1390 }
1391 EXPORT_SYMBOL(target_submit_cmd);
1392
1393 static void target_complete_tmr_failure(struct work_struct *work)
1394 {
1395 struct se_cmd *se_cmd = container_of(work, struct se_cmd, work);
1396
1397 se_cmd->se_tmr_req->response = TMR_LUN_DOES_NOT_EXIST;
1398 se_cmd->se_tfo->queue_tm_rsp(se_cmd);
1399 }
1400
1401 /**
1402 * target_submit_tmr - lookup unpacked lun and submit uninitialized se_cmd
1403 * for TMR CDBs
1404 *
1405 * @se_cmd: command descriptor to submit
1406 * @se_sess: associated se_sess for endpoint
1407 * @sense: pointer to SCSI sense buffer
1408 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1409 * @fabric_context: fabric context for TMR req
1410 * @tm_type: Type of TM request
1411 * @gfp: gfp type for caller
1412 * @tag: referenced task tag for TMR_ABORT_TASK
1413 * @flags: submit cmd flags
1414 *
1415 * Callable from all contexts.
1416 **/
1417
1418 int target_submit_tmr(struct se_cmd *se_cmd, struct se_session *se_sess,
1419 unsigned char *sense, u32 unpacked_lun,
1420 void *fabric_tmr_ptr, unsigned char tm_type,
1421 gfp_t gfp, unsigned int tag, int flags)
1422 {
1423 struct se_portal_group *se_tpg;
1424 int ret;
1425
1426 se_tpg = se_sess->se_tpg;
1427 BUG_ON(!se_tpg);
1428
1429 transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess,
1430 0, DMA_NONE, MSG_SIMPLE_TAG, sense);
1431 /*
1432 * FIXME: Currently expect caller to handle se_cmd->se_tmr_req
1433 * allocation failure.
1434 */
1435 ret = core_tmr_alloc_req(se_cmd, fabric_tmr_ptr, tm_type, gfp);
1436 if (ret < 0)
1437 return -ENOMEM;
1438
1439 if (tm_type == TMR_ABORT_TASK)
1440 se_cmd->se_tmr_req->ref_task_tag = tag;
1441
1442 /* See target_submit_cmd for commentary */
1443 ret = target_get_sess_cmd(se_sess, se_cmd, (flags & TARGET_SCF_ACK_KREF));
1444 if (ret) {
1445 core_tmr_release_req(se_cmd->se_tmr_req);
1446 return ret;
1447 }
1448
1449 ret = transport_lookup_tmr_lun(se_cmd, unpacked_lun);
1450 if (ret) {
1451 /*
1452 * For callback during failure handling, push this work off
1453 * to process context with TMR_LUN_DOES_NOT_EXIST status.
1454 */
1455 INIT_WORK(&se_cmd->work, target_complete_tmr_failure);
1456 schedule_work(&se_cmd->work);
1457 return 0;
1458 }
1459 transport_generic_handle_tmr(se_cmd);
1460 return 0;
1461 }
1462 EXPORT_SYMBOL(target_submit_tmr);
1463
1464 /*
1465 * If the cmd is active, request it to be stopped and sleep until it
1466 * has completed.
1467 */
1468 bool target_stop_cmd(struct se_cmd *cmd, unsigned long *flags)
1469 {
1470 bool was_active = false;
1471
1472 if (cmd->transport_state & CMD_T_BUSY) {
1473 cmd->transport_state |= CMD_T_REQUEST_STOP;
1474 spin_unlock_irqrestore(&cmd->t_state_lock, *flags);
1475
1476 pr_debug("cmd %p waiting to complete\n", cmd);
1477 wait_for_completion(&cmd->task_stop_comp);
1478 pr_debug("cmd %p stopped successfully\n", cmd);
1479
1480 spin_lock_irqsave(&cmd->t_state_lock, *flags);
1481 cmd->transport_state &= ~CMD_T_REQUEST_STOP;
1482 cmd->transport_state &= ~CMD_T_BUSY;
1483 was_active = true;
1484 }
1485
1486 return was_active;
1487 }
1488
1489 /*
1490 * Handle SAM-esque emulation for generic transport request failures.
1491 */
1492 void transport_generic_request_failure(struct se_cmd *cmd,
1493 sense_reason_t sense_reason)
1494 {
1495 int ret = 0;
1496
1497 pr_debug("-----[ Storage Engine Exception for cmd: %p ITT: 0x%08x"
1498 " CDB: 0x%02x\n", cmd, cmd->se_tfo->get_task_tag(cmd),
1499 cmd->t_task_cdb[0]);
1500 pr_debug("-----[ i_state: %d t_state: %d sense_reason: %d\n",
1501 cmd->se_tfo->get_cmd_state(cmd),
1502 cmd->t_state, sense_reason);
1503 pr_debug("-----[ CMD_T_ACTIVE: %d CMD_T_STOP: %d CMD_T_SENT: %d\n",
1504 (cmd->transport_state & CMD_T_ACTIVE) != 0,
1505 (cmd->transport_state & CMD_T_STOP) != 0,
1506 (cmd->transport_state & CMD_T_SENT) != 0);
1507
1508 /*
1509 * For SAM Task Attribute emulation for failed struct se_cmd
1510 */
1511 transport_complete_task_attr(cmd);
1512
1513 switch (sense_reason) {
1514 case TCM_NON_EXISTENT_LUN:
1515 case TCM_UNSUPPORTED_SCSI_OPCODE:
1516 case TCM_INVALID_CDB_FIELD:
1517 case TCM_INVALID_PARAMETER_LIST:
1518 case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
1519 case TCM_UNKNOWN_MODE_PAGE:
1520 case TCM_WRITE_PROTECTED:
1521 case TCM_ADDRESS_OUT_OF_RANGE:
1522 case TCM_CHECK_CONDITION_ABORT_CMD:
1523 case TCM_CHECK_CONDITION_UNIT_ATTENTION:
1524 case TCM_CHECK_CONDITION_NOT_READY:
1525 break;
1526 case TCM_OUT_OF_RESOURCES:
1527 sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
1528 break;
1529 case TCM_RESERVATION_CONFLICT:
1530 /*
1531 * No SENSE Data payload for this case, set SCSI Status
1532 * and queue the response to $FABRIC_MOD.
1533 *
1534 * Uses linux/include/scsi/scsi.h SAM status codes defs
1535 */
1536 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
1537 /*
1538 * For UA Interlock Code 11b, a RESERVATION CONFLICT will
1539 * establish a UNIT ATTENTION with PREVIOUS RESERVATION
1540 * CONFLICT STATUS.
1541 *
1542 * See spc4r17, section 7.4.6 Control Mode Page, Table 349
1543 */
1544 if (cmd->se_sess &&
1545 cmd->se_dev->dev_attrib.emulate_ua_intlck_ctrl == 2)
1546 core_scsi3_ua_allocate(cmd->se_sess->se_node_acl,
1547 cmd->orig_fe_lun, 0x2C,
1548 ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS);
1549
1550 ret = cmd->se_tfo->queue_status(cmd);
1551 if (ret == -EAGAIN || ret == -ENOMEM)
1552 goto queue_full;
1553 goto check_stop;
1554 default:
1555 pr_err("Unknown transport error for CDB 0x%02x: %d\n",
1556 cmd->t_task_cdb[0], sense_reason);
1557 sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
1558 break;
1559 }
1560
1561 ret = transport_send_check_condition_and_sense(cmd, sense_reason, 0);
1562 if (ret == -EAGAIN || ret == -ENOMEM)
1563 goto queue_full;
1564
1565 check_stop:
1566 transport_lun_remove_cmd(cmd);
1567 if (!transport_cmd_check_stop_to_fabric(cmd))
1568 ;
1569 return;
1570
1571 queue_full:
1572 cmd->t_state = TRANSPORT_COMPLETE_QF_OK;
1573 transport_handle_queue_full(cmd, cmd->se_dev);
1574 }
1575 EXPORT_SYMBOL(transport_generic_request_failure);
1576
1577 static void __target_execute_cmd(struct se_cmd *cmd)
1578 {
1579 sense_reason_t ret;
1580
1581 spin_lock_irq(&cmd->t_state_lock);
1582 cmd->transport_state |= (CMD_T_BUSY|CMD_T_SENT);
1583 spin_unlock_irq(&cmd->t_state_lock);
1584
1585 if (cmd->execute_cmd) {
1586 ret = cmd->execute_cmd(cmd);
1587 if (ret) {
1588 spin_lock_irq(&cmd->t_state_lock);
1589 cmd->transport_state &= ~(CMD_T_BUSY|CMD_T_SENT);
1590 spin_unlock_irq(&cmd->t_state_lock);
1591
1592 transport_generic_request_failure(cmd, ret);
1593 }
1594 }
1595 }
1596
1597 static bool target_handle_task_attr(struct se_cmd *cmd)
1598 {
1599 struct se_device *dev = cmd->se_dev;
1600
1601 if (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV)
1602 return false;
1603
1604 /*
1605 * Check for the existence of HEAD_OF_QUEUE, and if true return 1
1606 * to allow the passed struct se_cmd list of tasks to the front of the list.
1607 */
1608 switch (cmd->sam_task_attr) {
1609 case MSG_HEAD_TAG:
1610 pr_debug("Added HEAD_OF_QUEUE for CDB: 0x%02x, "
1611 "se_ordered_id: %u\n",
1612 cmd->t_task_cdb[0], cmd->se_ordered_id);
1613 return false;
1614 case MSG_ORDERED_TAG:
1615 atomic_inc(&dev->dev_ordered_sync);
1616 smp_mb__after_atomic_inc();
1617
1618 pr_debug("Added ORDERED for CDB: 0x%02x to ordered list, "
1619 " se_ordered_id: %u\n",
1620 cmd->t_task_cdb[0], cmd->se_ordered_id);
1621
1622 /*
1623 * Execute an ORDERED command if no other older commands
1624 * exist that need to be completed first.
1625 */
1626 if (!atomic_read(&dev->simple_cmds))
1627 return false;
1628 break;
1629 default:
1630 /*
1631 * For SIMPLE and UNTAGGED Task Attribute commands
1632 */
1633 atomic_inc(&dev->simple_cmds);
1634 smp_mb__after_atomic_inc();
1635 break;
1636 }
1637
1638 if (atomic_read(&dev->dev_ordered_sync) == 0)
1639 return false;
1640
1641 spin_lock(&dev->delayed_cmd_lock);
1642 list_add_tail(&cmd->se_delayed_node, &dev->delayed_cmd_list);
1643 spin_unlock(&dev->delayed_cmd_lock);
1644
1645 pr_debug("Added CDB: 0x%02x Task Attr: 0x%02x to"
1646 " delayed CMD list, se_ordered_id: %u\n",
1647 cmd->t_task_cdb[0], cmd->sam_task_attr,
1648 cmd->se_ordered_id);
1649 return true;
1650 }
1651
1652 void target_execute_cmd(struct se_cmd *cmd)
1653 {
1654 /*
1655 * If the received CDB has aleady been aborted stop processing it here.
1656 */
1657 if (transport_check_aborted_status(cmd, 1)) {
1658 complete(&cmd->transport_lun_stop_comp);
1659 return;
1660 }
1661
1662 /*
1663 * Determine if IOCTL context caller in requesting the stopping of this
1664 * command for LUN shutdown purposes.
1665 */
1666 spin_lock_irq(&cmd->t_state_lock);
1667 if (cmd->transport_state & CMD_T_LUN_STOP) {
1668 pr_debug("%s:%d CMD_T_LUN_STOP for ITT: 0x%08x\n",
1669 __func__, __LINE__, cmd->se_tfo->get_task_tag(cmd));
1670
1671 cmd->transport_state &= ~CMD_T_ACTIVE;
1672 spin_unlock_irq(&cmd->t_state_lock);
1673 complete(&cmd->transport_lun_stop_comp);
1674 return;
1675 }
1676 /*
1677 * Determine if frontend context caller is requesting the stopping of
1678 * this command for frontend exceptions.
1679 */
1680 if (cmd->transport_state & CMD_T_STOP) {
1681 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08x\n",
1682 __func__, __LINE__,
1683 cmd->se_tfo->get_task_tag(cmd));
1684
1685 spin_unlock_irq(&cmd->t_state_lock);
1686 complete(&cmd->t_transport_stop_comp);
1687 return;
1688 }
1689
1690 cmd->t_state = TRANSPORT_PROCESSING;
1691 spin_unlock_irq(&cmd->t_state_lock);
1692
1693 if (!target_handle_task_attr(cmd))
1694 __target_execute_cmd(cmd);
1695 }
1696 EXPORT_SYMBOL(target_execute_cmd);
1697
1698 /*
1699 * Process all commands up to the last received ORDERED task attribute which
1700 * requires another blocking boundary
1701 */
1702 static void target_restart_delayed_cmds(struct se_device *dev)
1703 {
1704 for (;;) {
1705 struct se_cmd *cmd;
1706
1707 spin_lock(&dev->delayed_cmd_lock);
1708 if (list_empty(&dev->delayed_cmd_list)) {
1709 spin_unlock(&dev->delayed_cmd_lock);
1710 break;
1711 }
1712
1713 cmd = list_entry(dev->delayed_cmd_list.next,
1714 struct se_cmd, se_delayed_node);
1715 list_del(&cmd->se_delayed_node);
1716 spin_unlock(&dev->delayed_cmd_lock);
1717
1718 __target_execute_cmd(cmd);
1719
1720 if (cmd->sam_task_attr == MSG_ORDERED_TAG)
1721 break;
1722 }
1723 }
1724
1725 /*
1726 * Called from I/O completion to determine which dormant/delayed
1727 * and ordered cmds need to have their tasks added to the execution queue.
1728 */
1729 static void transport_complete_task_attr(struct se_cmd *cmd)
1730 {
1731 struct se_device *dev = cmd->se_dev;
1732
1733 if (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV)
1734 return;
1735
1736 if (cmd->sam_task_attr == MSG_SIMPLE_TAG) {
1737 atomic_dec(&dev->simple_cmds);
1738 smp_mb__after_atomic_dec();
1739 dev->dev_cur_ordered_id++;
1740 pr_debug("Incremented dev->dev_cur_ordered_id: %u for"
1741 " SIMPLE: %u\n", dev->dev_cur_ordered_id,
1742 cmd->se_ordered_id);
1743 } else if (cmd->sam_task_attr == MSG_HEAD_TAG) {
1744 dev->dev_cur_ordered_id++;
1745 pr_debug("Incremented dev_cur_ordered_id: %u for"
1746 " HEAD_OF_QUEUE: %u\n", dev->dev_cur_ordered_id,
1747 cmd->se_ordered_id);
1748 } else if (cmd->sam_task_attr == MSG_ORDERED_TAG) {
1749 atomic_dec(&dev->dev_ordered_sync);
1750 smp_mb__after_atomic_dec();
1751
1752 dev->dev_cur_ordered_id++;
1753 pr_debug("Incremented dev_cur_ordered_id: %u for ORDERED:"
1754 " %u\n", dev->dev_cur_ordered_id, cmd->se_ordered_id);
1755 }
1756
1757 target_restart_delayed_cmds(dev);
1758 }
1759
1760 static void transport_complete_qf(struct se_cmd *cmd)
1761 {
1762 int ret = 0;
1763
1764 transport_complete_task_attr(cmd);
1765
1766 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
1767 ret = cmd->se_tfo->queue_status(cmd);
1768 if (ret)
1769 goto out;
1770 }
1771
1772 switch (cmd->data_direction) {
1773 case DMA_FROM_DEVICE:
1774 ret = cmd->se_tfo->queue_data_in(cmd);
1775 break;
1776 case DMA_TO_DEVICE:
1777 if (cmd->t_bidi_data_sg) {
1778 ret = cmd->se_tfo->queue_data_in(cmd);
1779 if (ret < 0)
1780 break;
1781 }
1782 /* Fall through for DMA_TO_DEVICE */
1783 case DMA_NONE:
1784 ret = cmd->se_tfo->queue_status(cmd);
1785 break;
1786 default:
1787 break;
1788 }
1789
1790 out:
1791 if (ret < 0) {
1792 transport_handle_queue_full(cmd, cmd->se_dev);
1793 return;
1794 }
1795 transport_lun_remove_cmd(cmd);
1796 transport_cmd_check_stop_to_fabric(cmd);
1797 }
1798
1799 static void transport_handle_queue_full(
1800 struct se_cmd *cmd,
1801 struct se_device *dev)
1802 {
1803 spin_lock_irq(&dev->qf_cmd_lock);
1804 list_add_tail(&cmd->se_qf_node, &cmd->se_dev->qf_cmd_list);
1805 atomic_inc(&dev->dev_qf_count);
1806 smp_mb__after_atomic_inc();
1807 spin_unlock_irq(&cmd->se_dev->qf_cmd_lock);
1808
1809 schedule_work(&cmd->se_dev->qf_work_queue);
1810 }
1811
1812 static void target_complete_ok_work(struct work_struct *work)
1813 {
1814 struct se_cmd *cmd = container_of(work, struct se_cmd, work);
1815 int ret;
1816
1817 /*
1818 * Check if we need to move delayed/dormant tasks from cmds on the
1819 * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task
1820 * Attribute.
1821 */
1822 transport_complete_task_attr(cmd);
1823
1824 /*
1825 * Check to schedule QUEUE_FULL work, or execute an existing
1826 * cmd->transport_qf_callback()
1827 */
1828 if (atomic_read(&cmd->se_dev->dev_qf_count) != 0)
1829 schedule_work(&cmd->se_dev->qf_work_queue);
1830
1831 /*
1832 * Check if we need to send a sense buffer from
1833 * the struct se_cmd in question.
1834 */
1835 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
1836 WARN_ON(!cmd->scsi_status);
1837 ret = transport_send_check_condition_and_sense(
1838 cmd, 0, 1);
1839 if (ret == -EAGAIN || ret == -ENOMEM)
1840 goto queue_full;
1841
1842 transport_lun_remove_cmd(cmd);
1843 transport_cmd_check_stop_to_fabric(cmd);
1844 return;
1845 }
1846 /*
1847 * Check for a callback, used by amongst other things
1848 * XDWRITE_READ_10 emulation.
1849 */
1850 if (cmd->transport_complete_callback)
1851 cmd->transport_complete_callback(cmd);
1852
1853 switch (cmd->data_direction) {
1854 case DMA_FROM_DEVICE:
1855 spin_lock(&cmd->se_lun->lun_sep_lock);
1856 if (cmd->se_lun->lun_sep) {
1857 cmd->se_lun->lun_sep->sep_stats.tx_data_octets +=
1858 cmd->data_length;
1859 }
1860 spin_unlock(&cmd->se_lun->lun_sep_lock);
1861
1862 ret = cmd->se_tfo->queue_data_in(cmd);
1863 if (ret == -EAGAIN || ret == -ENOMEM)
1864 goto queue_full;
1865 break;
1866 case DMA_TO_DEVICE:
1867 spin_lock(&cmd->se_lun->lun_sep_lock);
1868 if (cmd->se_lun->lun_sep) {
1869 cmd->se_lun->lun_sep->sep_stats.rx_data_octets +=
1870 cmd->data_length;
1871 }
1872 spin_unlock(&cmd->se_lun->lun_sep_lock);
1873 /*
1874 * Check if we need to send READ payload for BIDI-COMMAND
1875 */
1876 if (cmd->t_bidi_data_sg) {
1877 spin_lock(&cmd->se_lun->lun_sep_lock);
1878 if (cmd->se_lun->lun_sep) {
1879 cmd->se_lun->lun_sep->sep_stats.tx_data_octets +=
1880 cmd->data_length;
1881 }
1882 spin_unlock(&cmd->se_lun->lun_sep_lock);
1883 ret = cmd->se_tfo->queue_data_in(cmd);
1884 if (ret == -EAGAIN || ret == -ENOMEM)
1885 goto queue_full;
1886 break;
1887 }
1888 /* Fall through for DMA_TO_DEVICE */
1889 case DMA_NONE:
1890 ret = cmd->se_tfo->queue_status(cmd);
1891 if (ret == -EAGAIN || ret == -ENOMEM)
1892 goto queue_full;
1893 break;
1894 default:
1895 break;
1896 }
1897
1898 transport_lun_remove_cmd(cmd);
1899 transport_cmd_check_stop_to_fabric(cmd);
1900 return;
1901
1902 queue_full:
1903 pr_debug("Handling complete_ok QUEUE_FULL: se_cmd: %p,"
1904 " data_direction: %d\n", cmd, cmd->data_direction);
1905 cmd->t_state = TRANSPORT_COMPLETE_QF_OK;
1906 transport_handle_queue_full(cmd, cmd->se_dev);
1907 }
1908
1909 static inline void transport_free_sgl(struct scatterlist *sgl, int nents)
1910 {
1911 struct scatterlist *sg;
1912 int count;
1913
1914 for_each_sg(sgl, sg, nents, count)
1915 __free_page(sg_page(sg));
1916
1917 kfree(sgl);
1918 }
1919
1920 static inline void transport_free_pages(struct se_cmd *cmd)
1921 {
1922 if (cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC)
1923 return;
1924
1925 transport_free_sgl(cmd->t_data_sg, cmd->t_data_nents);
1926 cmd->t_data_sg = NULL;
1927 cmd->t_data_nents = 0;
1928
1929 transport_free_sgl(cmd->t_bidi_data_sg, cmd->t_bidi_data_nents);
1930 cmd->t_bidi_data_sg = NULL;
1931 cmd->t_bidi_data_nents = 0;
1932 }
1933
1934 /**
1935 * transport_release_cmd - free a command
1936 * @cmd: command to free
1937 *
1938 * This routine unconditionally frees a command, and reference counting
1939 * or list removal must be done in the caller.
1940 */
1941 static void transport_release_cmd(struct se_cmd *cmd)
1942 {
1943 BUG_ON(!cmd->se_tfo);
1944
1945 if (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)
1946 core_tmr_release_req(cmd->se_tmr_req);
1947 if (cmd->t_task_cdb != cmd->__t_task_cdb)
1948 kfree(cmd->t_task_cdb);
1949 /*
1950 * If this cmd has been setup with target_get_sess_cmd(), drop
1951 * the kref and call ->release_cmd() in kref callback.
1952 */
1953 if (cmd->check_release != 0) {
1954 target_put_sess_cmd(cmd->se_sess, cmd);
1955 return;
1956 }
1957 cmd->se_tfo->release_cmd(cmd);
1958 }
1959
1960 /**
1961 * transport_put_cmd - release a reference to a command
1962 * @cmd: command to release
1963 *
1964 * This routine releases our reference to the command and frees it if possible.
1965 */
1966 static void transport_put_cmd(struct se_cmd *cmd)
1967 {
1968 unsigned long flags;
1969
1970 spin_lock_irqsave(&cmd->t_state_lock, flags);
1971 if (atomic_read(&cmd->t_fe_count) &&
1972 !atomic_dec_and_test(&cmd->t_fe_count)) {
1973 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
1974 return;
1975 }
1976
1977 if (cmd->transport_state & CMD_T_DEV_ACTIVE) {
1978 cmd->transport_state &= ~CMD_T_DEV_ACTIVE;
1979 target_remove_from_state_list(cmd);
1980 }
1981 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
1982
1983 transport_free_pages(cmd);
1984 transport_release_cmd(cmd);
1985 return;
1986 }
1987
1988 void *transport_kmap_data_sg(struct se_cmd *cmd)
1989 {
1990 struct scatterlist *sg = cmd->t_data_sg;
1991 struct page **pages;
1992 int i;
1993
1994 /*
1995 * We need to take into account a possible offset here for fabrics like
1996 * tcm_loop who may be using a contig buffer from the SCSI midlayer for
1997 * control CDBs passed as SGLs via transport_generic_map_mem_to_cmd()
1998 */
1999 if (!cmd->t_data_nents)
2000 return NULL;
2001
2002 BUG_ON(!sg);
2003 if (cmd->t_data_nents == 1)
2004 return kmap(sg_page(sg)) + sg->offset;
2005
2006 /* >1 page. use vmap */
2007 pages = kmalloc(sizeof(*pages) * cmd->t_data_nents, GFP_KERNEL);
2008 if (!pages)
2009 return NULL;
2010
2011 /* convert sg[] to pages[] */
2012 for_each_sg(cmd->t_data_sg, sg, cmd->t_data_nents, i) {
2013 pages[i] = sg_page(sg);
2014 }
2015
2016 cmd->t_data_vmap = vmap(pages, cmd->t_data_nents, VM_MAP, PAGE_KERNEL);
2017 kfree(pages);
2018 if (!cmd->t_data_vmap)
2019 return NULL;
2020
2021 return cmd->t_data_vmap + cmd->t_data_sg[0].offset;
2022 }
2023 EXPORT_SYMBOL(transport_kmap_data_sg);
2024
2025 void transport_kunmap_data_sg(struct se_cmd *cmd)
2026 {
2027 if (!cmd->t_data_nents) {
2028 return;
2029 } else if (cmd->t_data_nents == 1) {
2030 kunmap(sg_page(cmd->t_data_sg));
2031 return;
2032 }
2033
2034 vunmap(cmd->t_data_vmap);
2035 cmd->t_data_vmap = NULL;
2036 }
2037 EXPORT_SYMBOL(transport_kunmap_data_sg);
2038
2039 static int
2040 transport_generic_get_mem(struct se_cmd *cmd)
2041 {
2042 u32 length = cmd->data_length;
2043 unsigned int nents;
2044 struct page *page;
2045 gfp_t zero_flag;
2046 int i = 0;
2047
2048 nents = DIV_ROUND_UP(length, PAGE_SIZE);
2049 cmd->t_data_sg = kmalloc(sizeof(struct scatterlist) * nents, GFP_KERNEL);
2050 if (!cmd->t_data_sg)
2051 return -ENOMEM;
2052
2053 cmd->t_data_nents = nents;
2054 sg_init_table(cmd->t_data_sg, nents);
2055
2056 zero_flag = cmd->se_cmd_flags & SCF_SCSI_DATA_CDB ? 0 : __GFP_ZERO;
2057
2058 while (length) {
2059 u32 page_len = min_t(u32, length, PAGE_SIZE);
2060 page = alloc_page(GFP_KERNEL | zero_flag);
2061 if (!page)
2062 goto out;
2063
2064 sg_set_page(&cmd->t_data_sg[i], page, page_len, 0);
2065 length -= page_len;
2066 i++;
2067 }
2068 return 0;
2069
2070 out:
2071 while (i > 0) {
2072 i--;
2073 __free_page(sg_page(&cmd->t_data_sg[i]));
2074 }
2075 kfree(cmd->t_data_sg);
2076 cmd->t_data_sg = NULL;
2077 return -ENOMEM;
2078 }
2079
2080 /*
2081 * Allocate any required resources to execute the command. For writes we
2082 * might not have the payload yet, so notify the fabric via a call to
2083 * ->write_pending instead. Otherwise place it on the execution queue.
2084 */
2085 sense_reason_t
2086 transport_generic_new_cmd(struct se_cmd *cmd)
2087 {
2088 int ret = 0;
2089
2090 /*
2091 * Determine is the TCM fabric module has already allocated physical
2092 * memory, and is directly calling transport_generic_map_mem_to_cmd()
2093 * beforehand.
2094 */
2095 if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) &&
2096 cmd->data_length) {
2097 ret = transport_generic_get_mem(cmd);
2098 if (ret < 0)
2099 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2100 }
2101
2102 atomic_inc(&cmd->t_fe_count);
2103
2104 /*
2105 * If this command is not a write we can execute it right here,
2106 * for write buffers we need to notify the fabric driver first
2107 * and let it call back once the write buffers are ready.
2108 */
2109 target_add_to_state_list(cmd);
2110 if (cmd->data_direction != DMA_TO_DEVICE) {
2111 target_execute_cmd(cmd);
2112 return 0;
2113 }
2114
2115 spin_lock_irq(&cmd->t_state_lock);
2116 cmd->t_state = TRANSPORT_WRITE_PENDING;
2117 spin_unlock_irq(&cmd->t_state_lock);
2118
2119 transport_cmd_check_stop(cmd, false);
2120
2121 ret = cmd->se_tfo->write_pending(cmd);
2122 if (ret == -EAGAIN || ret == -ENOMEM)
2123 goto queue_full;
2124
2125 /* fabric drivers should only return -EAGAIN or -ENOMEM as error */
2126 WARN_ON(ret);
2127
2128 return (!ret) ? 0 : TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2129
2130 queue_full:
2131 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", cmd);
2132 cmd->t_state = TRANSPORT_COMPLETE_QF_WP;
2133 transport_handle_queue_full(cmd, cmd->se_dev);
2134 return 0;
2135 }
2136 EXPORT_SYMBOL(transport_generic_new_cmd);
2137
2138 static void transport_write_pending_qf(struct se_cmd *cmd)
2139 {
2140 int ret;
2141
2142 ret = cmd->se_tfo->write_pending(cmd);
2143 if (ret == -EAGAIN || ret == -ENOMEM) {
2144 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n",
2145 cmd);
2146 transport_handle_queue_full(cmd, cmd->se_dev);
2147 }
2148 }
2149
2150 void transport_generic_free_cmd(struct se_cmd *cmd, int wait_for_tasks)
2151 {
2152 if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD)) {
2153 if (wait_for_tasks && (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
2154 transport_wait_for_tasks(cmd);
2155
2156 transport_release_cmd(cmd);
2157 } else {
2158 if (wait_for_tasks)
2159 transport_wait_for_tasks(cmd);
2160
2161 core_dec_lacl_count(cmd->se_sess->se_node_acl, cmd);
2162
2163 if (cmd->se_lun)
2164 transport_lun_remove_cmd(cmd);
2165
2166 transport_put_cmd(cmd);
2167 }
2168 }
2169 EXPORT_SYMBOL(transport_generic_free_cmd);
2170
2171 /* target_get_sess_cmd - Add command to active ->sess_cmd_list
2172 * @se_sess: session to reference
2173 * @se_cmd: command descriptor to add
2174 * @ack_kref: Signal that fabric will perform an ack target_put_sess_cmd()
2175 */
2176 static int target_get_sess_cmd(struct se_session *se_sess, struct se_cmd *se_cmd,
2177 bool ack_kref)
2178 {
2179 unsigned long flags;
2180 int ret = 0;
2181
2182 kref_init(&se_cmd->cmd_kref);
2183 /*
2184 * Add a second kref if the fabric caller is expecting to handle
2185 * fabric acknowledgement that requires two target_put_sess_cmd()
2186 * invocations before se_cmd descriptor release.
2187 */
2188 if (ack_kref == true) {
2189 kref_get(&se_cmd->cmd_kref);
2190 se_cmd->se_cmd_flags |= SCF_ACK_KREF;
2191 }
2192
2193 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2194 if (se_sess->sess_tearing_down) {
2195 ret = -ESHUTDOWN;
2196 goto out;
2197 }
2198 list_add_tail(&se_cmd->se_cmd_list, &se_sess->sess_cmd_list);
2199 se_cmd->check_release = 1;
2200
2201 out:
2202 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2203 return ret;
2204 }
2205
2206 static void target_release_cmd_kref(struct kref *kref)
2207 {
2208 struct se_cmd *se_cmd = container_of(kref, struct se_cmd, cmd_kref);
2209 struct se_session *se_sess = se_cmd->se_sess;
2210 unsigned long flags;
2211
2212 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2213 if (list_empty(&se_cmd->se_cmd_list)) {
2214 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2215 se_cmd->se_tfo->release_cmd(se_cmd);
2216 return;
2217 }
2218 if (se_sess->sess_tearing_down && se_cmd->cmd_wait_set) {
2219 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2220 complete(&se_cmd->cmd_wait_comp);
2221 return;
2222 }
2223 list_del(&se_cmd->se_cmd_list);
2224 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2225
2226 se_cmd->se_tfo->release_cmd(se_cmd);
2227 }
2228
2229 /* target_put_sess_cmd - Check for active I/O shutdown via kref_put
2230 * @se_sess: session to reference
2231 * @se_cmd: command descriptor to drop
2232 */
2233 int target_put_sess_cmd(struct se_session *se_sess, struct se_cmd *se_cmd)
2234 {
2235 return kref_put(&se_cmd->cmd_kref, target_release_cmd_kref);
2236 }
2237 EXPORT_SYMBOL(target_put_sess_cmd);
2238
2239 /* target_sess_cmd_list_set_waiting - Flag all commands in
2240 * sess_cmd_list to complete cmd_wait_comp. Set
2241 * sess_tearing_down so no more commands are queued.
2242 * @se_sess: session to flag
2243 */
2244 void target_sess_cmd_list_set_waiting(struct se_session *se_sess)
2245 {
2246 struct se_cmd *se_cmd;
2247 unsigned long flags;
2248
2249 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2250
2251 WARN_ON(se_sess->sess_tearing_down);
2252 se_sess->sess_tearing_down = 1;
2253
2254 list_for_each_entry(se_cmd, &se_sess->sess_cmd_list, se_cmd_list)
2255 se_cmd->cmd_wait_set = 1;
2256
2257 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2258 }
2259 EXPORT_SYMBOL(target_sess_cmd_list_set_waiting);
2260
2261 /* target_wait_for_sess_cmds - Wait for outstanding descriptors
2262 * @se_sess: session to wait for active I/O
2263 * @wait_for_tasks: Make extra transport_wait_for_tasks call
2264 */
2265 void target_wait_for_sess_cmds(
2266 struct se_session *se_sess,
2267 int wait_for_tasks)
2268 {
2269 struct se_cmd *se_cmd, *tmp_cmd;
2270 bool rc = false;
2271
2272 list_for_each_entry_safe(se_cmd, tmp_cmd,
2273 &se_sess->sess_cmd_list, se_cmd_list) {
2274 list_del(&se_cmd->se_cmd_list);
2275
2276 pr_debug("Waiting for se_cmd: %p t_state: %d, fabric state:"
2277 " %d\n", se_cmd, se_cmd->t_state,
2278 se_cmd->se_tfo->get_cmd_state(se_cmd));
2279
2280 if (wait_for_tasks) {
2281 pr_debug("Calling transport_wait_for_tasks se_cmd: %p t_state: %d,"
2282 " fabric state: %d\n", se_cmd, se_cmd->t_state,
2283 se_cmd->se_tfo->get_cmd_state(se_cmd));
2284
2285 rc = transport_wait_for_tasks(se_cmd);
2286
2287 pr_debug("After transport_wait_for_tasks se_cmd: %p t_state: %d,"
2288 " fabric state: %d\n", se_cmd, se_cmd->t_state,
2289 se_cmd->se_tfo->get_cmd_state(se_cmd));
2290 }
2291
2292 if (!rc) {
2293 wait_for_completion(&se_cmd->cmd_wait_comp);
2294 pr_debug("After cmd_wait_comp: se_cmd: %p t_state: %d"
2295 " fabric state: %d\n", se_cmd, se_cmd->t_state,
2296 se_cmd->se_tfo->get_cmd_state(se_cmd));
2297 }
2298
2299 se_cmd->se_tfo->release_cmd(se_cmd);
2300 }
2301 }
2302 EXPORT_SYMBOL(target_wait_for_sess_cmds);
2303
2304 /* transport_lun_wait_for_tasks():
2305 *
2306 * Called from ConfigFS context to stop the passed struct se_cmd to allow
2307 * an struct se_lun to be successfully shutdown.
2308 */
2309 static int transport_lun_wait_for_tasks(struct se_cmd *cmd, struct se_lun *lun)
2310 {
2311 unsigned long flags;
2312 int ret = 0;
2313
2314 /*
2315 * If the frontend has already requested this struct se_cmd to
2316 * be stopped, we can safely ignore this struct se_cmd.
2317 */
2318 spin_lock_irqsave(&cmd->t_state_lock, flags);
2319 if (cmd->transport_state & CMD_T_STOP) {
2320 cmd->transport_state &= ~CMD_T_LUN_STOP;
2321
2322 pr_debug("ConfigFS ITT[0x%08x] - CMD_T_STOP, skipping\n",
2323 cmd->se_tfo->get_task_tag(cmd));
2324 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2325 transport_cmd_check_stop(cmd, false);
2326 return -EPERM;
2327 }
2328 cmd->transport_state |= CMD_T_LUN_FE_STOP;
2329 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2330
2331 // XXX: audit task_flags checks.
2332 spin_lock_irqsave(&cmd->t_state_lock, flags);
2333 if ((cmd->transport_state & CMD_T_BUSY) &&
2334 (cmd->transport_state & CMD_T_SENT)) {
2335 if (!target_stop_cmd(cmd, &flags))
2336 ret++;
2337 }
2338 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2339
2340 pr_debug("ConfigFS: cmd: %p stop tasks ret:"
2341 " %d\n", cmd, ret);
2342 if (!ret) {
2343 pr_debug("ConfigFS: ITT[0x%08x] - stopping cmd....\n",
2344 cmd->se_tfo->get_task_tag(cmd));
2345 wait_for_completion(&cmd->transport_lun_stop_comp);
2346 pr_debug("ConfigFS: ITT[0x%08x] - stopped cmd....\n",
2347 cmd->se_tfo->get_task_tag(cmd));
2348 }
2349
2350 return 0;
2351 }
2352
2353 static void __transport_clear_lun_from_sessions(struct se_lun *lun)
2354 {
2355 struct se_cmd *cmd = NULL;
2356 unsigned long lun_flags, cmd_flags;
2357 /*
2358 * Do exception processing and return CHECK_CONDITION status to the
2359 * Initiator Port.
2360 */
2361 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
2362 while (!list_empty(&lun->lun_cmd_list)) {
2363 cmd = list_first_entry(&lun->lun_cmd_list,
2364 struct se_cmd, se_lun_node);
2365 list_del_init(&cmd->se_lun_node);
2366
2367 spin_lock(&cmd->t_state_lock);
2368 pr_debug("SE_LUN[%d] - Setting cmd->transport"
2369 "_lun_stop for ITT: 0x%08x\n",
2370 cmd->se_lun->unpacked_lun,
2371 cmd->se_tfo->get_task_tag(cmd));
2372 cmd->transport_state |= CMD_T_LUN_STOP;
2373 spin_unlock(&cmd->t_state_lock);
2374
2375 spin_unlock_irqrestore(&lun->lun_cmd_lock, lun_flags);
2376
2377 if (!cmd->se_lun) {
2378 pr_err("ITT: 0x%08x, [i,t]_state: %u/%u\n",
2379 cmd->se_tfo->get_task_tag(cmd),
2380 cmd->se_tfo->get_cmd_state(cmd), cmd->t_state);
2381 BUG();
2382 }
2383 /*
2384 * If the Storage engine still owns the iscsi_cmd_t, determine
2385 * and/or stop its context.
2386 */
2387 pr_debug("SE_LUN[%d] - ITT: 0x%08x before transport"
2388 "_lun_wait_for_tasks()\n", cmd->se_lun->unpacked_lun,
2389 cmd->se_tfo->get_task_tag(cmd));
2390
2391 if (transport_lun_wait_for_tasks(cmd, cmd->se_lun) < 0) {
2392 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
2393 continue;
2394 }
2395
2396 pr_debug("SE_LUN[%d] - ITT: 0x%08x after transport_lun"
2397 "_wait_for_tasks(): SUCCESS\n",
2398 cmd->se_lun->unpacked_lun,
2399 cmd->se_tfo->get_task_tag(cmd));
2400
2401 spin_lock_irqsave(&cmd->t_state_lock, cmd_flags);
2402 if (!(cmd->transport_state & CMD_T_DEV_ACTIVE)) {
2403 spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
2404 goto check_cond;
2405 }
2406 cmd->transport_state &= ~CMD_T_DEV_ACTIVE;
2407 target_remove_from_state_list(cmd);
2408 spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
2409
2410 /*
2411 * The Storage engine stopped this struct se_cmd before it was
2412 * send to the fabric frontend for delivery back to the
2413 * Initiator Node. Return this SCSI CDB back with an
2414 * CHECK_CONDITION status.
2415 */
2416 check_cond:
2417 transport_send_check_condition_and_sense(cmd,
2418 TCM_NON_EXISTENT_LUN, 0);
2419 /*
2420 * If the fabric frontend is waiting for this iscsi_cmd_t to
2421 * be released, notify the waiting thread now that LU has
2422 * finished accessing it.
2423 */
2424 spin_lock_irqsave(&cmd->t_state_lock, cmd_flags);
2425 if (cmd->transport_state & CMD_T_LUN_FE_STOP) {
2426 pr_debug("SE_LUN[%d] - Detected FE stop for"
2427 " struct se_cmd: %p ITT: 0x%08x\n",
2428 lun->unpacked_lun,
2429 cmd, cmd->se_tfo->get_task_tag(cmd));
2430
2431 spin_unlock_irqrestore(&cmd->t_state_lock,
2432 cmd_flags);
2433 transport_cmd_check_stop(cmd, false);
2434 complete(&cmd->transport_lun_fe_stop_comp);
2435 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
2436 continue;
2437 }
2438 pr_debug("SE_LUN[%d] - ITT: 0x%08x finished processing\n",
2439 lun->unpacked_lun, cmd->se_tfo->get_task_tag(cmd));
2440
2441 spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
2442 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
2443 }
2444 spin_unlock_irqrestore(&lun->lun_cmd_lock, lun_flags);
2445 }
2446
2447 static int transport_clear_lun_thread(void *p)
2448 {
2449 struct se_lun *lun = p;
2450
2451 __transport_clear_lun_from_sessions(lun);
2452 complete(&lun->lun_shutdown_comp);
2453
2454 return 0;
2455 }
2456
2457 int transport_clear_lun_from_sessions(struct se_lun *lun)
2458 {
2459 struct task_struct *kt;
2460
2461 kt = kthread_run(transport_clear_lun_thread, lun,
2462 "tcm_cl_%u", lun->unpacked_lun);
2463 if (IS_ERR(kt)) {
2464 pr_err("Unable to start clear_lun thread\n");
2465 return PTR_ERR(kt);
2466 }
2467 wait_for_completion(&lun->lun_shutdown_comp);
2468
2469 return 0;
2470 }
2471
2472 /**
2473 * transport_wait_for_tasks - wait for completion to occur
2474 * @cmd: command to wait
2475 *
2476 * Called from frontend fabric context to wait for storage engine
2477 * to pause and/or release frontend generated struct se_cmd.
2478 */
2479 bool transport_wait_for_tasks(struct se_cmd *cmd)
2480 {
2481 unsigned long flags;
2482
2483 spin_lock_irqsave(&cmd->t_state_lock, flags);
2484 if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD) &&
2485 !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) {
2486 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2487 return false;
2488 }
2489
2490 if (!(cmd->se_cmd_flags & SCF_SUPPORTED_SAM_OPCODE) &&
2491 !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) {
2492 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2493 return false;
2494 }
2495 /*
2496 * If we are already stopped due to an external event (ie: LUN shutdown)
2497 * sleep until the connection can have the passed struct se_cmd back.
2498 * The cmd->transport_lun_stopped_sem will be upped by
2499 * transport_clear_lun_from_sessions() once the ConfigFS context caller
2500 * has completed its operation on the struct se_cmd.
2501 */
2502 if (cmd->transport_state & CMD_T_LUN_STOP) {
2503 pr_debug("wait_for_tasks: Stopping"
2504 " wait_for_completion(&cmd->t_tasktransport_lun_fe"
2505 "_stop_comp); for ITT: 0x%08x\n",
2506 cmd->se_tfo->get_task_tag(cmd));
2507 /*
2508 * There is a special case for WRITES where a FE exception +
2509 * LUN shutdown means ConfigFS context is still sleeping on
2510 * transport_lun_stop_comp in transport_lun_wait_for_tasks().
2511 * We go ahead and up transport_lun_stop_comp just to be sure
2512 * here.
2513 */
2514 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2515 complete(&cmd->transport_lun_stop_comp);
2516 wait_for_completion(&cmd->transport_lun_fe_stop_comp);
2517 spin_lock_irqsave(&cmd->t_state_lock, flags);
2518
2519 target_remove_from_state_list(cmd);
2520 /*
2521 * At this point, the frontend who was the originator of this
2522 * struct se_cmd, now owns the structure and can be released through
2523 * normal means below.
2524 */
2525 pr_debug("wait_for_tasks: Stopped"
2526 " wait_for_completion(&cmd->t_tasktransport_lun_fe_"
2527 "stop_comp); for ITT: 0x%08x\n",
2528 cmd->se_tfo->get_task_tag(cmd));
2529
2530 cmd->transport_state &= ~CMD_T_LUN_STOP;
2531 }
2532
2533 if (!(cmd->transport_state & CMD_T_ACTIVE)) {
2534 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2535 return false;
2536 }
2537
2538 cmd->transport_state |= CMD_T_STOP;
2539
2540 pr_debug("wait_for_tasks: Stopping %p ITT: 0x%08x"
2541 " i_state: %d, t_state: %d, CMD_T_STOP\n",
2542 cmd, cmd->se_tfo->get_task_tag(cmd),
2543 cmd->se_tfo->get_cmd_state(cmd), cmd->t_state);
2544
2545 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2546
2547 wait_for_completion(&cmd->t_transport_stop_comp);
2548
2549 spin_lock_irqsave(&cmd->t_state_lock, flags);
2550 cmd->transport_state &= ~(CMD_T_ACTIVE | CMD_T_STOP);
2551
2552 pr_debug("wait_for_tasks: Stopped wait_for_completion("
2553 "&cmd->t_transport_stop_comp) for ITT: 0x%08x\n",
2554 cmd->se_tfo->get_task_tag(cmd));
2555
2556 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2557
2558 return true;
2559 }
2560 EXPORT_SYMBOL(transport_wait_for_tasks);
2561
2562 static int transport_get_sense_codes(
2563 struct se_cmd *cmd,
2564 u8 *asc,
2565 u8 *ascq)
2566 {
2567 *asc = cmd->scsi_asc;
2568 *ascq = cmd->scsi_ascq;
2569
2570 return 0;
2571 }
2572
2573 int
2574 transport_send_check_condition_and_sense(struct se_cmd *cmd,
2575 sense_reason_t reason, int from_transport)
2576 {
2577 unsigned char *buffer = cmd->sense_buffer;
2578 unsigned long flags;
2579 u8 asc = 0, ascq = 0;
2580
2581 spin_lock_irqsave(&cmd->t_state_lock, flags);
2582 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
2583 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2584 return 0;
2585 }
2586 cmd->se_cmd_flags |= SCF_SENT_CHECK_CONDITION;
2587 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2588
2589 if (!reason && from_transport)
2590 goto after_reason;
2591
2592 if (!from_transport)
2593 cmd->se_cmd_flags |= SCF_EMULATED_TASK_SENSE;
2594
2595 /*
2596 * Actual SENSE DATA, see SPC-3 7.23.2 SPC_SENSE_KEY_OFFSET uses
2597 * SENSE KEY values from include/scsi/scsi.h
2598 */
2599 switch (reason) {
2600 case TCM_NON_EXISTENT_LUN:
2601 /* CURRENT ERROR */
2602 buffer[0] = 0x70;
2603 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2604 /* ILLEGAL REQUEST */
2605 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2606 /* LOGICAL UNIT NOT SUPPORTED */
2607 buffer[SPC_ASC_KEY_OFFSET] = 0x25;
2608 break;
2609 case TCM_UNSUPPORTED_SCSI_OPCODE:
2610 case TCM_SECTOR_COUNT_TOO_MANY:
2611 /* CURRENT ERROR */
2612 buffer[0] = 0x70;
2613 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2614 /* ILLEGAL REQUEST */
2615 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2616 /* INVALID COMMAND OPERATION CODE */
2617 buffer[SPC_ASC_KEY_OFFSET] = 0x20;
2618 break;
2619 case TCM_UNKNOWN_MODE_PAGE:
2620 /* CURRENT ERROR */
2621 buffer[0] = 0x70;
2622 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2623 /* ILLEGAL REQUEST */
2624 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2625 /* INVALID FIELD IN CDB */
2626 buffer[SPC_ASC_KEY_OFFSET] = 0x24;
2627 break;
2628 case TCM_CHECK_CONDITION_ABORT_CMD:
2629 /* CURRENT ERROR */
2630 buffer[0] = 0x70;
2631 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2632 /* ABORTED COMMAND */
2633 buffer[SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
2634 /* BUS DEVICE RESET FUNCTION OCCURRED */
2635 buffer[SPC_ASC_KEY_OFFSET] = 0x29;
2636 buffer[SPC_ASCQ_KEY_OFFSET] = 0x03;
2637 break;
2638 case TCM_INCORRECT_AMOUNT_OF_DATA:
2639 /* CURRENT ERROR */
2640 buffer[0] = 0x70;
2641 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2642 /* ABORTED COMMAND */
2643 buffer[SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
2644 /* WRITE ERROR */
2645 buffer[SPC_ASC_KEY_OFFSET] = 0x0c;
2646 /* NOT ENOUGH UNSOLICITED DATA */
2647 buffer[SPC_ASCQ_KEY_OFFSET] = 0x0d;
2648 break;
2649 case TCM_INVALID_CDB_FIELD:
2650 /* CURRENT ERROR */
2651 buffer[0] = 0x70;
2652 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2653 /* ILLEGAL REQUEST */
2654 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2655 /* INVALID FIELD IN CDB */
2656 buffer[SPC_ASC_KEY_OFFSET] = 0x24;
2657 break;
2658 case TCM_INVALID_PARAMETER_LIST:
2659 /* CURRENT ERROR */
2660 buffer[0] = 0x70;
2661 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2662 /* ILLEGAL REQUEST */
2663 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2664 /* INVALID FIELD IN PARAMETER LIST */
2665 buffer[SPC_ASC_KEY_OFFSET] = 0x26;
2666 break;
2667 case TCM_UNEXPECTED_UNSOLICITED_DATA:
2668 /* CURRENT ERROR */
2669 buffer[0] = 0x70;
2670 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2671 /* ABORTED COMMAND */
2672 buffer[SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
2673 /* WRITE ERROR */
2674 buffer[SPC_ASC_KEY_OFFSET] = 0x0c;
2675 /* UNEXPECTED_UNSOLICITED_DATA */
2676 buffer[SPC_ASCQ_KEY_OFFSET] = 0x0c;
2677 break;
2678 case TCM_SERVICE_CRC_ERROR:
2679 /* CURRENT ERROR */
2680 buffer[0] = 0x70;
2681 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2682 /* ABORTED COMMAND */
2683 buffer[SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
2684 /* PROTOCOL SERVICE CRC ERROR */
2685 buffer[SPC_ASC_KEY_OFFSET] = 0x47;
2686 /* N/A */
2687 buffer[SPC_ASCQ_KEY_OFFSET] = 0x05;
2688 break;
2689 case TCM_SNACK_REJECTED:
2690 /* CURRENT ERROR */
2691 buffer[0] = 0x70;
2692 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2693 /* ABORTED COMMAND */
2694 buffer[SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
2695 /* READ ERROR */
2696 buffer[SPC_ASC_KEY_OFFSET] = 0x11;
2697 /* FAILED RETRANSMISSION REQUEST */
2698 buffer[SPC_ASCQ_KEY_OFFSET] = 0x13;
2699 break;
2700 case TCM_WRITE_PROTECTED:
2701 /* CURRENT ERROR */
2702 buffer[0] = 0x70;
2703 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2704 /* DATA PROTECT */
2705 buffer[SPC_SENSE_KEY_OFFSET] = DATA_PROTECT;
2706 /* WRITE PROTECTED */
2707 buffer[SPC_ASC_KEY_OFFSET] = 0x27;
2708 break;
2709 case TCM_ADDRESS_OUT_OF_RANGE:
2710 /* CURRENT ERROR */
2711 buffer[0] = 0x70;
2712 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2713 /* ILLEGAL REQUEST */
2714 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2715 /* LOGICAL BLOCK ADDRESS OUT OF RANGE */
2716 buffer[SPC_ASC_KEY_OFFSET] = 0x21;
2717 break;
2718 case TCM_CHECK_CONDITION_UNIT_ATTENTION:
2719 /* CURRENT ERROR */
2720 buffer[0] = 0x70;
2721 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2722 /* UNIT ATTENTION */
2723 buffer[SPC_SENSE_KEY_OFFSET] = UNIT_ATTENTION;
2724 core_scsi3_ua_for_check_condition(cmd, &asc, &ascq);
2725 buffer[SPC_ASC_KEY_OFFSET] = asc;
2726 buffer[SPC_ASCQ_KEY_OFFSET] = ascq;
2727 break;
2728 case TCM_CHECK_CONDITION_NOT_READY:
2729 /* CURRENT ERROR */
2730 buffer[0] = 0x70;
2731 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2732 /* Not Ready */
2733 buffer[SPC_SENSE_KEY_OFFSET] = NOT_READY;
2734 transport_get_sense_codes(cmd, &asc, &ascq);
2735 buffer[SPC_ASC_KEY_OFFSET] = asc;
2736 buffer[SPC_ASCQ_KEY_OFFSET] = ascq;
2737 break;
2738 case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
2739 default:
2740 /* CURRENT ERROR */
2741 buffer[0] = 0x70;
2742 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2743 /* ILLEGAL REQUEST */
2744 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2745 /* LOGICAL UNIT COMMUNICATION FAILURE */
2746 buffer[SPC_ASC_KEY_OFFSET] = 0x80;
2747 break;
2748 }
2749 /*
2750 * This code uses linux/include/scsi/scsi.h SAM status codes!
2751 */
2752 cmd->scsi_status = SAM_STAT_CHECK_CONDITION;
2753 /*
2754 * Automatically padded, this value is encoded in the fabric's
2755 * data_length response PDU containing the SCSI defined sense data.
2756 */
2757 cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER;
2758
2759 after_reason:
2760 return cmd->se_tfo->queue_status(cmd);
2761 }
2762 EXPORT_SYMBOL(transport_send_check_condition_and_sense);
2763
2764 int transport_check_aborted_status(struct se_cmd *cmd, int send_status)
2765 {
2766 if (!(cmd->transport_state & CMD_T_ABORTED))
2767 return 0;
2768
2769 if (!send_status || (cmd->se_cmd_flags & SCF_SENT_DELAYED_TAS))
2770 return 1;
2771
2772 pr_debug("Sending delayed SAM_STAT_TASK_ABORTED status for CDB: 0x%02x ITT: 0x%08x\n",
2773 cmd->t_task_cdb[0], cmd->se_tfo->get_task_tag(cmd));
2774
2775 cmd->se_cmd_flags |= SCF_SENT_DELAYED_TAS;
2776 cmd->se_tfo->queue_status(cmd);
2777
2778 return 1;
2779 }
2780 EXPORT_SYMBOL(transport_check_aborted_status);
2781
2782 void transport_send_task_abort(struct se_cmd *cmd)
2783 {
2784 unsigned long flags;
2785
2786 spin_lock_irqsave(&cmd->t_state_lock, flags);
2787 if (cmd->se_cmd_flags & (SCF_SENT_CHECK_CONDITION | SCF_SENT_DELAYED_TAS)) {
2788 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2789 return;
2790 }
2791 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2792
2793 /*
2794 * If there are still expected incoming fabric WRITEs, we wait
2795 * until until they have completed before sending a TASK_ABORTED
2796 * response. This response with TASK_ABORTED status will be
2797 * queued back to fabric module by transport_check_aborted_status().
2798 */
2799 if (cmd->data_direction == DMA_TO_DEVICE) {
2800 if (cmd->se_tfo->write_pending_status(cmd) != 0) {
2801 cmd->transport_state |= CMD_T_ABORTED;
2802 smp_mb__after_atomic_inc();
2803 }
2804 }
2805 cmd->scsi_status = SAM_STAT_TASK_ABORTED;
2806
2807 pr_debug("Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x,"
2808 " ITT: 0x%08x\n", cmd->t_task_cdb[0],
2809 cmd->se_tfo->get_task_tag(cmd));
2810
2811 cmd->se_tfo->queue_status(cmd);
2812 }
2813
2814 static void target_tmr_work(struct work_struct *work)
2815 {
2816 struct se_cmd *cmd = container_of(work, struct se_cmd, work);
2817 struct se_device *dev = cmd->se_dev;
2818 struct se_tmr_req *tmr = cmd->se_tmr_req;
2819 int ret;
2820
2821 switch (tmr->function) {
2822 case TMR_ABORT_TASK:
2823 core_tmr_abort_task(dev, tmr, cmd->se_sess);
2824 break;
2825 case TMR_ABORT_TASK_SET:
2826 case TMR_CLEAR_ACA:
2827 case TMR_CLEAR_TASK_SET:
2828 tmr->response = TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED;
2829 break;
2830 case TMR_LUN_RESET:
2831 ret = core_tmr_lun_reset(dev, tmr, NULL, NULL);
2832 tmr->response = (!ret) ? TMR_FUNCTION_COMPLETE :
2833 TMR_FUNCTION_REJECTED;
2834 break;
2835 case TMR_TARGET_WARM_RESET:
2836 tmr->response = TMR_FUNCTION_REJECTED;
2837 break;
2838 case TMR_TARGET_COLD_RESET:
2839 tmr->response = TMR_FUNCTION_REJECTED;
2840 break;
2841 default:
2842 pr_err("Uknown TMR function: 0x%02x.\n",
2843 tmr->function);
2844 tmr->response = TMR_FUNCTION_REJECTED;
2845 break;
2846 }
2847
2848 cmd->t_state = TRANSPORT_ISTATE_PROCESSING;
2849 cmd->se_tfo->queue_tm_rsp(cmd);
2850
2851 transport_cmd_check_stop_to_fabric(cmd);
2852 }
2853
2854 int transport_generic_handle_tmr(
2855 struct se_cmd *cmd)
2856 {
2857 INIT_WORK(&cmd->work, target_tmr_work);
2858 queue_work(cmd->se_dev->tmr_wq, &cmd->work);
2859 return 0;
2860 }
2861 EXPORT_SYMBOL(transport_generic_handle_tmr);