gma500: udelay(20000) it too long again
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / target / target_core_transport.c
1 /*******************************************************************************
2 * Filename: target_core_transport.c
3 *
4 * This file contains the Generic Target Engine Core.
5 *
6 * Copyright (c) 2002, 2003, 2004, 2005 PyX Technologies, Inc.
7 * Copyright (c) 2005, 2006, 2007 SBE, Inc.
8 * Copyright (c) 2007-2010 Rising Tide Systems
9 * Copyright (c) 2008-2010 Linux-iSCSI.org
10 *
11 * Nicholas A. Bellinger <nab@kernel.org>
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
17 *
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
22 *
23 * You should have received a copy of the GNU General Public License
24 * along with this program; if not, write to the Free Software
25 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
26 *
27 ******************************************************************************/
28
29 #include <linux/version.h>
30 #include <linux/net.h>
31 #include <linux/delay.h>
32 #include <linux/string.h>
33 #include <linux/timer.h>
34 #include <linux/slab.h>
35 #include <linux/blkdev.h>
36 #include <linux/spinlock.h>
37 #include <linux/kthread.h>
38 #include <linux/in.h>
39 #include <linux/cdrom.h>
40 #include <asm/unaligned.h>
41 #include <net/sock.h>
42 #include <net/tcp.h>
43 #include <scsi/scsi.h>
44 #include <scsi/scsi_cmnd.h>
45 #include <scsi/scsi_tcq.h>
46
47 #include <target/target_core_base.h>
48 #include <target/target_core_device.h>
49 #include <target/target_core_tmr.h>
50 #include <target/target_core_tpg.h>
51 #include <target/target_core_transport.h>
52 #include <target/target_core_fabric_ops.h>
53 #include <target/target_core_configfs.h>
54
55 #include "target_core_alua.h"
56 #include "target_core_hba.h"
57 #include "target_core_pr.h"
58 #include "target_core_scdb.h"
59 #include "target_core_ua.h"
60
61 static int sub_api_initialized;
62
63 static struct kmem_cache *se_cmd_cache;
64 static struct kmem_cache *se_sess_cache;
65 struct kmem_cache *se_tmr_req_cache;
66 struct kmem_cache *se_ua_cache;
67 struct kmem_cache *t10_pr_reg_cache;
68 struct kmem_cache *t10_alua_lu_gp_cache;
69 struct kmem_cache *t10_alua_lu_gp_mem_cache;
70 struct kmem_cache *t10_alua_tg_pt_gp_cache;
71 struct kmem_cache *t10_alua_tg_pt_gp_mem_cache;
72
73 /* Used for transport_dev_get_map_*() */
74 typedef int (*map_func_t)(struct se_task *, u32);
75
76 static int transport_generic_write_pending(struct se_cmd *);
77 static int transport_processing_thread(void *param);
78 static int __transport_execute_tasks(struct se_device *dev);
79 static void transport_complete_task_attr(struct se_cmd *cmd);
80 static int transport_complete_qf(struct se_cmd *cmd);
81 static void transport_handle_queue_full(struct se_cmd *cmd,
82 struct se_device *dev, int (*qf_callback)(struct se_cmd *));
83 static void transport_direct_request_timeout(struct se_cmd *cmd);
84 static void transport_free_dev_tasks(struct se_cmd *cmd);
85 static u32 transport_allocate_tasks(struct se_cmd *cmd,
86 unsigned long long starting_lba,
87 enum dma_data_direction data_direction,
88 struct scatterlist *sgl, unsigned int nents);
89 static int transport_generic_get_mem(struct se_cmd *cmd);
90 static int transport_generic_remove(struct se_cmd *cmd,
91 int session_reinstatement);
92 static void transport_release_fe_cmd(struct se_cmd *cmd);
93 static void transport_remove_cmd_from_queue(struct se_cmd *cmd,
94 struct se_queue_obj *qobj);
95 static int transport_set_sense_codes(struct se_cmd *cmd, u8 asc, u8 ascq);
96 static void transport_stop_all_task_timers(struct se_cmd *cmd);
97
98 int init_se_kmem_caches(void)
99 {
100 se_cmd_cache = kmem_cache_create("se_cmd_cache",
101 sizeof(struct se_cmd), __alignof__(struct se_cmd), 0, NULL);
102 if (!se_cmd_cache) {
103 pr_err("kmem_cache_create for struct se_cmd failed\n");
104 goto out;
105 }
106 se_tmr_req_cache = kmem_cache_create("se_tmr_cache",
107 sizeof(struct se_tmr_req), __alignof__(struct se_tmr_req),
108 0, NULL);
109 if (!se_tmr_req_cache) {
110 pr_err("kmem_cache_create() for struct se_tmr_req"
111 " failed\n");
112 goto out;
113 }
114 se_sess_cache = kmem_cache_create("se_sess_cache",
115 sizeof(struct se_session), __alignof__(struct se_session),
116 0, NULL);
117 if (!se_sess_cache) {
118 pr_err("kmem_cache_create() for struct se_session"
119 " failed\n");
120 goto out;
121 }
122 se_ua_cache = kmem_cache_create("se_ua_cache",
123 sizeof(struct se_ua), __alignof__(struct se_ua),
124 0, NULL);
125 if (!se_ua_cache) {
126 pr_err("kmem_cache_create() for struct se_ua failed\n");
127 goto out;
128 }
129 t10_pr_reg_cache = kmem_cache_create("t10_pr_reg_cache",
130 sizeof(struct t10_pr_registration),
131 __alignof__(struct t10_pr_registration), 0, NULL);
132 if (!t10_pr_reg_cache) {
133 pr_err("kmem_cache_create() for struct t10_pr_registration"
134 " failed\n");
135 goto out;
136 }
137 t10_alua_lu_gp_cache = kmem_cache_create("t10_alua_lu_gp_cache",
138 sizeof(struct t10_alua_lu_gp), __alignof__(struct t10_alua_lu_gp),
139 0, NULL);
140 if (!t10_alua_lu_gp_cache) {
141 pr_err("kmem_cache_create() for t10_alua_lu_gp_cache"
142 " failed\n");
143 goto out;
144 }
145 t10_alua_lu_gp_mem_cache = kmem_cache_create("t10_alua_lu_gp_mem_cache",
146 sizeof(struct t10_alua_lu_gp_member),
147 __alignof__(struct t10_alua_lu_gp_member), 0, NULL);
148 if (!t10_alua_lu_gp_mem_cache) {
149 pr_err("kmem_cache_create() for t10_alua_lu_gp_mem_"
150 "cache failed\n");
151 goto out;
152 }
153 t10_alua_tg_pt_gp_cache = kmem_cache_create("t10_alua_tg_pt_gp_cache",
154 sizeof(struct t10_alua_tg_pt_gp),
155 __alignof__(struct t10_alua_tg_pt_gp), 0, NULL);
156 if (!t10_alua_tg_pt_gp_cache) {
157 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
158 "cache failed\n");
159 goto out;
160 }
161 t10_alua_tg_pt_gp_mem_cache = kmem_cache_create(
162 "t10_alua_tg_pt_gp_mem_cache",
163 sizeof(struct t10_alua_tg_pt_gp_member),
164 __alignof__(struct t10_alua_tg_pt_gp_member),
165 0, NULL);
166 if (!t10_alua_tg_pt_gp_mem_cache) {
167 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
168 "mem_t failed\n");
169 goto out;
170 }
171
172 return 0;
173 out:
174 if (se_cmd_cache)
175 kmem_cache_destroy(se_cmd_cache);
176 if (se_tmr_req_cache)
177 kmem_cache_destroy(se_tmr_req_cache);
178 if (se_sess_cache)
179 kmem_cache_destroy(se_sess_cache);
180 if (se_ua_cache)
181 kmem_cache_destroy(se_ua_cache);
182 if (t10_pr_reg_cache)
183 kmem_cache_destroy(t10_pr_reg_cache);
184 if (t10_alua_lu_gp_cache)
185 kmem_cache_destroy(t10_alua_lu_gp_cache);
186 if (t10_alua_lu_gp_mem_cache)
187 kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
188 if (t10_alua_tg_pt_gp_cache)
189 kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
190 if (t10_alua_tg_pt_gp_mem_cache)
191 kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache);
192 return -ENOMEM;
193 }
194
195 void release_se_kmem_caches(void)
196 {
197 kmem_cache_destroy(se_cmd_cache);
198 kmem_cache_destroy(se_tmr_req_cache);
199 kmem_cache_destroy(se_sess_cache);
200 kmem_cache_destroy(se_ua_cache);
201 kmem_cache_destroy(t10_pr_reg_cache);
202 kmem_cache_destroy(t10_alua_lu_gp_cache);
203 kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
204 kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
205 kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache);
206 }
207
208 /* This code ensures unique mib indexes are handed out. */
209 static DEFINE_SPINLOCK(scsi_mib_index_lock);
210 static u32 scsi_mib_index[SCSI_INDEX_TYPE_MAX];
211
212 /*
213 * Allocate a new row index for the entry type specified
214 */
215 u32 scsi_get_new_index(scsi_index_t type)
216 {
217 u32 new_index;
218
219 BUG_ON((type < 0) || (type >= SCSI_INDEX_TYPE_MAX));
220
221 spin_lock(&scsi_mib_index_lock);
222 new_index = ++scsi_mib_index[type];
223 spin_unlock(&scsi_mib_index_lock);
224
225 return new_index;
226 }
227
228 void transport_init_queue_obj(struct se_queue_obj *qobj)
229 {
230 atomic_set(&qobj->queue_cnt, 0);
231 INIT_LIST_HEAD(&qobj->qobj_list);
232 init_waitqueue_head(&qobj->thread_wq);
233 spin_lock_init(&qobj->cmd_queue_lock);
234 }
235 EXPORT_SYMBOL(transport_init_queue_obj);
236
237 static int transport_subsystem_reqmods(void)
238 {
239 int ret;
240
241 ret = request_module("target_core_iblock");
242 if (ret != 0)
243 pr_err("Unable to load target_core_iblock\n");
244
245 ret = request_module("target_core_file");
246 if (ret != 0)
247 pr_err("Unable to load target_core_file\n");
248
249 ret = request_module("target_core_pscsi");
250 if (ret != 0)
251 pr_err("Unable to load target_core_pscsi\n");
252
253 ret = request_module("target_core_stgt");
254 if (ret != 0)
255 pr_err("Unable to load target_core_stgt\n");
256
257 return 0;
258 }
259
260 int transport_subsystem_check_init(void)
261 {
262 int ret;
263
264 if (sub_api_initialized)
265 return 0;
266 /*
267 * Request the loading of known TCM subsystem plugins..
268 */
269 ret = transport_subsystem_reqmods();
270 if (ret < 0)
271 return ret;
272
273 sub_api_initialized = 1;
274 return 0;
275 }
276
277 struct se_session *transport_init_session(void)
278 {
279 struct se_session *se_sess;
280
281 se_sess = kmem_cache_zalloc(se_sess_cache, GFP_KERNEL);
282 if (!se_sess) {
283 pr_err("Unable to allocate struct se_session from"
284 " se_sess_cache\n");
285 return ERR_PTR(-ENOMEM);
286 }
287 INIT_LIST_HEAD(&se_sess->sess_list);
288 INIT_LIST_HEAD(&se_sess->sess_acl_list);
289
290 return se_sess;
291 }
292 EXPORT_SYMBOL(transport_init_session);
293
294 /*
295 * Called with spin_lock_bh(&struct se_portal_group->session_lock called.
296 */
297 void __transport_register_session(
298 struct se_portal_group *se_tpg,
299 struct se_node_acl *se_nacl,
300 struct se_session *se_sess,
301 void *fabric_sess_ptr)
302 {
303 unsigned char buf[PR_REG_ISID_LEN];
304
305 se_sess->se_tpg = se_tpg;
306 se_sess->fabric_sess_ptr = fabric_sess_ptr;
307 /*
308 * Used by struct se_node_acl's under ConfigFS to locate active se_session-t
309 *
310 * Only set for struct se_session's that will actually be moving I/O.
311 * eg: *NOT* discovery sessions.
312 */
313 if (se_nacl) {
314 /*
315 * If the fabric module supports an ISID based TransportID,
316 * save this value in binary from the fabric I_T Nexus now.
317 */
318 if (se_tpg->se_tpg_tfo->sess_get_initiator_sid != NULL) {
319 memset(&buf[0], 0, PR_REG_ISID_LEN);
320 se_tpg->se_tpg_tfo->sess_get_initiator_sid(se_sess,
321 &buf[0], PR_REG_ISID_LEN);
322 se_sess->sess_bin_isid = get_unaligned_be64(&buf[0]);
323 }
324 spin_lock_irq(&se_nacl->nacl_sess_lock);
325 /*
326 * The se_nacl->nacl_sess pointer will be set to the
327 * last active I_T Nexus for each struct se_node_acl.
328 */
329 se_nacl->nacl_sess = se_sess;
330
331 list_add_tail(&se_sess->sess_acl_list,
332 &se_nacl->acl_sess_list);
333 spin_unlock_irq(&se_nacl->nacl_sess_lock);
334 }
335 list_add_tail(&se_sess->sess_list, &se_tpg->tpg_sess_list);
336
337 pr_debug("TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n",
338 se_tpg->se_tpg_tfo->get_fabric_name(), se_sess->fabric_sess_ptr);
339 }
340 EXPORT_SYMBOL(__transport_register_session);
341
342 void transport_register_session(
343 struct se_portal_group *se_tpg,
344 struct se_node_acl *se_nacl,
345 struct se_session *se_sess,
346 void *fabric_sess_ptr)
347 {
348 spin_lock_bh(&se_tpg->session_lock);
349 __transport_register_session(se_tpg, se_nacl, se_sess, fabric_sess_ptr);
350 spin_unlock_bh(&se_tpg->session_lock);
351 }
352 EXPORT_SYMBOL(transport_register_session);
353
354 void transport_deregister_session_configfs(struct se_session *se_sess)
355 {
356 struct se_node_acl *se_nacl;
357 unsigned long flags;
358 /*
359 * Used by struct se_node_acl's under ConfigFS to locate active struct se_session
360 */
361 se_nacl = se_sess->se_node_acl;
362 if (se_nacl) {
363 spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
364 list_del(&se_sess->sess_acl_list);
365 /*
366 * If the session list is empty, then clear the pointer.
367 * Otherwise, set the struct se_session pointer from the tail
368 * element of the per struct se_node_acl active session list.
369 */
370 if (list_empty(&se_nacl->acl_sess_list))
371 se_nacl->nacl_sess = NULL;
372 else {
373 se_nacl->nacl_sess = container_of(
374 se_nacl->acl_sess_list.prev,
375 struct se_session, sess_acl_list);
376 }
377 spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
378 }
379 }
380 EXPORT_SYMBOL(transport_deregister_session_configfs);
381
382 void transport_free_session(struct se_session *se_sess)
383 {
384 kmem_cache_free(se_sess_cache, se_sess);
385 }
386 EXPORT_SYMBOL(transport_free_session);
387
388 void transport_deregister_session(struct se_session *se_sess)
389 {
390 struct se_portal_group *se_tpg = se_sess->se_tpg;
391 struct se_node_acl *se_nacl;
392
393 if (!se_tpg) {
394 transport_free_session(se_sess);
395 return;
396 }
397
398 spin_lock_bh(&se_tpg->session_lock);
399 list_del(&se_sess->sess_list);
400 se_sess->se_tpg = NULL;
401 se_sess->fabric_sess_ptr = NULL;
402 spin_unlock_bh(&se_tpg->session_lock);
403
404 /*
405 * Determine if we need to do extra work for this initiator node's
406 * struct se_node_acl if it had been previously dynamically generated.
407 */
408 se_nacl = se_sess->se_node_acl;
409 if (se_nacl) {
410 spin_lock_bh(&se_tpg->acl_node_lock);
411 if (se_nacl->dynamic_node_acl) {
412 if (!se_tpg->se_tpg_tfo->tpg_check_demo_mode_cache(
413 se_tpg)) {
414 list_del(&se_nacl->acl_list);
415 se_tpg->num_node_acls--;
416 spin_unlock_bh(&se_tpg->acl_node_lock);
417
418 core_tpg_wait_for_nacl_pr_ref(se_nacl);
419 core_free_device_list_for_node(se_nacl, se_tpg);
420 se_tpg->se_tpg_tfo->tpg_release_fabric_acl(se_tpg,
421 se_nacl);
422 spin_lock_bh(&se_tpg->acl_node_lock);
423 }
424 }
425 spin_unlock_bh(&se_tpg->acl_node_lock);
426 }
427
428 transport_free_session(se_sess);
429
430 pr_debug("TARGET_CORE[%s]: Deregistered fabric_sess\n",
431 se_tpg->se_tpg_tfo->get_fabric_name());
432 }
433 EXPORT_SYMBOL(transport_deregister_session);
434
435 /*
436 * Called with cmd->t_state_lock held.
437 */
438 static void transport_all_task_dev_remove_state(struct se_cmd *cmd)
439 {
440 struct se_device *dev;
441 struct se_task *task;
442 unsigned long flags;
443
444 list_for_each_entry(task, &cmd->t_task_list, t_list) {
445 dev = task->se_dev;
446 if (!dev)
447 continue;
448
449 if (atomic_read(&task->task_active))
450 continue;
451
452 if (!atomic_read(&task->task_state_active))
453 continue;
454
455 spin_lock_irqsave(&dev->execute_task_lock, flags);
456 list_del(&task->t_state_list);
457 pr_debug("Removed ITT: 0x%08x dev: %p task[%p]\n",
458 cmd->se_tfo->get_task_tag(cmd), dev, task);
459 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
460
461 atomic_set(&task->task_state_active, 0);
462 atomic_dec(&cmd->t_task_cdbs_ex_left);
463 }
464 }
465
466 /* transport_cmd_check_stop():
467 *
468 * 'transport_off = 1' determines if t_transport_active should be cleared.
469 * 'transport_off = 2' determines if task_dev_state should be removed.
470 *
471 * A non-zero u8 t_state sets cmd->t_state.
472 * Returns 1 when command is stopped, else 0.
473 */
474 static int transport_cmd_check_stop(
475 struct se_cmd *cmd,
476 int transport_off,
477 u8 t_state)
478 {
479 unsigned long flags;
480
481 spin_lock_irqsave(&cmd->t_state_lock, flags);
482 /*
483 * Determine if IOCTL context caller in requesting the stopping of this
484 * command for LUN shutdown purposes.
485 */
486 if (atomic_read(&cmd->transport_lun_stop)) {
487 pr_debug("%s:%d atomic_read(&cmd->transport_lun_stop)"
488 " == TRUE for ITT: 0x%08x\n", __func__, __LINE__,
489 cmd->se_tfo->get_task_tag(cmd));
490
491 cmd->deferred_t_state = cmd->t_state;
492 cmd->t_state = TRANSPORT_DEFERRED_CMD;
493 atomic_set(&cmd->t_transport_active, 0);
494 if (transport_off == 2)
495 transport_all_task_dev_remove_state(cmd);
496 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
497
498 complete(&cmd->transport_lun_stop_comp);
499 return 1;
500 }
501 /*
502 * Determine if frontend context caller is requesting the stopping of
503 * this command for frontend exceptions.
504 */
505 if (atomic_read(&cmd->t_transport_stop)) {
506 pr_debug("%s:%d atomic_read(&cmd->t_transport_stop) =="
507 " TRUE for ITT: 0x%08x\n", __func__, __LINE__,
508 cmd->se_tfo->get_task_tag(cmd));
509
510 cmd->deferred_t_state = cmd->t_state;
511 cmd->t_state = TRANSPORT_DEFERRED_CMD;
512 if (transport_off == 2)
513 transport_all_task_dev_remove_state(cmd);
514
515 /*
516 * Clear struct se_cmd->se_lun before the transport_off == 2 handoff
517 * to FE.
518 */
519 if (transport_off == 2)
520 cmd->se_lun = NULL;
521 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
522
523 complete(&cmd->t_transport_stop_comp);
524 return 1;
525 }
526 if (transport_off) {
527 atomic_set(&cmd->t_transport_active, 0);
528 if (transport_off == 2) {
529 transport_all_task_dev_remove_state(cmd);
530 /*
531 * Clear struct se_cmd->se_lun before the transport_off == 2
532 * handoff to fabric module.
533 */
534 cmd->se_lun = NULL;
535 /*
536 * Some fabric modules like tcm_loop can release
537 * their internally allocated I/O reference now and
538 * struct se_cmd now.
539 */
540 if (cmd->se_tfo->check_stop_free != NULL) {
541 spin_unlock_irqrestore(
542 &cmd->t_state_lock, flags);
543
544 cmd->se_tfo->check_stop_free(cmd);
545 return 1;
546 }
547 }
548 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
549
550 return 0;
551 } else if (t_state)
552 cmd->t_state = t_state;
553 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
554
555 return 0;
556 }
557
558 static int transport_cmd_check_stop_to_fabric(struct se_cmd *cmd)
559 {
560 return transport_cmd_check_stop(cmd, 2, 0);
561 }
562
563 static void transport_lun_remove_cmd(struct se_cmd *cmd)
564 {
565 struct se_lun *lun = cmd->se_lun;
566 unsigned long flags;
567
568 if (!lun)
569 return;
570
571 spin_lock_irqsave(&cmd->t_state_lock, flags);
572 if (!atomic_read(&cmd->transport_dev_active)) {
573 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
574 goto check_lun;
575 }
576 atomic_set(&cmd->transport_dev_active, 0);
577 transport_all_task_dev_remove_state(cmd);
578 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
579
580
581 check_lun:
582 spin_lock_irqsave(&lun->lun_cmd_lock, flags);
583 if (atomic_read(&cmd->transport_lun_active)) {
584 list_del(&cmd->se_lun_node);
585 atomic_set(&cmd->transport_lun_active, 0);
586 #if 0
587 pr_debug("Removed ITT: 0x%08x from LUN LIST[%d]\n"
588 cmd->se_tfo->get_task_tag(cmd), lun->unpacked_lun);
589 #endif
590 }
591 spin_unlock_irqrestore(&lun->lun_cmd_lock, flags);
592 }
593
594 void transport_cmd_finish_abort(struct se_cmd *cmd, int remove)
595 {
596 transport_remove_cmd_from_queue(cmd, &cmd->se_dev->dev_queue_obj);
597 transport_lun_remove_cmd(cmd);
598
599 if (transport_cmd_check_stop_to_fabric(cmd))
600 return;
601 if (remove)
602 transport_generic_remove(cmd, 0);
603 }
604
605 void transport_cmd_finish_abort_tmr(struct se_cmd *cmd)
606 {
607 transport_remove_cmd_from_queue(cmd, &cmd->se_dev->dev_queue_obj);
608
609 if (transport_cmd_check_stop_to_fabric(cmd))
610 return;
611
612 transport_generic_remove(cmd, 0);
613 }
614
615 static void transport_add_cmd_to_queue(
616 struct se_cmd *cmd,
617 int t_state)
618 {
619 struct se_device *dev = cmd->se_dev;
620 struct se_queue_obj *qobj = &dev->dev_queue_obj;
621 unsigned long flags;
622
623 INIT_LIST_HEAD(&cmd->se_queue_node);
624
625 if (t_state) {
626 spin_lock_irqsave(&cmd->t_state_lock, flags);
627 cmd->t_state = t_state;
628 atomic_set(&cmd->t_transport_active, 1);
629 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
630 }
631
632 spin_lock_irqsave(&qobj->cmd_queue_lock, flags);
633 if (cmd->se_cmd_flags & SCF_EMULATE_QUEUE_FULL) {
634 cmd->se_cmd_flags &= ~SCF_EMULATE_QUEUE_FULL;
635 list_add(&cmd->se_queue_node, &qobj->qobj_list);
636 } else
637 list_add_tail(&cmd->se_queue_node, &qobj->qobj_list);
638 atomic_inc(&cmd->t_transport_queue_active);
639 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
640
641 atomic_inc(&qobj->queue_cnt);
642 wake_up_interruptible(&qobj->thread_wq);
643 }
644
645 static struct se_cmd *
646 transport_get_cmd_from_queue(struct se_queue_obj *qobj)
647 {
648 struct se_cmd *cmd;
649 unsigned long flags;
650
651 spin_lock_irqsave(&qobj->cmd_queue_lock, flags);
652 if (list_empty(&qobj->qobj_list)) {
653 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
654 return NULL;
655 }
656 cmd = list_first_entry(&qobj->qobj_list, struct se_cmd, se_queue_node);
657
658 atomic_dec(&cmd->t_transport_queue_active);
659
660 list_del(&cmd->se_queue_node);
661 atomic_dec(&qobj->queue_cnt);
662 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
663
664 return cmd;
665 }
666
667 static void transport_remove_cmd_from_queue(struct se_cmd *cmd,
668 struct se_queue_obj *qobj)
669 {
670 struct se_cmd *t;
671 unsigned long flags;
672
673 spin_lock_irqsave(&qobj->cmd_queue_lock, flags);
674 if (!atomic_read(&cmd->t_transport_queue_active)) {
675 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
676 return;
677 }
678
679 list_for_each_entry(t, &qobj->qobj_list, se_queue_node)
680 if (t == cmd) {
681 atomic_dec(&cmd->t_transport_queue_active);
682 atomic_dec(&qobj->queue_cnt);
683 list_del(&cmd->se_queue_node);
684 break;
685 }
686 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
687
688 if (atomic_read(&cmd->t_transport_queue_active)) {
689 pr_err("ITT: 0x%08x t_transport_queue_active: %d\n",
690 cmd->se_tfo->get_task_tag(cmd),
691 atomic_read(&cmd->t_transport_queue_active));
692 }
693 }
694
695 /*
696 * Completion function used by TCM subsystem plugins (such as FILEIO)
697 * for queueing up response from struct se_subsystem_api->do_task()
698 */
699 void transport_complete_sync_cache(struct se_cmd *cmd, int good)
700 {
701 struct se_task *task = list_entry(cmd->t_task_list.next,
702 struct se_task, t_list);
703
704 if (good) {
705 cmd->scsi_status = SAM_STAT_GOOD;
706 task->task_scsi_status = GOOD;
707 } else {
708 task->task_scsi_status = SAM_STAT_CHECK_CONDITION;
709 task->task_error_status = PYX_TRANSPORT_ILLEGAL_REQUEST;
710 task->task_se_cmd->transport_error_status =
711 PYX_TRANSPORT_ILLEGAL_REQUEST;
712 }
713
714 transport_complete_task(task, good);
715 }
716 EXPORT_SYMBOL(transport_complete_sync_cache);
717
718 /* transport_complete_task():
719 *
720 * Called from interrupt and non interrupt context depending
721 * on the transport plugin.
722 */
723 void transport_complete_task(struct se_task *task, int success)
724 {
725 struct se_cmd *cmd = task->task_se_cmd;
726 struct se_device *dev = task->se_dev;
727 int t_state;
728 unsigned long flags;
729 #if 0
730 pr_debug("task: %p CDB: 0x%02x obj_ptr: %p\n", task,
731 cmd->t_task_cdb[0], dev);
732 #endif
733 if (dev)
734 atomic_inc(&dev->depth_left);
735
736 spin_lock_irqsave(&cmd->t_state_lock, flags);
737 atomic_set(&task->task_active, 0);
738
739 /*
740 * See if any sense data exists, if so set the TASK_SENSE flag.
741 * Also check for any other post completion work that needs to be
742 * done by the plugins.
743 */
744 if (dev && dev->transport->transport_complete) {
745 if (dev->transport->transport_complete(task) != 0) {
746 cmd->se_cmd_flags |= SCF_TRANSPORT_TASK_SENSE;
747 task->task_sense = 1;
748 success = 1;
749 }
750 }
751
752 /*
753 * See if we are waiting for outstanding struct se_task
754 * to complete for an exception condition
755 */
756 if (atomic_read(&task->task_stop)) {
757 /*
758 * Decrement cmd->t_se_count if this task had
759 * previously thrown its timeout exception handler.
760 */
761 if (atomic_read(&task->task_timeout)) {
762 atomic_dec(&cmd->t_se_count);
763 atomic_set(&task->task_timeout, 0);
764 }
765 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
766
767 complete(&task->task_stop_comp);
768 return;
769 }
770 /*
771 * If the task's timeout handler has fired, use the t_task_cdbs_timeout
772 * left counter to determine when the struct se_cmd is ready to be queued to
773 * the processing thread.
774 */
775 if (atomic_read(&task->task_timeout)) {
776 if (!atomic_dec_and_test(
777 &cmd->t_task_cdbs_timeout_left)) {
778 spin_unlock_irqrestore(&cmd->t_state_lock,
779 flags);
780 return;
781 }
782 t_state = TRANSPORT_COMPLETE_TIMEOUT;
783 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
784
785 transport_add_cmd_to_queue(cmd, t_state);
786 return;
787 }
788 atomic_dec(&cmd->t_task_cdbs_timeout_left);
789
790 /*
791 * Decrement the outstanding t_task_cdbs_left count. The last
792 * struct se_task from struct se_cmd will complete itself into the
793 * device queue depending upon int success.
794 */
795 if (!atomic_dec_and_test(&cmd->t_task_cdbs_left)) {
796 if (!success)
797 cmd->t_tasks_failed = 1;
798
799 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
800 return;
801 }
802
803 if (!success || cmd->t_tasks_failed) {
804 t_state = TRANSPORT_COMPLETE_FAILURE;
805 if (!task->task_error_status) {
806 task->task_error_status =
807 PYX_TRANSPORT_UNKNOWN_SAM_OPCODE;
808 cmd->transport_error_status =
809 PYX_TRANSPORT_UNKNOWN_SAM_OPCODE;
810 }
811 } else {
812 atomic_set(&cmd->t_transport_complete, 1);
813 t_state = TRANSPORT_COMPLETE_OK;
814 }
815 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
816
817 transport_add_cmd_to_queue(cmd, t_state);
818 }
819 EXPORT_SYMBOL(transport_complete_task);
820
821 /*
822 * Called by transport_add_tasks_from_cmd() once a struct se_cmd's
823 * struct se_task list are ready to be added to the active execution list
824 * struct se_device
825
826 * Called with se_dev_t->execute_task_lock called.
827 */
828 static inline int transport_add_task_check_sam_attr(
829 struct se_task *task,
830 struct se_task *task_prev,
831 struct se_device *dev)
832 {
833 /*
834 * No SAM Task attribute emulation enabled, add to tail of
835 * execution queue
836 */
837 if (dev->dev_task_attr_type != SAM_TASK_ATTR_EMULATED) {
838 list_add_tail(&task->t_execute_list, &dev->execute_task_list);
839 return 0;
840 }
841 /*
842 * HEAD_OF_QUEUE attribute for received CDB, which means
843 * the first task that is associated with a struct se_cmd goes to
844 * head of the struct se_device->execute_task_list, and task_prev
845 * after that for each subsequent task
846 */
847 if (task->task_se_cmd->sam_task_attr == MSG_HEAD_TAG) {
848 list_add(&task->t_execute_list,
849 (task_prev != NULL) ?
850 &task_prev->t_execute_list :
851 &dev->execute_task_list);
852
853 pr_debug("Set HEAD_OF_QUEUE for task CDB: 0x%02x"
854 " in execution queue\n",
855 task->task_se_cmd->t_task_cdb[0]);
856 return 1;
857 }
858 /*
859 * For ORDERED, SIMPLE or UNTAGGED attribute tasks once they have been
860 * transitioned from Dermant -> Active state, and are added to the end
861 * of the struct se_device->execute_task_list
862 */
863 list_add_tail(&task->t_execute_list, &dev->execute_task_list);
864 return 0;
865 }
866
867 /* __transport_add_task_to_execute_queue():
868 *
869 * Called with se_dev_t->execute_task_lock called.
870 */
871 static void __transport_add_task_to_execute_queue(
872 struct se_task *task,
873 struct se_task *task_prev,
874 struct se_device *dev)
875 {
876 int head_of_queue;
877
878 head_of_queue = transport_add_task_check_sam_attr(task, task_prev, dev);
879 atomic_inc(&dev->execute_tasks);
880
881 if (atomic_read(&task->task_state_active))
882 return;
883 /*
884 * Determine if this task needs to go to HEAD_OF_QUEUE for the
885 * state list as well. Running with SAM Task Attribute emulation
886 * will always return head_of_queue == 0 here
887 */
888 if (head_of_queue)
889 list_add(&task->t_state_list, (task_prev) ?
890 &task_prev->t_state_list :
891 &dev->state_task_list);
892 else
893 list_add_tail(&task->t_state_list, &dev->state_task_list);
894
895 atomic_set(&task->task_state_active, 1);
896
897 pr_debug("Added ITT: 0x%08x task[%p] to dev: %p\n",
898 task->task_se_cmd->se_tfo->get_task_tag(task->task_se_cmd),
899 task, dev);
900 }
901
902 static void transport_add_tasks_to_state_queue(struct se_cmd *cmd)
903 {
904 struct se_device *dev;
905 struct se_task *task;
906 unsigned long flags;
907
908 spin_lock_irqsave(&cmd->t_state_lock, flags);
909 list_for_each_entry(task, &cmd->t_task_list, t_list) {
910 dev = task->se_dev;
911
912 if (atomic_read(&task->task_state_active))
913 continue;
914
915 spin_lock(&dev->execute_task_lock);
916 list_add_tail(&task->t_state_list, &dev->state_task_list);
917 atomic_set(&task->task_state_active, 1);
918
919 pr_debug("Added ITT: 0x%08x task[%p] to dev: %p\n",
920 task->task_se_cmd->se_tfo->get_task_tag(
921 task->task_se_cmd), task, dev);
922
923 spin_unlock(&dev->execute_task_lock);
924 }
925 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
926 }
927
928 static void transport_add_tasks_from_cmd(struct se_cmd *cmd)
929 {
930 struct se_device *dev = cmd->se_dev;
931 struct se_task *task, *task_prev = NULL;
932 unsigned long flags;
933
934 spin_lock_irqsave(&dev->execute_task_lock, flags);
935 list_for_each_entry(task, &cmd->t_task_list, t_list) {
936 if (atomic_read(&task->task_execute_queue))
937 continue;
938 /*
939 * __transport_add_task_to_execute_queue() handles the
940 * SAM Task Attribute emulation if enabled
941 */
942 __transport_add_task_to_execute_queue(task, task_prev, dev);
943 atomic_set(&task->task_execute_queue, 1);
944 task_prev = task;
945 }
946 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
947 }
948
949 /* transport_remove_task_from_execute_queue():
950 *
951 *
952 */
953 void transport_remove_task_from_execute_queue(
954 struct se_task *task,
955 struct se_device *dev)
956 {
957 unsigned long flags;
958
959 if (atomic_read(&task->task_execute_queue) == 0) {
960 dump_stack();
961 return;
962 }
963
964 spin_lock_irqsave(&dev->execute_task_lock, flags);
965 list_del(&task->t_execute_list);
966 atomic_set(&task->task_execute_queue, 0);
967 atomic_dec(&dev->execute_tasks);
968 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
969 }
970
971 /*
972 * Handle QUEUE_FULL / -EAGAIN status
973 */
974
975 static void target_qf_do_work(struct work_struct *work)
976 {
977 struct se_device *dev = container_of(work, struct se_device,
978 qf_work_queue);
979 struct se_cmd *cmd, *cmd_tmp;
980
981 spin_lock_irq(&dev->qf_cmd_lock);
982 list_for_each_entry_safe(cmd, cmd_tmp, &dev->qf_cmd_list, se_qf_node) {
983
984 list_del(&cmd->se_qf_node);
985 atomic_dec(&dev->dev_qf_count);
986 smp_mb__after_atomic_dec();
987 spin_unlock_irq(&dev->qf_cmd_lock);
988
989 pr_debug("Processing %s cmd: %p QUEUE_FULL in work queue"
990 " context: %s\n", cmd->se_tfo->get_fabric_name(), cmd,
991 (cmd->t_state == TRANSPORT_COMPLETE_OK) ? "COMPLETE_OK" :
992 (cmd->t_state == TRANSPORT_COMPLETE_QF_WP) ? "WRITE_PENDING"
993 : "UNKNOWN");
994 /*
995 * The SCF_EMULATE_QUEUE_FULL flag will be cleared once se_cmd
996 * has been added to head of queue
997 */
998 transport_add_cmd_to_queue(cmd, cmd->t_state);
999
1000 spin_lock_irq(&dev->qf_cmd_lock);
1001 }
1002 spin_unlock_irq(&dev->qf_cmd_lock);
1003 }
1004
1005 unsigned char *transport_dump_cmd_direction(struct se_cmd *cmd)
1006 {
1007 switch (cmd->data_direction) {
1008 case DMA_NONE:
1009 return "NONE";
1010 case DMA_FROM_DEVICE:
1011 return "READ";
1012 case DMA_TO_DEVICE:
1013 return "WRITE";
1014 case DMA_BIDIRECTIONAL:
1015 return "BIDI";
1016 default:
1017 break;
1018 }
1019
1020 return "UNKNOWN";
1021 }
1022
1023 void transport_dump_dev_state(
1024 struct se_device *dev,
1025 char *b,
1026 int *bl)
1027 {
1028 *bl += sprintf(b + *bl, "Status: ");
1029 switch (dev->dev_status) {
1030 case TRANSPORT_DEVICE_ACTIVATED:
1031 *bl += sprintf(b + *bl, "ACTIVATED");
1032 break;
1033 case TRANSPORT_DEVICE_DEACTIVATED:
1034 *bl += sprintf(b + *bl, "DEACTIVATED");
1035 break;
1036 case TRANSPORT_DEVICE_SHUTDOWN:
1037 *bl += sprintf(b + *bl, "SHUTDOWN");
1038 break;
1039 case TRANSPORT_DEVICE_OFFLINE_ACTIVATED:
1040 case TRANSPORT_DEVICE_OFFLINE_DEACTIVATED:
1041 *bl += sprintf(b + *bl, "OFFLINE");
1042 break;
1043 default:
1044 *bl += sprintf(b + *bl, "UNKNOWN=%d", dev->dev_status);
1045 break;
1046 }
1047
1048 *bl += sprintf(b + *bl, " Execute/Left/Max Queue Depth: %d/%d/%d",
1049 atomic_read(&dev->execute_tasks), atomic_read(&dev->depth_left),
1050 dev->queue_depth);
1051 *bl += sprintf(b + *bl, " SectorSize: %u MaxSectors: %u\n",
1052 dev->se_sub_dev->se_dev_attrib.block_size, dev->se_sub_dev->se_dev_attrib.max_sectors);
1053 *bl += sprintf(b + *bl, " ");
1054 }
1055
1056 /* transport_release_all_cmds():
1057 *
1058 *
1059 */
1060 static void transport_release_all_cmds(struct se_device *dev)
1061 {
1062 struct se_cmd *cmd, *tcmd;
1063 int bug_out = 0, t_state;
1064 unsigned long flags;
1065
1066 spin_lock_irqsave(&dev->dev_queue_obj.cmd_queue_lock, flags);
1067 list_for_each_entry_safe(cmd, tcmd, &dev->dev_queue_obj.qobj_list,
1068 se_queue_node) {
1069 t_state = cmd->t_state;
1070 list_del(&cmd->se_queue_node);
1071 spin_unlock_irqrestore(&dev->dev_queue_obj.cmd_queue_lock,
1072 flags);
1073
1074 pr_err("Releasing ITT: 0x%08x, i_state: %u,"
1075 " t_state: %u directly\n",
1076 cmd->se_tfo->get_task_tag(cmd),
1077 cmd->se_tfo->get_cmd_state(cmd), t_state);
1078
1079 transport_release_fe_cmd(cmd);
1080 bug_out = 1;
1081
1082 spin_lock_irqsave(&dev->dev_queue_obj.cmd_queue_lock, flags);
1083 }
1084 spin_unlock_irqrestore(&dev->dev_queue_obj.cmd_queue_lock, flags);
1085 #if 0
1086 if (bug_out)
1087 BUG();
1088 #endif
1089 }
1090
1091 void transport_dump_vpd_proto_id(
1092 struct t10_vpd *vpd,
1093 unsigned char *p_buf,
1094 int p_buf_len)
1095 {
1096 unsigned char buf[VPD_TMP_BUF_SIZE];
1097 int len;
1098
1099 memset(buf, 0, VPD_TMP_BUF_SIZE);
1100 len = sprintf(buf, "T10 VPD Protocol Identifier: ");
1101
1102 switch (vpd->protocol_identifier) {
1103 case 0x00:
1104 sprintf(buf+len, "Fibre Channel\n");
1105 break;
1106 case 0x10:
1107 sprintf(buf+len, "Parallel SCSI\n");
1108 break;
1109 case 0x20:
1110 sprintf(buf+len, "SSA\n");
1111 break;
1112 case 0x30:
1113 sprintf(buf+len, "IEEE 1394\n");
1114 break;
1115 case 0x40:
1116 sprintf(buf+len, "SCSI Remote Direct Memory Access"
1117 " Protocol\n");
1118 break;
1119 case 0x50:
1120 sprintf(buf+len, "Internet SCSI (iSCSI)\n");
1121 break;
1122 case 0x60:
1123 sprintf(buf+len, "SAS Serial SCSI Protocol\n");
1124 break;
1125 case 0x70:
1126 sprintf(buf+len, "Automation/Drive Interface Transport"
1127 " Protocol\n");
1128 break;
1129 case 0x80:
1130 sprintf(buf+len, "AT Attachment Interface ATA/ATAPI\n");
1131 break;
1132 default:
1133 sprintf(buf+len, "Unknown 0x%02x\n",
1134 vpd->protocol_identifier);
1135 break;
1136 }
1137
1138 if (p_buf)
1139 strncpy(p_buf, buf, p_buf_len);
1140 else
1141 pr_debug("%s", buf);
1142 }
1143
1144 void
1145 transport_set_vpd_proto_id(struct t10_vpd *vpd, unsigned char *page_83)
1146 {
1147 /*
1148 * Check if the Protocol Identifier Valid (PIV) bit is set..
1149 *
1150 * from spc3r23.pdf section 7.5.1
1151 */
1152 if (page_83[1] & 0x80) {
1153 vpd->protocol_identifier = (page_83[0] & 0xf0);
1154 vpd->protocol_identifier_set = 1;
1155 transport_dump_vpd_proto_id(vpd, NULL, 0);
1156 }
1157 }
1158 EXPORT_SYMBOL(transport_set_vpd_proto_id);
1159
1160 int transport_dump_vpd_assoc(
1161 struct t10_vpd *vpd,
1162 unsigned char *p_buf,
1163 int p_buf_len)
1164 {
1165 unsigned char buf[VPD_TMP_BUF_SIZE];
1166 int ret = 0;
1167 int len;
1168
1169 memset(buf, 0, VPD_TMP_BUF_SIZE);
1170 len = sprintf(buf, "T10 VPD Identifier Association: ");
1171
1172 switch (vpd->association) {
1173 case 0x00:
1174 sprintf(buf+len, "addressed logical unit\n");
1175 break;
1176 case 0x10:
1177 sprintf(buf+len, "target port\n");
1178 break;
1179 case 0x20:
1180 sprintf(buf+len, "SCSI target device\n");
1181 break;
1182 default:
1183 sprintf(buf+len, "Unknown 0x%02x\n", vpd->association);
1184 ret = -EINVAL;
1185 break;
1186 }
1187
1188 if (p_buf)
1189 strncpy(p_buf, buf, p_buf_len);
1190 else
1191 pr_debug("%s", buf);
1192
1193 return ret;
1194 }
1195
1196 int transport_set_vpd_assoc(struct t10_vpd *vpd, unsigned char *page_83)
1197 {
1198 /*
1199 * The VPD identification association..
1200 *
1201 * from spc3r23.pdf Section 7.6.3.1 Table 297
1202 */
1203 vpd->association = (page_83[1] & 0x30);
1204 return transport_dump_vpd_assoc(vpd, NULL, 0);
1205 }
1206 EXPORT_SYMBOL(transport_set_vpd_assoc);
1207
1208 int transport_dump_vpd_ident_type(
1209 struct t10_vpd *vpd,
1210 unsigned char *p_buf,
1211 int p_buf_len)
1212 {
1213 unsigned char buf[VPD_TMP_BUF_SIZE];
1214 int ret = 0;
1215 int len;
1216
1217 memset(buf, 0, VPD_TMP_BUF_SIZE);
1218 len = sprintf(buf, "T10 VPD Identifier Type: ");
1219
1220 switch (vpd->device_identifier_type) {
1221 case 0x00:
1222 sprintf(buf+len, "Vendor specific\n");
1223 break;
1224 case 0x01:
1225 sprintf(buf+len, "T10 Vendor ID based\n");
1226 break;
1227 case 0x02:
1228 sprintf(buf+len, "EUI-64 based\n");
1229 break;
1230 case 0x03:
1231 sprintf(buf+len, "NAA\n");
1232 break;
1233 case 0x04:
1234 sprintf(buf+len, "Relative target port identifier\n");
1235 break;
1236 case 0x08:
1237 sprintf(buf+len, "SCSI name string\n");
1238 break;
1239 default:
1240 sprintf(buf+len, "Unsupported: 0x%02x\n",
1241 vpd->device_identifier_type);
1242 ret = -EINVAL;
1243 break;
1244 }
1245
1246 if (p_buf) {
1247 if (p_buf_len < strlen(buf)+1)
1248 return -EINVAL;
1249 strncpy(p_buf, buf, p_buf_len);
1250 } else {
1251 pr_debug("%s", buf);
1252 }
1253
1254 return ret;
1255 }
1256
1257 int transport_set_vpd_ident_type(struct t10_vpd *vpd, unsigned char *page_83)
1258 {
1259 /*
1260 * The VPD identifier type..
1261 *
1262 * from spc3r23.pdf Section 7.6.3.1 Table 298
1263 */
1264 vpd->device_identifier_type = (page_83[1] & 0x0f);
1265 return transport_dump_vpd_ident_type(vpd, NULL, 0);
1266 }
1267 EXPORT_SYMBOL(transport_set_vpd_ident_type);
1268
1269 int transport_dump_vpd_ident(
1270 struct t10_vpd *vpd,
1271 unsigned char *p_buf,
1272 int p_buf_len)
1273 {
1274 unsigned char buf[VPD_TMP_BUF_SIZE];
1275 int ret = 0;
1276
1277 memset(buf, 0, VPD_TMP_BUF_SIZE);
1278
1279 switch (vpd->device_identifier_code_set) {
1280 case 0x01: /* Binary */
1281 sprintf(buf, "T10 VPD Binary Device Identifier: %s\n",
1282 &vpd->device_identifier[0]);
1283 break;
1284 case 0x02: /* ASCII */
1285 sprintf(buf, "T10 VPD ASCII Device Identifier: %s\n",
1286 &vpd->device_identifier[0]);
1287 break;
1288 case 0x03: /* UTF-8 */
1289 sprintf(buf, "T10 VPD UTF-8 Device Identifier: %s\n",
1290 &vpd->device_identifier[0]);
1291 break;
1292 default:
1293 sprintf(buf, "T10 VPD Device Identifier encoding unsupported:"
1294 " 0x%02x", vpd->device_identifier_code_set);
1295 ret = -EINVAL;
1296 break;
1297 }
1298
1299 if (p_buf)
1300 strncpy(p_buf, buf, p_buf_len);
1301 else
1302 pr_debug("%s", buf);
1303
1304 return ret;
1305 }
1306
1307 int
1308 transport_set_vpd_ident(struct t10_vpd *vpd, unsigned char *page_83)
1309 {
1310 static const char hex_str[] = "0123456789abcdef";
1311 int j = 0, i = 4; /* offset to start of the identifer */
1312
1313 /*
1314 * The VPD Code Set (encoding)
1315 *
1316 * from spc3r23.pdf Section 7.6.3.1 Table 296
1317 */
1318 vpd->device_identifier_code_set = (page_83[0] & 0x0f);
1319 switch (vpd->device_identifier_code_set) {
1320 case 0x01: /* Binary */
1321 vpd->device_identifier[j++] =
1322 hex_str[vpd->device_identifier_type];
1323 while (i < (4 + page_83[3])) {
1324 vpd->device_identifier[j++] =
1325 hex_str[(page_83[i] & 0xf0) >> 4];
1326 vpd->device_identifier[j++] =
1327 hex_str[page_83[i] & 0x0f];
1328 i++;
1329 }
1330 break;
1331 case 0x02: /* ASCII */
1332 case 0x03: /* UTF-8 */
1333 while (i < (4 + page_83[3]))
1334 vpd->device_identifier[j++] = page_83[i++];
1335 break;
1336 default:
1337 break;
1338 }
1339
1340 return transport_dump_vpd_ident(vpd, NULL, 0);
1341 }
1342 EXPORT_SYMBOL(transport_set_vpd_ident);
1343
1344 static void core_setup_task_attr_emulation(struct se_device *dev)
1345 {
1346 /*
1347 * If this device is from Target_Core_Mod/pSCSI, disable the
1348 * SAM Task Attribute emulation.
1349 *
1350 * This is currently not available in upsream Linux/SCSI Target
1351 * mode code, and is assumed to be disabled while using TCM/pSCSI.
1352 */
1353 if (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV) {
1354 dev->dev_task_attr_type = SAM_TASK_ATTR_PASSTHROUGH;
1355 return;
1356 }
1357
1358 dev->dev_task_attr_type = SAM_TASK_ATTR_EMULATED;
1359 pr_debug("%s: Using SAM_TASK_ATTR_EMULATED for SPC: 0x%02x"
1360 " device\n", dev->transport->name,
1361 dev->transport->get_device_rev(dev));
1362 }
1363
1364 static void scsi_dump_inquiry(struct se_device *dev)
1365 {
1366 struct t10_wwn *wwn = &dev->se_sub_dev->t10_wwn;
1367 int i, device_type;
1368 /*
1369 * Print Linux/SCSI style INQUIRY formatting to the kernel ring buffer
1370 */
1371 pr_debug(" Vendor: ");
1372 for (i = 0; i < 8; i++)
1373 if (wwn->vendor[i] >= 0x20)
1374 pr_debug("%c", wwn->vendor[i]);
1375 else
1376 pr_debug(" ");
1377
1378 pr_debug(" Model: ");
1379 for (i = 0; i < 16; i++)
1380 if (wwn->model[i] >= 0x20)
1381 pr_debug("%c", wwn->model[i]);
1382 else
1383 pr_debug(" ");
1384
1385 pr_debug(" Revision: ");
1386 for (i = 0; i < 4; i++)
1387 if (wwn->revision[i] >= 0x20)
1388 pr_debug("%c", wwn->revision[i]);
1389 else
1390 pr_debug(" ");
1391
1392 pr_debug("\n");
1393
1394 device_type = dev->transport->get_device_type(dev);
1395 pr_debug(" Type: %s ", scsi_device_type(device_type));
1396 pr_debug(" ANSI SCSI revision: %02x\n",
1397 dev->transport->get_device_rev(dev));
1398 }
1399
1400 struct se_device *transport_add_device_to_core_hba(
1401 struct se_hba *hba,
1402 struct se_subsystem_api *transport,
1403 struct se_subsystem_dev *se_dev,
1404 u32 device_flags,
1405 void *transport_dev,
1406 struct se_dev_limits *dev_limits,
1407 const char *inquiry_prod,
1408 const char *inquiry_rev)
1409 {
1410 int force_pt;
1411 struct se_device *dev;
1412
1413 dev = kzalloc(sizeof(struct se_device), GFP_KERNEL);
1414 if (!dev) {
1415 pr_err("Unable to allocate memory for se_dev_t\n");
1416 return NULL;
1417 }
1418
1419 transport_init_queue_obj(&dev->dev_queue_obj);
1420 dev->dev_flags = device_flags;
1421 dev->dev_status |= TRANSPORT_DEVICE_DEACTIVATED;
1422 dev->dev_ptr = transport_dev;
1423 dev->se_hba = hba;
1424 dev->se_sub_dev = se_dev;
1425 dev->transport = transport;
1426 atomic_set(&dev->active_cmds, 0);
1427 INIT_LIST_HEAD(&dev->dev_list);
1428 INIT_LIST_HEAD(&dev->dev_sep_list);
1429 INIT_LIST_HEAD(&dev->dev_tmr_list);
1430 INIT_LIST_HEAD(&dev->execute_task_list);
1431 INIT_LIST_HEAD(&dev->delayed_cmd_list);
1432 INIT_LIST_HEAD(&dev->ordered_cmd_list);
1433 INIT_LIST_HEAD(&dev->state_task_list);
1434 INIT_LIST_HEAD(&dev->qf_cmd_list);
1435 spin_lock_init(&dev->execute_task_lock);
1436 spin_lock_init(&dev->delayed_cmd_lock);
1437 spin_lock_init(&dev->ordered_cmd_lock);
1438 spin_lock_init(&dev->state_task_lock);
1439 spin_lock_init(&dev->dev_alua_lock);
1440 spin_lock_init(&dev->dev_reservation_lock);
1441 spin_lock_init(&dev->dev_status_lock);
1442 spin_lock_init(&dev->dev_status_thr_lock);
1443 spin_lock_init(&dev->se_port_lock);
1444 spin_lock_init(&dev->se_tmr_lock);
1445 spin_lock_init(&dev->qf_cmd_lock);
1446
1447 dev->queue_depth = dev_limits->queue_depth;
1448 atomic_set(&dev->depth_left, dev->queue_depth);
1449 atomic_set(&dev->dev_ordered_id, 0);
1450
1451 se_dev_set_default_attribs(dev, dev_limits);
1452
1453 dev->dev_index = scsi_get_new_index(SCSI_DEVICE_INDEX);
1454 dev->creation_time = get_jiffies_64();
1455 spin_lock_init(&dev->stats_lock);
1456
1457 spin_lock(&hba->device_lock);
1458 list_add_tail(&dev->dev_list, &hba->hba_dev_list);
1459 hba->dev_count++;
1460 spin_unlock(&hba->device_lock);
1461 /*
1462 * Setup the SAM Task Attribute emulation for struct se_device
1463 */
1464 core_setup_task_attr_emulation(dev);
1465 /*
1466 * Force PR and ALUA passthrough emulation with internal object use.
1467 */
1468 force_pt = (hba->hba_flags & HBA_FLAGS_INTERNAL_USE);
1469 /*
1470 * Setup the Reservations infrastructure for struct se_device
1471 */
1472 core_setup_reservations(dev, force_pt);
1473 /*
1474 * Setup the Asymmetric Logical Unit Assignment for struct se_device
1475 */
1476 if (core_setup_alua(dev, force_pt) < 0)
1477 goto out;
1478
1479 /*
1480 * Startup the struct se_device processing thread
1481 */
1482 dev->process_thread = kthread_run(transport_processing_thread, dev,
1483 "LIO_%s", dev->transport->name);
1484 if (IS_ERR(dev->process_thread)) {
1485 pr_err("Unable to create kthread: LIO_%s\n",
1486 dev->transport->name);
1487 goto out;
1488 }
1489 /*
1490 * Setup work_queue for QUEUE_FULL
1491 */
1492 INIT_WORK(&dev->qf_work_queue, target_qf_do_work);
1493 /*
1494 * Preload the initial INQUIRY const values if we are doing
1495 * anything virtual (IBLOCK, FILEIO, RAMDISK), but not for TCM/pSCSI
1496 * passthrough because this is being provided by the backend LLD.
1497 * This is required so that transport_get_inquiry() copies these
1498 * originals once back into DEV_T10_WWN(dev) for the virtual device
1499 * setup.
1500 */
1501 if (dev->transport->transport_type != TRANSPORT_PLUGIN_PHBA_PDEV) {
1502 if (!inquiry_prod || !inquiry_rev) {
1503 pr_err("All non TCM/pSCSI plugins require"
1504 " INQUIRY consts\n");
1505 goto out;
1506 }
1507
1508 strncpy(&dev->se_sub_dev->t10_wwn.vendor[0], "LIO-ORG", 8);
1509 strncpy(&dev->se_sub_dev->t10_wwn.model[0], inquiry_prod, 16);
1510 strncpy(&dev->se_sub_dev->t10_wwn.revision[0], inquiry_rev, 4);
1511 }
1512 scsi_dump_inquiry(dev);
1513
1514 return dev;
1515 out:
1516 kthread_stop(dev->process_thread);
1517
1518 spin_lock(&hba->device_lock);
1519 list_del(&dev->dev_list);
1520 hba->dev_count--;
1521 spin_unlock(&hba->device_lock);
1522
1523 se_release_vpd_for_dev(dev);
1524
1525 kfree(dev);
1526
1527 return NULL;
1528 }
1529 EXPORT_SYMBOL(transport_add_device_to_core_hba);
1530
1531 /* transport_generic_prepare_cdb():
1532 *
1533 * Since the Initiator sees iSCSI devices as LUNs, the SCSI CDB will
1534 * contain the iSCSI LUN in bits 7-5 of byte 1 as per SAM-2.
1535 * The point of this is since we are mapping iSCSI LUNs to
1536 * SCSI Target IDs having a non-zero LUN in the CDB will throw the
1537 * devices and HBAs for a loop.
1538 */
1539 static inline void transport_generic_prepare_cdb(
1540 unsigned char *cdb)
1541 {
1542 switch (cdb[0]) {
1543 case READ_10: /* SBC - RDProtect */
1544 case READ_12: /* SBC - RDProtect */
1545 case READ_16: /* SBC - RDProtect */
1546 case SEND_DIAGNOSTIC: /* SPC - SELF-TEST Code */
1547 case VERIFY: /* SBC - VRProtect */
1548 case VERIFY_16: /* SBC - VRProtect */
1549 case WRITE_VERIFY: /* SBC - VRProtect */
1550 case WRITE_VERIFY_12: /* SBC - VRProtect */
1551 break;
1552 default:
1553 cdb[1] &= 0x1f; /* clear logical unit number */
1554 break;
1555 }
1556 }
1557
1558 static struct se_task *
1559 transport_generic_get_task(struct se_cmd *cmd,
1560 enum dma_data_direction data_direction)
1561 {
1562 struct se_task *task;
1563 struct se_device *dev = cmd->se_dev;
1564
1565 task = dev->transport->alloc_task(cmd->t_task_cdb);
1566 if (!task) {
1567 pr_err("Unable to allocate struct se_task\n");
1568 return NULL;
1569 }
1570
1571 INIT_LIST_HEAD(&task->t_list);
1572 INIT_LIST_HEAD(&task->t_execute_list);
1573 INIT_LIST_HEAD(&task->t_state_list);
1574 init_completion(&task->task_stop_comp);
1575 task->task_se_cmd = cmd;
1576 task->se_dev = dev;
1577 task->task_data_direction = data_direction;
1578
1579 return task;
1580 }
1581
1582 static int transport_generic_cmd_sequencer(struct se_cmd *, unsigned char *);
1583
1584 /*
1585 * Used by fabric modules containing a local struct se_cmd within their
1586 * fabric dependent per I/O descriptor.
1587 */
1588 void transport_init_se_cmd(
1589 struct se_cmd *cmd,
1590 struct target_core_fabric_ops *tfo,
1591 struct se_session *se_sess,
1592 u32 data_length,
1593 int data_direction,
1594 int task_attr,
1595 unsigned char *sense_buffer)
1596 {
1597 INIT_LIST_HEAD(&cmd->se_lun_node);
1598 INIT_LIST_HEAD(&cmd->se_delayed_node);
1599 INIT_LIST_HEAD(&cmd->se_ordered_node);
1600 INIT_LIST_HEAD(&cmd->se_qf_node);
1601
1602 INIT_LIST_HEAD(&cmd->t_task_list);
1603 init_completion(&cmd->transport_lun_fe_stop_comp);
1604 init_completion(&cmd->transport_lun_stop_comp);
1605 init_completion(&cmd->t_transport_stop_comp);
1606 spin_lock_init(&cmd->t_state_lock);
1607 atomic_set(&cmd->transport_dev_active, 1);
1608
1609 cmd->se_tfo = tfo;
1610 cmd->se_sess = se_sess;
1611 cmd->data_length = data_length;
1612 cmd->data_direction = data_direction;
1613 cmd->sam_task_attr = task_attr;
1614 cmd->sense_buffer = sense_buffer;
1615 }
1616 EXPORT_SYMBOL(transport_init_se_cmd);
1617
1618 static int transport_check_alloc_task_attr(struct se_cmd *cmd)
1619 {
1620 /*
1621 * Check if SAM Task Attribute emulation is enabled for this
1622 * struct se_device storage object
1623 */
1624 if (cmd->se_dev->dev_task_attr_type != SAM_TASK_ATTR_EMULATED)
1625 return 0;
1626
1627 if (cmd->sam_task_attr == MSG_ACA_TAG) {
1628 pr_debug("SAM Task Attribute ACA"
1629 " emulation is not supported\n");
1630 return -EINVAL;
1631 }
1632 /*
1633 * Used to determine when ORDERED commands should go from
1634 * Dormant to Active status.
1635 */
1636 cmd->se_ordered_id = atomic_inc_return(&cmd->se_dev->dev_ordered_id);
1637 smp_mb__after_atomic_inc();
1638 pr_debug("Allocated se_ordered_id: %u for Task Attr: 0x%02x on %s\n",
1639 cmd->se_ordered_id, cmd->sam_task_attr,
1640 cmd->se_dev->transport->name);
1641 return 0;
1642 }
1643
1644 void transport_free_se_cmd(
1645 struct se_cmd *se_cmd)
1646 {
1647 if (se_cmd->se_tmr_req)
1648 core_tmr_release_req(se_cmd->se_tmr_req);
1649 /*
1650 * Check and free any extended CDB buffer that was allocated
1651 */
1652 if (se_cmd->t_task_cdb != se_cmd->__t_task_cdb)
1653 kfree(se_cmd->t_task_cdb);
1654 }
1655 EXPORT_SYMBOL(transport_free_se_cmd);
1656
1657 static void transport_generic_wait_for_tasks(struct se_cmd *, int, int);
1658
1659 /* transport_generic_allocate_tasks():
1660 *
1661 * Called from fabric RX Thread.
1662 */
1663 int transport_generic_allocate_tasks(
1664 struct se_cmd *cmd,
1665 unsigned char *cdb)
1666 {
1667 int ret;
1668
1669 transport_generic_prepare_cdb(cdb);
1670
1671 /*
1672 * This is needed for early exceptions.
1673 */
1674 cmd->transport_wait_for_tasks = &transport_generic_wait_for_tasks;
1675
1676 /*
1677 * Ensure that the received CDB is less than the max (252 + 8) bytes
1678 * for VARIABLE_LENGTH_CMD
1679 */
1680 if (scsi_command_size(cdb) > SCSI_MAX_VARLEN_CDB_SIZE) {
1681 pr_err("Received SCSI CDB with command_size: %d that"
1682 " exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n",
1683 scsi_command_size(cdb), SCSI_MAX_VARLEN_CDB_SIZE);
1684 return -EINVAL;
1685 }
1686 /*
1687 * If the received CDB is larger than TCM_MAX_COMMAND_SIZE,
1688 * allocate the additional extended CDB buffer now.. Otherwise
1689 * setup the pointer from __t_task_cdb to t_task_cdb.
1690 */
1691 if (scsi_command_size(cdb) > sizeof(cmd->__t_task_cdb)) {
1692 cmd->t_task_cdb = kzalloc(scsi_command_size(cdb),
1693 GFP_KERNEL);
1694 if (!cmd->t_task_cdb) {
1695 pr_err("Unable to allocate cmd->t_task_cdb"
1696 " %u > sizeof(cmd->__t_task_cdb): %lu ops\n",
1697 scsi_command_size(cdb),
1698 (unsigned long)sizeof(cmd->__t_task_cdb));
1699 return -ENOMEM;
1700 }
1701 } else
1702 cmd->t_task_cdb = &cmd->__t_task_cdb[0];
1703 /*
1704 * Copy the original CDB into cmd->
1705 */
1706 memcpy(cmd->t_task_cdb, cdb, scsi_command_size(cdb));
1707 /*
1708 * Setup the received CDB based on SCSI defined opcodes and
1709 * perform unit attention, persistent reservations and ALUA
1710 * checks for virtual device backends. The cmd->t_task_cdb
1711 * pointer is expected to be setup before we reach this point.
1712 */
1713 ret = transport_generic_cmd_sequencer(cmd, cdb);
1714 if (ret < 0)
1715 return ret;
1716 /*
1717 * Check for SAM Task Attribute Emulation
1718 */
1719 if (transport_check_alloc_task_attr(cmd) < 0) {
1720 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
1721 cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
1722 return -EINVAL;
1723 }
1724 spin_lock(&cmd->se_lun->lun_sep_lock);
1725 if (cmd->se_lun->lun_sep)
1726 cmd->se_lun->lun_sep->sep_stats.cmd_pdus++;
1727 spin_unlock(&cmd->se_lun->lun_sep_lock);
1728 return 0;
1729 }
1730 EXPORT_SYMBOL(transport_generic_allocate_tasks);
1731
1732 /*
1733 * Used by fabric module frontends not defining a TFO->new_cmd_map()
1734 * to queue up a newly setup se_cmd w/ TRANSPORT_NEW_CMD statis
1735 */
1736 int transport_generic_handle_cdb(
1737 struct se_cmd *cmd)
1738 {
1739 if (!cmd->se_lun) {
1740 dump_stack();
1741 pr_err("cmd->se_lun is NULL\n");
1742 return -EINVAL;
1743 }
1744
1745 transport_add_cmd_to_queue(cmd, TRANSPORT_NEW_CMD);
1746 return 0;
1747 }
1748 EXPORT_SYMBOL(transport_generic_handle_cdb);
1749
1750 /*
1751 * Used by fabric module frontends to queue tasks directly.
1752 * Many only be used from process context only
1753 */
1754 int transport_handle_cdb_direct(
1755 struct se_cmd *cmd)
1756 {
1757 if (!cmd->se_lun) {
1758 dump_stack();
1759 pr_err("cmd->se_lun is NULL\n");
1760 return -EINVAL;
1761 }
1762 if (in_interrupt()) {
1763 dump_stack();
1764 pr_err("transport_generic_handle_cdb cannot be called"
1765 " from interrupt context\n");
1766 return -EINVAL;
1767 }
1768
1769 return transport_generic_new_cmd(cmd);
1770 }
1771 EXPORT_SYMBOL(transport_handle_cdb_direct);
1772
1773 /*
1774 * Used by fabric module frontends defining a TFO->new_cmd_map() caller
1775 * to queue up a newly setup se_cmd w/ TRANSPORT_NEW_CMD_MAP in order to
1776 * complete setup in TCM process context w/ TFO->new_cmd_map().
1777 */
1778 int transport_generic_handle_cdb_map(
1779 struct se_cmd *cmd)
1780 {
1781 if (!cmd->se_lun) {
1782 dump_stack();
1783 pr_err("cmd->se_lun is NULL\n");
1784 return -EINVAL;
1785 }
1786
1787 transport_add_cmd_to_queue(cmd, TRANSPORT_NEW_CMD_MAP);
1788 return 0;
1789 }
1790 EXPORT_SYMBOL(transport_generic_handle_cdb_map);
1791
1792 /* transport_generic_handle_data():
1793 *
1794 *
1795 */
1796 int transport_generic_handle_data(
1797 struct se_cmd *cmd)
1798 {
1799 /*
1800 * For the software fabric case, then we assume the nexus is being
1801 * failed/shutdown when signals are pending from the kthread context
1802 * caller, so we return a failure. For the HW target mode case running
1803 * in interrupt code, the signal_pending() check is skipped.
1804 */
1805 if (!in_interrupt() && signal_pending(current))
1806 return -EPERM;
1807 /*
1808 * If the received CDB has aleady been ABORTED by the generic
1809 * target engine, we now call transport_check_aborted_status()
1810 * to queue any delated TASK_ABORTED status for the received CDB to the
1811 * fabric module as we are expecting no further incoming DATA OUT
1812 * sequences at this point.
1813 */
1814 if (transport_check_aborted_status(cmd, 1) != 0)
1815 return 0;
1816
1817 transport_add_cmd_to_queue(cmd, TRANSPORT_PROCESS_WRITE);
1818 return 0;
1819 }
1820 EXPORT_SYMBOL(transport_generic_handle_data);
1821
1822 /* transport_generic_handle_tmr():
1823 *
1824 *
1825 */
1826 int transport_generic_handle_tmr(
1827 struct se_cmd *cmd)
1828 {
1829 /*
1830 * This is needed for early exceptions.
1831 */
1832 cmd->transport_wait_for_tasks = &transport_generic_wait_for_tasks;
1833
1834 transport_add_cmd_to_queue(cmd, TRANSPORT_PROCESS_TMR);
1835 return 0;
1836 }
1837 EXPORT_SYMBOL(transport_generic_handle_tmr);
1838
1839 void transport_generic_free_cmd_intr(
1840 struct se_cmd *cmd)
1841 {
1842 transport_add_cmd_to_queue(cmd, TRANSPORT_FREE_CMD_INTR);
1843 }
1844 EXPORT_SYMBOL(transport_generic_free_cmd_intr);
1845
1846 static int transport_stop_tasks_for_cmd(struct se_cmd *cmd)
1847 {
1848 struct se_task *task, *task_tmp;
1849 unsigned long flags;
1850 int ret = 0;
1851
1852 pr_debug("ITT[0x%08x] - Stopping tasks\n",
1853 cmd->se_tfo->get_task_tag(cmd));
1854
1855 /*
1856 * No tasks remain in the execution queue
1857 */
1858 spin_lock_irqsave(&cmd->t_state_lock, flags);
1859 list_for_each_entry_safe(task, task_tmp,
1860 &cmd->t_task_list, t_list) {
1861 pr_debug("task_no[%d] - Processing task %p\n",
1862 task->task_no, task);
1863 /*
1864 * If the struct se_task has not been sent and is not active,
1865 * remove the struct se_task from the execution queue.
1866 */
1867 if (!atomic_read(&task->task_sent) &&
1868 !atomic_read(&task->task_active)) {
1869 spin_unlock_irqrestore(&cmd->t_state_lock,
1870 flags);
1871 transport_remove_task_from_execute_queue(task,
1872 task->se_dev);
1873
1874 pr_debug("task_no[%d] - Removed from execute queue\n",
1875 task->task_no);
1876 spin_lock_irqsave(&cmd->t_state_lock, flags);
1877 continue;
1878 }
1879
1880 /*
1881 * If the struct se_task is active, sleep until it is returned
1882 * from the plugin.
1883 */
1884 if (atomic_read(&task->task_active)) {
1885 atomic_set(&task->task_stop, 1);
1886 spin_unlock_irqrestore(&cmd->t_state_lock,
1887 flags);
1888
1889 pr_debug("task_no[%d] - Waiting to complete\n",
1890 task->task_no);
1891 wait_for_completion(&task->task_stop_comp);
1892 pr_debug("task_no[%d] - Stopped successfully\n",
1893 task->task_no);
1894
1895 spin_lock_irqsave(&cmd->t_state_lock, flags);
1896 atomic_dec(&cmd->t_task_cdbs_left);
1897
1898 atomic_set(&task->task_active, 0);
1899 atomic_set(&task->task_stop, 0);
1900 } else {
1901 pr_debug("task_no[%d] - Did nothing\n", task->task_no);
1902 ret++;
1903 }
1904
1905 __transport_stop_task_timer(task, &flags);
1906 }
1907 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
1908
1909 return ret;
1910 }
1911
1912 /*
1913 * Handle SAM-esque emulation for generic transport request failures.
1914 */
1915 static void transport_generic_request_failure(
1916 struct se_cmd *cmd,
1917 struct se_device *dev,
1918 int complete,
1919 int sc)
1920 {
1921 int ret = 0;
1922
1923 pr_debug("-----[ Storage Engine Exception for cmd: %p ITT: 0x%08x"
1924 " CDB: 0x%02x\n", cmd, cmd->se_tfo->get_task_tag(cmd),
1925 cmd->t_task_cdb[0]);
1926 pr_debug("-----[ i_state: %d t_state/def_t_state:"
1927 " %d/%d transport_error_status: %d\n",
1928 cmd->se_tfo->get_cmd_state(cmd),
1929 cmd->t_state, cmd->deferred_t_state,
1930 cmd->transport_error_status);
1931 pr_debug("-----[ t_tasks: %d t_task_cdbs_left: %d"
1932 " t_task_cdbs_sent: %d t_task_cdbs_ex_left: %d --"
1933 " t_transport_active: %d t_transport_stop: %d"
1934 " t_transport_sent: %d\n", cmd->t_task_list_num,
1935 atomic_read(&cmd->t_task_cdbs_left),
1936 atomic_read(&cmd->t_task_cdbs_sent),
1937 atomic_read(&cmd->t_task_cdbs_ex_left),
1938 atomic_read(&cmd->t_transport_active),
1939 atomic_read(&cmd->t_transport_stop),
1940 atomic_read(&cmd->t_transport_sent));
1941
1942 transport_stop_all_task_timers(cmd);
1943
1944 if (dev)
1945 atomic_inc(&dev->depth_left);
1946 /*
1947 * For SAM Task Attribute emulation for failed struct se_cmd
1948 */
1949 if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
1950 transport_complete_task_attr(cmd);
1951
1952 if (complete) {
1953 transport_direct_request_timeout(cmd);
1954 cmd->transport_error_status = PYX_TRANSPORT_LU_COMM_FAILURE;
1955 }
1956
1957 switch (cmd->transport_error_status) {
1958 case PYX_TRANSPORT_UNKNOWN_SAM_OPCODE:
1959 cmd->scsi_sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
1960 break;
1961 case PYX_TRANSPORT_REQ_TOO_MANY_SECTORS:
1962 cmd->scsi_sense_reason = TCM_SECTOR_COUNT_TOO_MANY;
1963 break;
1964 case PYX_TRANSPORT_INVALID_CDB_FIELD:
1965 cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
1966 break;
1967 case PYX_TRANSPORT_INVALID_PARAMETER_LIST:
1968 cmd->scsi_sense_reason = TCM_INVALID_PARAMETER_LIST;
1969 break;
1970 case PYX_TRANSPORT_OUT_OF_MEMORY_RESOURCES:
1971 if (!sc)
1972 transport_new_cmd_failure(cmd);
1973 /*
1974 * Currently for PYX_TRANSPORT_OUT_OF_MEMORY_RESOURCES,
1975 * we force this session to fall back to session
1976 * recovery.
1977 */
1978 cmd->se_tfo->fall_back_to_erl0(cmd->se_sess);
1979 cmd->se_tfo->stop_session(cmd->se_sess, 0, 0);
1980
1981 goto check_stop;
1982 case PYX_TRANSPORT_LU_COMM_FAILURE:
1983 case PYX_TRANSPORT_ILLEGAL_REQUEST:
1984 cmd->scsi_sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
1985 break;
1986 case PYX_TRANSPORT_UNKNOWN_MODE_PAGE:
1987 cmd->scsi_sense_reason = TCM_UNKNOWN_MODE_PAGE;
1988 break;
1989 case PYX_TRANSPORT_WRITE_PROTECTED:
1990 cmd->scsi_sense_reason = TCM_WRITE_PROTECTED;
1991 break;
1992 case PYX_TRANSPORT_RESERVATION_CONFLICT:
1993 /*
1994 * No SENSE Data payload for this case, set SCSI Status
1995 * and queue the response to $FABRIC_MOD.
1996 *
1997 * Uses linux/include/scsi/scsi.h SAM status codes defs
1998 */
1999 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
2000 /*
2001 * For UA Interlock Code 11b, a RESERVATION CONFLICT will
2002 * establish a UNIT ATTENTION with PREVIOUS RESERVATION
2003 * CONFLICT STATUS.
2004 *
2005 * See spc4r17, section 7.4.6 Control Mode Page, Table 349
2006 */
2007 if (cmd->se_sess &&
2008 cmd->se_dev->se_sub_dev->se_dev_attrib.emulate_ua_intlck_ctrl == 2)
2009 core_scsi3_ua_allocate(cmd->se_sess->se_node_acl,
2010 cmd->orig_fe_lun, 0x2C,
2011 ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS);
2012
2013 ret = cmd->se_tfo->queue_status(cmd);
2014 if (ret == -EAGAIN)
2015 goto queue_full;
2016 goto check_stop;
2017 case PYX_TRANSPORT_USE_SENSE_REASON:
2018 /*
2019 * struct se_cmd->scsi_sense_reason already set
2020 */
2021 break;
2022 default:
2023 pr_err("Unknown transport error for CDB 0x%02x: %d\n",
2024 cmd->t_task_cdb[0],
2025 cmd->transport_error_status);
2026 cmd->scsi_sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
2027 break;
2028 }
2029
2030 if (!sc)
2031 transport_new_cmd_failure(cmd);
2032 else {
2033 ret = transport_send_check_condition_and_sense(cmd,
2034 cmd->scsi_sense_reason, 0);
2035 if (ret == -EAGAIN)
2036 goto queue_full;
2037 }
2038
2039 check_stop:
2040 transport_lun_remove_cmd(cmd);
2041 if (!transport_cmd_check_stop_to_fabric(cmd))
2042 ;
2043 return;
2044
2045 queue_full:
2046 cmd->t_state = TRANSPORT_COMPLETE_OK;
2047 transport_handle_queue_full(cmd, cmd->se_dev, transport_complete_qf);
2048 }
2049
2050 static void transport_direct_request_timeout(struct se_cmd *cmd)
2051 {
2052 unsigned long flags;
2053
2054 spin_lock_irqsave(&cmd->t_state_lock, flags);
2055 if (!atomic_read(&cmd->t_transport_timeout)) {
2056 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2057 return;
2058 }
2059 if (atomic_read(&cmd->t_task_cdbs_timeout_left)) {
2060 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2061 return;
2062 }
2063
2064 atomic_sub(atomic_read(&cmd->t_transport_timeout),
2065 &cmd->t_se_count);
2066 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2067 }
2068
2069 static void transport_generic_request_timeout(struct se_cmd *cmd)
2070 {
2071 unsigned long flags;
2072
2073 /*
2074 * Reset cmd->t_se_count to allow transport_generic_remove()
2075 * to allow last call to free memory resources.
2076 */
2077 spin_lock_irqsave(&cmd->t_state_lock, flags);
2078 if (atomic_read(&cmd->t_transport_timeout) > 1) {
2079 int tmp = (atomic_read(&cmd->t_transport_timeout) - 1);
2080
2081 atomic_sub(tmp, &cmd->t_se_count);
2082 }
2083 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2084
2085 transport_generic_remove(cmd, 0);
2086 }
2087
2088 static inline u32 transport_lba_21(unsigned char *cdb)
2089 {
2090 return ((cdb[1] & 0x1f) << 16) | (cdb[2] << 8) | cdb[3];
2091 }
2092
2093 static inline u32 transport_lba_32(unsigned char *cdb)
2094 {
2095 return (cdb[2] << 24) | (cdb[3] << 16) | (cdb[4] << 8) | cdb[5];
2096 }
2097
2098 static inline unsigned long long transport_lba_64(unsigned char *cdb)
2099 {
2100 unsigned int __v1, __v2;
2101
2102 __v1 = (cdb[2] << 24) | (cdb[3] << 16) | (cdb[4] << 8) | cdb[5];
2103 __v2 = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9];
2104
2105 return ((unsigned long long)__v2) | (unsigned long long)__v1 << 32;
2106 }
2107
2108 /*
2109 * For VARIABLE_LENGTH_CDB w/ 32 byte extended CDBs
2110 */
2111 static inline unsigned long long transport_lba_64_ext(unsigned char *cdb)
2112 {
2113 unsigned int __v1, __v2;
2114
2115 __v1 = (cdb[12] << 24) | (cdb[13] << 16) | (cdb[14] << 8) | cdb[15];
2116 __v2 = (cdb[16] << 24) | (cdb[17] << 16) | (cdb[18] << 8) | cdb[19];
2117
2118 return ((unsigned long long)__v2) | (unsigned long long)__v1 << 32;
2119 }
2120
2121 static void transport_set_supported_SAM_opcode(struct se_cmd *se_cmd)
2122 {
2123 unsigned long flags;
2124
2125 spin_lock_irqsave(&se_cmd->t_state_lock, flags);
2126 se_cmd->se_cmd_flags |= SCF_SUPPORTED_SAM_OPCODE;
2127 spin_unlock_irqrestore(&se_cmd->t_state_lock, flags);
2128 }
2129
2130 /*
2131 * Called from interrupt context.
2132 */
2133 static void transport_task_timeout_handler(unsigned long data)
2134 {
2135 struct se_task *task = (struct se_task *)data;
2136 struct se_cmd *cmd = task->task_se_cmd;
2137 unsigned long flags;
2138
2139 pr_debug("transport task timeout fired! task: %p cmd: %p\n", task, cmd);
2140
2141 spin_lock_irqsave(&cmd->t_state_lock, flags);
2142 if (task->task_flags & TF_STOP) {
2143 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2144 return;
2145 }
2146 task->task_flags &= ~TF_RUNNING;
2147
2148 /*
2149 * Determine if transport_complete_task() has already been called.
2150 */
2151 if (!atomic_read(&task->task_active)) {
2152 pr_debug("transport task: %p cmd: %p timeout task_active"
2153 " == 0\n", task, cmd);
2154 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2155 return;
2156 }
2157
2158 atomic_inc(&cmd->t_se_count);
2159 atomic_inc(&cmd->t_transport_timeout);
2160 cmd->t_tasks_failed = 1;
2161
2162 atomic_set(&task->task_timeout, 1);
2163 task->task_error_status = PYX_TRANSPORT_TASK_TIMEOUT;
2164 task->task_scsi_status = 1;
2165
2166 if (atomic_read(&task->task_stop)) {
2167 pr_debug("transport task: %p cmd: %p timeout task_stop"
2168 " == 1\n", task, cmd);
2169 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2170 complete(&task->task_stop_comp);
2171 return;
2172 }
2173
2174 if (!atomic_dec_and_test(&cmd->t_task_cdbs_left)) {
2175 pr_debug("transport task: %p cmd: %p timeout non zero"
2176 " t_task_cdbs_left\n", task, cmd);
2177 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2178 return;
2179 }
2180 pr_debug("transport task: %p cmd: %p timeout ZERO t_task_cdbs_left\n",
2181 task, cmd);
2182
2183 cmd->t_state = TRANSPORT_COMPLETE_FAILURE;
2184 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2185
2186 transport_add_cmd_to_queue(cmd, TRANSPORT_COMPLETE_FAILURE);
2187 }
2188
2189 /*
2190 * Called with cmd->t_state_lock held.
2191 */
2192 static void transport_start_task_timer(struct se_task *task)
2193 {
2194 struct se_device *dev = task->se_dev;
2195 int timeout;
2196
2197 if (task->task_flags & TF_RUNNING)
2198 return;
2199 /*
2200 * If the task_timeout is disabled, exit now.
2201 */
2202 timeout = dev->se_sub_dev->se_dev_attrib.task_timeout;
2203 if (!timeout)
2204 return;
2205
2206 init_timer(&task->task_timer);
2207 task->task_timer.expires = (get_jiffies_64() + timeout * HZ);
2208 task->task_timer.data = (unsigned long) task;
2209 task->task_timer.function = transport_task_timeout_handler;
2210
2211 task->task_flags |= TF_RUNNING;
2212 add_timer(&task->task_timer);
2213 #if 0
2214 pr_debug("Starting task timer for cmd: %p task: %p seconds:"
2215 " %d\n", task->task_se_cmd, task, timeout);
2216 #endif
2217 }
2218
2219 /*
2220 * Called with spin_lock_irq(&cmd->t_state_lock) held.
2221 */
2222 void __transport_stop_task_timer(struct se_task *task, unsigned long *flags)
2223 {
2224 struct se_cmd *cmd = task->task_se_cmd;
2225
2226 if (!task->task_flags & TF_RUNNING)
2227 return;
2228
2229 task->task_flags |= TF_STOP;
2230 spin_unlock_irqrestore(&cmd->t_state_lock, *flags);
2231
2232 del_timer_sync(&task->task_timer);
2233
2234 spin_lock_irqsave(&cmd->t_state_lock, *flags);
2235 task->task_flags &= ~TF_RUNNING;
2236 task->task_flags &= ~TF_STOP;
2237 }
2238
2239 static void transport_stop_all_task_timers(struct se_cmd *cmd)
2240 {
2241 struct se_task *task = NULL, *task_tmp;
2242 unsigned long flags;
2243
2244 spin_lock_irqsave(&cmd->t_state_lock, flags);
2245 list_for_each_entry_safe(task, task_tmp,
2246 &cmd->t_task_list, t_list)
2247 __transport_stop_task_timer(task, &flags);
2248 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2249 }
2250
2251 static inline int transport_tcq_window_closed(struct se_device *dev)
2252 {
2253 if (dev->dev_tcq_window_closed++ <
2254 PYX_TRANSPORT_WINDOW_CLOSED_THRESHOLD) {
2255 msleep(PYX_TRANSPORT_WINDOW_CLOSED_WAIT_SHORT);
2256 } else
2257 msleep(PYX_TRANSPORT_WINDOW_CLOSED_WAIT_LONG);
2258
2259 wake_up_interruptible(&dev->dev_queue_obj.thread_wq);
2260 return 0;
2261 }
2262
2263 /*
2264 * Called from Fabric Module context from transport_execute_tasks()
2265 *
2266 * The return of this function determins if the tasks from struct se_cmd
2267 * get added to the execution queue in transport_execute_tasks(),
2268 * or are added to the delayed or ordered lists here.
2269 */
2270 static inline int transport_execute_task_attr(struct se_cmd *cmd)
2271 {
2272 if (cmd->se_dev->dev_task_attr_type != SAM_TASK_ATTR_EMULATED)
2273 return 1;
2274 /*
2275 * Check for the existence of HEAD_OF_QUEUE, and if true return 1
2276 * to allow the passed struct se_cmd list of tasks to the front of the list.
2277 */
2278 if (cmd->sam_task_attr == MSG_HEAD_TAG) {
2279 atomic_inc(&cmd->se_dev->dev_hoq_count);
2280 smp_mb__after_atomic_inc();
2281 pr_debug("Added HEAD_OF_QUEUE for CDB:"
2282 " 0x%02x, se_ordered_id: %u\n",
2283 cmd->t_task_cdb[0],
2284 cmd->se_ordered_id);
2285 return 1;
2286 } else if (cmd->sam_task_attr == MSG_ORDERED_TAG) {
2287 spin_lock(&cmd->se_dev->ordered_cmd_lock);
2288 list_add_tail(&cmd->se_ordered_node,
2289 &cmd->se_dev->ordered_cmd_list);
2290 spin_unlock(&cmd->se_dev->ordered_cmd_lock);
2291
2292 atomic_inc(&cmd->se_dev->dev_ordered_sync);
2293 smp_mb__after_atomic_inc();
2294
2295 pr_debug("Added ORDERED for CDB: 0x%02x to ordered"
2296 " list, se_ordered_id: %u\n",
2297 cmd->t_task_cdb[0],
2298 cmd->se_ordered_id);
2299 /*
2300 * Add ORDERED command to tail of execution queue if
2301 * no other older commands exist that need to be
2302 * completed first.
2303 */
2304 if (!atomic_read(&cmd->se_dev->simple_cmds))
2305 return 1;
2306 } else {
2307 /*
2308 * For SIMPLE and UNTAGGED Task Attribute commands
2309 */
2310 atomic_inc(&cmd->se_dev->simple_cmds);
2311 smp_mb__after_atomic_inc();
2312 }
2313 /*
2314 * Otherwise if one or more outstanding ORDERED task attribute exist,
2315 * add the dormant task(s) built for the passed struct se_cmd to the
2316 * execution queue and become in Active state for this struct se_device.
2317 */
2318 if (atomic_read(&cmd->se_dev->dev_ordered_sync) != 0) {
2319 /*
2320 * Otherwise, add cmd w/ tasks to delayed cmd queue that
2321 * will be drained upon completion of HEAD_OF_QUEUE task.
2322 */
2323 spin_lock(&cmd->se_dev->delayed_cmd_lock);
2324 cmd->se_cmd_flags |= SCF_DELAYED_CMD_FROM_SAM_ATTR;
2325 list_add_tail(&cmd->se_delayed_node,
2326 &cmd->se_dev->delayed_cmd_list);
2327 spin_unlock(&cmd->se_dev->delayed_cmd_lock);
2328
2329 pr_debug("Added CDB: 0x%02x Task Attr: 0x%02x to"
2330 " delayed CMD list, se_ordered_id: %u\n",
2331 cmd->t_task_cdb[0], cmd->sam_task_attr,
2332 cmd->se_ordered_id);
2333 /*
2334 * Return zero to let transport_execute_tasks() know
2335 * not to add the delayed tasks to the execution list.
2336 */
2337 return 0;
2338 }
2339 /*
2340 * Otherwise, no ORDERED task attributes exist..
2341 */
2342 return 1;
2343 }
2344
2345 /*
2346 * Called from fabric module context in transport_generic_new_cmd() and
2347 * transport_generic_process_write()
2348 */
2349 static int transport_execute_tasks(struct se_cmd *cmd)
2350 {
2351 int add_tasks;
2352
2353 if (se_dev_check_online(cmd->se_orig_obj_ptr) != 0) {
2354 cmd->transport_error_status = PYX_TRANSPORT_LU_COMM_FAILURE;
2355 transport_generic_request_failure(cmd, NULL, 0, 1);
2356 return 0;
2357 }
2358
2359 /*
2360 * Call transport_cmd_check_stop() to see if a fabric exception
2361 * has occurred that prevents execution.
2362 */
2363 if (!transport_cmd_check_stop(cmd, 0, TRANSPORT_PROCESSING)) {
2364 /*
2365 * Check for SAM Task Attribute emulation and HEAD_OF_QUEUE
2366 * attribute for the tasks of the received struct se_cmd CDB
2367 */
2368 add_tasks = transport_execute_task_attr(cmd);
2369 if (!add_tasks)
2370 goto execute_tasks;
2371 /*
2372 * This calls transport_add_tasks_from_cmd() to handle
2373 * HEAD_OF_QUEUE ordering for SAM Task Attribute emulation
2374 * (if enabled) in __transport_add_task_to_execute_queue() and
2375 * transport_add_task_check_sam_attr().
2376 */
2377 transport_add_tasks_from_cmd(cmd);
2378 }
2379 /*
2380 * Kick the execution queue for the cmd associated struct se_device
2381 * storage object.
2382 */
2383 execute_tasks:
2384 __transport_execute_tasks(cmd->se_dev);
2385 return 0;
2386 }
2387
2388 /*
2389 * Called to check struct se_device tcq depth window, and once open pull struct se_task
2390 * from struct se_device->execute_task_list and
2391 *
2392 * Called from transport_processing_thread()
2393 */
2394 static int __transport_execute_tasks(struct se_device *dev)
2395 {
2396 int error;
2397 struct se_cmd *cmd = NULL;
2398 struct se_task *task = NULL;
2399 unsigned long flags;
2400
2401 /*
2402 * Check if there is enough room in the device and HBA queue to send
2403 * struct se_tasks to the selected transport.
2404 */
2405 check_depth:
2406 if (!atomic_read(&dev->depth_left))
2407 return transport_tcq_window_closed(dev);
2408
2409 dev->dev_tcq_window_closed = 0;
2410
2411 spin_lock_irq(&dev->execute_task_lock);
2412 if (list_empty(&dev->execute_task_list)) {
2413 spin_unlock_irq(&dev->execute_task_lock);
2414 return 0;
2415 }
2416 task = list_first_entry(&dev->execute_task_list,
2417 struct se_task, t_execute_list);
2418 list_del(&task->t_execute_list);
2419 atomic_set(&task->task_execute_queue, 0);
2420 atomic_dec(&dev->execute_tasks);
2421 spin_unlock_irq(&dev->execute_task_lock);
2422
2423 atomic_dec(&dev->depth_left);
2424
2425 cmd = task->task_se_cmd;
2426
2427 spin_lock_irqsave(&cmd->t_state_lock, flags);
2428 atomic_set(&task->task_active, 1);
2429 atomic_set(&task->task_sent, 1);
2430 atomic_inc(&cmd->t_task_cdbs_sent);
2431
2432 if (atomic_read(&cmd->t_task_cdbs_sent) ==
2433 cmd->t_task_list_num)
2434 atomic_set(&cmd->transport_sent, 1);
2435
2436 transport_start_task_timer(task);
2437 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2438 /*
2439 * The struct se_cmd->transport_emulate_cdb() function pointer is used
2440 * to grab REPORT_LUNS and other CDBs we want to handle before they hit the
2441 * struct se_subsystem_api->do_task() caller below.
2442 */
2443 if (cmd->transport_emulate_cdb) {
2444 error = cmd->transport_emulate_cdb(cmd);
2445 if (error != 0) {
2446 cmd->transport_error_status = error;
2447 atomic_set(&task->task_active, 0);
2448 atomic_set(&cmd->transport_sent, 0);
2449 transport_stop_tasks_for_cmd(cmd);
2450 transport_generic_request_failure(cmd, dev, 0, 1);
2451 goto check_depth;
2452 }
2453 /*
2454 * Handle the successful completion for transport_emulate_cdb()
2455 * for synchronous operation, following SCF_EMULATE_CDB_ASYNC
2456 * Otherwise the caller is expected to complete the task with
2457 * proper status.
2458 */
2459 if (!(cmd->se_cmd_flags & SCF_EMULATE_CDB_ASYNC)) {
2460 cmd->scsi_status = SAM_STAT_GOOD;
2461 task->task_scsi_status = GOOD;
2462 transport_complete_task(task, 1);
2463 }
2464 } else {
2465 /*
2466 * Currently for all virtual TCM plugins including IBLOCK, FILEIO and
2467 * RAMDISK we use the internal transport_emulate_control_cdb() logic
2468 * with struct se_subsystem_api callers for the primary SPC-3 TYPE_DISK
2469 * LUN emulation code.
2470 *
2471 * For TCM/pSCSI and all other SCF_SCSI_DATA_SG_IO_CDB I/O tasks we
2472 * call ->do_task() directly and let the underlying TCM subsystem plugin
2473 * code handle the CDB emulation.
2474 */
2475 if ((dev->transport->transport_type != TRANSPORT_PLUGIN_PHBA_PDEV) &&
2476 (!(task->task_se_cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB)))
2477 error = transport_emulate_control_cdb(task);
2478 else
2479 error = dev->transport->do_task(task);
2480
2481 if (error != 0) {
2482 cmd->transport_error_status = error;
2483 atomic_set(&task->task_active, 0);
2484 atomic_set(&cmd->transport_sent, 0);
2485 transport_stop_tasks_for_cmd(cmd);
2486 transport_generic_request_failure(cmd, dev, 0, 1);
2487 }
2488 }
2489
2490 goto check_depth;
2491
2492 return 0;
2493 }
2494
2495 void transport_new_cmd_failure(struct se_cmd *se_cmd)
2496 {
2497 unsigned long flags;
2498 /*
2499 * Any unsolicited data will get dumped for failed command inside of
2500 * the fabric plugin
2501 */
2502 spin_lock_irqsave(&se_cmd->t_state_lock, flags);
2503 se_cmd->se_cmd_flags |= SCF_SE_CMD_FAILED;
2504 se_cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2505 spin_unlock_irqrestore(&se_cmd->t_state_lock, flags);
2506 }
2507
2508 static void transport_nop_wait_for_tasks(struct se_cmd *, int, int);
2509
2510 static inline u32 transport_get_sectors_6(
2511 unsigned char *cdb,
2512 struct se_cmd *cmd,
2513 int *ret)
2514 {
2515 struct se_device *dev = cmd->se_dev;
2516
2517 /*
2518 * Assume TYPE_DISK for non struct se_device objects.
2519 * Use 8-bit sector value.
2520 */
2521 if (!dev)
2522 goto type_disk;
2523
2524 /*
2525 * Use 24-bit allocation length for TYPE_TAPE.
2526 */
2527 if (dev->transport->get_device_type(dev) == TYPE_TAPE)
2528 return (u32)(cdb[2] << 16) + (cdb[3] << 8) + cdb[4];
2529
2530 /*
2531 * Everything else assume TYPE_DISK Sector CDB location.
2532 * Use 8-bit sector value.
2533 */
2534 type_disk:
2535 return (u32)cdb[4];
2536 }
2537
2538 static inline u32 transport_get_sectors_10(
2539 unsigned char *cdb,
2540 struct se_cmd *cmd,
2541 int *ret)
2542 {
2543 struct se_device *dev = cmd->se_dev;
2544
2545 /*
2546 * Assume TYPE_DISK for non struct se_device objects.
2547 * Use 16-bit sector value.
2548 */
2549 if (!dev)
2550 goto type_disk;
2551
2552 /*
2553 * XXX_10 is not defined in SSC, throw an exception
2554 */
2555 if (dev->transport->get_device_type(dev) == TYPE_TAPE) {
2556 *ret = -EINVAL;
2557 return 0;
2558 }
2559
2560 /*
2561 * Everything else assume TYPE_DISK Sector CDB location.
2562 * Use 16-bit sector value.
2563 */
2564 type_disk:
2565 return (u32)(cdb[7] << 8) + cdb[8];
2566 }
2567
2568 static inline u32 transport_get_sectors_12(
2569 unsigned char *cdb,
2570 struct se_cmd *cmd,
2571 int *ret)
2572 {
2573 struct se_device *dev = cmd->se_dev;
2574
2575 /*
2576 * Assume TYPE_DISK for non struct se_device objects.
2577 * Use 32-bit sector value.
2578 */
2579 if (!dev)
2580 goto type_disk;
2581
2582 /*
2583 * XXX_12 is not defined in SSC, throw an exception
2584 */
2585 if (dev->transport->get_device_type(dev) == TYPE_TAPE) {
2586 *ret = -EINVAL;
2587 return 0;
2588 }
2589
2590 /*
2591 * Everything else assume TYPE_DISK Sector CDB location.
2592 * Use 32-bit sector value.
2593 */
2594 type_disk:
2595 return (u32)(cdb[6] << 24) + (cdb[7] << 16) + (cdb[8] << 8) + cdb[9];
2596 }
2597
2598 static inline u32 transport_get_sectors_16(
2599 unsigned char *cdb,
2600 struct se_cmd *cmd,
2601 int *ret)
2602 {
2603 struct se_device *dev = cmd->se_dev;
2604
2605 /*
2606 * Assume TYPE_DISK for non struct se_device objects.
2607 * Use 32-bit sector value.
2608 */
2609 if (!dev)
2610 goto type_disk;
2611
2612 /*
2613 * Use 24-bit allocation length for TYPE_TAPE.
2614 */
2615 if (dev->transport->get_device_type(dev) == TYPE_TAPE)
2616 return (u32)(cdb[12] << 16) + (cdb[13] << 8) + cdb[14];
2617
2618 type_disk:
2619 return (u32)(cdb[10] << 24) + (cdb[11] << 16) +
2620 (cdb[12] << 8) + cdb[13];
2621 }
2622
2623 /*
2624 * Used for VARIABLE_LENGTH_CDB WRITE_32 and READ_32 variants
2625 */
2626 static inline u32 transport_get_sectors_32(
2627 unsigned char *cdb,
2628 struct se_cmd *cmd,
2629 int *ret)
2630 {
2631 /*
2632 * Assume TYPE_DISK for non struct se_device objects.
2633 * Use 32-bit sector value.
2634 */
2635 return (u32)(cdb[28] << 24) + (cdb[29] << 16) +
2636 (cdb[30] << 8) + cdb[31];
2637
2638 }
2639
2640 static inline u32 transport_get_size(
2641 u32 sectors,
2642 unsigned char *cdb,
2643 struct se_cmd *cmd)
2644 {
2645 struct se_device *dev = cmd->se_dev;
2646
2647 if (dev->transport->get_device_type(dev) == TYPE_TAPE) {
2648 if (cdb[1] & 1) { /* sectors */
2649 return dev->se_sub_dev->se_dev_attrib.block_size * sectors;
2650 } else /* bytes */
2651 return sectors;
2652 }
2653 #if 0
2654 pr_debug("Returning block_size: %u, sectors: %u == %u for"
2655 " %s object\n", dev->se_sub_dev->se_dev_attrib.block_size, sectors,
2656 dev->se_sub_dev->se_dev_attrib.block_size * sectors,
2657 dev->transport->name);
2658 #endif
2659 return dev->se_sub_dev->se_dev_attrib.block_size * sectors;
2660 }
2661
2662 static void transport_xor_callback(struct se_cmd *cmd)
2663 {
2664 unsigned char *buf, *addr;
2665 struct scatterlist *sg;
2666 unsigned int offset;
2667 int i;
2668 int count;
2669 /*
2670 * From sbc3r22.pdf section 5.48 XDWRITEREAD (10) command
2671 *
2672 * 1) read the specified logical block(s);
2673 * 2) transfer logical blocks from the data-out buffer;
2674 * 3) XOR the logical blocks transferred from the data-out buffer with
2675 * the logical blocks read, storing the resulting XOR data in a buffer;
2676 * 4) if the DISABLE WRITE bit is set to zero, then write the logical
2677 * blocks transferred from the data-out buffer; and
2678 * 5) transfer the resulting XOR data to the data-in buffer.
2679 */
2680 buf = kmalloc(cmd->data_length, GFP_KERNEL);
2681 if (!buf) {
2682 pr_err("Unable to allocate xor_callback buf\n");
2683 return;
2684 }
2685 /*
2686 * Copy the scatterlist WRITE buffer located at cmd->t_data_sg
2687 * into the locally allocated *buf
2688 */
2689 sg_copy_to_buffer(cmd->t_data_sg,
2690 cmd->t_data_nents,
2691 buf,
2692 cmd->data_length);
2693
2694 /*
2695 * Now perform the XOR against the BIDI read memory located at
2696 * cmd->t_mem_bidi_list
2697 */
2698
2699 offset = 0;
2700 for_each_sg(cmd->t_bidi_data_sg, sg, cmd->t_bidi_data_nents, count) {
2701 addr = kmap_atomic(sg_page(sg), KM_USER0);
2702 if (!addr)
2703 goto out;
2704
2705 for (i = 0; i < sg->length; i++)
2706 *(addr + sg->offset + i) ^= *(buf + offset + i);
2707
2708 offset += sg->length;
2709 kunmap_atomic(addr, KM_USER0);
2710 }
2711
2712 out:
2713 kfree(buf);
2714 }
2715
2716 /*
2717 * Used to obtain Sense Data from underlying Linux/SCSI struct scsi_cmnd
2718 */
2719 static int transport_get_sense_data(struct se_cmd *cmd)
2720 {
2721 unsigned char *buffer = cmd->sense_buffer, *sense_buffer = NULL;
2722 struct se_device *dev;
2723 struct se_task *task = NULL, *task_tmp;
2724 unsigned long flags;
2725 u32 offset = 0;
2726
2727 WARN_ON(!cmd->se_lun);
2728
2729 spin_lock_irqsave(&cmd->t_state_lock, flags);
2730 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
2731 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2732 return 0;
2733 }
2734
2735 list_for_each_entry_safe(task, task_tmp,
2736 &cmd->t_task_list, t_list) {
2737
2738 if (!task->task_sense)
2739 continue;
2740
2741 dev = task->se_dev;
2742 if (!dev)
2743 continue;
2744
2745 if (!dev->transport->get_sense_buffer) {
2746 pr_err("dev->transport->get_sense_buffer"
2747 " is NULL\n");
2748 continue;
2749 }
2750
2751 sense_buffer = dev->transport->get_sense_buffer(task);
2752 if (!sense_buffer) {
2753 pr_err("ITT[0x%08x]_TASK[%d]: Unable to locate"
2754 " sense buffer for task with sense\n",
2755 cmd->se_tfo->get_task_tag(cmd), task->task_no);
2756 continue;
2757 }
2758 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2759
2760 offset = cmd->se_tfo->set_fabric_sense_len(cmd,
2761 TRANSPORT_SENSE_BUFFER);
2762
2763 memcpy(&buffer[offset], sense_buffer,
2764 TRANSPORT_SENSE_BUFFER);
2765 cmd->scsi_status = task->task_scsi_status;
2766 /* Automatically padded */
2767 cmd->scsi_sense_length =
2768 (TRANSPORT_SENSE_BUFFER + offset);
2769
2770 pr_debug("HBA_[%u]_PLUG[%s]: Set SAM STATUS: 0x%02x"
2771 " and sense\n",
2772 dev->se_hba->hba_id, dev->transport->name,
2773 cmd->scsi_status);
2774 return 0;
2775 }
2776 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2777
2778 return -1;
2779 }
2780
2781 static int
2782 transport_handle_reservation_conflict(struct se_cmd *cmd)
2783 {
2784 cmd->transport_wait_for_tasks = &transport_nop_wait_for_tasks;
2785 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2786 cmd->se_cmd_flags |= SCF_SCSI_RESERVATION_CONFLICT;
2787 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
2788 /*
2789 * For UA Interlock Code 11b, a RESERVATION CONFLICT will
2790 * establish a UNIT ATTENTION with PREVIOUS RESERVATION
2791 * CONFLICT STATUS.
2792 *
2793 * See spc4r17, section 7.4.6 Control Mode Page, Table 349
2794 */
2795 if (cmd->se_sess &&
2796 cmd->se_dev->se_sub_dev->se_dev_attrib.emulate_ua_intlck_ctrl == 2)
2797 core_scsi3_ua_allocate(cmd->se_sess->se_node_acl,
2798 cmd->orig_fe_lun, 0x2C,
2799 ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS);
2800 return -EINVAL;
2801 }
2802
2803 static inline long long transport_dev_end_lba(struct se_device *dev)
2804 {
2805 return dev->transport->get_blocks(dev) + 1;
2806 }
2807
2808 static int transport_cmd_get_valid_sectors(struct se_cmd *cmd)
2809 {
2810 struct se_device *dev = cmd->se_dev;
2811 u32 sectors;
2812
2813 if (dev->transport->get_device_type(dev) != TYPE_DISK)
2814 return 0;
2815
2816 sectors = (cmd->data_length / dev->se_sub_dev->se_dev_attrib.block_size);
2817
2818 if ((cmd->t_task_lba + sectors) > transport_dev_end_lba(dev)) {
2819 pr_err("LBA: %llu Sectors: %u exceeds"
2820 " transport_dev_end_lba(): %llu\n",
2821 cmd->t_task_lba, sectors,
2822 transport_dev_end_lba(dev));
2823 pr_err(" We should return CHECK_CONDITION"
2824 " but we don't yet\n");
2825 return 0;
2826 }
2827
2828 return sectors;
2829 }
2830
2831 /* transport_generic_cmd_sequencer():
2832 *
2833 * Generic Command Sequencer that should work for most DAS transport
2834 * drivers.
2835 *
2836 * Called from transport_generic_allocate_tasks() in the $FABRIC_MOD
2837 * RX Thread.
2838 *
2839 * FIXME: Need to support other SCSI OPCODES where as well.
2840 */
2841 static int transport_generic_cmd_sequencer(
2842 struct se_cmd *cmd,
2843 unsigned char *cdb)
2844 {
2845 struct se_device *dev = cmd->se_dev;
2846 struct se_subsystem_dev *su_dev = dev->se_sub_dev;
2847 int ret = 0, sector_ret = 0, passthrough;
2848 u32 sectors = 0, size = 0, pr_reg_type = 0;
2849 u16 service_action;
2850 u8 alua_ascq = 0;
2851 /*
2852 * Check for an existing UNIT ATTENTION condition
2853 */
2854 if (core_scsi3_ua_check(cmd, cdb) < 0) {
2855 cmd->transport_wait_for_tasks =
2856 &transport_nop_wait_for_tasks;
2857 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2858 cmd->scsi_sense_reason = TCM_CHECK_CONDITION_UNIT_ATTENTION;
2859 return -EINVAL;
2860 }
2861 /*
2862 * Check status of Asymmetric Logical Unit Assignment port
2863 */
2864 ret = su_dev->t10_alua.alua_state_check(cmd, cdb, &alua_ascq);
2865 if (ret != 0) {
2866 cmd->transport_wait_for_tasks = &transport_nop_wait_for_tasks;
2867 /*
2868 * Set SCSI additional sense code (ASC) to 'LUN Not Accessible';
2869 * The ALUA additional sense code qualifier (ASCQ) is determined
2870 * by the ALUA primary or secondary access state..
2871 */
2872 if (ret > 0) {
2873 #if 0
2874 pr_debug("[%s]: ALUA TG Port not available,"
2875 " SenseKey: NOT_READY, ASC/ASCQ: 0x04/0x%02x\n",
2876 cmd->se_tfo->get_fabric_name(), alua_ascq);
2877 #endif
2878 transport_set_sense_codes(cmd, 0x04, alua_ascq);
2879 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2880 cmd->scsi_sense_reason = TCM_CHECK_CONDITION_NOT_READY;
2881 return -EINVAL;
2882 }
2883 goto out_invalid_cdb_field;
2884 }
2885 /*
2886 * Check status for SPC-3 Persistent Reservations
2887 */
2888 if (su_dev->t10_pr.pr_ops.t10_reservation_check(cmd, &pr_reg_type) != 0) {
2889 if (su_dev->t10_pr.pr_ops.t10_seq_non_holder(
2890 cmd, cdb, pr_reg_type) != 0)
2891 return transport_handle_reservation_conflict(cmd);
2892 /*
2893 * This means the CDB is allowed for the SCSI Initiator port
2894 * when said port is *NOT* holding the legacy SPC-2 or
2895 * SPC-3 Persistent Reservation.
2896 */
2897 }
2898
2899 switch (cdb[0]) {
2900 case READ_6:
2901 sectors = transport_get_sectors_6(cdb, cmd, &sector_ret);
2902 if (sector_ret)
2903 goto out_unsupported_cdb;
2904 size = transport_get_size(sectors, cdb, cmd);
2905 cmd->transport_split_cdb = &split_cdb_XX_6;
2906 cmd->t_task_lba = transport_lba_21(cdb);
2907 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2908 break;
2909 case READ_10:
2910 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
2911 if (sector_ret)
2912 goto out_unsupported_cdb;
2913 size = transport_get_size(sectors, cdb, cmd);
2914 cmd->transport_split_cdb = &split_cdb_XX_10;
2915 cmd->t_task_lba = transport_lba_32(cdb);
2916 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2917 break;
2918 case READ_12:
2919 sectors = transport_get_sectors_12(cdb, cmd, &sector_ret);
2920 if (sector_ret)
2921 goto out_unsupported_cdb;
2922 size = transport_get_size(sectors, cdb, cmd);
2923 cmd->transport_split_cdb = &split_cdb_XX_12;
2924 cmd->t_task_lba = transport_lba_32(cdb);
2925 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2926 break;
2927 case READ_16:
2928 sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
2929 if (sector_ret)
2930 goto out_unsupported_cdb;
2931 size = transport_get_size(sectors, cdb, cmd);
2932 cmd->transport_split_cdb = &split_cdb_XX_16;
2933 cmd->t_task_lba = transport_lba_64(cdb);
2934 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2935 break;
2936 case WRITE_6:
2937 sectors = transport_get_sectors_6(cdb, cmd, &sector_ret);
2938 if (sector_ret)
2939 goto out_unsupported_cdb;
2940 size = transport_get_size(sectors, cdb, cmd);
2941 cmd->transport_split_cdb = &split_cdb_XX_6;
2942 cmd->t_task_lba = transport_lba_21(cdb);
2943 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2944 break;
2945 case WRITE_10:
2946 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
2947 if (sector_ret)
2948 goto out_unsupported_cdb;
2949 size = transport_get_size(sectors, cdb, cmd);
2950 cmd->transport_split_cdb = &split_cdb_XX_10;
2951 cmd->t_task_lba = transport_lba_32(cdb);
2952 cmd->t_tasks_fua = (cdb[1] & 0x8);
2953 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2954 break;
2955 case WRITE_12:
2956 sectors = transport_get_sectors_12(cdb, cmd, &sector_ret);
2957 if (sector_ret)
2958 goto out_unsupported_cdb;
2959 size = transport_get_size(sectors, cdb, cmd);
2960 cmd->transport_split_cdb = &split_cdb_XX_12;
2961 cmd->t_task_lba = transport_lba_32(cdb);
2962 cmd->t_tasks_fua = (cdb[1] & 0x8);
2963 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2964 break;
2965 case WRITE_16:
2966 sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
2967 if (sector_ret)
2968 goto out_unsupported_cdb;
2969 size = transport_get_size(sectors, cdb, cmd);
2970 cmd->transport_split_cdb = &split_cdb_XX_16;
2971 cmd->t_task_lba = transport_lba_64(cdb);
2972 cmd->t_tasks_fua = (cdb[1] & 0x8);
2973 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2974 break;
2975 case XDWRITEREAD_10:
2976 if ((cmd->data_direction != DMA_TO_DEVICE) ||
2977 !(cmd->t_tasks_bidi))
2978 goto out_invalid_cdb_field;
2979 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
2980 if (sector_ret)
2981 goto out_unsupported_cdb;
2982 size = transport_get_size(sectors, cdb, cmd);
2983 cmd->transport_split_cdb = &split_cdb_XX_10;
2984 cmd->t_task_lba = transport_lba_32(cdb);
2985 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2986 passthrough = (dev->transport->transport_type ==
2987 TRANSPORT_PLUGIN_PHBA_PDEV);
2988 /*
2989 * Skip the remaining assignments for TCM/PSCSI passthrough
2990 */
2991 if (passthrough)
2992 break;
2993 /*
2994 * Setup BIDI XOR callback to be run during transport_generic_complete_ok()
2995 */
2996 cmd->transport_complete_callback = &transport_xor_callback;
2997 cmd->t_tasks_fua = (cdb[1] & 0x8);
2998 break;
2999 case VARIABLE_LENGTH_CMD:
3000 service_action = get_unaligned_be16(&cdb[8]);
3001 /*
3002 * Determine if this is TCM/PSCSI device and we should disable
3003 * internal emulation for this CDB.
3004 */
3005 passthrough = (dev->transport->transport_type ==
3006 TRANSPORT_PLUGIN_PHBA_PDEV);
3007
3008 switch (service_action) {
3009 case XDWRITEREAD_32:
3010 sectors = transport_get_sectors_32(cdb, cmd, &sector_ret);
3011 if (sector_ret)
3012 goto out_unsupported_cdb;
3013 size = transport_get_size(sectors, cdb, cmd);
3014 /*
3015 * Use WRITE_32 and READ_32 opcodes for the emulated
3016 * XDWRITE_READ_32 logic.
3017 */
3018 cmd->transport_split_cdb = &split_cdb_XX_32;
3019 cmd->t_task_lba = transport_lba_64_ext(cdb);
3020 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
3021
3022 /*
3023 * Skip the remaining assignments for TCM/PSCSI passthrough
3024 */
3025 if (passthrough)
3026 break;
3027
3028 /*
3029 * Setup BIDI XOR callback to be run during
3030 * transport_generic_complete_ok()
3031 */
3032 cmd->transport_complete_callback = &transport_xor_callback;
3033 cmd->t_tasks_fua = (cdb[10] & 0x8);
3034 break;
3035 case WRITE_SAME_32:
3036 sectors = transport_get_sectors_32(cdb, cmd, &sector_ret);
3037 if (sector_ret)
3038 goto out_unsupported_cdb;
3039
3040 if (sectors)
3041 size = transport_get_size(sectors, cdb, cmd);
3042 else {
3043 pr_err("WSNZ=1, WRITE_SAME w/sectors=0 not"
3044 " supported\n");
3045 goto out_invalid_cdb_field;
3046 }
3047
3048 cmd->t_task_lba = get_unaligned_be64(&cdb[12]);
3049 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3050
3051 /*
3052 * Skip the remaining assignments for TCM/PSCSI passthrough
3053 */
3054 if (passthrough)
3055 break;
3056
3057 if ((cdb[10] & 0x04) || (cdb[10] & 0x02)) {
3058 pr_err("WRITE_SAME PBDATA and LBDATA"
3059 " bits not supported for Block Discard"
3060 " Emulation\n");
3061 goto out_invalid_cdb_field;
3062 }
3063 /*
3064 * Currently for the emulated case we only accept
3065 * tpws with the UNMAP=1 bit set.
3066 */
3067 if (!(cdb[10] & 0x08)) {
3068 pr_err("WRITE_SAME w/o UNMAP bit not"
3069 " supported for Block Discard Emulation\n");
3070 goto out_invalid_cdb_field;
3071 }
3072 break;
3073 default:
3074 pr_err("VARIABLE_LENGTH_CMD service action"
3075 " 0x%04x not supported\n", service_action);
3076 goto out_unsupported_cdb;
3077 }
3078 break;
3079 case MAINTENANCE_IN:
3080 if (dev->transport->get_device_type(dev) != TYPE_ROM) {
3081 /* MAINTENANCE_IN from SCC-2 */
3082 /*
3083 * Check for emulated MI_REPORT_TARGET_PGS.
3084 */
3085 if (cdb[1] == MI_REPORT_TARGET_PGS) {
3086 cmd->transport_emulate_cdb =
3087 (su_dev->t10_alua.alua_type ==
3088 SPC3_ALUA_EMULATED) ?
3089 core_emulate_report_target_port_groups :
3090 NULL;
3091 }
3092 size = (cdb[6] << 24) | (cdb[7] << 16) |
3093 (cdb[8] << 8) | cdb[9];
3094 } else {
3095 /* GPCMD_SEND_KEY from multi media commands */
3096 size = (cdb[8] << 8) + cdb[9];
3097 }
3098 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3099 break;
3100 case MODE_SELECT:
3101 size = cdb[4];
3102 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3103 break;
3104 case MODE_SELECT_10:
3105 size = (cdb[7] << 8) + cdb[8];
3106 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3107 break;
3108 case MODE_SENSE:
3109 size = cdb[4];
3110 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3111 break;
3112 case MODE_SENSE_10:
3113 case GPCMD_READ_BUFFER_CAPACITY:
3114 case GPCMD_SEND_OPC:
3115 case LOG_SELECT:
3116 case LOG_SENSE:
3117 size = (cdb[7] << 8) + cdb[8];
3118 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3119 break;
3120 case READ_BLOCK_LIMITS:
3121 size = READ_BLOCK_LEN;
3122 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3123 break;
3124 case GPCMD_GET_CONFIGURATION:
3125 case GPCMD_READ_FORMAT_CAPACITIES:
3126 case GPCMD_READ_DISC_INFO:
3127 case GPCMD_READ_TRACK_RZONE_INFO:
3128 size = (cdb[7] << 8) + cdb[8];
3129 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3130 break;
3131 case PERSISTENT_RESERVE_IN:
3132 case PERSISTENT_RESERVE_OUT:
3133 cmd->transport_emulate_cdb =
3134 (su_dev->t10_pr.res_type ==
3135 SPC3_PERSISTENT_RESERVATIONS) ?
3136 core_scsi3_emulate_pr : NULL;
3137 size = (cdb[7] << 8) + cdb[8];
3138 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3139 break;
3140 case GPCMD_MECHANISM_STATUS:
3141 case GPCMD_READ_DVD_STRUCTURE:
3142 size = (cdb[8] << 8) + cdb[9];
3143 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3144 break;
3145 case READ_POSITION:
3146 size = READ_POSITION_LEN;
3147 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3148 break;
3149 case MAINTENANCE_OUT:
3150 if (dev->transport->get_device_type(dev) != TYPE_ROM) {
3151 /* MAINTENANCE_OUT from SCC-2
3152 *
3153 * Check for emulated MO_SET_TARGET_PGS.
3154 */
3155 if (cdb[1] == MO_SET_TARGET_PGS) {
3156 cmd->transport_emulate_cdb =
3157 (su_dev->t10_alua.alua_type ==
3158 SPC3_ALUA_EMULATED) ?
3159 core_emulate_set_target_port_groups :
3160 NULL;
3161 }
3162
3163 size = (cdb[6] << 24) | (cdb[7] << 16) |
3164 (cdb[8] << 8) | cdb[9];
3165 } else {
3166 /* GPCMD_REPORT_KEY from multi media commands */
3167 size = (cdb[8] << 8) + cdb[9];
3168 }
3169 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3170 break;
3171 case INQUIRY:
3172 size = (cdb[3] << 8) + cdb[4];
3173 /*
3174 * Do implict HEAD_OF_QUEUE processing for INQUIRY.
3175 * See spc4r17 section 5.3
3176 */
3177 if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
3178 cmd->sam_task_attr = MSG_HEAD_TAG;
3179 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3180 break;
3181 case READ_BUFFER:
3182 size = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8];
3183 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3184 break;
3185 case READ_CAPACITY:
3186 size = READ_CAP_LEN;
3187 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3188 break;
3189 case READ_MEDIA_SERIAL_NUMBER:
3190 case SECURITY_PROTOCOL_IN:
3191 case SECURITY_PROTOCOL_OUT:
3192 size = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9];
3193 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3194 break;
3195 case SERVICE_ACTION_IN:
3196 case ACCESS_CONTROL_IN:
3197 case ACCESS_CONTROL_OUT:
3198 case EXTENDED_COPY:
3199 case READ_ATTRIBUTE:
3200 case RECEIVE_COPY_RESULTS:
3201 case WRITE_ATTRIBUTE:
3202 size = (cdb[10] << 24) | (cdb[11] << 16) |
3203 (cdb[12] << 8) | cdb[13];
3204 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3205 break;
3206 case RECEIVE_DIAGNOSTIC:
3207 case SEND_DIAGNOSTIC:
3208 size = (cdb[3] << 8) | cdb[4];
3209 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3210 break;
3211 /* #warning FIXME: Figure out correct GPCMD_READ_CD blocksize. */
3212 #if 0
3213 case GPCMD_READ_CD:
3214 sectors = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8];
3215 size = (2336 * sectors);
3216 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3217 break;
3218 #endif
3219 case READ_TOC:
3220 size = cdb[8];
3221 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3222 break;
3223 case REQUEST_SENSE:
3224 size = cdb[4];
3225 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3226 break;
3227 case READ_ELEMENT_STATUS:
3228 size = 65536 * cdb[7] + 256 * cdb[8] + cdb[9];
3229 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3230 break;
3231 case WRITE_BUFFER:
3232 size = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8];
3233 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3234 break;
3235 case RESERVE:
3236 case RESERVE_10:
3237 /*
3238 * The SPC-2 RESERVE does not contain a size in the SCSI CDB.
3239 * Assume the passthrough or $FABRIC_MOD will tell us about it.
3240 */
3241 if (cdb[0] == RESERVE_10)
3242 size = (cdb[7] << 8) | cdb[8];
3243 else
3244 size = cmd->data_length;
3245
3246 /*
3247 * Setup the legacy emulated handler for SPC-2 and
3248 * >= SPC-3 compatible reservation handling (CRH=1)
3249 * Otherwise, we assume the underlying SCSI logic is
3250 * is running in SPC_PASSTHROUGH, and wants reservations
3251 * emulation disabled.
3252 */
3253 cmd->transport_emulate_cdb =
3254 (su_dev->t10_pr.res_type !=
3255 SPC_PASSTHROUGH) ?
3256 core_scsi2_emulate_crh : NULL;
3257 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
3258 break;
3259 case RELEASE:
3260 case RELEASE_10:
3261 /*
3262 * The SPC-2 RELEASE does not contain a size in the SCSI CDB.
3263 * Assume the passthrough or $FABRIC_MOD will tell us about it.
3264 */
3265 if (cdb[0] == RELEASE_10)
3266 size = (cdb[7] << 8) | cdb[8];
3267 else
3268 size = cmd->data_length;
3269
3270 cmd->transport_emulate_cdb =
3271 (su_dev->t10_pr.res_type !=
3272 SPC_PASSTHROUGH) ?
3273 core_scsi2_emulate_crh : NULL;
3274 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
3275 break;
3276 case SYNCHRONIZE_CACHE:
3277 case 0x91: /* SYNCHRONIZE_CACHE_16: */
3278 /*
3279 * Extract LBA and range to be flushed for emulated SYNCHRONIZE_CACHE
3280 */
3281 if (cdb[0] == SYNCHRONIZE_CACHE) {
3282 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
3283 cmd->t_task_lba = transport_lba_32(cdb);
3284 } else {
3285 sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
3286 cmd->t_task_lba = transport_lba_64(cdb);
3287 }
3288 if (sector_ret)
3289 goto out_unsupported_cdb;
3290
3291 size = transport_get_size(sectors, cdb, cmd);
3292 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
3293
3294 /*
3295 * For TCM/pSCSI passthrough, skip cmd->transport_emulate_cdb()
3296 */
3297 if (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV)
3298 break;
3299 /*
3300 * Set SCF_EMULATE_CDB_ASYNC to ensure asynchronous operation
3301 * for SYNCHRONIZE_CACHE* Immed=1 case in __transport_execute_tasks()
3302 */
3303 cmd->se_cmd_flags |= SCF_EMULATE_CDB_ASYNC;
3304 /*
3305 * Check to ensure that LBA + Range does not exceed past end of
3306 * device.
3307 */
3308 if (!transport_cmd_get_valid_sectors(cmd))
3309 goto out_invalid_cdb_field;
3310 break;
3311 case UNMAP:
3312 size = get_unaligned_be16(&cdb[7]);
3313 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3314 break;
3315 case WRITE_SAME_16:
3316 sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
3317 if (sector_ret)
3318 goto out_unsupported_cdb;
3319
3320 if (sectors)
3321 size = transport_get_size(sectors, cdb, cmd);
3322 else {
3323 pr_err("WSNZ=1, WRITE_SAME w/sectors=0 not supported\n");
3324 goto out_invalid_cdb_field;
3325 }
3326
3327 cmd->t_task_lba = get_unaligned_be16(&cdb[2]);
3328 passthrough = (dev->transport->transport_type ==
3329 TRANSPORT_PLUGIN_PHBA_PDEV);
3330 /*
3331 * Determine if the received WRITE_SAME_16 is used to for direct
3332 * passthrough into Linux/SCSI with struct request via TCM/pSCSI
3333 * or we are signaling the use of internal WRITE_SAME + UNMAP=1
3334 * emulation for -> Linux/BLOCK disbard with TCM/IBLOCK and
3335 * TCM/FILEIO subsystem plugin backstores.
3336 */
3337 if (!passthrough) {
3338 if ((cdb[1] & 0x04) || (cdb[1] & 0x02)) {
3339 pr_err("WRITE_SAME PBDATA and LBDATA"
3340 " bits not supported for Block Discard"
3341 " Emulation\n");
3342 goto out_invalid_cdb_field;
3343 }
3344 /*
3345 * Currently for the emulated case we only accept
3346 * tpws with the UNMAP=1 bit set.
3347 */
3348 if (!(cdb[1] & 0x08)) {
3349 pr_err("WRITE_SAME w/o UNMAP bit not "
3350 " supported for Block Discard Emulation\n");
3351 goto out_invalid_cdb_field;
3352 }
3353 }
3354 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3355 break;
3356 case ALLOW_MEDIUM_REMOVAL:
3357 case GPCMD_CLOSE_TRACK:
3358 case ERASE:
3359 case INITIALIZE_ELEMENT_STATUS:
3360 case GPCMD_LOAD_UNLOAD:
3361 case REZERO_UNIT:
3362 case SEEK_10:
3363 case GPCMD_SET_SPEED:
3364 case SPACE:
3365 case START_STOP:
3366 case TEST_UNIT_READY:
3367 case VERIFY:
3368 case WRITE_FILEMARKS:
3369 case MOVE_MEDIUM:
3370 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
3371 break;
3372 case REPORT_LUNS:
3373 cmd->transport_emulate_cdb =
3374 transport_core_report_lun_response;
3375 size = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9];
3376 /*
3377 * Do implict HEAD_OF_QUEUE processing for REPORT_LUNS
3378 * See spc4r17 section 5.3
3379 */
3380 if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
3381 cmd->sam_task_attr = MSG_HEAD_TAG;
3382 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3383 break;
3384 default:
3385 pr_warn("TARGET_CORE[%s]: Unsupported SCSI Opcode"
3386 " 0x%02x, sending CHECK_CONDITION.\n",
3387 cmd->se_tfo->get_fabric_name(), cdb[0]);
3388 cmd->transport_wait_for_tasks = &transport_nop_wait_for_tasks;
3389 goto out_unsupported_cdb;
3390 }
3391
3392 if (size != cmd->data_length) {
3393 pr_warn("TARGET_CORE[%s]: Expected Transfer Length:"
3394 " %u does not match SCSI CDB Length: %u for SAM Opcode:"
3395 " 0x%02x\n", cmd->se_tfo->get_fabric_name(),
3396 cmd->data_length, size, cdb[0]);
3397
3398 cmd->cmd_spdtl = size;
3399
3400 if (cmd->data_direction == DMA_TO_DEVICE) {
3401 pr_err("Rejecting underflow/overflow"
3402 " WRITE data\n");
3403 goto out_invalid_cdb_field;
3404 }
3405 /*
3406 * Reject READ_* or WRITE_* with overflow/underflow for
3407 * type SCF_SCSI_DATA_SG_IO_CDB.
3408 */
3409 if (!ret && (dev->se_sub_dev->se_dev_attrib.block_size != 512)) {
3410 pr_err("Failing OVERFLOW/UNDERFLOW for LBA op"
3411 " CDB on non 512-byte sector setup subsystem"
3412 " plugin: %s\n", dev->transport->name);
3413 /* Returns CHECK_CONDITION + INVALID_CDB_FIELD */
3414 goto out_invalid_cdb_field;
3415 }
3416
3417 if (size > cmd->data_length) {
3418 cmd->se_cmd_flags |= SCF_OVERFLOW_BIT;
3419 cmd->residual_count = (size - cmd->data_length);
3420 } else {
3421 cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
3422 cmd->residual_count = (cmd->data_length - size);
3423 }
3424 cmd->data_length = size;
3425 }
3426
3427 /* Let's limit control cdbs to a page, for simplicity's sake. */
3428 if ((cmd->se_cmd_flags & SCF_SCSI_CONTROL_SG_IO_CDB) &&
3429 size > PAGE_SIZE)
3430 goto out_invalid_cdb_field;
3431
3432 transport_set_supported_SAM_opcode(cmd);
3433 return ret;
3434
3435 out_unsupported_cdb:
3436 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3437 cmd->scsi_sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
3438 return -EINVAL;
3439 out_invalid_cdb_field:
3440 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3441 cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
3442 return -EINVAL;
3443 }
3444
3445 /*
3446 * Called from transport_generic_complete_ok() and
3447 * transport_generic_request_failure() to determine which dormant/delayed
3448 * and ordered cmds need to have their tasks added to the execution queue.
3449 */
3450 static void transport_complete_task_attr(struct se_cmd *cmd)
3451 {
3452 struct se_device *dev = cmd->se_dev;
3453 struct se_cmd *cmd_p, *cmd_tmp;
3454 int new_active_tasks = 0;
3455
3456 if (cmd->sam_task_attr == MSG_SIMPLE_TAG) {
3457 atomic_dec(&dev->simple_cmds);
3458 smp_mb__after_atomic_dec();
3459 dev->dev_cur_ordered_id++;
3460 pr_debug("Incremented dev->dev_cur_ordered_id: %u for"
3461 " SIMPLE: %u\n", dev->dev_cur_ordered_id,
3462 cmd->se_ordered_id);
3463 } else if (cmd->sam_task_attr == MSG_HEAD_TAG) {
3464 atomic_dec(&dev->dev_hoq_count);
3465 smp_mb__after_atomic_dec();
3466 dev->dev_cur_ordered_id++;
3467 pr_debug("Incremented dev_cur_ordered_id: %u for"
3468 " HEAD_OF_QUEUE: %u\n", dev->dev_cur_ordered_id,
3469 cmd->se_ordered_id);
3470 } else if (cmd->sam_task_attr == MSG_ORDERED_TAG) {
3471 spin_lock(&dev->ordered_cmd_lock);
3472 list_del(&cmd->se_ordered_node);
3473 atomic_dec(&dev->dev_ordered_sync);
3474 smp_mb__after_atomic_dec();
3475 spin_unlock(&dev->ordered_cmd_lock);
3476
3477 dev->dev_cur_ordered_id++;
3478 pr_debug("Incremented dev_cur_ordered_id: %u for ORDERED:"
3479 " %u\n", dev->dev_cur_ordered_id, cmd->se_ordered_id);
3480 }
3481 /*
3482 * Process all commands up to the last received
3483 * ORDERED task attribute which requires another blocking
3484 * boundary
3485 */
3486 spin_lock(&dev->delayed_cmd_lock);
3487 list_for_each_entry_safe(cmd_p, cmd_tmp,
3488 &dev->delayed_cmd_list, se_delayed_node) {
3489
3490 list_del(&cmd_p->se_delayed_node);
3491 spin_unlock(&dev->delayed_cmd_lock);
3492
3493 pr_debug("Calling add_tasks() for"
3494 " cmd_p: 0x%02x Task Attr: 0x%02x"
3495 " Dormant -> Active, se_ordered_id: %u\n",
3496 cmd_p->t_task_cdb[0],
3497 cmd_p->sam_task_attr, cmd_p->se_ordered_id);
3498
3499 transport_add_tasks_from_cmd(cmd_p);
3500 new_active_tasks++;
3501
3502 spin_lock(&dev->delayed_cmd_lock);
3503 if (cmd_p->sam_task_attr == MSG_ORDERED_TAG)
3504 break;
3505 }
3506 spin_unlock(&dev->delayed_cmd_lock);
3507 /*
3508 * If new tasks have become active, wake up the transport thread
3509 * to do the processing of the Active tasks.
3510 */
3511 if (new_active_tasks != 0)
3512 wake_up_interruptible(&dev->dev_queue_obj.thread_wq);
3513 }
3514
3515 static int transport_complete_qf(struct se_cmd *cmd)
3516 {
3517 int ret = 0;
3518
3519 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE)
3520 return cmd->se_tfo->queue_status(cmd);
3521
3522 switch (cmd->data_direction) {
3523 case DMA_FROM_DEVICE:
3524 ret = cmd->se_tfo->queue_data_in(cmd);
3525 break;
3526 case DMA_TO_DEVICE:
3527 if (cmd->t_bidi_data_sg) {
3528 ret = cmd->se_tfo->queue_data_in(cmd);
3529 if (ret < 0)
3530 return ret;
3531 }
3532 /* Fall through for DMA_TO_DEVICE */
3533 case DMA_NONE:
3534 ret = cmd->se_tfo->queue_status(cmd);
3535 break;
3536 default:
3537 break;
3538 }
3539
3540 return ret;
3541 }
3542
3543 static void transport_handle_queue_full(
3544 struct se_cmd *cmd,
3545 struct se_device *dev,
3546 int (*qf_callback)(struct se_cmd *))
3547 {
3548 spin_lock_irq(&dev->qf_cmd_lock);
3549 cmd->se_cmd_flags |= SCF_EMULATE_QUEUE_FULL;
3550 cmd->transport_qf_callback = qf_callback;
3551 list_add_tail(&cmd->se_qf_node, &cmd->se_dev->qf_cmd_list);
3552 atomic_inc(&dev->dev_qf_count);
3553 smp_mb__after_atomic_inc();
3554 spin_unlock_irq(&cmd->se_dev->qf_cmd_lock);
3555
3556 schedule_work(&cmd->se_dev->qf_work_queue);
3557 }
3558
3559 static void transport_generic_complete_ok(struct se_cmd *cmd)
3560 {
3561 int reason = 0, ret;
3562 /*
3563 * Check if we need to move delayed/dormant tasks from cmds on the
3564 * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task
3565 * Attribute.
3566 */
3567 if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
3568 transport_complete_task_attr(cmd);
3569 /*
3570 * Check to schedule QUEUE_FULL work, or execute an existing
3571 * cmd->transport_qf_callback()
3572 */
3573 if (atomic_read(&cmd->se_dev->dev_qf_count) != 0)
3574 schedule_work(&cmd->se_dev->qf_work_queue);
3575
3576 if (cmd->transport_qf_callback) {
3577 ret = cmd->transport_qf_callback(cmd);
3578 if (ret < 0)
3579 goto queue_full;
3580
3581 cmd->transport_qf_callback = NULL;
3582 goto done;
3583 }
3584 /*
3585 * Check if we need to retrieve a sense buffer from
3586 * the struct se_cmd in question.
3587 */
3588 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
3589 if (transport_get_sense_data(cmd) < 0)
3590 reason = TCM_NON_EXISTENT_LUN;
3591
3592 /*
3593 * Only set when an struct se_task->task_scsi_status returned
3594 * a non GOOD status.
3595 */
3596 if (cmd->scsi_status) {
3597 ret = transport_send_check_condition_and_sense(
3598 cmd, reason, 1);
3599 if (ret == -EAGAIN)
3600 goto queue_full;
3601
3602 transport_lun_remove_cmd(cmd);
3603 transport_cmd_check_stop_to_fabric(cmd);
3604 return;
3605 }
3606 }
3607 /*
3608 * Check for a callback, used by amongst other things
3609 * XDWRITE_READ_10 emulation.
3610 */
3611 if (cmd->transport_complete_callback)
3612 cmd->transport_complete_callback(cmd);
3613
3614 switch (cmd->data_direction) {
3615 case DMA_FROM_DEVICE:
3616 spin_lock(&cmd->se_lun->lun_sep_lock);
3617 if (cmd->se_lun->lun_sep) {
3618 cmd->se_lun->lun_sep->sep_stats.tx_data_octets +=
3619 cmd->data_length;
3620 }
3621 spin_unlock(&cmd->se_lun->lun_sep_lock);
3622
3623 ret = cmd->se_tfo->queue_data_in(cmd);
3624 if (ret == -EAGAIN)
3625 goto queue_full;
3626 break;
3627 case DMA_TO_DEVICE:
3628 spin_lock(&cmd->se_lun->lun_sep_lock);
3629 if (cmd->se_lun->lun_sep) {
3630 cmd->se_lun->lun_sep->sep_stats.rx_data_octets +=
3631 cmd->data_length;
3632 }
3633 spin_unlock(&cmd->se_lun->lun_sep_lock);
3634 /*
3635 * Check if we need to send READ payload for BIDI-COMMAND
3636 */
3637 if (cmd->t_bidi_data_sg) {
3638 spin_lock(&cmd->se_lun->lun_sep_lock);
3639 if (cmd->se_lun->lun_sep) {
3640 cmd->se_lun->lun_sep->sep_stats.tx_data_octets +=
3641 cmd->data_length;
3642 }
3643 spin_unlock(&cmd->se_lun->lun_sep_lock);
3644 ret = cmd->se_tfo->queue_data_in(cmd);
3645 if (ret == -EAGAIN)
3646 goto queue_full;
3647 break;
3648 }
3649 /* Fall through for DMA_TO_DEVICE */
3650 case DMA_NONE:
3651 ret = cmd->se_tfo->queue_status(cmd);
3652 if (ret == -EAGAIN)
3653 goto queue_full;
3654 break;
3655 default:
3656 break;
3657 }
3658
3659 done:
3660 transport_lun_remove_cmd(cmd);
3661 transport_cmd_check_stop_to_fabric(cmd);
3662 return;
3663
3664 queue_full:
3665 pr_debug("Handling complete_ok QUEUE_FULL: se_cmd: %p,"
3666 " data_direction: %d\n", cmd, cmd->data_direction);
3667 transport_handle_queue_full(cmd, cmd->se_dev, transport_complete_qf);
3668 }
3669
3670 static void transport_free_dev_tasks(struct se_cmd *cmd)
3671 {
3672 struct se_task *task, *task_tmp;
3673 unsigned long flags;
3674
3675 spin_lock_irqsave(&cmd->t_state_lock, flags);
3676 list_for_each_entry_safe(task, task_tmp,
3677 &cmd->t_task_list, t_list) {
3678 if (atomic_read(&task->task_active))
3679 continue;
3680
3681 kfree(task->task_sg_bidi);
3682 kfree(task->task_sg);
3683
3684 list_del(&task->t_list);
3685
3686 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3687 if (task->se_dev)
3688 task->se_dev->transport->free_task(task);
3689 else
3690 pr_err("task[%u] - task->se_dev is NULL\n",
3691 task->task_no);
3692 spin_lock_irqsave(&cmd->t_state_lock, flags);
3693 }
3694 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3695 }
3696
3697 static inline void transport_free_sgl(struct scatterlist *sgl, int nents)
3698 {
3699 struct scatterlist *sg;
3700 int count;
3701
3702 for_each_sg(sgl, sg, nents, count)
3703 __free_page(sg_page(sg));
3704
3705 kfree(sgl);
3706 }
3707
3708 static inline void transport_free_pages(struct se_cmd *cmd)
3709 {
3710 if (cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC)
3711 return;
3712
3713 transport_free_sgl(cmd->t_data_sg, cmd->t_data_nents);
3714 cmd->t_data_sg = NULL;
3715 cmd->t_data_nents = 0;
3716
3717 transport_free_sgl(cmd->t_bidi_data_sg, cmd->t_bidi_data_nents);
3718 cmd->t_bidi_data_sg = NULL;
3719 cmd->t_bidi_data_nents = 0;
3720 }
3721
3722 static inline void transport_release_tasks(struct se_cmd *cmd)
3723 {
3724 transport_free_dev_tasks(cmd);
3725 }
3726
3727 static inline int transport_dec_and_check(struct se_cmd *cmd)
3728 {
3729 unsigned long flags;
3730
3731 spin_lock_irqsave(&cmd->t_state_lock, flags);
3732 if (atomic_read(&cmd->t_fe_count)) {
3733 if (!atomic_dec_and_test(&cmd->t_fe_count)) {
3734 spin_unlock_irqrestore(&cmd->t_state_lock,
3735 flags);
3736 return 1;
3737 }
3738 }
3739
3740 if (atomic_read(&cmd->t_se_count)) {
3741 if (!atomic_dec_and_test(&cmd->t_se_count)) {
3742 spin_unlock_irqrestore(&cmd->t_state_lock,
3743 flags);
3744 return 1;
3745 }
3746 }
3747 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3748
3749 return 0;
3750 }
3751
3752 static void transport_release_fe_cmd(struct se_cmd *cmd)
3753 {
3754 unsigned long flags;
3755
3756 if (transport_dec_and_check(cmd))
3757 return;
3758
3759 spin_lock_irqsave(&cmd->t_state_lock, flags);
3760 if (!atomic_read(&cmd->transport_dev_active)) {
3761 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3762 goto free_pages;
3763 }
3764 atomic_set(&cmd->transport_dev_active, 0);
3765 transport_all_task_dev_remove_state(cmd);
3766 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3767
3768 transport_release_tasks(cmd);
3769 free_pages:
3770 transport_free_pages(cmd);
3771 transport_free_se_cmd(cmd);
3772 cmd->se_tfo->release_cmd(cmd);
3773 }
3774
3775 static int
3776 transport_generic_remove(struct se_cmd *cmd, int session_reinstatement)
3777 {
3778 unsigned long flags;
3779
3780 if (transport_dec_and_check(cmd)) {
3781 if (session_reinstatement) {
3782 spin_lock_irqsave(&cmd->t_state_lock, flags);
3783 transport_all_task_dev_remove_state(cmd);
3784 spin_unlock_irqrestore(&cmd->t_state_lock,
3785 flags);
3786 }
3787 return 1;
3788 }
3789
3790 spin_lock_irqsave(&cmd->t_state_lock, flags);
3791 if (!atomic_read(&cmd->transport_dev_active)) {
3792 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3793 goto free_pages;
3794 }
3795 atomic_set(&cmd->transport_dev_active, 0);
3796 transport_all_task_dev_remove_state(cmd);
3797 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3798
3799 transport_release_tasks(cmd);
3800
3801 free_pages:
3802 transport_free_pages(cmd);
3803 transport_release_cmd(cmd);
3804 return 0;
3805 }
3806
3807 /*
3808 * transport_generic_map_mem_to_cmd - Use fabric-alloced pages instead of
3809 * allocating in the core.
3810 * @cmd: Associated se_cmd descriptor
3811 * @mem: SGL style memory for TCM WRITE / READ
3812 * @sg_mem_num: Number of SGL elements
3813 * @mem_bidi_in: SGL style memory for TCM BIDI READ
3814 * @sg_mem_bidi_num: Number of BIDI READ SGL elements
3815 *
3816 * Return: nonzero return cmd was rejected for -ENOMEM or inproper usage
3817 * of parameters.
3818 */
3819 int transport_generic_map_mem_to_cmd(
3820 struct se_cmd *cmd,
3821 struct scatterlist *sgl,
3822 u32 sgl_count,
3823 struct scatterlist *sgl_bidi,
3824 u32 sgl_bidi_count)
3825 {
3826 if (!sgl || !sgl_count)
3827 return 0;
3828
3829 if ((cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB) ||
3830 (cmd->se_cmd_flags & SCF_SCSI_CONTROL_SG_IO_CDB)) {
3831
3832 cmd->t_data_sg = sgl;
3833 cmd->t_data_nents = sgl_count;
3834
3835 if (sgl_bidi && sgl_bidi_count) {
3836 cmd->t_bidi_data_sg = sgl_bidi;
3837 cmd->t_bidi_data_nents = sgl_bidi_count;
3838 }
3839 cmd->se_cmd_flags |= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC;
3840 }
3841
3842 return 0;
3843 }
3844 EXPORT_SYMBOL(transport_generic_map_mem_to_cmd);
3845
3846 static int transport_new_cmd_obj(struct se_cmd *cmd)
3847 {
3848 struct se_device *dev = cmd->se_dev;
3849 u32 task_cdbs;
3850 u32 rc;
3851 int set_counts = 1;
3852
3853 /*
3854 * Setup any BIDI READ tasks and memory from
3855 * cmd->t_mem_bidi_list so the READ struct se_tasks
3856 * are queued first for the non pSCSI passthrough case.
3857 */
3858 if (cmd->t_bidi_data_sg &&
3859 (dev->transport->transport_type != TRANSPORT_PLUGIN_PHBA_PDEV)) {
3860 rc = transport_allocate_tasks(cmd,
3861 cmd->t_task_lba,
3862 DMA_FROM_DEVICE,
3863 cmd->t_bidi_data_sg,
3864 cmd->t_bidi_data_nents);
3865 if (rc <= 0) {
3866 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3867 cmd->scsi_sense_reason =
3868 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
3869 return PYX_TRANSPORT_LU_COMM_FAILURE;
3870 }
3871 atomic_inc(&cmd->t_fe_count);
3872 atomic_inc(&cmd->t_se_count);
3873 set_counts = 0;
3874 }
3875 /*
3876 * Setup the tasks and memory from cmd->t_mem_list
3877 * Note for BIDI transfers this will contain the WRITE payload
3878 */
3879 task_cdbs = transport_allocate_tasks(cmd,
3880 cmd->t_task_lba,
3881 cmd->data_direction,
3882 cmd->t_data_sg,
3883 cmd->t_data_nents);
3884 if (task_cdbs <= 0) {
3885 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3886 cmd->scsi_sense_reason =
3887 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
3888 return PYX_TRANSPORT_LU_COMM_FAILURE;
3889 }
3890
3891 if (set_counts) {
3892 atomic_inc(&cmd->t_fe_count);
3893 atomic_inc(&cmd->t_se_count);
3894 }
3895
3896 cmd->t_task_list_num = task_cdbs;
3897
3898 atomic_set(&cmd->t_task_cdbs_left, task_cdbs);
3899 atomic_set(&cmd->t_task_cdbs_ex_left, task_cdbs);
3900 atomic_set(&cmd->t_task_cdbs_timeout_left, task_cdbs);
3901 return 0;
3902 }
3903
3904 void *transport_kmap_first_data_page(struct se_cmd *cmd)
3905 {
3906 struct scatterlist *sg = cmd->t_data_sg;
3907
3908 BUG_ON(!sg);
3909 /*
3910 * We need to take into account a possible offset here for fabrics like
3911 * tcm_loop who may be using a contig buffer from the SCSI midlayer for
3912 * control CDBs passed as SGLs via transport_generic_map_mem_to_cmd()
3913 */
3914 return kmap(sg_page(sg)) + sg->offset;
3915 }
3916 EXPORT_SYMBOL(transport_kmap_first_data_page);
3917
3918 void transport_kunmap_first_data_page(struct se_cmd *cmd)
3919 {
3920 kunmap(sg_page(cmd->t_data_sg));
3921 }
3922 EXPORT_SYMBOL(transport_kunmap_first_data_page);
3923
3924 static int
3925 transport_generic_get_mem(struct se_cmd *cmd)
3926 {
3927 u32 length = cmd->data_length;
3928 unsigned int nents;
3929 struct page *page;
3930 int i = 0;
3931
3932 nents = DIV_ROUND_UP(length, PAGE_SIZE);
3933 cmd->t_data_sg = kmalloc(sizeof(struct scatterlist) * nents, GFP_KERNEL);
3934 if (!cmd->t_data_sg)
3935 return -ENOMEM;
3936
3937 cmd->t_data_nents = nents;
3938 sg_init_table(cmd->t_data_sg, nents);
3939
3940 while (length) {
3941 u32 page_len = min_t(u32, length, PAGE_SIZE);
3942 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
3943 if (!page)
3944 goto out;
3945
3946 sg_set_page(&cmd->t_data_sg[i], page, page_len, 0);
3947 length -= page_len;
3948 i++;
3949 }
3950 return 0;
3951
3952 out:
3953 while (i >= 0) {
3954 __free_page(sg_page(&cmd->t_data_sg[i]));
3955 i--;
3956 }
3957 kfree(cmd->t_data_sg);
3958 cmd->t_data_sg = NULL;
3959 return -ENOMEM;
3960 }
3961
3962 /* Reduce sectors if they are too long for the device */
3963 static inline sector_t transport_limit_task_sectors(
3964 struct se_device *dev,
3965 unsigned long long lba,
3966 sector_t sectors)
3967 {
3968 sectors = min_t(sector_t, sectors, dev->se_sub_dev->se_dev_attrib.max_sectors);
3969
3970 if (dev->transport->get_device_type(dev) == TYPE_DISK)
3971 if ((lba + sectors) > transport_dev_end_lba(dev))
3972 sectors = ((transport_dev_end_lba(dev) - lba) + 1);
3973
3974 return sectors;
3975 }
3976
3977
3978 /*
3979 * This function can be used by HW target mode drivers to create a linked
3980 * scatterlist from all contiguously allocated struct se_task->task_sg[].
3981 * This is intended to be called during the completion path by TCM Core
3982 * when struct target_core_fabric_ops->check_task_sg_chaining is enabled.
3983 */
3984 void transport_do_task_sg_chain(struct se_cmd *cmd)
3985 {
3986 struct scatterlist *sg_first = NULL;
3987 struct scatterlist *sg_prev = NULL;
3988 int sg_prev_nents = 0;
3989 struct scatterlist *sg;
3990 struct se_task *task;
3991 u32 chained_nents = 0;
3992 int i;
3993
3994 BUG_ON(!cmd->se_tfo->task_sg_chaining);
3995
3996 /*
3997 * Walk the struct se_task list and setup scatterlist chains
3998 * for each contiguously allocated struct se_task->task_sg[].
3999 */
4000 list_for_each_entry(task, &cmd->t_task_list, t_list) {
4001 if (!task->task_sg)
4002 continue;
4003
4004 BUG_ON(!task->task_padded_sg);
4005
4006 if (!sg_first) {
4007 sg_first = task->task_sg;
4008 chained_nents = task->task_sg_nents;
4009 } else {
4010 sg_chain(sg_prev, sg_prev_nents, task->task_sg);
4011 chained_nents += task->task_sg_nents;
4012 }
4013
4014 sg_prev = task->task_sg;
4015 sg_prev_nents = task->task_sg_nents;
4016 }
4017 /*
4018 * Setup the starting pointer and total t_tasks_sg_linked_no including
4019 * padding SGs for linking and to mark the end.
4020 */
4021 cmd->t_tasks_sg_chained = sg_first;
4022 cmd->t_tasks_sg_chained_no = chained_nents;
4023
4024 pr_debug("Setup cmd: %p cmd->t_tasks_sg_chained: %p and"
4025 " t_tasks_sg_chained_no: %u\n", cmd, cmd->t_tasks_sg_chained,
4026 cmd->t_tasks_sg_chained_no);
4027
4028 for_each_sg(cmd->t_tasks_sg_chained, sg,
4029 cmd->t_tasks_sg_chained_no, i) {
4030
4031 pr_debug("SG[%d]: %p page: %p length: %d offset: %d\n",
4032 i, sg, sg_page(sg), sg->length, sg->offset);
4033 if (sg_is_chain(sg))
4034 pr_debug("SG: %p sg_is_chain=1\n", sg);
4035 if (sg_is_last(sg))
4036 pr_debug("SG: %p sg_is_last=1\n", sg);
4037 }
4038 }
4039 EXPORT_SYMBOL(transport_do_task_sg_chain);
4040
4041 /*
4042 * Break up cmd into chunks transport can handle
4043 */
4044 static int transport_allocate_data_tasks(
4045 struct se_cmd *cmd,
4046 unsigned long long lba,
4047 enum dma_data_direction data_direction,
4048 struct scatterlist *sgl,
4049 unsigned int sgl_nents)
4050 {
4051 unsigned char *cdb = NULL;
4052 struct se_task *task;
4053 struct se_device *dev = cmd->se_dev;
4054 unsigned long flags;
4055 sector_t sectors;
4056 int task_count, i, ret;
4057 sector_t dev_max_sectors = dev->se_sub_dev->se_dev_attrib.max_sectors;
4058 u32 sector_size = dev->se_sub_dev->se_dev_attrib.block_size;
4059 struct scatterlist *sg;
4060 struct scatterlist *cmd_sg;
4061
4062 WARN_ON(cmd->data_length % sector_size);
4063 sectors = DIV_ROUND_UP(cmd->data_length, sector_size);
4064 task_count = DIV_ROUND_UP(sectors, dev_max_sectors);
4065
4066 cmd_sg = sgl;
4067 for (i = 0; i < task_count; i++) {
4068 unsigned int task_size;
4069 int count;
4070
4071 task = transport_generic_get_task(cmd, data_direction);
4072 if (!task)
4073 return -ENOMEM;
4074
4075 task->task_lba = lba;
4076 task->task_sectors = min(sectors, dev_max_sectors);
4077 task->task_size = task->task_sectors * sector_size;
4078
4079 cdb = dev->transport->get_cdb(task);
4080 BUG_ON(!cdb);
4081
4082 memcpy(cdb, cmd->t_task_cdb,
4083 scsi_command_size(cmd->t_task_cdb));
4084
4085 /* Update new cdb with updated lba/sectors */
4086 cmd->transport_split_cdb(task->task_lba, task->task_sectors, cdb);
4087
4088 /*
4089 * Check if the fabric module driver is requesting that all
4090 * struct se_task->task_sg[] be chained together.. If so,
4091 * then allocate an extra padding SG entry for linking and
4092 * marking the end of the chained SGL.
4093 * Possibly over-allocate task sgl size by using cmd sgl size.
4094 * It's so much easier and only a waste when task_count > 1.
4095 * That is extremely rare.
4096 */
4097 task->task_sg_nents = sgl_nents;
4098 if (cmd->se_tfo->task_sg_chaining) {
4099 task->task_sg_nents++;
4100 task->task_padded_sg = 1;
4101 }
4102
4103 task->task_sg = kmalloc(sizeof(struct scatterlist) *
4104 task->task_sg_nents, GFP_KERNEL);
4105 if (!task->task_sg) {
4106 cmd->se_dev->transport->free_task(task);
4107 return -ENOMEM;
4108 }
4109
4110 sg_init_table(task->task_sg, task->task_sg_nents);
4111
4112 task_size = task->task_size;
4113
4114 /* Build new sgl, only up to task_size */
4115 for_each_sg(task->task_sg, sg, task->task_sg_nents, count) {
4116 if (cmd_sg->length > task_size)
4117 break;
4118
4119 *sg = *cmd_sg;
4120 task_size -= cmd_sg->length;
4121 cmd_sg = sg_next(cmd_sg);
4122 }
4123
4124 lba += task->task_sectors;
4125 sectors -= task->task_sectors;
4126
4127 spin_lock_irqsave(&cmd->t_state_lock, flags);
4128 list_add_tail(&task->t_list, &cmd->t_task_list);
4129 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4130 }
4131 /*
4132 * Now perform the memory map of task->task_sg[] into backend
4133 * subsystem memory..
4134 */
4135 list_for_each_entry(task, &cmd->t_task_list, t_list) {
4136 if (atomic_read(&task->task_sent))
4137 continue;
4138 if (!dev->transport->map_data_SG)
4139 continue;
4140
4141 ret = dev->transport->map_data_SG(task);
4142 if (ret < 0)
4143 return 0;
4144 }
4145
4146 return task_count;
4147 }
4148
4149 static int
4150 transport_allocate_control_task(struct se_cmd *cmd)
4151 {
4152 struct se_device *dev = cmd->se_dev;
4153 unsigned char *cdb;
4154 struct se_task *task;
4155 unsigned long flags;
4156 int ret = 0;
4157
4158 task = transport_generic_get_task(cmd, cmd->data_direction);
4159 if (!task)
4160 return -ENOMEM;
4161
4162 cdb = dev->transport->get_cdb(task);
4163 BUG_ON(!cdb);
4164 memcpy(cdb, cmd->t_task_cdb,
4165 scsi_command_size(cmd->t_task_cdb));
4166
4167 task->task_sg = kmalloc(sizeof(struct scatterlist) * cmd->t_data_nents,
4168 GFP_KERNEL);
4169 if (!task->task_sg) {
4170 cmd->se_dev->transport->free_task(task);
4171 return -ENOMEM;
4172 }
4173
4174 memcpy(task->task_sg, cmd->t_data_sg,
4175 sizeof(struct scatterlist) * cmd->t_data_nents);
4176 task->task_size = cmd->data_length;
4177 task->task_sg_nents = cmd->t_data_nents;
4178
4179 spin_lock_irqsave(&cmd->t_state_lock, flags);
4180 list_add_tail(&task->t_list, &cmd->t_task_list);
4181 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4182
4183 if (cmd->se_cmd_flags & SCF_SCSI_CONTROL_SG_IO_CDB) {
4184 if (dev->transport->map_control_SG)
4185 ret = dev->transport->map_control_SG(task);
4186 } else if (cmd->se_cmd_flags & SCF_SCSI_NON_DATA_CDB) {
4187 if (dev->transport->cdb_none)
4188 ret = dev->transport->cdb_none(task);
4189 } else {
4190 pr_err("target: Unknown control cmd type!\n");
4191 BUG();
4192 }
4193
4194 /* Success! Return number of tasks allocated */
4195 if (ret == 0)
4196 return 1;
4197 return ret;
4198 }
4199
4200 static u32 transport_allocate_tasks(
4201 struct se_cmd *cmd,
4202 unsigned long long lba,
4203 enum dma_data_direction data_direction,
4204 struct scatterlist *sgl,
4205 unsigned int sgl_nents)
4206 {
4207 if (cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB)
4208 return transport_allocate_data_tasks(cmd, lba, data_direction,
4209 sgl, sgl_nents);
4210 else
4211 return transport_allocate_control_task(cmd);
4212
4213 }
4214
4215
4216 /* transport_generic_new_cmd(): Called from transport_processing_thread()
4217 *
4218 * Allocate storage transport resources from a set of values predefined
4219 * by transport_generic_cmd_sequencer() from the iSCSI Target RX process.
4220 * Any non zero return here is treated as an "out of resource' op here.
4221 */
4222 /*
4223 * Generate struct se_task(s) and/or their payloads for this CDB.
4224 */
4225 int transport_generic_new_cmd(struct se_cmd *cmd)
4226 {
4227 int ret = 0;
4228
4229 /*
4230 * Determine is the TCM fabric module has already allocated physical
4231 * memory, and is directly calling transport_generic_map_mem_to_cmd()
4232 * beforehand.
4233 */
4234 if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) &&
4235 cmd->data_length) {
4236 ret = transport_generic_get_mem(cmd);
4237 if (ret < 0)
4238 return ret;
4239 }
4240 /*
4241 * Call transport_new_cmd_obj() to invoke transport_allocate_tasks() for
4242 * control or data CDB types, and perform the map to backend subsystem
4243 * code from SGL memory allocated here by transport_generic_get_mem(), or
4244 * via pre-existing SGL memory setup explictly by fabric module code with
4245 * transport_generic_map_mem_to_cmd().
4246 */
4247 ret = transport_new_cmd_obj(cmd);
4248 if (ret < 0)
4249 return ret;
4250 /*
4251 * For WRITEs, let the fabric know its buffer is ready..
4252 * This WRITE struct se_cmd (and all of its associated struct se_task's)
4253 * will be added to the struct se_device execution queue after its WRITE
4254 * data has arrived. (ie: It gets handled by the transport processing
4255 * thread a second time)
4256 */
4257 if (cmd->data_direction == DMA_TO_DEVICE) {
4258 transport_add_tasks_to_state_queue(cmd);
4259 return transport_generic_write_pending(cmd);
4260 }
4261 /*
4262 * Everything else but a WRITE, add the struct se_cmd's struct se_task's
4263 * to the execution queue.
4264 */
4265 transport_execute_tasks(cmd);
4266 return 0;
4267 }
4268 EXPORT_SYMBOL(transport_generic_new_cmd);
4269
4270 /* transport_generic_process_write():
4271 *
4272 *
4273 */
4274 void transport_generic_process_write(struct se_cmd *cmd)
4275 {
4276 transport_execute_tasks(cmd);
4277 }
4278 EXPORT_SYMBOL(transport_generic_process_write);
4279
4280 static int transport_write_pending_qf(struct se_cmd *cmd)
4281 {
4282 return cmd->se_tfo->write_pending(cmd);
4283 }
4284
4285 /* transport_generic_write_pending():
4286 *
4287 *
4288 */
4289 static int transport_generic_write_pending(struct se_cmd *cmd)
4290 {
4291 unsigned long flags;
4292 int ret;
4293
4294 spin_lock_irqsave(&cmd->t_state_lock, flags);
4295 cmd->t_state = TRANSPORT_WRITE_PENDING;
4296 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4297
4298 if (cmd->transport_qf_callback) {
4299 ret = cmd->transport_qf_callback(cmd);
4300 if (ret == -EAGAIN)
4301 goto queue_full;
4302 else if (ret < 0)
4303 return ret;
4304
4305 cmd->transport_qf_callback = NULL;
4306 return 0;
4307 }
4308
4309 /*
4310 * Clear the se_cmd for WRITE_PENDING status in order to set
4311 * cmd->t_transport_active=0 so that transport_generic_handle_data
4312 * can be called from HW target mode interrupt code. This is safe
4313 * to be called with transport_off=1 before the cmd->se_tfo->write_pending
4314 * because the se_cmd->se_lun pointer is not being cleared.
4315 */
4316 transport_cmd_check_stop(cmd, 1, 0);
4317
4318 /*
4319 * Call the fabric write_pending function here to let the
4320 * frontend know that WRITE buffers are ready.
4321 */
4322 ret = cmd->se_tfo->write_pending(cmd);
4323 if (ret == -EAGAIN)
4324 goto queue_full;
4325 else if (ret < 0)
4326 return ret;
4327
4328 return PYX_TRANSPORT_WRITE_PENDING;
4329
4330 queue_full:
4331 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", cmd);
4332 cmd->t_state = TRANSPORT_COMPLETE_QF_WP;
4333 transport_handle_queue_full(cmd, cmd->se_dev,
4334 transport_write_pending_qf);
4335 return ret;
4336 }
4337
4338 void transport_release_cmd(struct se_cmd *cmd)
4339 {
4340 BUG_ON(!cmd->se_tfo);
4341
4342 transport_free_se_cmd(cmd);
4343 cmd->se_tfo->release_cmd(cmd);
4344 }
4345 EXPORT_SYMBOL(transport_release_cmd);
4346
4347 /* transport_generic_free_cmd():
4348 *
4349 * Called from processing frontend to release storage engine resources
4350 */
4351 void transport_generic_free_cmd(
4352 struct se_cmd *cmd,
4353 int wait_for_tasks,
4354 int session_reinstatement)
4355 {
4356 if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD))
4357 transport_release_cmd(cmd);
4358 else {
4359 core_dec_lacl_count(cmd->se_sess->se_node_acl, cmd);
4360
4361 if (cmd->se_lun) {
4362 #if 0
4363 pr_debug("cmd: %p ITT: 0x%08x contains"
4364 " cmd->se_lun\n", cmd,
4365 cmd->se_tfo->get_task_tag(cmd));
4366 #endif
4367 transport_lun_remove_cmd(cmd);
4368 }
4369
4370 if (wait_for_tasks && cmd->transport_wait_for_tasks)
4371 cmd->transport_wait_for_tasks(cmd, 0, 0);
4372
4373 transport_free_dev_tasks(cmd);
4374
4375 transport_generic_remove(cmd, session_reinstatement);
4376 }
4377 }
4378 EXPORT_SYMBOL(transport_generic_free_cmd);
4379
4380 static void transport_nop_wait_for_tasks(
4381 struct se_cmd *cmd,
4382 int remove_cmd,
4383 int session_reinstatement)
4384 {
4385 return;
4386 }
4387
4388 /* transport_lun_wait_for_tasks():
4389 *
4390 * Called from ConfigFS context to stop the passed struct se_cmd to allow
4391 * an struct se_lun to be successfully shutdown.
4392 */
4393 static int transport_lun_wait_for_tasks(struct se_cmd *cmd, struct se_lun *lun)
4394 {
4395 unsigned long flags;
4396 int ret;
4397 /*
4398 * If the frontend has already requested this struct se_cmd to
4399 * be stopped, we can safely ignore this struct se_cmd.
4400 */
4401 spin_lock_irqsave(&cmd->t_state_lock, flags);
4402 if (atomic_read(&cmd->t_transport_stop)) {
4403 atomic_set(&cmd->transport_lun_stop, 0);
4404 pr_debug("ConfigFS ITT[0x%08x] - t_transport_stop =="
4405 " TRUE, skipping\n", cmd->se_tfo->get_task_tag(cmd));
4406 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4407 transport_cmd_check_stop(cmd, 1, 0);
4408 return -EPERM;
4409 }
4410 atomic_set(&cmd->transport_lun_fe_stop, 1);
4411 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4412
4413 wake_up_interruptible(&cmd->se_dev->dev_queue_obj.thread_wq);
4414
4415 ret = transport_stop_tasks_for_cmd(cmd);
4416
4417 pr_debug("ConfigFS: cmd: %p t_tasks: %d stop tasks ret:"
4418 " %d\n", cmd, cmd->t_task_list_num, ret);
4419 if (!ret) {
4420 pr_debug("ConfigFS: ITT[0x%08x] - stopping cmd....\n",
4421 cmd->se_tfo->get_task_tag(cmd));
4422 wait_for_completion(&cmd->transport_lun_stop_comp);
4423 pr_debug("ConfigFS: ITT[0x%08x] - stopped cmd....\n",
4424 cmd->se_tfo->get_task_tag(cmd));
4425 }
4426 transport_remove_cmd_from_queue(cmd, &cmd->se_dev->dev_queue_obj);
4427
4428 return 0;
4429 }
4430
4431 static void __transport_clear_lun_from_sessions(struct se_lun *lun)
4432 {
4433 struct se_cmd *cmd = NULL;
4434 unsigned long lun_flags, cmd_flags;
4435 /*
4436 * Do exception processing and return CHECK_CONDITION status to the
4437 * Initiator Port.
4438 */
4439 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4440 while (!list_empty(&lun->lun_cmd_list)) {
4441 cmd = list_first_entry(&lun->lun_cmd_list,
4442 struct se_cmd, se_lun_node);
4443 list_del(&cmd->se_lun_node);
4444
4445 atomic_set(&cmd->transport_lun_active, 0);
4446 /*
4447 * This will notify iscsi_target_transport.c:
4448 * transport_cmd_check_stop() that a LUN shutdown is in
4449 * progress for the iscsi_cmd_t.
4450 */
4451 spin_lock(&cmd->t_state_lock);
4452 pr_debug("SE_LUN[%d] - Setting cmd->transport"
4453 "_lun_stop for ITT: 0x%08x\n",
4454 cmd->se_lun->unpacked_lun,
4455 cmd->se_tfo->get_task_tag(cmd));
4456 atomic_set(&cmd->transport_lun_stop, 1);
4457 spin_unlock(&cmd->t_state_lock);
4458
4459 spin_unlock_irqrestore(&lun->lun_cmd_lock, lun_flags);
4460
4461 if (!cmd->se_lun) {
4462 pr_err("ITT: 0x%08x, [i,t]_state: %u/%u\n",
4463 cmd->se_tfo->get_task_tag(cmd),
4464 cmd->se_tfo->get_cmd_state(cmd), cmd->t_state);
4465 BUG();
4466 }
4467 /*
4468 * If the Storage engine still owns the iscsi_cmd_t, determine
4469 * and/or stop its context.
4470 */
4471 pr_debug("SE_LUN[%d] - ITT: 0x%08x before transport"
4472 "_lun_wait_for_tasks()\n", cmd->se_lun->unpacked_lun,
4473 cmd->se_tfo->get_task_tag(cmd));
4474
4475 if (transport_lun_wait_for_tasks(cmd, cmd->se_lun) < 0) {
4476 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4477 continue;
4478 }
4479
4480 pr_debug("SE_LUN[%d] - ITT: 0x%08x after transport_lun"
4481 "_wait_for_tasks(): SUCCESS\n",
4482 cmd->se_lun->unpacked_lun,
4483 cmd->se_tfo->get_task_tag(cmd));
4484
4485 spin_lock_irqsave(&cmd->t_state_lock, cmd_flags);
4486 if (!atomic_read(&cmd->transport_dev_active)) {
4487 spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
4488 goto check_cond;
4489 }
4490 atomic_set(&cmd->transport_dev_active, 0);
4491 transport_all_task_dev_remove_state(cmd);
4492 spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
4493
4494 transport_free_dev_tasks(cmd);
4495 /*
4496 * The Storage engine stopped this struct se_cmd before it was
4497 * send to the fabric frontend for delivery back to the
4498 * Initiator Node. Return this SCSI CDB back with an
4499 * CHECK_CONDITION status.
4500 */
4501 check_cond:
4502 transport_send_check_condition_and_sense(cmd,
4503 TCM_NON_EXISTENT_LUN, 0);
4504 /*
4505 * If the fabric frontend is waiting for this iscsi_cmd_t to
4506 * be released, notify the waiting thread now that LU has
4507 * finished accessing it.
4508 */
4509 spin_lock_irqsave(&cmd->t_state_lock, cmd_flags);
4510 if (atomic_read(&cmd->transport_lun_fe_stop)) {
4511 pr_debug("SE_LUN[%d] - Detected FE stop for"
4512 " struct se_cmd: %p ITT: 0x%08x\n",
4513 lun->unpacked_lun,
4514 cmd, cmd->se_tfo->get_task_tag(cmd));
4515
4516 spin_unlock_irqrestore(&cmd->t_state_lock,
4517 cmd_flags);
4518 transport_cmd_check_stop(cmd, 1, 0);
4519 complete(&cmd->transport_lun_fe_stop_comp);
4520 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4521 continue;
4522 }
4523 pr_debug("SE_LUN[%d] - ITT: 0x%08x finished processing\n",
4524 lun->unpacked_lun, cmd->se_tfo->get_task_tag(cmd));
4525
4526 spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
4527 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4528 }
4529 spin_unlock_irqrestore(&lun->lun_cmd_lock, lun_flags);
4530 }
4531
4532 static int transport_clear_lun_thread(void *p)
4533 {
4534 struct se_lun *lun = (struct se_lun *)p;
4535
4536 __transport_clear_lun_from_sessions(lun);
4537 complete(&lun->lun_shutdown_comp);
4538
4539 return 0;
4540 }
4541
4542 int transport_clear_lun_from_sessions(struct se_lun *lun)
4543 {
4544 struct task_struct *kt;
4545
4546 kt = kthread_run(transport_clear_lun_thread, lun,
4547 "tcm_cl_%u", lun->unpacked_lun);
4548 if (IS_ERR(kt)) {
4549 pr_err("Unable to start clear_lun thread\n");
4550 return PTR_ERR(kt);
4551 }
4552 wait_for_completion(&lun->lun_shutdown_comp);
4553
4554 return 0;
4555 }
4556
4557 /* transport_generic_wait_for_tasks():
4558 *
4559 * Called from frontend or passthrough context to wait for storage engine
4560 * to pause and/or release frontend generated struct se_cmd.
4561 */
4562 static void transport_generic_wait_for_tasks(
4563 struct se_cmd *cmd,
4564 int remove_cmd,
4565 int session_reinstatement)
4566 {
4567 unsigned long flags;
4568
4569 if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD) && !(cmd->se_tmr_req))
4570 return;
4571
4572 spin_lock_irqsave(&cmd->t_state_lock, flags);
4573 /*
4574 * If we are already stopped due to an external event (ie: LUN shutdown)
4575 * sleep until the connection can have the passed struct se_cmd back.
4576 * The cmd->transport_lun_stopped_sem will be upped by
4577 * transport_clear_lun_from_sessions() once the ConfigFS context caller
4578 * has completed its operation on the struct se_cmd.
4579 */
4580 if (atomic_read(&cmd->transport_lun_stop)) {
4581
4582 pr_debug("wait_for_tasks: Stopping"
4583 " wait_for_completion(&cmd->t_tasktransport_lun_fe"
4584 "_stop_comp); for ITT: 0x%08x\n",
4585 cmd->se_tfo->get_task_tag(cmd));
4586 /*
4587 * There is a special case for WRITES where a FE exception +
4588 * LUN shutdown means ConfigFS context is still sleeping on
4589 * transport_lun_stop_comp in transport_lun_wait_for_tasks().
4590 * We go ahead and up transport_lun_stop_comp just to be sure
4591 * here.
4592 */
4593 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4594 complete(&cmd->transport_lun_stop_comp);
4595 wait_for_completion(&cmd->transport_lun_fe_stop_comp);
4596 spin_lock_irqsave(&cmd->t_state_lock, flags);
4597
4598 transport_all_task_dev_remove_state(cmd);
4599 /*
4600 * At this point, the frontend who was the originator of this
4601 * struct se_cmd, now owns the structure and can be released through
4602 * normal means below.
4603 */
4604 pr_debug("wait_for_tasks: Stopped"
4605 " wait_for_completion(&cmd->t_tasktransport_lun_fe_"
4606 "stop_comp); for ITT: 0x%08x\n",
4607 cmd->se_tfo->get_task_tag(cmd));
4608
4609 atomic_set(&cmd->transport_lun_stop, 0);
4610 }
4611 if (!atomic_read(&cmd->t_transport_active) ||
4612 atomic_read(&cmd->t_transport_aborted))
4613 goto remove;
4614
4615 atomic_set(&cmd->t_transport_stop, 1);
4616
4617 pr_debug("wait_for_tasks: Stopping %p ITT: 0x%08x"
4618 " i_state: %d, t_state/def_t_state: %d/%d, t_transport_stop"
4619 " = TRUE\n", cmd, cmd->se_tfo->get_task_tag(cmd),
4620 cmd->se_tfo->get_cmd_state(cmd), cmd->t_state,
4621 cmd->deferred_t_state);
4622
4623 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4624
4625 wake_up_interruptible(&cmd->se_dev->dev_queue_obj.thread_wq);
4626
4627 wait_for_completion(&cmd->t_transport_stop_comp);
4628
4629 spin_lock_irqsave(&cmd->t_state_lock, flags);
4630 atomic_set(&cmd->t_transport_active, 0);
4631 atomic_set(&cmd->t_transport_stop, 0);
4632
4633 pr_debug("wait_for_tasks: Stopped wait_for_compltion("
4634 "&cmd->t_transport_stop_comp) for ITT: 0x%08x\n",
4635 cmd->se_tfo->get_task_tag(cmd));
4636 remove:
4637 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4638 if (!remove_cmd)
4639 return;
4640
4641 transport_generic_free_cmd(cmd, 0, session_reinstatement);
4642 }
4643
4644 static int transport_get_sense_codes(
4645 struct se_cmd *cmd,
4646 u8 *asc,
4647 u8 *ascq)
4648 {
4649 *asc = cmd->scsi_asc;
4650 *ascq = cmd->scsi_ascq;
4651
4652 return 0;
4653 }
4654
4655 static int transport_set_sense_codes(
4656 struct se_cmd *cmd,
4657 u8 asc,
4658 u8 ascq)
4659 {
4660 cmd->scsi_asc = asc;
4661 cmd->scsi_ascq = ascq;
4662
4663 return 0;
4664 }
4665
4666 int transport_send_check_condition_and_sense(
4667 struct se_cmd *cmd,
4668 u8 reason,
4669 int from_transport)
4670 {
4671 unsigned char *buffer = cmd->sense_buffer;
4672 unsigned long flags;
4673 int offset;
4674 u8 asc = 0, ascq = 0;
4675
4676 spin_lock_irqsave(&cmd->t_state_lock, flags);
4677 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
4678 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4679 return 0;
4680 }
4681 cmd->se_cmd_flags |= SCF_SENT_CHECK_CONDITION;
4682 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4683
4684 if (!reason && from_transport)
4685 goto after_reason;
4686
4687 if (!from_transport)
4688 cmd->se_cmd_flags |= SCF_EMULATED_TASK_SENSE;
4689 /*
4690 * Data Segment and SenseLength of the fabric response PDU.
4691 *
4692 * TRANSPORT_SENSE_BUFFER is now set to SCSI_SENSE_BUFFERSIZE
4693 * from include/scsi/scsi_cmnd.h
4694 */
4695 offset = cmd->se_tfo->set_fabric_sense_len(cmd,
4696 TRANSPORT_SENSE_BUFFER);
4697 /*
4698 * Actual SENSE DATA, see SPC-3 7.23.2 SPC_SENSE_KEY_OFFSET uses
4699 * SENSE KEY values from include/scsi/scsi.h
4700 */
4701 switch (reason) {
4702 case TCM_NON_EXISTENT_LUN:
4703 case TCM_UNSUPPORTED_SCSI_OPCODE:
4704 case TCM_SECTOR_COUNT_TOO_MANY:
4705 /* CURRENT ERROR */
4706 buffer[offset] = 0x70;
4707 /* ILLEGAL REQUEST */
4708 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4709 /* INVALID COMMAND OPERATION CODE */
4710 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x20;
4711 break;
4712 case TCM_UNKNOWN_MODE_PAGE:
4713 /* CURRENT ERROR */
4714 buffer[offset] = 0x70;
4715 /* ILLEGAL REQUEST */
4716 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4717 /* INVALID FIELD IN CDB */
4718 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x24;
4719 break;
4720 case TCM_CHECK_CONDITION_ABORT_CMD:
4721 /* CURRENT ERROR */
4722 buffer[offset] = 0x70;
4723 /* ABORTED COMMAND */
4724 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4725 /* BUS DEVICE RESET FUNCTION OCCURRED */
4726 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x29;
4727 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x03;
4728 break;
4729 case TCM_INCORRECT_AMOUNT_OF_DATA:
4730 /* CURRENT ERROR */
4731 buffer[offset] = 0x70;
4732 /* ABORTED COMMAND */
4733 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4734 /* WRITE ERROR */
4735 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x0c;
4736 /* NOT ENOUGH UNSOLICITED DATA */
4737 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x0d;
4738 break;
4739 case TCM_INVALID_CDB_FIELD:
4740 /* CURRENT ERROR */
4741 buffer[offset] = 0x70;
4742 /* ABORTED COMMAND */
4743 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4744 /* INVALID FIELD IN CDB */
4745 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x24;
4746 break;
4747 case TCM_INVALID_PARAMETER_LIST:
4748 /* CURRENT ERROR */
4749 buffer[offset] = 0x70;
4750 /* ABORTED COMMAND */
4751 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4752 /* INVALID FIELD IN PARAMETER LIST */
4753 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x26;
4754 break;
4755 case TCM_UNEXPECTED_UNSOLICITED_DATA:
4756 /* CURRENT ERROR */
4757 buffer[offset] = 0x70;
4758 /* ABORTED COMMAND */
4759 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4760 /* WRITE ERROR */
4761 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x0c;
4762 /* UNEXPECTED_UNSOLICITED_DATA */
4763 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x0c;
4764 break;
4765 case TCM_SERVICE_CRC_ERROR:
4766 /* CURRENT ERROR */
4767 buffer[offset] = 0x70;
4768 /* ABORTED COMMAND */
4769 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4770 /* PROTOCOL SERVICE CRC ERROR */
4771 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x47;
4772 /* N/A */
4773 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x05;
4774 break;
4775 case TCM_SNACK_REJECTED:
4776 /* CURRENT ERROR */
4777 buffer[offset] = 0x70;
4778 /* ABORTED COMMAND */
4779 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4780 /* READ ERROR */
4781 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x11;
4782 /* FAILED RETRANSMISSION REQUEST */
4783 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x13;
4784 break;
4785 case TCM_WRITE_PROTECTED:
4786 /* CURRENT ERROR */
4787 buffer[offset] = 0x70;
4788 /* DATA PROTECT */
4789 buffer[offset+SPC_SENSE_KEY_OFFSET] = DATA_PROTECT;
4790 /* WRITE PROTECTED */
4791 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x27;
4792 break;
4793 case TCM_CHECK_CONDITION_UNIT_ATTENTION:
4794 /* CURRENT ERROR */
4795 buffer[offset] = 0x70;
4796 /* UNIT ATTENTION */
4797 buffer[offset+SPC_SENSE_KEY_OFFSET] = UNIT_ATTENTION;
4798 core_scsi3_ua_for_check_condition(cmd, &asc, &ascq);
4799 buffer[offset+SPC_ASC_KEY_OFFSET] = asc;
4800 buffer[offset+SPC_ASCQ_KEY_OFFSET] = ascq;
4801 break;
4802 case TCM_CHECK_CONDITION_NOT_READY:
4803 /* CURRENT ERROR */
4804 buffer[offset] = 0x70;
4805 /* Not Ready */
4806 buffer[offset+SPC_SENSE_KEY_OFFSET] = NOT_READY;
4807 transport_get_sense_codes(cmd, &asc, &ascq);
4808 buffer[offset+SPC_ASC_KEY_OFFSET] = asc;
4809 buffer[offset+SPC_ASCQ_KEY_OFFSET] = ascq;
4810 break;
4811 case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
4812 default:
4813 /* CURRENT ERROR */
4814 buffer[offset] = 0x70;
4815 /* ILLEGAL REQUEST */
4816 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4817 /* LOGICAL UNIT COMMUNICATION FAILURE */
4818 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x80;
4819 break;
4820 }
4821 /*
4822 * This code uses linux/include/scsi/scsi.h SAM status codes!
4823 */
4824 cmd->scsi_status = SAM_STAT_CHECK_CONDITION;
4825 /*
4826 * Automatically padded, this value is encoded in the fabric's
4827 * data_length response PDU containing the SCSI defined sense data.
4828 */
4829 cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER + offset;
4830
4831 after_reason:
4832 return cmd->se_tfo->queue_status(cmd);
4833 }
4834 EXPORT_SYMBOL(transport_send_check_condition_and_sense);
4835
4836 int transport_check_aborted_status(struct se_cmd *cmd, int send_status)
4837 {
4838 int ret = 0;
4839
4840 if (atomic_read(&cmd->t_transport_aborted) != 0) {
4841 if (!send_status ||
4842 (cmd->se_cmd_flags & SCF_SENT_DELAYED_TAS))
4843 return 1;
4844 #if 0
4845 pr_debug("Sending delayed SAM_STAT_TASK_ABORTED"
4846 " status for CDB: 0x%02x ITT: 0x%08x\n",
4847 cmd->t_task_cdb[0],
4848 cmd->se_tfo->get_task_tag(cmd));
4849 #endif
4850 cmd->se_cmd_flags |= SCF_SENT_DELAYED_TAS;
4851 cmd->se_tfo->queue_status(cmd);
4852 ret = 1;
4853 }
4854 return ret;
4855 }
4856 EXPORT_SYMBOL(transport_check_aborted_status);
4857
4858 void transport_send_task_abort(struct se_cmd *cmd)
4859 {
4860 /*
4861 * If there are still expected incoming fabric WRITEs, we wait
4862 * until until they have completed before sending a TASK_ABORTED
4863 * response. This response with TASK_ABORTED status will be
4864 * queued back to fabric module by transport_check_aborted_status().
4865 */
4866 if (cmd->data_direction == DMA_TO_DEVICE) {
4867 if (cmd->se_tfo->write_pending_status(cmd) != 0) {
4868 atomic_inc(&cmd->t_transport_aborted);
4869 smp_mb__after_atomic_inc();
4870 cmd->scsi_status = SAM_STAT_TASK_ABORTED;
4871 transport_new_cmd_failure(cmd);
4872 return;
4873 }
4874 }
4875 cmd->scsi_status = SAM_STAT_TASK_ABORTED;
4876 #if 0
4877 pr_debug("Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x,"
4878 " ITT: 0x%08x\n", cmd->t_task_cdb[0],
4879 cmd->se_tfo->get_task_tag(cmd));
4880 #endif
4881 cmd->se_tfo->queue_status(cmd);
4882 }
4883
4884 /* transport_generic_do_tmr():
4885 *
4886 *
4887 */
4888 int transport_generic_do_tmr(struct se_cmd *cmd)
4889 {
4890 struct se_device *dev = cmd->se_dev;
4891 struct se_tmr_req *tmr = cmd->se_tmr_req;
4892 int ret;
4893
4894 switch (tmr->function) {
4895 case TMR_ABORT_TASK:
4896 tmr->response = TMR_FUNCTION_REJECTED;
4897 break;
4898 case TMR_ABORT_TASK_SET:
4899 case TMR_CLEAR_ACA:
4900 case TMR_CLEAR_TASK_SET:
4901 tmr->response = TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED;
4902 break;
4903 case TMR_LUN_RESET:
4904 ret = core_tmr_lun_reset(dev, tmr, NULL, NULL);
4905 tmr->response = (!ret) ? TMR_FUNCTION_COMPLETE :
4906 TMR_FUNCTION_REJECTED;
4907 break;
4908 case TMR_TARGET_WARM_RESET:
4909 tmr->response = TMR_FUNCTION_REJECTED;
4910 break;
4911 case TMR_TARGET_COLD_RESET:
4912 tmr->response = TMR_FUNCTION_REJECTED;
4913 break;
4914 default:
4915 pr_err("Uknown TMR function: 0x%02x.\n",
4916 tmr->function);
4917 tmr->response = TMR_FUNCTION_REJECTED;
4918 break;
4919 }
4920
4921 cmd->t_state = TRANSPORT_ISTATE_PROCESSING;
4922 cmd->se_tfo->queue_tm_rsp(cmd);
4923
4924 transport_cmd_check_stop(cmd, 2, 0);
4925 return 0;
4926 }
4927
4928 /*
4929 * Called with spin_lock_irq(&dev->execute_task_lock); held
4930 *
4931 */
4932 static struct se_task *
4933 transport_get_task_from_state_list(struct se_device *dev)
4934 {
4935 struct se_task *task;
4936
4937 if (list_empty(&dev->state_task_list))
4938 return NULL;
4939
4940 list_for_each_entry(task, &dev->state_task_list, t_state_list)
4941 break;
4942
4943 list_del(&task->t_state_list);
4944 atomic_set(&task->task_state_active, 0);
4945
4946 return task;
4947 }
4948
4949 static void transport_processing_shutdown(struct se_device *dev)
4950 {
4951 struct se_cmd *cmd;
4952 struct se_task *task;
4953 unsigned long flags;
4954 /*
4955 * Empty the struct se_device's struct se_task state list.
4956 */
4957 spin_lock_irqsave(&dev->execute_task_lock, flags);
4958 while ((task = transport_get_task_from_state_list(dev))) {
4959 if (!task->task_se_cmd) {
4960 pr_err("task->task_se_cmd is NULL!\n");
4961 continue;
4962 }
4963 cmd = task->task_se_cmd;
4964
4965 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
4966
4967 spin_lock_irqsave(&cmd->t_state_lock, flags);
4968
4969 pr_debug("PT: cmd: %p task: %p ITT: 0x%08x,"
4970 " i_state: %d, t_state/def_t_state:"
4971 " %d/%d cdb: 0x%02x\n", cmd, task,
4972 cmd->se_tfo->get_task_tag(cmd),
4973 cmd->se_tfo->get_cmd_state(cmd),
4974 cmd->t_state, cmd->deferred_t_state,
4975 cmd->t_task_cdb[0]);
4976 pr_debug("PT: ITT[0x%08x] - t_tasks: %d t_task_cdbs_left:"
4977 " %d t_task_cdbs_sent: %d -- t_transport_active: %d"
4978 " t_transport_stop: %d t_transport_sent: %d\n",
4979 cmd->se_tfo->get_task_tag(cmd),
4980 cmd->t_task_list_num,
4981 atomic_read(&cmd->t_task_cdbs_left),
4982 atomic_read(&cmd->t_task_cdbs_sent),
4983 atomic_read(&cmd->t_transport_active),
4984 atomic_read(&cmd->t_transport_stop),
4985 atomic_read(&cmd->t_transport_sent));
4986
4987 if (atomic_read(&task->task_active)) {
4988 atomic_set(&task->task_stop, 1);
4989 spin_unlock_irqrestore(
4990 &cmd->t_state_lock, flags);
4991
4992 pr_debug("Waiting for task: %p to shutdown for dev:"
4993 " %p\n", task, dev);
4994 wait_for_completion(&task->task_stop_comp);
4995 pr_debug("Completed task: %p shutdown for dev: %p\n",
4996 task, dev);
4997
4998 spin_lock_irqsave(&cmd->t_state_lock, flags);
4999 atomic_dec(&cmd->t_task_cdbs_left);
5000
5001 atomic_set(&task->task_active, 0);
5002 atomic_set(&task->task_stop, 0);
5003 } else {
5004 if (atomic_read(&task->task_execute_queue) != 0)
5005 transport_remove_task_from_execute_queue(task, dev);
5006 }
5007 __transport_stop_task_timer(task, &flags);
5008
5009 if (!atomic_dec_and_test(&cmd->t_task_cdbs_ex_left)) {
5010 spin_unlock_irqrestore(
5011 &cmd->t_state_lock, flags);
5012
5013 pr_debug("Skipping task: %p, dev: %p for"
5014 " t_task_cdbs_ex_left: %d\n", task, dev,
5015 atomic_read(&cmd->t_task_cdbs_ex_left));
5016
5017 spin_lock_irqsave(&dev->execute_task_lock, flags);
5018 continue;
5019 }
5020
5021 if (atomic_read(&cmd->t_transport_active)) {
5022 pr_debug("got t_transport_active = 1 for task: %p, dev:"
5023 " %p\n", task, dev);
5024
5025 if (atomic_read(&cmd->t_fe_count)) {
5026 spin_unlock_irqrestore(
5027 &cmd->t_state_lock, flags);
5028 transport_send_check_condition_and_sense(
5029 cmd, TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE,
5030 0);
5031 transport_remove_cmd_from_queue(cmd,
5032 &cmd->se_dev->dev_queue_obj);
5033
5034 transport_lun_remove_cmd(cmd);
5035 transport_cmd_check_stop(cmd, 1, 0);
5036 } else {
5037 spin_unlock_irqrestore(
5038 &cmd->t_state_lock, flags);
5039
5040 transport_remove_cmd_from_queue(cmd,
5041 &cmd->se_dev->dev_queue_obj);
5042
5043 transport_lun_remove_cmd(cmd);
5044
5045 if (transport_cmd_check_stop(cmd, 1, 0))
5046 transport_generic_remove(cmd, 0);
5047 }
5048
5049 spin_lock_irqsave(&dev->execute_task_lock, flags);
5050 continue;
5051 }
5052 pr_debug("Got t_transport_active = 0 for task: %p, dev: %p\n",
5053 task, dev);
5054
5055 if (atomic_read(&cmd->t_fe_count)) {
5056 spin_unlock_irqrestore(
5057 &cmd->t_state_lock, flags);
5058 transport_send_check_condition_and_sense(cmd,
5059 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE, 0);
5060 transport_remove_cmd_from_queue(cmd,
5061 &cmd->se_dev->dev_queue_obj);
5062
5063 transport_lun_remove_cmd(cmd);
5064 transport_cmd_check_stop(cmd, 1, 0);
5065 } else {
5066 spin_unlock_irqrestore(
5067 &cmd->t_state_lock, flags);
5068
5069 transport_remove_cmd_from_queue(cmd,
5070 &cmd->se_dev->dev_queue_obj);
5071 transport_lun_remove_cmd(cmd);
5072
5073 if (transport_cmd_check_stop(cmd, 1, 0))
5074 transport_generic_remove(cmd, 0);
5075 }
5076
5077 spin_lock_irqsave(&dev->execute_task_lock, flags);
5078 }
5079 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
5080 /*
5081 * Empty the struct se_device's struct se_cmd list.
5082 */
5083 while ((cmd = transport_get_cmd_from_queue(&dev->dev_queue_obj))) {
5084
5085 pr_debug("From Device Queue: cmd: %p t_state: %d\n",
5086 cmd, cmd->t_state);
5087
5088 if (atomic_read(&cmd->t_fe_count)) {
5089 transport_send_check_condition_and_sense(cmd,
5090 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE, 0);
5091
5092 transport_lun_remove_cmd(cmd);
5093 transport_cmd_check_stop(cmd, 1, 0);
5094 } else {
5095 transport_lun_remove_cmd(cmd);
5096 if (transport_cmd_check_stop(cmd, 1, 0))
5097 transport_generic_remove(cmd, 0);
5098 }
5099 }
5100 }
5101
5102 /* transport_processing_thread():
5103 *
5104 *
5105 */
5106 static int transport_processing_thread(void *param)
5107 {
5108 int ret;
5109 struct se_cmd *cmd;
5110 struct se_device *dev = (struct se_device *) param;
5111
5112 set_user_nice(current, -20);
5113
5114 while (!kthread_should_stop()) {
5115 ret = wait_event_interruptible(dev->dev_queue_obj.thread_wq,
5116 atomic_read(&dev->dev_queue_obj.queue_cnt) ||
5117 kthread_should_stop());
5118 if (ret < 0)
5119 goto out;
5120
5121 spin_lock_irq(&dev->dev_status_lock);
5122 if (dev->dev_status & TRANSPORT_DEVICE_SHUTDOWN) {
5123 spin_unlock_irq(&dev->dev_status_lock);
5124 transport_processing_shutdown(dev);
5125 continue;
5126 }
5127 spin_unlock_irq(&dev->dev_status_lock);
5128
5129 get_cmd:
5130 __transport_execute_tasks(dev);
5131
5132 cmd = transport_get_cmd_from_queue(&dev->dev_queue_obj);
5133 if (!cmd)
5134 continue;
5135
5136 switch (cmd->t_state) {
5137 case TRANSPORT_NEW_CMD_MAP:
5138 if (!cmd->se_tfo->new_cmd_map) {
5139 pr_err("cmd->se_tfo->new_cmd_map is"
5140 " NULL for TRANSPORT_NEW_CMD_MAP\n");
5141 BUG();
5142 }
5143 ret = cmd->se_tfo->new_cmd_map(cmd);
5144 if (ret < 0) {
5145 cmd->transport_error_status = ret;
5146 transport_generic_request_failure(cmd, NULL,
5147 0, (cmd->data_direction !=
5148 DMA_TO_DEVICE));
5149 break;
5150 }
5151 /* Fall through */
5152 case TRANSPORT_NEW_CMD:
5153 ret = transport_generic_new_cmd(cmd);
5154 if (ret == -EAGAIN)
5155 break;
5156 else if (ret < 0) {
5157 cmd->transport_error_status = ret;
5158 transport_generic_request_failure(cmd, NULL,
5159 0, (cmd->data_direction !=
5160 DMA_TO_DEVICE));
5161 }
5162 break;
5163 case TRANSPORT_PROCESS_WRITE:
5164 transport_generic_process_write(cmd);
5165 break;
5166 case TRANSPORT_COMPLETE_OK:
5167 transport_stop_all_task_timers(cmd);
5168 transport_generic_complete_ok(cmd);
5169 break;
5170 case TRANSPORT_REMOVE:
5171 transport_generic_remove(cmd, 0);
5172 break;
5173 case TRANSPORT_FREE_CMD_INTR:
5174 transport_generic_free_cmd(cmd, 0, 0);
5175 break;
5176 case TRANSPORT_PROCESS_TMR:
5177 transport_generic_do_tmr(cmd);
5178 break;
5179 case TRANSPORT_COMPLETE_FAILURE:
5180 transport_generic_request_failure(cmd, NULL, 1, 1);
5181 break;
5182 case TRANSPORT_COMPLETE_TIMEOUT:
5183 transport_stop_all_task_timers(cmd);
5184 transport_generic_request_timeout(cmd);
5185 break;
5186 case TRANSPORT_COMPLETE_QF_WP:
5187 transport_generic_write_pending(cmd);
5188 break;
5189 default:
5190 pr_err("Unknown t_state: %d deferred_t_state:"
5191 " %d for ITT: 0x%08x i_state: %d on SE LUN:"
5192 " %u\n", cmd->t_state, cmd->deferred_t_state,
5193 cmd->se_tfo->get_task_tag(cmd),
5194 cmd->se_tfo->get_cmd_state(cmd),
5195 cmd->se_lun->unpacked_lun);
5196 BUG();
5197 }
5198
5199 goto get_cmd;
5200 }
5201
5202 out:
5203 transport_release_all_cmds(dev);
5204 dev->process_thread = NULL;
5205 return 0;
5206 }