drm/nouveau/bios: allow loading alternate vbios image as firmware
[GitHub/LineageOS/android_kernel_samsung_universal7580.git] / drivers / target / target_core_transport.c
1 /*******************************************************************************
2 * Filename: target_core_transport.c
3 *
4 * This file contains the Generic Target Engine Core.
5 *
6 * Copyright (c) 2002, 2003, 2004, 2005 PyX Technologies, Inc.
7 * Copyright (c) 2005, 2006, 2007 SBE, Inc.
8 * Copyright (c) 2007-2010 Rising Tide Systems
9 * Copyright (c) 2008-2010 Linux-iSCSI.org
10 *
11 * Nicholas A. Bellinger <nab@kernel.org>
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
17 *
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
22 *
23 * You should have received a copy of the GNU General Public License
24 * along with this program; if not, write to the Free Software
25 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
26 *
27 ******************************************************************************/
28
29 #include <linux/net.h>
30 #include <linux/delay.h>
31 #include <linux/string.h>
32 #include <linux/timer.h>
33 #include <linux/slab.h>
34 #include <linux/blkdev.h>
35 #include <linux/spinlock.h>
36 #include <linux/kthread.h>
37 #include <linux/in.h>
38 #include <linux/cdrom.h>
39 #include <linux/module.h>
40 #include <linux/ratelimit.h>
41 #include <asm/unaligned.h>
42 #include <net/sock.h>
43 #include <net/tcp.h>
44 #include <scsi/scsi.h>
45 #include <scsi/scsi_cmnd.h>
46 #include <scsi/scsi_tcq.h>
47
48 #include <target/target_core_base.h>
49 #include <target/target_core_backend.h>
50 #include <target/target_core_fabric.h>
51 #include <target/target_core_configfs.h>
52
53 #include "target_core_internal.h"
54 #include "target_core_alua.h"
55 #include "target_core_pr.h"
56 #include "target_core_ua.h"
57
58 static int sub_api_initialized;
59
60 static struct workqueue_struct *target_completion_wq;
61 static struct kmem_cache *se_sess_cache;
62 struct kmem_cache *se_ua_cache;
63 struct kmem_cache *t10_pr_reg_cache;
64 struct kmem_cache *t10_alua_lu_gp_cache;
65 struct kmem_cache *t10_alua_lu_gp_mem_cache;
66 struct kmem_cache *t10_alua_tg_pt_gp_cache;
67 struct kmem_cache *t10_alua_tg_pt_gp_mem_cache;
68
69 static int transport_generic_write_pending(struct se_cmd *);
70 static int transport_processing_thread(void *param);
71 static int __transport_execute_tasks(struct se_device *dev, struct se_cmd *);
72 static void transport_complete_task_attr(struct se_cmd *cmd);
73 static void transport_handle_queue_full(struct se_cmd *cmd,
74 struct se_device *dev);
75 static void transport_free_dev_tasks(struct se_cmd *cmd);
76 static int transport_generic_get_mem(struct se_cmd *cmd);
77 static void transport_put_cmd(struct se_cmd *cmd);
78 static void transport_remove_cmd_from_queue(struct se_cmd *cmd);
79 static int transport_set_sense_codes(struct se_cmd *cmd, u8 asc, u8 ascq);
80 static void target_complete_ok_work(struct work_struct *work);
81
82 int init_se_kmem_caches(void)
83 {
84 se_sess_cache = kmem_cache_create("se_sess_cache",
85 sizeof(struct se_session), __alignof__(struct se_session),
86 0, NULL);
87 if (!se_sess_cache) {
88 pr_err("kmem_cache_create() for struct se_session"
89 " failed\n");
90 goto out;
91 }
92 se_ua_cache = kmem_cache_create("se_ua_cache",
93 sizeof(struct se_ua), __alignof__(struct se_ua),
94 0, NULL);
95 if (!se_ua_cache) {
96 pr_err("kmem_cache_create() for struct se_ua failed\n");
97 goto out_free_sess_cache;
98 }
99 t10_pr_reg_cache = kmem_cache_create("t10_pr_reg_cache",
100 sizeof(struct t10_pr_registration),
101 __alignof__(struct t10_pr_registration), 0, NULL);
102 if (!t10_pr_reg_cache) {
103 pr_err("kmem_cache_create() for struct t10_pr_registration"
104 " failed\n");
105 goto out_free_ua_cache;
106 }
107 t10_alua_lu_gp_cache = kmem_cache_create("t10_alua_lu_gp_cache",
108 sizeof(struct t10_alua_lu_gp), __alignof__(struct t10_alua_lu_gp),
109 0, NULL);
110 if (!t10_alua_lu_gp_cache) {
111 pr_err("kmem_cache_create() for t10_alua_lu_gp_cache"
112 " failed\n");
113 goto out_free_pr_reg_cache;
114 }
115 t10_alua_lu_gp_mem_cache = kmem_cache_create("t10_alua_lu_gp_mem_cache",
116 sizeof(struct t10_alua_lu_gp_member),
117 __alignof__(struct t10_alua_lu_gp_member), 0, NULL);
118 if (!t10_alua_lu_gp_mem_cache) {
119 pr_err("kmem_cache_create() for t10_alua_lu_gp_mem_"
120 "cache failed\n");
121 goto out_free_lu_gp_cache;
122 }
123 t10_alua_tg_pt_gp_cache = kmem_cache_create("t10_alua_tg_pt_gp_cache",
124 sizeof(struct t10_alua_tg_pt_gp),
125 __alignof__(struct t10_alua_tg_pt_gp), 0, NULL);
126 if (!t10_alua_tg_pt_gp_cache) {
127 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
128 "cache failed\n");
129 goto out_free_lu_gp_mem_cache;
130 }
131 t10_alua_tg_pt_gp_mem_cache = kmem_cache_create(
132 "t10_alua_tg_pt_gp_mem_cache",
133 sizeof(struct t10_alua_tg_pt_gp_member),
134 __alignof__(struct t10_alua_tg_pt_gp_member),
135 0, NULL);
136 if (!t10_alua_tg_pt_gp_mem_cache) {
137 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
138 "mem_t failed\n");
139 goto out_free_tg_pt_gp_cache;
140 }
141
142 target_completion_wq = alloc_workqueue("target_completion",
143 WQ_MEM_RECLAIM, 0);
144 if (!target_completion_wq)
145 goto out_free_tg_pt_gp_mem_cache;
146
147 return 0;
148
149 out_free_tg_pt_gp_mem_cache:
150 kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache);
151 out_free_tg_pt_gp_cache:
152 kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
153 out_free_lu_gp_mem_cache:
154 kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
155 out_free_lu_gp_cache:
156 kmem_cache_destroy(t10_alua_lu_gp_cache);
157 out_free_pr_reg_cache:
158 kmem_cache_destroy(t10_pr_reg_cache);
159 out_free_ua_cache:
160 kmem_cache_destroy(se_ua_cache);
161 out_free_sess_cache:
162 kmem_cache_destroy(se_sess_cache);
163 out:
164 return -ENOMEM;
165 }
166
167 void release_se_kmem_caches(void)
168 {
169 destroy_workqueue(target_completion_wq);
170 kmem_cache_destroy(se_sess_cache);
171 kmem_cache_destroy(se_ua_cache);
172 kmem_cache_destroy(t10_pr_reg_cache);
173 kmem_cache_destroy(t10_alua_lu_gp_cache);
174 kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
175 kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
176 kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache);
177 }
178
179 /* This code ensures unique mib indexes are handed out. */
180 static DEFINE_SPINLOCK(scsi_mib_index_lock);
181 static u32 scsi_mib_index[SCSI_INDEX_TYPE_MAX];
182
183 /*
184 * Allocate a new row index for the entry type specified
185 */
186 u32 scsi_get_new_index(scsi_index_t type)
187 {
188 u32 new_index;
189
190 BUG_ON((type < 0) || (type >= SCSI_INDEX_TYPE_MAX));
191
192 spin_lock(&scsi_mib_index_lock);
193 new_index = ++scsi_mib_index[type];
194 spin_unlock(&scsi_mib_index_lock);
195
196 return new_index;
197 }
198
199 static void transport_init_queue_obj(struct se_queue_obj *qobj)
200 {
201 atomic_set(&qobj->queue_cnt, 0);
202 INIT_LIST_HEAD(&qobj->qobj_list);
203 init_waitqueue_head(&qobj->thread_wq);
204 spin_lock_init(&qobj->cmd_queue_lock);
205 }
206
207 void transport_subsystem_check_init(void)
208 {
209 int ret;
210
211 if (sub_api_initialized)
212 return;
213
214 ret = request_module("target_core_iblock");
215 if (ret != 0)
216 pr_err("Unable to load target_core_iblock\n");
217
218 ret = request_module("target_core_file");
219 if (ret != 0)
220 pr_err("Unable to load target_core_file\n");
221
222 ret = request_module("target_core_pscsi");
223 if (ret != 0)
224 pr_err("Unable to load target_core_pscsi\n");
225
226 ret = request_module("target_core_stgt");
227 if (ret != 0)
228 pr_err("Unable to load target_core_stgt\n");
229
230 sub_api_initialized = 1;
231 return;
232 }
233
234 struct se_session *transport_init_session(void)
235 {
236 struct se_session *se_sess;
237
238 se_sess = kmem_cache_zalloc(se_sess_cache, GFP_KERNEL);
239 if (!se_sess) {
240 pr_err("Unable to allocate struct se_session from"
241 " se_sess_cache\n");
242 return ERR_PTR(-ENOMEM);
243 }
244 INIT_LIST_HEAD(&se_sess->sess_list);
245 INIT_LIST_HEAD(&se_sess->sess_acl_list);
246 INIT_LIST_HEAD(&se_sess->sess_cmd_list);
247 INIT_LIST_HEAD(&se_sess->sess_wait_list);
248 spin_lock_init(&se_sess->sess_cmd_lock);
249 kref_init(&se_sess->sess_kref);
250
251 return se_sess;
252 }
253 EXPORT_SYMBOL(transport_init_session);
254
255 /*
256 * Called with spin_lock_irqsave(&struct se_portal_group->session_lock called.
257 */
258 void __transport_register_session(
259 struct se_portal_group *se_tpg,
260 struct se_node_acl *se_nacl,
261 struct se_session *se_sess,
262 void *fabric_sess_ptr)
263 {
264 unsigned char buf[PR_REG_ISID_LEN];
265
266 se_sess->se_tpg = se_tpg;
267 se_sess->fabric_sess_ptr = fabric_sess_ptr;
268 /*
269 * Used by struct se_node_acl's under ConfigFS to locate active se_session-t
270 *
271 * Only set for struct se_session's that will actually be moving I/O.
272 * eg: *NOT* discovery sessions.
273 */
274 if (se_nacl) {
275 /*
276 * If the fabric module supports an ISID based TransportID,
277 * save this value in binary from the fabric I_T Nexus now.
278 */
279 if (se_tpg->se_tpg_tfo->sess_get_initiator_sid != NULL) {
280 memset(&buf[0], 0, PR_REG_ISID_LEN);
281 se_tpg->se_tpg_tfo->sess_get_initiator_sid(se_sess,
282 &buf[0], PR_REG_ISID_LEN);
283 se_sess->sess_bin_isid = get_unaligned_be64(&buf[0]);
284 }
285 kref_get(&se_nacl->acl_kref);
286
287 spin_lock_irq(&se_nacl->nacl_sess_lock);
288 /*
289 * The se_nacl->nacl_sess pointer will be set to the
290 * last active I_T Nexus for each struct se_node_acl.
291 */
292 se_nacl->nacl_sess = se_sess;
293
294 list_add_tail(&se_sess->sess_acl_list,
295 &se_nacl->acl_sess_list);
296 spin_unlock_irq(&se_nacl->nacl_sess_lock);
297 }
298 list_add_tail(&se_sess->sess_list, &se_tpg->tpg_sess_list);
299
300 pr_debug("TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n",
301 se_tpg->se_tpg_tfo->get_fabric_name(), se_sess->fabric_sess_ptr);
302 }
303 EXPORT_SYMBOL(__transport_register_session);
304
305 void transport_register_session(
306 struct se_portal_group *se_tpg,
307 struct se_node_acl *se_nacl,
308 struct se_session *se_sess,
309 void *fabric_sess_ptr)
310 {
311 unsigned long flags;
312
313 spin_lock_irqsave(&se_tpg->session_lock, flags);
314 __transport_register_session(se_tpg, se_nacl, se_sess, fabric_sess_ptr);
315 spin_unlock_irqrestore(&se_tpg->session_lock, flags);
316 }
317 EXPORT_SYMBOL(transport_register_session);
318
319 static void target_release_session(struct kref *kref)
320 {
321 struct se_session *se_sess = container_of(kref,
322 struct se_session, sess_kref);
323 struct se_portal_group *se_tpg = se_sess->se_tpg;
324
325 se_tpg->se_tpg_tfo->close_session(se_sess);
326 }
327
328 void target_get_session(struct se_session *se_sess)
329 {
330 kref_get(&se_sess->sess_kref);
331 }
332 EXPORT_SYMBOL(target_get_session);
333
334 int target_put_session(struct se_session *se_sess)
335 {
336 return kref_put(&se_sess->sess_kref, target_release_session);
337 }
338 EXPORT_SYMBOL(target_put_session);
339
340 static void target_complete_nacl(struct kref *kref)
341 {
342 struct se_node_acl *nacl = container_of(kref,
343 struct se_node_acl, acl_kref);
344
345 complete(&nacl->acl_free_comp);
346 }
347
348 void target_put_nacl(struct se_node_acl *nacl)
349 {
350 kref_put(&nacl->acl_kref, target_complete_nacl);
351 }
352
353 void transport_deregister_session_configfs(struct se_session *se_sess)
354 {
355 struct se_node_acl *se_nacl;
356 unsigned long flags;
357 /*
358 * Used by struct se_node_acl's under ConfigFS to locate active struct se_session
359 */
360 se_nacl = se_sess->se_node_acl;
361 if (se_nacl) {
362 spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
363 if (se_nacl->acl_stop == 0)
364 list_del(&se_sess->sess_acl_list);
365 /*
366 * If the session list is empty, then clear the pointer.
367 * Otherwise, set the struct se_session pointer from the tail
368 * element of the per struct se_node_acl active session list.
369 */
370 if (list_empty(&se_nacl->acl_sess_list))
371 se_nacl->nacl_sess = NULL;
372 else {
373 se_nacl->nacl_sess = container_of(
374 se_nacl->acl_sess_list.prev,
375 struct se_session, sess_acl_list);
376 }
377 spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
378 }
379 }
380 EXPORT_SYMBOL(transport_deregister_session_configfs);
381
382 void transport_free_session(struct se_session *se_sess)
383 {
384 kmem_cache_free(se_sess_cache, se_sess);
385 }
386 EXPORT_SYMBOL(transport_free_session);
387
388 void transport_deregister_session(struct se_session *se_sess)
389 {
390 struct se_portal_group *se_tpg = se_sess->se_tpg;
391 struct target_core_fabric_ops *se_tfo;
392 struct se_node_acl *se_nacl;
393 unsigned long flags;
394 bool comp_nacl = true;
395
396 if (!se_tpg) {
397 transport_free_session(se_sess);
398 return;
399 }
400 se_tfo = se_tpg->se_tpg_tfo;
401
402 spin_lock_irqsave(&se_tpg->session_lock, flags);
403 list_del(&se_sess->sess_list);
404 se_sess->se_tpg = NULL;
405 se_sess->fabric_sess_ptr = NULL;
406 spin_unlock_irqrestore(&se_tpg->session_lock, flags);
407
408 /*
409 * Determine if we need to do extra work for this initiator node's
410 * struct se_node_acl if it had been previously dynamically generated.
411 */
412 se_nacl = se_sess->se_node_acl;
413
414 spin_lock_irqsave(&se_tpg->acl_node_lock, flags);
415 if (se_nacl && se_nacl->dynamic_node_acl) {
416 if (!se_tfo->tpg_check_demo_mode_cache(se_tpg)) {
417 list_del(&se_nacl->acl_list);
418 se_tpg->num_node_acls--;
419 spin_unlock_irqrestore(&se_tpg->acl_node_lock, flags);
420 core_tpg_wait_for_nacl_pr_ref(se_nacl);
421 core_free_device_list_for_node(se_nacl, se_tpg);
422 se_tfo->tpg_release_fabric_acl(se_tpg, se_nacl);
423
424 comp_nacl = false;
425 spin_lock_irqsave(&se_tpg->acl_node_lock, flags);
426 }
427 }
428 spin_unlock_irqrestore(&se_tpg->acl_node_lock, flags);
429
430 pr_debug("TARGET_CORE[%s]: Deregistered fabric_sess\n",
431 se_tpg->se_tpg_tfo->get_fabric_name());
432 /*
433 * If last kref is dropping now for an explict NodeACL, awake sleeping
434 * ->acl_free_comp caller to wakeup configfs se_node_acl->acl_group
435 * removal context.
436 */
437 if (se_nacl && comp_nacl == true)
438 target_put_nacl(se_nacl);
439
440 transport_free_session(se_sess);
441 }
442 EXPORT_SYMBOL(transport_deregister_session);
443
444 /*
445 * Called with cmd->t_state_lock held.
446 */
447 static void transport_all_task_dev_remove_state(struct se_cmd *cmd)
448 {
449 struct se_device *dev = cmd->se_dev;
450 struct se_task *task;
451 unsigned long flags;
452
453 if (!dev)
454 return;
455
456 list_for_each_entry(task, &cmd->t_task_list, t_list) {
457 if (task->task_flags & TF_ACTIVE)
458 continue;
459
460 spin_lock_irqsave(&dev->execute_task_lock, flags);
461 if (task->t_state_active) {
462 pr_debug("Removed ITT: 0x%08x dev: %p task[%p]\n",
463 cmd->se_tfo->get_task_tag(cmd), dev, task);
464
465 list_del(&task->t_state_list);
466 atomic_dec(&cmd->t_task_cdbs_ex_left);
467 task->t_state_active = false;
468 }
469 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
470 }
471
472 }
473
474 /* transport_cmd_check_stop():
475 *
476 * 'transport_off = 1' determines if CMD_T_ACTIVE should be cleared.
477 * 'transport_off = 2' determines if task_dev_state should be removed.
478 *
479 * A non-zero u8 t_state sets cmd->t_state.
480 * Returns 1 when command is stopped, else 0.
481 */
482 static int transport_cmd_check_stop(
483 struct se_cmd *cmd,
484 int transport_off,
485 u8 t_state)
486 {
487 unsigned long flags;
488
489 spin_lock_irqsave(&cmd->t_state_lock, flags);
490 /*
491 * Determine if IOCTL context caller in requesting the stopping of this
492 * command for LUN shutdown purposes.
493 */
494 if (cmd->transport_state & CMD_T_LUN_STOP) {
495 pr_debug("%s:%d CMD_T_LUN_STOP for ITT: 0x%08x\n",
496 __func__, __LINE__, cmd->se_tfo->get_task_tag(cmd));
497
498 cmd->transport_state &= ~CMD_T_ACTIVE;
499 if (transport_off == 2)
500 transport_all_task_dev_remove_state(cmd);
501 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
502
503 complete(&cmd->transport_lun_stop_comp);
504 return 1;
505 }
506 /*
507 * Determine if frontend context caller is requesting the stopping of
508 * this command for frontend exceptions.
509 */
510 if (cmd->transport_state & CMD_T_STOP) {
511 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08x\n",
512 __func__, __LINE__,
513 cmd->se_tfo->get_task_tag(cmd));
514
515 if (transport_off == 2)
516 transport_all_task_dev_remove_state(cmd);
517
518 /*
519 * Clear struct se_cmd->se_lun before the transport_off == 2 handoff
520 * to FE.
521 */
522 if (transport_off == 2)
523 cmd->se_lun = NULL;
524 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
525
526 complete(&cmd->t_transport_stop_comp);
527 return 1;
528 }
529 if (transport_off) {
530 cmd->transport_state &= ~CMD_T_ACTIVE;
531 if (transport_off == 2) {
532 transport_all_task_dev_remove_state(cmd);
533 /*
534 * Clear struct se_cmd->se_lun before the transport_off == 2
535 * handoff to fabric module.
536 */
537 cmd->se_lun = NULL;
538 /*
539 * Some fabric modules like tcm_loop can release
540 * their internally allocated I/O reference now and
541 * struct se_cmd now.
542 *
543 * Fabric modules are expected to return '1' here if the
544 * se_cmd being passed is released at this point,
545 * or zero if not being released.
546 */
547 if (cmd->se_tfo->check_stop_free != NULL) {
548 spin_unlock_irqrestore(
549 &cmd->t_state_lock, flags);
550
551 return cmd->se_tfo->check_stop_free(cmd);
552 }
553 }
554 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
555
556 return 0;
557 } else if (t_state)
558 cmd->t_state = t_state;
559 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
560
561 return 0;
562 }
563
564 static int transport_cmd_check_stop_to_fabric(struct se_cmd *cmd)
565 {
566 return transport_cmd_check_stop(cmd, 2, 0);
567 }
568
569 static void transport_lun_remove_cmd(struct se_cmd *cmd)
570 {
571 struct se_lun *lun = cmd->se_lun;
572 unsigned long flags;
573
574 if (!lun)
575 return;
576
577 spin_lock_irqsave(&cmd->t_state_lock, flags);
578 if (cmd->transport_state & CMD_T_DEV_ACTIVE) {
579 cmd->transport_state &= ~CMD_T_DEV_ACTIVE;
580 transport_all_task_dev_remove_state(cmd);
581 }
582 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
583
584 spin_lock_irqsave(&lun->lun_cmd_lock, flags);
585 if (!list_empty(&cmd->se_lun_node))
586 list_del_init(&cmd->se_lun_node);
587 spin_unlock_irqrestore(&lun->lun_cmd_lock, flags);
588 }
589
590 void transport_cmd_finish_abort(struct se_cmd *cmd, int remove)
591 {
592 if (!(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
593 transport_lun_remove_cmd(cmd);
594
595 if (transport_cmd_check_stop_to_fabric(cmd))
596 return;
597 if (remove) {
598 transport_remove_cmd_from_queue(cmd);
599 transport_put_cmd(cmd);
600 }
601 }
602
603 static void transport_add_cmd_to_queue(struct se_cmd *cmd, int t_state,
604 bool at_head)
605 {
606 struct se_device *dev = cmd->se_dev;
607 struct se_queue_obj *qobj = &dev->dev_queue_obj;
608 unsigned long flags;
609
610 if (t_state) {
611 spin_lock_irqsave(&cmd->t_state_lock, flags);
612 cmd->t_state = t_state;
613 cmd->transport_state |= CMD_T_ACTIVE;
614 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
615 }
616
617 spin_lock_irqsave(&qobj->cmd_queue_lock, flags);
618
619 /* If the cmd is already on the list, remove it before we add it */
620 if (!list_empty(&cmd->se_queue_node))
621 list_del(&cmd->se_queue_node);
622 else
623 atomic_inc(&qobj->queue_cnt);
624
625 if (at_head)
626 list_add(&cmd->se_queue_node, &qobj->qobj_list);
627 else
628 list_add_tail(&cmd->se_queue_node, &qobj->qobj_list);
629 cmd->transport_state |= CMD_T_QUEUED;
630 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
631
632 wake_up_interruptible(&qobj->thread_wq);
633 }
634
635 static struct se_cmd *
636 transport_get_cmd_from_queue(struct se_queue_obj *qobj)
637 {
638 struct se_cmd *cmd;
639 unsigned long flags;
640
641 spin_lock_irqsave(&qobj->cmd_queue_lock, flags);
642 if (list_empty(&qobj->qobj_list)) {
643 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
644 return NULL;
645 }
646 cmd = list_first_entry(&qobj->qobj_list, struct se_cmd, se_queue_node);
647
648 cmd->transport_state &= ~CMD_T_QUEUED;
649 list_del_init(&cmd->se_queue_node);
650 atomic_dec(&qobj->queue_cnt);
651 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
652
653 return cmd;
654 }
655
656 static void transport_remove_cmd_from_queue(struct se_cmd *cmd)
657 {
658 struct se_queue_obj *qobj = &cmd->se_dev->dev_queue_obj;
659 unsigned long flags;
660
661 spin_lock_irqsave(&qobj->cmd_queue_lock, flags);
662 if (!(cmd->transport_state & CMD_T_QUEUED)) {
663 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
664 return;
665 }
666 cmd->transport_state &= ~CMD_T_QUEUED;
667 atomic_dec(&qobj->queue_cnt);
668 list_del_init(&cmd->se_queue_node);
669 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
670 }
671
672 /*
673 * Completion function used by TCM subsystem plugins (such as FILEIO)
674 * for queueing up response from struct se_subsystem_api->do_task()
675 */
676 void transport_complete_sync_cache(struct se_cmd *cmd, int good)
677 {
678 struct se_task *task = list_entry(cmd->t_task_list.next,
679 struct se_task, t_list);
680
681 if (good) {
682 cmd->scsi_status = SAM_STAT_GOOD;
683 task->task_scsi_status = GOOD;
684 } else {
685 task->task_scsi_status = SAM_STAT_CHECK_CONDITION;
686 task->task_se_cmd->scsi_sense_reason =
687 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
688
689 }
690
691 transport_complete_task(task, good);
692 }
693 EXPORT_SYMBOL(transport_complete_sync_cache);
694
695 static void target_complete_failure_work(struct work_struct *work)
696 {
697 struct se_cmd *cmd = container_of(work, struct se_cmd, work);
698
699 transport_generic_request_failure(cmd);
700 }
701
702 /* transport_complete_task():
703 *
704 * Called from interrupt and non interrupt context depending
705 * on the transport plugin.
706 */
707 void transport_complete_task(struct se_task *task, int success)
708 {
709 struct se_cmd *cmd = task->task_se_cmd;
710 struct se_device *dev = cmd->se_dev;
711 unsigned long flags;
712
713 spin_lock_irqsave(&cmd->t_state_lock, flags);
714 task->task_flags &= ~TF_ACTIVE;
715
716 /*
717 * See if any sense data exists, if so set the TASK_SENSE flag.
718 * Also check for any other post completion work that needs to be
719 * done by the plugins.
720 */
721 if (dev && dev->transport->transport_complete) {
722 if (dev->transport->transport_complete(task) != 0) {
723 cmd->se_cmd_flags |= SCF_TRANSPORT_TASK_SENSE;
724 task->task_flags |= TF_HAS_SENSE;
725 success = 1;
726 }
727 }
728
729 /*
730 * See if we are waiting for outstanding struct se_task
731 * to complete for an exception condition
732 */
733 if (task->task_flags & TF_REQUEST_STOP) {
734 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
735 complete(&task->task_stop_comp);
736 return;
737 }
738
739 if (!success)
740 cmd->transport_state |= CMD_T_FAILED;
741
742 /*
743 * Decrement the outstanding t_task_cdbs_left count. The last
744 * struct se_task from struct se_cmd will complete itself into the
745 * device queue depending upon int success.
746 */
747 if (!atomic_dec_and_test(&cmd->t_task_cdbs_left)) {
748 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
749 return;
750 }
751 /*
752 * Check for case where an explict ABORT_TASK has been received
753 * and transport_wait_for_tasks() will be waiting for completion..
754 */
755 if (cmd->transport_state & CMD_T_ABORTED &&
756 cmd->transport_state & CMD_T_STOP) {
757 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
758 complete(&cmd->t_transport_stop_comp);
759 return;
760 } else if (cmd->transport_state & CMD_T_FAILED) {
761 cmd->scsi_sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
762 INIT_WORK(&cmd->work, target_complete_failure_work);
763 } else {
764 INIT_WORK(&cmd->work, target_complete_ok_work);
765 }
766
767 cmd->t_state = TRANSPORT_COMPLETE;
768 cmd->transport_state |= (CMD_T_COMPLETE | CMD_T_ACTIVE);
769 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
770
771 queue_work(target_completion_wq, &cmd->work);
772 }
773 EXPORT_SYMBOL(transport_complete_task);
774
775 /*
776 * Called by transport_add_tasks_from_cmd() once a struct se_cmd's
777 * struct se_task list are ready to be added to the active execution list
778 * struct se_device
779
780 * Called with se_dev_t->execute_task_lock called.
781 */
782 static inline int transport_add_task_check_sam_attr(
783 struct se_task *task,
784 struct se_task *task_prev,
785 struct se_device *dev)
786 {
787 /*
788 * No SAM Task attribute emulation enabled, add to tail of
789 * execution queue
790 */
791 if (dev->dev_task_attr_type != SAM_TASK_ATTR_EMULATED) {
792 list_add_tail(&task->t_execute_list, &dev->execute_task_list);
793 return 0;
794 }
795 /*
796 * HEAD_OF_QUEUE attribute for received CDB, which means
797 * the first task that is associated with a struct se_cmd goes to
798 * head of the struct se_device->execute_task_list, and task_prev
799 * after that for each subsequent task
800 */
801 if (task->task_se_cmd->sam_task_attr == MSG_HEAD_TAG) {
802 list_add(&task->t_execute_list,
803 (task_prev != NULL) ?
804 &task_prev->t_execute_list :
805 &dev->execute_task_list);
806
807 pr_debug("Set HEAD_OF_QUEUE for task CDB: 0x%02x"
808 " in execution queue\n",
809 task->task_se_cmd->t_task_cdb[0]);
810 return 1;
811 }
812 /*
813 * For ORDERED, SIMPLE or UNTAGGED attribute tasks once they have been
814 * transitioned from Dermant -> Active state, and are added to the end
815 * of the struct se_device->execute_task_list
816 */
817 list_add_tail(&task->t_execute_list, &dev->execute_task_list);
818 return 0;
819 }
820
821 /* __transport_add_task_to_execute_queue():
822 *
823 * Called with se_dev_t->execute_task_lock called.
824 */
825 static void __transport_add_task_to_execute_queue(
826 struct se_task *task,
827 struct se_task *task_prev,
828 struct se_device *dev)
829 {
830 int head_of_queue;
831
832 head_of_queue = transport_add_task_check_sam_attr(task, task_prev, dev);
833 atomic_inc(&dev->execute_tasks);
834
835 if (task->t_state_active)
836 return;
837 /*
838 * Determine if this task needs to go to HEAD_OF_QUEUE for the
839 * state list as well. Running with SAM Task Attribute emulation
840 * will always return head_of_queue == 0 here
841 */
842 if (head_of_queue)
843 list_add(&task->t_state_list, (task_prev) ?
844 &task_prev->t_state_list :
845 &dev->state_task_list);
846 else
847 list_add_tail(&task->t_state_list, &dev->state_task_list);
848
849 task->t_state_active = true;
850
851 pr_debug("Added ITT: 0x%08x task[%p] to dev: %p\n",
852 task->task_se_cmd->se_tfo->get_task_tag(task->task_se_cmd),
853 task, dev);
854 }
855
856 static void transport_add_tasks_to_state_queue(struct se_cmd *cmd)
857 {
858 struct se_device *dev = cmd->se_dev;
859 struct se_task *task;
860 unsigned long flags;
861
862 spin_lock_irqsave(&cmd->t_state_lock, flags);
863 list_for_each_entry(task, &cmd->t_task_list, t_list) {
864 spin_lock(&dev->execute_task_lock);
865 if (!task->t_state_active) {
866 list_add_tail(&task->t_state_list,
867 &dev->state_task_list);
868 task->t_state_active = true;
869
870 pr_debug("Added ITT: 0x%08x task[%p] to dev: %p\n",
871 task->task_se_cmd->se_tfo->get_task_tag(
872 task->task_se_cmd), task, dev);
873 }
874 spin_unlock(&dev->execute_task_lock);
875 }
876 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
877 }
878
879 static void __transport_add_tasks_from_cmd(struct se_cmd *cmd)
880 {
881 struct se_device *dev = cmd->se_dev;
882 struct se_task *task, *task_prev = NULL;
883
884 list_for_each_entry(task, &cmd->t_task_list, t_list) {
885 if (!list_empty(&task->t_execute_list))
886 continue;
887 /*
888 * __transport_add_task_to_execute_queue() handles the
889 * SAM Task Attribute emulation if enabled
890 */
891 __transport_add_task_to_execute_queue(task, task_prev, dev);
892 task_prev = task;
893 }
894 }
895
896 static void transport_add_tasks_from_cmd(struct se_cmd *cmd)
897 {
898 unsigned long flags;
899 struct se_device *dev = cmd->se_dev;
900
901 spin_lock_irqsave(&dev->execute_task_lock, flags);
902 __transport_add_tasks_from_cmd(cmd);
903 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
904 }
905
906 void __transport_remove_task_from_execute_queue(struct se_task *task,
907 struct se_device *dev)
908 {
909 list_del_init(&task->t_execute_list);
910 atomic_dec(&dev->execute_tasks);
911 }
912
913 static void transport_remove_task_from_execute_queue(
914 struct se_task *task,
915 struct se_device *dev)
916 {
917 unsigned long flags;
918
919 if (WARN_ON(list_empty(&task->t_execute_list)))
920 return;
921
922 spin_lock_irqsave(&dev->execute_task_lock, flags);
923 __transport_remove_task_from_execute_queue(task, dev);
924 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
925 }
926
927 /*
928 * Handle QUEUE_FULL / -EAGAIN and -ENOMEM status
929 */
930
931 static void target_qf_do_work(struct work_struct *work)
932 {
933 struct se_device *dev = container_of(work, struct se_device,
934 qf_work_queue);
935 LIST_HEAD(qf_cmd_list);
936 struct se_cmd *cmd, *cmd_tmp;
937
938 spin_lock_irq(&dev->qf_cmd_lock);
939 list_splice_init(&dev->qf_cmd_list, &qf_cmd_list);
940 spin_unlock_irq(&dev->qf_cmd_lock);
941
942 list_for_each_entry_safe(cmd, cmd_tmp, &qf_cmd_list, se_qf_node) {
943 list_del(&cmd->se_qf_node);
944 atomic_dec(&dev->dev_qf_count);
945 smp_mb__after_atomic_dec();
946
947 pr_debug("Processing %s cmd: %p QUEUE_FULL in work queue"
948 " context: %s\n", cmd->se_tfo->get_fabric_name(), cmd,
949 (cmd->t_state == TRANSPORT_COMPLETE_QF_OK) ? "COMPLETE_OK" :
950 (cmd->t_state == TRANSPORT_COMPLETE_QF_WP) ? "WRITE_PENDING"
951 : "UNKNOWN");
952
953 transport_add_cmd_to_queue(cmd, cmd->t_state, true);
954 }
955 }
956
957 unsigned char *transport_dump_cmd_direction(struct se_cmd *cmd)
958 {
959 switch (cmd->data_direction) {
960 case DMA_NONE:
961 return "NONE";
962 case DMA_FROM_DEVICE:
963 return "READ";
964 case DMA_TO_DEVICE:
965 return "WRITE";
966 case DMA_BIDIRECTIONAL:
967 return "BIDI";
968 default:
969 break;
970 }
971
972 return "UNKNOWN";
973 }
974
975 void transport_dump_dev_state(
976 struct se_device *dev,
977 char *b,
978 int *bl)
979 {
980 *bl += sprintf(b + *bl, "Status: ");
981 switch (dev->dev_status) {
982 case TRANSPORT_DEVICE_ACTIVATED:
983 *bl += sprintf(b + *bl, "ACTIVATED");
984 break;
985 case TRANSPORT_DEVICE_DEACTIVATED:
986 *bl += sprintf(b + *bl, "DEACTIVATED");
987 break;
988 case TRANSPORT_DEVICE_SHUTDOWN:
989 *bl += sprintf(b + *bl, "SHUTDOWN");
990 break;
991 case TRANSPORT_DEVICE_OFFLINE_ACTIVATED:
992 case TRANSPORT_DEVICE_OFFLINE_DEACTIVATED:
993 *bl += sprintf(b + *bl, "OFFLINE");
994 break;
995 default:
996 *bl += sprintf(b + *bl, "UNKNOWN=%d", dev->dev_status);
997 break;
998 }
999
1000 *bl += sprintf(b + *bl, " Execute/Max Queue Depth: %d/%d",
1001 atomic_read(&dev->execute_tasks), dev->queue_depth);
1002 *bl += sprintf(b + *bl, " SectorSize: %u MaxSectors: %u\n",
1003 dev->se_sub_dev->se_dev_attrib.block_size, dev->se_sub_dev->se_dev_attrib.max_sectors);
1004 *bl += sprintf(b + *bl, " ");
1005 }
1006
1007 void transport_dump_vpd_proto_id(
1008 struct t10_vpd *vpd,
1009 unsigned char *p_buf,
1010 int p_buf_len)
1011 {
1012 unsigned char buf[VPD_TMP_BUF_SIZE];
1013 int len;
1014
1015 memset(buf, 0, VPD_TMP_BUF_SIZE);
1016 len = sprintf(buf, "T10 VPD Protocol Identifier: ");
1017
1018 switch (vpd->protocol_identifier) {
1019 case 0x00:
1020 sprintf(buf+len, "Fibre Channel\n");
1021 break;
1022 case 0x10:
1023 sprintf(buf+len, "Parallel SCSI\n");
1024 break;
1025 case 0x20:
1026 sprintf(buf+len, "SSA\n");
1027 break;
1028 case 0x30:
1029 sprintf(buf+len, "IEEE 1394\n");
1030 break;
1031 case 0x40:
1032 sprintf(buf+len, "SCSI Remote Direct Memory Access"
1033 " Protocol\n");
1034 break;
1035 case 0x50:
1036 sprintf(buf+len, "Internet SCSI (iSCSI)\n");
1037 break;
1038 case 0x60:
1039 sprintf(buf+len, "SAS Serial SCSI Protocol\n");
1040 break;
1041 case 0x70:
1042 sprintf(buf+len, "Automation/Drive Interface Transport"
1043 " Protocol\n");
1044 break;
1045 case 0x80:
1046 sprintf(buf+len, "AT Attachment Interface ATA/ATAPI\n");
1047 break;
1048 default:
1049 sprintf(buf+len, "Unknown 0x%02x\n",
1050 vpd->protocol_identifier);
1051 break;
1052 }
1053
1054 if (p_buf)
1055 strncpy(p_buf, buf, p_buf_len);
1056 else
1057 pr_debug("%s", buf);
1058 }
1059
1060 void
1061 transport_set_vpd_proto_id(struct t10_vpd *vpd, unsigned char *page_83)
1062 {
1063 /*
1064 * Check if the Protocol Identifier Valid (PIV) bit is set..
1065 *
1066 * from spc3r23.pdf section 7.5.1
1067 */
1068 if (page_83[1] & 0x80) {
1069 vpd->protocol_identifier = (page_83[0] & 0xf0);
1070 vpd->protocol_identifier_set = 1;
1071 transport_dump_vpd_proto_id(vpd, NULL, 0);
1072 }
1073 }
1074 EXPORT_SYMBOL(transport_set_vpd_proto_id);
1075
1076 int transport_dump_vpd_assoc(
1077 struct t10_vpd *vpd,
1078 unsigned char *p_buf,
1079 int p_buf_len)
1080 {
1081 unsigned char buf[VPD_TMP_BUF_SIZE];
1082 int ret = 0;
1083 int len;
1084
1085 memset(buf, 0, VPD_TMP_BUF_SIZE);
1086 len = sprintf(buf, "T10 VPD Identifier Association: ");
1087
1088 switch (vpd->association) {
1089 case 0x00:
1090 sprintf(buf+len, "addressed logical unit\n");
1091 break;
1092 case 0x10:
1093 sprintf(buf+len, "target port\n");
1094 break;
1095 case 0x20:
1096 sprintf(buf+len, "SCSI target device\n");
1097 break;
1098 default:
1099 sprintf(buf+len, "Unknown 0x%02x\n", vpd->association);
1100 ret = -EINVAL;
1101 break;
1102 }
1103
1104 if (p_buf)
1105 strncpy(p_buf, buf, p_buf_len);
1106 else
1107 pr_debug("%s", buf);
1108
1109 return ret;
1110 }
1111
1112 int transport_set_vpd_assoc(struct t10_vpd *vpd, unsigned char *page_83)
1113 {
1114 /*
1115 * The VPD identification association..
1116 *
1117 * from spc3r23.pdf Section 7.6.3.1 Table 297
1118 */
1119 vpd->association = (page_83[1] & 0x30);
1120 return transport_dump_vpd_assoc(vpd, NULL, 0);
1121 }
1122 EXPORT_SYMBOL(transport_set_vpd_assoc);
1123
1124 int transport_dump_vpd_ident_type(
1125 struct t10_vpd *vpd,
1126 unsigned char *p_buf,
1127 int p_buf_len)
1128 {
1129 unsigned char buf[VPD_TMP_BUF_SIZE];
1130 int ret = 0;
1131 int len;
1132
1133 memset(buf, 0, VPD_TMP_BUF_SIZE);
1134 len = sprintf(buf, "T10 VPD Identifier Type: ");
1135
1136 switch (vpd->device_identifier_type) {
1137 case 0x00:
1138 sprintf(buf+len, "Vendor specific\n");
1139 break;
1140 case 0x01:
1141 sprintf(buf+len, "T10 Vendor ID based\n");
1142 break;
1143 case 0x02:
1144 sprintf(buf+len, "EUI-64 based\n");
1145 break;
1146 case 0x03:
1147 sprintf(buf+len, "NAA\n");
1148 break;
1149 case 0x04:
1150 sprintf(buf+len, "Relative target port identifier\n");
1151 break;
1152 case 0x08:
1153 sprintf(buf+len, "SCSI name string\n");
1154 break;
1155 default:
1156 sprintf(buf+len, "Unsupported: 0x%02x\n",
1157 vpd->device_identifier_type);
1158 ret = -EINVAL;
1159 break;
1160 }
1161
1162 if (p_buf) {
1163 if (p_buf_len < strlen(buf)+1)
1164 return -EINVAL;
1165 strncpy(p_buf, buf, p_buf_len);
1166 } else {
1167 pr_debug("%s", buf);
1168 }
1169
1170 return ret;
1171 }
1172
1173 int transport_set_vpd_ident_type(struct t10_vpd *vpd, unsigned char *page_83)
1174 {
1175 /*
1176 * The VPD identifier type..
1177 *
1178 * from spc3r23.pdf Section 7.6.3.1 Table 298
1179 */
1180 vpd->device_identifier_type = (page_83[1] & 0x0f);
1181 return transport_dump_vpd_ident_type(vpd, NULL, 0);
1182 }
1183 EXPORT_SYMBOL(transport_set_vpd_ident_type);
1184
1185 int transport_dump_vpd_ident(
1186 struct t10_vpd *vpd,
1187 unsigned char *p_buf,
1188 int p_buf_len)
1189 {
1190 unsigned char buf[VPD_TMP_BUF_SIZE];
1191 int ret = 0;
1192
1193 memset(buf, 0, VPD_TMP_BUF_SIZE);
1194
1195 switch (vpd->device_identifier_code_set) {
1196 case 0x01: /* Binary */
1197 sprintf(buf, "T10 VPD Binary Device Identifier: %s\n",
1198 &vpd->device_identifier[0]);
1199 break;
1200 case 0x02: /* ASCII */
1201 sprintf(buf, "T10 VPD ASCII Device Identifier: %s\n",
1202 &vpd->device_identifier[0]);
1203 break;
1204 case 0x03: /* UTF-8 */
1205 sprintf(buf, "T10 VPD UTF-8 Device Identifier: %s\n",
1206 &vpd->device_identifier[0]);
1207 break;
1208 default:
1209 sprintf(buf, "T10 VPD Device Identifier encoding unsupported:"
1210 " 0x%02x", vpd->device_identifier_code_set);
1211 ret = -EINVAL;
1212 break;
1213 }
1214
1215 if (p_buf)
1216 strncpy(p_buf, buf, p_buf_len);
1217 else
1218 pr_debug("%s", buf);
1219
1220 return ret;
1221 }
1222
1223 int
1224 transport_set_vpd_ident(struct t10_vpd *vpd, unsigned char *page_83)
1225 {
1226 static const char hex_str[] = "0123456789abcdef";
1227 int j = 0, i = 4; /* offset to start of the identifer */
1228
1229 /*
1230 * The VPD Code Set (encoding)
1231 *
1232 * from spc3r23.pdf Section 7.6.3.1 Table 296
1233 */
1234 vpd->device_identifier_code_set = (page_83[0] & 0x0f);
1235 switch (vpd->device_identifier_code_set) {
1236 case 0x01: /* Binary */
1237 vpd->device_identifier[j++] =
1238 hex_str[vpd->device_identifier_type];
1239 while (i < (4 + page_83[3])) {
1240 vpd->device_identifier[j++] =
1241 hex_str[(page_83[i] & 0xf0) >> 4];
1242 vpd->device_identifier[j++] =
1243 hex_str[page_83[i] & 0x0f];
1244 i++;
1245 }
1246 break;
1247 case 0x02: /* ASCII */
1248 case 0x03: /* UTF-8 */
1249 while (i < (4 + page_83[3]))
1250 vpd->device_identifier[j++] = page_83[i++];
1251 break;
1252 default:
1253 break;
1254 }
1255
1256 return transport_dump_vpd_ident(vpd, NULL, 0);
1257 }
1258 EXPORT_SYMBOL(transport_set_vpd_ident);
1259
1260 static void core_setup_task_attr_emulation(struct se_device *dev)
1261 {
1262 /*
1263 * If this device is from Target_Core_Mod/pSCSI, disable the
1264 * SAM Task Attribute emulation.
1265 *
1266 * This is currently not available in upsream Linux/SCSI Target
1267 * mode code, and is assumed to be disabled while using TCM/pSCSI.
1268 */
1269 if (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV) {
1270 dev->dev_task_attr_type = SAM_TASK_ATTR_PASSTHROUGH;
1271 return;
1272 }
1273
1274 dev->dev_task_attr_type = SAM_TASK_ATTR_EMULATED;
1275 pr_debug("%s: Using SAM_TASK_ATTR_EMULATED for SPC: 0x%02x"
1276 " device\n", dev->transport->name,
1277 dev->transport->get_device_rev(dev));
1278 }
1279
1280 static void scsi_dump_inquiry(struct se_device *dev)
1281 {
1282 struct t10_wwn *wwn = &dev->se_sub_dev->t10_wwn;
1283 char buf[17];
1284 int i, device_type;
1285 /*
1286 * Print Linux/SCSI style INQUIRY formatting to the kernel ring buffer
1287 */
1288 for (i = 0; i < 8; i++)
1289 if (wwn->vendor[i] >= 0x20)
1290 buf[i] = wwn->vendor[i];
1291 else
1292 buf[i] = ' ';
1293 buf[i] = '\0';
1294 pr_debug(" Vendor: %s\n", buf);
1295
1296 for (i = 0; i < 16; i++)
1297 if (wwn->model[i] >= 0x20)
1298 buf[i] = wwn->model[i];
1299 else
1300 buf[i] = ' ';
1301 buf[i] = '\0';
1302 pr_debug(" Model: %s\n", buf);
1303
1304 for (i = 0; i < 4; i++)
1305 if (wwn->revision[i] >= 0x20)
1306 buf[i] = wwn->revision[i];
1307 else
1308 buf[i] = ' ';
1309 buf[i] = '\0';
1310 pr_debug(" Revision: %s\n", buf);
1311
1312 device_type = dev->transport->get_device_type(dev);
1313 pr_debug(" Type: %s ", scsi_device_type(device_type));
1314 pr_debug(" ANSI SCSI revision: %02x\n",
1315 dev->transport->get_device_rev(dev));
1316 }
1317
1318 struct se_device *transport_add_device_to_core_hba(
1319 struct se_hba *hba,
1320 struct se_subsystem_api *transport,
1321 struct se_subsystem_dev *se_dev,
1322 u32 device_flags,
1323 void *transport_dev,
1324 struct se_dev_limits *dev_limits,
1325 const char *inquiry_prod,
1326 const char *inquiry_rev)
1327 {
1328 int force_pt;
1329 struct se_device *dev;
1330
1331 dev = kzalloc(sizeof(struct se_device), GFP_KERNEL);
1332 if (!dev) {
1333 pr_err("Unable to allocate memory for se_dev_t\n");
1334 return NULL;
1335 }
1336
1337 transport_init_queue_obj(&dev->dev_queue_obj);
1338 dev->dev_flags = device_flags;
1339 dev->dev_status |= TRANSPORT_DEVICE_DEACTIVATED;
1340 dev->dev_ptr = transport_dev;
1341 dev->se_hba = hba;
1342 dev->se_sub_dev = se_dev;
1343 dev->transport = transport;
1344 INIT_LIST_HEAD(&dev->dev_list);
1345 INIT_LIST_HEAD(&dev->dev_sep_list);
1346 INIT_LIST_HEAD(&dev->dev_tmr_list);
1347 INIT_LIST_HEAD(&dev->execute_task_list);
1348 INIT_LIST_HEAD(&dev->delayed_cmd_list);
1349 INIT_LIST_HEAD(&dev->state_task_list);
1350 INIT_LIST_HEAD(&dev->qf_cmd_list);
1351 spin_lock_init(&dev->execute_task_lock);
1352 spin_lock_init(&dev->delayed_cmd_lock);
1353 spin_lock_init(&dev->dev_reservation_lock);
1354 spin_lock_init(&dev->dev_status_lock);
1355 spin_lock_init(&dev->se_port_lock);
1356 spin_lock_init(&dev->se_tmr_lock);
1357 spin_lock_init(&dev->qf_cmd_lock);
1358 atomic_set(&dev->dev_ordered_id, 0);
1359
1360 se_dev_set_default_attribs(dev, dev_limits);
1361
1362 dev->dev_index = scsi_get_new_index(SCSI_DEVICE_INDEX);
1363 dev->creation_time = get_jiffies_64();
1364 spin_lock_init(&dev->stats_lock);
1365
1366 spin_lock(&hba->device_lock);
1367 list_add_tail(&dev->dev_list, &hba->hba_dev_list);
1368 hba->dev_count++;
1369 spin_unlock(&hba->device_lock);
1370 /*
1371 * Setup the SAM Task Attribute emulation for struct se_device
1372 */
1373 core_setup_task_attr_emulation(dev);
1374 /*
1375 * Force PR and ALUA passthrough emulation with internal object use.
1376 */
1377 force_pt = (hba->hba_flags & HBA_FLAGS_INTERNAL_USE);
1378 /*
1379 * Setup the Reservations infrastructure for struct se_device
1380 */
1381 core_setup_reservations(dev, force_pt);
1382 /*
1383 * Setup the Asymmetric Logical Unit Assignment for struct se_device
1384 */
1385 if (core_setup_alua(dev, force_pt) < 0)
1386 goto out;
1387
1388 /*
1389 * Startup the struct se_device processing thread
1390 */
1391 dev->process_thread = kthread_run(transport_processing_thread, dev,
1392 "LIO_%s", dev->transport->name);
1393 if (IS_ERR(dev->process_thread)) {
1394 pr_err("Unable to create kthread: LIO_%s\n",
1395 dev->transport->name);
1396 goto out;
1397 }
1398 /*
1399 * Setup work_queue for QUEUE_FULL
1400 */
1401 INIT_WORK(&dev->qf_work_queue, target_qf_do_work);
1402 /*
1403 * Preload the initial INQUIRY const values if we are doing
1404 * anything virtual (IBLOCK, FILEIO, RAMDISK), but not for TCM/pSCSI
1405 * passthrough because this is being provided by the backend LLD.
1406 * This is required so that transport_get_inquiry() copies these
1407 * originals once back into DEV_T10_WWN(dev) for the virtual device
1408 * setup.
1409 */
1410 if (dev->transport->transport_type != TRANSPORT_PLUGIN_PHBA_PDEV) {
1411 if (!inquiry_prod || !inquiry_rev) {
1412 pr_err("All non TCM/pSCSI plugins require"
1413 " INQUIRY consts\n");
1414 goto out;
1415 }
1416
1417 strncpy(&dev->se_sub_dev->t10_wwn.vendor[0], "LIO-ORG", 8);
1418 strncpy(&dev->se_sub_dev->t10_wwn.model[0], inquiry_prod, 16);
1419 strncpy(&dev->se_sub_dev->t10_wwn.revision[0], inquiry_rev, 4);
1420 }
1421 scsi_dump_inquiry(dev);
1422
1423 return dev;
1424 out:
1425 kthread_stop(dev->process_thread);
1426
1427 spin_lock(&hba->device_lock);
1428 list_del(&dev->dev_list);
1429 hba->dev_count--;
1430 spin_unlock(&hba->device_lock);
1431
1432 se_release_vpd_for_dev(dev);
1433
1434 kfree(dev);
1435
1436 return NULL;
1437 }
1438 EXPORT_SYMBOL(transport_add_device_to_core_hba);
1439
1440 /* transport_generic_prepare_cdb():
1441 *
1442 * Since the Initiator sees iSCSI devices as LUNs, the SCSI CDB will
1443 * contain the iSCSI LUN in bits 7-5 of byte 1 as per SAM-2.
1444 * The point of this is since we are mapping iSCSI LUNs to
1445 * SCSI Target IDs having a non-zero LUN in the CDB will throw the
1446 * devices and HBAs for a loop.
1447 */
1448 static inline void transport_generic_prepare_cdb(
1449 unsigned char *cdb)
1450 {
1451 switch (cdb[0]) {
1452 case READ_10: /* SBC - RDProtect */
1453 case READ_12: /* SBC - RDProtect */
1454 case READ_16: /* SBC - RDProtect */
1455 case SEND_DIAGNOSTIC: /* SPC - SELF-TEST Code */
1456 case VERIFY: /* SBC - VRProtect */
1457 case VERIFY_16: /* SBC - VRProtect */
1458 case WRITE_VERIFY: /* SBC - VRProtect */
1459 case WRITE_VERIFY_12: /* SBC - VRProtect */
1460 break;
1461 default:
1462 cdb[1] &= 0x1f; /* clear logical unit number */
1463 break;
1464 }
1465 }
1466
1467 static struct se_task *
1468 transport_generic_get_task(struct se_cmd *cmd,
1469 enum dma_data_direction data_direction)
1470 {
1471 struct se_task *task;
1472 struct se_device *dev = cmd->se_dev;
1473
1474 task = dev->transport->alloc_task(cmd->t_task_cdb);
1475 if (!task) {
1476 pr_err("Unable to allocate struct se_task\n");
1477 return NULL;
1478 }
1479
1480 INIT_LIST_HEAD(&task->t_list);
1481 INIT_LIST_HEAD(&task->t_execute_list);
1482 INIT_LIST_HEAD(&task->t_state_list);
1483 init_completion(&task->task_stop_comp);
1484 task->task_se_cmd = cmd;
1485 task->task_data_direction = data_direction;
1486
1487 return task;
1488 }
1489
1490 static int transport_generic_cmd_sequencer(struct se_cmd *, unsigned char *);
1491
1492 /*
1493 * Used by fabric modules containing a local struct se_cmd within their
1494 * fabric dependent per I/O descriptor.
1495 */
1496 void transport_init_se_cmd(
1497 struct se_cmd *cmd,
1498 struct target_core_fabric_ops *tfo,
1499 struct se_session *se_sess,
1500 u32 data_length,
1501 int data_direction,
1502 int task_attr,
1503 unsigned char *sense_buffer)
1504 {
1505 INIT_LIST_HEAD(&cmd->se_lun_node);
1506 INIT_LIST_HEAD(&cmd->se_delayed_node);
1507 INIT_LIST_HEAD(&cmd->se_qf_node);
1508 INIT_LIST_HEAD(&cmd->se_queue_node);
1509 INIT_LIST_HEAD(&cmd->se_cmd_list);
1510 INIT_LIST_HEAD(&cmd->t_task_list);
1511 init_completion(&cmd->transport_lun_fe_stop_comp);
1512 init_completion(&cmd->transport_lun_stop_comp);
1513 init_completion(&cmd->t_transport_stop_comp);
1514 init_completion(&cmd->cmd_wait_comp);
1515 spin_lock_init(&cmd->t_state_lock);
1516 cmd->transport_state = CMD_T_DEV_ACTIVE;
1517
1518 cmd->se_tfo = tfo;
1519 cmd->se_sess = se_sess;
1520 cmd->data_length = data_length;
1521 cmd->data_direction = data_direction;
1522 cmd->sam_task_attr = task_attr;
1523 cmd->sense_buffer = sense_buffer;
1524 }
1525 EXPORT_SYMBOL(transport_init_se_cmd);
1526
1527 static int transport_check_alloc_task_attr(struct se_cmd *cmd)
1528 {
1529 /*
1530 * Check if SAM Task Attribute emulation is enabled for this
1531 * struct se_device storage object
1532 */
1533 if (cmd->se_dev->dev_task_attr_type != SAM_TASK_ATTR_EMULATED)
1534 return 0;
1535
1536 if (cmd->sam_task_attr == MSG_ACA_TAG) {
1537 pr_debug("SAM Task Attribute ACA"
1538 " emulation is not supported\n");
1539 return -EINVAL;
1540 }
1541 /*
1542 * Used to determine when ORDERED commands should go from
1543 * Dormant to Active status.
1544 */
1545 cmd->se_ordered_id = atomic_inc_return(&cmd->se_dev->dev_ordered_id);
1546 smp_mb__after_atomic_inc();
1547 pr_debug("Allocated se_ordered_id: %u for Task Attr: 0x%02x on %s\n",
1548 cmd->se_ordered_id, cmd->sam_task_attr,
1549 cmd->se_dev->transport->name);
1550 return 0;
1551 }
1552
1553 /* transport_generic_allocate_tasks():
1554 *
1555 * Called from fabric RX Thread.
1556 */
1557 int transport_generic_allocate_tasks(
1558 struct se_cmd *cmd,
1559 unsigned char *cdb)
1560 {
1561 int ret;
1562
1563 transport_generic_prepare_cdb(cdb);
1564 /*
1565 * Ensure that the received CDB is less than the max (252 + 8) bytes
1566 * for VARIABLE_LENGTH_CMD
1567 */
1568 if (scsi_command_size(cdb) > SCSI_MAX_VARLEN_CDB_SIZE) {
1569 pr_err("Received SCSI CDB with command_size: %d that"
1570 " exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n",
1571 scsi_command_size(cdb), SCSI_MAX_VARLEN_CDB_SIZE);
1572 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
1573 cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
1574 return -EINVAL;
1575 }
1576 /*
1577 * If the received CDB is larger than TCM_MAX_COMMAND_SIZE,
1578 * allocate the additional extended CDB buffer now.. Otherwise
1579 * setup the pointer from __t_task_cdb to t_task_cdb.
1580 */
1581 if (scsi_command_size(cdb) > sizeof(cmd->__t_task_cdb)) {
1582 cmd->t_task_cdb = kzalloc(scsi_command_size(cdb),
1583 GFP_KERNEL);
1584 if (!cmd->t_task_cdb) {
1585 pr_err("Unable to allocate cmd->t_task_cdb"
1586 " %u > sizeof(cmd->__t_task_cdb): %lu ops\n",
1587 scsi_command_size(cdb),
1588 (unsigned long)sizeof(cmd->__t_task_cdb));
1589 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
1590 cmd->scsi_sense_reason =
1591 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
1592 return -ENOMEM;
1593 }
1594 } else
1595 cmd->t_task_cdb = &cmd->__t_task_cdb[0];
1596 /*
1597 * Copy the original CDB into cmd->
1598 */
1599 memcpy(cmd->t_task_cdb, cdb, scsi_command_size(cdb));
1600 /*
1601 * Setup the received CDB based on SCSI defined opcodes and
1602 * perform unit attention, persistent reservations and ALUA
1603 * checks for virtual device backends. The cmd->t_task_cdb
1604 * pointer is expected to be setup before we reach this point.
1605 */
1606 ret = transport_generic_cmd_sequencer(cmd, cdb);
1607 if (ret < 0)
1608 return ret;
1609 /*
1610 * Check for SAM Task Attribute Emulation
1611 */
1612 if (transport_check_alloc_task_attr(cmd) < 0) {
1613 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
1614 cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
1615 return -EINVAL;
1616 }
1617 spin_lock(&cmd->se_lun->lun_sep_lock);
1618 if (cmd->se_lun->lun_sep)
1619 cmd->se_lun->lun_sep->sep_stats.cmd_pdus++;
1620 spin_unlock(&cmd->se_lun->lun_sep_lock);
1621 return 0;
1622 }
1623 EXPORT_SYMBOL(transport_generic_allocate_tasks);
1624
1625 /*
1626 * Used by fabric module frontends to queue tasks directly.
1627 * Many only be used from process context only
1628 */
1629 int transport_handle_cdb_direct(
1630 struct se_cmd *cmd)
1631 {
1632 int ret;
1633
1634 if (!cmd->se_lun) {
1635 dump_stack();
1636 pr_err("cmd->se_lun is NULL\n");
1637 return -EINVAL;
1638 }
1639 if (in_interrupt()) {
1640 dump_stack();
1641 pr_err("transport_generic_handle_cdb cannot be called"
1642 " from interrupt context\n");
1643 return -EINVAL;
1644 }
1645 /*
1646 * Set TRANSPORT_NEW_CMD state and CMD_T_ACTIVE following
1647 * transport_generic_handle_cdb*() -> transport_add_cmd_to_queue()
1648 * in existing usage to ensure that outstanding descriptors are handled
1649 * correctly during shutdown via transport_wait_for_tasks()
1650 *
1651 * Also, we don't take cmd->t_state_lock here as we only expect
1652 * this to be called for initial descriptor submission.
1653 */
1654 cmd->t_state = TRANSPORT_NEW_CMD;
1655 cmd->transport_state |= CMD_T_ACTIVE;
1656
1657 /*
1658 * transport_generic_new_cmd() is already handling QUEUE_FULL,
1659 * so follow TRANSPORT_NEW_CMD processing thread context usage
1660 * and call transport_generic_request_failure() if necessary..
1661 */
1662 ret = transport_generic_new_cmd(cmd);
1663 if (ret < 0)
1664 transport_generic_request_failure(cmd);
1665
1666 return 0;
1667 }
1668 EXPORT_SYMBOL(transport_handle_cdb_direct);
1669
1670 /**
1671 * target_submit_cmd - lookup unpacked lun and submit uninitialized se_cmd
1672 *
1673 * @se_cmd: command descriptor to submit
1674 * @se_sess: associated se_sess for endpoint
1675 * @cdb: pointer to SCSI CDB
1676 * @sense: pointer to SCSI sense buffer
1677 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1678 * @data_length: fabric expected data transfer length
1679 * @task_addr: SAM task attribute
1680 * @data_dir: DMA data direction
1681 * @flags: flags for command submission from target_sc_flags_tables
1682 *
1683 * This may only be called from process context, and also currently
1684 * assumes internal allocation of fabric payload buffer by target-core.
1685 **/
1686 void target_submit_cmd(struct se_cmd *se_cmd, struct se_session *se_sess,
1687 unsigned char *cdb, unsigned char *sense, u32 unpacked_lun,
1688 u32 data_length, int task_attr, int data_dir, int flags)
1689 {
1690 struct se_portal_group *se_tpg;
1691 int rc;
1692
1693 se_tpg = se_sess->se_tpg;
1694 BUG_ON(!se_tpg);
1695 BUG_ON(se_cmd->se_tfo || se_cmd->se_sess);
1696 BUG_ON(in_interrupt());
1697 /*
1698 * Initialize se_cmd for target operation. From this point
1699 * exceptions are handled by sending exception status via
1700 * target_core_fabric_ops->queue_status() callback
1701 */
1702 transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess,
1703 data_length, data_dir, task_attr, sense);
1704 /*
1705 * Obtain struct se_cmd->cmd_kref reference and add new cmd to
1706 * se_sess->sess_cmd_list. A second kref_get here is necessary
1707 * for fabrics using TARGET_SCF_ACK_KREF that expect a second
1708 * kref_put() to happen during fabric packet acknowledgement.
1709 */
1710 target_get_sess_cmd(se_sess, se_cmd, (flags & TARGET_SCF_ACK_KREF));
1711 /*
1712 * Signal bidirectional data payloads to target-core
1713 */
1714 if (flags & TARGET_SCF_BIDI_OP)
1715 se_cmd->se_cmd_flags |= SCF_BIDI;
1716 /*
1717 * Locate se_lun pointer and attach it to struct se_cmd
1718 */
1719 if (transport_lookup_cmd_lun(se_cmd, unpacked_lun) < 0) {
1720 transport_send_check_condition_and_sense(se_cmd,
1721 se_cmd->scsi_sense_reason, 0);
1722 target_put_sess_cmd(se_sess, se_cmd);
1723 return;
1724 }
1725 /*
1726 * Sanitize CDBs via transport_generic_cmd_sequencer() and
1727 * allocate the necessary tasks to complete the received CDB+data
1728 */
1729 rc = transport_generic_allocate_tasks(se_cmd, cdb);
1730 if (rc != 0) {
1731 transport_generic_request_failure(se_cmd);
1732 return;
1733 }
1734 /*
1735 * Dispatch se_cmd descriptor to se_lun->lun_se_dev backend
1736 * for immediate execution of READs, otherwise wait for
1737 * transport_generic_handle_data() to be called for WRITEs
1738 * when fabric has filled the incoming buffer.
1739 */
1740 transport_handle_cdb_direct(se_cmd);
1741 return;
1742 }
1743 EXPORT_SYMBOL(target_submit_cmd);
1744
1745 static void target_complete_tmr_failure(struct work_struct *work)
1746 {
1747 struct se_cmd *se_cmd = container_of(work, struct se_cmd, work);
1748
1749 se_cmd->se_tmr_req->response = TMR_LUN_DOES_NOT_EXIST;
1750 se_cmd->se_tfo->queue_tm_rsp(se_cmd);
1751 transport_generic_free_cmd(se_cmd, 0);
1752 }
1753
1754 /**
1755 * target_submit_tmr - lookup unpacked lun and submit uninitialized se_cmd
1756 * for TMR CDBs
1757 *
1758 * @se_cmd: command descriptor to submit
1759 * @se_sess: associated se_sess for endpoint
1760 * @sense: pointer to SCSI sense buffer
1761 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1762 * @fabric_context: fabric context for TMR req
1763 * @tm_type: Type of TM request
1764 * @gfp: gfp type for caller
1765 * @tag: referenced task tag for TMR_ABORT_TASK
1766 * @flags: submit cmd flags
1767 *
1768 * Callable from all contexts.
1769 **/
1770
1771 int target_submit_tmr(struct se_cmd *se_cmd, struct se_session *se_sess,
1772 unsigned char *sense, u32 unpacked_lun,
1773 void *fabric_tmr_ptr, unsigned char tm_type,
1774 gfp_t gfp, unsigned int tag, int flags)
1775 {
1776 struct se_portal_group *se_tpg;
1777 int ret;
1778
1779 se_tpg = se_sess->se_tpg;
1780 BUG_ON(!se_tpg);
1781
1782 transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess,
1783 0, DMA_NONE, MSG_SIMPLE_TAG, sense);
1784 /*
1785 * FIXME: Currently expect caller to handle se_cmd->se_tmr_req
1786 * allocation failure.
1787 */
1788 ret = core_tmr_alloc_req(se_cmd, fabric_tmr_ptr, tm_type, gfp);
1789 if (ret < 0)
1790 return -ENOMEM;
1791
1792 if (tm_type == TMR_ABORT_TASK)
1793 se_cmd->se_tmr_req->ref_task_tag = tag;
1794
1795 /* See target_submit_cmd for commentary */
1796 target_get_sess_cmd(se_sess, se_cmd, (flags & TARGET_SCF_ACK_KREF));
1797
1798 ret = transport_lookup_tmr_lun(se_cmd, unpacked_lun);
1799 if (ret) {
1800 /*
1801 * For callback during failure handling, push this work off
1802 * to process context with TMR_LUN_DOES_NOT_EXIST status.
1803 */
1804 INIT_WORK(&se_cmd->work, target_complete_tmr_failure);
1805 schedule_work(&se_cmd->work);
1806 return 0;
1807 }
1808 transport_generic_handle_tmr(se_cmd);
1809 return 0;
1810 }
1811 EXPORT_SYMBOL(target_submit_tmr);
1812
1813 /*
1814 * Used by fabric module frontends defining a TFO->new_cmd_map() caller
1815 * to queue up a newly setup se_cmd w/ TRANSPORT_NEW_CMD_MAP in order to
1816 * complete setup in TCM process context w/ TFO->new_cmd_map().
1817 */
1818 int transport_generic_handle_cdb_map(
1819 struct se_cmd *cmd)
1820 {
1821 if (!cmd->se_lun) {
1822 dump_stack();
1823 pr_err("cmd->se_lun is NULL\n");
1824 return -EINVAL;
1825 }
1826
1827 transport_add_cmd_to_queue(cmd, TRANSPORT_NEW_CMD_MAP, false);
1828 return 0;
1829 }
1830 EXPORT_SYMBOL(transport_generic_handle_cdb_map);
1831
1832 /* transport_generic_handle_data():
1833 *
1834 *
1835 */
1836 int transport_generic_handle_data(
1837 struct se_cmd *cmd)
1838 {
1839 /*
1840 * For the software fabric case, then we assume the nexus is being
1841 * failed/shutdown when signals are pending from the kthread context
1842 * caller, so we return a failure. For the HW target mode case running
1843 * in interrupt code, the signal_pending() check is skipped.
1844 */
1845 if (!in_interrupt() && signal_pending(current))
1846 return -EPERM;
1847 /*
1848 * If the received CDB has aleady been ABORTED by the generic
1849 * target engine, we now call transport_check_aborted_status()
1850 * to queue any delated TASK_ABORTED status for the received CDB to the
1851 * fabric module as we are expecting no further incoming DATA OUT
1852 * sequences at this point.
1853 */
1854 if (transport_check_aborted_status(cmd, 1) != 0)
1855 return 0;
1856
1857 transport_add_cmd_to_queue(cmd, TRANSPORT_PROCESS_WRITE, false);
1858 return 0;
1859 }
1860 EXPORT_SYMBOL(transport_generic_handle_data);
1861
1862 /* transport_generic_handle_tmr():
1863 *
1864 *
1865 */
1866 int transport_generic_handle_tmr(
1867 struct se_cmd *cmd)
1868 {
1869 transport_add_cmd_to_queue(cmd, TRANSPORT_PROCESS_TMR, false);
1870 return 0;
1871 }
1872 EXPORT_SYMBOL(transport_generic_handle_tmr);
1873
1874 /*
1875 * If the task is active, request it to be stopped and sleep until it
1876 * has completed.
1877 */
1878 bool target_stop_task(struct se_task *task, unsigned long *flags)
1879 {
1880 struct se_cmd *cmd = task->task_se_cmd;
1881 bool was_active = false;
1882
1883 if (task->task_flags & TF_ACTIVE) {
1884 task->task_flags |= TF_REQUEST_STOP;
1885 spin_unlock_irqrestore(&cmd->t_state_lock, *flags);
1886
1887 pr_debug("Task %p waiting to complete\n", task);
1888 wait_for_completion(&task->task_stop_comp);
1889 pr_debug("Task %p stopped successfully\n", task);
1890
1891 spin_lock_irqsave(&cmd->t_state_lock, *flags);
1892 atomic_dec(&cmd->t_task_cdbs_left);
1893 task->task_flags &= ~(TF_ACTIVE | TF_REQUEST_STOP);
1894 was_active = true;
1895 }
1896
1897 return was_active;
1898 }
1899
1900 static int transport_stop_tasks_for_cmd(struct se_cmd *cmd)
1901 {
1902 struct se_task *task, *task_tmp;
1903 unsigned long flags;
1904 int ret = 0;
1905
1906 pr_debug("ITT[0x%08x] - Stopping tasks\n",
1907 cmd->se_tfo->get_task_tag(cmd));
1908
1909 /*
1910 * No tasks remain in the execution queue
1911 */
1912 spin_lock_irqsave(&cmd->t_state_lock, flags);
1913 list_for_each_entry_safe(task, task_tmp,
1914 &cmd->t_task_list, t_list) {
1915 pr_debug("Processing task %p\n", task);
1916 /*
1917 * If the struct se_task has not been sent and is not active,
1918 * remove the struct se_task from the execution queue.
1919 */
1920 if (!(task->task_flags & (TF_ACTIVE | TF_SENT))) {
1921 spin_unlock_irqrestore(&cmd->t_state_lock,
1922 flags);
1923 transport_remove_task_from_execute_queue(task,
1924 cmd->se_dev);
1925
1926 pr_debug("Task %p removed from execute queue\n", task);
1927 spin_lock_irqsave(&cmd->t_state_lock, flags);
1928 continue;
1929 }
1930
1931 if (!target_stop_task(task, &flags)) {
1932 pr_debug("Task %p - did nothing\n", task);
1933 ret++;
1934 }
1935 }
1936 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
1937
1938 return ret;
1939 }
1940
1941 /*
1942 * Handle SAM-esque emulation for generic transport request failures.
1943 */
1944 void transport_generic_request_failure(struct se_cmd *cmd)
1945 {
1946 int ret = 0;
1947
1948 pr_debug("-----[ Storage Engine Exception for cmd: %p ITT: 0x%08x"
1949 " CDB: 0x%02x\n", cmd, cmd->se_tfo->get_task_tag(cmd),
1950 cmd->t_task_cdb[0]);
1951 pr_debug("-----[ i_state: %d t_state: %d scsi_sense_reason: %d\n",
1952 cmd->se_tfo->get_cmd_state(cmd),
1953 cmd->t_state, cmd->scsi_sense_reason);
1954 pr_debug("-----[ t_tasks: %d t_task_cdbs_left: %d"
1955 " t_task_cdbs_sent: %d t_task_cdbs_ex_left: %d --"
1956 " CMD_T_ACTIVE: %d CMD_T_STOP: %d CMD_T_SENT: %d\n",
1957 cmd->t_task_list_num,
1958 atomic_read(&cmd->t_task_cdbs_left),
1959 atomic_read(&cmd->t_task_cdbs_sent),
1960 atomic_read(&cmd->t_task_cdbs_ex_left),
1961 (cmd->transport_state & CMD_T_ACTIVE) != 0,
1962 (cmd->transport_state & CMD_T_STOP) != 0,
1963 (cmd->transport_state & CMD_T_SENT) != 0);
1964
1965 /*
1966 * For SAM Task Attribute emulation for failed struct se_cmd
1967 */
1968 if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
1969 transport_complete_task_attr(cmd);
1970
1971 switch (cmd->scsi_sense_reason) {
1972 case TCM_NON_EXISTENT_LUN:
1973 case TCM_UNSUPPORTED_SCSI_OPCODE:
1974 case TCM_INVALID_CDB_FIELD:
1975 case TCM_INVALID_PARAMETER_LIST:
1976 case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
1977 case TCM_UNKNOWN_MODE_PAGE:
1978 case TCM_WRITE_PROTECTED:
1979 case TCM_CHECK_CONDITION_ABORT_CMD:
1980 case TCM_CHECK_CONDITION_UNIT_ATTENTION:
1981 case TCM_CHECK_CONDITION_NOT_READY:
1982 break;
1983 case TCM_RESERVATION_CONFLICT:
1984 /*
1985 * No SENSE Data payload for this case, set SCSI Status
1986 * and queue the response to $FABRIC_MOD.
1987 *
1988 * Uses linux/include/scsi/scsi.h SAM status codes defs
1989 */
1990 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
1991 /*
1992 * For UA Interlock Code 11b, a RESERVATION CONFLICT will
1993 * establish a UNIT ATTENTION with PREVIOUS RESERVATION
1994 * CONFLICT STATUS.
1995 *
1996 * See spc4r17, section 7.4.6 Control Mode Page, Table 349
1997 */
1998 if (cmd->se_sess &&
1999 cmd->se_dev->se_sub_dev->se_dev_attrib.emulate_ua_intlck_ctrl == 2)
2000 core_scsi3_ua_allocate(cmd->se_sess->se_node_acl,
2001 cmd->orig_fe_lun, 0x2C,
2002 ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS);
2003
2004 ret = cmd->se_tfo->queue_status(cmd);
2005 if (ret == -EAGAIN || ret == -ENOMEM)
2006 goto queue_full;
2007 goto check_stop;
2008 default:
2009 pr_err("Unknown transport error for CDB 0x%02x: %d\n",
2010 cmd->t_task_cdb[0], cmd->scsi_sense_reason);
2011 cmd->scsi_sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
2012 break;
2013 }
2014 /*
2015 * If a fabric does not define a cmd->se_tfo->new_cmd_map caller,
2016 * make the call to transport_send_check_condition_and_sense()
2017 * directly. Otherwise expect the fabric to make the call to
2018 * transport_send_check_condition_and_sense() after handling
2019 * possible unsoliticied write data payloads.
2020 */
2021 ret = transport_send_check_condition_and_sense(cmd,
2022 cmd->scsi_sense_reason, 0);
2023 if (ret == -EAGAIN || ret == -ENOMEM)
2024 goto queue_full;
2025
2026 check_stop:
2027 transport_lun_remove_cmd(cmd);
2028 if (!transport_cmd_check_stop_to_fabric(cmd))
2029 ;
2030 return;
2031
2032 queue_full:
2033 cmd->t_state = TRANSPORT_COMPLETE_QF_OK;
2034 transport_handle_queue_full(cmd, cmd->se_dev);
2035 }
2036 EXPORT_SYMBOL(transport_generic_request_failure);
2037
2038 static inline u32 transport_lba_21(unsigned char *cdb)
2039 {
2040 return ((cdb[1] & 0x1f) << 16) | (cdb[2] << 8) | cdb[3];
2041 }
2042
2043 static inline u32 transport_lba_32(unsigned char *cdb)
2044 {
2045 return (cdb[2] << 24) | (cdb[3] << 16) | (cdb[4] << 8) | cdb[5];
2046 }
2047
2048 static inline unsigned long long transport_lba_64(unsigned char *cdb)
2049 {
2050 unsigned int __v1, __v2;
2051
2052 __v1 = (cdb[2] << 24) | (cdb[3] << 16) | (cdb[4] << 8) | cdb[5];
2053 __v2 = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9];
2054
2055 return ((unsigned long long)__v2) | (unsigned long long)__v1 << 32;
2056 }
2057
2058 /*
2059 * For VARIABLE_LENGTH_CDB w/ 32 byte extended CDBs
2060 */
2061 static inline unsigned long long transport_lba_64_ext(unsigned char *cdb)
2062 {
2063 unsigned int __v1, __v2;
2064
2065 __v1 = (cdb[12] << 24) | (cdb[13] << 16) | (cdb[14] << 8) | cdb[15];
2066 __v2 = (cdb[16] << 24) | (cdb[17] << 16) | (cdb[18] << 8) | cdb[19];
2067
2068 return ((unsigned long long)__v2) | (unsigned long long)__v1 << 32;
2069 }
2070
2071 static void transport_set_supported_SAM_opcode(struct se_cmd *se_cmd)
2072 {
2073 unsigned long flags;
2074
2075 spin_lock_irqsave(&se_cmd->t_state_lock, flags);
2076 se_cmd->se_cmd_flags |= SCF_SUPPORTED_SAM_OPCODE;
2077 spin_unlock_irqrestore(&se_cmd->t_state_lock, flags);
2078 }
2079
2080 /*
2081 * Called from Fabric Module context from transport_execute_tasks()
2082 *
2083 * The return of this function determins if the tasks from struct se_cmd
2084 * get added to the execution queue in transport_execute_tasks(),
2085 * or are added to the delayed or ordered lists here.
2086 */
2087 static inline int transport_execute_task_attr(struct se_cmd *cmd)
2088 {
2089 if (cmd->se_dev->dev_task_attr_type != SAM_TASK_ATTR_EMULATED)
2090 return 1;
2091 /*
2092 * Check for the existence of HEAD_OF_QUEUE, and if true return 1
2093 * to allow the passed struct se_cmd list of tasks to the front of the list.
2094 */
2095 if (cmd->sam_task_attr == MSG_HEAD_TAG) {
2096 pr_debug("Added HEAD_OF_QUEUE for CDB:"
2097 " 0x%02x, se_ordered_id: %u\n",
2098 cmd->t_task_cdb[0],
2099 cmd->se_ordered_id);
2100 return 1;
2101 } else if (cmd->sam_task_attr == MSG_ORDERED_TAG) {
2102 atomic_inc(&cmd->se_dev->dev_ordered_sync);
2103 smp_mb__after_atomic_inc();
2104
2105 pr_debug("Added ORDERED for CDB: 0x%02x to ordered"
2106 " list, se_ordered_id: %u\n",
2107 cmd->t_task_cdb[0],
2108 cmd->se_ordered_id);
2109 /*
2110 * Add ORDERED command to tail of execution queue if
2111 * no other older commands exist that need to be
2112 * completed first.
2113 */
2114 if (!atomic_read(&cmd->se_dev->simple_cmds))
2115 return 1;
2116 } else {
2117 /*
2118 * For SIMPLE and UNTAGGED Task Attribute commands
2119 */
2120 atomic_inc(&cmd->se_dev->simple_cmds);
2121 smp_mb__after_atomic_inc();
2122 }
2123 /*
2124 * Otherwise if one or more outstanding ORDERED task attribute exist,
2125 * add the dormant task(s) built for the passed struct se_cmd to the
2126 * execution queue and become in Active state for this struct se_device.
2127 */
2128 if (atomic_read(&cmd->se_dev->dev_ordered_sync) != 0) {
2129 /*
2130 * Otherwise, add cmd w/ tasks to delayed cmd queue that
2131 * will be drained upon completion of HEAD_OF_QUEUE task.
2132 */
2133 spin_lock(&cmd->se_dev->delayed_cmd_lock);
2134 cmd->se_cmd_flags |= SCF_DELAYED_CMD_FROM_SAM_ATTR;
2135 list_add_tail(&cmd->se_delayed_node,
2136 &cmd->se_dev->delayed_cmd_list);
2137 spin_unlock(&cmd->se_dev->delayed_cmd_lock);
2138
2139 pr_debug("Added CDB: 0x%02x Task Attr: 0x%02x to"
2140 " delayed CMD list, se_ordered_id: %u\n",
2141 cmd->t_task_cdb[0], cmd->sam_task_attr,
2142 cmd->se_ordered_id);
2143 /*
2144 * Return zero to let transport_execute_tasks() know
2145 * not to add the delayed tasks to the execution list.
2146 */
2147 return 0;
2148 }
2149 /*
2150 * Otherwise, no ORDERED task attributes exist..
2151 */
2152 return 1;
2153 }
2154
2155 /*
2156 * Called from fabric module context in transport_generic_new_cmd() and
2157 * transport_generic_process_write()
2158 */
2159 static int transport_execute_tasks(struct se_cmd *cmd)
2160 {
2161 int add_tasks;
2162 struct se_device *se_dev = cmd->se_dev;
2163 /*
2164 * Call transport_cmd_check_stop() to see if a fabric exception
2165 * has occurred that prevents execution.
2166 */
2167 if (!transport_cmd_check_stop(cmd, 0, TRANSPORT_PROCESSING)) {
2168 /*
2169 * Check for SAM Task Attribute emulation and HEAD_OF_QUEUE
2170 * attribute for the tasks of the received struct se_cmd CDB
2171 */
2172 add_tasks = transport_execute_task_attr(cmd);
2173 if (!add_tasks)
2174 goto execute_tasks;
2175 /*
2176 * __transport_execute_tasks() -> __transport_add_tasks_from_cmd()
2177 * adds associated se_tasks while holding dev->execute_task_lock
2178 * before I/O dispath to avoid a double spinlock access.
2179 */
2180 __transport_execute_tasks(se_dev, cmd);
2181 return 0;
2182 }
2183
2184 execute_tasks:
2185 __transport_execute_tasks(se_dev, NULL);
2186 return 0;
2187 }
2188
2189 /*
2190 * Called to check struct se_device tcq depth window, and once open pull struct se_task
2191 * from struct se_device->execute_task_list and
2192 *
2193 * Called from transport_processing_thread()
2194 */
2195 static int __transport_execute_tasks(struct se_device *dev, struct se_cmd *new_cmd)
2196 {
2197 int error;
2198 struct se_cmd *cmd = NULL;
2199 struct se_task *task = NULL;
2200 unsigned long flags;
2201
2202 check_depth:
2203 spin_lock_irq(&dev->execute_task_lock);
2204 if (new_cmd != NULL)
2205 __transport_add_tasks_from_cmd(new_cmd);
2206
2207 if (list_empty(&dev->execute_task_list)) {
2208 spin_unlock_irq(&dev->execute_task_lock);
2209 return 0;
2210 }
2211 task = list_first_entry(&dev->execute_task_list,
2212 struct se_task, t_execute_list);
2213 __transport_remove_task_from_execute_queue(task, dev);
2214 spin_unlock_irq(&dev->execute_task_lock);
2215
2216 cmd = task->task_se_cmd;
2217 spin_lock_irqsave(&cmd->t_state_lock, flags);
2218 task->task_flags |= (TF_ACTIVE | TF_SENT);
2219 atomic_inc(&cmd->t_task_cdbs_sent);
2220
2221 if (atomic_read(&cmd->t_task_cdbs_sent) ==
2222 cmd->t_task_list_num)
2223 cmd->transport_state |= CMD_T_SENT;
2224
2225 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2226
2227 if (cmd->execute_task)
2228 error = cmd->execute_task(task);
2229 else
2230 error = dev->transport->do_task(task);
2231 if (error != 0) {
2232 spin_lock_irqsave(&cmd->t_state_lock, flags);
2233 task->task_flags &= ~TF_ACTIVE;
2234 cmd->transport_state &= ~CMD_T_SENT;
2235 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2236
2237 transport_stop_tasks_for_cmd(cmd);
2238 transport_generic_request_failure(cmd);
2239 }
2240
2241 new_cmd = NULL;
2242 goto check_depth;
2243
2244 return 0;
2245 }
2246
2247 static inline u32 transport_get_sectors_6(
2248 unsigned char *cdb,
2249 struct se_cmd *cmd,
2250 int *ret)
2251 {
2252 struct se_device *dev = cmd->se_dev;
2253
2254 /*
2255 * Assume TYPE_DISK for non struct se_device objects.
2256 * Use 8-bit sector value.
2257 */
2258 if (!dev)
2259 goto type_disk;
2260
2261 /*
2262 * Use 24-bit allocation length for TYPE_TAPE.
2263 */
2264 if (dev->transport->get_device_type(dev) == TYPE_TAPE)
2265 return (u32)(cdb[2] << 16) + (cdb[3] << 8) + cdb[4];
2266
2267 /*
2268 * Everything else assume TYPE_DISK Sector CDB location.
2269 * Use 8-bit sector value. SBC-3 says:
2270 *
2271 * A TRANSFER LENGTH field set to zero specifies that 256
2272 * logical blocks shall be written. Any other value
2273 * specifies the number of logical blocks that shall be
2274 * written.
2275 */
2276 type_disk:
2277 return cdb[4] ? : 256;
2278 }
2279
2280 static inline u32 transport_get_sectors_10(
2281 unsigned char *cdb,
2282 struct se_cmd *cmd,
2283 int *ret)
2284 {
2285 struct se_device *dev = cmd->se_dev;
2286
2287 /*
2288 * Assume TYPE_DISK for non struct se_device objects.
2289 * Use 16-bit sector value.
2290 */
2291 if (!dev)
2292 goto type_disk;
2293
2294 /*
2295 * XXX_10 is not defined in SSC, throw an exception
2296 */
2297 if (dev->transport->get_device_type(dev) == TYPE_TAPE) {
2298 *ret = -EINVAL;
2299 return 0;
2300 }
2301
2302 /*
2303 * Everything else assume TYPE_DISK Sector CDB location.
2304 * Use 16-bit sector value.
2305 */
2306 type_disk:
2307 return (u32)(cdb[7] << 8) + cdb[8];
2308 }
2309
2310 static inline u32 transport_get_sectors_12(
2311 unsigned char *cdb,
2312 struct se_cmd *cmd,
2313 int *ret)
2314 {
2315 struct se_device *dev = cmd->se_dev;
2316
2317 /*
2318 * Assume TYPE_DISK for non struct se_device objects.
2319 * Use 32-bit sector value.
2320 */
2321 if (!dev)
2322 goto type_disk;
2323
2324 /*
2325 * XXX_12 is not defined in SSC, throw an exception
2326 */
2327 if (dev->transport->get_device_type(dev) == TYPE_TAPE) {
2328 *ret = -EINVAL;
2329 return 0;
2330 }
2331
2332 /*
2333 * Everything else assume TYPE_DISK Sector CDB location.
2334 * Use 32-bit sector value.
2335 */
2336 type_disk:
2337 return (u32)(cdb[6] << 24) + (cdb[7] << 16) + (cdb[8] << 8) + cdb[9];
2338 }
2339
2340 static inline u32 transport_get_sectors_16(
2341 unsigned char *cdb,
2342 struct se_cmd *cmd,
2343 int *ret)
2344 {
2345 struct se_device *dev = cmd->se_dev;
2346
2347 /*
2348 * Assume TYPE_DISK for non struct se_device objects.
2349 * Use 32-bit sector value.
2350 */
2351 if (!dev)
2352 goto type_disk;
2353
2354 /*
2355 * Use 24-bit allocation length for TYPE_TAPE.
2356 */
2357 if (dev->transport->get_device_type(dev) == TYPE_TAPE)
2358 return (u32)(cdb[12] << 16) + (cdb[13] << 8) + cdb[14];
2359
2360 type_disk:
2361 return (u32)(cdb[10] << 24) + (cdb[11] << 16) +
2362 (cdb[12] << 8) + cdb[13];
2363 }
2364
2365 /*
2366 * Used for VARIABLE_LENGTH_CDB WRITE_32 and READ_32 variants
2367 */
2368 static inline u32 transport_get_sectors_32(
2369 unsigned char *cdb,
2370 struct se_cmd *cmd,
2371 int *ret)
2372 {
2373 /*
2374 * Assume TYPE_DISK for non struct se_device objects.
2375 * Use 32-bit sector value.
2376 */
2377 return (u32)(cdb[28] << 24) + (cdb[29] << 16) +
2378 (cdb[30] << 8) + cdb[31];
2379
2380 }
2381
2382 static inline u32 transport_get_size(
2383 u32 sectors,
2384 unsigned char *cdb,
2385 struct se_cmd *cmd)
2386 {
2387 struct se_device *dev = cmd->se_dev;
2388
2389 if (dev->transport->get_device_type(dev) == TYPE_TAPE) {
2390 if (cdb[1] & 1) { /* sectors */
2391 return dev->se_sub_dev->se_dev_attrib.block_size * sectors;
2392 } else /* bytes */
2393 return sectors;
2394 }
2395 #if 0
2396 pr_debug("Returning block_size: %u, sectors: %u == %u for"
2397 " %s object\n", dev->se_sub_dev->se_dev_attrib.block_size, sectors,
2398 dev->se_sub_dev->se_dev_attrib.block_size * sectors,
2399 dev->transport->name);
2400 #endif
2401 return dev->se_sub_dev->se_dev_attrib.block_size * sectors;
2402 }
2403
2404 static void transport_xor_callback(struct se_cmd *cmd)
2405 {
2406 unsigned char *buf, *addr;
2407 struct scatterlist *sg;
2408 unsigned int offset;
2409 int i;
2410 int count;
2411 /*
2412 * From sbc3r22.pdf section 5.48 XDWRITEREAD (10) command
2413 *
2414 * 1) read the specified logical block(s);
2415 * 2) transfer logical blocks from the data-out buffer;
2416 * 3) XOR the logical blocks transferred from the data-out buffer with
2417 * the logical blocks read, storing the resulting XOR data in a buffer;
2418 * 4) if the DISABLE WRITE bit is set to zero, then write the logical
2419 * blocks transferred from the data-out buffer; and
2420 * 5) transfer the resulting XOR data to the data-in buffer.
2421 */
2422 buf = kmalloc(cmd->data_length, GFP_KERNEL);
2423 if (!buf) {
2424 pr_err("Unable to allocate xor_callback buf\n");
2425 return;
2426 }
2427 /*
2428 * Copy the scatterlist WRITE buffer located at cmd->t_data_sg
2429 * into the locally allocated *buf
2430 */
2431 sg_copy_to_buffer(cmd->t_data_sg,
2432 cmd->t_data_nents,
2433 buf,
2434 cmd->data_length);
2435
2436 /*
2437 * Now perform the XOR against the BIDI read memory located at
2438 * cmd->t_mem_bidi_list
2439 */
2440
2441 offset = 0;
2442 for_each_sg(cmd->t_bidi_data_sg, sg, cmd->t_bidi_data_nents, count) {
2443 addr = kmap_atomic(sg_page(sg));
2444 if (!addr)
2445 goto out;
2446
2447 for (i = 0; i < sg->length; i++)
2448 *(addr + sg->offset + i) ^= *(buf + offset + i);
2449
2450 offset += sg->length;
2451 kunmap_atomic(addr);
2452 }
2453
2454 out:
2455 kfree(buf);
2456 }
2457
2458 /*
2459 * Used to obtain Sense Data from underlying Linux/SCSI struct scsi_cmnd
2460 */
2461 static int transport_get_sense_data(struct se_cmd *cmd)
2462 {
2463 unsigned char *buffer = cmd->sense_buffer, *sense_buffer = NULL;
2464 struct se_device *dev = cmd->se_dev;
2465 struct se_task *task = NULL, *task_tmp;
2466 unsigned long flags;
2467 u32 offset = 0;
2468
2469 WARN_ON(!cmd->se_lun);
2470
2471 if (!dev)
2472 return 0;
2473
2474 spin_lock_irqsave(&cmd->t_state_lock, flags);
2475 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
2476 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2477 return 0;
2478 }
2479
2480 list_for_each_entry_safe(task, task_tmp,
2481 &cmd->t_task_list, t_list) {
2482 if (!(task->task_flags & TF_HAS_SENSE))
2483 continue;
2484
2485 if (!dev->transport->get_sense_buffer) {
2486 pr_err("dev->transport->get_sense_buffer"
2487 " is NULL\n");
2488 continue;
2489 }
2490
2491 sense_buffer = dev->transport->get_sense_buffer(task);
2492 if (!sense_buffer) {
2493 pr_err("ITT[0x%08x]_TASK[%p]: Unable to locate"
2494 " sense buffer for task with sense\n",
2495 cmd->se_tfo->get_task_tag(cmd), task);
2496 continue;
2497 }
2498 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2499
2500 offset = cmd->se_tfo->set_fabric_sense_len(cmd,
2501 TRANSPORT_SENSE_BUFFER);
2502
2503 memcpy(&buffer[offset], sense_buffer,
2504 TRANSPORT_SENSE_BUFFER);
2505 cmd->scsi_status = task->task_scsi_status;
2506 /* Automatically padded */
2507 cmd->scsi_sense_length =
2508 (TRANSPORT_SENSE_BUFFER + offset);
2509
2510 pr_debug("HBA_[%u]_PLUG[%s]: Set SAM STATUS: 0x%02x"
2511 " and sense\n",
2512 dev->se_hba->hba_id, dev->transport->name,
2513 cmd->scsi_status);
2514 return 0;
2515 }
2516 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2517
2518 return -1;
2519 }
2520
2521 static inline long long transport_dev_end_lba(struct se_device *dev)
2522 {
2523 return dev->transport->get_blocks(dev) + 1;
2524 }
2525
2526 static int transport_cmd_get_valid_sectors(struct se_cmd *cmd)
2527 {
2528 struct se_device *dev = cmd->se_dev;
2529 u32 sectors;
2530
2531 if (dev->transport->get_device_type(dev) != TYPE_DISK)
2532 return 0;
2533
2534 sectors = (cmd->data_length / dev->se_sub_dev->se_dev_attrib.block_size);
2535
2536 if ((cmd->t_task_lba + sectors) > transport_dev_end_lba(dev)) {
2537 pr_err("LBA: %llu Sectors: %u exceeds"
2538 " transport_dev_end_lba(): %llu\n",
2539 cmd->t_task_lba, sectors,
2540 transport_dev_end_lba(dev));
2541 return -EINVAL;
2542 }
2543
2544 return 0;
2545 }
2546
2547 static int target_check_write_same_discard(unsigned char *flags, struct se_device *dev)
2548 {
2549 /*
2550 * Determine if the received WRITE_SAME is used to for direct
2551 * passthrough into Linux/SCSI with struct request via TCM/pSCSI
2552 * or we are signaling the use of internal WRITE_SAME + UNMAP=1
2553 * emulation for -> Linux/BLOCK disbard with TCM/IBLOCK code.
2554 */
2555 int passthrough = (dev->transport->transport_type ==
2556 TRANSPORT_PLUGIN_PHBA_PDEV);
2557
2558 if (!passthrough) {
2559 if ((flags[0] & 0x04) || (flags[0] & 0x02)) {
2560 pr_err("WRITE_SAME PBDATA and LBDATA"
2561 " bits not supported for Block Discard"
2562 " Emulation\n");
2563 return -ENOSYS;
2564 }
2565 /*
2566 * Currently for the emulated case we only accept
2567 * tpws with the UNMAP=1 bit set.
2568 */
2569 if (!(flags[0] & 0x08)) {
2570 pr_err("WRITE_SAME w/o UNMAP bit not"
2571 " supported for Block Discard Emulation\n");
2572 return -ENOSYS;
2573 }
2574 }
2575
2576 return 0;
2577 }
2578
2579 /* transport_generic_cmd_sequencer():
2580 *
2581 * Generic Command Sequencer that should work for most DAS transport
2582 * drivers.
2583 *
2584 * Called from transport_generic_allocate_tasks() in the $FABRIC_MOD
2585 * RX Thread.
2586 *
2587 * FIXME: Need to support other SCSI OPCODES where as well.
2588 */
2589 static int transport_generic_cmd_sequencer(
2590 struct se_cmd *cmd,
2591 unsigned char *cdb)
2592 {
2593 struct se_device *dev = cmd->se_dev;
2594 struct se_subsystem_dev *su_dev = dev->se_sub_dev;
2595 int ret = 0, sector_ret = 0, passthrough;
2596 u32 sectors = 0, size = 0, pr_reg_type = 0;
2597 u16 service_action;
2598 u8 alua_ascq = 0;
2599 /*
2600 * Check for an existing UNIT ATTENTION condition
2601 */
2602 if (core_scsi3_ua_check(cmd, cdb) < 0) {
2603 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2604 cmd->scsi_sense_reason = TCM_CHECK_CONDITION_UNIT_ATTENTION;
2605 return -EINVAL;
2606 }
2607 /*
2608 * Check status of Asymmetric Logical Unit Assignment port
2609 */
2610 ret = su_dev->t10_alua.alua_state_check(cmd, cdb, &alua_ascq);
2611 if (ret != 0) {
2612 /*
2613 * Set SCSI additional sense code (ASC) to 'LUN Not Accessible';
2614 * The ALUA additional sense code qualifier (ASCQ) is determined
2615 * by the ALUA primary or secondary access state..
2616 */
2617 if (ret > 0) {
2618 #if 0
2619 pr_debug("[%s]: ALUA TG Port not available,"
2620 " SenseKey: NOT_READY, ASC/ASCQ: 0x04/0x%02x\n",
2621 cmd->se_tfo->get_fabric_name(), alua_ascq);
2622 #endif
2623 transport_set_sense_codes(cmd, 0x04, alua_ascq);
2624 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2625 cmd->scsi_sense_reason = TCM_CHECK_CONDITION_NOT_READY;
2626 return -EINVAL;
2627 }
2628 goto out_invalid_cdb_field;
2629 }
2630 /*
2631 * Check status for SPC-3 Persistent Reservations
2632 */
2633 if (su_dev->t10_pr.pr_ops.t10_reservation_check(cmd, &pr_reg_type) != 0) {
2634 if (su_dev->t10_pr.pr_ops.t10_seq_non_holder(
2635 cmd, cdb, pr_reg_type) != 0) {
2636 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2637 cmd->se_cmd_flags |= SCF_SCSI_RESERVATION_CONFLICT;
2638 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
2639 cmd->scsi_sense_reason = TCM_RESERVATION_CONFLICT;
2640 return -EBUSY;
2641 }
2642 /*
2643 * This means the CDB is allowed for the SCSI Initiator port
2644 * when said port is *NOT* holding the legacy SPC-2 or
2645 * SPC-3 Persistent Reservation.
2646 */
2647 }
2648
2649 /*
2650 * If we operate in passthrough mode we skip most CDB emulation and
2651 * instead hand the commands down to the physical SCSI device.
2652 */
2653 passthrough =
2654 (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV);
2655
2656 switch (cdb[0]) {
2657 case READ_6:
2658 sectors = transport_get_sectors_6(cdb, cmd, &sector_ret);
2659 if (sector_ret)
2660 goto out_unsupported_cdb;
2661 size = transport_get_size(sectors, cdb, cmd);
2662 cmd->t_task_lba = transport_lba_21(cdb);
2663 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2664 break;
2665 case READ_10:
2666 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
2667 if (sector_ret)
2668 goto out_unsupported_cdb;
2669 size = transport_get_size(sectors, cdb, cmd);
2670 cmd->t_task_lba = transport_lba_32(cdb);
2671 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2672 break;
2673 case READ_12:
2674 sectors = transport_get_sectors_12(cdb, cmd, &sector_ret);
2675 if (sector_ret)
2676 goto out_unsupported_cdb;
2677 size = transport_get_size(sectors, cdb, cmd);
2678 cmd->t_task_lba = transport_lba_32(cdb);
2679 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2680 break;
2681 case READ_16:
2682 sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
2683 if (sector_ret)
2684 goto out_unsupported_cdb;
2685 size = transport_get_size(sectors, cdb, cmd);
2686 cmd->t_task_lba = transport_lba_64(cdb);
2687 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2688 break;
2689 case WRITE_6:
2690 sectors = transport_get_sectors_6(cdb, cmd, &sector_ret);
2691 if (sector_ret)
2692 goto out_unsupported_cdb;
2693 size = transport_get_size(sectors, cdb, cmd);
2694 cmd->t_task_lba = transport_lba_21(cdb);
2695 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2696 break;
2697 case WRITE_10:
2698 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
2699 if (sector_ret)
2700 goto out_unsupported_cdb;
2701 size = transport_get_size(sectors, cdb, cmd);
2702 cmd->t_task_lba = transport_lba_32(cdb);
2703 if (cdb[1] & 0x8)
2704 cmd->se_cmd_flags |= SCF_FUA;
2705 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2706 break;
2707 case WRITE_12:
2708 sectors = transport_get_sectors_12(cdb, cmd, &sector_ret);
2709 if (sector_ret)
2710 goto out_unsupported_cdb;
2711 size = transport_get_size(sectors, cdb, cmd);
2712 cmd->t_task_lba = transport_lba_32(cdb);
2713 if (cdb[1] & 0x8)
2714 cmd->se_cmd_flags |= SCF_FUA;
2715 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2716 break;
2717 case WRITE_16:
2718 sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
2719 if (sector_ret)
2720 goto out_unsupported_cdb;
2721 size = transport_get_size(sectors, cdb, cmd);
2722 cmd->t_task_lba = transport_lba_64(cdb);
2723 if (cdb[1] & 0x8)
2724 cmd->se_cmd_flags |= SCF_FUA;
2725 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2726 break;
2727 case XDWRITEREAD_10:
2728 if ((cmd->data_direction != DMA_TO_DEVICE) ||
2729 !(cmd->se_cmd_flags & SCF_BIDI))
2730 goto out_invalid_cdb_field;
2731 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
2732 if (sector_ret)
2733 goto out_unsupported_cdb;
2734 size = transport_get_size(sectors, cdb, cmd);
2735 cmd->t_task_lba = transport_lba_32(cdb);
2736 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2737
2738 /*
2739 * Do now allow BIDI commands for passthrough mode.
2740 */
2741 if (passthrough)
2742 goto out_unsupported_cdb;
2743
2744 /*
2745 * Setup BIDI XOR callback to be run after I/O completion.
2746 */
2747 cmd->transport_complete_callback = &transport_xor_callback;
2748 if (cdb[1] & 0x8)
2749 cmd->se_cmd_flags |= SCF_FUA;
2750 break;
2751 case VARIABLE_LENGTH_CMD:
2752 service_action = get_unaligned_be16(&cdb[8]);
2753 switch (service_action) {
2754 case XDWRITEREAD_32:
2755 sectors = transport_get_sectors_32(cdb, cmd, &sector_ret);
2756 if (sector_ret)
2757 goto out_unsupported_cdb;
2758 size = transport_get_size(sectors, cdb, cmd);
2759 /*
2760 * Use WRITE_32 and READ_32 opcodes for the emulated
2761 * XDWRITE_READ_32 logic.
2762 */
2763 cmd->t_task_lba = transport_lba_64_ext(cdb);
2764 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2765
2766 /*
2767 * Do now allow BIDI commands for passthrough mode.
2768 */
2769 if (passthrough)
2770 goto out_unsupported_cdb;
2771
2772 /*
2773 * Setup BIDI XOR callback to be run during after I/O
2774 * completion.
2775 */
2776 cmd->transport_complete_callback = &transport_xor_callback;
2777 if (cdb[1] & 0x8)
2778 cmd->se_cmd_flags |= SCF_FUA;
2779 break;
2780 case WRITE_SAME_32:
2781 sectors = transport_get_sectors_32(cdb, cmd, &sector_ret);
2782 if (sector_ret)
2783 goto out_unsupported_cdb;
2784
2785 if (sectors)
2786 size = transport_get_size(1, cdb, cmd);
2787 else {
2788 pr_err("WSNZ=1, WRITE_SAME w/sectors=0 not"
2789 " supported\n");
2790 goto out_invalid_cdb_field;
2791 }
2792
2793 cmd->t_task_lba = get_unaligned_be64(&cdb[12]);
2794 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2795
2796 if (target_check_write_same_discard(&cdb[10], dev) < 0)
2797 goto out_unsupported_cdb;
2798 if (!passthrough)
2799 cmd->execute_task = target_emulate_write_same;
2800 break;
2801 default:
2802 pr_err("VARIABLE_LENGTH_CMD service action"
2803 " 0x%04x not supported\n", service_action);
2804 goto out_unsupported_cdb;
2805 }
2806 break;
2807 case MAINTENANCE_IN:
2808 if (dev->transport->get_device_type(dev) != TYPE_ROM) {
2809 /* MAINTENANCE_IN from SCC-2 */
2810 /*
2811 * Check for emulated MI_REPORT_TARGET_PGS.
2812 */
2813 if (cdb[1] == MI_REPORT_TARGET_PGS &&
2814 su_dev->t10_alua.alua_type == SPC3_ALUA_EMULATED) {
2815 cmd->execute_task =
2816 target_emulate_report_target_port_groups;
2817 }
2818 size = (cdb[6] << 24) | (cdb[7] << 16) |
2819 (cdb[8] << 8) | cdb[9];
2820 } else {
2821 /* GPCMD_SEND_KEY from multi media commands */
2822 size = (cdb[8] << 8) + cdb[9];
2823 }
2824 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2825 break;
2826 case MODE_SELECT:
2827 size = cdb[4];
2828 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2829 break;
2830 case MODE_SELECT_10:
2831 size = (cdb[7] << 8) + cdb[8];
2832 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2833 break;
2834 case MODE_SENSE:
2835 size = cdb[4];
2836 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2837 if (!passthrough)
2838 cmd->execute_task = target_emulate_modesense;
2839 break;
2840 case MODE_SENSE_10:
2841 size = (cdb[7] << 8) + cdb[8];
2842 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2843 if (!passthrough)
2844 cmd->execute_task = target_emulate_modesense;
2845 break;
2846 case GPCMD_READ_BUFFER_CAPACITY:
2847 case GPCMD_SEND_OPC:
2848 case LOG_SELECT:
2849 case LOG_SENSE:
2850 size = (cdb[7] << 8) + cdb[8];
2851 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2852 break;
2853 case READ_BLOCK_LIMITS:
2854 size = READ_BLOCK_LEN;
2855 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2856 break;
2857 case GPCMD_GET_CONFIGURATION:
2858 case GPCMD_READ_FORMAT_CAPACITIES:
2859 case GPCMD_READ_DISC_INFO:
2860 case GPCMD_READ_TRACK_RZONE_INFO:
2861 size = (cdb[7] << 8) + cdb[8];
2862 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2863 break;
2864 case PERSISTENT_RESERVE_IN:
2865 if (su_dev->t10_pr.res_type == SPC3_PERSISTENT_RESERVATIONS)
2866 cmd->execute_task = target_scsi3_emulate_pr_in;
2867 size = (cdb[7] << 8) + cdb[8];
2868 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2869 break;
2870 case PERSISTENT_RESERVE_OUT:
2871 if (su_dev->t10_pr.res_type == SPC3_PERSISTENT_RESERVATIONS)
2872 cmd->execute_task = target_scsi3_emulate_pr_out;
2873 size = (cdb[7] << 8) + cdb[8];
2874 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2875 break;
2876 case GPCMD_MECHANISM_STATUS:
2877 case GPCMD_READ_DVD_STRUCTURE:
2878 size = (cdb[8] << 8) + cdb[9];
2879 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2880 break;
2881 case READ_POSITION:
2882 size = READ_POSITION_LEN;
2883 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2884 break;
2885 case MAINTENANCE_OUT:
2886 if (dev->transport->get_device_type(dev) != TYPE_ROM) {
2887 /* MAINTENANCE_OUT from SCC-2
2888 *
2889 * Check for emulated MO_SET_TARGET_PGS.
2890 */
2891 if (cdb[1] == MO_SET_TARGET_PGS &&
2892 su_dev->t10_alua.alua_type == SPC3_ALUA_EMULATED) {
2893 cmd->execute_task =
2894 target_emulate_set_target_port_groups;
2895 }
2896
2897 size = (cdb[6] << 24) | (cdb[7] << 16) |
2898 (cdb[8] << 8) | cdb[9];
2899 } else {
2900 /* GPCMD_REPORT_KEY from multi media commands */
2901 size = (cdb[8] << 8) + cdb[9];
2902 }
2903 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2904 break;
2905 case INQUIRY:
2906 size = (cdb[3] << 8) + cdb[4];
2907 /*
2908 * Do implict HEAD_OF_QUEUE processing for INQUIRY.
2909 * See spc4r17 section 5.3
2910 */
2911 if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
2912 cmd->sam_task_attr = MSG_HEAD_TAG;
2913 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2914 if (!passthrough)
2915 cmd->execute_task = target_emulate_inquiry;
2916 break;
2917 case READ_BUFFER:
2918 size = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8];
2919 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2920 break;
2921 case READ_CAPACITY:
2922 size = READ_CAP_LEN;
2923 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2924 if (!passthrough)
2925 cmd->execute_task = target_emulate_readcapacity;
2926 break;
2927 case READ_MEDIA_SERIAL_NUMBER:
2928 case SECURITY_PROTOCOL_IN:
2929 case SECURITY_PROTOCOL_OUT:
2930 size = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9];
2931 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2932 break;
2933 case SERVICE_ACTION_IN:
2934 switch (cmd->t_task_cdb[1] & 0x1f) {
2935 case SAI_READ_CAPACITY_16:
2936 if (!passthrough)
2937 cmd->execute_task =
2938 target_emulate_readcapacity_16;
2939 break;
2940 default:
2941 if (passthrough)
2942 break;
2943
2944 pr_err("Unsupported SA: 0x%02x\n",
2945 cmd->t_task_cdb[1] & 0x1f);
2946 goto out_invalid_cdb_field;
2947 }
2948 /*FALLTHROUGH*/
2949 case ACCESS_CONTROL_IN:
2950 case ACCESS_CONTROL_OUT:
2951 case EXTENDED_COPY:
2952 case READ_ATTRIBUTE:
2953 case RECEIVE_COPY_RESULTS:
2954 case WRITE_ATTRIBUTE:
2955 size = (cdb[10] << 24) | (cdb[11] << 16) |
2956 (cdb[12] << 8) | cdb[13];
2957 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2958 break;
2959 case RECEIVE_DIAGNOSTIC:
2960 case SEND_DIAGNOSTIC:
2961 size = (cdb[3] << 8) | cdb[4];
2962 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2963 break;
2964 /* #warning FIXME: Figure out correct GPCMD_READ_CD blocksize. */
2965 #if 0
2966 case GPCMD_READ_CD:
2967 sectors = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8];
2968 size = (2336 * sectors);
2969 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2970 break;
2971 #endif
2972 case READ_TOC:
2973 size = cdb[8];
2974 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2975 break;
2976 case REQUEST_SENSE:
2977 size = cdb[4];
2978 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2979 if (!passthrough)
2980 cmd->execute_task = target_emulate_request_sense;
2981 break;
2982 case READ_ELEMENT_STATUS:
2983 size = 65536 * cdb[7] + 256 * cdb[8] + cdb[9];
2984 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2985 break;
2986 case WRITE_BUFFER:
2987 size = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8];
2988 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2989 break;
2990 case RESERVE:
2991 case RESERVE_10:
2992 /*
2993 * The SPC-2 RESERVE does not contain a size in the SCSI CDB.
2994 * Assume the passthrough or $FABRIC_MOD will tell us about it.
2995 */
2996 if (cdb[0] == RESERVE_10)
2997 size = (cdb[7] << 8) | cdb[8];
2998 else
2999 size = cmd->data_length;
3000
3001 /*
3002 * Setup the legacy emulated handler for SPC-2 and
3003 * >= SPC-3 compatible reservation handling (CRH=1)
3004 * Otherwise, we assume the underlying SCSI logic is
3005 * is running in SPC_PASSTHROUGH, and wants reservations
3006 * emulation disabled.
3007 */
3008 if (su_dev->t10_pr.res_type != SPC_PASSTHROUGH)
3009 cmd->execute_task = target_scsi2_reservation_reserve;
3010 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
3011 break;
3012 case RELEASE:
3013 case RELEASE_10:
3014 /*
3015 * The SPC-2 RELEASE does not contain a size in the SCSI CDB.
3016 * Assume the passthrough or $FABRIC_MOD will tell us about it.
3017 */
3018 if (cdb[0] == RELEASE_10)
3019 size = (cdb[7] << 8) | cdb[8];
3020 else
3021 size = cmd->data_length;
3022
3023 if (su_dev->t10_pr.res_type != SPC_PASSTHROUGH)
3024 cmd->execute_task = target_scsi2_reservation_release;
3025 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
3026 break;
3027 case SYNCHRONIZE_CACHE:
3028 case SYNCHRONIZE_CACHE_16:
3029 /*
3030 * Extract LBA and range to be flushed for emulated SYNCHRONIZE_CACHE
3031 */
3032 if (cdb[0] == SYNCHRONIZE_CACHE) {
3033 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
3034 cmd->t_task_lba = transport_lba_32(cdb);
3035 } else {
3036 sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
3037 cmd->t_task_lba = transport_lba_64(cdb);
3038 }
3039 if (sector_ret)
3040 goto out_unsupported_cdb;
3041
3042 size = transport_get_size(sectors, cdb, cmd);
3043 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
3044
3045 if (passthrough)
3046 break;
3047
3048 /*
3049 * Check to ensure that LBA + Range does not exceed past end of
3050 * device for IBLOCK and FILEIO ->do_sync_cache() backend calls
3051 */
3052 if ((cmd->t_task_lba != 0) || (sectors != 0)) {
3053 if (transport_cmd_get_valid_sectors(cmd) < 0)
3054 goto out_invalid_cdb_field;
3055 }
3056 cmd->execute_task = target_emulate_synchronize_cache;
3057 break;
3058 case UNMAP:
3059 size = get_unaligned_be16(&cdb[7]);
3060 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3061 if (!passthrough)
3062 cmd->execute_task = target_emulate_unmap;
3063 break;
3064 case WRITE_SAME_16:
3065 sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
3066 if (sector_ret)
3067 goto out_unsupported_cdb;
3068
3069 if (sectors)
3070 size = transport_get_size(1, cdb, cmd);
3071 else {
3072 pr_err("WSNZ=1, WRITE_SAME w/sectors=0 not supported\n");
3073 goto out_invalid_cdb_field;
3074 }
3075
3076 cmd->t_task_lba = get_unaligned_be64(&cdb[2]);
3077 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3078
3079 if (target_check_write_same_discard(&cdb[1], dev) < 0)
3080 goto out_unsupported_cdb;
3081 if (!passthrough)
3082 cmd->execute_task = target_emulate_write_same;
3083 break;
3084 case WRITE_SAME:
3085 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
3086 if (sector_ret)
3087 goto out_unsupported_cdb;
3088
3089 if (sectors)
3090 size = transport_get_size(1, cdb, cmd);
3091 else {
3092 pr_err("WSNZ=1, WRITE_SAME w/sectors=0 not supported\n");
3093 goto out_invalid_cdb_field;
3094 }
3095
3096 cmd->t_task_lba = get_unaligned_be32(&cdb[2]);
3097 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3098 /*
3099 * Follow sbcr26 with WRITE_SAME (10) and check for the existence
3100 * of byte 1 bit 3 UNMAP instead of original reserved field
3101 */
3102 if (target_check_write_same_discard(&cdb[1], dev) < 0)
3103 goto out_unsupported_cdb;
3104 if (!passthrough)
3105 cmd->execute_task = target_emulate_write_same;
3106 break;
3107 case ALLOW_MEDIUM_REMOVAL:
3108 case ERASE:
3109 case REZERO_UNIT:
3110 case SEEK_10:
3111 case SPACE:
3112 case START_STOP:
3113 case TEST_UNIT_READY:
3114 case VERIFY:
3115 case WRITE_FILEMARKS:
3116 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
3117 if (!passthrough)
3118 cmd->execute_task = target_emulate_noop;
3119 break;
3120 case GPCMD_CLOSE_TRACK:
3121 case INITIALIZE_ELEMENT_STATUS:
3122 case GPCMD_LOAD_UNLOAD:
3123 case GPCMD_SET_SPEED:
3124 case MOVE_MEDIUM:
3125 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
3126 break;
3127 case REPORT_LUNS:
3128 cmd->execute_task = target_report_luns;
3129 size = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9];
3130 /*
3131 * Do implict HEAD_OF_QUEUE processing for REPORT_LUNS
3132 * See spc4r17 section 5.3
3133 */
3134 if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
3135 cmd->sam_task_attr = MSG_HEAD_TAG;
3136 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3137 break;
3138 default:
3139 pr_warn("TARGET_CORE[%s]: Unsupported SCSI Opcode"
3140 " 0x%02x, sending CHECK_CONDITION.\n",
3141 cmd->se_tfo->get_fabric_name(), cdb[0]);
3142 goto out_unsupported_cdb;
3143 }
3144
3145 if (size != cmd->data_length) {
3146 pr_warn("TARGET_CORE[%s]: Expected Transfer Length:"
3147 " %u does not match SCSI CDB Length: %u for SAM Opcode:"
3148 " 0x%02x\n", cmd->se_tfo->get_fabric_name(),
3149 cmd->data_length, size, cdb[0]);
3150
3151 cmd->cmd_spdtl = size;
3152
3153 if (cmd->data_direction == DMA_TO_DEVICE) {
3154 pr_err("Rejecting underflow/overflow"
3155 " WRITE data\n");
3156 goto out_invalid_cdb_field;
3157 }
3158 /*
3159 * Reject READ_* or WRITE_* with overflow/underflow for
3160 * type SCF_SCSI_DATA_SG_IO_CDB.
3161 */
3162 if (!ret && (dev->se_sub_dev->se_dev_attrib.block_size != 512)) {
3163 pr_err("Failing OVERFLOW/UNDERFLOW for LBA op"
3164 " CDB on non 512-byte sector setup subsystem"
3165 " plugin: %s\n", dev->transport->name);
3166 /* Returns CHECK_CONDITION + INVALID_CDB_FIELD */
3167 goto out_invalid_cdb_field;
3168 }
3169
3170 if (size > cmd->data_length) {
3171 cmd->se_cmd_flags |= SCF_OVERFLOW_BIT;
3172 cmd->residual_count = (size - cmd->data_length);
3173 } else {
3174 cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
3175 cmd->residual_count = (cmd->data_length - size);
3176 }
3177 cmd->data_length = size;
3178 }
3179
3180 if (cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB &&
3181 sectors > dev->se_sub_dev->se_dev_attrib.fabric_max_sectors) {
3182 printk_ratelimited(KERN_ERR "SCSI OP %02xh with too big sectors %u\n",
3183 cdb[0], sectors);
3184 goto out_invalid_cdb_field;
3185 }
3186
3187 /* reject any command that we don't have a handler for */
3188 if (!(passthrough || cmd->execute_task ||
3189 (cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB)))
3190 goto out_unsupported_cdb;
3191
3192 transport_set_supported_SAM_opcode(cmd);
3193 return ret;
3194
3195 out_unsupported_cdb:
3196 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3197 cmd->scsi_sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
3198 return -EINVAL;
3199 out_invalid_cdb_field:
3200 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3201 cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
3202 return -EINVAL;
3203 }
3204
3205 /*
3206 * Called from I/O completion to determine which dormant/delayed
3207 * and ordered cmds need to have their tasks added to the execution queue.
3208 */
3209 static void transport_complete_task_attr(struct se_cmd *cmd)
3210 {
3211 struct se_device *dev = cmd->se_dev;
3212 struct se_cmd *cmd_p, *cmd_tmp;
3213 int new_active_tasks = 0;
3214
3215 if (cmd->sam_task_attr == MSG_SIMPLE_TAG) {
3216 atomic_dec(&dev->simple_cmds);
3217 smp_mb__after_atomic_dec();
3218 dev->dev_cur_ordered_id++;
3219 pr_debug("Incremented dev->dev_cur_ordered_id: %u for"
3220 " SIMPLE: %u\n", dev->dev_cur_ordered_id,
3221 cmd->se_ordered_id);
3222 } else if (cmd->sam_task_attr == MSG_HEAD_TAG) {
3223 dev->dev_cur_ordered_id++;
3224 pr_debug("Incremented dev_cur_ordered_id: %u for"
3225 " HEAD_OF_QUEUE: %u\n", dev->dev_cur_ordered_id,
3226 cmd->se_ordered_id);
3227 } else if (cmd->sam_task_attr == MSG_ORDERED_TAG) {
3228 atomic_dec(&dev->dev_ordered_sync);
3229 smp_mb__after_atomic_dec();
3230
3231 dev->dev_cur_ordered_id++;
3232 pr_debug("Incremented dev_cur_ordered_id: %u for ORDERED:"
3233 " %u\n", dev->dev_cur_ordered_id, cmd->se_ordered_id);
3234 }
3235 /*
3236 * Process all commands up to the last received
3237 * ORDERED task attribute which requires another blocking
3238 * boundary
3239 */
3240 spin_lock(&dev->delayed_cmd_lock);
3241 list_for_each_entry_safe(cmd_p, cmd_tmp,
3242 &dev->delayed_cmd_list, se_delayed_node) {
3243
3244 list_del(&cmd_p->se_delayed_node);
3245 spin_unlock(&dev->delayed_cmd_lock);
3246
3247 pr_debug("Calling add_tasks() for"
3248 " cmd_p: 0x%02x Task Attr: 0x%02x"
3249 " Dormant -> Active, se_ordered_id: %u\n",
3250 cmd_p->t_task_cdb[0],
3251 cmd_p->sam_task_attr, cmd_p->se_ordered_id);
3252
3253 transport_add_tasks_from_cmd(cmd_p);
3254 new_active_tasks++;
3255
3256 spin_lock(&dev->delayed_cmd_lock);
3257 if (cmd_p->sam_task_attr == MSG_ORDERED_TAG)
3258 break;
3259 }
3260 spin_unlock(&dev->delayed_cmd_lock);
3261 /*
3262 * If new tasks have become active, wake up the transport thread
3263 * to do the processing of the Active tasks.
3264 */
3265 if (new_active_tasks != 0)
3266 wake_up_interruptible(&dev->dev_queue_obj.thread_wq);
3267 }
3268
3269 static void transport_complete_qf(struct se_cmd *cmd)
3270 {
3271 int ret = 0;
3272
3273 if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
3274 transport_complete_task_attr(cmd);
3275
3276 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
3277 ret = cmd->se_tfo->queue_status(cmd);
3278 if (ret)
3279 goto out;
3280 }
3281
3282 switch (cmd->data_direction) {
3283 case DMA_FROM_DEVICE:
3284 ret = cmd->se_tfo->queue_data_in(cmd);
3285 break;
3286 case DMA_TO_DEVICE:
3287 if (cmd->t_bidi_data_sg) {
3288 ret = cmd->se_tfo->queue_data_in(cmd);
3289 if (ret < 0)
3290 break;
3291 }
3292 /* Fall through for DMA_TO_DEVICE */
3293 case DMA_NONE:
3294 ret = cmd->se_tfo->queue_status(cmd);
3295 break;
3296 default:
3297 break;
3298 }
3299
3300 out:
3301 if (ret < 0) {
3302 transport_handle_queue_full(cmd, cmd->se_dev);
3303 return;
3304 }
3305 transport_lun_remove_cmd(cmd);
3306 transport_cmd_check_stop_to_fabric(cmd);
3307 }
3308
3309 static void transport_handle_queue_full(
3310 struct se_cmd *cmd,
3311 struct se_device *dev)
3312 {
3313 spin_lock_irq(&dev->qf_cmd_lock);
3314 list_add_tail(&cmd->se_qf_node, &cmd->se_dev->qf_cmd_list);
3315 atomic_inc(&dev->dev_qf_count);
3316 smp_mb__after_atomic_inc();
3317 spin_unlock_irq(&cmd->se_dev->qf_cmd_lock);
3318
3319 schedule_work(&cmd->se_dev->qf_work_queue);
3320 }
3321
3322 static void target_complete_ok_work(struct work_struct *work)
3323 {
3324 struct se_cmd *cmd = container_of(work, struct se_cmd, work);
3325 int reason = 0, ret;
3326
3327 /*
3328 * Check if we need to move delayed/dormant tasks from cmds on the
3329 * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task
3330 * Attribute.
3331 */
3332 if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
3333 transport_complete_task_attr(cmd);
3334 /*
3335 * Check to schedule QUEUE_FULL work, or execute an existing
3336 * cmd->transport_qf_callback()
3337 */
3338 if (atomic_read(&cmd->se_dev->dev_qf_count) != 0)
3339 schedule_work(&cmd->se_dev->qf_work_queue);
3340
3341 /*
3342 * Check if we need to retrieve a sense buffer from
3343 * the struct se_cmd in question.
3344 */
3345 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
3346 if (transport_get_sense_data(cmd) < 0)
3347 reason = TCM_NON_EXISTENT_LUN;
3348
3349 /*
3350 * Only set when an struct se_task->task_scsi_status returned
3351 * a non GOOD status.
3352 */
3353 if (cmd->scsi_status) {
3354 ret = transport_send_check_condition_and_sense(
3355 cmd, reason, 1);
3356 if (ret == -EAGAIN || ret == -ENOMEM)
3357 goto queue_full;
3358
3359 transport_lun_remove_cmd(cmd);
3360 transport_cmd_check_stop_to_fabric(cmd);
3361 return;
3362 }
3363 }
3364 /*
3365 * Check for a callback, used by amongst other things
3366 * XDWRITE_READ_10 emulation.
3367 */
3368 if (cmd->transport_complete_callback)
3369 cmd->transport_complete_callback(cmd);
3370
3371 switch (cmd->data_direction) {
3372 case DMA_FROM_DEVICE:
3373 spin_lock(&cmd->se_lun->lun_sep_lock);
3374 if (cmd->se_lun->lun_sep) {
3375 cmd->se_lun->lun_sep->sep_stats.tx_data_octets +=
3376 cmd->data_length;
3377 }
3378 spin_unlock(&cmd->se_lun->lun_sep_lock);
3379
3380 ret = cmd->se_tfo->queue_data_in(cmd);
3381 if (ret == -EAGAIN || ret == -ENOMEM)
3382 goto queue_full;
3383 break;
3384 case DMA_TO_DEVICE:
3385 spin_lock(&cmd->se_lun->lun_sep_lock);
3386 if (cmd->se_lun->lun_sep) {
3387 cmd->se_lun->lun_sep->sep_stats.rx_data_octets +=
3388 cmd->data_length;
3389 }
3390 spin_unlock(&cmd->se_lun->lun_sep_lock);
3391 /*
3392 * Check if we need to send READ payload for BIDI-COMMAND
3393 */
3394 if (cmd->t_bidi_data_sg) {
3395 spin_lock(&cmd->se_lun->lun_sep_lock);
3396 if (cmd->se_lun->lun_sep) {
3397 cmd->se_lun->lun_sep->sep_stats.tx_data_octets +=
3398 cmd->data_length;
3399 }
3400 spin_unlock(&cmd->se_lun->lun_sep_lock);
3401 ret = cmd->se_tfo->queue_data_in(cmd);
3402 if (ret == -EAGAIN || ret == -ENOMEM)
3403 goto queue_full;
3404 break;
3405 }
3406 /* Fall through for DMA_TO_DEVICE */
3407 case DMA_NONE:
3408 ret = cmd->se_tfo->queue_status(cmd);
3409 if (ret == -EAGAIN || ret == -ENOMEM)
3410 goto queue_full;
3411 break;
3412 default:
3413 break;
3414 }
3415
3416 transport_lun_remove_cmd(cmd);
3417 transport_cmd_check_stop_to_fabric(cmd);
3418 return;
3419
3420 queue_full:
3421 pr_debug("Handling complete_ok QUEUE_FULL: se_cmd: %p,"
3422 " data_direction: %d\n", cmd, cmd->data_direction);
3423 cmd->t_state = TRANSPORT_COMPLETE_QF_OK;
3424 transport_handle_queue_full(cmd, cmd->se_dev);
3425 }
3426
3427 static void transport_free_dev_tasks(struct se_cmd *cmd)
3428 {
3429 struct se_task *task, *task_tmp;
3430 unsigned long flags;
3431 LIST_HEAD(dispose_list);
3432
3433 spin_lock_irqsave(&cmd->t_state_lock, flags);
3434 list_for_each_entry_safe(task, task_tmp,
3435 &cmd->t_task_list, t_list) {
3436 if (!(task->task_flags & TF_ACTIVE))
3437 list_move_tail(&task->t_list, &dispose_list);
3438 }
3439 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3440
3441 while (!list_empty(&dispose_list)) {
3442 task = list_first_entry(&dispose_list, struct se_task, t_list);
3443
3444 if (task->task_sg != cmd->t_data_sg &&
3445 task->task_sg != cmd->t_bidi_data_sg)
3446 kfree(task->task_sg);
3447
3448 list_del(&task->t_list);
3449
3450 cmd->se_dev->transport->free_task(task);
3451 }
3452 }
3453
3454 static inline void transport_free_sgl(struct scatterlist *sgl, int nents)
3455 {
3456 struct scatterlist *sg;
3457 int count;
3458
3459 for_each_sg(sgl, sg, nents, count)
3460 __free_page(sg_page(sg));
3461
3462 kfree(sgl);
3463 }
3464
3465 static inline void transport_free_pages(struct se_cmd *cmd)
3466 {
3467 if (cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC)
3468 return;
3469
3470 transport_free_sgl(cmd->t_data_sg, cmd->t_data_nents);
3471 cmd->t_data_sg = NULL;
3472 cmd->t_data_nents = 0;
3473
3474 transport_free_sgl(cmd->t_bidi_data_sg, cmd->t_bidi_data_nents);
3475 cmd->t_bidi_data_sg = NULL;
3476 cmd->t_bidi_data_nents = 0;
3477 }
3478
3479 /**
3480 * transport_release_cmd - free a command
3481 * @cmd: command to free
3482 *
3483 * This routine unconditionally frees a command, and reference counting
3484 * or list removal must be done in the caller.
3485 */
3486 static void transport_release_cmd(struct se_cmd *cmd)
3487 {
3488 BUG_ON(!cmd->se_tfo);
3489
3490 if (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)
3491 core_tmr_release_req(cmd->se_tmr_req);
3492 if (cmd->t_task_cdb != cmd->__t_task_cdb)
3493 kfree(cmd->t_task_cdb);
3494 /*
3495 * If this cmd has been setup with target_get_sess_cmd(), drop
3496 * the kref and call ->release_cmd() in kref callback.
3497 */
3498 if (cmd->check_release != 0) {
3499 target_put_sess_cmd(cmd->se_sess, cmd);
3500 return;
3501 }
3502 cmd->se_tfo->release_cmd(cmd);
3503 }
3504
3505 /**
3506 * transport_put_cmd - release a reference to a command
3507 * @cmd: command to release
3508 *
3509 * This routine releases our reference to the command and frees it if possible.
3510 */
3511 static void transport_put_cmd(struct se_cmd *cmd)
3512 {
3513 unsigned long flags;
3514 int free_tasks = 0;
3515
3516 spin_lock_irqsave(&cmd->t_state_lock, flags);
3517 if (atomic_read(&cmd->t_fe_count)) {
3518 if (!atomic_dec_and_test(&cmd->t_fe_count))
3519 goto out_busy;
3520 }
3521
3522 if (atomic_read(&cmd->t_se_count)) {
3523 if (!atomic_dec_and_test(&cmd->t_se_count))
3524 goto out_busy;
3525 }
3526
3527 if (cmd->transport_state & CMD_T_DEV_ACTIVE) {
3528 cmd->transport_state &= ~CMD_T_DEV_ACTIVE;
3529 transport_all_task_dev_remove_state(cmd);
3530 free_tasks = 1;
3531 }
3532 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3533
3534 if (free_tasks != 0)
3535 transport_free_dev_tasks(cmd);
3536
3537 transport_free_pages(cmd);
3538 transport_release_cmd(cmd);
3539 return;
3540 out_busy:
3541 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3542 }
3543
3544 /*
3545 * transport_generic_map_mem_to_cmd - Use fabric-alloced pages instead of
3546 * allocating in the core.
3547 * @cmd: Associated se_cmd descriptor
3548 * @mem: SGL style memory for TCM WRITE / READ
3549 * @sg_mem_num: Number of SGL elements
3550 * @mem_bidi_in: SGL style memory for TCM BIDI READ
3551 * @sg_mem_bidi_num: Number of BIDI READ SGL elements
3552 *
3553 * Return: nonzero return cmd was rejected for -ENOMEM or inproper usage
3554 * of parameters.
3555 */
3556 int transport_generic_map_mem_to_cmd(
3557 struct se_cmd *cmd,
3558 struct scatterlist *sgl,
3559 u32 sgl_count,
3560 struct scatterlist *sgl_bidi,
3561 u32 sgl_bidi_count)
3562 {
3563 if (!sgl || !sgl_count)
3564 return 0;
3565
3566 if ((cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB) ||
3567 (cmd->se_cmd_flags & SCF_SCSI_CONTROL_SG_IO_CDB)) {
3568 /*
3569 * Reject SCSI data overflow with map_mem_to_cmd() as incoming
3570 * scatterlists already have been set to follow what the fabric
3571 * passes for the original expected data transfer length.
3572 */
3573 if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) {
3574 pr_warn("Rejecting SCSI DATA overflow for fabric using"
3575 " SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC\n");
3576 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3577 cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
3578 return -EINVAL;
3579 }
3580
3581 cmd->t_data_sg = sgl;
3582 cmd->t_data_nents = sgl_count;
3583
3584 if (sgl_bidi && sgl_bidi_count) {
3585 cmd->t_bidi_data_sg = sgl_bidi;
3586 cmd->t_bidi_data_nents = sgl_bidi_count;
3587 }
3588 cmd->se_cmd_flags |= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC;
3589 }
3590
3591 return 0;
3592 }
3593 EXPORT_SYMBOL(transport_generic_map_mem_to_cmd);
3594
3595 void *transport_kmap_data_sg(struct se_cmd *cmd)
3596 {
3597 struct scatterlist *sg = cmd->t_data_sg;
3598 struct page **pages;
3599 int i;
3600
3601 BUG_ON(!sg);
3602 /*
3603 * We need to take into account a possible offset here for fabrics like
3604 * tcm_loop who may be using a contig buffer from the SCSI midlayer for
3605 * control CDBs passed as SGLs via transport_generic_map_mem_to_cmd()
3606 */
3607 if (!cmd->t_data_nents)
3608 return NULL;
3609 else if (cmd->t_data_nents == 1)
3610 return kmap(sg_page(sg)) + sg->offset;
3611
3612 /* >1 page. use vmap */
3613 pages = kmalloc(sizeof(*pages) * cmd->t_data_nents, GFP_KERNEL);
3614 if (!pages)
3615 return NULL;
3616
3617 /* convert sg[] to pages[] */
3618 for_each_sg(cmd->t_data_sg, sg, cmd->t_data_nents, i) {
3619 pages[i] = sg_page(sg);
3620 }
3621
3622 cmd->t_data_vmap = vmap(pages, cmd->t_data_nents, VM_MAP, PAGE_KERNEL);
3623 kfree(pages);
3624 if (!cmd->t_data_vmap)
3625 return NULL;
3626
3627 return cmd->t_data_vmap + cmd->t_data_sg[0].offset;
3628 }
3629 EXPORT_SYMBOL(transport_kmap_data_sg);
3630
3631 void transport_kunmap_data_sg(struct se_cmd *cmd)
3632 {
3633 if (!cmd->t_data_nents) {
3634 return;
3635 } else if (cmd->t_data_nents == 1) {
3636 kunmap(sg_page(cmd->t_data_sg));
3637 return;
3638 }
3639
3640 vunmap(cmd->t_data_vmap);
3641 cmd->t_data_vmap = NULL;
3642 }
3643 EXPORT_SYMBOL(transport_kunmap_data_sg);
3644
3645 static int
3646 transport_generic_get_mem(struct se_cmd *cmd)
3647 {
3648 u32 length = cmd->data_length;
3649 unsigned int nents;
3650 struct page *page;
3651 gfp_t zero_flag;
3652 int i = 0;
3653
3654 nents = DIV_ROUND_UP(length, PAGE_SIZE);
3655 cmd->t_data_sg = kmalloc(sizeof(struct scatterlist) * nents, GFP_KERNEL);
3656 if (!cmd->t_data_sg)
3657 return -ENOMEM;
3658
3659 cmd->t_data_nents = nents;
3660 sg_init_table(cmd->t_data_sg, nents);
3661
3662 zero_flag = cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB ? 0 : __GFP_ZERO;
3663
3664 while (length) {
3665 u32 page_len = min_t(u32, length, PAGE_SIZE);
3666 page = alloc_page(GFP_KERNEL | zero_flag);
3667 if (!page)
3668 goto out;
3669
3670 sg_set_page(&cmd->t_data_sg[i], page, page_len, 0);
3671 length -= page_len;
3672 i++;
3673 }
3674 return 0;
3675
3676 out:
3677 while (i >= 0) {
3678 __free_page(sg_page(&cmd->t_data_sg[i]));
3679 i--;
3680 }
3681 kfree(cmd->t_data_sg);
3682 cmd->t_data_sg = NULL;
3683 return -ENOMEM;
3684 }
3685
3686 /* Reduce sectors if they are too long for the device */
3687 static inline sector_t transport_limit_task_sectors(
3688 struct se_device *dev,
3689 unsigned long long lba,
3690 sector_t sectors)
3691 {
3692 sectors = min_t(sector_t, sectors, dev->se_sub_dev->se_dev_attrib.max_sectors);
3693
3694 if (dev->transport->get_device_type(dev) == TYPE_DISK)
3695 if ((lba + sectors) > transport_dev_end_lba(dev))
3696 sectors = ((transport_dev_end_lba(dev) - lba) + 1);
3697
3698 return sectors;
3699 }
3700
3701
3702 /*
3703 * This function can be used by HW target mode drivers to create a linked
3704 * scatterlist from all contiguously allocated struct se_task->task_sg[].
3705 * This is intended to be called during the completion path by TCM Core
3706 * when struct target_core_fabric_ops->check_task_sg_chaining is enabled.
3707 */
3708 void transport_do_task_sg_chain(struct se_cmd *cmd)
3709 {
3710 struct scatterlist *sg_first = NULL;
3711 struct scatterlist *sg_prev = NULL;
3712 int sg_prev_nents = 0;
3713 struct scatterlist *sg;
3714 struct se_task *task;
3715 u32 chained_nents = 0;
3716 int i;
3717
3718 BUG_ON(!cmd->se_tfo->task_sg_chaining);
3719
3720 /*
3721 * Walk the struct se_task list and setup scatterlist chains
3722 * for each contiguously allocated struct se_task->task_sg[].
3723 */
3724 list_for_each_entry(task, &cmd->t_task_list, t_list) {
3725 if (!task->task_sg)
3726 continue;
3727
3728 if (!sg_first) {
3729 sg_first = task->task_sg;
3730 chained_nents = task->task_sg_nents;
3731 } else {
3732 sg_chain(sg_prev, sg_prev_nents, task->task_sg);
3733 chained_nents += task->task_sg_nents;
3734 }
3735 /*
3736 * For the padded tasks, use the extra SGL vector allocated
3737 * in transport_allocate_data_tasks() for the sg_prev_nents
3738 * offset into sg_chain() above.
3739 *
3740 * We do not need the padding for the last task (or a single
3741 * task), but in that case we will never use the sg_prev_nents
3742 * value below which would be incorrect.
3743 */
3744 sg_prev_nents = (task->task_sg_nents + 1);
3745 sg_prev = task->task_sg;
3746 }
3747 /*
3748 * Setup the starting pointer and total t_tasks_sg_linked_no including
3749 * padding SGs for linking and to mark the end.
3750 */
3751 cmd->t_tasks_sg_chained = sg_first;
3752 cmd->t_tasks_sg_chained_no = chained_nents;
3753
3754 pr_debug("Setup cmd: %p cmd->t_tasks_sg_chained: %p and"
3755 " t_tasks_sg_chained_no: %u\n", cmd, cmd->t_tasks_sg_chained,
3756 cmd->t_tasks_sg_chained_no);
3757
3758 for_each_sg(cmd->t_tasks_sg_chained, sg,
3759 cmd->t_tasks_sg_chained_no, i) {
3760
3761 pr_debug("SG[%d]: %p page: %p length: %d offset: %d\n",
3762 i, sg, sg_page(sg), sg->length, sg->offset);
3763 if (sg_is_chain(sg))
3764 pr_debug("SG: %p sg_is_chain=1\n", sg);
3765 if (sg_is_last(sg))
3766 pr_debug("SG: %p sg_is_last=1\n", sg);
3767 }
3768 }
3769 EXPORT_SYMBOL(transport_do_task_sg_chain);
3770
3771 /*
3772 * Break up cmd into chunks transport can handle
3773 */
3774 static int
3775 transport_allocate_data_tasks(struct se_cmd *cmd,
3776 enum dma_data_direction data_direction,
3777 struct scatterlist *cmd_sg, unsigned int sgl_nents)
3778 {
3779 struct se_device *dev = cmd->se_dev;
3780 int task_count, i;
3781 unsigned long long lba;
3782 sector_t sectors, dev_max_sectors;
3783 u32 sector_size;
3784
3785 if (transport_cmd_get_valid_sectors(cmd) < 0)
3786 return -EINVAL;
3787
3788 dev_max_sectors = dev->se_sub_dev->se_dev_attrib.max_sectors;
3789 sector_size = dev->se_sub_dev->se_dev_attrib.block_size;
3790
3791 WARN_ON(cmd->data_length % sector_size);
3792
3793 lba = cmd->t_task_lba;
3794 sectors = DIV_ROUND_UP(cmd->data_length, sector_size);
3795 task_count = DIV_ROUND_UP_SECTOR_T(sectors, dev_max_sectors);
3796
3797 /*
3798 * If we need just a single task reuse the SG list in the command
3799 * and avoid a lot of work.
3800 */
3801 if (task_count == 1) {
3802 struct se_task *task;
3803 unsigned long flags;
3804
3805 task = transport_generic_get_task(cmd, data_direction);
3806 if (!task)
3807 return -ENOMEM;
3808
3809 task->task_sg = cmd_sg;
3810 task->task_sg_nents = sgl_nents;
3811
3812 task->task_lba = lba;
3813 task->task_sectors = sectors;
3814 task->task_size = task->task_sectors * sector_size;
3815
3816 spin_lock_irqsave(&cmd->t_state_lock, flags);
3817 list_add_tail(&task->t_list, &cmd->t_task_list);
3818 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3819
3820 return task_count;
3821 }
3822
3823 for (i = 0; i < task_count; i++) {
3824 struct se_task *task;
3825 unsigned int task_size, task_sg_nents_padded;
3826 struct scatterlist *sg;
3827 unsigned long flags;
3828 int count;
3829
3830 task = transport_generic_get_task(cmd, data_direction);
3831 if (!task)
3832 return -ENOMEM;
3833
3834 task->task_lba = lba;
3835 task->task_sectors = min(sectors, dev_max_sectors);
3836 task->task_size = task->task_sectors * sector_size;
3837
3838 /*
3839 * This now assumes that passed sg_ents are in PAGE_SIZE chunks
3840 * in order to calculate the number per task SGL entries
3841 */
3842 task->task_sg_nents = DIV_ROUND_UP(task->task_size, PAGE_SIZE);
3843 /*
3844 * Check if the fabric module driver is requesting that all
3845 * struct se_task->task_sg[] be chained together.. If so,
3846 * then allocate an extra padding SG entry for linking and
3847 * marking the end of the chained SGL for every task except
3848 * the last one for (task_count > 1) operation, or skipping
3849 * the extra padding for the (task_count == 1) case.
3850 */
3851 if (cmd->se_tfo->task_sg_chaining && (i < (task_count - 1))) {
3852 task_sg_nents_padded = (task->task_sg_nents + 1);
3853 } else
3854 task_sg_nents_padded = task->task_sg_nents;
3855
3856 task->task_sg = kmalloc(sizeof(struct scatterlist) *
3857 task_sg_nents_padded, GFP_KERNEL);
3858 if (!task->task_sg) {
3859 cmd->se_dev->transport->free_task(task);
3860 return -ENOMEM;
3861 }
3862
3863 sg_init_table(task->task_sg, task_sg_nents_padded);
3864
3865 task_size = task->task_size;
3866
3867 /* Build new sgl, only up to task_size */
3868 for_each_sg(task->task_sg, sg, task->task_sg_nents, count) {
3869 if (cmd_sg->length > task_size)
3870 break;
3871
3872 *sg = *cmd_sg;
3873 task_size -= cmd_sg->length;
3874 cmd_sg = sg_next(cmd_sg);
3875 }
3876
3877 lba += task->task_sectors;
3878 sectors -= task->task_sectors;
3879
3880 spin_lock_irqsave(&cmd->t_state_lock, flags);
3881 list_add_tail(&task->t_list, &cmd->t_task_list);
3882 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3883 }
3884
3885 return task_count;
3886 }
3887
3888 static int
3889 transport_allocate_control_task(struct se_cmd *cmd)
3890 {
3891 struct se_task *task;
3892 unsigned long flags;
3893
3894 /* Workaround for handling zero-length control CDBs */
3895 if ((cmd->se_cmd_flags & SCF_SCSI_CONTROL_SG_IO_CDB) &&
3896 !cmd->data_length)
3897 return 0;
3898
3899 task = transport_generic_get_task(cmd, cmd->data_direction);
3900 if (!task)
3901 return -ENOMEM;
3902
3903 task->task_sg = cmd->t_data_sg;
3904 task->task_size = cmd->data_length;
3905 task->task_sg_nents = cmd->t_data_nents;
3906
3907 spin_lock_irqsave(&cmd->t_state_lock, flags);
3908 list_add_tail(&task->t_list, &cmd->t_task_list);
3909 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3910
3911 /* Success! Return number of tasks allocated */
3912 return 1;
3913 }
3914
3915 /*
3916 * Allocate any required ressources to execute the command, and either place
3917 * it on the execution queue if possible. For writes we might not have the
3918 * payload yet, thus notify the fabric via a call to ->write_pending instead.
3919 */
3920 int transport_generic_new_cmd(struct se_cmd *cmd)
3921 {
3922 struct se_device *dev = cmd->se_dev;
3923 int task_cdbs, task_cdbs_bidi = 0;
3924 int set_counts = 1;
3925 int ret = 0;
3926
3927 /*
3928 * Determine is the TCM fabric module has already allocated physical
3929 * memory, and is directly calling transport_generic_map_mem_to_cmd()
3930 * beforehand.
3931 */
3932 if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) &&
3933 cmd->data_length) {
3934 ret = transport_generic_get_mem(cmd);
3935 if (ret < 0)
3936 goto out_fail;
3937 }
3938
3939 /*
3940 * For BIDI command set up the read tasks first.
3941 */
3942 if (cmd->t_bidi_data_sg &&
3943 dev->transport->transport_type != TRANSPORT_PLUGIN_PHBA_PDEV) {
3944 BUG_ON(!(cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB));
3945
3946 task_cdbs_bidi = transport_allocate_data_tasks(cmd,
3947 DMA_FROM_DEVICE, cmd->t_bidi_data_sg,
3948 cmd->t_bidi_data_nents);
3949 if (task_cdbs_bidi <= 0)
3950 goto out_fail;
3951
3952 atomic_inc(&cmd->t_fe_count);
3953 atomic_inc(&cmd->t_se_count);
3954 set_counts = 0;
3955 }
3956
3957 if (cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB) {
3958 task_cdbs = transport_allocate_data_tasks(cmd,
3959 cmd->data_direction, cmd->t_data_sg,
3960 cmd->t_data_nents);
3961 } else {
3962 task_cdbs = transport_allocate_control_task(cmd);
3963 }
3964
3965 if (task_cdbs < 0)
3966 goto out_fail;
3967 else if (!task_cdbs && (cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB)) {
3968 spin_lock_irq(&cmd->t_state_lock);
3969 cmd->t_state = TRANSPORT_COMPLETE;
3970 cmd->transport_state |= CMD_T_ACTIVE;
3971 spin_unlock_irq(&cmd->t_state_lock);
3972
3973 if (cmd->t_task_cdb[0] == REQUEST_SENSE) {
3974 u8 ua_asc = 0, ua_ascq = 0;
3975
3976 core_scsi3_ua_clear_for_request_sense(cmd,
3977 &ua_asc, &ua_ascq);
3978 }
3979
3980 INIT_WORK(&cmd->work, target_complete_ok_work);
3981 queue_work(target_completion_wq, &cmd->work);
3982 return 0;
3983 }
3984
3985 if (set_counts) {
3986 atomic_inc(&cmd->t_fe_count);
3987 atomic_inc(&cmd->t_se_count);
3988 }
3989
3990 cmd->t_task_list_num = (task_cdbs + task_cdbs_bidi);
3991 atomic_set(&cmd->t_task_cdbs_left, cmd->t_task_list_num);
3992 atomic_set(&cmd->t_task_cdbs_ex_left, cmd->t_task_list_num);
3993
3994 /*
3995 * For WRITEs, let the fabric know its buffer is ready..
3996 * This WRITE struct se_cmd (and all of its associated struct se_task's)
3997 * will be added to the struct se_device execution queue after its WRITE
3998 * data has arrived. (ie: It gets handled by the transport processing
3999 * thread a second time)
4000 */
4001 if (cmd->data_direction == DMA_TO_DEVICE) {
4002 transport_add_tasks_to_state_queue(cmd);
4003 return transport_generic_write_pending(cmd);
4004 }
4005 /*
4006 * Everything else but a WRITE, add the struct se_cmd's struct se_task's
4007 * to the execution queue.
4008 */
4009 transport_execute_tasks(cmd);
4010 return 0;
4011
4012 out_fail:
4013 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
4014 cmd->scsi_sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
4015 return -EINVAL;
4016 }
4017 EXPORT_SYMBOL(transport_generic_new_cmd);
4018
4019 /* transport_generic_process_write():
4020 *
4021 *
4022 */
4023 void transport_generic_process_write(struct se_cmd *cmd)
4024 {
4025 transport_execute_tasks(cmd);
4026 }
4027 EXPORT_SYMBOL(transport_generic_process_write);
4028
4029 static void transport_write_pending_qf(struct se_cmd *cmd)
4030 {
4031 int ret;
4032
4033 ret = cmd->se_tfo->write_pending(cmd);
4034 if (ret == -EAGAIN || ret == -ENOMEM) {
4035 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n",
4036 cmd);
4037 transport_handle_queue_full(cmd, cmd->se_dev);
4038 }
4039 }
4040
4041 static int transport_generic_write_pending(struct se_cmd *cmd)
4042 {
4043 unsigned long flags;
4044 int ret;
4045
4046 spin_lock_irqsave(&cmd->t_state_lock, flags);
4047 cmd->t_state = TRANSPORT_WRITE_PENDING;
4048 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4049
4050 /*
4051 * Clear the se_cmd for WRITE_PENDING status in order to set
4052 * CMD_T_ACTIVE so that transport_generic_handle_data can be called
4053 * from HW target mode interrupt code. This is safe to be called
4054 * with transport_off=1 before the cmd->se_tfo->write_pending
4055 * because the se_cmd->se_lun pointer is not being cleared.
4056 */
4057 transport_cmd_check_stop(cmd, 1, 0);
4058
4059 /*
4060 * Call the fabric write_pending function here to let the
4061 * frontend know that WRITE buffers are ready.
4062 */
4063 ret = cmd->se_tfo->write_pending(cmd);
4064 if (ret == -EAGAIN || ret == -ENOMEM)
4065 goto queue_full;
4066 else if (ret < 0)
4067 return ret;
4068
4069 return 1;
4070
4071 queue_full:
4072 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", cmd);
4073 cmd->t_state = TRANSPORT_COMPLETE_QF_WP;
4074 transport_handle_queue_full(cmd, cmd->se_dev);
4075 return 0;
4076 }
4077
4078 void transport_generic_free_cmd(struct se_cmd *cmd, int wait_for_tasks)
4079 {
4080 if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD)) {
4081 if (wait_for_tasks && (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
4082 transport_wait_for_tasks(cmd);
4083
4084 transport_release_cmd(cmd);
4085 } else {
4086 if (wait_for_tasks)
4087 transport_wait_for_tasks(cmd);
4088
4089 core_dec_lacl_count(cmd->se_sess->se_node_acl, cmd);
4090
4091 if (cmd->se_lun)
4092 transport_lun_remove_cmd(cmd);
4093
4094 transport_free_dev_tasks(cmd);
4095
4096 transport_put_cmd(cmd);
4097 }
4098 }
4099 EXPORT_SYMBOL(transport_generic_free_cmd);
4100
4101 /* target_get_sess_cmd - Add command to active ->sess_cmd_list
4102 * @se_sess: session to reference
4103 * @se_cmd: command descriptor to add
4104 * @ack_kref: Signal that fabric will perform an ack target_put_sess_cmd()
4105 */
4106 void target_get_sess_cmd(struct se_session *se_sess, struct se_cmd *se_cmd,
4107 bool ack_kref)
4108 {
4109 unsigned long flags;
4110
4111 kref_init(&se_cmd->cmd_kref);
4112 /*
4113 * Add a second kref if the fabric caller is expecting to handle
4114 * fabric acknowledgement that requires two target_put_sess_cmd()
4115 * invocations before se_cmd descriptor release.
4116 */
4117 if (ack_kref == true) {
4118 kref_get(&se_cmd->cmd_kref);
4119 se_cmd->se_cmd_flags |= SCF_ACK_KREF;
4120 }
4121
4122 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
4123 list_add_tail(&se_cmd->se_cmd_list, &se_sess->sess_cmd_list);
4124 se_cmd->check_release = 1;
4125 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
4126 }
4127 EXPORT_SYMBOL(target_get_sess_cmd);
4128
4129 static void target_release_cmd_kref(struct kref *kref)
4130 {
4131 struct se_cmd *se_cmd = container_of(kref, struct se_cmd, cmd_kref);
4132 struct se_session *se_sess = se_cmd->se_sess;
4133 unsigned long flags;
4134
4135 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
4136 if (list_empty(&se_cmd->se_cmd_list)) {
4137 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
4138 se_cmd->se_tfo->release_cmd(se_cmd);
4139 return;
4140 }
4141 if (se_sess->sess_tearing_down && se_cmd->cmd_wait_set) {
4142 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
4143 complete(&se_cmd->cmd_wait_comp);
4144 return;
4145 }
4146 list_del(&se_cmd->se_cmd_list);
4147 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
4148
4149 se_cmd->se_tfo->release_cmd(se_cmd);
4150 }
4151
4152 /* target_put_sess_cmd - Check for active I/O shutdown via kref_put
4153 * @se_sess: session to reference
4154 * @se_cmd: command descriptor to drop
4155 */
4156 int target_put_sess_cmd(struct se_session *se_sess, struct se_cmd *se_cmd)
4157 {
4158 return kref_put(&se_cmd->cmd_kref, target_release_cmd_kref);
4159 }
4160 EXPORT_SYMBOL(target_put_sess_cmd);
4161
4162 /* target_splice_sess_cmd_list - Split active cmds into sess_wait_list
4163 * @se_sess: session to split
4164 */
4165 void target_splice_sess_cmd_list(struct se_session *se_sess)
4166 {
4167 struct se_cmd *se_cmd;
4168 unsigned long flags;
4169
4170 WARN_ON(!list_empty(&se_sess->sess_wait_list));
4171 INIT_LIST_HEAD(&se_sess->sess_wait_list);
4172
4173 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
4174 se_sess->sess_tearing_down = 1;
4175
4176 list_splice_init(&se_sess->sess_cmd_list, &se_sess->sess_wait_list);
4177
4178 list_for_each_entry(se_cmd, &se_sess->sess_wait_list, se_cmd_list)
4179 se_cmd->cmd_wait_set = 1;
4180
4181 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
4182 }
4183 EXPORT_SYMBOL(target_splice_sess_cmd_list);
4184
4185 /* target_wait_for_sess_cmds - Wait for outstanding descriptors
4186 * @se_sess: session to wait for active I/O
4187 * @wait_for_tasks: Make extra transport_wait_for_tasks call
4188 */
4189 void target_wait_for_sess_cmds(
4190 struct se_session *se_sess,
4191 int wait_for_tasks)
4192 {
4193 struct se_cmd *se_cmd, *tmp_cmd;
4194 bool rc = false;
4195
4196 list_for_each_entry_safe(se_cmd, tmp_cmd,
4197 &se_sess->sess_wait_list, se_cmd_list) {
4198 list_del(&se_cmd->se_cmd_list);
4199
4200 pr_debug("Waiting for se_cmd: %p t_state: %d, fabric state:"
4201 " %d\n", se_cmd, se_cmd->t_state,
4202 se_cmd->se_tfo->get_cmd_state(se_cmd));
4203
4204 if (wait_for_tasks) {
4205 pr_debug("Calling transport_wait_for_tasks se_cmd: %p t_state: %d,"
4206 " fabric state: %d\n", se_cmd, se_cmd->t_state,
4207 se_cmd->se_tfo->get_cmd_state(se_cmd));
4208
4209 rc = transport_wait_for_tasks(se_cmd);
4210
4211 pr_debug("After transport_wait_for_tasks se_cmd: %p t_state: %d,"
4212 " fabric state: %d\n", se_cmd, se_cmd->t_state,
4213 se_cmd->se_tfo->get_cmd_state(se_cmd));
4214 }
4215
4216 if (!rc) {
4217 wait_for_completion(&se_cmd->cmd_wait_comp);
4218 pr_debug("After cmd_wait_comp: se_cmd: %p t_state: %d"
4219 " fabric state: %d\n", se_cmd, se_cmd->t_state,
4220 se_cmd->se_tfo->get_cmd_state(se_cmd));
4221 }
4222
4223 se_cmd->se_tfo->release_cmd(se_cmd);
4224 }
4225 }
4226 EXPORT_SYMBOL(target_wait_for_sess_cmds);
4227
4228 /* transport_lun_wait_for_tasks():
4229 *
4230 * Called from ConfigFS context to stop the passed struct se_cmd to allow
4231 * an struct se_lun to be successfully shutdown.
4232 */
4233 static int transport_lun_wait_for_tasks(struct se_cmd *cmd, struct se_lun *lun)
4234 {
4235 unsigned long flags;
4236 int ret;
4237 /*
4238 * If the frontend has already requested this struct se_cmd to
4239 * be stopped, we can safely ignore this struct se_cmd.
4240 */
4241 spin_lock_irqsave(&cmd->t_state_lock, flags);
4242 if (cmd->transport_state & CMD_T_STOP) {
4243 cmd->transport_state &= ~CMD_T_LUN_STOP;
4244
4245 pr_debug("ConfigFS ITT[0x%08x] - CMD_T_STOP, skipping\n",
4246 cmd->se_tfo->get_task_tag(cmd));
4247 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4248 transport_cmd_check_stop(cmd, 1, 0);
4249 return -EPERM;
4250 }
4251 cmd->transport_state |= CMD_T_LUN_FE_STOP;
4252 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4253
4254 wake_up_interruptible(&cmd->se_dev->dev_queue_obj.thread_wq);
4255
4256 ret = transport_stop_tasks_for_cmd(cmd);
4257
4258 pr_debug("ConfigFS: cmd: %p t_tasks: %d stop tasks ret:"
4259 " %d\n", cmd, cmd->t_task_list_num, ret);
4260 if (!ret) {
4261 pr_debug("ConfigFS: ITT[0x%08x] - stopping cmd....\n",
4262 cmd->se_tfo->get_task_tag(cmd));
4263 wait_for_completion(&cmd->transport_lun_stop_comp);
4264 pr_debug("ConfigFS: ITT[0x%08x] - stopped cmd....\n",
4265 cmd->se_tfo->get_task_tag(cmd));
4266 }
4267 transport_remove_cmd_from_queue(cmd);
4268
4269 return 0;
4270 }
4271
4272 static void __transport_clear_lun_from_sessions(struct se_lun *lun)
4273 {
4274 struct se_cmd *cmd = NULL;
4275 unsigned long lun_flags, cmd_flags;
4276 /*
4277 * Do exception processing and return CHECK_CONDITION status to the
4278 * Initiator Port.
4279 */
4280 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4281 while (!list_empty(&lun->lun_cmd_list)) {
4282 cmd = list_first_entry(&lun->lun_cmd_list,
4283 struct se_cmd, se_lun_node);
4284 list_del_init(&cmd->se_lun_node);
4285
4286 /*
4287 * This will notify iscsi_target_transport.c:
4288 * transport_cmd_check_stop() that a LUN shutdown is in
4289 * progress for the iscsi_cmd_t.
4290 */
4291 spin_lock(&cmd->t_state_lock);
4292 pr_debug("SE_LUN[%d] - Setting cmd->transport"
4293 "_lun_stop for ITT: 0x%08x\n",
4294 cmd->se_lun->unpacked_lun,
4295 cmd->se_tfo->get_task_tag(cmd));
4296 cmd->transport_state |= CMD_T_LUN_STOP;
4297 spin_unlock(&cmd->t_state_lock);
4298
4299 spin_unlock_irqrestore(&lun->lun_cmd_lock, lun_flags);
4300
4301 if (!cmd->se_lun) {
4302 pr_err("ITT: 0x%08x, [i,t]_state: %u/%u\n",
4303 cmd->se_tfo->get_task_tag(cmd),
4304 cmd->se_tfo->get_cmd_state(cmd), cmd->t_state);
4305 BUG();
4306 }
4307 /*
4308 * If the Storage engine still owns the iscsi_cmd_t, determine
4309 * and/or stop its context.
4310 */
4311 pr_debug("SE_LUN[%d] - ITT: 0x%08x before transport"
4312 "_lun_wait_for_tasks()\n", cmd->se_lun->unpacked_lun,
4313 cmd->se_tfo->get_task_tag(cmd));
4314
4315 if (transport_lun_wait_for_tasks(cmd, cmd->se_lun) < 0) {
4316 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4317 continue;
4318 }
4319
4320 pr_debug("SE_LUN[%d] - ITT: 0x%08x after transport_lun"
4321 "_wait_for_tasks(): SUCCESS\n",
4322 cmd->se_lun->unpacked_lun,
4323 cmd->se_tfo->get_task_tag(cmd));
4324
4325 spin_lock_irqsave(&cmd->t_state_lock, cmd_flags);
4326 if (!(cmd->transport_state & CMD_T_DEV_ACTIVE)) {
4327 spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
4328 goto check_cond;
4329 }
4330 cmd->transport_state &= ~CMD_T_DEV_ACTIVE;
4331 transport_all_task_dev_remove_state(cmd);
4332 spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
4333
4334 transport_free_dev_tasks(cmd);
4335 /*
4336 * The Storage engine stopped this struct se_cmd before it was
4337 * send to the fabric frontend for delivery back to the
4338 * Initiator Node. Return this SCSI CDB back with an
4339 * CHECK_CONDITION status.
4340 */
4341 check_cond:
4342 transport_send_check_condition_and_sense(cmd,
4343 TCM_NON_EXISTENT_LUN, 0);
4344 /*
4345 * If the fabric frontend is waiting for this iscsi_cmd_t to
4346 * be released, notify the waiting thread now that LU has
4347 * finished accessing it.
4348 */
4349 spin_lock_irqsave(&cmd->t_state_lock, cmd_flags);
4350 if (cmd->transport_state & CMD_T_LUN_FE_STOP) {
4351 pr_debug("SE_LUN[%d] - Detected FE stop for"
4352 " struct se_cmd: %p ITT: 0x%08x\n",
4353 lun->unpacked_lun,
4354 cmd, cmd->se_tfo->get_task_tag(cmd));
4355
4356 spin_unlock_irqrestore(&cmd->t_state_lock,
4357 cmd_flags);
4358 transport_cmd_check_stop(cmd, 1, 0);
4359 complete(&cmd->transport_lun_fe_stop_comp);
4360 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4361 continue;
4362 }
4363 pr_debug("SE_LUN[%d] - ITT: 0x%08x finished processing\n",
4364 lun->unpacked_lun, cmd->se_tfo->get_task_tag(cmd));
4365
4366 spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
4367 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4368 }
4369 spin_unlock_irqrestore(&lun->lun_cmd_lock, lun_flags);
4370 }
4371
4372 static int transport_clear_lun_thread(void *p)
4373 {
4374 struct se_lun *lun = p;
4375
4376 __transport_clear_lun_from_sessions(lun);
4377 complete(&lun->lun_shutdown_comp);
4378
4379 return 0;
4380 }
4381
4382 int transport_clear_lun_from_sessions(struct se_lun *lun)
4383 {
4384 struct task_struct *kt;
4385
4386 kt = kthread_run(transport_clear_lun_thread, lun,
4387 "tcm_cl_%u", lun->unpacked_lun);
4388 if (IS_ERR(kt)) {
4389 pr_err("Unable to start clear_lun thread\n");
4390 return PTR_ERR(kt);
4391 }
4392 wait_for_completion(&lun->lun_shutdown_comp);
4393
4394 return 0;
4395 }
4396
4397 /**
4398 * transport_wait_for_tasks - wait for completion to occur
4399 * @cmd: command to wait
4400 *
4401 * Called from frontend fabric context to wait for storage engine
4402 * to pause and/or release frontend generated struct se_cmd.
4403 */
4404 bool transport_wait_for_tasks(struct se_cmd *cmd)
4405 {
4406 unsigned long flags;
4407
4408 spin_lock_irqsave(&cmd->t_state_lock, flags);
4409 if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD) &&
4410 !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) {
4411 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4412 return false;
4413 }
4414 /*
4415 * Only perform a possible wait_for_tasks if SCF_SUPPORTED_SAM_OPCODE
4416 * has been set in transport_set_supported_SAM_opcode().
4417 */
4418 if (!(cmd->se_cmd_flags & SCF_SUPPORTED_SAM_OPCODE) &&
4419 !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) {
4420 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4421 return false;
4422 }
4423 /*
4424 * If we are already stopped due to an external event (ie: LUN shutdown)
4425 * sleep until the connection can have the passed struct se_cmd back.
4426 * The cmd->transport_lun_stopped_sem will be upped by
4427 * transport_clear_lun_from_sessions() once the ConfigFS context caller
4428 * has completed its operation on the struct se_cmd.
4429 */
4430 if (cmd->transport_state & CMD_T_LUN_STOP) {
4431 pr_debug("wait_for_tasks: Stopping"
4432 " wait_for_completion(&cmd->t_tasktransport_lun_fe"
4433 "_stop_comp); for ITT: 0x%08x\n",
4434 cmd->se_tfo->get_task_tag(cmd));
4435 /*
4436 * There is a special case for WRITES where a FE exception +
4437 * LUN shutdown means ConfigFS context is still sleeping on
4438 * transport_lun_stop_comp in transport_lun_wait_for_tasks().
4439 * We go ahead and up transport_lun_stop_comp just to be sure
4440 * here.
4441 */
4442 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4443 complete(&cmd->transport_lun_stop_comp);
4444 wait_for_completion(&cmd->transport_lun_fe_stop_comp);
4445 spin_lock_irqsave(&cmd->t_state_lock, flags);
4446
4447 transport_all_task_dev_remove_state(cmd);
4448 /*
4449 * At this point, the frontend who was the originator of this
4450 * struct se_cmd, now owns the structure and can be released through
4451 * normal means below.
4452 */
4453 pr_debug("wait_for_tasks: Stopped"
4454 " wait_for_completion(&cmd->t_tasktransport_lun_fe_"
4455 "stop_comp); for ITT: 0x%08x\n",
4456 cmd->se_tfo->get_task_tag(cmd));
4457
4458 cmd->transport_state &= ~CMD_T_LUN_STOP;
4459 }
4460
4461 if (!(cmd->transport_state & CMD_T_ACTIVE)) {
4462 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4463 return false;
4464 }
4465
4466 cmd->transport_state |= CMD_T_STOP;
4467
4468 pr_debug("wait_for_tasks: Stopping %p ITT: 0x%08x"
4469 " i_state: %d, t_state: %d, CMD_T_STOP\n",
4470 cmd, cmd->se_tfo->get_task_tag(cmd),
4471 cmd->se_tfo->get_cmd_state(cmd), cmd->t_state);
4472
4473 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4474
4475 wake_up_interruptible(&cmd->se_dev->dev_queue_obj.thread_wq);
4476
4477 wait_for_completion(&cmd->t_transport_stop_comp);
4478
4479 spin_lock_irqsave(&cmd->t_state_lock, flags);
4480 cmd->transport_state &= ~(CMD_T_ACTIVE | CMD_T_STOP);
4481
4482 pr_debug("wait_for_tasks: Stopped wait_for_compltion("
4483 "&cmd->t_transport_stop_comp) for ITT: 0x%08x\n",
4484 cmd->se_tfo->get_task_tag(cmd));
4485
4486 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4487
4488 return true;
4489 }
4490 EXPORT_SYMBOL(transport_wait_for_tasks);
4491
4492 static int transport_get_sense_codes(
4493 struct se_cmd *cmd,
4494 u8 *asc,
4495 u8 *ascq)
4496 {
4497 *asc = cmd->scsi_asc;
4498 *ascq = cmd->scsi_ascq;
4499
4500 return 0;
4501 }
4502
4503 static int transport_set_sense_codes(
4504 struct se_cmd *cmd,
4505 u8 asc,
4506 u8 ascq)
4507 {
4508 cmd->scsi_asc = asc;
4509 cmd->scsi_ascq = ascq;
4510
4511 return 0;
4512 }
4513
4514 int transport_send_check_condition_and_sense(
4515 struct se_cmd *cmd,
4516 u8 reason,
4517 int from_transport)
4518 {
4519 unsigned char *buffer = cmd->sense_buffer;
4520 unsigned long flags;
4521 int offset;
4522 u8 asc = 0, ascq = 0;
4523
4524 spin_lock_irqsave(&cmd->t_state_lock, flags);
4525 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
4526 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4527 return 0;
4528 }
4529 cmd->se_cmd_flags |= SCF_SENT_CHECK_CONDITION;
4530 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4531
4532 if (!reason && from_transport)
4533 goto after_reason;
4534
4535 if (!from_transport)
4536 cmd->se_cmd_flags |= SCF_EMULATED_TASK_SENSE;
4537 /*
4538 * Data Segment and SenseLength of the fabric response PDU.
4539 *
4540 * TRANSPORT_SENSE_BUFFER is now set to SCSI_SENSE_BUFFERSIZE
4541 * from include/scsi/scsi_cmnd.h
4542 */
4543 offset = cmd->se_tfo->set_fabric_sense_len(cmd,
4544 TRANSPORT_SENSE_BUFFER);
4545 /*
4546 * Actual SENSE DATA, see SPC-3 7.23.2 SPC_SENSE_KEY_OFFSET uses
4547 * SENSE KEY values from include/scsi/scsi.h
4548 */
4549 switch (reason) {
4550 case TCM_NON_EXISTENT_LUN:
4551 /* CURRENT ERROR */
4552 buffer[offset] = 0x70;
4553 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4554 /* ILLEGAL REQUEST */
4555 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4556 /* LOGICAL UNIT NOT SUPPORTED */
4557 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x25;
4558 break;
4559 case TCM_UNSUPPORTED_SCSI_OPCODE:
4560 case TCM_SECTOR_COUNT_TOO_MANY:
4561 /* CURRENT ERROR */
4562 buffer[offset] = 0x70;
4563 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4564 /* ILLEGAL REQUEST */
4565 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4566 /* INVALID COMMAND OPERATION CODE */
4567 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x20;
4568 break;
4569 case TCM_UNKNOWN_MODE_PAGE:
4570 /* CURRENT ERROR */
4571 buffer[offset] = 0x70;
4572 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4573 /* ILLEGAL REQUEST */
4574 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4575 /* INVALID FIELD IN CDB */
4576 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x24;
4577 break;
4578 case TCM_CHECK_CONDITION_ABORT_CMD:
4579 /* CURRENT ERROR */
4580 buffer[offset] = 0x70;
4581 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4582 /* ABORTED COMMAND */
4583 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4584 /* BUS DEVICE RESET FUNCTION OCCURRED */
4585 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x29;
4586 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x03;
4587 break;
4588 case TCM_INCORRECT_AMOUNT_OF_DATA:
4589 /* CURRENT ERROR */
4590 buffer[offset] = 0x70;
4591 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4592 /* ABORTED COMMAND */
4593 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4594 /* WRITE ERROR */
4595 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x0c;
4596 /* NOT ENOUGH UNSOLICITED DATA */
4597 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x0d;
4598 break;
4599 case TCM_INVALID_CDB_FIELD:
4600 /* CURRENT ERROR */
4601 buffer[offset] = 0x70;
4602 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4603 /* ILLEGAL REQUEST */
4604 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4605 /* INVALID FIELD IN CDB */
4606 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x24;
4607 break;
4608 case TCM_INVALID_PARAMETER_LIST:
4609 /* CURRENT ERROR */
4610 buffer[offset] = 0x70;
4611 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4612 /* ILLEGAL REQUEST */
4613 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4614 /* INVALID FIELD IN PARAMETER LIST */
4615 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x26;
4616 break;
4617 case TCM_UNEXPECTED_UNSOLICITED_DATA:
4618 /* CURRENT ERROR */
4619 buffer[offset] = 0x70;
4620 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4621 /* ABORTED COMMAND */
4622 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4623 /* WRITE ERROR */
4624 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x0c;
4625 /* UNEXPECTED_UNSOLICITED_DATA */
4626 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x0c;
4627 break;
4628 case TCM_SERVICE_CRC_ERROR:
4629 /* CURRENT ERROR */
4630 buffer[offset] = 0x70;
4631 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4632 /* ABORTED COMMAND */
4633 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4634 /* PROTOCOL SERVICE CRC ERROR */
4635 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x47;
4636 /* N/A */
4637 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x05;
4638 break;
4639 case TCM_SNACK_REJECTED:
4640 /* CURRENT ERROR */
4641 buffer[offset] = 0x70;
4642 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4643 /* ABORTED COMMAND */
4644 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4645 /* READ ERROR */
4646 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x11;
4647 /* FAILED RETRANSMISSION REQUEST */
4648 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x13;
4649 break;
4650 case TCM_WRITE_PROTECTED:
4651 /* CURRENT ERROR */
4652 buffer[offset] = 0x70;
4653 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4654 /* DATA PROTECT */
4655 buffer[offset+SPC_SENSE_KEY_OFFSET] = DATA_PROTECT;
4656 /* WRITE PROTECTED */
4657 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x27;
4658 break;
4659 case TCM_CHECK_CONDITION_UNIT_ATTENTION:
4660 /* CURRENT ERROR */
4661 buffer[offset] = 0x70;
4662 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4663 /* UNIT ATTENTION */
4664 buffer[offset+SPC_SENSE_KEY_OFFSET] = UNIT_ATTENTION;
4665 core_scsi3_ua_for_check_condition(cmd, &asc, &ascq);
4666 buffer[offset+SPC_ASC_KEY_OFFSET] = asc;
4667 buffer[offset+SPC_ASCQ_KEY_OFFSET] = ascq;
4668 break;
4669 case TCM_CHECK_CONDITION_NOT_READY:
4670 /* CURRENT ERROR */
4671 buffer[offset] = 0x70;
4672 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4673 /* Not Ready */
4674 buffer[offset+SPC_SENSE_KEY_OFFSET] = NOT_READY;
4675 transport_get_sense_codes(cmd, &asc, &ascq);
4676 buffer[offset+SPC_ASC_KEY_OFFSET] = asc;
4677 buffer[offset+SPC_ASCQ_KEY_OFFSET] = ascq;
4678 break;
4679 case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
4680 default:
4681 /* CURRENT ERROR */
4682 buffer[offset] = 0x70;
4683 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4684 /* ILLEGAL REQUEST */
4685 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4686 /* LOGICAL UNIT COMMUNICATION FAILURE */
4687 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x80;
4688 break;
4689 }
4690 /*
4691 * This code uses linux/include/scsi/scsi.h SAM status codes!
4692 */
4693 cmd->scsi_status = SAM_STAT_CHECK_CONDITION;
4694 /*
4695 * Automatically padded, this value is encoded in the fabric's
4696 * data_length response PDU containing the SCSI defined sense data.
4697 */
4698 cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER + offset;
4699
4700 after_reason:
4701 return cmd->se_tfo->queue_status(cmd);
4702 }
4703 EXPORT_SYMBOL(transport_send_check_condition_and_sense);
4704
4705 int transport_check_aborted_status(struct se_cmd *cmd, int send_status)
4706 {
4707 int ret = 0;
4708
4709 if (cmd->transport_state & CMD_T_ABORTED) {
4710 if (!send_status ||
4711 (cmd->se_cmd_flags & SCF_SENT_DELAYED_TAS))
4712 return 1;
4713 #if 0
4714 pr_debug("Sending delayed SAM_STAT_TASK_ABORTED"
4715 " status for CDB: 0x%02x ITT: 0x%08x\n",
4716 cmd->t_task_cdb[0],
4717 cmd->se_tfo->get_task_tag(cmd));
4718 #endif
4719 cmd->se_cmd_flags |= SCF_SENT_DELAYED_TAS;
4720 cmd->se_tfo->queue_status(cmd);
4721 ret = 1;
4722 }
4723 return ret;
4724 }
4725 EXPORT_SYMBOL(transport_check_aborted_status);
4726
4727 void transport_send_task_abort(struct se_cmd *cmd)
4728 {
4729 unsigned long flags;
4730
4731 spin_lock_irqsave(&cmd->t_state_lock, flags);
4732 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
4733 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4734 return;
4735 }
4736 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4737
4738 /*
4739 * If there are still expected incoming fabric WRITEs, we wait
4740 * until until they have completed before sending a TASK_ABORTED
4741 * response. This response with TASK_ABORTED status will be
4742 * queued back to fabric module by transport_check_aborted_status().
4743 */
4744 if (cmd->data_direction == DMA_TO_DEVICE) {
4745 if (cmd->se_tfo->write_pending_status(cmd) != 0) {
4746 cmd->transport_state |= CMD_T_ABORTED;
4747 smp_mb__after_atomic_inc();
4748 }
4749 }
4750 cmd->scsi_status = SAM_STAT_TASK_ABORTED;
4751 #if 0
4752 pr_debug("Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x,"
4753 " ITT: 0x%08x\n", cmd->t_task_cdb[0],
4754 cmd->se_tfo->get_task_tag(cmd));
4755 #endif
4756 cmd->se_tfo->queue_status(cmd);
4757 }
4758
4759 static int transport_generic_do_tmr(struct se_cmd *cmd)
4760 {
4761 struct se_device *dev = cmd->se_dev;
4762 struct se_tmr_req *tmr = cmd->se_tmr_req;
4763 int ret;
4764
4765 switch (tmr->function) {
4766 case TMR_ABORT_TASK:
4767 core_tmr_abort_task(dev, tmr, cmd->se_sess);
4768 break;
4769 case TMR_ABORT_TASK_SET:
4770 case TMR_CLEAR_ACA:
4771 case TMR_CLEAR_TASK_SET:
4772 tmr->response = TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED;
4773 break;
4774 case TMR_LUN_RESET:
4775 ret = core_tmr_lun_reset(dev, tmr, NULL, NULL);
4776 tmr->response = (!ret) ? TMR_FUNCTION_COMPLETE :
4777 TMR_FUNCTION_REJECTED;
4778 break;
4779 case TMR_TARGET_WARM_RESET:
4780 tmr->response = TMR_FUNCTION_REJECTED;
4781 break;
4782 case TMR_TARGET_COLD_RESET:
4783 tmr->response = TMR_FUNCTION_REJECTED;
4784 break;
4785 default:
4786 pr_err("Uknown TMR function: 0x%02x.\n",
4787 tmr->function);
4788 tmr->response = TMR_FUNCTION_REJECTED;
4789 break;
4790 }
4791
4792 cmd->t_state = TRANSPORT_ISTATE_PROCESSING;
4793 cmd->se_tfo->queue_tm_rsp(cmd);
4794
4795 transport_cmd_check_stop_to_fabric(cmd);
4796 return 0;
4797 }
4798
4799 /* transport_processing_thread():
4800 *
4801 *
4802 */
4803 static int transport_processing_thread(void *param)
4804 {
4805 int ret;
4806 struct se_cmd *cmd;
4807 struct se_device *dev = param;
4808
4809 while (!kthread_should_stop()) {
4810 ret = wait_event_interruptible(dev->dev_queue_obj.thread_wq,
4811 atomic_read(&dev->dev_queue_obj.queue_cnt) ||
4812 kthread_should_stop());
4813 if (ret < 0)
4814 goto out;
4815
4816 get_cmd:
4817 cmd = transport_get_cmd_from_queue(&dev->dev_queue_obj);
4818 if (!cmd)
4819 continue;
4820
4821 switch (cmd->t_state) {
4822 case TRANSPORT_NEW_CMD:
4823 BUG();
4824 break;
4825 case TRANSPORT_NEW_CMD_MAP:
4826 if (!cmd->se_tfo->new_cmd_map) {
4827 pr_err("cmd->se_tfo->new_cmd_map is"
4828 " NULL for TRANSPORT_NEW_CMD_MAP\n");
4829 BUG();
4830 }
4831 ret = cmd->se_tfo->new_cmd_map(cmd);
4832 if (ret < 0) {
4833 transport_generic_request_failure(cmd);
4834 break;
4835 }
4836 ret = transport_generic_new_cmd(cmd);
4837 if (ret < 0) {
4838 transport_generic_request_failure(cmd);
4839 break;
4840 }
4841 break;
4842 case TRANSPORT_PROCESS_WRITE:
4843 transport_generic_process_write(cmd);
4844 break;
4845 case TRANSPORT_PROCESS_TMR:
4846 transport_generic_do_tmr(cmd);
4847 break;
4848 case TRANSPORT_COMPLETE_QF_WP:
4849 transport_write_pending_qf(cmd);
4850 break;
4851 case TRANSPORT_COMPLETE_QF_OK:
4852 transport_complete_qf(cmd);
4853 break;
4854 default:
4855 pr_err("Unknown t_state: %d for ITT: 0x%08x "
4856 "i_state: %d on SE LUN: %u\n",
4857 cmd->t_state,
4858 cmd->se_tfo->get_task_tag(cmd),
4859 cmd->se_tfo->get_cmd_state(cmd),
4860 cmd->se_lun->unpacked_lun);
4861 BUG();
4862 }
4863
4864 goto get_cmd;
4865 }
4866
4867 out:
4868 WARN_ON(!list_empty(&dev->state_task_list));
4869 WARN_ON(!list_empty(&dev->dev_queue_obj.qobj_list));
4870 dev->process_thread = NULL;
4871 return 0;
4872 }