target: Obtain se_node_acl->acl_kref during get_initiator_node_acl
[GitHub/exynos8895/android_kernel_samsung_universal8895.git] / drivers / target / target_core_transport.c
1 /*******************************************************************************
2 * Filename: target_core_transport.c
3 *
4 * This file contains the Generic Target Engine Core.
5 *
6 * (c) Copyright 2002-2013 Datera, Inc.
7 *
8 * Nicholas A. Bellinger <nab@kernel.org>
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2 of the License, or
13 * (at your option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
23 *
24 ******************************************************************************/
25
26 #include <linux/net.h>
27 #include <linux/delay.h>
28 #include <linux/string.h>
29 #include <linux/timer.h>
30 #include <linux/slab.h>
31 #include <linux/spinlock.h>
32 #include <linux/kthread.h>
33 #include <linux/in.h>
34 #include <linux/cdrom.h>
35 #include <linux/module.h>
36 #include <linux/ratelimit.h>
37 #include <linux/vmalloc.h>
38 #include <asm/unaligned.h>
39 #include <net/sock.h>
40 #include <net/tcp.h>
41 #include <scsi/scsi_proto.h>
42 #include <scsi/scsi_common.h>
43
44 #include <target/target_core_base.h>
45 #include <target/target_core_backend.h>
46 #include <target/target_core_fabric.h>
47
48 #include "target_core_internal.h"
49 #include "target_core_alua.h"
50 #include "target_core_pr.h"
51 #include "target_core_ua.h"
52
53 #define CREATE_TRACE_POINTS
54 #include <trace/events/target.h>
55
56 static struct workqueue_struct *target_completion_wq;
57 static struct kmem_cache *se_sess_cache;
58 struct kmem_cache *se_ua_cache;
59 struct kmem_cache *t10_pr_reg_cache;
60 struct kmem_cache *t10_alua_lu_gp_cache;
61 struct kmem_cache *t10_alua_lu_gp_mem_cache;
62 struct kmem_cache *t10_alua_tg_pt_gp_cache;
63 struct kmem_cache *t10_alua_lba_map_cache;
64 struct kmem_cache *t10_alua_lba_map_mem_cache;
65
66 static void transport_complete_task_attr(struct se_cmd *cmd);
67 static void transport_handle_queue_full(struct se_cmd *cmd,
68 struct se_device *dev);
69 static int transport_put_cmd(struct se_cmd *cmd);
70 static void target_complete_ok_work(struct work_struct *work);
71
72 int init_se_kmem_caches(void)
73 {
74 se_sess_cache = kmem_cache_create("se_sess_cache",
75 sizeof(struct se_session), __alignof__(struct se_session),
76 0, NULL);
77 if (!se_sess_cache) {
78 pr_err("kmem_cache_create() for struct se_session"
79 " failed\n");
80 goto out;
81 }
82 se_ua_cache = kmem_cache_create("se_ua_cache",
83 sizeof(struct se_ua), __alignof__(struct se_ua),
84 0, NULL);
85 if (!se_ua_cache) {
86 pr_err("kmem_cache_create() for struct se_ua failed\n");
87 goto out_free_sess_cache;
88 }
89 t10_pr_reg_cache = kmem_cache_create("t10_pr_reg_cache",
90 sizeof(struct t10_pr_registration),
91 __alignof__(struct t10_pr_registration), 0, NULL);
92 if (!t10_pr_reg_cache) {
93 pr_err("kmem_cache_create() for struct t10_pr_registration"
94 " failed\n");
95 goto out_free_ua_cache;
96 }
97 t10_alua_lu_gp_cache = kmem_cache_create("t10_alua_lu_gp_cache",
98 sizeof(struct t10_alua_lu_gp), __alignof__(struct t10_alua_lu_gp),
99 0, NULL);
100 if (!t10_alua_lu_gp_cache) {
101 pr_err("kmem_cache_create() for t10_alua_lu_gp_cache"
102 " failed\n");
103 goto out_free_pr_reg_cache;
104 }
105 t10_alua_lu_gp_mem_cache = kmem_cache_create("t10_alua_lu_gp_mem_cache",
106 sizeof(struct t10_alua_lu_gp_member),
107 __alignof__(struct t10_alua_lu_gp_member), 0, NULL);
108 if (!t10_alua_lu_gp_mem_cache) {
109 pr_err("kmem_cache_create() for t10_alua_lu_gp_mem_"
110 "cache failed\n");
111 goto out_free_lu_gp_cache;
112 }
113 t10_alua_tg_pt_gp_cache = kmem_cache_create("t10_alua_tg_pt_gp_cache",
114 sizeof(struct t10_alua_tg_pt_gp),
115 __alignof__(struct t10_alua_tg_pt_gp), 0, NULL);
116 if (!t10_alua_tg_pt_gp_cache) {
117 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
118 "cache failed\n");
119 goto out_free_lu_gp_mem_cache;
120 }
121 t10_alua_lba_map_cache = kmem_cache_create(
122 "t10_alua_lba_map_cache",
123 sizeof(struct t10_alua_lba_map),
124 __alignof__(struct t10_alua_lba_map), 0, NULL);
125 if (!t10_alua_lba_map_cache) {
126 pr_err("kmem_cache_create() for t10_alua_lba_map_"
127 "cache failed\n");
128 goto out_free_tg_pt_gp_cache;
129 }
130 t10_alua_lba_map_mem_cache = kmem_cache_create(
131 "t10_alua_lba_map_mem_cache",
132 sizeof(struct t10_alua_lba_map_member),
133 __alignof__(struct t10_alua_lba_map_member), 0, NULL);
134 if (!t10_alua_lba_map_mem_cache) {
135 pr_err("kmem_cache_create() for t10_alua_lba_map_mem_"
136 "cache failed\n");
137 goto out_free_lba_map_cache;
138 }
139
140 target_completion_wq = alloc_workqueue("target_completion",
141 WQ_MEM_RECLAIM, 0);
142 if (!target_completion_wq)
143 goto out_free_lba_map_mem_cache;
144
145 return 0;
146
147 out_free_lba_map_mem_cache:
148 kmem_cache_destroy(t10_alua_lba_map_mem_cache);
149 out_free_lba_map_cache:
150 kmem_cache_destroy(t10_alua_lba_map_cache);
151 out_free_tg_pt_gp_cache:
152 kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
153 out_free_lu_gp_mem_cache:
154 kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
155 out_free_lu_gp_cache:
156 kmem_cache_destroy(t10_alua_lu_gp_cache);
157 out_free_pr_reg_cache:
158 kmem_cache_destroy(t10_pr_reg_cache);
159 out_free_ua_cache:
160 kmem_cache_destroy(se_ua_cache);
161 out_free_sess_cache:
162 kmem_cache_destroy(se_sess_cache);
163 out:
164 return -ENOMEM;
165 }
166
167 void release_se_kmem_caches(void)
168 {
169 destroy_workqueue(target_completion_wq);
170 kmem_cache_destroy(se_sess_cache);
171 kmem_cache_destroy(se_ua_cache);
172 kmem_cache_destroy(t10_pr_reg_cache);
173 kmem_cache_destroy(t10_alua_lu_gp_cache);
174 kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
175 kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
176 kmem_cache_destroy(t10_alua_lba_map_cache);
177 kmem_cache_destroy(t10_alua_lba_map_mem_cache);
178 }
179
180 /* This code ensures unique mib indexes are handed out. */
181 static DEFINE_SPINLOCK(scsi_mib_index_lock);
182 static u32 scsi_mib_index[SCSI_INDEX_TYPE_MAX];
183
184 /*
185 * Allocate a new row index for the entry type specified
186 */
187 u32 scsi_get_new_index(scsi_index_t type)
188 {
189 u32 new_index;
190
191 BUG_ON((type < 0) || (type >= SCSI_INDEX_TYPE_MAX));
192
193 spin_lock(&scsi_mib_index_lock);
194 new_index = ++scsi_mib_index[type];
195 spin_unlock(&scsi_mib_index_lock);
196
197 return new_index;
198 }
199
200 void transport_subsystem_check_init(void)
201 {
202 int ret;
203 static int sub_api_initialized;
204
205 if (sub_api_initialized)
206 return;
207
208 ret = request_module("target_core_iblock");
209 if (ret != 0)
210 pr_err("Unable to load target_core_iblock\n");
211
212 ret = request_module("target_core_file");
213 if (ret != 0)
214 pr_err("Unable to load target_core_file\n");
215
216 ret = request_module("target_core_pscsi");
217 if (ret != 0)
218 pr_err("Unable to load target_core_pscsi\n");
219
220 ret = request_module("target_core_user");
221 if (ret != 0)
222 pr_err("Unable to load target_core_user\n");
223
224 sub_api_initialized = 1;
225 }
226
227 struct se_session *transport_init_session(enum target_prot_op sup_prot_ops)
228 {
229 struct se_session *se_sess;
230
231 se_sess = kmem_cache_zalloc(se_sess_cache, GFP_KERNEL);
232 if (!se_sess) {
233 pr_err("Unable to allocate struct se_session from"
234 " se_sess_cache\n");
235 return ERR_PTR(-ENOMEM);
236 }
237 INIT_LIST_HEAD(&se_sess->sess_list);
238 INIT_LIST_HEAD(&se_sess->sess_acl_list);
239 INIT_LIST_HEAD(&se_sess->sess_cmd_list);
240 INIT_LIST_HEAD(&se_sess->sess_wait_list);
241 spin_lock_init(&se_sess->sess_cmd_lock);
242 kref_init(&se_sess->sess_kref);
243 se_sess->sup_prot_ops = sup_prot_ops;
244
245 return se_sess;
246 }
247 EXPORT_SYMBOL(transport_init_session);
248
249 int transport_alloc_session_tags(struct se_session *se_sess,
250 unsigned int tag_num, unsigned int tag_size)
251 {
252 int rc;
253
254 se_sess->sess_cmd_map = kzalloc(tag_num * tag_size,
255 GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
256 if (!se_sess->sess_cmd_map) {
257 se_sess->sess_cmd_map = vzalloc(tag_num * tag_size);
258 if (!se_sess->sess_cmd_map) {
259 pr_err("Unable to allocate se_sess->sess_cmd_map\n");
260 return -ENOMEM;
261 }
262 }
263
264 rc = percpu_ida_init(&se_sess->sess_tag_pool, tag_num);
265 if (rc < 0) {
266 pr_err("Unable to init se_sess->sess_tag_pool,"
267 " tag_num: %u\n", tag_num);
268 kvfree(se_sess->sess_cmd_map);
269 se_sess->sess_cmd_map = NULL;
270 return -ENOMEM;
271 }
272
273 return 0;
274 }
275 EXPORT_SYMBOL(transport_alloc_session_tags);
276
277 struct se_session *transport_init_session_tags(unsigned int tag_num,
278 unsigned int tag_size,
279 enum target_prot_op sup_prot_ops)
280 {
281 struct se_session *se_sess;
282 int rc;
283
284 se_sess = transport_init_session(sup_prot_ops);
285 if (IS_ERR(se_sess))
286 return se_sess;
287
288 rc = transport_alloc_session_tags(se_sess, tag_num, tag_size);
289 if (rc < 0) {
290 transport_free_session(se_sess);
291 return ERR_PTR(-ENOMEM);
292 }
293
294 return se_sess;
295 }
296 EXPORT_SYMBOL(transport_init_session_tags);
297
298 /*
299 * Called with spin_lock_irqsave(&struct se_portal_group->session_lock called.
300 */
301 void __transport_register_session(
302 struct se_portal_group *se_tpg,
303 struct se_node_acl *se_nacl,
304 struct se_session *se_sess,
305 void *fabric_sess_ptr)
306 {
307 const struct target_core_fabric_ops *tfo = se_tpg->se_tpg_tfo;
308 unsigned char buf[PR_REG_ISID_LEN];
309
310 se_sess->se_tpg = se_tpg;
311 se_sess->fabric_sess_ptr = fabric_sess_ptr;
312 /*
313 * Used by struct se_node_acl's under ConfigFS to locate active se_session-t
314 *
315 * Only set for struct se_session's that will actually be moving I/O.
316 * eg: *NOT* discovery sessions.
317 */
318 if (se_nacl) {
319 /*
320 *
321 * Determine if fabric allows for T10-PI feature bits exposed to
322 * initiators for device backends with !dev->dev_attrib.pi_prot_type.
323 *
324 * If so, then always save prot_type on a per se_node_acl node
325 * basis and re-instate the previous sess_prot_type to avoid
326 * disabling PI from below any previously initiator side
327 * registered LUNs.
328 */
329 if (se_nacl->saved_prot_type)
330 se_sess->sess_prot_type = se_nacl->saved_prot_type;
331 else if (tfo->tpg_check_prot_fabric_only)
332 se_sess->sess_prot_type = se_nacl->saved_prot_type =
333 tfo->tpg_check_prot_fabric_only(se_tpg);
334 /*
335 * If the fabric module supports an ISID based TransportID,
336 * save this value in binary from the fabric I_T Nexus now.
337 */
338 if (se_tpg->se_tpg_tfo->sess_get_initiator_sid != NULL) {
339 memset(&buf[0], 0, PR_REG_ISID_LEN);
340 se_tpg->se_tpg_tfo->sess_get_initiator_sid(se_sess,
341 &buf[0], PR_REG_ISID_LEN);
342 se_sess->sess_bin_isid = get_unaligned_be64(&buf[0]);
343 }
344
345 spin_lock_irq(&se_nacl->nacl_sess_lock);
346 /*
347 * The se_nacl->nacl_sess pointer will be set to the
348 * last active I_T Nexus for each struct se_node_acl.
349 */
350 se_nacl->nacl_sess = se_sess;
351
352 list_add_tail(&se_sess->sess_acl_list,
353 &se_nacl->acl_sess_list);
354 spin_unlock_irq(&se_nacl->nacl_sess_lock);
355 }
356 list_add_tail(&se_sess->sess_list, &se_tpg->tpg_sess_list);
357
358 pr_debug("TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n",
359 se_tpg->se_tpg_tfo->get_fabric_name(), se_sess->fabric_sess_ptr);
360 }
361 EXPORT_SYMBOL(__transport_register_session);
362
363 void transport_register_session(
364 struct se_portal_group *se_tpg,
365 struct se_node_acl *se_nacl,
366 struct se_session *se_sess,
367 void *fabric_sess_ptr)
368 {
369 unsigned long flags;
370
371 spin_lock_irqsave(&se_tpg->session_lock, flags);
372 __transport_register_session(se_tpg, se_nacl, se_sess, fabric_sess_ptr);
373 spin_unlock_irqrestore(&se_tpg->session_lock, flags);
374 }
375 EXPORT_SYMBOL(transport_register_session);
376
377 static void target_release_session(struct kref *kref)
378 {
379 struct se_session *se_sess = container_of(kref,
380 struct se_session, sess_kref);
381 struct se_portal_group *se_tpg = se_sess->se_tpg;
382
383 se_tpg->se_tpg_tfo->close_session(se_sess);
384 }
385
386 void target_get_session(struct se_session *se_sess)
387 {
388 kref_get(&se_sess->sess_kref);
389 }
390 EXPORT_SYMBOL(target_get_session);
391
392 void target_put_session(struct se_session *se_sess)
393 {
394 kref_put(&se_sess->sess_kref, target_release_session);
395 }
396 EXPORT_SYMBOL(target_put_session);
397
398 ssize_t target_show_dynamic_sessions(struct se_portal_group *se_tpg, char *page)
399 {
400 struct se_session *se_sess;
401 ssize_t len = 0;
402
403 spin_lock_bh(&se_tpg->session_lock);
404 list_for_each_entry(se_sess, &se_tpg->tpg_sess_list, sess_list) {
405 if (!se_sess->se_node_acl)
406 continue;
407 if (!se_sess->se_node_acl->dynamic_node_acl)
408 continue;
409 if (strlen(se_sess->se_node_acl->initiatorname) + 1 + len > PAGE_SIZE)
410 break;
411
412 len += snprintf(page + len, PAGE_SIZE - len, "%s\n",
413 se_sess->se_node_acl->initiatorname);
414 len += 1; /* Include NULL terminator */
415 }
416 spin_unlock_bh(&se_tpg->session_lock);
417
418 return len;
419 }
420 EXPORT_SYMBOL(target_show_dynamic_sessions);
421
422 static void target_complete_nacl(struct kref *kref)
423 {
424 struct se_node_acl *nacl = container_of(kref,
425 struct se_node_acl, acl_kref);
426
427 complete(&nacl->acl_free_comp);
428 }
429
430 void target_put_nacl(struct se_node_acl *nacl)
431 {
432 kref_put(&nacl->acl_kref, target_complete_nacl);
433 }
434 EXPORT_SYMBOL(target_put_nacl);
435
436 void transport_deregister_session_configfs(struct se_session *se_sess)
437 {
438 struct se_node_acl *se_nacl;
439 unsigned long flags;
440 /*
441 * Used by struct se_node_acl's under ConfigFS to locate active struct se_session
442 */
443 se_nacl = se_sess->se_node_acl;
444 if (se_nacl) {
445 spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
446 if (se_nacl->acl_stop == 0)
447 list_del(&se_sess->sess_acl_list);
448 /*
449 * If the session list is empty, then clear the pointer.
450 * Otherwise, set the struct se_session pointer from the tail
451 * element of the per struct se_node_acl active session list.
452 */
453 if (list_empty(&se_nacl->acl_sess_list))
454 se_nacl->nacl_sess = NULL;
455 else {
456 se_nacl->nacl_sess = container_of(
457 se_nacl->acl_sess_list.prev,
458 struct se_session, sess_acl_list);
459 }
460 spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
461 }
462 }
463 EXPORT_SYMBOL(transport_deregister_session_configfs);
464
465 void transport_free_session(struct se_session *se_sess)
466 {
467 struct se_node_acl *se_nacl = se_sess->se_node_acl;
468 /*
469 * Drop the se_node_acl->nacl_kref obtained from within
470 * core_tpg_get_initiator_node_acl().
471 */
472 if (se_nacl) {
473 se_sess->se_node_acl = NULL;
474 target_put_nacl(se_nacl);
475 }
476 if (se_sess->sess_cmd_map) {
477 percpu_ida_destroy(&se_sess->sess_tag_pool);
478 kvfree(se_sess->sess_cmd_map);
479 }
480 kmem_cache_free(se_sess_cache, se_sess);
481 }
482 EXPORT_SYMBOL(transport_free_session);
483
484 void transport_deregister_session(struct se_session *se_sess)
485 {
486 struct se_portal_group *se_tpg = se_sess->se_tpg;
487 const struct target_core_fabric_ops *se_tfo;
488 struct se_node_acl *se_nacl;
489 unsigned long flags;
490 bool drop_nacl = false;
491
492 if (!se_tpg) {
493 transport_free_session(se_sess);
494 return;
495 }
496 se_tfo = se_tpg->se_tpg_tfo;
497
498 spin_lock_irqsave(&se_tpg->session_lock, flags);
499 list_del(&se_sess->sess_list);
500 se_sess->se_tpg = NULL;
501 se_sess->fabric_sess_ptr = NULL;
502 spin_unlock_irqrestore(&se_tpg->session_lock, flags);
503
504 /*
505 * Determine if we need to do extra work for this initiator node's
506 * struct se_node_acl if it had been previously dynamically generated.
507 */
508 se_nacl = se_sess->se_node_acl;
509
510 mutex_lock(&se_tpg->acl_node_mutex);
511 if (se_nacl && se_nacl->dynamic_node_acl) {
512 if (!se_tfo->tpg_check_demo_mode_cache(se_tpg)) {
513 list_del(&se_nacl->acl_list);
514 se_tpg->num_node_acls--;
515 drop_nacl = true;
516 }
517 }
518 mutex_unlock(&se_tpg->acl_node_mutex);
519
520 if (drop_nacl) {
521 core_tpg_wait_for_nacl_pr_ref(se_nacl);
522 core_free_device_list_for_node(se_nacl, se_tpg);
523 se_sess->se_node_acl = NULL;
524 kfree(se_nacl);
525 }
526 pr_debug("TARGET_CORE[%s]: Deregistered fabric_sess\n",
527 se_tpg->se_tpg_tfo->get_fabric_name());
528 /*
529 * If last kref is dropping now for an explicit NodeACL, awake sleeping
530 * ->acl_free_comp caller to wakeup configfs se_node_acl->acl_group
531 * removal context from within transport_free_session() code.
532 */
533
534 transport_free_session(se_sess);
535 }
536 EXPORT_SYMBOL(transport_deregister_session);
537
538 static void target_remove_from_state_list(struct se_cmd *cmd)
539 {
540 struct se_device *dev = cmd->se_dev;
541 unsigned long flags;
542
543 if (!dev)
544 return;
545
546 if (cmd->transport_state & CMD_T_BUSY)
547 return;
548
549 spin_lock_irqsave(&dev->execute_task_lock, flags);
550 if (cmd->state_active) {
551 list_del(&cmd->state_list);
552 cmd->state_active = false;
553 }
554 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
555 }
556
557 static int transport_cmd_check_stop(struct se_cmd *cmd, bool remove_from_lists,
558 bool write_pending)
559 {
560 unsigned long flags;
561
562 if (remove_from_lists) {
563 target_remove_from_state_list(cmd);
564
565 /*
566 * Clear struct se_cmd->se_lun before the handoff to FE.
567 */
568 cmd->se_lun = NULL;
569 }
570
571 spin_lock_irqsave(&cmd->t_state_lock, flags);
572 if (write_pending)
573 cmd->t_state = TRANSPORT_WRITE_PENDING;
574
575 /*
576 * Determine if frontend context caller is requesting the stopping of
577 * this command for frontend exceptions.
578 */
579 if (cmd->transport_state & CMD_T_STOP) {
580 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08llx\n",
581 __func__, __LINE__, cmd->tag);
582
583 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
584
585 complete_all(&cmd->t_transport_stop_comp);
586 return 1;
587 }
588
589 cmd->transport_state &= ~CMD_T_ACTIVE;
590 if (remove_from_lists) {
591 /*
592 * Some fabric modules like tcm_loop can release
593 * their internally allocated I/O reference now and
594 * struct se_cmd now.
595 *
596 * Fabric modules are expected to return '1' here if the
597 * se_cmd being passed is released at this point,
598 * or zero if not being released.
599 */
600 if (cmd->se_tfo->check_stop_free != NULL) {
601 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
602 return cmd->se_tfo->check_stop_free(cmd);
603 }
604 }
605
606 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
607 return 0;
608 }
609
610 static int transport_cmd_check_stop_to_fabric(struct se_cmd *cmd)
611 {
612 return transport_cmd_check_stop(cmd, true, false);
613 }
614
615 static void transport_lun_remove_cmd(struct se_cmd *cmd)
616 {
617 struct se_lun *lun = cmd->se_lun;
618
619 if (!lun)
620 return;
621
622 if (cmpxchg(&cmd->lun_ref_active, true, false))
623 percpu_ref_put(&lun->lun_ref);
624 }
625
626 void transport_cmd_finish_abort(struct se_cmd *cmd, int remove)
627 {
628 bool ack_kref = (cmd->se_cmd_flags & SCF_ACK_KREF);
629
630 if (cmd->se_cmd_flags & SCF_SE_LUN_CMD)
631 transport_lun_remove_cmd(cmd);
632 /*
633 * Allow the fabric driver to unmap any resources before
634 * releasing the descriptor via TFO->release_cmd()
635 */
636 if (remove)
637 cmd->se_tfo->aborted_task(cmd);
638
639 if (transport_cmd_check_stop_to_fabric(cmd))
640 return;
641 if (remove && ack_kref)
642 transport_put_cmd(cmd);
643 }
644
645 static void target_complete_failure_work(struct work_struct *work)
646 {
647 struct se_cmd *cmd = container_of(work, struct se_cmd, work);
648
649 transport_generic_request_failure(cmd,
650 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE);
651 }
652
653 /*
654 * Used when asking transport to copy Sense Data from the underlying
655 * Linux/SCSI struct scsi_cmnd
656 */
657 static unsigned char *transport_get_sense_buffer(struct se_cmd *cmd)
658 {
659 struct se_device *dev = cmd->se_dev;
660
661 WARN_ON(!cmd->se_lun);
662
663 if (!dev)
664 return NULL;
665
666 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION)
667 return NULL;
668
669 cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER;
670
671 pr_debug("HBA_[%u]_PLUG[%s]: Requesting sense for SAM STATUS: 0x%02x\n",
672 dev->se_hba->hba_id, dev->transport->name, cmd->scsi_status);
673 return cmd->sense_buffer;
674 }
675
676 void target_complete_cmd(struct se_cmd *cmd, u8 scsi_status)
677 {
678 struct se_device *dev = cmd->se_dev;
679 int success = scsi_status == GOOD;
680 unsigned long flags;
681
682 cmd->scsi_status = scsi_status;
683
684
685 spin_lock_irqsave(&cmd->t_state_lock, flags);
686 cmd->transport_state &= ~CMD_T_BUSY;
687
688 if (dev && dev->transport->transport_complete) {
689 dev->transport->transport_complete(cmd,
690 cmd->t_data_sg,
691 transport_get_sense_buffer(cmd));
692 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE)
693 success = 1;
694 }
695
696 /*
697 * See if we are waiting to complete for an exception condition.
698 */
699 if (cmd->transport_state & CMD_T_REQUEST_STOP) {
700 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
701 complete(&cmd->task_stop_comp);
702 return;
703 }
704
705 /*
706 * Check for case where an explicit ABORT_TASK has been received
707 * and transport_wait_for_tasks() will be waiting for completion..
708 */
709 if (cmd->transport_state & CMD_T_ABORTED ||
710 cmd->transport_state & CMD_T_STOP) {
711 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
712 complete_all(&cmd->t_transport_stop_comp);
713 return;
714 } else if (!success) {
715 INIT_WORK(&cmd->work, target_complete_failure_work);
716 } else {
717 INIT_WORK(&cmd->work, target_complete_ok_work);
718 }
719
720 cmd->t_state = TRANSPORT_COMPLETE;
721 cmd->transport_state |= (CMD_T_COMPLETE | CMD_T_ACTIVE);
722 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
723
724 queue_work(target_completion_wq, &cmd->work);
725 }
726 EXPORT_SYMBOL(target_complete_cmd);
727
728 void target_complete_cmd_with_length(struct se_cmd *cmd, u8 scsi_status, int length)
729 {
730 if (scsi_status == SAM_STAT_GOOD && length < cmd->data_length) {
731 if (cmd->se_cmd_flags & SCF_UNDERFLOW_BIT) {
732 cmd->residual_count += cmd->data_length - length;
733 } else {
734 cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
735 cmd->residual_count = cmd->data_length - length;
736 }
737
738 cmd->data_length = length;
739 }
740
741 target_complete_cmd(cmd, scsi_status);
742 }
743 EXPORT_SYMBOL(target_complete_cmd_with_length);
744
745 static void target_add_to_state_list(struct se_cmd *cmd)
746 {
747 struct se_device *dev = cmd->se_dev;
748 unsigned long flags;
749
750 spin_lock_irqsave(&dev->execute_task_lock, flags);
751 if (!cmd->state_active) {
752 list_add_tail(&cmd->state_list, &dev->state_list);
753 cmd->state_active = true;
754 }
755 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
756 }
757
758 /*
759 * Handle QUEUE_FULL / -EAGAIN and -ENOMEM status
760 */
761 static void transport_write_pending_qf(struct se_cmd *cmd);
762 static void transport_complete_qf(struct se_cmd *cmd);
763
764 void target_qf_do_work(struct work_struct *work)
765 {
766 struct se_device *dev = container_of(work, struct se_device,
767 qf_work_queue);
768 LIST_HEAD(qf_cmd_list);
769 struct se_cmd *cmd, *cmd_tmp;
770
771 spin_lock_irq(&dev->qf_cmd_lock);
772 list_splice_init(&dev->qf_cmd_list, &qf_cmd_list);
773 spin_unlock_irq(&dev->qf_cmd_lock);
774
775 list_for_each_entry_safe(cmd, cmd_tmp, &qf_cmd_list, se_qf_node) {
776 list_del(&cmd->se_qf_node);
777 atomic_dec_mb(&dev->dev_qf_count);
778
779 pr_debug("Processing %s cmd: %p QUEUE_FULL in work queue"
780 " context: %s\n", cmd->se_tfo->get_fabric_name(), cmd,
781 (cmd->t_state == TRANSPORT_COMPLETE_QF_OK) ? "COMPLETE_OK" :
782 (cmd->t_state == TRANSPORT_COMPLETE_QF_WP) ? "WRITE_PENDING"
783 : "UNKNOWN");
784
785 if (cmd->t_state == TRANSPORT_COMPLETE_QF_WP)
786 transport_write_pending_qf(cmd);
787 else if (cmd->t_state == TRANSPORT_COMPLETE_QF_OK)
788 transport_complete_qf(cmd);
789 }
790 }
791
792 unsigned char *transport_dump_cmd_direction(struct se_cmd *cmd)
793 {
794 switch (cmd->data_direction) {
795 case DMA_NONE:
796 return "NONE";
797 case DMA_FROM_DEVICE:
798 return "READ";
799 case DMA_TO_DEVICE:
800 return "WRITE";
801 case DMA_BIDIRECTIONAL:
802 return "BIDI";
803 default:
804 break;
805 }
806
807 return "UNKNOWN";
808 }
809
810 void transport_dump_dev_state(
811 struct se_device *dev,
812 char *b,
813 int *bl)
814 {
815 *bl += sprintf(b + *bl, "Status: ");
816 if (dev->export_count)
817 *bl += sprintf(b + *bl, "ACTIVATED");
818 else
819 *bl += sprintf(b + *bl, "DEACTIVATED");
820
821 *bl += sprintf(b + *bl, " Max Queue Depth: %d", dev->queue_depth);
822 *bl += sprintf(b + *bl, " SectorSize: %u HwMaxSectors: %u\n",
823 dev->dev_attrib.block_size,
824 dev->dev_attrib.hw_max_sectors);
825 *bl += sprintf(b + *bl, " ");
826 }
827
828 void transport_dump_vpd_proto_id(
829 struct t10_vpd *vpd,
830 unsigned char *p_buf,
831 int p_buf_len)
832 {
833 unsigned char buf[VPD_TMP_BUF_SIZE];
834 int len;
835
836 memset(buf, 0, VPD_TMP_BUF_SIZE);
837 len = sprintf(buf, "T10 VPD Protocol Identifier: ");
838
839 switch (vpd->protocol_identifier) {
840 case 0x00:
841 sprintf(buf+len, "Fibre Channel\n");
842 break;
843 case 0x10:
844 sprintf(buf+len, "Parallel SCSI\n");
845 break;
846 case 0x20:
847 sprintf(buf+len, "SSA\n");
848 break;
849 case 0x30:
850 sprintf(buf+len, "IEEE 1394\n");
851 break;
852 case 0x40:
853 sprintf(buf+len, "SCSI Remote Direct Memory Access"
854 " Protocol\n");
855 break;
856 case 0x50:
857 sprintf(buf+len, "Internet SCSI (iSCSI)\n");
858 break;
859 case 0x60:
860 sprintf(buf+len, "SAS Serial SCSI Protocol\n");
861 break;
862 case 0x70:
863 sprintf(buf+len, "Automation/Drive Interface Transport"
864 " Protocol\n");
865 break;
866 case 0x80:
867 sprintf(buf+len, "AT Attachment Interface ATA/ATAPI\n");
868 break;
869 default:
870 sprintf(buf+len, "Unknown 0x%02x\n",
871 vpd->protocol_identifier);
872 break;
873 }
874
875 if (p_buf)
876 strncpy(p_buf, buf, p_buf_len);
877 else
878 pr_debug("%s", buf);
879 }
880
881 void
882 transport_set_vpd_proto_id(struct t10_vpd *vpd, unsigned char *page_83)
883 {
884 /*
885 * Check if the Protocol Identifier Valid (PIV) bit is set..
886 *
887 * from spc3r23.pdf section 7.5.1
888 */
889 if (page_83[1] & 0x80) {
890 vpd->protocol_identifier = (page_83[0] & 0xf0);
891 vpd->protocol_identifier_set = 1;
892 transport_dump_vpd_proto_id(vpd, NULL, 0);
893 }
894 }
895 EXPORT_SYMBOL(transport_set_vpd_proto_id);
896
897 int transport_dump_vpd_assoc(
898 struct t10_vpd *vpd,
899 unsigned char *p_buf,
900 int p_buf_len)
901 {
902 unsigned char buf[VPD_TMP_BUF_SIZE];
903 int ret = 0;
904 int len;
905
906 memset(buf, 0, VPD_TMP_BUF_SIZE);
907 len = sprintf(buf, "T10 VPD Identifier Association: ");
908
909 switch (vpd->association) {
910 case 0x00:
911 sprintf(buf+len, "addressed logical unit\n");
912 break;
913 case 0x10:
914 sprintf(buf+len, "target port\n");
915 break;
916 case 0x20:
917 sprintf(buf+len, "SCSI target device\n");
918 break;
919 default:
920 sprintf(buf+len, "Unknown 0x%02x\n", vpd->association);
921 ret = -EINVAL;
922 break;
923 }
924
925 if (p_buf)
926 strncpy(p_buf, buf, p_buf_len);
927 else
928 pr_debug("%s", buf);
929
930 return ret;
931 }
932
933 int transport_set_vpd_assoc(struct t10_vpd *vpd, unsigned char *page_83)
934 {
935 /*
936 * The VPD identification association..
937 *
938 * from spc3r23.pdf Section 7.6.3.1 Table 297
939 */
940 vpd->association = (page_83[1] & 0x30);
941 return transport_dump_vpd_assoc(vpd, NULL, 0);
942 }
943 EXPORT_SYMBOL(transport_set_vpd_assoc);
944
945 int transport_dump_vpd_ident_type(
946 struct t10_vpd *vpd,
947 unsigned char *p_buf,
948 int p_buf_len)
949 {
950 unsigned char buf[VPD_TMP_BUF_SIZE];
951 int ret = 0;
952 int len;
953
954 memset(buf, 0, VPD_TMP_BUF_SIZE);
955 len = sprintf(buf, "T10 VPD Identifier Type: ");
956
957 switch (vpd->device_identifier_type) {
958 case 0x00:
959 sprintf(buf+len, "Vendor specific\n");
960 break;
961 case 0x01:
962 sprintf(buf+len, "T10 Vendor ID based\n");
963 break;
964 case 0x02:
965 sprintf(buf+len, "EUI-64 based\n");
966 break;
967 case 0x03:
968 sprintf(buf+len, "NAA\n");
969 break;
970 case 0x04:
971 sprintf(buf+len, "Relative target port identifier\n");
972 break;
973 case 0x08:
974 sprintf(buf+len, "SCSI name string\n");
975 break;
976 default:
977 sprintf(buf+len, "Unsupported: 0x%02x\n",
978 vpd->device_identifier_type);
979 ret = -EINVAL;
980 break;
981 }
982
983 if (p_buf) {
984 if (p_buf_len < strlen(buf)+1)
985 return -EINVAL;
986 strncpy(p_buf, buf, p_buf_len);
987 } else {
988 pr_debug("%s", buf);
989 }
990
991 return ret;
992 }
993
994 int transport_set_vpd_ident_type(struct t10_vpd *vpd, unsigned char *page_83)
995 {
996 /*
997 * The VPD identifier type..
998 *
999 * from spc3r23.pdf Section 7.6.3.1 Table 298
1000 */
1001 vpd->device_identifier_type = (page_83[1] & 0x0f);
1002 return transport_dump_vpd_ident_type(vpd, NULL, 0);
1003 }
1004 EXPORT_SYMBOL(transport_set_vpd_ident_type);
1005
1006 int transport_dump_vpd_ident(
1007 struct t10_vpd *vpd,
1008 unsigned char *p_buf,
1009 int p_buf_len)
1010 {
1011 unsigned char buf[VPD_TMP_BUF_SIZE];
1012 int ret = 0;
1013
1014 memset(buf, 0, VPD_TMP_BUF_SIZE);
1015
1016 switch (vpd->device_identifier_code_set) {
1017 case 0x01: /* Binary */
1018 snprintf(buf, sizeof(buf),
1019 "T10 VPD Binary Device Identifier: %s\n",
1020 &vpd->device_identifier[0]);
1021 break;
1022 case 0x02: /* ASCII */
1023 snprintf(buf, sizeof(buf),
1024 "T10 VPD ASCII Device Identifier: %s\n",
1025 &vpd->device_identifier[0]);
1026 break;
1027 case 0x03: /* UTF-8 */
1028 snprintf(buf, sizeof(buf),
1029 "T10 VPD UTF-8 Device Identifier: %s\n",
1030 &vpd->device_identifier[0]);
1031 break;
1032 default:
1033 sprintf(buf, "T10 VPD Device Identifier encoding unsupported:"
1034 " 0x%02x", vpd->device_identifier_code_set);
1035 ret = -EINVAL;
1036 break;
1037 }
1038
1039 if (p_buf)
1040 strncpy(p_buf, buf, p_buf_len);
1041 else
1042 pr_debug("%s", buf);
1043
1044 return ret;
1045 }
1046
1047 int
1048 transport_set_vpd_ident(struct t10_vpd *vpd, unsigned char *page_83)
1049 {
1050 static const char hex_str[] = "0123456789abcdef";
1051 int j = 0, i = 4; /* offset to start of the identifier */
1052
1053 /*
1054 * The VPD Code Set (encoding)
1055 *
1056 * from spc3r23.pdf Section 7.6.3.1 Table 296
1057 */
1058 vpd->device_identifier_code_set = (page_83[0] & 0x0f);
1059 switch (vpd->device_identifier_code_set) {
1060 case 0x01: /* Binary */
1061 vpd->device_identifier[j++] =
1062 hex_str[vpd->device_identifier_type];
1063 while (i < (4 + page_83[3])) {
1064 vpd->device_identifier[j++] =
1065 hex_str[(page_83[i] & 0xf0) >> 4];
1066 vpd->device_identifier[j++] =
1067 hex_str[page_83[i] & 0x0f];
1068 i++;
1069 }
1070 break;
1071 case 0x02: /* ASCII */
1072 case 0x03: /* UTF-8 */
1073 while (i < (4 + page_83[3]))
1074 vpd->device_identifier[j++] = page_83[i++];
1075 break;
1076 default:
1077 break;
1078 }
1079
1080 return transport_dump_vpd_ident(vpd, NULL, 0);
1081 }
1082 EXPORT_SYMBOL(transport_set_vpd_ident);
1083
1084 static sense_reason_t
1085 target_check_max_data_sg_nents(struct se_cmd *cmd, struct se_device *dev,
1086 unsigned int size)
1087 {
1088 u32 mtl;
1089
1090 if (!cmd->se_tfo->max_data_sg_nents)
1091 return TCM_NO_SENSE;
1092 /*
1093 * Check if fabric enforced maximum SGL entries per I/O descriptor
1094 * exceeds se_cmd->data_length. If true, set SCF_UNDERFLOW_BIT +
1095 * residual_count and reduce original cmd->data_length to maximum
1096 * length based on single PAGE_SIZE entry scatter-lists.
1097 */
1098 mtl = (cmd->se_tfo->max_data_sg_nents * PAGE_SIZE);
1099 if (cmd->data_length > mtl) {
1100 /*
1101 * If an existing CDB overflow is present, calculate new residual
1102 * based on CDB size minus fabric maximum transfer length.
1103 *
1104 * If an existing CDB underflow is present, calculate new residual
1105 * based on original cmd->data_length minus fabric maximum transfer
1106 * length.
1107 *
1108 * Otherwise, set the underflow residual based on cmd->data_length
1109 * minus fabric maximum transfer length.
1110 */
1111 if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) {
1112 cmd->residual_count = (size - mtl);
1113 } else if (cmd->se_cmd_flags & SCF_UNDERFLOW_BIT) {
1114 u32 orig_dl = size + cmd->residual_count;
1115 cmd->residual_count = (orig_dl - mtl);
1116 } else {
1117 cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
1118 cmd->residual_count = (cmd->data_length - mtl);
1119 }
1120 cmd->data_length = mtl;
1121 /*
1122 * Reset sbc_check_prot() calculated protection payload
1123 * length based upon the new smaller MTL.
1124 */
1125 if (cmd->prot_length) {
1126 u32 sectors = (mtl / dev->dev_attrib.block_size);
1127 cmd->prot_length = dev->prot_length * sectors;
1128 }
1129 }
1130 return TCM_NO_SENSE;
1131 }
1132
1133 sense_reason_t
1134 target_cmd_size_check(struct se_cmd *cmd, unsigned int size)
1135 {
1136 struct se_device *dev = cmd->se_dev;
1137
1138 if (cmd->unknown_data_length) {
1139 cmd->data_length = size;
1140 } else if (size != cmd->data_length) {
1141 pr_warn("TARGET_CORE[%s]: Expected Transfer Length:"
1142 " %u does not match SCSI CDB Length: %u for SAM Opcode:"
1143 " 0x%02x\n", cmd->se_tfo->get_fabric_name(),
1144 cmd->data_length, size, cmd->t_task_cdb[0]);
1145
1146 if (cmd->data_direction == DMA_TO_DEVICE &&
1147 cmd->se_cmd_flags & SCF_SCSI_DATA_CDB) {
1148 pr_err("Rejecting underflow/overflow WRITE data\n");
1149 return TCM_INVALID_CDB_FIELD;
1150 }
1151 /*
1152 * Reject READ_* or WRITE_* with overflow/underflow for
1153 * type SCF_SCSI_DATA_CDB.
1154 */
1155 if (dev->dev_attrib.block_size != 512) {
1156 pr_err("Failing OVERFLOW/UNDERFLOW for LBA op"
1157 " CDB on non 512-byte sector setup subsystem"
1158 " plugin: %s\n", dev->transport->name);
1159 /* Returns CHECK_CONDITION + INVALID_CDB_FIELD */
1160 return TCM_INVALID_CDB_FIELD;
1161 }
1162 /*
1163 * For the overflow case keep the existing fabric provided
1164 * ->data_length. Otherwise for the underflow case, reset
1165 * ->data_length to the smaller SCSI expected data transfer
1166 * length.
1167 */
1168 if (size > cmd->data_length) {
1169 cmd->se_cmd_flags |= SCF_OVERFLOW_BIT;
1170 cmd->residual_count = (size - cmd->data_length);
1171 } else {
1172 cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
1173 cmd->residual_count = (cmd->data_length - size);
1174 cmd->data_length = size;
1175 }
1176 }
1177
1178 return target_check_max_data_sg_nents(cmd, dev, size);
1179
1180 }
1181
1182 /*
1183 * Used by fabric modules containing a local struct se_cmd within their
1184 * fabric dependent per I/O descriptor.
1185 *
1186 * Preserves the value of @cmd->tag.
1187 */
1188 void transport_init_se_cmd(
1189 struct se_cmd *cmd,
1190 const struct target_core_fabric_ops *tfo,
1191 struct se_session *se_sess,
1192 u32 data_length,
1193 int data_direction,
1194 int task_attr,
1195 unsigned char *sense_buffer)
1196 {
1197 INIT_LIST_HEAD(&cmd->se_delayed_node);
1198 INIT_LIST_HEAD(&cmd->se_qf_node);
1199 INIT_LIST_HEAD(&cmd->se_cmd_list);
1200 INIT_LIST_HEAD(&cmd->state_list);
1201 init_completion(&cmd->t_transport_stop_comp);
1202 init_completion(&cmd->cmd_wait_comp);
1203 init_completion(&cmd->task_stop_comp);
1204 spin_lock_init(&cmd->t_state_lock);
1205 kref_init(&cmd->cmd_kref);
1206 cmd->transport_state = CMD_T_DEV_ACTIVE;
1207
1208 cmd->se_tfo = tfo;
1209 cmd->se_sess = se_sess;
1210 cmd->data_length = data_length;
1211 cmd->data_direction = data_direction;
1212 cmd->sam_task_attr = task_attr;
1213 cmd->sense_buffer = sense_buffer;
1214
1215 cmd->state_active = false;
1216 }
1217 EXPORT_SYMBOL(transport_init_se_cmd);
1218
1219 static sense_reason_t
1220 transport_check_alloc_task_attr(struct se_cmd *cmd)
1221 {
1222 struct se_device *dev = cmd->se_dev;
1223
1224 /*
1225 * Check if SAM Task Attribute emulation is enabled for this
1226 * struct se_device storage object
1227 */
1228 if (dev->transport->transport_flags & TRANSPORT_FLAG_PASSTHROUGH)
1229 return 0;
1230
1231 if (cmd->sam_task_attr == TCM_ACA_TAG) {
1232 pr_debug("SAM Task Attribute ACA"
1233 " emulation is not supported\n");
1234 return TCM_INVALID_CDB_FIELD;
1235 }
1236
1237 return 0;
1238 }
1239
1240 sense_reason_t
1241 target_setup_cmd_from_cdb(struct se_cmd *cmd, unsigned char *cdb)
1242 {
1243 struct se_device *dev = cmd->se_dev;
1244 sense_reason_t ret;
1245
1246 /*
1247 * Ensure that the received CDB is less than the max (252 + 8) bytes
1248 * for VARIABLE_LENGTH_CMD
1249 */
1250 if (scsi_command_size(cdb) > SCSI_MAX_VARLEN_CDB_SIZE) {
1251 pr_err("Received SCSI CDB with command_size: %d that"
1252 " exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n",
1253 scsi_command_size(cdb), SCSI_MAX_VARLEN_CDB_SIZE);
1254 return TCM_INVALID_CDB_FIELD;
1255 }
1256 /*
1257 * If the received CDB is larger than TCM_MAX_COMMAND_SIZE,
1258 * allocate the additional extended CDB buffer now.. Otherwise
1259 * setup the pointer from __t_task_cdb to t_task_cdb.
1260 */
1261 if (scsi_command_size(cdb) > sizeof(cmd->__t_task_cdb)) {
1262 cmd->t_task_cdb = kzalloc(scsi_command_size(cdb),
1263 GFP_KERNEL);
1264 if (!cmd->t_task_cdb) {
1265 pr_err("Unable to allocate cmd->t_task_cdb"
1266 " %u > sizeof(cmd->__t_task_cdb): %lu ops\n",
1267 scsi_command_size(cdb),
1268 (unsigned long)sizeof(cmd->__t_task_cdb));
1269 return TCM_OUT_OF_RESOURCES;
1270 }
1271 } else
1272 cmd->t_task_cdb = &cmd->__t_task_cdb[0];
1273 /*
1274 * Copy the original CDB into cmd->
1275 */
1276 memcpy(cmd->t_task_cdb, cdb, scsi_command_size(cdb));
1277
1278 trace_target_sequencer_start(cmd);
1279
1280 ret = dev->transport->parse_cdb(cmd);
1281 if (ret == TCM_UNSUPPORTED_SCSI_OPCODE)
1282 pr_warn_ratelimited("%s/%s: Unsupported SCSI Opcode 0x%02x, sending CHECK_CONDITION.\n",
1283 cmd->se_tfo->get_fabric_name(),
1284 cmd->se_sess->se_node_acl->initiatorname,
1285 cmd->t_task_cdb[0]);
1286 if (ret)
1287 return ret;
1288
1289 ret = transport_check_alloc_task_attr(cmd);
1290 if (ret)
1291 return ret;
1292
1293 cmd->se_cmd_flags |= SCF_SUPPORTED_SAM_OPCODE;
1294 atomic_long_inc(&cmd->se_lun->lun_stats.cmd_pdus);
1295 return 0;
1296 }
1297 EXPORT_SYMBOL(target_setup_cmd_from_cdb);
1298
1299 /*
1300 * Used by fabric module frontends to queue tasks directly.
1301 * Many only be used from process context only
1302 */
1303 int transport_handle_cdb_direct(
1304 struct se_cmd *cmd)
1305 {
1306 sense_reason_t ret;
1307
1308 if (!cmd->se_lun) {
1309 dump_stack();
1310 pr_err("cmd->se_lun is NULL\n");
1311 return -EINVAL;
1312 }
1313 if (in_interrupt()) {
1314 dump_stack();
1315 pr_err("transport_generic_handle_cdb cannot be called"
1316 " from interrupt context\n");
1317 return -EINVAL;
1318 }
1319 /*
1320 * Set TRANSPORT_NEW_CMD state and CMD_T_ACTIVE to ensure that
1321 * outstanding descriptors are handled correctly during shutdown via
1322 * transport_wait_for_tasks()
1323 *
1324 * Also, we don't take cmd->t_state_lock here as we only expect
1325 * this to be called for initial descriptor submission.
1326 */
1327 cmd->t_state = TRANSPORT_NEW_CMD;
1328 cmd->transport_state |= CMD_T_ACTIVE;
1329
1330 /*
1331 * transport_generic_new_cmd() is already handling QUEUE_FULL,
1332 * so follow TRANSPORT_NEW_CMD processing thread context usage
1333 * and call transport_generic_request_failure() if necessary..
1334 */
1335 ret = transport_generic_new_cmd(cmd);
1336 if (ret)
1337 transport_generic_request_failure(cmd, ret);
1338 return 0;
1339 }
1340 EXPORT_SYMBOL(transport_handle_cdb_direct);
1341
1342 sense_reason_t
1343 transport_generic_map_mem_to_cmd(struct se_cmd *cmd, struct scatterlist *sgl,
1344 u32 sgl_count, struct scatterlist *sgl_bidi, u32 sgl_bidi_count)
1345 {
1346 if (!sgl || !sgl_count)
1347 return 0;
1348
1349 /*
1350 * Reject SCSI data overflow with map_mem_to_cmd() as incoming
1351 * scatterlists already have been set to follow what the fabric
1352 * passes for the original expected data transfer length.
1353 */
1354 if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) {
1355 pr_warn("Rejecting SCSI DATA overflow for fabric using"
1356 " SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC\n");
1357 return TCM_INVALID_CDB_FIELD;
1358 }
1359
1360 cmd->t_data_sg = sgl;
1361 cmd->t_data_nents = sgl_count;
1362 cmd->t_bidi_data_sg = sgl_bidi;
1363 cmd->t_bidi_data_nents = sgl_bidi_count;
1364
1365 cmd->se_cmd_flags |= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC;
1366 return 0;
1367 }
1368
1369 /*
1370 * target_submit_cmd_map_sgls - lookup unpacked lun and submit uninitialized
1371 * se_cmd + use pre-allocated SGL memory.
1372 *
1373 * @se_cmd: command descriptor to submit
1374 * @se_sess: associated se_sess for endpoint
1375 * @cdb: pointer to SCSI CDB
1376 * @sense: pointer to SCSI sense buffer
1377 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1378 * @data_length: fabric expected data transfer length
1379 * @task_addr: SAM task attribute
1380 * @data_dir: DMA data direction
1381 * @flags: flags for command submission from target_sc_flags_tables
1382 * @sgl: struct scatterlist memory for unidirectional mapping
1383 * @sgl_count: scatterlist count for unidirectional mapping
1384 * @sgl_bidi: struct scatterlist memory for bidirectional READ mapping
1385 * @sgl_bidi_count: scatterlist count for bidirectional READ mapping
1386 * @sgl_prot: struct scatterlist memory protection information
1387 * @sgl_prot_count: scatterlist count for protection information
1388 *
1389 * Task tags are supported if the caller has set @se_cmd->tag.
1390 *
1391 * Returns non zero to signal active I/O shutdown failure. All other
1392 * setup exceptions will be returned as a SCSI CHECK_CONDITION response,
1393 * but still return zero here.
1394 *
1395 * This may only be called from process context, and also currently
1396 * assumes internal allocation of fabric payload buffer by target-core.
1397 */
1398 int target_submit_cmd_map_sgls(struct se_cmd *se_cmd, struct se_session *se_sess,
1399 unsigned char *cdb, unsigned char *sense, u64 unpacked_lun,
1400 u32 data_length, int task_attr, int data_dir, int flags,
1401 struct scatterlist *sgl, u32 sgl_count,
1402 struct scatterlist *sgl_bidi, u32 sgl_bidi_count,
1403 struct scatterlist *sgl_prot, u32 sgl_prot_count)
1404 {
1405 struct se_portal_group *se_tpg;
1406 sense_reason_t rc;
1407 int ret;
1408
1409 se_tpg = se_sess->se_tpg;
1410 BUG_ON(!se_tpg);
1411 BUG_ON(se_cmd->se_tfo || se_cmd->se_sess);
1412 BUG_ON(in_interrupt());
1413 /*
1414 * Initialize se_cmd for target operation. From this point
1415 * exceptions are handled by sending exception status via
1416 * target_core_fabric_ops->queue_status() callback
1417 */
1418 transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess,
1419 data_length, data_dir, task_attr, sense);
1420 if (flags & TARGET_SCF_UNKNOWN_SIZE)
1421 se_cmd->unknown_data_length = 1;
1422 /*
1423 * Obtain struct se_cmd->cmd_kref reference and add new cmd to
1424 * se_sess->sess_cmd_list. A second kref_get here is necessary
1425 * for fabrics using TARGET_SCF_ACK_KREF that expect a second
1426 * kref_put() to happen during fabric packet acknowledgement.
1427 */
1428 ret = target_get_sess_cmd(se_cmd, flags & TARGET_SCF_ACK_KREF);
1429 if (ret)
1430 return ret;
1431 /*
1432 * Signal bidirectional data payloads to target-core
1433 */
1434 if (flags & TARGET_SCF_BIDI_OP)
1435 se_cmd->se_cmd_flags |= SCF_BIDI;
1436 /*
1437 * Locate se_lun pointer and attach it to struct se_cmd
1438 */
1439 rc = transport_lookup_cmd_lun(se_cmd, unpacked_lun);
1440 if (rc) {
1441 transport_send_check_condition_and_sense(se_cmd, rc, 0);
1442 target_put_sess_cmd(se_cmd);
1443 return 0;
1444 }
1445
1446 rc = target_setup_cmd_from_cdb(se_cmd, cdb);
1447 if (rc != 0) {
1448 transport_generic_request_failure(se_cmd, rc);
1449 return 0;
1450 }
1451
1452 /*
1453 * Save pointers for SGLs containing protection information,
1454 * if present.
1455 */
1456 if (sgl_prot_count) {
1457 se_cmd->t_prot_sg = sgl_prot;
1458 se_cmd->t_prot_nents = sgl_prot_count;
1459 se_cmd->se_cmd_flags |= SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC;
1460 }
1461
1462 /*
1463 * When a non zero sgl_count has been passed perform SGL passthrough
1464 * mapping for pre-allocated fabric memory instead of having target
1465 * core perform an internal SGL allocation..
1466 */
1467 if (sgl_count != 0) {
1468 BUG_ON(!sgl);
1469
1470 /*
1471 * A work-around for tcm_loop as some userspace code via
1472 * scsi-generic do not memset their associated read buffers,
1473 * so go ahead and do that here for type non-data CDBs. Also
1474 * note that this is currently guaranteed to be a single SGL
1475 * for this case by target core in target_setup_cmd_from_cdb()
1476 * -> transport_generic_cmd_sequencer().
1477 */
1478 if (!(se_cmd->se_cmd_flags & SCF_SCSI_DATA_CDB) &&
1479 se_cmd->data_direction == DMA_FROM_DEVICE) {
1480 unsigned char *buf = NULL;
1481
1482 if (sgl)
1483 buf = kmap(sg_page(sgl)) + sgl->offset;
1484
1485 if (buf) {
1486 memset(buf, 0, sgl->length);
1487 kunmap(sg_page(sgl));
1488 }
1489 }
1490
1491 rc = transport_generic_map_mem_to_cmd(se_cmd, sgl, sgl_count,
1492 sgl_bidi, sgl_bidi_count);
1493 if (rc != 0) {
1494 transport_generic_request_failure(se_cmd, rc);
1495 return 0;
1496 }
1497 }
1498
1499 /*
1500 * Check if we need to delay processing because of ALUA
1501 * Active/NonOptimized primary access state..
1502 */
1503 core_alua_check_nonop_delay(se_cmd);
1504
1505 transport_handle_cdb_direct(se_cmd);
1506 return 0;
1507 }
1508 EXPORT_SYMBOL(target_submit_cmd_map_sgls);
1509
1510 /*
1511 * target_submit_cmd - lookup unpacked lun and submit uninitialized se_cmd
1512 *
1513 * @se_cmd: command descriptor to submit
1514 * @se_sess: associated se_sess for endpoint
1515 * @cdb: pointer to SCSI CDB
1516 * @sense: pointer to SCSI sense buffer
1517 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1518 * @data_length: fabric expected data transfer length
1519 * @task_addr: SAM task attribute
1520 * @data_dir: DMA data direction
1521 * @flags: flags for command submission from target_sc_flags_tables
1522 *
1523 * Task tags are supported if the caller has set @se_cmd->tag.
1524 *
1525 * Returns non zero to signal active I/O shutdown failure. All other
1526 * setup exceptions will be returned as a SCSI CHECK_CONDITION response,
1527 * but still return zero here.
1528 *
1529 * This may only be called from process context, and also currently
1530 * assumes internal allocation of fabric payload buffer by target-core.
1531 *
1532 * It also assumes interal target core SGL memory allocation.
1533 */
1534 int target_submit_cmd(struct se_cmd *se_cmd, struct se_session *se_sess,
1535 unsigned char *cdb, unsigned char *sense, u64 unpacked_lun,
1536 u32 data_length, int task_attr, int data_dir, int flags)
1537 {
1538 return target_submit_cmd_map_sgls(se_cmd, se_sess, cdb, sense,
1539 unpacked_lun, data_length, task_attr, data_dir,
1540 flags, NULL, 0, NULL, 0, NULL, 0);
1541 }
1542 EXPORT_SYMBOL(target_submit_cmd);
1543
1544 static void target_complete_tmr_failure(struct work_struct *work)
1545 {
1546 struct se_cmd *se_cmd = container_of(work, struct se_cmd, work);
1547
1548 se_cmd->se_tmr_req->response = TMR_LUN_DOES_NOT_EXIST;
1549 se_cmd->se_tfo->queue_tm_rsp(se_cmd);
1550
1551 transport_cmd_check_stop_to_fabric(se_cmd);
1552 }
1553
1554 /**
1555 * target_submit_tmr - lookup unpacked lun and submit uninitialized se_cmd
1556 * for TMR CDBs
1557 *
1558 * @se_cmd: command descriptor to submit
1559 * @se_sess: associated se_sess for endpoint
1560 * @sense: pointer to SCSI sense buffer
1561 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1562 * @fabric_context: fabric context for TMR req
1563 * @tm_type: Type of TM request
1564 * @gfp: gfp type for caller
1565 * @tag: referenced task tag for TMR_ABORT_TASK
1566 * @flags: submit cmd flags
1567 *
1568 * Callable from all contexts.
1569 **/
1570
1571 int target_submit_tmr(struct se_cmd *se_cmd, struct se_session *se_sess,
1572 unsigned char *sense, u64 unpacked_lun,
1573 void *fabric_tmr_ptr, unsigned char tm_type,
1574 gfp_t gfp, unsigned int tag, int flags)
1575 {
1576 struct se_portal_group *se_tpg;
1577 int ret;
1578
1579 se_tpg = se_sess->se_tpg;
1580 BUG_ON(!se_tpg);
1581
1582 transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess,
1583 0, DMA_NONE, TCM_SIMPLE_TAG, sense);
1584 /*
1585 * FIXME: Currently expect caller to handle se_cmd->se_tmr_req
1586 * allocation failure.
1587 */
1588 ret = core_tmr_alloc_req(se_cmd, fabric_tmr_ptr, tm_type, gfp);
1589 if (ret < 0)
1590 return -ENOMEM;
1591
1592 if (tm_type == TMR_ABORT_TASK)
1593 se_cmd->se_tmr_req->ref_task_tag = tag;
1594
1595 /* See target_submit_cmd for commentary */
1596 ret = target_get_sess_cmd(se_cmd, flags & TARGET_SCF_ACK_KREF);
1597 if (ret) {
1598 core_tmr_release_req(se_cmd->se_tmr_req);
1599 return ret;
1600 }
1601
1602 ret = transport_lookup_tmr_lun(se_cmd, unpacked_lun);
1603 if (ret) {
1604 /*
1605 * For callback during failure handling, push this work off
1606 * to process context with TMR_LUN_DOES_NOT_EXIST status.
1607 */
1608 INIT_WORK(&se_cmd->work, target_complete_tmr_failure);
1609 schedule_work(&se_cmd->work);
1610 return 0;
1611 }
1612 transport_generic_handle_tmr(se_cmd);
1613 return 0;
1614 }
1615 EXPORT_SYMBOL(target_submit_tmr);
1616
1617 /*
1618 * If the cmd is active, request it to be stopped and sleep until it
1619 * has completed.
1620 */
1621 bool target_stop_cmd(struct se_cmd *cmd, unsigned long *flags)
1622 __releases(&cmd->t_state_lock)
1623 __acquires(&cmd->t_state_lock)
1624 {
1625 bool was_active = false;
1626
1627 if (cmd->transport_state & CMD_T_BUSY) {
1628 cmd->transport_state |= CMD_T_REQUEST_STOP;
1629 spin_unlock_irqrestore(&cmd->t_state_lock, *flags);
1630
1631 pr_debug("cmd %p waiting to complete\n", cmd);
1632 wait_for_completion(&cmd->task_stop_comp);
1633 pr_debug("cmd %p stopped successfully\n", cmd);
1634
1635 spin_lock_irqsave(&cmd->t_state_lock, *flags);
1636 cmd->transport_state &= ~CMD_T_REQUEST_STOP;
1637 cmd->transport_state &= ~CMD_T_BUSY;
1638 was_active = true;
1639 }
1640
1641 return was_active;
1642 }
1643
1644 /*
1645 * Handle SAM-esque emulation for generic transport request failures.
1646 */
1647 void transport_generic_request_failure(struct se_cmd *cmd,
1648 sense_reason_t sense_reason)
1649 {
1650 int ret = 0, post_ret = 0;
1651
1652 pr_debug("-----[ Storage Engine Exception for cmd: %p ITT: 0x%08llx"
1653 " CDB: 0x%02x\n", cmd, cmd->tag, cmd->t_task_cdb[0]);
1654 pr_debug("-----[ i_state: %d t_state: %d sense_reason: %d\n",
1655 cmd->se_tfo->get_cmd_state(cmd),
1656 cmd->t_state, sense_reason);
1657 pr_debug("-----[ CMD_T_ACTIVE: %d CMD_T_STOP: %d CMD_T_SENT: %d\n",
1658 (cmd->transport_state & CMD_T_ACTIVE) != 0,
1659 (cmd->transport_state & CMD_T_STOP) != 0,
1660 (cmd->transport_state & CMD_T_SENT) != 0);
1661
1662 /*
1663 * For SAM Task Attribute emulation for failed struct se_cmd
1664 */
1665 transport_complete_task_attr(cmd);
1666 /*
1667 * Handle special case for COMPARE_AND_WRITE failure, where the
1668 * callback is expected to drop the per device ->caw_sem.
1669 */
1670 if ((cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) &&
1671 cmd->transport_complete_callback)
1672 cmd->transport_complete_callback(cmd, false, &post_ret);
1673
1674 switch (sense_reason) {
1675 case TCM_NON_EXISTENT_LUN:
1676 case TCM_UNSUPPORTED_SCSI_OPCODE:
1677 case TCM_INVALID_CDB_FIELD:
1678 case TCM_INVALID_PARAMETER_LIST:
1679 case TCM_PARAMETER_LIST_LENGTH_ERROR:
1680 case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
1681 case TCM_UNKNOWN_MODE_PAGE:
1682 case TCM_WRITE_PROTECTED:
1683 case TCM_ADDRESS_OUT_OF_RANGE:
1684 case TCM_CHECK_CONDITION_ABORT_CMD:
1685 case TCM_CHECK_CONDITION_UNIT_ATTENTION:
1686 case TCM_CHECK_CONDITION_NOT_READY:
1687 case TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED:
1688 case TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED:
1689 case TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED:
1690 case TCM_COPY_TARGET_DEVICE_NOT_REACHABLE:
1691 break;
1692 case TCM_OUT_OF_RESOURCES:
1693 sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
1694 break;
1695 case TCM_RESERVATION_CONFLICT:
1696 /*
1697 * No SENSE Data payload for this case, set SCSI Status
1698 * and queue the response to $FABRIC_MOD.
1699 *
1700 * Uses linux/include/scsi/scsi.h SAM status codes defs
1701 */
1702 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
1703 /*
1704 * For UA Interlock Code 11b, a RESERVATION CONFLICT will
1705 * establish a UNIT ATTENTION with PREVIOUS RESERVATION
1706 * CONFLICT STATUS.
1707 *
1708 * See spc4r17, section 7.4.6 Control Mode Page, Table 349
1709 */
1710 if (cmd->se_sess &&
1711 cmd->se_dev->dev_attrib.emulate_ua_intlck_ctrl == 2) {
1712 target_ua_allocate_lun(cmd->se_sess->se_node_acl,
1713 cmd->orig_fe_lun, 0x2C,
1714 ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS);
1715 }
1716 trace_target_cmd_complete(cmd);
1717 ret = cmd->se_tfo->queue_status(cmd);
1718 if (ret == -EAGAIN || ret == -ENOMEM)
1719 goto queue_full;
1720 goto check_stop;
1721 default:
1722 pr_err("Unknown transport error for CDB 0x%02x: %d\n",
1723 cmd->t_task_cdb[0], sense_reason);
1724 sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
1725 break;
1726 }
1727
1728 ret = transport_send_check_condition_and_sense(cmd, sense_reason, 0);
1729 if (ret == -EAGAIN || ret == -ENOMEM)
1730 goto queue_full;
1731
1732 check_stop:
1733 transport_lun_remove_cmd(cmd);
1734 transport_cmd_check_stop_to_fabric(cmd);
1735 return;
1736
1737 queue_full:
1738 cmd->t_state = TRANSPORT_COMPLETE_QF_OK;
1739 transport_handle_queue_full(cmd, cmd->se_dev);
1740 }
1741 EXPORT_SYMBOL(transport_generic_request_failure);
1742
1743 void __target_execute_cmd(struct se_cmd *cmd, bool do_checks)
1744 {
1745 sense_reason_t ret;
1746
1747 if (!cmd->execute_cmd) {
1748 ret = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
1749 goto err;
1750 }
1751 if (do_checks) {
1752 /*
1753 * Check for an existing UNIT ATTENTION condition after
1754 * target_handle_task_attr() has done SAM task attr
1755 * checking, and possibly have already defered execution
1756 * out to target_restart_delayed_cmds() context.
1757 */
1758 ret = target_scsi3_ua_check(cmd);
1759 if (ret)
1760 goto err;
1761
1762 ret = target_alua_state_check(cmd);
1763 if (ret)
1764 goto err;
1765
1766 ret = target_check_reservation(cmd);
1767 if (ret) {
1768 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
1769 goto err;
1770 }
1771 }
1772
1773 ret = cmd->execute_cmd(cmd);
1774 if (!ret)
1775 return;
1776 err:
1777 spin_lock_irq(&cmd->t_state_lock);
1778 cmd->transport_state &= ~(CMD_T_BUSY|CMD_T_SENT);
1779 spin_unlock_irq(&cmd->t_state_lock);
1780
1781 transport_generic_request_failure(cmd, ret);
1782 }
1783
1784 static int target_write_prot_action(struct se_cmd *cmd)
1785 {
1786 u32 sectors;
1787 /*
1788 * Perform WRITE_INSERT of PI using software emulation when backend
1789 * device has PI enabled, if the transport has not already generated
1790 * PI using hardware WRITE_INSERT offload.
1791 */
1792 switch (cmd->prot_op) {
1793 case TARGET_PROT_DOUT_INSERT:
1794 if (!(cmd->se_sess->sup_prot_ops & TARGET_PROT_DOUT_INSERT))
1795 sbc_dif_generate(cmd);
1796 break;
1797 case TARGET_PROT_DOUT_STRIP:
1798 if (cmd->se_sess->sup_prot_ops & TARGET_PROT_DOUT_STRIP)
1799 break;
1800
1801 sectors = cmd->data_length >> ilog2(cmd->se_dev->dev_attrib.block_size);
1802 cmd->pi_err = sbc_dif_verify(cmd, cmd->t_task_lba,
1803 sectors, 0, cmd->t_prot_sg, 0);
1804 if (unlikely(cmd->pi_err)) {
1805 spin_lock_irq(&cmd->t_state_lock);
1806 cmd->transport_state &= ~(CMD_T_BUSY|CMD_T_SENT);
1807 spin_unlock_irq(&cmd->t_state_lock);
1808 transport_generic_request_failure(cmd, cmd->pi_err);
1809 return -1;
1810 }
1811 break;
1812 default:
1813 break;
1814 }
1815
1816 return 0;
1817 }
1818
1819 static bool target_handle_task_attr(struct se_cmd *cmd)
1820 {
1821 struct se_device *dev = cmd->se_dev;
1822
1823 if (dev->transport->transport_flags & TRANSPORT_FLAG_PASSTHROUGH)
1824 return false;
1825
1826 cmd->se_cmd_flags |= SCF_TASK_ATTR_SET;
1827
1828 /*
1829 * Check for the existence of HEAD_OF_QUEUE, and if true return 1
1830 * to allow the passed struct se_cmd list of tasks to the front of the list.
1831 */
1832 switch (cmd->sam_task_attr) {
1833 case TCM_HEAD_TAG:
1834 pr_debug("Added HEAD_OF_QUEUE for CDB: 0x%02x\n",
1835 cmd->t_task_cdb[0]);
1836 return false;
1837 case TCM_ORDERED_TAG:
1838 atomic_inc_mb(&dev->dev_ordered_sync);
1839
1840 pr_debug("Added ORDERED for CDB: 0x%02x to ordered list\n",
1841 cmd->t_task_cdb[0]);
1842
1843 /*
1844 * Execute an ORDERED command if no other older commands
1845 * exist that need to be completed first.
1846 */
1847 if (!atomic_read(&dev->simple_cmds))
1848 return false;
1849 break;
1850 default:
1851 /*
1852 * For SIMPLE and UNTAGGED Task Attribute commands
1853 */
1854 atomic_inc_mb(&dev->simple_cmds);
1855 break;
1856 }
1857
1858 if (atomic_read(&dev->dev_ordered_sync) == 0)
1859 return false;
1860
1861 spin_lock(&dev->delayed_cmd_lock);
1862 list_add_tail(&cmd->se_delayed_node, &dev->delayed_cmd_list);
1863 spin_unlock(&dev->delayed_cmd_lock);
1864
1865 pr_debug("Added CDB: 0x%02x Task Attr: 0x%02x to delayed CMD listn",
1866 cmd->t_task_cdb[0], cmd->sam_task_attr);
1867 return true;
1868 }
1869
1870 static int __transport_check_aborted_status(struct se_cmd *, int);
1871
1872 void target_execute_cmd(struct se_cmd *cmd)
1873 {
1874 /*
1875 * Determine if frontend context caller is requesting the stopping of
1876 * this command for frontend exceptions.
1877 *
1878 * If the received CDB has aleady been aborted stop processing it here.
1879 */
1880 spin_lock_irq(&cmd->t_state_lock);
1881 if (__transport_check_aborted_status(cmd, 1)) {
1882 spin_unlock_irq(&cmd->t_state_lock);
1883 return;
1884 }
1885 if (cmd->transport_state & CMD_T_STOP) {
1886 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08llx\n",
1887 __func__, __LINE__, cmd->tag);
1888
1889 spin_unlock_irq(&cmd->t_state_lock);
1890 complete_all(&cmd->t_transport_stop_comp);
1891 return;
1892 }
1893
1894 cmd->t_state = TRANSPORT_PROCESSING;
1895 cmd->transport_state |= CMD_T_ACTIVE|CMD_T_BUSY|CMD_T_SENT;
1896 spin_unlock_irq(&cmd->t_state_lock);
1897
1898 if (target_write_prot_action(cmd))
1899 return;
1900
1901 if (target_handle_task_attr(cmd)) {
1902 spin_lock_irq(&cmd->t_state_lock);
1903 cmd->transport_state &= ~(CMD_T_BUSY | CMD_T_SENT);
1904 spin_unlock_irq(&cmd->t_state_lock);
1905 return;
1906 }
1907
1908 __target_execute_cmd(cmd, true);
1909 }
1910 EXPORT_SYMBOL(target_execute_cmd);
1911
1912 /*
1913 * Process all commands up to the last received ORDERED task attribute which
1914 * requires another blocking boundary
1915 */
1916 static void target_restart_delayed_cmds(struct se_device *dev)
1917 {
1918 for (;;) {
1919 struct se_cmd *cmd;
1920
1921 spin_lock(&dev->delayed_cmd_lock);
1922 if (list_empty(&dev->delayed_cmd_list)) {
1923 spin_unlock(&dev->delayed_cmd_lock);
1924 break;
1925 }
1926
1927 cmd = list_entry(dev->delayed_cmd_list.next,
1928 struct se_cmd, se_delayed_node);
1929 list_del(&cmd->se_delayed_node);
1930 spin_unlock(&dev->delayed_cmd_lock);
1931
1932 __target_execute_cmd(cmd, true);
1933
1934 if (cmd->sam_task_attr == TCM_ORDERED_TAG)
1935 break;
1936 }
1937 }
1938
1939 /*
1940 * Called from I/O completion to determine which dormant/delayed
1941 * and ordered cmds need to have their tasks added to the execution queue.
1942 */
1943 static void transport_complete_task_attr(struct se_cmd *cmd)
1944 {
1945 struct se_device *dev = cmd->se_dev;
1946
1947 if (dev->transport->transport_flags & TRANSPORT_FLAG_PASSTHROUGH)
1948 return;
1949
1950 if (!(cmd->se_cmd_flags & SCF_TASK_ATTR_SET))
1951 goto restart;
1952
1953 if (cmd->sam_task_attr == TCM_SIMPLE_TAG) {
1954 atomic_dec_mb(&dev->simple_cmds);
1955 dev->dev_cur_ordered_id++;
1956 pr_debug("Incremented dev->dev_cur_ordered_id: %u for SIMPLE\n",
1957 dev->dev_cur_ordered_id);
1958 } else if (cmd->sam_task_attr == TCM_HEAD_TAG) {
1959 dev->dev_cur_ordered_id++;
1960 pr_debug("Incremented dev_cur_ordered_id: %u for HEAD_OF_QUEUE\n",
1961 dev->dev_cur_ordered_id);
1962 } else if (cmd->sam_task_attr == TCM_ORDERED_TAG) {
1963 atomic_dec_mb(&dev->dev_ordered_sync);
1964
1965 dev->dev_cur_ordered_id++;
1966 pr_debug("Incremented dev_cur_ordered_id: %u for ORDERED\n",
1967 dev->dev_cur_ordered_id);
1968 }
1969 restart:
1970 target_restart_delayed_cmds(dev);
1971 }
1972
1973 static void transport_complete_qf(struct se_cmd *cmd)
1974 {
1975 int ret = 0;
1976
1977 transport_complete_task_attr(cmd);
1978
1979 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
1980 trace_target_cmd_complete(cmd);
1981 ret = cmd->se_tfo->queue_status(cmd);
1982 goto out;
1983 }
1984
1985 switch (cmd->data_direction) {
1986 case DMA_FROM_DEVICE:
1987 trace_target_cmd_complete(cmd);
1988 ret = cmd->se_tfo->queue_data_in(cmd);
1989 break;
1990 case DMA_TO_DEVICE:
1991 if (cmd->se_cmd_flags & SCF_BIDI) {
1992 ret = cmd->se_tfo->queue_data_in(cmd);
1993 break;
1994 }
1995 /* Fall through for DMA_TO_DEVICE */
1996 case DMA_NONE:
1997 trace_target_cmd_complete(cmd);
1998 ret = cmd->se_tfo->queue_status(cmd);
1999 break;
2000 default:
2001 break;
2002 }
2003
2004 out:
2005 if (ret < 0) {
2006 transport_handle_queue_full(cmd, cmd->se_dev);
2007 return;
2008 }
2009 transport_lun_remove_cmd(cmd);
2010 transport_cmd_check_stop_to_fabric(cmd);
2011 }
2012
2013 static void transport_handle_queue_full(
2014 struct se_cmd *cmd,
2015 struct se_device *dev)
2016 {
2017 spin_lock_irq(&dev->qf_cmd_lock);
2018 list_add_tail(&cmd->se_qf_node, &cmd->se_dev->qf_cmd_list);
2019 atomic_inc_mb(&dev->dev_qf_count);
2020 spin_unlock_irq(&cmd->se_dev->qf_cmd_lock);
2021
2022 schedule_work(&cmd->se_dev->qf_work_queue);
2023 }
2024
2025 static bool target_read_prot_action(struct se_cmd *cmd)
2026 {
2027 switch (cmd->prot_op) {
2028 case TARGET_PROT_DIN_STRIP:
2029 if (!(cmd->se_sess->sup_prot_ops & TARGET_PROT_DIN_STRIP)) {
2030 u32 sectors = cmd->data_length >>
2031 ilog2(cmd->se_dev->dev_attrib.block_size);
2032
2033 cmd->pi_err = sbc_dif_verify(cmd, cmd->t_task_lba,
2034 sectors, 0, cmd->t_prot_sg,
2035 0);
2036 if (cmd->pi_err)
2037 return true;
2038 }
2039 break;
2040 case TARGET_PROT_DIN_INSERT:
2041 if (cmd->se_sess->sup_prot_ops & TARGET_PROT_DIN_INSERT)
2042 break;
2043
2044 sbc_dif_generate(cmd);
2045 break;
2046 default:
2047 break;
2048 }
2049
2050 return false;
2051 }
2052
2053 static void target_complete_ok_work(struct work_struct *work)
2054 {
2055 struct se_cmd *cmd = container_of(work, struct se_cmd, work);
2056 int ret;
2057
2058 /*
2059 * Check if we need to move delayed/dormant tasks from cmds on the
2060 * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task
2061 * Attribute.
2062 */
2063 transport_complete_task_attr(cmd);
2064
2065 /*
2066 * Check to schedule QUEUE_FULL work, or execute an existing
2067 * cmd->transport_qf_callback()
2068 */
2069 if (atomic_read(&cmd->se_dev->dev_qf_count) != 0)
2070 schedule_work(&cmd->se_dev->qf_work_queue);
2071
2072 /*
2073 * Check if we need to send a sense buffer from
2074 * the struct se_cmd in question.
2075 */
2076 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
2077 WARN_ON(!cmd->scsi_status);
2078 ret = transport_send_check_condition_and_sense(
2079 cmd, 0, 1);
2080 if (ret == -EAGAIN || ret == -ENOMEM)
2081 goto queue_full;
2082
2083 transport_lun_remove_cmd(cmd);
2084 transport_cmd_check_stop_to_fabric(cmd);
2085 return;
2086 }
2087 /*
2088 * Check for a callback, used by amongst other things
2089 * XDWRITE_READ_10 and COMPARE_AND_WRITE emulation.
2090 */
2091 if (cmd->transport_complete_callback) {
2092 sense_reason_t rc;
2093 bool caw = (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE);
2094 bool zero_dl = !(cmd->data_length);
2095 int post_ret = 0;
2096
2097 rc = cmd->transport_complete_callback(cmd, true, &post_ret);
2098 if (!rc && !post_ret) {
2099 if (caw && zero_dl)
2100 goto queue_rsp;
2101
2102 return;
2103 } else if (rc) {
2104 ret = transport_send_check_condition_and_sense(cmd,
2105 rc, 0);
2106 if (ret == -EAGAIN || ret == -ENOMEM)
2107 goto queue_full;
2108
2109 transport_lun_remove_cmd(cmd);
2110 transport_cmd_check_stop_to_fabric(cmd);
2111 return;
2112 }
2113 }
2114
2115 queue_rsp:
2116 switch (cmd->data_direction) {
2117 case DMA_FROM_DEVICE:
2118 atomic_long_add(cmd->data_length,
2119 &cmd->se_lun->lun_stats.tx_data_octets);
2120 /*
2121 * Perform READ_STRIP of PI using software emulation when
2122 * backend had PI enabled, if the transport will not be
2123 * performing hardware READ_STRIP offload.
2124 */
2125 if (target_read_prot_action(cmd)) {
2126 ret = transport_send_check_condition_and_sense(cmd,
2127 cmd->pi_err, 0);
2128 if (ret == -EAGAIN || ret == -ENOMEM)
2129 goto queue_full;
2130
2131 transport_lun_remove_cmd(cmd);
2132 transport_cmd_check_stop_to_fabric(cmd);
2133 return;
2134 }
2135
2136 trace_target_cmd_complete(cmd);
2137 ret = cmd->se_tfo->queue_data_in(cmd);
2138 if (ret == -EAGAIN || ret == -ENOMEM)
2139 goto queue_full;
2140 break;
2141 case DMA_TO_DEVICE:
2142 atomic_long_add(cmd->data_length,
2143 &cmd->se_lun->lun_stats.rx_data_octets);
2144 /*
2145 * Check if we need to send READ payload for BIDI-COMMAND
2146 */
2147 if (cmd->se_cmd_flags & SCF_BIDI) {
2148 atomic_long_add(cmd->data_length,
2149 &cmd->se_lun->lun_stats.tx_data_octets);
2150 ret = cmd->se_tfo->queue_data_in(cmd);
2151 if (ret == -EAGAIN || ret == -ENOMEM)
2152 goto queue_full;
2153 break;
2154 }
2155 /* Fall through for DMA_TO_DEVICE */
2156 case DMA_NONE:
2157 trace_target_cmd_complete(cmd);
2158 ret = cmd->se_tfo->queue_status(cmd);
2159 if (ret == -EAGAIN || ret == -ENOMEM)
2160 goto queue_full;
2161 break;
2162 default:
2163 break;
2164 }
2165
2166 transport_lun_remove_cmd(cmd);
2167 transport_cmd_check_stop_to_fabric(cmd);
2168 return;
2169
2170 queue_full:
2171 pr_debug("Handling complete_ok QUEUE_FULL: se_cmd: %p,"
2172 " data_direction: %d\n", cmd, cmd->data_direction);
2173 cmd->t_state = TRANSPORT_COMPLETE_QF_OK;
2174 transport_handle_queue_full(cmd, cmd->se_dev);
2175 }
2176
2177 static inline void transport_free_sgl(struct scatterlist *sgl, int nents)
2178 {
2179 struct scatterlist *sg;
2180 int count;
2181
2182 for_each_sg(sgl, sg, nents, count)
2183 __free_page(sg_page(sg));
2184
2185 kfree(sgl);
2186 }
2187
2188 static inline void transport_reset_sgl_orig(struct se_cmd *cmd)
2189 {
2190 /*
2191 * Check for saved t_data_sg that may be used for COMPARE_AND_WRITE
2192 * emulation, and free + reset pointers if necessary..
2193 */
2194 if (!cmd->t_data_sg_orig)
2195 return;
2196
2197 kfree(cmd->t_data_sg);
2198 cmd->t_data_sg = cmd->t_data_sg_orig;
2199 cmd->t_data_sg_orig = NULL;
2200 cmd->t_data_nents = cmd->t_data_nents_orig;
2201 cmd->t_data_nents_orig = 0;
2202 }
2203
2204 static inline void transport_free_pages(struct se_cmd *cmd)
2205 {
2206 if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC)) {
2207 transport_free_sgl(cmd->t_prot_sg, cmd->t_prot_nents);
2208 cmd->t_prot_sg = NULL;
2209 cmd->t_prot_nents = 0;
2210 }
2211
2212 if (cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) {
2213 /*
2214 * Release special case READ buffer payload required for
2215 * SG_TO_MEM_NOALLOC to function with COMPARE_AND_WRITE
2216 */
2217 if (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) {
2218 transport_free_sgl(cmd->t_bidi_data_sg,
2219 cmd->t_bidi_data_nents);
2220 cmd->t_bidi_data_sg = NULL;
2221 cmd->t_bidi_data_nents = 0;
2222 }
2223 transport_reset_sgl_orig(cmd);
2224 return;
2225 }
2226 transport_reset_sgl_orig(cmd);
2227
2228 transport_free_sgl(cmd->t_data_sg, cmd->t_data_nents);
2229 cmd->t_data_sg = NULL;
2230 cmd->t_data_nents = 0;
2231
2232 transport_free_sgl(cmd->t_bidi_data_sg, cmd->t_bidi_data_nents);
2233 cmd->t_bidi_data_sg = NULL;
2234 cmd->t_bidi_data_nents = 0;
2235 }
2236
2237 /**
2238 * transport_put_cmd - release a reference to a command
2239 * @cmd: command to release
2240 *
2241 * This routine releases our reference to the command and frees it if possible.
2242 */
2243 static int transport_put_cmd(struct se_cmd *cmd)
2244 {
2245 BUG_ON(!cmd->se_tfo);
2246 /*
2247 * If this cmd has been setup with target_get_sess_cmd(), drop
2248 * the kref and call ->release_cmd() in kref callback.
2249 */
2250 return target_put_sess_cmd(cmd);
2251 }
2252
2253 void *transport_kmap_data_sg(struct se_cmd *cmd)
2254 {
2255 struct scatterlist *sg = cmd->t_data_sg;
2256 struct page **pages;
2257 int i;
2258
2259 /*
2260 * We need to take into account a possible offset here for fabrics like
2261 * tcm_loop who may be using a contig buffer from the SCSI midlayer for
2262 * control CDBs passed as SGLs via transport_generic_map_mem_to_cmd()
2263 */
2264 if (!cmd->t_data_nents)
2265 return NULL;
2266
2267 BUG_ON(!sg);
2268 if (cmd->t_data_nents == 1)
2269 return kmap(sg_page(sg)) + sg->offset;
2270
2271 /* >1 page. use vmap */
2272 pages = kmalloc(sizeof(*pages) * cmd->t_data_nents, GFP_KERNEL);
2273 if (!pages)
2274 return NULL;
2275
2276 /* convert sg[] to pages[] */
2277 for_each_sg(cmd->t_data_sg, sg, cmd->t_data_nents, i) {
2278 pages[i] = sg_page(sg);
2279 }
2280
2281 cmd->t_data_vmap = vmap(pages, cmd->t_data_nents, VM_MAP, PAGE_KERNEL);
2282 kfree(pages);
2283 if (!cmd->t_data_vmap)
2284 return NULL;
2285
2286 return cmd->t_data_vmap + cmd->t_data_sg[0].offset;
2287 }
2288 EXPORT_SYMBOL(transport_kmap_data_sg);
2289
2290 void transport_kunmap_data_sg(struct se_cmd *cmd)
2291 {
2292 if (!cmd->t_data_nents) {
2293 return;
2294 } else if (cmd->t_data_nents == 1) {
2295 kunmap(sg_page(cmd->t_data_sg));
2296 return;
2297 }
2298
2299 vunmap(cmd->t_data_vmap);
2300 cmd->t_data_vmap = NULL;
2301 }
2302 EXPORT_SYMBOL(transport_kunmap_data_sg);
2303
2304 int
2305 target_alloc_sgl(struct scatterlist **sgl, unsigned int *nents, u32 length,
2306 bool zero_page)
2307 {
2308 struct scatterlist *sg;
2309 struct page *page;
2310 gfp_t zero_flag = (zero_page) ? __GFP_ZERO : 0;
2311 unsigned int nent;
2312 int i = 0;
2313
2314 nent = DIV_ROUND_UP(length, PAGE_SIZE);
2315 sg = kmalloc(sizeof(struct scatterlist) * nent, GFP_KERNEL);
2316 if (!sg)
2317 return -ENOMEM;
2318
2319 sg_init_table(sg, nent);
2320
2321 while (length) {
2322 u32 page_len = min_t(u32, length, PAGE_SIZE);
2323 page = alloc_page(GFP_KERNEL | zero_flag);
2324 if (!page)
2325 goto out;
2326
2327 sg_set_page(&sg[i], page, page_len, 0);
2328 length -= page_len;
2329 i++;
2330 }
2331 *sgl = sg;
2332 *nents = nent;
2333 return 0;
2334
2335 out:
2336 while (i > 0) {
2337 i--;
2338 __free_page(sg_page(&sg[i]));
2339 }
2340 kfree(sg);
2341 return -ENOMEM;
2342 }
2343
2344 /*
2345 * Allocate any required resources to execute the command. For writes we
2346 * might not have the payload yet, so notify the fabric via a call to
2347 * ->write_pending instead. Otherwise place it on the execution queue.
2348 */
2349 sense_reason_t
2350 transport_generic_new_cmd(struct se_cmd *cmd)
2351 {
2352 int ret = 0;
2353 bool zero_flag = !(cmd->se_cmd_flags & SCF_SCSI_DATA_CDB);
2354
2355 if (cmd->prot_op != TARGET_PROT_NORMAL &&
2356 !(cmd->se_cmd_flags & SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC)) {
2357 ret = target_alloc_sgl(&cmd->t_prot_sg, &cmd->t_prot_nents,
2358 cmd->prot_length, true);
2359 if (ret < 0)
2360 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2361 }
2362
2363 /*
2364 * Determine is the TCM fabric module has already allocated physical
2365 * memory, and is directly calling transport_generic_map_mem_to_cmd()
2366 * beforehand.
2367 */
2368 if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) &&
2369 cmd->data_length) {
2370
2371 if ((cmd->se_cmd_flags & SCF_BIDI) ||
2372 (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE)) {
2373 u32 bidi_length;
2374
2375 if (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE)
2376 bidi_length = cmd->t_task_nolb *
2377 cmd->se_dev->dev_attrib.block_size;
2378 else
2379 bidi_length = cmd->data_length;
2380
2381 ret = target_alloc_sgl(&cmd->t_bidi_data_sg,
2382 &cmd->t_bidi_data_nents,
2383 bidi_length, zero_flag);
2384 if (ret < 0)
2385 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2386 }
2387
2388 ret = target_alloc_sgl(&cmd->t_data_sg, &cmd->t_data_nents,
2389 cmd->data_length, zero_flag);
2390 if (ret < 0)
2391 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2392 } else if ((cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) &&
2393 cmd->data_length) {
2394 /*
2395 * Special case for COMPARE_AND_WRITE with fabrics
2396 * using SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC.
2397 */
2398 u32 caw_length = cmd->t_task_nolb *
2399 cmd->se_dev->dev_attrib.block_size;
2400
2401 ret = target_alloc_sgl(&cmd->t_bidi_data_sg,
2402 &cmd->t_bidi_data_nents,
2403 caw_length, zero_flag);
2404 if (ret < 0)
2405 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2406 }
2407 /*
2408 * If this command is not a write we can execute it right here,
2409 * for write buffers we need to notify the fabric driver first
2410 * and let it call back once the write buffers are ready.
2411 */
2412 target_add_to_state_list(cmd);
2413 if (cmd->data_direction != DMA_TO_DEVICE || cmd->data_length == 0) {
2414 target_execute_cmd(cmd);
2415 return 0;
2416 }
2417 transport_cmd_check_stop(cmd, false, true);
2418
2419 ret = cmd->se_tfo->write_pending(cmd);
2420 if (ret == -EAGAIN || ret == -ENOMEM)
2421 goto queue_full;
2422
2423 /* fabric drivers should only return -EAGAIN or -ENOMEM as error */
2424 WARN_ON(ret);
2425
2426 return (!ret) ? 0 : TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2427
2428 queue_full:
2429 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", cmd);
2430 cmd->t_state = TRANSPORT_COMPLETE_QF_WP;
2431 transport_handle_queue_full(cmd, cmd->se_dev);
2432 return 0;
2433 }
2434 EXPORT_SYMBOL(transport_generic_new_cmd);
2435
2436 static void transport_write_pending_qf(struct se_cmd *cmd)
2437 {
2438 int ret;
2439
2440 ret = cmd->se_tfo->write_pending(cmd);
2441 if (ret == -EAGAIN || ret == -ENOMEM) {
2442 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n",
2443 cmd);
2444 transport_handle_queue_full(cmd, cmd->se_dev);
2445 }
2446 }
2447
2448 static bool
2449 __transport_wait_for_tasks(struct se_cmd *, bool, bool *, bool *,
2450 unsigned long *flags);
2451
2452 static void target_wait_free_cmd(struct se_cmd *cmd, bool *aborted, bool *tas)
2453 {
2454 unsigned long flags;
2455
2456 spin_lock_irqsave(&cmd->t_state_lock, flags);
2457 __transport_wait_for_tasks(cmd, true, aborted, tas, &flags);
2458 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2459 }
2460
2461 int transport_generic_free_cmd(struct se_cmd *cmd, int wait_for_tasks)
2462 {
2463 int ret = 0;
2464 bool aborted = false, tas = false;
2465
2466 if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD)) {
2467 if (wait_for_tasks && (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
2468 target_wait_free_cmd(cmd, &aborted, &tas);
2469
2470 if (!aborted || tas)
2471 ret = transport_put_cmd(cmd);
2472 } else {
2473 if (wait_for_tasks)
2474 target_wait_free_cmd(cmd, &aborted, &tas);
2475 /*
2476 * Handle WRITE failure case where transport_generic_new_cmd()
2477 * has already added se_cmd to state_list, but fabric has
2478 * failed command before I/O submission.
2479 */
2480 if (cmd->state_active)
2481 target_remove_from_state_list(cmd);
2482
2483 if (cmd->se_lun)
2484 transport_lun_remove_cmd(cmd);
2485
2486 if (!aborted || tas)
2487 ret = transport_put_cmd(cmd);
2488 }
2489 /*
2490 * If the task has been internally aborted due to TMR ABORT_TASK
2491 * or LUN_RESET, target_core_tmr.c is responsible for performing
2492 * the remaining calls to target_put_sess_cmd(), and not the
2493 * callers of this function.
2494 */
2495 if (aborted) {
2496 pr_debug("Detected CMD_T_ABORTED for ITT: %llu\n", cmd->tag);
2497 wait_for_completion(&cmd->cmd_wait_comp);
2498 cmd->se_tfo->release_cmd(cmd);
2499 ret = 1;
2500 }
2501 return ret;
2502 }
2503 EXPORT_SYMBOL(transport_generic_free_cmd);
2504
2505 /* target_get_sess_cmd - Add command to active ->sess_cmd_list
2506 * @se_cmd: command descriptor to add
2507 * @ack_kref: Signal that fabric will perform an ack target_put_sess_cmd()
2508 */
2509 int target_get_sess_cmd(struct se_cmd *se_cmd, bool ack_kref)
2510 {
2511 struct se_session *se_sess = se_cmd->se_sess;
2512 unsigned long flags;
2513 int ret = 0;
2514
2515 /*
2516 * Add a second kref if the fabric caller is expecting to handle
2517 * fabric acknowledgement that requires two target_put_sess_cmd()
2518 * invocations before se_cmd descriptor release.
2519 */
2520 if (ack_kref) {
2521 kref_get(&se_cmd->cmd_kref);
2522 se_cmd->se_cmd_flags |= SCF_ACK_KREF;
2523 }
2524
2525 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2526 if (se_sess->sess_tearing_down) {
2527 ret = -ESHUTDOWN;
2528 goto out;
2529 }
2530 list_add_tail(&se_cmd->se_cmd_list, &se_sess->sess_cmd_list);
2531 out:
2532 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2533
2534 if (ret && ack_kref)
2535 target_put_sess_cmd(se_cmd);
2536
2537 return ret;
2538 }
2539 EXPORT_SYMBOL(target_get_sess_cmd);
2540
2541 static void target_free_cmd_mem(struct se_cmd *cmd)
2542 {
2543 transport_free_pages(cmd);
2544
2545 if (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)
2546 core_tmr_release_req(cmd->se_tmr_req);
2547 if (cmd->t_task_cdb != cmd->__t_task_cdb)
2548 kfree(cmd->t_task_cdb);
2549 }
2550
2551 static void target_release_cmd_kref(struct kref *kref)
2552 {
2553 struct se_cmd *se_cmd = container_of(kref, struct se_cmd, cmd_kref);
2554 struct se_session *se_sess = se_cmd->se_sess;
2555 unsigned long flags;
2556 bool fabric_stop;
2557
2558 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2559
2560 spin_lock(&se_cmd->t_state_lock);
2561 fabric_stop = (se_cmd->transport_state & CMD_T_FABRIC_STOP) &&
2562 (se_cmd->transport_state & CMD_T_ABORTED);
2563 spin_unlock(&se_cmd->t_state_lock);
2564
2565 if (se_cmd->cmd_wait_set || fabric_stop) {
2566 list_del_init(&se_cmd->se_cmd_list);
2567 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2568 target_free_cmd_mem(se_cmd);
2569 complete(&se_cmd->cmd_wait_comp);
2570 return;
2571 }
2572 list_del_init(&se_cmd->se_cmd_list);
2573 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2574
2575 target_free_cmd_mem(se_cmd);
2576 se_cmd->se_tfo->release_cmd(se_cmd);
2577 }
2578
2579 /* target_put_sess_cmd - Check for active I/O shutdown via kref_put
2580 * @se_cmd: command descriptor to drop
2581 */
2582 int target_put_sess_cmd(struct se_cmd *se_cmd)
2583 {
2584 struct se_session *se_sess = se_cmd->se_sess;
2585
2586 if (!se_sess) {
2587 target_free_cmd_mem(se_cmd);
2588 se_cmd->se_tfo->release_cmd(se_cmd);
2589 return 1;
2590 }
2591 return kref_put(&se_cmd->cmd_kref, target_release_cmd_kref);
2592 }
2593 EXPORT_SYMBOL(target_put_sess_cmd);
2594
2595 /* target_sess_cmd_list_set_waiting - Flag all commands in
2596 * sess_cmd_list to complete cmd_wait_comp. Set
2597 * sess_tearing_down so no more commands are queued.
2598 * @se_sess: session to flag
2599 */
2600 void target_sess_cmd_list_set_waiting(struct se_session *se_sess)
2601 {
2602 struct se_cmd *se_cmd;
2603 unsigned long flags;
2604 int rc;
2605
2606 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2607 if (se_sess->sess_tearing_down) {
2608 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2609 return;
2610 }
2611 se_sess->sess_tearing_down = 1;
2612 list_splice_init(&se_sess->sess_cmd_list, &se_sess->sess_wait_list);
2613
2614 list_for_each_entry(se_cmd, &se_sess->sess_wait_list, se_cmd_list) {
2615 rc = kref_get_unless_zero(&se_cmd->cmd_kref);
2616 if (rc) {
2617 se_cmd->cmd_wait_set = 1;
2618 spin_lock(&se_cmd->t_state_lock);
2619 se_cmd->transport_state |= CMD_T_FABRIC_STOP;
2620 spin_unlock(&se_cmd->t_state_lock);
2621 }
2622 }
2623
2624 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2625 }
2626 EXPORT_SYMBOL(target_sess_cmd_list_set_waiting);
2627
2628 /* target_wait_for_sess_cmds - Wait for outstanding descriptors
2629 * @se_sess: session to wait for active I/O
2630 */
2631 void target_wait_for_sess_cmds(struct se_session *se_sess)
2632 {
2633 struct se_cmd *se_cmd, *tmp_cmd;
2634 unsigned long flags;
2635 bool tas;
2636
2637 list_for_each_entry_safe(se_cmd, tmp_cmd,
2638 &se_sess->sess_wait_list, se_cmd_list) {
2639 pr_debug("Waiting for se_cmd: %p t_state: %d, fabric state:"
2640 " %d\n", se_cmd, se_cmd->t_state,
2641 se_cmd->se_tfo->get_cmd_state(se_cmd));
2642
2643 spin_lock_irqsave(&se_cmd->t_state_lock, flags);
2644 tas = (se_cmd->transport_state & CMD_T_TAS);
2645 spin_unlock_irqrestore(&se_cmd->t_state_lock, flags);
2646
2647 if (!target_put_sess_cmd(se_cmd)) {
2648 if (tas)
2649 target_put_sess_cmd(se_cmd);
2650 }
2651
2652 wait_for_completion(&se_cmd->cmd_wait_comp);
2653 pr_debug("After cmd_wait_comp: se_cmd: %p t_state: %d"
2654 " fabric state: %d\n", se_cmd, se_cmd->t_state,
2655 se_cmd->se_tfo->get_cmd_state(se_cmd));
2656
2657 se_cmd->se_tfo->release_cmd(se_cmd);
2658 }
2659
2660 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2661 WARN_ON(!list_empty(&se_sess->sess_cmd_list));
2662 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2663
2664 }
2665 EXPORT_SYMBOL(target_wait_for_sess_cmds);
2666
2667 void transport_clear_lun_ref(struct se_lun *lun)
2668 {
2669 percpu_ref_kill(&lun->lun_ref);
2670 wait_for_completion(&lun->lun_ref_comp);
2671 }
2672
2673 static bool
2674 __transport_wait_for_tasks(struct se_cmd *cmd, bool fabric_stop,
2675 bool *aborted, bool *tas, unsigned long *flags)
2676 __releases(&cmd->t_state_lock)
2677 __acquires(&cmd->t_state_lock)
2678 {
2679
2680 assert_spin_locked(&cmd->t_state_lock);
2681 WARN_ON_ONCE(!irqs_disabled());
2682
2683 if (fabric_stop)
2684 cmd->transport_state |= CMD_T_FABRIC_STOP;
2685
2686 if (cmd->transport_state & CMD_T_ABORTED)
2687 *aborted = true;
2688
2689 if (cmd->transport_state & CMD_T_TAS)
2690 *tas = true;
2691
2692 if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD) &&
2693 !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
2694 return false;
2695
2696 if (!(cmd->se_cmd_flags & SCF_SUPPORTED_SAM_OPCODE) &&
2697 !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
2698 return false;
2699
2700 if (!(cmd->transport_state & CMD_T_ACTIVE))
2701 return false;
2702
2703 if (fabric_stop && *aborted)
2704 return false;
2705
2706 cmd->transport_state |= CMD_T_STOP;
2707
2708 pr_debug("wait_for_tasks: Stopping %p ITT: 0x%08llx i_state: %d,"
2709 " t_state: %d, CMD_T_STOP\n", cmd, cmd->tag,
2710 cmd->se_tfo->get_cmd_state(cmd), cmd->t_state);
2711
2712 spin_unlock_irqrestore(&cmd->t_state_lock, *flags);
2713
2714 wait_for_completion(&cmd->t_transport_stop_comp);
2715
2716 spin_lock_irqsave(&cmd->t_state_lock, *flags);
2717 cmd->transport_state &= ~(CMD_T_ACTIVE | CMD_T_STOP);
2718
2719 pr_debug("wait_for_tasks: Stopped wait_for_completion(&cmd->"
2720 "t_transport_stop_comp) for ITT: 0x%08llx\n", cmd->tag);
2721
2722 return true;
2723 }
2724
2725 /**
2726 * transport_wait_for_tasks - wait for completion to occur
2727 * @cmd: command to wait
2728 *
2729 * Called from frontend fabric context to wait for storage engine
2730 * to pause and/or release frontend generated struct se_cmd.
2731 */
2732 bool transport_wait_for_tasks(struct se_cmd *cmd)
2733 {
2734 unsigned long flags;
2735 bool ret, aborted = false, tas = false;
2736
2737 spin_lock_irqsave(&cmd->t_state_lock, flags);
2738 ret = __transport_wait_for_tasks(cmd, false, &aborted, &tas, &flags);
2739 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2740
2741 return ret;
2742 }
2743 EXPORT_SYMBOL(transport_wait_for_tasks);
2744
2745 struct sense_info {
2746 u8 key;
2747 u8 asc;
2748 u8 ascq;
2749 bool add_sector_info;
2750 };
2751
2752 static const struct sense_info sense_info_table[] = {
2753 [TCM_NO_SENSE] = {
2754 .key = NOT_READY
2755 },
2756 [TCM_NON_EXISTENT_LUN] = {
2757 .key = ILLEGAL_REQUEST,
2758 .asc = 0x25 /* LOGICAL UNIT NOT SUPPORTED */
2759 },
2760 [TCM_UNSUPPORTED_SCSI_OPCODE] = {
2761 .key = ILLEGAL_REQUEST,
2762 .asc = 0x20, /* INVALID COMMAND OPERATION CODE */
2763 },
2764 [TCM_SECTOR_COUNT_TOO_MANY] = {
2765 .key = ILLEGAL_REQUEST,
2766 .asc = 0x20, /* INVALID COMMAND OPERATION CODE */
2767 },
2768 [TCM_UNKNOWN_MODE_PAGE] = {
2769 .key = ILLEGAL_REQUEST,
2770 .asc = 0x24, /* INVALID FIELD IN CDB */
2771 },
2772 [TCM_CHECK_CONDITION_ABORT_CMD] = {
2773 .key = ABORTED_COMMAND,
2774 .asc = 0x29, /* BUS DEVICE RESET FUNCTION OCCURRED */
2775 .ascq = 0x03,
2776 },
2777 [TCM_INCORRECT_AMOUNT_OF_DATA] = {
2778 .key = ABORTED_COMMAND,
2779 .asc = 0x0c, /* WRITE ERROR */
2780 .ascq = 0x0d, /* NOT ENOUGH UNSOLICITED DATA */
2781 },
2782 [TCM_INVALID_CDB_FIELD] = {
2783 .key = ILLEGAL_REQUEST,
2784 .asc = 0x24, /* INVALID FIELD IN CDB */
2785 },
2786 [TCM_INVALID_PARAMETER_LIST] = {
2787 .key = ILLEGAL_REQUEST,
2788 .asc = 0x26, /* INVALID FIELD IN PARAMETER LIST */
2789 },
2790 [TCM_PARAMETER_LIST_LENGTH_ERROR] = {
2791 .key = ILLEGAL_REQUEST,
2792 .asc = 0x1a, /* PARAMETER LIST LENGTH ERROR */
2793 },
2794 [TCM_UNEXPECTED_UNSOLICITED_DATA] = {
2795 .key = ILLEGAL_REQUEST,
2796 .asc = 0x0c, /* WRITE ERROR */
2797 .ascq = 0x0c, /* UNEXPECTED_UNSOLICITED_DATA */
2798 },
2799 [TCM_SERVICE_CRC_ERROR] = {
2800 .key = ABORTED_COMMAND,
2801 .asc = 0x47, /* PROTOCOL SERVICE CRC ERROR */
2802 .ascq = 0x05, /* N/A */
2803 },
2804 [TCM_SNACK_REJECTED] = {
2805 .key = ABORTED_COMMAND,
2806 .asc = 0x11, /* READ ERROR */
2807 .ascq = 0x13, /* FAILED RETRANSMISSION REQUEST */
2808 },
2809 [TCM_WRITE_PROTECTED] = {
2810 .key = DATA_PROTECT,
2811 .asc = 0x27, /* WRITE PROTECTED */
2812 },
2813 [TCM_ADDRESS_OUT_OF_RANGE] = {
2814 .key = ILLEGAL_REQUEST,
2815 .asc = 0x21, /* LOGICAL BLOCK ADDRESS OUT OF RANGE */
2816 },
2817 [TCM_CHECK_CONDITION_UNIT_ATTENTION] = {
2818 .key = UNIT_ATTENTION,
2819 },
2820 [TCM_CHECK_CONDITION_NOT_READY] = {
2821 .key = NOT_READY,
2822 },
2823 [TCM_MISCOMPARE_VERIFY] = {
2824 .key = MISCOMPARE,
2825 .asc = 0x1d, /* MISCOMPARE DURING VERIFY OPERATION */
2826 .ascq = 0x00,
2827 },
2828 [TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED] = {
2829 .key = ABORTED_COMMAND,
2830 .asc = 0x10,
2831 .ascq = 0x01, /* LOGICAL BLOCK GUARD CHECK FAILED */
2832 .add_sector_info = true,
2833 },
2834 [TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED] = {
2835 .key = ABORTED_COMMAND,
2836 .asc = 0x10,
2837 .ascq = 0x02, /* LOGICAL BLOCK APPLICATION TAG CHECK FAILED */
2838 .add_sector_info = true,
2839 },
2840 [TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED] = {
2841 .key = ABORTED_COMMAND,
2842 .asc = 0x10,
2843 .ascq = 0x03, /* LOGICAL BLOCK REFERENCE TAG CHECK FAILED */
2844 .add_sector_info = true,
2845 },
2846 [TCM_COPY_TARGET_DEVICE_NOT_REACHABLE] = {
2847 .key = COPY_ABORTED,
2848 .asc = 0x0d,
2849 .ascq = 0x02, /* COPY TARGET DEVICE NOT REACHABLE */
2850
2851 },
2852 [TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE] = {
2853 /*
2854 * Returning ILLEGAL REQUEST would cause immediate IO errors on
2855 * Solaris initiators. Returning NOT READY instead means the
2856 * operations will be retried a finite number of times and we
2857 * can survive intermittent errors.
2858 */
2859 .key = NOT_READY,
2860 .asc = 0x08, /* LOGICAL UNIT COMMUNICATION FAILURE */
2861 },
2862 };
2863
2864 static int translate_sense_reason(struct se_cmd *cmd, sense_reason_t reason)
2865 {
2866 const struct sense_info *si;
2867 u8 *buffer = cmd->sense_buffer;
2868 int r = (__force int)reason;
2869 u8 asc, ascq;
2870 bool desc_format = target_sense_desc_format(cmd->se_dev);
2871
2872 if (r < ARRAY_SIZE(sense_info_table) && sense_info_table[r].key)
2873 si = &sense_info_table[r];
2874 else
2875 si = &sense_info_table[(__force int)
2876 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE];
2877
2878 if (reason == TCM_CHECK_CONDITION_UNIT_ATTENTION) {
2879 core_scsi3_ua_for_check_condition(cmd, &asc, &ascq);
2880 WARN_ON_ONCE(asc == 0);
2881 } else if (si->asc == 0) {
2882 WARN_ON_ONCE(cmd->scsi_asc == 0);
2883 asc = cmd->scsi_asc;
2884 ascq = cmd->scsi_ascq;
2885 } else {
2886 asc = si->asc;
2887 ascq = si->ascq;
2888 }
2889
2890 scsi_build_sense_buffer(desc_format, buffer, si->key, asc, ascq);
2891 if (si->add_sector_info)
2892 return scsi_set_sense_information(buffer,
2893 cmd->scsi_sense_length,
2894 cmd->bad_sector);
2895
2896 return 0;
2897 }
2898
2899 int
2900 transport_send_check_condition_and_sense(struct se_cmd *cmd,
2901 sense_reason_t reason, int from_transport)
2902 {
2903 unsigned long flags;
2904
2905 spin_lock_irqsave(&cmd->t_state_lock, flags);
2906 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
2907 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2908 return 0;
2909 }
2910 cmd->se_cmd_flags |= SCF_SENT_CHECK_CONDITION;
2911 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2912
2913 if (!from_transport) {
2914 int rc;
2915
2916 cmd->se_cmd_flags |= SCF_EMULATED_TASK_SENSE;
2917 cmd->scsi_status = SAM_STAT_CHECK_CONDITION;
2918 cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER;
2919 rc = translate_sense_reason(cmd, reason);
2920 if (rc)
2921 return rc;
2922 }
2923
2924 trace_target_cmd_complete(cmd);
2925 return cmd->se_tfo->queue_status(cmd);
2926 }
2927 EXPORT_SYMBOL(transport_send_check_condition_and_sense);
2928
2929 static int __transport_check_aborted_status(struct se_cmd *cmd, int send_status)
2930 __releases(&cmd->t_state_lock)
2931 __acquires(&cmd->t_state_lock)
2932 {
2933 assert_spin_locked(&cmd->t_state_lock);
2934 WARN_ON_ONCE(!irqs_disabled());
2935
2936 if (!(cmd->transport_state & CMD_T_ABORTED))
2937 return 0;
2938 /*
2939 * If cmd has been aborted but either no status is to be sent or it has
2940 * already been sent, just return
2941 */
2942 if (!send_status || !(cmd->se_cmd_flags & SCF_SEND_DELAYED_TAS)) {
2943 if (send_status)
2944 cmd->se_cmd_flags |= SCF_SEND_DELAYED_TAS;
2945 return 1;
2946 }
2947
2948 pr_debug("Sending delayed SAM_STAT_TASK_ABORTED status for CDB:"
2949 " 0x%02x ITT: 0x%08llx\n", cmd->t_task_cdb[0], cmd->tag);
2950
2951 cmd->se_cmd_flags &= ~SCF_SEND_DELAYED_TAS;
2952 cmd->scsi_status = SAM_STAT_TASK_ABORTED;
2953 trace_target_cmd_complete(cmd);
2954
2955 spin_unlock_irq(&cmd->t_state_lock);
2956 cmd->se_tfo->queue_status(cmd);
2957 spin_lock_irq(&cmd->t_state_lock);
2958
2959 return 1;
2960 }
2961
2962 int transport_check_aborted_status(struct se_cmd *cmd, int send_status)
2963 {
2964 int ret;
2965
2966 spin_lock_irq(&cmd->t_state_lock);
2967 ret = __transport_check_aborted_status(cmd, send_status);
2968 spin_unlock_irq(&cmd->t_state_lock);
2969
2970 return ret;
2971 }
2972 EXPORT_SYMBOL(transport_check_aborted_status);
2973
2974 void transport_send_task_abort(struct se_cmd *cmd)
2975 {
2976 unsigned long flags;
2977
2978 spin_lock_irqsave(&cmd->t_state_lock, flags);
2979 if (cmd->se_cmd_flags & (SCF_SENT_CHECK_CONDITION)) {
2980 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2981 return;
2982 }
2983 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2984
2985 /*
2986 * If there are still expected incoming fabric WRITEs, we wait
2987 * until until they have completed before sending a TASK_ABORTED
2988 * response. This response with TASK_ABORTED status will be
2989 * queued back to fabric module by transport_check_aborted_status().
2990 */
2991 if (cmd->data_direction == DMA_TO_DEVICE) {
2992 if (cmd->se_tfo->write_pending_status(cmd) != 0) {
2993 spin_lock_irqsave(&cmd->t_state_lock, flags);
2994 if (cmd->se_cmd_flags & SCF_SEND_DELAYED_TAS) {
2995 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2996 goto send_abort;
2997 }
2998 cmd->se_cmd_flags |= SCF_SEND_DELAYED_TAS;
2999 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3000 return;
3001 }
3002 }
3003 send_abort:
3004 cmd->scsi_status = SAM_STAT_TASK_ABORTED;
3005
3006 transport_lun_remove_cmd(cmd);
3007
3008 pr_debug("Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x, ITT: 0x%08llx\n",
3009 cmd->t_task_cdb[0], cmd->tag);
3010
3011 trace_target_cmd_complete(cmd);
3012 cmd->se_tfo->queue_status(cmd);
3013 }
3014
3015 static void target_tmr_work(struct work_struct *work)
3016 {
3017 struct se_cmd *cmd = container_of(work, struct se_cmd, work);
3018 struct se_device *dev = cmd->se_dev;
3019 struct se_tmr_req *tmr = cmd->se_tmr_req;
3020 unsigned long flags;
3021 int ret;
3022
3023 spin_lock_irqsave(&cmd->t_state_lock, flags);
3024 if (cmd->transport_state & CMD_T_ABORTED) {
3025 tmr->response = TMR_FUNCTION_REJECTED;
3026 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3027 goto check_stop;
3028 }
3029 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3030
3031 switch (tmr->function) {
3032 case TMR_ABORT_TASK:
3033 core_tmr_abort_task(dev, tmr, cmd->se_sess);
3034 break;
3035 case TMR_ABORT_TASK_SET:
3036 case TMR_CLEAR_ACA:
3037 case TMR_CLEAR_TASK_SET:
3038 tmr->response = TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED;
3039 break;
3040 case TMR_LUN_RESET:
3041 ret = core_tmr_lun_reset(dev, tmr, NULL, NULL);
3042 tmr->response = (!ret) ? TMR_FUNCTION_COMPLETE :
3043 TMR_FUNCTION_REJECTED;
3044 if (tmr->response == TMR_FUNCTION_COMPLETE) {
3045 target_ua_allocate_lun(cmd->se_sess->se_node_acl,
3046 cmd->orig_fe_lun, 0x29,
3047 ASCQ_29H_BUS_DEVICE_RESET_FUNCTION_OCCURRED);
3048 }
3049 break;
3050 case TMR_TARGET_WARM_RESET:
3051 tmr->response = TMR_FUNCTION_REJECTED;
3052 break;
3053 case TMR_TARGET_COLD_RESET:
3054 tmr->response = TMR_FUNCTION_REJECTED;
3055 break;
3056 default:
3057 pr_err("Uknown TMR function: 0x%02x.\n",
3058 tmr->function);
3059 tmr->response = TMR_FUNCTION_REJECTED;
3060 break;
3061 }
3062
3063 spin_lock_irqsave(&cmd->t_state_lock, flags);
3064 if (cmd->transport_state & CMD_T_ABORTED) {
3065 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3066 goto check_stop;
3067 }
3068 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3069
3070 cmd->se_tfo->queue_tm_rsp(cmd);
3071
3072 check_stop:
3073 transport_cmd_check_stop_to_fabric(cmd);
3074 }
3075
3076 int transport_generic_handle_tmr(
3077 struct se_cmd *cmd)
3078 {
3079 unsigned long flags;
3080 bool aborted = false;
3081
3082 spin_lock_irqsave(&cmd->t_state_lock, flags);
3083 if (cmd->transport_state & CMD_T_ABORTED) {
3084 aborted = true;
3085 } else {
3086 cmd->t_state = TRANSPORT_ISTATE_PROCESSING;
3087 cmd->transport_state |= CMD_T_ACTIVE;
3088 }
3089 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3090
3091 if (aborted) {
3092 pr_warn_ratelimited("handle_tmr caught CMD_T_ABORTED TMR %d"
3093 "ref_tag: %llu tag: %llu\n", cmd->se_tmr_req->function,
3094 cmd->se_tmr_req->ref_task_tag, cmd->tag);
3095 transport_cmd_check_stop_to_fabric(cmd);
3096 return 0;
3097 }
3098
3099 INIT_WORK(&cmd->work, target_tmr_work);
3100 queue_work(cmd->se_dev->tmr_wq, &cmd->work);
3101 return 0;
3102 }
3103 EXPORT_SYMBOL(transport_generic_handle_tmr);
3104
3105 bool
3106 target_check_wce(struct se_device *dev)
3107 {
3108 bool wce = false;
3109
3110 if (dev->transport->get_write_cache)
3111 wce = dev->transport->get_write_cache(dev);
3112 else if (dev->dev_attrib.emulate_write_cache > 0)
3113 wce = true;
3114
3115 return wce;
3116 }
3117
3118 bool
3119 target_check_fua(struct se_device *dev)
3120 {
3121 return target_check_wce(dev) && dev->dev_attrib.emulate_fua_write > 0;
3122 }