79ce363b2ea9d1dd2cb0b79362b607659ca37345
[GitHub/exynos8895/android_kernel_samsung_universal8895.git] / drivers / staging / zram / zram_drv.c
1 /*
2 * Compressed RAM block device
3 *
4 * Copyright (C) 2008, 2009, 2010 Nitin Gupta
5 *
6 * This code is released using a dual license strategy: BSD/GPL
7 * You can choose the licence that better fits your requirements.
8 *
9 * Released under the terms of 3-clause BSD License
10 * Released under the terms of GNU General Public License Version 2.0
11 *
12 * Project home: http://compcache.googlecode.com
13 */
14
15 #define KMSG_COMPONENT "zram"
16 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
17
18 #ifdef CONFIG_ZRAM_DEBUG
19 #define DEBUG
20 #endif
21
22 #include <linux/module.h>
23 #include <linux/kernel.h>
24 #include <linux/bio.h>
25 #include <linux/bitops.h>
26 #include <linux/blkdev.h>
27 #include <linux/buffer_head.h>
28 #include <linux/device.h>
29 #include <linux/genhd.h>
30 #include <linux/highmem.h>
31 #include <linux/slab.h>
32 #include <linux/lzo.h>
33 #include <linux/string.h>
34 #include <linux/vmalloc.h>
35
36 #include "zram_drv.h"
37
38 /* Globals */
39 static int zram_major;
40 static struct zram *zram_devices;
41
42 /* Module params (documentation at end) */
43 static unsigned int num_devices = 1;
44
45 static inline struct zram *dev_to_zram(struct device *dev)
46 {
47 return (struct zram *)dev_to_disk(dev)->private_data;
48 }
49
50 static ssize_t disksize_show(struct device *dev,
51 struct device_attribute *attr, char *buf)
52 {
53 struct zram *zram = dev_to_zram(dev);
54
55 return sprintf(buf, "%llu\n", zram->disksize);
56 }
57
58 static ssize_t initstate_show(struct device *dev,
59 struct device_attribute *attr, char *buf)
60 {
61 struct zram *zram = dev_to_zram(dev);
62
63 return sprintf(buf, "%u\n", zram->init_done);
64 }
65
66 static ssize_t num_reads_show(struct device *dev,
67 struct device_attribute *attr, char *buf)
68 {
69 struct zram *zram = dev_to_zram(dev);
70
71 return sprintf(buf, "%llu\n",
72 (u64)atomic64_read(&zram->stats.num_reads));
73 }
74
75 static ssize_t num_writes_show(struct device *dev,
76 struct device_attribute *attr, char *buf)
77 {
78 struct zram *zram = dev_to_zram(dev);
79
80 return sprintf(buf, "%llu\n",
81 (u64)atomic64_read(&zram->stats.num_writes));
82 }
83
84 static ssize_t invalid_io_show(struct device *dev,
85 struct device_attribute *attr, char *buf)
86 {
87 struct zram *zram = dev_to_zram(dev);
88
89 return sprintf(buf, "%llu\n",
90 (u64)atomic64_read(&zram->stats.invalid_io));
91 }
92
93 static ssize_t notify_free_show(struct device *dev,
94 struct device_attribute *attr, char *buf)
95 {
96 struct zram *zram = dev_to_zram(dev);
97
98 return sprintf(buf, "%llu\n",
99 (u64)atomic64_read(&zram->stats.notify_free));
100 }
101
102 static ssize_t zero_pages_show(struct device *dev,
103 struct device_attribute *attr, char *buf)
104 {
105 struct zram *zram = dev_to_zram(dev);
106
107 return sprintf(buf, "%u\n", zram->stats.pages_zero);
108 }
109
110 static ssize_t orig_data_size_show(struct device *dev,
111 struct device_attribute *attr, char *buf)
112 {
113 struct zram *zram = dev_to_zram(dev);
114
115 return sprintf(buf, "%llu\n",
116 (u64)(zram->stats.pages_stored) << PAGE_SHIFT);
117 }
118
119 static ssize_t compr_data_size_show(struct device *dev,
120 struct device_attribute *attr, char *buf)
121 {
122 struct zram *zram = dev_to_zram(dev);
123
124 return sprintf(buf, "%llu\n",
125 (u64)atomic64_read(&zram->stats.compr_size));
126 }
127
128 static ssize_t mem_used_total_show(struct device *dev,
129 struct device_attribute *attr, char *buf)
130 {
131 u64 val = 0;
132 struct zram *zram = dev_to_zram(dev);
133 struct zram_meta *meta = zram->meta;
134
135 down_read(&zram->init_lock);
136 if (zram->init_done)
137 val = zs_get_total_size_bytes(meta->mem_pool);
138 up_read(&zram->init_lock);
139
140 return sprintf(buf, "%llu\n", val);
141 }
142
143 static int zram_test_flag(struct zram_meta *meta, u32 index,
144 enum zram_pageflags flag)
145 {
146 return meta->table[index].flags & BIT(flag);
147 }
148
149 static void zram_set_flag(struct zram_meta *meta, u32 index,
150 enum zram_pageflags flag)
151 {
152 meta->table[index].flags |= BIT(flag);
153 }
154
155 static void zram_clear_flag(struct zram_meta *meta, u32 index,
156 enum zram_pageflags flag)
157 {
158 meta->table[index].flags &= ~BIT(flag);
159 }
160
161 static inline int is_partial_io(struct bio_vec *bvec)
162 {
163 return bvec->bv_len != PAGE_SIZE;
164 }
165
166 /*
167 * Check if request is within bounds and aligned on zram logical blocks.
168 */
169 static inline int valid_io_request(struct zram *zram, struct bio *bio)
170 {
171 u64 start, end, bound;
172
173 /* unaligned request */
174 if (unlikely(bio->bi_sector & (ZRAM_SECTOR_PER_LOGICAL_BLOCK - 1)))
175 return 0;
176 if (unlikely(bio->bi_size & (ZRAM_LOGICAL_BLOCK_SIZE - 1)))
177 return 0;
178
179 start = bio->bi_sector;
180 end = start + (bio->bi_size >> SECTOR_SHIFT);
181 bound = zram->disksize >> SECTOR_SHIFT;
182 /* out of range range */
183 if (unlikely(start >= bound || end > bound || start > end))
184 return 0;
185
186 /* I/O request is valid */
187 return 1;
188 }
189
190 static void zram_meta_free(struct zram_meta *meta)
191 {
192 zs_destroy_pool(meta->mem_pool);
193 kfree(meta->compress_workmem);
194 free_pages((unsigned long)meta->compress_buffer, 1);
195 vfree(meta->table);
196 kfree(meta);
197 }
198
199 static struct zram_meta *zram_meta_alloc(u64 disksize)
200 {
201 size_t num_pages;
202 struct zram_meta *meta = kmalloc(sizeof(*meta), GFP_KERNEL);
203 if (!meta)
204 goto out;
205
206 meta->compress_workmem = kzalloc(LZO1X_MEM_COMPRESS, GFP_KERNEL);
207 if (!meta->compress_workmem)
208 goto free_meta;
209
210 meta->compress_buffer =
211 (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, 1);
212 if (!meta->compress_buffer) {
213 pr_err("Error allocating compressor buffer space\n");
214 goto free_workmem;
215 }
216
217 num_pages = disksize >> PAGE_SHIFT;
218 meta->table = vzalloc(num_pages * sizeof(*meta->table));
219 if (!meta->table) {
220 pr_err("Error allocating zram address table\n");
221 goto free_buffer;
222 }
223
224 meta->mem_pool = zs_create_pool(GFP_NOIO | __GFP_HIGHMEM);
225 if (!meta->mem_pool) {
226 pr_err("Error creating memory pool\n");
227 goto free_table;
228 }
229
230 return meta;
231
232 free_table:
233 vfree(meta->table);
234 free_buffer:
235 free_pages((unsigned long)meta->compress_buffer, 1);
236 free_workmem:
237 kfree(meta->compress_workmem);
238 free_meta:
239 kfree(meta);
240 meta = NULL;
241 out:
242 return meta;
243 }
244
245 static void update_position(u32 *index, int *offset, struct bio_vec *bvec)
246 {
247 if (*offset + bvec->bv_len >= PAGE_SIZE)
248 (*index)++;
249 *offset = (*offset + bvec->bv_len) % PAGE_SIZE;
250 }
251
252 static int page_zero_filled(void *ptr)
253 {
254 unsigned int pos;
255 unsigned long *page;
256
257 page = (unsigned long *)ptr;
258
259 for (pos = 0; pos != PAGE_SIZE / sizeof(*page); pos++) {
260 if (page[pos])
261 return 0;
262 }
263
264 return 1;
265 }
266
267 static void handle_zero_page(struct bio_vec *bvec)
268 {
269 struct page *page = bvec->bv_page;
270 void *user_mem;
271
272 user_mem = kmap_atomic(page);
273 if (is_partial_io(bvec))
274 memset(user_mem + bvec->bv_offset, 0, bvec->bv_len);
275 else
276 clear_page(user_mem);
277 kunmap_atomic(user_mem);
278
279 flush_dcache_page(page);
280 }
281
282 static void zram_free_page(struct zram *zram, size_t index)
283 {
284 struct zram_meta *meta = zram->meta;
285 unsigned long handle = meta->table[index].handle;
286 u16 size = meta->table[index].size;
287
288 if (unlikely(!handle)) {
289 /*
290 * No memory is allocated for zero filled pages.
291 * Simply clear zero page flag.
292 */
293 if (zram_test_flag(meta, index, ZRAM_ZERO)) {
294 zram_clear_flag(meta, index, ZRAM_ZERO);
295 zram->stats.pages_zero--;
296 }
297 return;
298 }
299
300 if (unlikely(size > max_zpage_size))
301 zram->stats.bad_compress--;
302
303 zs_free(meta->mem_pool, handle);
304
305 if (size <= PAGE_SIZE / 2)
306 zram->stats.good_compress--;
307
308 atomic64_sub(meta->table[index].size, &zram->stats.compr_size);
309 zram->stats.pages_stored--;
310
311 meta->table[index].handle = 0;
312 meta->table[index].size = 0;
313 }
314
315 static int zram_decompress_page(struct zram *zram, char *mem, u32 index)
316 {
317 int ret = LZO_E_OK;
318 size_t clen = PAGE_SIZE;
319 unsigned char *cmem;
320 struct zram_meta *meta = zram->meta;
321 unsigned long handle = meta->table[index].handle;
322
323 if (!handle || zram_test_flag(meta, index, ZRAM_ZERO)) {
324 clear_page(mem);
325 return 0;
326 }
327
328 cmem = zs_map_object(meta->mem_pool, handle, ZS_MM_RO);
329 if (meta->table[index].size == PAGE_SIZE)
330 copy_page(mem, cmem);
331 else
332 ret = lzo1x_decompress_safe(cmem, meta->table[index].size,
333 mem, &clen);
334 zs_unmap_object(meta->mem_pool, handle);
335
336 /* Should NEVER happen. Return bio error if it does. */
337 if (unlikely(ret != LZO_E_OK)) {
338 pr_err("Decompression failed! err=%d, page=%u\n", ret, index);
339 atomic64_inc(&zram->stats.failed_reads);
340 return ret;
341 }
342
343 return 0;
344 }
345
346 static int zram_bvec_read(struct zram *zram, struct bio_vec *bvec,
347 u32 index, int offset, struct bio *bio)
348 {
349 int ret;
350 struct page *page;
351 unsigned char *user_mem, *uncmem = NULL;
352 struct zram_meta *meta = zram->meta;
353 page = bvec->bv_page;
354
355 if (unlikely(!meta->table[index].handle) ||
356 zram_test_flag(meta, index, ZRAM_ZERO)) {
357 handle_zero_page(bvec);
358 return 0;
359 }
360
361 if (is_partial_io(bvec))
362 /* Use a temporary buffer to decompress the page */
363 uncmem = kmalloc(PAGE_SIZE, GFP_NOIO);
364
365 user_mem = kmap_atomic(page);
366 if (!is_partial_io(bvec))
367 uncmem = user_mem;
368
369 if (!uncmem) {
370 pr_info("Unable to allocate temp memory\n");
371 ret = -ENOMEM;
372 goto out_cleanup;
373 }
374
375 ret = zram_decompress_page(zram, uncmem, index);
376 /* Should NEVER happen. Return bio error if it does. */
377 if (unlikely(ret != LZO_E_OK))
378 goto out_cleanup;
379
380 if (is_partial_io(bvec))
381 memcpy(user_mem + bvec->bv_offset, uncmem + offset,
382 bvec->bv_len);
383
384 flush_dcache_page(page);
385 ret = 0;
386 out_cleanup:
387 kunmap_atomic(user_mem);
388 if (is_partial_io(bvec))
389 kfree(uncmem);
390 return ret;
391 }
392
393 static int zram_bvec_write(struct zram *zram, struct bio_vec *bvec, u32 index,
394 int offset)
395 {
396 int ret = 0;
397 size_t clen;
398 unsigned long handle;
399 struct page *page;
400 unsigned char *user_mem, *cmem, *src, *uncmem = NULL;
401 struct zram_meta *meta = zram->meta;
402
403 page = bvec->bv_page;
404 src = meta->compress_buffer;
405
406 if (is_partial_io(bvec)) {
407 /*
408 * This is a partial IO. We need to read the full page
409 * before to write the changes.
410 */
411 uncmem = kmalloc(PAGE_SIZE, GFP_NOIO);
412 if (!uncmem) {
413 ret = -ENOMEM;
414 goto out;
415 }
416 ret = zram_decompress_page(zram, uncmem, index);
417 if (ret)
418 goto out;
419 }
420
421 user_mem = kmap_atomic(page);
422
423 if (is_partial_io(bvec)) {
424 memcpy(uncmem + offset, user_mem + bvec->bv_offset,
425 bvec->bv_len);
426 kunmap_atomic(user_mem);
427 user_mem = NULL;
428 } else {
429 uncmem = user_mem;
430 }
431
432 if (page_zero_filled(uncmem)) {
433 kunmap_atomic(user_mem);
434 /* Free memory associated with this sector now. */
435 zram_free_page(zram, index);
436
437 zram->stats.pages_zero++;
438 zram_set_flag(meta, index, ZRAM_ZERO);
439 ret = 0;
440 goto out;
441 }
442
443 /*
444 * zram_slot_free_notify could miss free so that let's
445 * double check.
446 */
447 if (unlikely(meta->table[index].handle ||
448 zram_test_flag(meta, index, ZRAM_ZERO)))
449 zram_free_page(zram, index);
450
451 ret = lzo1x_1_compress(uncmem, PAGE_SIZE, src, &clen,
452 meta->compress_workmem);
453
454 if (!is_partial_io(bvec)) {
455 kunmap_atomic(user_mem);
456 user_mem = NULL;
457 uncmem = NULL;
458 }
459
460 if (unlikely(ret != LZO_E_OK)) {
461 pr_err("Compression failed! err=%d\n", ret);
462 goto out;
463 }
464
465 if (unlikely(clen > max_zpage_size)) {
466 zram->stats.bad_compress++;
467 clen = PAGE_SIZE;
468 src = NULL;
469 if (is_partial_io(bvec))
470 src = uncmem;
471 }
472
473 handle = zs_malloc(meta->mem_pool, clen);
474 if (!handle) {
475 pr_info("Error allocating memory for compressed page: %u, size=%zu\n",
476 index, clen);
477 ret = -ENOMEM;
478 goto out;
479 }
480 cmem = zs_map_object(meta->mem_pool, handle, ZS_MM_WO);
481
482 if ((clen == PAGE_SIZE) && !is_partial_io(bvec)) {
483 src = kmap_atomic(page);
484 copy_page(cmem, src);
485 kunmap_atomic(src);
486 } else {
487 memcpy(cmem, src, clen);
488 }
489
490 zs_unmap_object(meta->mem_pool, handle);
491
492 /*
493 * Free memory associated with this sector
494 * before overwriting unused sectors.
495 */
496 zram_free_page(zram, index);
497
498 meta->table[index].handle = handle;
499 meta->table[index].size = clen;
500
501 /* Update stats */
502 atomic64_add(clen, &zram->stats.compr_size);
503 zram->stats.pages_stored++;
504 if (clen <= PAGE_SIZE / 2)
505 zram->stats.good_compress++;
506
507 out:
508 if (is_partial_io(bvec))
509 kfree(uncmem);
510
511 if (ret)
512 atomic64_inc(&zram->stats.failed_writes);
513 return ret;
514 }
515
516 static void handle_pending_slot_free(struct zram *zram)
517 {
518 struct zram_slot_free *free_rq;
519
520 spin_lock(&zram->slot_free_lock);
521 while (zram->slot_free_rq) {
522 free_rq = zram->slot_free_rq;
523 zram->slot_free_rq = free_rq->next;
524 zram_free_page(zram, free_rq->index);
525 kfree(free_rq);
526 }
527 spin_unlock(&zram->slot_free_lock);
528 }
529
530 static int zram_bvec_rw(struct zram *zram, struct bio_vec *bvec, u32 index,
531 int offset, struct bio *bio, int rw)
532 {
533 int ret;
534
535 if (rw == READ) {
536 down_read(&zram->lock);
537 handle_pending_slot_free(zram);
538 ret = zram_bvec_read(zram, bvec, index, offset, bio);
539 up_read(&zram->lock);
540 } else {
541 down_write(&zram->lock);
542 handle_pending_slot_free(zram);
543 ret = zram_bvec_write(zram, bvec, index, offset);
544 up_write(&zram->lock);
545 }
546
547 return ret;
548 }
549
550 static void zram_reset_device(struct zram *zram, bool reset_capacity)
551 {
552 size_t index;
553 struct zram_meta *meta;
554
555 flush_work(&zram->free_work);
556
557 down_write(&zram->init_lock);
558 if (!zram->init_done) {
559 up_write(&zram->init_lock);
560 return;
561 }
562
563 meta = zram->meta;
564 zram->init_done = 0;
565
566 /* Free all pages that are still in this zram device */
567 for (index = 0; index < zram->disksize >> PAGE_SHIFT; index++) {
568 unsigned long handle = meta->table[index].handle;
569 if (!handle)
570 continue;
571
572 zs_free(meta->mem_pool, handle);
573 }
574
575 zram_meta_free(zram->meta);
576 zram->meta = NULL;
577 /* Reset stats */
578 memset(&zram->stats, 0, sizeof(zram->stats));
579
580 zram->disksize = 0;
581 if (reset_capacity)
582 set_capacity(zram->disk, 0);
583 up_write(&zram->init_lock);
584 }
585
586 static void zram_init_device(struct zram *zram, struct zram_meta *meta)
587 {
588 if (zram->disksize > 2 * (totalram_pages << PAGE_SHIFT)) {
589 pr_info(
590 "There is little point creating a zram of greater than "
591 "twice the size of memory since we expect a 2:1 compression "
592 "ratio. Note that zram uses about 0.1%% of the size of "
593 "the disk when not in use so a huge zram is "
594 "wasteful.\n"
595 "\tMemory Size: %lu kB\n"
596 "\tSize you selected: %llu kB\n"
597 "Continuing anyway ...\n",
598 (totalram_pages << PAGE_SHIFT) >> 10, zram->disksize >> 10
599 );
600 }
601
602 /* zram devices sort of resembles non-rotational disks */
603 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, zram->disk->queue);
604
605 zram->meta = meta;
606 zram->init_done = 1;
607
608 pr_debug("Initialization done!\n");
609 }
610
611 static ssize_t disksize_store(struct device *dev,
612 struct device_attribute *attr, const char *buf, size_t len)
613 {
614 u64 disksize;
615 struct zram_meta *meta;
616 struct zram *zram = dev_to_zram(dev);
617
618 disksize = memparse(buf, NULL);
619 if (!disksize)
620 return -EINVAL;
621
622 disksize = PAGE_ALIGN(disksize);
623 meta = zram_meta_alloc(disksize);
624 down_write(&zram->init_lock);
625 if (zram->init_done) {
626 up_write(&zram->init_lock);
627 zram_meta_free(meta);
628 pr_info("Cannot change disksize for initialized device\n");
629 return -EBUSY;
630 }
631
632 zram->disksize = disksize;
633 set_capacity(zram->disk, zram->disksize >> SECTOR_SHIFT);
634 zram_init_device(zram, meta);
635 up_write(&zram->init_lock);
636
637 return len;
638 }
639
640 static ssize_t reset_store(struct device *dev,
641 struct device_attribute *attr, const char *buf, size_t len)
642 {
643 int ret;
644 unsigned short do_reset;
645 struct zram *zram;
646 struct block_device *bdev;
647
648 zram = dev_to_zram(dev);
649 bdev = bdget_disk(zram->disk, 0);
650
651 if (!bdev)
652 return -ENOMEM;
653
654 /* Do not reset an active device! */
655 if (bdev->bd_holders)
656 return -EBUSY;
657
658 ret = kstrtou16(buf, 10, &do_reset);
659 if (ret)
660 return ret;
661
662 if (!do_reset)
663 return -EINVAL;
664
665 /* Make sure all pending I/O is finished */
666 fsync_bdev(bdev);
667
668 zram_reset_device(zram, true);
669 return len;
670 }
671
672 static void __zram_make_request(struct zram *zram, struct bio *bio, int rw)
673 {
674 int i, offset;
675 u32 index;
676 struct bio_vec *bvec;
677
678 switch (rw) {
679 case READ:
680 atomic64_inc(&zram->stats.num_reads);
681 break;
682 case WRITE:
683 atomic64_inc(&zram->stats.num_writes);
684 break;
685 }
686
687 index = bio->bi_sector >> SECTORS_PER_PAGE_SHIFT;
688 offset = (bio->bi_sector & (SECTORS_PER_PAGE - 1)) << SECTOR_SHIFT;
689
690 bio_for_each_segment(bvec, bio, i) {
691 int max_transfer_size = PAGE_SIZE - offset;
692
693 if (bvec->bv_len > max_transfer_size) {
694 /*
695 * zram_bvec_rw() can only make operation on a single
696 * zram page. Split the bio vector.
697 */
698 struct bio_vec bv;
699
700 bv.bv_page = bvec->bv_page;
701 bv.bv_len = max_transfer_size;
702 bv.bv_offset = bvec->bv_offset;
703
704 if (zram_bvec_rw(zram, &bv, index, offset, bio, rw) < 0)
705 goto out;
706
707 bv.bv_len = bvec->bv_len - max_transfer_size;
708 bv.bv_offset += max_transfer_size;
709 if (zram_bvec_rw(zram, &bv, index+1, 0, bio, rw) < 0)
710 goto out;
711 } else
712 if (zram_bvec_rw(zram, bvec, index, offset, bio, rw)
713 < 0)
714 goto out;
715
716 update_position(&index, &offset, bvec);
717 }
718
719 set_bit(BIO_UPTODATE, &bio->bi_flags);
720 bio_endio(bio, 0);
721 return;
722
723 out:
724 bio_io_error(bio);
725 }
726
727 /*
728 * Handler function for all zram I/O requests.
729 */
730 static void zram_make_request(struct request_queue *queue, struct bio *bio)
731 {
732 struct zram *zram = queue->queuedata;
733
734 down_read(&zram->init_lock);
735 if (unlikely(!zram->init_done))
736 goto error;
737
738 if (!valid_io_request(zram, bio)) {
739 atomic64_inc(&zram->stats.invalid_io);
740 goto error;
741 }
742
743 __zram_make_request(zram, bio, bio_data_dir(bio));
744 up_read(&zram->init_lock);
745
746 return;
747
748 error:
749 up_read(&zram->init_lock);
750 bio_io_error(bio);
751 }
752
753 static void zram_slot_free(struct work_struct *work)
754 {
755 struct zram *zram;
756
757 zram = container_of(work, struct zram, free_work);
758 down_write(&zram->lock);
759 handle_pending_slot_free(zram);
760 up_write(&zram->lock);
761 }
762
763 static void add_slot_free(struct zram *zram, struct zram_slot_free *free_rq)
764 {
765 spin_lock(&zram->slot_free_lock);
766 free_rq->next = zram->slot_free_rq;
767 zram->slot_free_rq = free_rq;
768 spin_unlock(&zram->slot_free_lock);
769 }
770
771 static void zram_slot_free_notify(struct block_device *bdev,
772 unsigned long index)
773 {
774 struct zram *zram;
775 struct zram_slot_free *free_rq;
776
777 zram = bdev->bd_disk->private_data;
778 atomic64_inc(&zram->stats.notify_free);
779
780 free_rq = kmalloc(sizeof(struct zram_slot_free), GFP_ATOMIC);
781 if (!free_rq)
782 return;
783
784 free_rq->index = index;
785 add_slot_free(zram, free_rq);
786 schedule_work(&zram->free_work);
787 }
788
789 static const struct block_device_operations zram_devops = {
790 .swap_slot_free_notify = zram_slot_free_notify,
791 .owner = THIS_MODULE
792 };
793
794 static DEVICE_ATTR(disksize, S_IRUGO | S_IWUSR,
795 disksize_show, disksize_store);
796 static DEVICE_ATTR(initstate, S_IRUGO, initstate_show, NULL);
797 static DEVICE_ATTR(reset, S_IWUSR, NULL, reset_store);
798 static DEVICE_ATTR(num_reads, S_IRUGO, num_reads_show, NULL);
799 static DEVICE_ATTR(num_writes, S_IRUGO, num_writes_show, NULL);
800 static DEVICE_ATTR(invalid_io, S_IRUGO, invalid_io_show, NULL);
801 static DEVICE_ATTR(notify_free, S_IRUGO, notify_free_show, NULL);
802 static DEVICE_ATTR(zero_pages, S_IRUGO, zero_pages_show, NULL);
803 static DEVICE_ATTR(orig_data_size, S_IRUGO, orig_data_size_show, NULL);
804 static DEVICE_ATTR(compr_data_size, S_IRUGO, compr_data_size_show, NULL);
805 static DEVICE_ATTR(mem_used_total, S_IRUGO, mem_used_total_show, NULL);
806
807 static struct attribute *zram_disk_attrs[] = {
808 &dev_attr_disksize.attr,
809 &dev_attr_initstate.attr,
810 &dev_attr_reset.attr,
811 &dev_attr_num_reads.attr,
812 &dev_attr_num_writes.attr,
813 &dev_attr_invalid_io.attr,
814 &dev_attr_notify_free.attr,
815 &dev_attr_zero_pages.attr,
816 &dev_attr_orig_data_size.attr,
817 &dev_attr_compr_data_size.attr,
818 &dev_attr_mem_used_total.attr,
819 NULL,
820 };
821
822 static struct attribute_group zram_disk_attr_group = {
823 .attrs = zram_disk_attrs,
824 };
825
826 static int create_device(struct zram *zram, int device_id)
827 {
828 int ret = -ENOMEM;
829
830 init_rwsem(&zram->lock);
831 init_rwsem(&zram->init_lock);
832
833 INIT_WORK(&zram->free_work, zram_slot_free);
834 spin_lock_init(&zram->slot_free_lock);
835 zram->slot_free_rq = NULL;
836
837 zram->queue = blk_alloc_queue(GFP_KERNEL);
838 if (!zram->queue) {
839 pr_err("Error allocating disk queue for device %d\n",
840 device_id);
841 goto out;
842 }
843
844 blk_queue_make_request(zram->queue, zram_make_request);
845 zram->queue->queuedata = zram;
846
847 /* gendisk structure */
848 zram->disk = alloc_disk(1);
849 if (!zram->disk) {
850 pr_warn("Error allocating disk structure for device %d\n",
851 device_id);
852 goto out_free_queue;
853 }
854
855 zram->disk->major = zram_major;
856 zram->disk->first_minor = device_id;
857 zram->disk->fops = &zram_devops;
858 zram->disk->queue = zram->queue;
859 zram->disk->private_data = zram;
860 snprintf(zram->disk->disk_name, 16, "zram%d", device_id);
861
862 /* Actual capacity set using syfs (/sys/block/zram<id>/disksize */
863 set_capacity(zram->disk, 0);
864
865 /*
866 * To ensure that we always get PAGE_SIZE aligned
867 * and n*PAGE_SIZED sized I/O requests.
868 */
869 blk_queue_physical_block_size(zram->disk->queue, PAGE_SIZE);
870 blk_queue_logical_block_size(zram->disk->queue,
871 ZRAM_LOGICAL_BLOCK_SIZE);
872 blk_queue_io_min(zram->disk->queue, PAGE_SIZE);
873 blk_queue_io_opt(zram->disk->queue, PAGE_SIZE);
874
875 add_disk(zram->disk);
876
877 ret = sysfs_create_group(&disk_to_dev(zram->disk)->kobj,
878 &zram_disk_attr_group);
879 if (ret < 0) {
880 pr_warn("Error creating sysfs group");
881 goto out_free_disk;
882 }
883
884 zram->init_done = 0;
885 return 0;
886
887 out_free_disk:
888 del_gendisk(zram->disk);
889 put_disk(zram->disk);
890 out_free_queue:
891 blk_cleanup_queue(zram->queue);
892 out:
893 return ret;
894 }
895
896 static void destroy_device(struct zram *zram)
897 {
898 sysfs_remove_group(&disk_to_dev(zram->disk)->kobj,
899 &zram_disk_attr_group);
900
901 del_gendisk(zram->disk);
902 put_disk(zram->disk);
903
904 blk_cleanup_queue(zram->queue);
905 }
906
907 static int __init zram_init(void)
908 {
909 int ret, dev_id;
910
911 if (num_devices > max_num_devices) {
912 pr_warn("Invalid value for num_devices: %u\n",
913 num_devices);
914 ret = -EINVAL;
915 goto out;
916 }
917
918 zram_major = register_blkdev(0, "zram");
919 if (zram_major <= 0) {
920 pr_warn("Unable to get major number\n");
921 ret = -EBUSY;
922 goto out;
923 }
924
925 /* Allocate the device array and initialize each one */
926 zram_devices = kzalloc(num_devices * sizeof(struct zram), GFP_KERNEL);
927 if (!zram_devices) {
928 ret = -ENOMEM;
929 goto unregister;
930 }
931
932 for (dev_id = 0; dev_id < num_devices; dev_id++) {
933 ret = create_device(&zram_devices[dev_id], dev_id);
934 if (ret)
935 goto free_devices;
936 }
937
938 pr_info("Created %u device(s) ...\n", num_devices);
939
940 return 0;
941
942 free_devices:
943 while (dev_id)
944 destroy_device(&zram_devices[--dev_id]);
945 kfree(zram_devices);
946 unregister:
947 unregister_blkdev(zram_major, "zram");
948 out:
949 return ret;
950 }
951
952 static void __exit zram_exit(void)
953 {
954 int i;
955 struct zram *zram;
956
957 for (i = 0; i < num_devices; i++) {
958 zram = &zram_devices[i];
959
960 destroy_device(zram);
961 /*
962 * Shouldn't access zram->disk after destroy_device
963 * because destroy_device already released zram->disk.
964 */
965 zram_reset_device(zram, false);
966 }
967
968 unregister_blkdev(zram_major, "zram");
969
970 kfree(zram_devices);
971 pr_debug("Cleanup done!\n");
972 }
973
974 module_init(zram_init);
975 module_exit(zram_exit);
976
977 module_param(num_devices, uint, 0);
978 MODULE_PARM_DESC(num_devices, "Number of zram devices");
979
980 MODULE_LICENSE("Dual BSD/GPL");
981 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");
982 MODULE_DESCRIPTION("Compressed RAM Block Device");