mm: zcache/tmem/cleancache: s/flush/invalidate/
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / staging / zcache / zcache-main.c
1 /*
2 * zcache.c
3 *
4 * Copyright (c) 2010,2011, Dan Magenheimer, Oracle Corp.
5 * Copyright (c) 2010,2011, Nitin Gupta
6 *
7 * Zcache provides an in-kernel "host implementation" for transcendent memory
8 * and, thus indirectly, for cleancache and frontswap. Zcache includes two
9 * page-accessible memory [1] interfaces, both utilizing lzo1x compression:
10 * 1) "compression buddies" ("zbud") is used for ephemeral pages
11 * 2) xvmalloc is used for persistent pages.
12 * Xvmalloc (based on the TLSF allocator) has very low fragmentation
13 * so maximizes space efficiency, while zbud allows pairs (and potentially,
14 * in the future, more than a pair of) compressed pages to be closely linked
15 * so that reclaiming can be done via the kernel's physical-page-oriented
16 * "shrinker" interface.
17 *
18 * [1] For a definition of page-accessible memory (aka PAM), see:
19 * http://marc.info/?l=linux-mm&m=127811271605009
20 */
21
22 #include <linux/module.h>
23 #include <linux/cpu.h>
24 #include <linux/highmem.h>
25 #include <linux/list.h>
26 #include <linux/lzo.h>
27 #include <linux/slab.h>
28 #include <linux/spinlock.h>
29 #include <linux/types.h>
30 #include <linux/atomic.h>
31 #include <linux/math64.h>
32 #include "tmem.h"
33
34 #include "../zram/xvmalloc.h" /* if built in drivers/staging */
35
36 #if (!defined(CONFIG_CLEANCACHE) && !defined(CONFIG_FRONTSWAP))
37 #error "zcache is useless without CONFIG_CLEANCACHE or CONFIG_FRONTSWAP"
38 #endif
39 #ifdef CONFIG_CLEANCACHE
40 #include <linux/cleancache.h>
41 #endif
42 #ifdef CONFIG_FRONTSWAP
43 #include <linux/frontswap.h>
44 #endif
45
46 #if 0
47 /* this is more aggressive but may cause other problems? */
48 #define ZCACHE_GFP_MASK (GFP_ATOMIC | __GFP_NORETRY | __GFP_NOWARN)
49 #else
50 #define ZCACHE_GFP_MASK \
51 (__GFP_FS | __GFP_NORETRY | __GFP_NOWARN | __GFP_NOMEMALLOC)
52 #endif
53
54 #define MAX_POOLS_PER_CLIENT 16
55
56 #define MAX_CLIENTS 16
57 #define LOCAL_CLIENT ((uint16_t)-1)
58
59 MODULE_LICENSE("GPL");
60
61 struct zcache_client {
62 struct tmem_pool *tmem_pools[MAX_POOLS_PER_CLIENT];
63 struct xv_pool *xvpool;
64 bool allocated;
65 atomic_t refcount;
66 };
67
68 static struct zcache_client zcache_host;
69 static struct zcache_client zcache_clients[MAX_CLIENTS];
70
71 static inline uint16_t get_client_id_from_client(struct zcache_client *cli)
72 {
73 BUG_ON(cli == NULL);
74 if (cli == &zcache_host)
75 return LOCAL_CLIENT;
76 return cli - &zcache_clients[0];
77 }
78
79 static inline bool is_local_client(struct zcache_client *cli)
80 {
81 return cli == &zcache_host;
82 }
83
84 /**********
85 * Compression buddies ("zbud") provides for packing two (or, possibly
86 * in the future, more) compressed ephemeral pages into a single "raw"
87 * (physical) page and tracking them with data structures so that
88 * the raw pages can be easily reclaimed.
89 *
90 * A zbud page ("zbpg") is an aligned page containing a list_head,
91 * a lock, and two "zbud headers". The remainder of the physical
92 * page is divided up into aligned 64-byte "chunks" which contain
93 * the compressed data for zero, one, or two zbuds. Each zbpg
94 * resides on: (1) an "unused list" if it has no zbuds; (2) a
95 * "buddied" list if it is fully populated with two zbuds; or
96 * (3) one of PAGE_SIZE/64 "unbuddied" lists indexed by how many chunks
97 * the one unbuddied zbud uses. The data inside a zbpg cannot be
98 * read or written unless the zbpg's lock is held.
99 */
100
101 #define ZBH_SENTINEL 0x43214321
102 #define ZBPG_SENTINEL 0xdeadbeef
103
104 #define ZBUD_MAX_BUDS 2
105
106 struct zbud_hdr {
107 uint16_t client_id;
108 uint16_t pool_id;
109 struct tmem_oid oid;
110 uint32_t index;
111 uint16_t size; /* compressed size in bytes, zero means unused */
112 DECL_SENTINEL
113 };
114
115 struct zbud_page {
116 struct list_head bud_list;
117 spinlock_t lock;
118 struct zbud_hdr buddy[ZBUD_MAX_BUDS];
119 DECL_SENTINEL
120 /* followed by NUM_CHUNK aligned CHUNK_SIZE-byte chunks */
121 };
122
123 #define CHUNK_SHIFT 6
124 #define CHUNK_SIZE (1 << CHUNK_SHIFT)
125 #define CHUNK_MASK (~(CHUNK_SIZE-1))
126 #define NCHUNKS (((PAGE_SIZE - sizeof(struct zbud_page)) & \
127 CHUNK_MASK) >> CHUNK_SHIFT)
128 #define MAX_CHUNK (NCHUNKS-1)
129
130 static struct {
131 struct list_head list;
132 unsigned count;
133 } zbud_unbuddied[NCHUNKS];
134 /* list N contains pages with N chunks USED and NCHUNKS-N unused */
135 /* element 0 is never used but optimizing that isn't worth it */
136 static unsigned long zbud_cumul_chunk_counts[NCHUNKS];
137
138 struct list_head zbud_buddied_list;
139 static unsigned long zcache_zbud_buddied_count;
140
141 /* protects the buddied list and all unbuddied lists */
142 static DEFINE_SPINLOCK(zbud_budlists_spinlock);
143
144 static LIST_HEAD(zbpg_unused_list);
145 static unsigned long zcache_zbpg_unused_list_count;
146
147 /* protects the unused page list */
148 static DEFINE_SPINLOCK(zbpg_unused_list_spinlock);
149
150 static atomic_t zcache_zbud_curr_raw_pages;
151 static atomic_t zcache_zbud_curr_zpages;
152 static unsigned long zcache_zbud_curr_zbytes;
153 static unsigned long zcache_zbud_cumul_zpages;
154 static unsigned long zcache_zbud_cumul_zbytes;
155 static unsigned long zcache_compress_poor;
156 static unsigned long zcache_mean_compress_poor;
157
158 /* forward references */
159 static void *zcache_get_free_page(void);
160 static void zcache_free_page(void *p);
161
162 /*
163 * zbud helper functions
164 */
165
166 static inline unsigned zbud_max_buddy_size(void)
167 {
168 return MAX_CHUNK << CHUNK_SHIFT;
169 }
170
171 static inline unsigned zbud_size_to_chunks(unsigned size)
172 {
173 BUG_ON(size == 0 || size > zbud_max_buddy_size());
174 return (size + CHUNK_SIZE - 1) >> CHUNK_SHIFT;
175 }
176
177 static inline int zbud_budnum(struct zbud_hdr *zh)
178 {
179 unsigned offset = (unsigned long)zh & (PAGE_SIZE - 1);
180 struct zbud_page *zbpg = NULL;
181 unsigned budnum = -1U;
182 int i;
183
184 for (i = 0; i < ZBUD_MAX_BUDS; i++)
185 if (offset == offsetof(typeof(*zbpg), buddy[i])) {
186 budnum = i;
187 break;
188 }
189 BUG_ON(budnum == -1U);
190 return budnum;
191 }
192
193 static char *zbud_data(struct zbud_hdr *zh, unsigned size)
194 {
195 struct zbud_page *zbpg;
196 char *p;
197 unsigned budnum;
198
199 ASSERT_SENTINEL(zh, ZBH);
200 budnum = zbud_budnum(zh);
201 BUG_ON(size == 0 || size > zbud_max_buddy_size());
202 zbpg = container_of(zh, struct zbud_page, buddy[budnum]);
203 ASSERT_SPINLOCK(&zbpg->lock);
204 p = (char *)zbpg;
205 if (budnum == 0)
206 p += ((sizeof(struct zbud_page) + CHUNK_SIZE - 1) &
207 CHUNK_MASK);
208 else if (budnum == 1)
209 p += PAGE_SIZE - ((size + CHUNK_SIZE - 1) & CHUNK_MASK);
210 return p;
211 }
212
213 /*
214 * zbud raw page management
215 */
216
217 static struct zbud_page *zbud_alloc_raw_page(void)
218 {
219 struct zbud_page *zbpg = NULL;
220 struct zbud_hdr *zh0, *zh1;
221 bool recycled = 0;
222
223 /* if any pages on the zbpg list, use one */
224 spin_lock(&zbpg_unused_list_spinlock);
225 if (!list_empty(&zbpg_unused_list)) {
226 zbpg = list_first_entry(&zbpg_unused_list,
227 struct zbud_page, bud_list);
228 list_del_init(&zbpg->bud_list);
229 zcache_zbpg_unused_list_count--;
230 recycled = 1;
231 }
232 spin_unlock(&zbpg_unused_list_spinlock);
233 if (zbpg == NULL)
234 /* none on zbpg list, try to get a kernel page */
235 zbpg = zcache_get_free_page();
236 if (likely(zbpg != NULL)) {
237 INIT_LIST_HEAD(&zbpg->bud_list);
238 zh0 = &zbpg->buddy[0]; zh1 = &zbpg->buddy[1];
239 spin_lock_init(&zbpg->lock);
240 if (recycled) {
241 ASSERT_INVERTED_SENTINEL(zbpg, ZBPG);
242 SET_SENTINEL(zbpg, ZBPG);
243 BUG_ON(zh0->size != 0 || tmem_oid_valid(&zh0->oid));
244 BUG_ON(zh1->size != 0 || tmem_oid_valid(&zh1->oid));
245 } else {
246 atomic_inc(&zcache_zbud_curr_raw_pages);
247 INIT_LIST_HEAD(&zbpg->bud_list);
248 SET_SENTINEL(zbpg, ZBPG);
249 zh0->size = 0; zh1->size = 0;
250 tmem_oid_set_invalid(&zh0->oid);
251 tmem_oid_set_invalid(&zh1->oid);
252 }
253 }
254 return zbpg;
255 }
256
257 static void zbud_free_raw_page(struct zbud_page *zbpg)
258 {
259 struct zbud_hdr *zh0 = &zbpg->buddy[0], *zh1 = &zbpg->buddy[1];
260
261 ASSERT_SENTINEL(zbpg, ZBPG);
262 BUG_ON(!list_empty(&zbpg->bud_list));
263 ASSERT_SPINLOCK(&zbpg->lock);
264 BUG_ON(zh0->size != 0 || tmem_oid_valid(&zh0->oid));
265 BUG_ON(zh1->size != 0 || tmem_oid_valid(&zh1->oid));
266 INVERT_SENTINEL(zbpg, ZBPG);
267 spin_unlock(&zbpg->lock);
268 spin_lock(&zbpg_unused_list_spinlock);
269 list_add(&zbpg->bud_list, &zbpg_unused_list);
270 zcache_zbpg_unused_list_count++;
271 spin_unlock(&zbpg_unused_list_spinlock);
272 }
273
274 /*
275 * core zbud handling routines
276 */
277
278 static unsigned zbud_free(struct zbud_hdr *zh)
279 {
280 unsigned size;
281
282 ASSERT_SENTINEL(zh, ZBH);
283 BUG_ON(!tmem_oid_valid(&zh->oid));
284 size = zh->size;
285 BUG_ON(zh->size == 0 || zh->size > zbud_max_buddy_size());
286 zh->size = 0;
287 tmem_oid_set_invalid(&zh->oid);
288 INVERT_SENTINEL(zh, ZBH);
289 zcache_zbud_curr_zbytes -= size;
290 atomic_dec(&zcache_zbud_curr_zpages);
291 return size;
292 }
293
294 static void zbud_free_and_delist(struct zbud_hdr *zh)
295 {
296 unsigned chunks;
297 struct zbud_hdr *zh_other;
298 unsigned budnum = zbud_budnum(zh), size;
299 struct zbud_page *zbpg =
300 container_of(zh, struct zbud_page, buddy[budnum]);
301
302 spin_lock(&zbpg->lock);
303 if (list_empty(&zbpg->bud_list)) {
304 /* ignore zombie page... see zbud_evict_pages() */
305 spin_unlock(&zbpg->lock);
306 return;
307 }
308 size = zbud_free(zh);
309 ASSERT_SPINLOCK(&zbpg->lock);
310 zh_other = &zbpg->buddy[(budnum == 0) ? 1 : 0];
311 if (zh_other->size == 0) { /* was unbuddied: unlist and free */
312 chunks = zbud_size_to_chunks(size) ;
313 spin_lock(&zbud_budlists_spinlock);
314 BUG_ON(list_empty(&zbud_unbuddied[chunks].list));
315 list_del_init(&zbpg->bud_list);
316 zbud_unbuddied[chunks].count--;
317 spin_unlock(&zbud_budlists_spinlock);
318 zbud_free_raw_page(zbpg);
319 } else { /* was buddied: move remaining buddy to unbuddied list */
320 chunks = zbud_size_to_chunks(zh_other->size) ;
321 spin_lock(&zbud_budlists_spinlock);
322 list_del_init(&zbpg->bud_list);
323 zcache_zbud_buddied_count--;
324 list_add_tail(&zbpg->bud_list, &zbud_unbuddied[chunks].list);
325 zbud_unbuddied[chunks].count++;
326 spin_unlock(&zbud_budlists_spinlock);
327 spin_unlock(&zbpg->lock);
328 }
329 }
330
331 static struct zbud_hdr *zbud_create(uint16_t client_id, uint16_t pool_id,
332 struct tmem_oid *oid,
333 uint32_t index, struct page *page,
334 void *cdata, unsigned size)
335 {
336 struct zbud_hdr *zh0, *zh1, *zh = NULL;
337 struct zbud_page *zbpg = NULL, *ztmp;
338 unsigned nchunks;
339 char *to;
340 int i, found_good_buddy = 0;
341
342 nchunks = zbud_size_to_chunks(size) ;
343 for (i = MAX_CHUNK - nchunks + 1; i > 0; i--) {
344 spin_lock(&zbud_budlists_spinlock);
345 if (!list_empty(&zbud_unbuddied[i].list)) {
346 list_for_each_entry_safe(zbpg, ztmp,
347 &zbud_unbuddied[i].list, bud_list) {
348 if (spin_trylock(&zbpg->lock)) {
349 found_good_buddy = i;
350 goto found_unbuddied;
351 }
352 }
353 }
354 spin_unlock(&zbud_budlists_spinlock);
355 }
356 /* didn't find a good buddy, try allocating a new page */
357 zbpg = zbud_alloc_raw_page();
358 if (unlikely(zbpg == NULL))
359 goto out;
360 /* ok, have a page, now compress the data before taking locks */
361 spin_lock(&zbpg->lock);
362 spin_lock(&zbud_budlists_spinlock);
363 list_add_tail(&zbpg->bud_list, &zbud_unbuddied[nchunks].list);
364 zbud_unbuddied[nchunks].count++;
365 zh = &zbpg->buddy[0];
366 goto init_zh;
367
368 found_unbuddied:
369 ASSERT_SPINLOCK(&zbpg->lock);
370 zh0 = &zbpg->buddy[0]; zh1 = &zbpg->buddy[1];
371 BUG_ON(!((zh0->size == 0) ^ (zh1->size == 0)));
372 if (zh0->size != 0) { /* buddy0 in use, buddy1 is vacant */
373 ASSERT_SENTINEL(zh0, ZBH);
374 zh = zh1;
375 } else if (zh1->size != 0) { /* buddy1 in use, buddy0 is vacant */
376 ASSERT_SENTINEL(zh1, ZBH);
377 zh = zh0;
378 } else
379 BUG();
380 list_del_init(&zbpg->bud_list);
381 zbud_unbuddied[found_good_buddy].count--;
382 list_add_tail(&zbpg->bud_list, &zbud_buddied_list);
383 zcache_zbud_buddied_count++;
384
385 init_zh:
386 SET_SENTINEL(zh, ZBH);
387 zh->size = size;
388 zh->index = index;
389 zh->oid = *oid;
390 zh->pool_id = pool_id;
391 zh->client_id = client_id;
392 /* can wait to copy the data until the list locks are dropped */
393 spin_unlock(&zbud_budlists_spinlock);
394
395 to = zbud_data(zh, size);
396 memcpy(to, cdata, size);
397 spin_unlock(&zbpg->lock);
398 zbud_cumul_chunk_counts[nchunks]++;
399 atomic_inc(&zcache_zbud_curr_zpages);
400 zcache_zbud_cumul_zpages++;
401 zcache_zbud_curr_zbytes += size;
402 zcache_zbud_cumul_zbytes += size;
403 out:
404 return zh;
405 }
406
407 static int zbud_decompress(struct page *page, struct zbud_hdr *zh)
408 {
409 struct zbud_page *zbpg;
410 unsigned budnum = zbud_budnum(zh);
411 size_t out_len = PAGE_SIZE;
412 char *to_va, *from_va;
413 unsigned size;
414 int ret = 0;
415
416 zbpg = container_of(zh, struct zbud_page, buddy[budnum]);
417 spin_lock(&zbpg->lock);
418 if (list_empty(&zbpg->bud_list)) {
419 /* ignore zombie page... see zbud_evict_pages() */
420 ret = -EINVAL;
421 goto out;
422 }
423 ASSERT_SENTINEL(zh, ZBH);
424 BUG_ON(zh->size == 0 || zh->size > zbud_max_buddy_size());
425 to_va = kmap_atomic(page, KM_USER0);
426 size = zh->size;
427 from_va = zbud_data(zh, size);
428 ret = lzo1x_decompress_safe(from_va, size, to_va, &out_len);
429 BUG_ON(ret != LZO_E_OK);
430 BUG_ON(out_len != PAGE_SIZE);
431 kunmap_atomic(to_va, KM_USER0);
432 out:
433 spin_unlock(&zbpg->lock);
434 return ret;
435 }
436
437 /*
438 * The following routines handle shrinking of ephemeral pages by evicting
439 * pages "least valuable" first.
440 */
441
442 static unsigned long zcache_evicted_raw_pages;
443 static unsigned long zcache_evicted_buddied_pages;
444 static unsigned long zcache_evicted_unbuddied_pages;
445
446 static struct tmem_pool *zcache_get_pool_by_id(uint16_t cli_id,
447 uint16_t poolid);
448 static void zcache_put_pool(struct tmem_pool *pool);
449
450 /*
451 * Flush and free all zbuds in a zbpg, then free the pageframe
452 */
453 static void zbud_evict_zbpg(struct zbud_page *zbpg)
454 {
455 struct zbud_hdr *zh;
456 int i, j;
457 uint32_t pool_id[ZBUD_MAX_BUDS], client_id[ZBUD_MAX_BUDS];
458 uint32_t index[ZBUD_MAX_BUDS];
459 struct tmem_oid oid[ZBUD_MAX_BUDS];
460 struct tmem_pool *pool;
461
462 ASSERT_SPINLOCK(&zbpg->lock);
463 BUG_ON(!list_empty(&zbpg->bud_list));
464 for (i = 0, j = 0; i < ZBUD_MAX_BUDS; i++) {
465 zh = &zbpg->buddy[i];
466 if (zh->size) {
467 client_id[j] = zh->client_id;
468 pool_id[j] = zh->pool_id;
469 oid[j] = zh->oid;
470 index[j] = zh->index;
471 j++;
472 zbud_free(zh);
473 }
474 }
475 spin_unlock(&zbpg->lock);
476 for (i = 0; i < j; i++) {
477 pool = zcache_get_pool_by_id(client_id[i], pool_id[i]);
478 if (pool != NULL) {
479 tmem_flush_page(pool, &oid[i], index[i]);
480 zcache_put_pool(pool);
481 }
482 }
483 ASSERT_SENTINEL(zbpg, ZBPG);
484 spin_lock(&zbpg->lock);
485 zbud_free_raw_page(zbpg);
486 }
487
488 /*
489 * Free nr pages. This code is funky because we want to hold the locks
490 * protecting various lists for as short a time as possible, and in some
491 * circumstances the list may change asynchronously when the list lock is
492 * not held. In some cases we also trylock not only to avoid waiting on a
493 * page in use by another cpu, but also to avoid potential deadlock due to
494 * lock inversion.
495 */
496 static void zbud_evict_pages(int nr)
497 {
498 struct zbud_page *zbpg;
499 int i;
500
501 /* first try freeing any pages on unused list */
502 retry_unused_list:
503 spin_lock_bh(&zbpg_unused_list_spinlock);
504 if (!list_empty(&zbpg_unused_list)) {
505 /* can't walk list here, since it may change when unlocked */
506 zbpg = list_first_entry(&zbpg_unused_list,
507 struct zbud_page, bud_list);
508 list_del_init(&zbpg->bud_list);
509 zcache_zbpg_unused_list_count--;
510 atomic_dec(&zcache_zbud_curr_raw_pages);
511 spin_unlock_bh(&zbpg_unused_list_spinlock);
512 zcache_free_page(zbpg);
513 zcache_evicted_raw_pages++;
514 if (--nr <= 0)
515 goto out;
516 goto retry_unused_list;
517 }
518 spin_unlock_bh(&zbpg_unused_list_spinlock);
519
520 /* now try freeing unbuddied pages, starting with least space avail */
521 for (i = 0; i < MAX_CHUNK; i++) {
522 retry_unbud_list_i:
523 spin_lock_bh(&zbud_budlists_spinlock);
524 if (list_empty(&zbud_unbuddied[i].list)) {
525 spin_unlock_bh(&zbud_budlists_spinlock);
526 continue;
527 }
528 list_for_each_entry(zbpg, &zbud_unbuddied[i].list, bud_list) {
529 if (unlikely(!spin_trylock(&zbpg->lock)))
530 continue;
531 list_del_init(&zbpg->bud_list);
532 zbud_unbuddied[i].count--;
533 spin_unlock(&zbud_budlists_spinlock);
534 zcache_evicted_unbuddied_pages++;
535 /* want budlists unlocked when doing zbpg eviction */
536 zbud_evict_zbpg(zbpg);
537 local_bh_enable();
538 if (--nr <= 0)
539 goto out;
540 goto retry_unbud_list_i;
541 }
542 spin_unlock_bh(&zbud_budlists_spinlock);
543 }
544
545 /* as a last resort, free buddied pages */
546 retry_bud_list:
547 spin_lock_bh(&zbud_budlists_spinlock);
548 if (list_empty(&zbud_buddied_list)) {
549 spin_unlock_bh(&zbud_budlists_spinlock);
550 goto out;
551 }
552 list_for_each_entry(zbpg, &zbud_buddied_list, bud_list) {
553 if (unlikely(!spin_trylock(&zbpg->lock)))
554 continue;
555 list_del_init(&zbpg->bud_list);
556 zcache_zbud_buddied_count--;
557 spin_unlock(&zbud_budlists_spinlock);
558 zcache_evicted_buddied_pages++;
559 /* want budlists unlocked when doing zbpg eviction */
560 zbud_evict_zbpg(zbpg);
561 local_bh_enable();
562 if (--nr <= 0)
563 goto out;
564 goto retry_bud_list;
565 }
566 spin_unlock_bh(&zbud_budlists_spinlock);
567 out:
568 return;
569 }
570
571 static void zbud_init(void)
572 {
573 int i;
574
575 INIT_LIST_HEAD(&zbud_buddied_list);
576 zcache_zbud_buddied_count = 0;
577 for (i = 0; i < NCHUNKS; i++) {
578 INIT_LIST_HEAD(&zbud_unbuddied[i].list);
579 zbud_unbuddied[i].count = 0;
580 }
581 }
582
583 #ifdef CONFIG_SYSFS
584 /*
585 * These sysfs routines show a nice distribution of how many zbpg's are
586 * currently (and have ever been placed) in each unbuddied list. It's fun
587 * to watch but can probably go away before final merge.
588 */
589 static int zbud_show_unbuddied_list_counts(char *buf)
590 {
591 int i;
592 char *p = buf;
593
594 for (i = 0; i < NCHUNKS; i++)
595 p += sprintf(p, "%u ", zbud_unbuddied[i].count);
596 return p - buf;
597 }
598
599 static int zbud_show_cumul_chunk_counts(char *buf)
600 {
601 unsigned long i, chunks = 0, total_chunks = 0, sum_total_chunks = 0;
602 unsigned long total_chunks_lte_21 = 0, total_chunks_lte_32 = 0;
603 unsigned long total_chunks_lte_42 = 0;
604 char *p = buf;
605
606 for (i = 0; i < NCHUNKS; i++) {
607 p += sprintf(p, "%lu ", zbud_cumul_chunk_counts[i]);
608 chunks += zbud_cumul_chunk_counts[i];
609 total_chunks += zbud_cumul_chunk_counts[i];
610 sum_total_chunks += i * zbud_cumul_chunk_counts[i];
611 if (i == 21)
612 total_chunks_lte_21 = total_chunks;
613 if (i == 32)
614 total_chunks_lte_32 = total_chunks;
615 if (i == 42)
616 total_chunks_lte_42 = total_chunks;
617 }
618 p += sprintf(p, "<=21:%lu <=32:%lu <=42:%lu, mean:%lu\n",
619 total_chunks_lte_21, total_chunks_lte_32, total_chunks_lte_42,
620 chunks == 0 ? 0 : sum_total_chunks / chunks);
621 return p - buf;
622 }
623 #endif
624
625 /**********
626 * This "zv" PAM implementation combines the TLSF-based xvMalloc
627 * with lzo1x compression to maximize the amount of data that can
628 * be packed into a physical page.
629 *
630 * Zv represents a PAM page with the index and object (plus a "size" value
631 * necessary for decompression) immediately preceding the compressed data.
632 */
633
634 #define ZVH_SENTINEL 0x43214321
635
636 struct zv_hdr {
637 uint32_t pool_id;
638 struct tmem_oid oid;
639 uint32_t index;
640 DECL_SENTINEL
641 };
642
643 /* rudimentary policy limits */
644 /* total number of persistent pages may not exceed this percentage */
645 static unsigned int zv_page_count_policy_percent = 75;
646 /*
647 * byte count defining poor compression; pages with greater zsize will be
648 * rejected
649 */
650 static unsigned int zv_max_zsize = (PAGE_SIZE / 8) * 7;
651 /*
652 * byte count defining poor *mean* compression; pages with greater zsize
653 * will be rejected until sufficient better-compressed pages are accepted
654 * driving the mean below this threshold
655 */
656 static unsigned int zv_max_mean_zsize = (PAGE_SIZE / 8) * 5;
657
658 static unsigned long zv_curr_dist_counts[NCHUNKS];
659 static unsigned long zv_cumul_dist_counts[NCHUNKS];
660
661 static struct zv_hdr *zv_create(struct xv_pool *xvpool, uint32_t pool_id,
662 struct tmem_oid *oid, uint32_t index,
663 void *cdata, unsigned clen)
664 {
665 struct page *page;
666 struct zv_hdr *zv = NULL;
667 uint32_t offset;
668 int alloc_size = clen + sizeof(struct zv_hdr);
669 int chunks = (alloc_size + (CHUNK_SIZE - 1)) >> CHUNK_SHIFT;
670 int ret;
671
672 BUG_ON(!irqs_disabled());
673 BUG_ON(chunks >= NCHUNKS);
674 ret = xv_malloc(xvpool, alloc_size,
675 &page, &offset, ZCACHE_GFP_MASK);
676 if (unlikely(ret))
677 goto out;
678 zv_curr_dist_counts[chunks]++;
679 zv_cumul_dist_counts[chunks]++;
680 zv = kmap_atomic(page, KM_USER0) + offset;
681 zv->index = index;
682 zv->oid = *oid;
683 zv->pool_id = pool_id;
684 SET_SENTINEL(zv, ZVH);
685 memcpy((char *)zv + sizeof(struct zv_hdr), cdata, clen);
686 kunmap_atomic(zv, KM_USER0);
687 out:
688 return zv;
689 }
690
691 static void zv_free(struct xv_pool *xvpool, struct zv_hdr *zv)
692 {
693 unsigned long flags;
694 struct page *page;
695 uint32_t offset;
696 uint16_t size = xv_get_object_size(zv);
697 int chunks = (size + (CHUNK_SIZE - 1)) >> CHUNK_SHIFT;
698
699 ASSERT_SENTINEL(zv, ZVH);
700 BUG_ON(chunks >= NCHUNKS);
701 zv_curr_dist_counts[chunks]--;
702 size -= sizeof(*zv);
703 BUG_ON(size == 0);
704 INVERT_SENTINEL(zv, ZVH);
705 page = virt_to_page(zv);
706 offset = (unsigned long)zv & ~PAGE_MASK;
707 local_irq_save(flags);
708 xv_free(xvpool, page, offset);
709 local_irq_restore(flags);
710 }
711
712 static void zv_decompress(struct page *page, struct zv_hdr *zv)
713 {
714 size_t clen = PAGE_SIZE;
715 char *to_va;
716 unsigned size;
717 int ret;
718
719 ASSERT_SENTINEL(zv, ZVH);
720 size = xv_get_object_size(zv) - sizeof(*zv);
721 BUG_ON(size == 0);
722 to_va = kmap_atomic(page, KM_USER0);
723 ret = lzo1x_decompress_safe((char *)zv + sizeof(*zv),
724 size, to_va, &clen);
725 kunmap_atomic(to_va, KM_USER0);
726 BUG_ON(ret != LZO_E_OK);
727 BUG_ON(clen != PAGE_SIZE);
728 }
729
730 #ifdef CONFIG_SYSFS
731 /*
732 * show a distribution of compression stats for zv pages.
733 */
734
735 static int zv_curr_dist_counts_show(char *buf)
736 {
737 unsigned long i, n, chunks = 0, sum_total_chunks = 0;
738 char *p = buf;
739
740 for (i = 0; i < NCHUNKS; i++) {
741 n = zv_curr_dist_counts[i];
742 p += sprintf(p, "%lu ", n);
743 chunks += n;
744 sum_total_chunks += i * n;
745 }
746 p += sprintf(p, "mean:%lu\n",
747 chunks == 0 ? 0 : sum_total_chunks / chunks);
748 return p - buf;
749 }
750
751 static int zv_cumul_dist_counts_show(char *buf)
752 {
753 unsigned long i, n, chunks = 0, sum_total_chunks = 0;
754 char *p = buf;
755
756 for (i = 0; i < NCHUNKS; i++) {
757 n = zv_cumul_dist_counts[i];
758 p += sprintf(p, "%lu ", n);
759 chunks += n;
760 sum_total_chunks += i * n;
761 }
762 p += sprintf(p, "mean:%lu\n",
763 chunks == 0 ? 0 : sum_total_chunks / chunks);
764 return p - buf;
765 }
766
767 /*
768 * setting zv_max_zsize via sysfs causes all persistent (e.g. swap)
769 * pages that don't compress to less than this value (including metadata
770 * overhead) to be rejected. We don't allow the value to get too close
771 * to PAGE_SIZE.
772 */
773 static ssize_t zv_max_zsize_show(struct kobject *kobj,
774 struct kobj_attribute *attr,
775 char *buf)
776 {
777 return sprintf(buf, "%u\n", zv_max_zsize);
778 }
779
780 static ssize_t zv_max_zsize_store(struct kobject *kobj,
781 struct kobj_attribute *attr,
782 const char *buf, size_t count)
783 {
784 unsigned long val;
785 int err;
786
787 if (!capable(CAP_SYS_ADMIN))
788 return -EPERM;
789
790 err = strict_strtoul(buf, 10, &val);
791 if (err || (val == 0) || (val > (PAGE_SIZE / 8) * 7))
792 return -EINVAL;
793 zv_max_zsize = val;
794 return count;
795 }
796
797 /*
798 * setting zv_max_mean_zsize via sysfs causes all persistent (e.g. swap)
799 * pages that don't compress to less than this value (including metadata
800 * overhead) to be rejected UNLESS the mean compression is also smaller
801 * than this value. In other words, we are load-balancing-by-zsize the
802 * accepted pages. Again, we don't allow the value to get too close
803 * to PAGE_SIZE.
804 */
805 static ssize_t zv_max_mean_zsize_show(struct kobject *kobj,
806 struct kobj_attribute *attr,
807 char *buf)
808 {
809 return sprintf(buf, "%u\n", zv_max_mean_zsize);
810 }
811
812 static ssize_t zv_max_mean_zsize_store(struct kobject *kobj,
813 struct kobj_attribute *attr,
814 const char *buf, size_t count)
815 {
816 unsigned long val;
817 int err;
818
819 if (!capable(CAP_SYS_ADMIN))
820 return -EPERM;
821
822 err = strict_strtoul(buf, 10, &val);
823 if (err || (val == 0) || (val > (PAGE_SIZE / 8) * 7))
824 return -EINVAL;
825 zv_max_mean_zsize = val;
826 return count;
827 }
828
829 /*
830 * setting zv_page_count_policy_percent via sysfs sets an upper bound of
831 * persistent (e.g. swap) pages that will be retained according to:
832 * (zv_page_count_policy_percent * totalram_pages) / 100)
833 * when that limit is reached, further puts will be rejected (until
834 * some pages have been flushed). Note that, due to compression,
835 * this number may exceed 100; it defaults to 75 and we set an
836 * arbitary limit of 150. A poor choice will almost certainly result
837 * in OOM's, so this value should only be changed prudently.
838 */
839 static ssize_t zv_page_count_policy_percent_show(struct kobject *kobj,
840 struct kobj_attribute *attr,
841 char *buf)
842 {
843 return sprintf(buf, "%u\n", zv_page_count_policy_percent);
844 }
845
846 static ssize_t zv_page_count_policy_percent_store(struct kobject *kobj,
847 struct kobj_attribute *attr,
848 const char *buf, size_t count)
849 {
850 unsigned long val;
851 int err;
852
853 if (!capable(CAP_SYS_ADMIN))
854 return -EPERM;
855
856 err = strict_strtoul(buf, 10, &val);
857 if (err || (val == 0) || (val > 150))
858 return -EINVAL;
859 zv_page_count_policy_percent = val;
860 return count;
861 }
862
863 static struct kobj_attribute zcache_zv_max_zsize_attr = {
864 .attr = { .name = "zv_max_zsize", .mode = 0644 },
865 .show = zv_max_zsize_show,
866 .store = zv_max_zsize_store,
867 };
868
869 static struct kobj_attribute zcache_zv_max_mean_zsize_attr = {
870 .attr = { .name = "zv_max_mean_zsize", .mode = 0644 },
871 .show = zv_max_mean_zsize_show,
872 .store = zv_max_mean_zsize_store,
873 };
874
875 static struct kobj_attribute zcache_zv_page_count_policy_percent_attr = {
876 .attr = { .name = "zv_page_count_policy_percent",
877 .mode = 0644 },
878 .show = zv_page_count_policy_percent_show,
879 .store = zv_page_count_policy_percent_store,
880 };
881 #endif
882
883 /*
884 * zcache core code starts here
885 */
886
887 /* useful stats not collected by cleancache or frontswap */
888 static unsigned long zcache_flush_total;
889 static unsigned long zcache_flush_found;
890 static unsigned long zcache_flobj_total;
891 static unsigned long zcache_flobj_found;
892 static unsigned long zcache_failed_eph_puts;
893 static unsigned long zcache_failed_pers_puts;
894
895 /*
896 * Tmem operations assume the poolid implies the invoking client.
897 * Zcache only has one client (the kernel itself): LOCAL_CLIENT.
898 * RAMster has each client numbered by cluster node, and a KVM version
899 * of zcache would have one client per guest and each client might
900 * have a poolid==N.
901 */
902 static struct tmem_pool *zcache_get_pool_by_id(uint16_t cli_id, uint16_t poolid)
903 {
904 struct tmem_pool *pool = NULL;
905 struct zcache_client *cli = NULL;
906
907 if (cli_id == LOCAL_CLIENT)
908 cli = &zcache_host;
909 else {
910 if (cli_id >= MAX_CLIENTS)
911 goto out;
912 cli = &zcache_clients[cli_id];
913 if (cli == NULL)
914 goto out;
915 atomic_inc(&cli->refcount);
916 }
917 if (poolid < MAX_POOLS_PER_CLIENT) {
918 pool = cli->tmem_pools[poolid];
919 if (pool != NULL)
920 atomic_inc(&pool->refcount);
921 }
922 out:
923 return pool;
924 }
925
926 static void zcache_put_pool(struct tmem_pool *pool)
927 {
928 struct zcache_client *cli = NULL;
929
930 if (pool == NULL)
931 BUG();
932 cli = pool->client;
933 atomic_dec(&pool->refcount);
934 atomic_dec(&cli->refcount);
935 }
936
937 int zcache_new_client(uint16_t cli_id)
938 {
939 struct zcache_client *cli = NULL;
940 int ret = -1;
941
942 if (cli_id == LOCAL_CLIENT)
943 cli = &zcache_host;
944 else if ((unsigned int)cli_id < MAX_CLIENTS)
945 cli = &zcache_clients[cli_id];
946 if (cli == NULL)
947 goto out;
948 if (cli->allocated)
949 goto out;
950 cli->allocated = 1;
951 #ifdef CONFIG_FRONTSWAP
952 cli->xvpool = xv_create_pool();
953 if (cli->xvpool == NULL)
954 goto out;
955 #endif
956 ret = 0;
957 out:
958 return ret;
959 }
960
961 /* counters for debugging */
962 static unsigned long zcache_failed_get_free_pages;
963 static unsigned long zcache_failed_alloc;
964 static unsigned long zcache_put_to_flush;
965
966 /*
967 * for now, used named slabs so can easily track usage; later can
968 * either just use kmalloc, or perhaps add a slab-like allocator
969 * to more carefully manage total memory utilization
970 */
971 static struct kmem_cache *zcache_objnode_cache;
972 static struct kmem_cache *zcache_obj_cache;
973 static atomic_t zcache_curr_obj_count = ATOMIC_INIT(0);
974 static unsigned long zcache_curr_obj_count_max;
975 static atomic_t zcache_curr_objnode_count = ATOMIC_INIT(0);
976 static unsigned long zcache_curr_objnode_count_max;
977
978 /*
979 * to avoid memory allocation recursion (e.g. due to direct reclaim), we
980 * preload all necessary data structures so the hostops callbacks never
981 * actually do a malloc
982 */
983 struct zcache_preload {
984 void *page;
985 struct tmem_obj *obj;
986 int nr;
987 struct tmem_objnode *objnodes[OBJNODE_TREE_MAX_PATH];
988 };
989 static DEFINE_PER_CPU(struct zcache_preload, zcache_preloads) = { 0, };
990
991 static int zcache_do_preload(struct tmem_pool *pool)
992 {
993 struct zcache_preload *kp;
994 struct tmem_objnode *objnode;
995 struct tmem_obj *obj;
996 void *page;
997 int ret = -ENOMEM;
998
999 if (unlikely(zcache_objnode_cache == NULL))
1000 goto out;
1001 if (unlikely(zcache_obj_cache == NULL))
1002 goto out;
1003 preempt_disable();
1004 kp = &__get_cpu_var(zcache_preloads);
1005 while (kp->nr < ARRAY_SIZE(kp->objnodes)) {
1006 preempt_enable_no_resched();
1007 objnode = kmem_cache_alloc(zcache_objnode_cache,
1008 ZCACHE_GFP_MASK);
1009 if (unlikely(objnode == NULL)) {
1010 zcache_failed_alloc++;
1011 goto out;
1012 }
1013 preempt_disable();
1014 kp = &__get_cpu_var(zcache_preloads);
1015 if (kp->nr < ARRAY_SIZE(kp->objnodes))
1016 kp->objnodes[kp->nr++] = objnode;
1017 else
1018 kmem_cache_free(zcache_objnode_cache, objnode);
1019 }
1020 preempt_enable_no_resched();
1021 obj = kmem_cache_alloc(zcache_obj_cache, ZCACHE_GFP_MASK);
1022 if (unlikely(obj == NULL)) {
1023 zcache_failed_alloc++;
1024 goto out;
1025 }
1026 page = (void *)__get_free_page(ZCACHE_GFP_MASK);
1027 if (unlikely(page == NULL)) {
1028 zcache_failed_get_free_pages++;
1029 kmem_cache_free(zcache_obj_cache, obj);
1030 goto out;
1031 }
1032 preempt_disable();
1033 kp = &__get_cpu_var(zcache_preloads);
1034 if (kp->obj == NULL)
1035 kp->obj = obj;
1036 else
1037 kmem_cache_free(zcache_obj_cache, obj);
1038 if (kp->page == NULL)
1039 kp->page = page;
1040 else
1041 free_page((unsigned long)page);
1042 ret = 0;
1043 out:
1044 return ret;
1045 }
1046
1047 static void *zcache_get_free_page(void)
1048 {
1049 struct zcache_preload *kp;
1050 void *page;
1051
1052 kp = &__get_cpu_var(zcache_preloads);
1053 page = kp->page;
1054 BUG_ON(page == NULL);
1055 kp->page = NULL;
1056 return page;
1057 }
1058
1059 static void zcache_free_page(void *p)
1060 {
1061 free_page((unsigned long)p);
1062 }
1063
1064 /*
1065 * zcache implementation for tmem host ops
1066 */
1067
1068 static struct tmem_objnode *zcache_objnode_alloc(struct tmem_pool *pool)
1069 {
1070 struct tmem_objnode *objnode = NULL;
1071 unsigned long count;
1072 struct zcache_preload *kp;
1073
1074 kp = &__get_cpu_var(zcache_preloads);
1075 if (kp->nr <= 0)
1076 goto out;
1077 objnode = kp->objnodes[kp->nr - 1];
1078 BUG_ON(objnode == NULL);
1079 kp->objnodes[kp->nr - 1] = NULL;
1080 kp->nr--;
1081 count = atomic_inc_return(&zcache_curr_objnode_count);
1082 if (count > zcache_curr_objnode_count_max)
1083 zcache_curr_objnode_count_max = count;
1084 out:
1085 return objnode;
1086 }
1087
1088 static void zcache_objnode_free(struct tmem_objnode *objnode,
1089 struct tmem_pool *pool)
1090 {
1091 atomic_dec(&zcache_curr_objnode_count);
1092 BUG_ON(atomic_read(&zcache_curr_objnode_count) < 0);
1093 kmem_cache_free(zcache_objnode_cache, objnode);
1094 }
1095
1096 static struct tmem_obj *zcache_obj_alloc(struct tmem_pool *pool)
1097 {
1098 struct tmem_obj *obj = NULL;
1099 unsigned long count;
1100 struct zcache_preload *kp;
1101
1102 kp = &__get_cpu_var(zcache_preloads);
1103 obj = kp->obj;
1104 BUG_ON(obj == NULL);
1105 kp->obj = NULL;
1106 count = atomic_inc_return(&zcache_curr_obj_count);
1107 if (count > zcache_curr_obj_count_max)
1108 zcache_curr_obj_count_max = count;
1109 return obj;
1110 }
1111
1112 static void zcache_obj_free(struct tmem_obj *obj, struct tmem_pool *pool)
1113 {
1114 atomic_dec(&zcache_curr_obj_count);
1115 BUG_ON(atomic_read(&zcache_curr_obj_count) < 0);
1116 kmem_cache_free(zcache_obj_cache, obj);
1117 }
1118
1119 static struct tmem_hostops zcache_hostops = {
1120 .obj_alloc = zcache_obj_alloc,
1121 .obj_free = zcache_obj_free,
1122 .objnode_alloc = zcache_objnode_alloc,
1123 .objnode_free = zcache_objnode_free,
1124 };
1125
1126 /*
1127 * zcache implementations for PAM page descriptor ops
1128 */
1129
1130 static atomic_t zcache_curr_eph_pampd_count = ATOMIC_INIT(0);
1131 static unsigned long zcache_curr_eph_pampd_count_max;
1132 static atomic_t zcache_curr_pers_pampd_count = ATOMIC_INIT(0);
1133 static unsigned long zcache_curr_pers_pampd_count_max;
1134
1135 /* forward reference */
1136 static int zcache_compress(struct page *from, void **out_va, size_t *out_len);
1137
1138 static void *zcache_pampd_create(char *data, size_t size, bool raw, int eph,
1139 struct tmem_pool *pool, struct tmem_oid *oid,
1140 uint32_t index)
1141 {
1142 void *pampd = NULL, *cdata;
1143 size_t clen;
1144 int ret;
1145 unsigned long count;
1146 struct page *page = (struct page *)(data);
1147 struct zcache_client *cli = pool->client;
1148 uint16_t client_id = get_client_id_from_client(cli);
1149 unsigned long zv_mean_zsize;
1150 unsigned long curr_pers_pampd_count;
1151 u64 total_zsize;
1152
1153 if (eph) {
1154 ret = zcache_compress(page, &cdata, &clen);
1155 if (ret == 0)
1156 goto out;
1157 if (clen == 0 || clen > zbud_max_buddy_size()) {
1158 zcache_compress_poor++;
1159 goto out;
1160 }
1161 pampd = (void *)zbud_create(client_id, pool->pool_id, oid,
1162 index, page, cdata, clen);
1163 if (pampd != NULL) {
1164 count = atomic_inc_return(&zcache_curr_eph_pampd_count);
1165 if (count > zcache_curr_eph_pampd_count_max)
1166 zcache_curr_eph_pampd_count_max = count;
1167 }
1168 } else {
1169 curr_pers_pampd_count =
1170 atomic_read(&zcache_curr_pers_pampd_count);
1171 if (curr_pers_pampd_count >
1172 (zv_page_count_policy_percent * totalram_pages) / 100)
1173 goto out;
1174 ret = zcache_compress(page, &cdata, &clen);
1175 if (ret == 0)
1176 goto out;
1177 /* reject if compression is too poor */
1178 if (clen > zv_max_zsize) {
1179 zcache_compress_poor++;
1180 goto out;
1181 }
1182 /* reject if mean compression is too poor */
1183 if ((clen > zv_max_mean_zsize) && (curr_pers_pampd_count > 0)) {
1184 total_zsize = xv_get_total_size_bytes(cli->xvpool);
1185 zv_mean_zsize = div_u64(total_zsize,
1186 curr_pers_pampd_count);
1187 if (zv_mean_zsize > zv_max_mean_zsize) {
1188 zcache_mean_compress_poor++;
1189 goto out;
1190 }
1191 }
1192 pampd = (void *)zv_create(cli->xvpool, pool->pool_id,
1193 oid, index, cdata, clen);
1194 if (pampd == NULL)
1195 goto out;
1196 count = atomic_inc_return(&zcache_curr_pers_pampd_count);
1197 if (count > zcache_curr_pers_pampd_count_max)
1198 zcache_curr_pers_pampd_count_max = count;
1199 }
1200 out:
1201 return pampd;
1202 }
1203
1204 /*
1205 * fill the pageframe corresponding to the struct page with the data
1206 * from the passed pampd
1207 */
1208 static int zcache_pampd_get_data(char *data, size_t *bufsize, bool raw,
1209 void *pampd, struct tmem_pool *pool,
1210 struct tmem_oid *oid, uint32_t index)
1211 {
1212 int ret = 0;
1213
1214 BUG_ON(is_ephemeral(pool));
1215 zv_decompress((struct page *)(data), pampd);
1216 return ret;
1217 }
1218
1219 /*
1220 * fill the pageframe corresponding to the struct page with the data
1221 * from the passed pampd
1222 */
1223 static int zcache_pampd_get_data_and_free(char *data, size_t *bufsize, bool raw,
1224 void *pampd, struct tmem_pool *pool,
1225 struct tmem_oid *oid, uint32_t index)
1226 {
1227 int ret = 0;
1228
1229 BUG_ON(!is_ephemeral(pool));
1230 zbud_decompress((struct page *)(data), pampd);
1231 zbud_free_and_delist((struct zbud_hdr *)pampd);
1232 atomic_dec(&zcache_curr_eph_pampd_count);
1233 return ret;
1234 }
1235
1236 /*
1237 * free the pampd and remove it from any zcache lists
1238 * pampd must no longer be pointed to from any tmem data structures!
1239 */
1240 static void zcache_pampd_free(void *pampd, struct tmem_pool *pool,
1241 struct tmem_oid *oid, uint32_t index)
1242 {
1243 struct zcache_client *cli = pool->client;
1244
1245 if (is_ephemeral(pool)) {
1246 zbud_free_and_delist((struct zbud_hdr *)pampd);
1247 atomic_dec(&zcache_curr_eph_pampd_count);
1248 BUG_ON(atomic_read(&zcache_curr_eph_pampd_count) < 0);
1249 } else {
1250 zv_free(cli->xvpool, (struct zv_hdr *)pampd);
1251 atomic_dec(&zcache_curr_pers_pampd_count);
1252 BUG_ON(atomic_read(&zcache_curr_pers_pampd_count) < 0);
1253 }
1254 }
1255
1256 static void zcache_pampd_free_obj(struct tmem_pool *pool, struct tmem_obj *obj)
1257 {
1258 }
1259
1260 static void zcache_pampd_new_obj(struct tmem_obj *obj)
1261 {
1262 }
1263
1264 static int zcache_pampd_replace_in_obj(void *pampd, struct tmem_obj *obj)
1265 {
1266 return -1;
1267 }
1268
1269 static bool zcache_pampd_is_remote(void *pampd)
1270 {
1271 return 0;
1272 }
1273
1274 static struct tmem_pamops zcache_pamops = {
1275 .create = zcache_pampd_create,
1276 .get_data = zcache_pampd_get_data,
1277 .get_data_and_free = zcache_pampd_get_data_and_free,
1278 .free = zcache_pampd_free,
1279 .free_obj = zcache_pampd_free_obj,
1280 .new_obj = zcache_pampd_new_obj,
1281 .replace_in_obj = zcache_pampd_replace_in_obj,
1282 .is_remote = zcache_pampd_is_remote,
1283 };
1284
1285 /*
1286 * zcache compression/decompression and related per-cpu stuff
1287 */
1288
1289 #define LZO_WORKMEM_BYTES LZO1X_1_MEM_COMPRESS
1290 #define LZO_DSTMEM_PAGE_ORDER 1
1291 static DEFINE_PER_CPU(unsigned char *, zcache_workmem);
1292 static DEFINE_PER_CPU(unsigned char *, zcache_dstmem);
1293
1294 static int zcache_compress(struct page *from, void **out_va, size_t *out_len)
1295 {
1296 int ret = 0;
1297 unsigned char *dmem = __get_cpu_var(zcache_dstmem);
1298 unsigned char *wmem = __get_cpu_var(zcache_workmem);
1299 char *from_va;
1300
1301 BUG_ON(!irqs_disabled());
1302 if (unlikely(dmem == NULL || wmem == NULL))
1303 goto out; /* no buffer, so can't compress */
1304 from_va = kmap_atomic(from, KM_USER0);
1305 mb();
1306 ret = lzo1x_1_compress(from_va, PAGE_SIZE, dmem, out_len, wmem);
1307 BUG_ON(ret != LZO_E_OK);
1308 *out_va = dmem;
1309 kunmap_atomic(from_va, KM_USER0);
1310 ret = 1;
1311 out:
1312 return ret;
1313 }
1314
1315
1316 static int zcache_cpu_notifier(struct notifier_block *nb,
1317 unsigned long action, void *pcpu)
1318 {
1319 int cpu = (long)pcpu;
1320 struct zcache_preload *kp;
1321
1322 switch (action) {
1323 case CPU_UP_PREPARE:
1324 per_cpu(zcache_dstmem, cpu) = (void *)__get_free_pages(
1325 GFP_KERNEL | __GFP_REPEAT,
1326 LZO_DSTMEM_PAGE_ORDER),
1327 per_cpu(zcache_workmem, cpu) =
1328 kzalloc(LZO1X_MEM_COMPRESS,
1329 GFP_KERNEL | __GFP_REPEAT);
1330 break;
1331 case CPU_DEAD:
1332 case CPU_UP_CANCELED:
1333 free_pages((unsigned long)per_cpu(zcache_dstmem, cpu),
1334 LZO_DSTMEM_PAGE_ORDER);
1335 per_cpu(zcache_dstmem, cpu) = NULL;
1336 kfree(per_cpu(zcache_workmem, cpu));
1337 per_cpu(zcache_workmem, cpu) = NULL;
1338 kp = &per_cpu(zcache_preloads, cpu);
1339 while (kp->nr) {
1340 kmem_cache_free(zcache_objnode_cache,
1341 kp->objnodes[kp->nr - 1]);
1342 kp->objnodes[kp->nr - 1] = NULL;
1343 kp->nr--;
1344 }
1345 if (kp->obj) {
1346 kmem_cache_free(zcache_obj_cache, kp->obj);
1347 kp->obj = NULL;
1348 }
1349 if (kp->page) {
1350 free_page((unsigned long)kp->page);
1351 kp->page = NULL;
1352 }
1353 break;
1354 default:
1355 break;
1356 }
1357 return NOTIFY_OK;
1358 }
1359
1360 static struct notifier_block zcache_cpu_notifier_block = {
1361 .notifier_call = zcache_cpu_notifier
1362 };
1363
1364 #ifdef CONFIG_SYSFS
1365 #define ZCACHE_SYSFS_RO(_name) \
1366 static ssize_t zcache_##_name##_show(struct kobject *kobj, \
1367 struct kobj_attribute *attr, char *buf) \
1368 { \
1369 return sprintf(buf, "%lu\n", zcache_##_name); \
1370 } \
1371 static struct kobj_attribute zcache_##_name##_attr = { \
1372 .attr = { .name = __stringify(_name), .mode = 0444 }, \
1373 .show = zcache_##_name##_show, \
1374 }
1375
1376 #define ZCACHE_SYSFS_RO_ATOMIC(_name) \
1377 static ssize_t zcache_##_name##_show(struct kobject *kobj, \
1378 struct kobj_attribute *attr, char *buf) \
1379 { \
1380 return sprintf(buf, "%d\n", atomic_read(&zcache_##_name)); \
1381 } \
1382 static struct kobj_attribute zcache_##_name##_attr = { \
1383 .attr = { .name = __stringify(_name), .mode = 0444 }, \
1384 .show = zcache_##_name##_show, \
1385 }
1386
1387 #define ZCACHE_SYSFS_RO_CUSTOM(_name, _func) \
1388 static ssize_t zcache_##_name##_show(struct kobject *kobj, \
1389 struct kobj_attribute *attr, char *buf) \
1390 { \
1391 return _func(buf); \
1392 } \
1393 static struct kobj_attribute zcache_##_name##_attr = { \
1394 .attr = { .name = __stringify(_name), .mode = 0444 }, \
1395 .show = zcache_##_name##_show, \
1396 }
1397
1398 ZCACHE_SYSFS_RO(curr_obj_count_max);
1399 ZCACHE_SYSFS_RO(curr_objnode_count_max);
1400 ZCACHE_SYSFS_RO(flush_total);
1401 ZCACHE_SYSFS_RO(flush_found);
1402 ZCACHE_SYSFS_RO(flobj_total);
1403 ZCACHE_SYSFS_RO(flobj_found);
1404 ZCACHE_SYSFS_RO(failed_eph_puts);
1405 ZCACHE_SYSFS_RO(failed_pers_puts);
1406 ZCACHE_SYSFS_RO(zbud_curr_zbytes);
1407 ZCACHE_SYSFS_RO(zbud_cumul_zpages);
1408 ZCACHE_SYSFS_RO(zbud_cumul_zbytes);
1409 ZCACHE_SYSFS_RO(zbud_buddied_count);
1410 ZCACHE_SYSFS_RO(zbpg_unused_list_count);
1411 ZCACHE_SYSFS_RO(evicted_raw_pages);
1412 ZCACHE_SYSFS_RO(evicted_unbuddied_pages);
1413 ZCACHE_SYSFS_RO(evicted_buddied_pages);
1414 ZCACHE_SYSFS_RO(failed_get_free_pages);
1415 ZCACHE_SYSFS_RO(failed_alloc);
1416 ZCACHE_SYSFS_RO(put_to_flush);
1417 ZCACHE_SYSFS_RO(compress_poor);
1418 ZCACHE_SYSFS_RO(mean_compress_poor);
1419 ZCACHE_SYSFS_RO_ATOMIC(zbud_curr_raw_pages);
1420 ZCACHE_SYSFS_RO_ATOMIC(zbud_curr_zpages);
1421 ZCACHE_SYSFS_RO_ATOMIC(curr_obj_count);
1422 ZCACHE_SYSFS_RO_ATOMIC(curr_objnode_count);
1423 ZCACHE_SYSFS_RO_CUSTOM(zbud_unbuddied_list_counts,
1424 zbud_show_unbuddied_list_counts);
1425 ZCACHE_SYSFS_RO_CUSTOM(zbud_cumul_chunk_counts,
1426 zbud_show_cumul_chunk_counts);
1427 ZCACHE_SYSFS_RO_CUSTOM(zv_curr_dist_counts,
1428 zv_curr_dist_counts_show);
1429 ZCACHE_SYSFS_RO_CUSTOM(zv_cumul_dist_counts,
1430 zv_cumul_dist_counts_show);
1431
1432 static struct attribute *zcache_attrs[] = {
1433 &zcache_curr_obj_count_attr.attr,
1434 &zcache_curr_obj_count_max_attr.attr,
1435 &zcache_curr_objnode_count_attr.attr,
1436 &zcache_curr_objnode_count_max_attr.attr,
1437 &zcache_flush_total_attr.attr,
1438 &zcache_flobj_total_attr.attr,
1439 &zcache_flush_found_attr.attr,
1440 &zcache_flobj_found_attr.attr,
1441 &zcache_failed_eph_puts_attr.attr,
1442 &zcache_failed_pers_puts_attr.attr,
1443 &zcache_compress_poor_attr.attr,
1444 &zcache_mean_compress_poor_attr.attr,
1445 &zcache_zbud_curr_raw_pages_attr.attr,
1446 &zcache_zbud_curr_zpages_attr.attr,
1447 &zcache_zbud_curr_zbytes_attr.attr,
1448 &zcache_zbud_cumul_zpages_attr.attr,
1449 &zcache_zbud_cumul_zbytes_attr.attr,
1450 &zcache_zbud_buddied_count_attr.attr,
1451 &zcache_zbpg_unused_list_count_attr.attr,
1452 &zcache_evicted_raw_pages_attr.attr,
1453 &zcache_evicted_unbuddied_pages_attr.attr,
1454 &zcache_evicted_buddied_pages_attr.attr,
1455 &zcache_failed_get_free_pages_attr.attr,
1456 &zcache_failed_alloc_attr.attr,
1457 &zcache_put_to_flush_attr.attr,
1458 &zcache_zbud_unbuddied_list_counts_attr.attr,
1459 &zcache_zbud_cumul_chunk_counts_attr.attr,
1460 &zcache_zv_curr_dist_counts_attr.attr,
1461 &zcache_zv_cumul_dist_counts_attr.attr,
1462 &zcache_zv_max_zsize_attr.attr,
1463 &zcache_zv_max_mean_zsize_attr.attr,
1464 &zcache_zv_page_count_policy_percent_attr.attr,
1465 NULL,
1466 };
1467
1468 static struct attribute_group zcache_attr_group = {
1469 .attrs = zcache_attrs,
1470 .name = "zcache",
1471 };
1472
1473 #endif /* CONFIG_SYSFS */
1474 /*
1475 * When zcache is disabled ("frozen"), pools can be created and destroyed,
1476 * but all puts (and thus all other operations that require memory allocation)
1477 * must fail. If zcache is unfrozen, accepts puts, then frozen again,
1478 * data consistency requires all puts while frozen to be converted into
1479 * flushes.
1480 */
1481 static bool zcache_freeze;
1482
1483 /*
1484 * zcache shrinker interface (only useful for ephemeral pages, so zbud only)
1485 */
1486 static int shrink_zcache_memory(struct shrinker *shrink,
1487 struct shrink_control *sc)
1488 {
1489 int ret = -1;
1490 int nr = sc->nr_to_scan;
1491 gfp_t gfp_mask = sc->gfp_mask;
1492
1493 if (nr >= 0) {
1494 if (!(gfp_mask & __GFP_FS))
1495 /* does this case really need to be skipped? */
1496 goto out;
1497 zbud_evict_pages(nr);
1498 }
1499 ret = (int)atomic_read(&zcache_zbud_curr_raw_pages);
1500 out:
1501 return ret;
1502 }
1503
1504 static struct shrinker zcache_shrinker = {
1505 .shrink = shrink_zcache_memory,
1506 .seeks = DEFAULT_SEEKS,
1507 };
1508
1509 /*
1510 * zcache shims between cleancache/frontswap ops and tmem
1511 */
1512
1513 static int zcache_put_page(int cli_id, int pool_id, struct tmem_oid *oidp,
1514 uint32_t index, struct page *page)
1515 {
1516 struct tmem_pool *pool;
1517 int ret = -1;
1518
1519 BUG_ON(!irqs_disabled());
1520 pool = zcache_get_pool_by_id(cli_id, pool_id);
1521 if (unlikely(pool == NULL))
1522 goto out;
1523 if (!zcache_freeze && zcache_do_preload(pool) == 0) {
1524 /* preload does preempt_disable on success */
1525 ret = tmem_put(pool, oidp, index, (char *)(page),
1526 PAGE_SIZE, 0, is_ephemeral(pool));
1527 if (ret < 0) {
1528 if (is_ephemeral(pool))
1529 zcache_failed_eph_puts++;
1530 else
1531 zcache_failed_pers_puts++;
1532 }
1533 zcache_put_pool(pool);
1534 preempt_enable_no_resched();
1535 } else {
1536 zcache_put_to_flush++;
1537 if (atomic_read(&pool->obj_count) > 0)
1538 /* the put fails whether the flush succeeds or not */
1539 (void)tmem_flush_page(pool, oidp, index);
1540 zcache_put_pool(pool);
1541 }
1542 out:
1543 return ret;
1544 }
1545
1546 static int zcache_get_page(int cli_id, int pool_id, struct tmem_oid *oidp,
1547 uint32_t index, struct page *page)
1548 {
1549 struct tmem_pool *pool;
1550 int ret = -1;
1551 unsigned long flags;
1552 size_t size = PAGE_SIZE;
1553
1554 local_irq_save(flags);
1555 pool = zcache_get_pool_by_id(cli_id, pool_id);
1556 if (likely(pool != NULL)) {
1557 if (atomic_read(&pool->obj_count) > 0)
1558 ret = tmem_get(pool, oidp, index, (char *)(page),
1559 &size, 0, is_ephemeral(pool));
1560 zcache_put_pool(pool);
1561 }
1562 local_irq_restore(flags);
1563 return ret;
1564 }
1565
1566 static int zcache_flush_page(int cli_id, int pool_id,
1567 struct tmem_oid *oidp, uint32_t index)
1568 {
1569 struct tmem_pool *pool;
1570 int ret = -1;
1571 unsigned long flags;
1572
1573 local_irq_save(flags);
1574 zcache_flush_total++;
1575 pool = zcache_get_pool_by_id(cli_id, pool_id);
1576 if (likely(pool != NULL)) {
1577 if (atomic_read(&pool->obj_count) > 0)
1578 ret = tmem_flush_page(pool, oidp, index);
1579 zcache_put_pool(pool);
1580 }
1581 if (ret >= 0)
1582 zcache_flush_found++;
1583 local_irq_restore(flags);
1584 return ret;
1585 }
1586
1587 static int zcache_flush_object(int cli_id, int pool_id,
1588 struct tmem_oid *oidp)
1589 {
1590 struct tmem_pool *pool;
1591 int ret = -1;
1592 unsigned long flags;
1593
1594 local_irq_save(flags);
1595 zcache_flobj_total++;
1596 pool = zcache_get_pool_by_id(cli_id, pool_id);
1597 if (likely(pool != NULL)) {
1598 if (atomic_read(&pool->obj_count) > 0)
1599 ret = tmem_flush_object(pool, oidp);
1600 zcache_put_pool(pool);
1601 }
1602 if (ret >= 0)
1603 zcache_flobj_found++;
1604 local_irq_restore(flags);
1605 return ret;
1606 }
1607
1608 static int zcache_destroy_pool(int cli_id, int pool_id)
1609 {
1610 struct tmem_pool *pool = NULL;
1611 struct zcache_client *cli = NULL;
1612 int ret = -1;
1613
1614 if (pool_id < 0)
1615 goto out;
1616 if (cli_id == LOCAL_CLIENT)
1617 cli = &zcache_host;
1618 else if ((unsigned int)cli_id < MAX_CLIENTS)
1619 cli = &zcache_clients[cli_id];
1620 if (cli == NULL)
1621 goto out;
1622 atomic_inc(&cli->refcount);
1623 pool = cli->tmem_pools[pool_id];
1624 if (pool == NULL)
1625 goto out;
1626 cli->tmem_pools[pool_id] = NULL;
1627 /* wait for pool activity on other cpus to quiesce */
1628 while (atomic_read(&pool->refcount) != 0)
1629 ;
1630 atomic_dec(&cli->refcount);
1631 local_bh_disable();
1632 ret = tmem_destroy_pool(pool);
1633 local_bh_enable();
1634 kfree(pool);
1635 pr_info("zcache: destroyed pool id=%d, cli_id=%d\n",
1636 pool_id, cli_id);
1637 out:
1638 return ret;
1639 }
1640
1641 static int zcache_new_pool(uint16_t cli_id, uint32_t flags)
1642 {
1643 int poolid = -1;
1644 struct tmem_pool *pool;
1645 struct zcache_client *cli = NULL;
1646
1647 if (cli_id == LOCAL_CLIENT)
1648 cli = &zcache_host;
1649 else if ((unsigned int)cli_id < MAX_CLIENTS)
1650 cli = &zcache_clients[cli_id];
1651 if (cli == NULL)
1652 goto out;
1653 atomic_inc(&cli->refcount);
1654 pool = kmalloc(sizeof(struct tmem_pool), GFP_ATOMIC);
1655 if (pool == NULL) {
1656 pr_info("zcache: pool creation failed: out of memory\n");
1657 goto out;
1658 }
1659
1660 for (poolid = 0; poolid < MAX_POOLS_PER_CLIENT; poolid++)
1661 if (cli->tmem_pools[poolid] == NULL)
1662 break;
1663 if (poolid >= MAX_POOLS_PER_CLIENT) {
1664 pr_info("zcache: pool creation failed: max exceeded\n");
1665 kfree(pool);
1666 poolid = -1;
1667 goto out;
1668 }
1669 atomic_set(&pool->refcount, 0);
1670 pool->client = cli;
1671 pool->pool_id = poolid;
1672 tmem_new_pool(pool, flags);
1673 cli->tmem_pools[poolid] = pool;
1674 pr_info("zcache: created %s tmem pool, id=%d, client=%d\n",
1675 flags & TMEM_POOL_PERSIST ? "persistent" : "ephemeral",
1676 poolid, cli_id);
1677 out:
1678 if (cli != NULL)
1679 atomic_dec(&cli->refcount);
1680 return poolid;
1681 }
1682
1683 /**********
1684 * Two kernel functionalities currently can be layered on top of tmem.
1685 * These are "cleancache" which is used as a second-chance cache for clean
1686 * page cache pages; and "frontswap" which is used for swap pages
1687 * to avoid writes to disk. A generic "shim" is provided here for each
1688 * to translate in-kernel semantics to zcache semantics.
1689 */
1690
1691 #ifdef CONFIG_CLEANCACHE
1692 static void zcache_cleancache_put_page(int pool_id,
1693 struct cleancache_filekey key,
1694 pgoff_t index, struct page *page)
1695 {
1696 u32 ind = (u32) index;
1697 struct tmem_oid oid = *(struct tmem_oid *)&key;
1698
1699 if (likely(ind == index))
1700 (void)zcache_put_page(LOCAL_CLIENT, pool_id, &oid, index, page);
1701 }
1702
1703 static int zcache_cleancache_get_page(int pool_id,
1704 struct cleancache_filekey key,
1705 pgoff_t index, struct page *page)
1706 {
1707 u32 ind = (u32) index;
1708 struct tmem_oid oid = *(struct tmem_oid *)&key;
1709 int ret = -1;
1710
1711 if (likely(ind == index))
1712 ret = zcache_get_page(LOCAL_CLIENT, pool_id, &oid, index, page);
1713 return ret;
1714 }
1715
1716 static void zcache_cleancache_flush_page(int pool_id,
1717 struct cleancache_filekey key,
1718 pgoff_t index)
1719 {
1720 u32 ind = (u32) index;
1721 struct tmem_oid oid = *(struct tmem_oid *)&key;
1722
1723 if (likely(ind == index))
1724 (void)zcache_flush_page(LOCAL_CLIENT, pool_id, &oid, ind);
1725 }
1726
1727 static void zcache_cleancache_flush_inode(int pool_id,
1728 struct cleancache_filekey key)
1729 {
1730 struct tmem_oid oid = *(struct tmem_oid *)&key;
1731
1732 (void)zcache_flush_object(LOCAL_CLIENT, pool_id, &oid);
1733 }
1734
1735 static void zcache_cleancache_flush_fs(int pool_id)
1736 {
1737 if (pool_id >= 0)
1738 (void)zcache_destroy_pool(LOCAL_CLIENT, pool_id);
1739 }
1740
1741 static int zcache_cleancache_init_fs(size_t pagesize)
1742 {
1743 BUG_ON(sizeof(struct cleancache_filekey) !=
1744 sizeof(struct tmem_oid));
1745 BUG_ON(pagesize != PAGE_SIZE);
1746 return zcache_new_pool(LOCAL_CLIENT, 0);
1747 }
1748
1749 static int zcache_cleancache_init_shared_fs(char *uuid, size_t pagesize)
1750 {
1751 /* shared pools are unsupported and map to private */
1752 BUG_ON(sizeof(struct cleancache_filekey) !=
1753 sizeof(struct tmem_oid));
1754 BUG_ON(pagesize != PAGE_SIZE);
1755 return zcache_new_pool(LOCAL_CLIENT, 0);
1756 }
1757
1758 static struct cleancache_ops zcache_cleancache_ops = {
1759 .put_page = zcache_cleancache_put_page,
1760 .get_page = zcache_cleancache_get_page,
1761 .invalidate_page = zcache_cleancache_flush_page,
1762 .invalidate_inode = zcache_cleancache_flush_inode,
1763 .invalidate_fs = zcache_cleancache_flush_fs,
1764 .init_shared_fs = zcache_cleancache_init_shared_fs,
1765 .init_fs = zcache_cleancache_init_fs
1766 };
1767
1768 struct cleancache_ops zcache_cleancache_register_ops(void)
1769 {
1770 struct cleancache_ops old_ops =
1771 cleancache_register_ops(&zcache_cleancache_ops);
1772
1773 return old_ops;
1774 }
1775 #endif
1776
1777 #ifdef CONFIG_FRONTSWAP
1778 /* a single tmem poolid is used for all frontswap "types" (swapfiles) */
1779 static int zcache_frontswap_poolid = -1;
1780
1781 /*
1782 * Swizzling increases objects per swaptype, increasing tmem concurrency
1783 * for heavy swaploads. Later, larger nr_cpus -> larger SWIZ_BITS
1784 * Setting SWIZ_BITS to 27 basically reconstructs the swap entry from
1785 * frontswap_get_page()
1786 */
1787 #define SWIZ_BITS 27
1788 #define SWIZ_MASK ((1 << SWIZ_BITS) - 1)
1789 #define _oswiz(_type, _ind) ((_type << SWIZ_BITS) | (_ind & SWIZ_MASK))
1790 #define iswiz(_ind) (_ind >> SWIZ_BITS)
1791
1792 static inline struct tmem_oid oswiz(unsigned type, u32 ind)
1793 {
1794 struct tmem_oid oid = { .oid = { 0 } };
1795 oid.oid[0] = _oswiz(type, ind);
1796 return oid;
1797 }
1798
1799 static int zcache_frontswap_put_page(unsigned type, pgoff_t offset,
1800 struct page *page)
1801 {
1802 u64 ind64 = (u64)offset;
1803 u32 ind = (u32)offset;
1804 struct tmem_oid oid = oswiz(type, ind);
1805 int ret = -1;
1806 unsigned long flags;
1807
1808 BUG_ON(!PageLocked(page));
1809 if (likely(ind64 == ind)) {
1810 local_irq_save(flags);
1811 ret = zcache_put_page(LOCAL_CLIENT, zcache_frontswap_poolid,
1812 &oid, iswiz(ind), page);
1813 local_irq_restore(flags);
1814 }
1815 return ret;
1816 }
1817
1818 /* returns 0 if the page was successfully gotten from frontswap, -1 if
1819 * was not present (should never happen!) */
1820 static int zcache_frontswap_get_page(unsigned type, pgoff_t offset,
1821 struct page *page)
1822 {
1823 u64 ind64 = (u64)offset;
1824 u32 ind = (u32)offset;
1825 struct tmem_oid oid = oswiz(type, ind);
1826 int ret = -1;
1827
1828 BUG_ON(!PageLocked(page));
1829 if (likely(ind64 == ind))
1830 ret = zcache_get_page(LOCAL_CLIENT, zcache_frontswap_poolid,
1831 &oid, iswiz(ind), page);
1832 return ret;
1833 }
1834
1835 /* flush a single page from frontswap */
1836 static void zcache_frontswap_flush_page(unsigned type, pgoff_t offset)
1837 {
1838 u64 ind64 = (u64)offset;
1839 u32 ind = (u32)offset;
1840 struct tmem_oid oid = oswiz(type, ind);
1841
1842 if (likely(ind64 == ind))
1843 (void)zcache_flush_page(LOCAL_CLIENT, zcache_frontswap_poolid,
1844 &oid, iswiz(ind));
1845 }
1846
1847 /* flush all pages from the passed swaptype */
1848 static void zcache_frontswap_flush_area(unsigned type)
1849 {
1850 struct tmem_oid oid;
1851 int ind;
1852
1853 for (ind = SWIZ_MASK; ind >= 0; ind--) {
1854 oid = oswiz(type, ind);
1855 (void)zcache_flush_object(LOCAL_CLIENT,
1856 zcache_frontswap_poolid, &oid);
1857 }
1858 }
1859
1860 static void zcache_frontswap_init(unsigned ignored)
1861 {
1862 /* a single tmem poolid is used for all frontswap "types" (swapfiles) */
1863 if (zcache_frontswap_poolid < 0)
1864 zcache_frontswap_poolid =
1865 zcache_new_pool(LOCAL_CLIENT, TMEM_POOL_PERSIST);
1866 }
1867
1868 static struct frontswap_ops zcache_frontswap_ops = {
1869 .put_page = zcache_frontswap_put_page,
1870 .get_page = zcache_frontswap_get_page,
1871 .invalidate_page = zcache_frontswap_flush_page,
1872 .invalidate_area = zcache_frontswap_flush_area,
1873 .init = zcache_frontswap_init
1874 };
1875
1876 struct frontswap_ops zcache_frontswap_register_ops(void)
1877 {
1878 struct frontswap_ops old_ops =
1879 frontswap_register_ops(&zcache_frontswap_ops);
1880
1881 return old_ops;
1882 }
1883 #endif
1884
1885 /*
1886 * zcache initialization
1887 * NOTE FOR NOW zcache MUST BE PROVIDED AS A KERNEL BOOT PARAMETER OR
1888 * NOTHING HAPPENS!
1889 */
1890
1891 static int zcache_enabled;
1892
1893 static int __init enable_zcache(char *s)
1894 {
1895 zcache_enabled = 1;
1896 return 1;
1897 }
1898 __setup("zcache", enable_zcache);
1899
1900 /* allow independent dynamic disabling of cleancache and frontswap */
1901
1902 static int use_cleancache = 1;
1903
1904 static int __init no_cleancache(char *s)
1905 {
1906 use_cleancache = 0;
1907 return 1;
1908 }
1909
1910 __setup("nocleancache", no_cleancache);
1911
1912 static int use_frontswap = 1;
1913
1914 static int __init no_frontswap(char *s)
1915 {
1916 use_frontswap = 0;
1917 return 1;
1918 }
1919
1920 __setup("nofrontswap", no_frontswap);
1921
1922 static int __init zcache_init(void)
1923 {
1924 int ret = 0;
1925
1926 #ifdef CONFIG_SYSFS
1927 ret = sysfs_create_group(mm_kobj, &zcache_attr_group);
1928 if (ret) {
1929 pr_err("zcache: can't create sysfs\n");
1930 goto out;
1931 }
1932 #endif /* CONFIG_SYSFS */
1933 #if defined(CONFIG_CLEANCACHE) || defined(CONFIG_FRONTSWAP)
1934 if (zcache_enabled) {
1935 unsigned int cpu;
1936
1937 tmem_register_hostops(&zcache_hostops);
1938 tmem_register_pamops(&zcache_pamops);
1939 ret = register_cpu_notifier(&zcache_cpu_notifier_block);
1940 if (ret) {
1941 pr_err("zcache: can't register cpu notifier\n");
1942 goto out;
1943 }
1944 for_each_online_cpu(cpu) {
1945 void *pcpu = (void *)(long)cpu;
1946 zcache_cpu_notifier(&zcache_cpu_notifier_block,
1947 CPU_UP_PREPARE, pcpu);
1948 }
1949 }
1950 zcache_objnode_cache = kmem_cache_create("zcache_objnode",
1951 sizeof(struct tmem_objnode), 0, 0, NULL);
1952 zcache_obj_cache = kmem_cache_create("zcache_obj",
1953 sizeof(struct tmem_obj), 0, 0, NULL);
1954 ret = zcache_new_client(LOCAL_CLIENT);
1955 if (ret) {
1956 pr_err("zcache: can't create client\n");
1957 goto out;
1958 }
1959 #endif
1960 #ifdef CONFIG_CLEANCACHE
1961 if (zcache_enabled && use_cleancache) {
1962 struct cleancache_ops old_ops;
1963
1964 zbud_init();
1965 register_shrinker(&zcache_shrinker);
1966 old_ops = zcache_cleancache_register_ops();
1967 pr_info("zcache: cleancache enabled using kernel "
1968 "transcendent memory and compression buddies\n");
1969 if (old_ops.init_fs != NULL)
1970 pr_warning("zcache: cleancache_ops overridden");
1971 }
1972 #endif
1973 #ifdef CONFIG_FRONTSWAP
1974 if (zcache_enabled && use_frontswap) {
1975 struct frontswap_ops old_ops;
1976
1977 old_ops = zcache_frontswap_register_ops();
1978 pr_info("zcache: frontswap enabled using kernel "
1979 "transcendent memory and xvmalloc\n");
1980 if (old_ops.init != NULL)
1981 pr_warning("zcache: frontswap_ops overridden");
1982 }
1983 #endif
1984 out:
1985 return ret;
1986 }
1987
1988 module_init(zcache_init)