Merge tag 'md-3.8' of git://neil.brown.name/md
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / staging / wlan-ng / hfa384x_usb.c
1 /* src/prism2/driver/hfa384x_usb.c
2 *
3 * Functions that talk to the USB variantof the Intersil hfa384x MAC
4 *
5 * Copyright (C) 1999 AbsoluteValue Systems, Inc. All Rights Reserved.
6 * --------------------------------------------------------------------
7 *
8 * linux-wlan
9 *
10 * The contents of this file are subject to the Mozilla Public
11 * License Version 1.1 (the "License"); you may not use this file
12 * except in compliance with the License. You may obtain a copy of
13 * the License at http://www.mozilla.org/MPL/
14 *
15 * Software distributed under the License is distributed on an "AS
16 * IS" basis, WITHOUT WARRANTY OF ANY KIND, either express or
17 * implied. See the License for the specific language governing
18 * rights and limitations under the License.
19 *
20 * Alternatively, the contents of this file may be used under the
21 * terms of the GNU Public License version 2 (the "GPL"), in which
22 * case the provisions of the GPL are applicable instead of the
23 * above. If you wish to allow the use of your version of this file
24 * only under the terms of the GPL and not to allow others to use
25 * your version of this file under the MPL, indicate your decision
26 * by deleting the provisions above and replace them with the notice
27 * and other provisions required by the GPL. If you do not delete
28 * the provisions above, a recipient may use your version of this
29 * file under either the MPL or the GPL.
30 *
31 * --------------------------------------------------------------------
32 *
33 * Inquiries regarding the linux-wlan Open Source project can be
34 * made directly to:
35 *
36 * AbsoluteValue Systems Inc.
37 * info@linux-wlan.com
38 * http://www.linux-wlan.com
39 *
40 * --------------------------------------------------------------------
41 *
42 * Portions of the development of this software were funded by
43 * Intersil Corporation as part of PRISM(R) chipset product development.
44 *
45 * --------------------------------------------------------------------
46 *
47 * This file implements functions that correspond to the prism2/hfa384x
48 * 802.11 MAC hardware and firmware host interface.
49 *
50 * The functions can be considered to represent several levels of
51 * abstraction. The lowest level functions are simply C-callable wrappers
52 * around the register accesses. The next higher level represents C-callable
53 * prism2 API functions that match the Intersil documentation as closely
54 * as is reasonable. The next higher layer implements common sequences
55 * of invocations of the API layer (e.g. write to bap, followed by cmd).
56 *
57 * Common sequences:
58 * hfa384x_drvr_xxx Highest level abstractions provided by the
59 * hfa384x code. They are driver defined wrappers
60 * for common sequences. These functions generally
61 * use the services of the lower levels.
62 *
63 * hfa384x_drvr_xxxconfig An example of the drvr level abstraction. These
64 * functions are wrappers for the RID get/set
65 * sequence. They call copy_[to|from]_bap() and
66 * cmd_access(). These functions operate on the
67 * RIDs and buffers without validation. The caller
68 * is responsible for that.
69 *
70 * API wrapper functions:
71 * hfa384x_cmd_xxx functions that provide access to the f/w commands.
72 * The function arguments correspond to each command
73 * argument, even command arguments that get packed
74 * into single registers. These functions _just_
75 * issue the command by setting the cmd/parm regs
76 * & reading the status/resp regs. Additional
77 * activities required to fully use a command
78 * (read/write from/to bap, get/set int status etc.)
79 * are implemented separately. Think of these as
80 * C-callable prism2 commands.
81 *
82 * Lowest Layer Functions:
83 * hfa384x_docmd_xxx These functions implement the sequence required
84 * to issue any prism2 command. Primarily used by the
85 * hfa384x_cmd_xxx functions.
86 *
87 * hfa384x_bap_xxx BAP read/write access functions.
88 * Note: we usually use BAP0 for non-interrupt context
89 * and BAP1 for interrupt context.
90 *
91 * hfa384x_dl_xxx download related functions.
92 *
93 * Driver State Issues:
94 * Note that there are two pairs of functions that manage the
95 * 'initialized' and 'running' states of the hw/MAC combo. The four
96 * functions are create(), destroy(), start(), and stop(). create()
97 * sets up the data structures required to support the hfa384x_*
98 * functions and destroy() cleans them up. The start() function gets
99 * the actual hardware running and enables the interrupts. The stop()
100 * function shuts the hardware down. The sequence should be:
101 * create()
102 * start()
103 * .
104 * . Do interesting things w/ the hardware
105 * .
106 * stop()
107 * destroy()
108 *
109 * Note that destroy() can be called without calling stop() first.
110 * --------------------------------------------------------------------
111 */
112
113 #include <linux/module.h>
114 #include <linux/kernel.h>
115 #include <linux/sched.h>
116 #include <linux/types.h>
117 #include <linux/slab.h>
118 #include <linux/wireless.h>
119 #include <linux/netdevice.h>
120 #include <linux/timer.h>
121 #include <linux/io.h>
122 #include <linux/delay.h>
123 #include <asm/byteorder.h>
124 #include <linux/bitops.h>
125 #include <linux/list.h>
126 #include <linux/usb.h>
127 #include <linux/byteorder/generic.h>
128
129 #define SUBMIT_URB(u, f) usb_submit_urb(u, f)
130
131 #include "p80211types.h"
132 #include "p80211hdr.h"
133 #include "p80211mgmt.h"
134 #include "p80211conv.h"
135 #include "p80211msg.h"
136 #include "p80211netdev.h"
137 #include "p80211req.h"
138 #include "p80211metadef.h"
139 #include "p80211metastruct.h"
140 #include "hfa384x.h"
141 #include "prism2mgmt.h"
142
143 enum cmd_mode {
144 DOWAIT = 0,
145 DOASYNC
146 };
147
148 #define THROTTLE_JIFFIES (HZ/8)
149 #define URB_ASYNC_UNLINK 0
150 #define USB_QUEUE_BULK 0
151
152 #define ROUNDUP64(a) (((a)+63)&~63)
153
154 #ifdef DEBUG_USB
155 static void dbprint_urb(struct urb *urb);
156 #endif
157
158 static void
159 hfa384x_int_rxmonitor(wlandevice_t *wlandev, hfa384x_usb_rxfrm_t *rxfrm);
160
161 static void hfa384x_usb_defer(struct work_struct *data);
162
163 static int submit_rx_urb(hfa384x_t *hw, gfp_t flags);
164
165 static int submit_tx_urb(hfa384x_t *hw, struct urb *tx_urb, gfp_t flags);
166
167 /*---------------------------------------------------*/
168 /* Callbacks */
169 static void hfa384x_usbout_callback(struct urb *urb);
170 static void hfa384x_ctlxout_callback(struct urb *urb);
171 static void hfa384x_usbin_callback(struct urb *urb);
172
173 static void
174 hfa384x_usbin_txcompl(wlandevice_t *wlandev, hfa384x_usbin_t *usbin);
175
176 static void hfa384x_usbin_rx(wlandevice_t *wlandev, struct sk_buff *skb);
177
178 static void hfa384x_usbin_info(wlandevice_t *wlandev, hfa384x_usbin_t *usbin);
179
180 static void
181 hfa384x_usbout_tx(wlandevice_t *wlandev, hfa384x_usbout_t *usbout);
182
183 static void hfa384x_usbin_ctlx(hfa384x_t *hw, hfa384x_usbin_t *usbin,
184 int urb_status);
185
186 /*---------------------------------------------------*/
187 /* Functions to support the prism2 usb command queue */
188
189 static void hfa384x_usbctlxq_run(hfa384x_t *hw);
190
191 static void hfa384x_usbctlx_reqtimerfn(unsigned long data);
192
193 static void hfa384x_usbctlx_resptimerfn(unsigned long data);
194
195 static void hfa384x_usb_throttlefn(unsigned long data);
196
197 static void hfa384x_usbctlx_completion_task(unsigned long data);
198
199 static void hfa384x_usbctlx_reaper_task(unsigned long data);
200
201 static int hfa384x_usbctlx_submit(hfa384x_t *hw, hfa384x_usbctlx_t *ctlx);
202
203 static void unlocked_usbctlx_complete(hfa384x_t *hw, hfa384x_usbctlx_t *ctlx);
204
205 struct usbctlx_completor {
206 int (*complete) (struct usbctlx_completor *);
207 };
208
209 static int
210 hfa384x_usbctlx_complete_sync(hfa384x_t *hw,
211 hfa384x_usbctlx_t *ctlx,
212 struct usbctlx_completor *completor);
213
214 static int
215 unlocked_usbctlx_cancel_async(hfa384x_t *hw, hfa384x_usbctlx_t *ctlx);
216
217 static void hfa384x_cb_status(hfa384x_t *hw, const hfa384x_usbctlx_t *ctlx);
218
219 static void hfa384x_cb_rrid(hfa384x_t *hw, const hfa384x_usbctlx_t *ctlx);
220
221 static int
222 usbctlx_get_status(const hfa384x_usb_cmdresp_t *cmdresp,
223 hfa384x_cmdresult_t *result);
224
225 static void
226 usbctlx_get_rridresult(const hfa384x_usb_rridresp_t *rridresp,
227 hfa384x_rridresult_t *result);
228
229 /*---------------------------------------------------*/
230 /* Low level req/resp CTLX formatters and submitters */
231 static int
232 hfa384x_docmd(hfa384x_t *hw,
233 enum cmd_mode mode,
234 hfa384x_metacmd_t *cmd,
235 ctlx_cmdcb_t cmdcb, ctlx_usercb_t usercb, void *usercb_data);
236
237 static int
238 hfa384x_dorrid(hfa384x_t *hw,
239 enum cmd_mode mode,
240 u16 rid,
241 void *riddata,
242 unsigned int riddatalen,
243 ctlx_cmdcb_t cmdcb, ctlx_usercb_t usercb, void *usercb_data);
244
245 static int
246 hfa384x_dowrid(hfa384x_t *hw,
247 enum cmd_mode mode,
248 u16 rid,
249 void *riddata,
250 unsigned int riddatalen,
251 ctlx_cmdcb_t cmdcb, ctlx_usercb_t usercb, void *usercb_data);
252
253 static int
254 hfa384x_dormem(hfa384x_t *hw,
255 enum cmd_mode mode,
256 u16 page,
257 u16 offset,
258 void *data,
259 unsigned int len,
260 ctlx_cmdcb_t cmdcb, ctlx_usercb_t usercb, void *usercb_data);
261
262 static int
263 hfa384x_dowmem(hfa384x_t *hw,
264 enum cmd_mode mode,
265 u16 page,
266 u16 offset,
267 void *data,
268 unsigned int len,
269 ctlx_cmdcb_t cmdcb, ctlx_usercb_t usercb, void *usercb_data);
270
271 static int hfa384x_isgood_pdrcode(u16 pdrcode);
272
273 static inline const char *ctlxstr(CTLX_STATE s)
274 {
275 static const char *ctlx_str[] = {
276 "Initial state",
277 "Complete",
278 "Request failed",
279 "Request pending",
280 "Request packet submitted",
281 "Request packet completed",
282 "Response packet completed"
283 };
284
285 return ctlx_str[s];
286 };
287
288 static inline hfa384x_usbctlx_t *get_active_ctlx(hfa384x_t *hw)
289 {
290 return list_entry(hw->ctlxq.active.next, hfa384x_usbctlx_t, list);
291 }
292
293 #ifdef DEBUG_USB
294 void dbprint_urb(struct urb *urb)
295 {
296 pr_debug("urb->pipe=0x%08x\n", urb->pipe);
297 pr_debug("urb->status=0x%08x\n", urb->status);
298 pr_debug("urb->transfer_flags=0x%08x\n", urb->transfer_flags);
299 pr_debug("urb->transfer_buffer=0x%08x\n",
300 (unsigned int)urb->transfer_buffer);
301 pr_debug("urb->transfer_buffer_length=0x%08x\n",
302 urb->transfer_buffer_length);
303 pr_debug("urb->actual_length=0x%08x\n", urb->actual_length);
304 pr_debug("urb->bandwidth=0x%08x\n", urb->bandwidth);
305 pr_debug("urb->setup_packet(ctl)=0x%08x\n",
306 (unsigned int)urb->setup_packet);
307 pr_debug("urb->start_frame(iso/irq)=0x%08x\n", urb->start_frame);
308 pr_debug("urb->interval(irq)=0x%08x\n", urb->interval);
309 pr_debug("urb->error_count(iso)=0x%08x\n", urb->error_count);
310 pr_debug("urb->timeout=0x%08x\n", urb->timeout);
311 pr_debug("urb->context=0x%08x\n", (unsigned int)urb->context);
312 pr_debug("urb->complete=0x%08x\n", (unsigned int)urb->complete);
313 }
314 #endif
315
316 /*----------------------------------------------------------------
317 * submit_rx_urb
318 *
319 * Listen for input data on the BULK-IN pipe. If the pipe has
320 * stalled then schedule it to be reset.
321 *
322 * Arguments:
323 * hw device struct
324 * memflags memory allocation flags
325 *
326 * Returns:
327 * error code from submission
328 *
329 * Call context:
330 * Any
331 ----------------------------------------------------------------*/
332 static int submit_rx_urb(hfa384x_t *hw, gfp_t memflags)
333 {
334 struct sk_buff *skb;
335 int result;
336
337 skb = dev_alloc_skb(sizeof(hfa384x_usbin_t));
338 if (skb == NULL) {
339 result = -ENOMEM;
340 goto done;
341 }
342
343 /* Post the IN urb */
344 usb_fill_bulk_urb(&hw->rx_urb, hw->usb,
345 hw->endp_in,
346 skb->data, sizeof(hfa384x_usbin_t),
347 hfa384x_usbin_callback, hw->wlandev);
348
349 hw->rx_urb_skb = skb;
350
351 result = -ENOLINK;
352 if (!hw->wlandev->hwremoved &&
353 !test_bit(WORK_RX_HALT, &hw->usb_flags)) {
354 result = SUBMIT_URB(&hw->rx_urb, memflags);
355
356 /* Check whether we need to reset the RX pipe */
357 if (result == -EPIPE) {
358 printk(KERN_WARNING
359 "%s rx pipe stalled: requesting reset\n",
360 hw->wlandev->netdev->name);
361 if (!test_and_set_bit(WORK_RX_HALT, &hw->usb_flags))
362 schedule_work(&hw->usb_work);
363 }
364 }
365
366 /* Don't leak memory if anything should go wrong */
367 if (result != 0) {
368 dev_kfree_skb(skb);
369 hw->rx_urb_skb = NULL;
370 }
371
372 done:
373 return result;
374 }
375
376 /*----------------------------------------------------------------
377 * submit_tx_urb
378 *
379 * Prepares and submits the URB of transmitted data. If the
380 * submission fails then it will schedule the output pipe to
381 * be reset.
382 *
383 * Arguments:
384 * hw device struct
385 * tx_urb URB of data for tranmission
386 * memflags memory allocation flags
387 *
388 * Returns:
389 * error code from submission
390 *
391 * Call context:
392 * Any
393 ----------------------------------------------------------------*/
394 static int submit_tx_urb(hfa384x_t *hw, struct urb *tx_urb, gfp_t memflags)
395 {
396 struct net_device *netdev = hw->wlandev->netdev;
397 int result;
398
399 result = -ENOLINK;
400 if (netif_running(netdev)) {
401
402 if (!hw->wlandev->hwremoved
403 && !test_bit(WORK_TX_HALT, &hw->usb_flags)) {
404 result = SUBMIT_URB(tx_urb, memflags);
405
406 /* Test whether we need to reset the TX pipe */
407 if (result == -EPIPE) {
408 printk(KERN_WARNING
409 "%s tx pipe stalled: requesting reset\n",
410 netdev->name);
411 set_bit(WORK_TX_HALT, &hw->usb_flags);
412 schedule_work(&hw->usb_work);
413 } else if (result == 0) {
414 netif_stop_queue(netdev);
415 }
416 }
417 }
418
419 return result;
420 }
421
422 /*----------------------------------------------------------------
423 * hfa394x_usb_defer
424 *
425 * There are some things that the USB stack cannot do while
426 * in interrupt context, so we arrange this function to run
427 * in process context.
428 *
429 * Arguments:
430 * hw device structure
431 *
432 * Returns:
433 * nothing
434 *
435 * Call context:
436 * process (by design)
437 ----------------------------------------------------------------*/
438 static void hfa384x_usb_defer(struct work_struct *data)
439 {
440 hfa384x_t *hw = container_of(data, struct hfa384x, usb_work);
441 struct net_device *netdev = hw->wlandev->netdev;
442
443 /* Don't bother trying to reset anything if the plug
444 * has been pulled ...
445 */
446 if (hw->wlandev->hwremoved)
447 return;
448
449 /* Reception has stopped: try to reset the input pipe */
450 if (test_bit(WORK_RX_HALT, &hw->usb_flags)) {
451 int ret;
452
453 usb_kill_urb(&hw->rx_urb); /* Cannot be holding spinlock! */
454
455 ret = usb_clear_halt(hw->usb, hw->endp_in);
456 if (ret != 0) {
457 printk(KERN_ERR
458 "Failed to clear rx pipe for %s: err=%d\n",
459 netdev->name, ret);
460 } else {
461 printk(KERN_INFO "%s rx pipe reset complete.\n",
462 netdev->name);
463 clear_bit(WORK_RX_HALT, &hw->usb_flags);
464 set_bit(WORK_RX_RESUME, &hw->usb_flags);
465 }
466 }
467
468 /* Resume receiving data back from the device. */
469 if (test_bit(WORK_RX_RESUME, &hw->usb_flags)) {
470 int ret;
471
472 ret = submit_rx_urb(hw, GFP_KERNEL);
473 if (ret != 0) {
474 printk(KERN_ERR
475 "Failed to resume %s rx pipe.\n", netdev->name);
476 } else {
477 clear_bit(WORK_RX_RESUME, &hw->usb_flags);
478 }
479 }
480
481 /* Transmission has stopped: try to reset the output pipe */
482 if (test_bit(WORK_TX_HALT, &hw->usb_flags)) {
483 int ret;
484
485 usb_kill_urb(&hw->tx_urb);
486 ret = usb_clear_halt(hw->usb, hw->endp_out);
487 if (ret != 0) {
488 printk(KERN_ERR
489 "Failed to clear tx pipe for %s: err=%d\n",
490 netdev->name, ret);
491 } else {
492 printk(KERN_INFO "%s tx pipe reset complete.\n",
493 netdev->name);
494 clear_bit(WORK_TX_HALT, &hw->usb_flags);
495 set_bit(WORK_TX_RESUME, &hw->usb_flags);
496
497 /* Stopping the BULK-OUT pipe also blocked
498 * us from sending any more CTLX URBs, so
499 * we need to re-run our queue ...
500 */
501 hfa384x_usbctlxq_run(hw);
502 }
503 }
504
505 /* Resume transmitting. */
506 if (test_and_clear_bit(WORK_TX_RESUME, &hw->usb_flags))
507 netif_wake_queue(hw->wlandev->netdev);
508 }
509
510 /*----------------------------------------------------------------
511 * hfa384x_create
512 *
513 * Sets up the hfa384x_t data structure for use. Note this
514 * does _not_ initialize the actual hardware, just the data structures
515 * we use to keep track of its state.
516 *
517 * Arguments:
518 * hw device structure
519 * irq device irq number
520 * iobase i/o base address for register access
521 * membase memory base address for register access
522 *
523 * Returns:
524 * nothing
525 *
526 * Side effects:
527 *
528 * Call context:
529 * process
530 ----------------------------------------------------------------*/
531 void hfa384x_create(hfa384x_t *hw, struct usb_device *usb)
532 {
533 memset(hw, 0, sizeof(hfa384x_t));
534 hw->usb = usb;
535
536 /* set up the endpoints */
537 hw->endp_in = usb_rcvbulkpipe(usb, 1);
538 hw->endp_out = usb_sndbulkpipe(usb, 2);
539
540 /* Set up the waitq */
541 init_waitqueue_head(&hw->cmdq);
542
543 /* Initialize the command queue */
544 spin_lock_init(&hw->ctlxq.lock);
545 INIT_LIST_HEAD(&hw->ctlxq.pending);
546 INIT_LIST_HEAD(&hw->ctlxq.active);
547 INIT_LIST_HEAD(&hw->ctlxq.completing);
548 INIT_LIST_HEAD(&hw->ctlxq.reapable);
549
550 /* Initialize the authentication queue */
551 skb_queue_head_init(&hw->authq);
552
553 tasklet_init(&hw->reaper_bh,
554 hfa384x_usbctlx_reaper_task, (unsigned long)hw);
555 tasklet_init(&hw->completion_bh,
556 hfa384x_usbctlx_completion_task, (unsigned long)hw);
557 INIT_WORK(&hw->link_bh, prism2sta_processing_defer);
558 INIT_WORK(&hw->usb_work, hfa384x_usb_defer);
559
560 init_timer(&hw->throttle);
561 hw->throttle.function = hfa384x_usb_throttlefn;
562 hw->throttle.data = (unsigned long)hw;
563
564 init_timer(&hw->resptimer);
565 hw->resptimer.function = hfa384x_usbctlx_resptimerfn;
566 hw->resptimer.data = (unsigned long)hw;
567
568 init_timer(&hw->reqtimer);
569 hw->reqtimer.function = hfa384x_usbctlx_reqtimerfn;
570 hw->reqtimer.data = (unsigned long)hw;
571
572 usb_init_urb(&hw->rx_urb);
573 usb_init_urb(&hw->tx_urb);
574 usb_init_urb(&hw->ctlx_urb);
575
576 hw->link_status = HFA384x_LINK_NOTCONNECTED;
577 hw->state = HFA384x_STATE_INIT;
578
579 INIT_WORK(&hw->commsqual_bh, prism2sta_commsqual_defer);
580 init_timer(&hw->commsqual_timer);
581 hw->commsqual_timer.data = (unsigned long)hw;
582 hw->commsqual_timer.function = prism2sta_commsqual_timer;
583 }
584
585 /*----------------------------------------------------------------
586 * hfa384x_destroy
587 *
588 * Partner to hfa384x_create(). This function cleans up the hw
589 * structure so that it can be freed by the caller using a simple
590 * kfree. Currently, this function is just a placeholder. If, at some
591 * point in the future, an hw in the 'shutdown' state requires a 'deep'
592 * kfree, this is where it should be done. Note that if this function
593 * is called on a _running_ hw structure, the drvr_stop() function is
594 * called.
595 *
596 * Arguments:
597 * hw device structure
598 *
599 * Returns:
600 * nothing, this function is not allowed to fail.
601 *
602 * Side effects:
603 *
604 * Call context:
605 * process
606 ----------------------------------------------------------------*/
607 void hfa384x_destroy(hfa384x_t *hw)
608 {
609 struct sk_buff *skb;
610
611 if (hw->state == HFA384x_STATE_RUNNING)
612 hfa384x_drvr_stop(hw);
613 hw->state = HFA384x_STATE_PREINIT;
614
615 kfree(hw->scanresults);
616 hw->scanresults = NULL;
617
618 /* Now to clean out the auth queue */
619 while ((skb = skb_dequeue(&hw->authq)))
620 dev_kfree_skb(skb);
621 }
622
623 static hfa384x_usbctlx_t *usbctlx_alloc(void)
624 {
625 hfa384x_usbctlx_t *ctlx;
626
627 ctlx = kmalloc(sizeof(*ctlx), in_interrupt() ? GFP_ATOMIC : GFP_KERNEL);
628 if (ctlx != NULL) {
629 memset(ctlx, 0, sizeof(*ctlx));
630 init_completion(&ctlx->done);
631 }
632
633 return ctlx;
634 }
635
636 static int
637 usbctlx_get_status(const hfa384x_usb_cmdresp_t *cmdresp,
638 hfa384x_cmdresult_t *result)
639 {
640 result->status = le16_to_cpu(cmdresp->status);
641 result->resp0 = le16_to_cpu(cmdresp->resp0);
642 result->resp1 = le16_to_cpu(cmdresp->resp1);
643 result->resp2 = le16_to_cpu(cmdresp->resp2);
644
645 pr_debug("cmdresult:status=0x%04x "
646 "resp0=0x%04x resp1=0x%04x resp2=0x%04x\n",
647 result->status, result->resp0, result->resp1, result->resp2);
648
649 return result->status & HFA384x_STATUS_RESULT;
650 }
651
652 static void
653 usbctlx_get_rridresult(const hfa384x_usb_rridresp_t *rridresp,
654 hfa384x_rridresult_t *result)
655 {
656 result->rid = le16_to_cpu(rridresp->rid);
657 result->riddata = rridresp->data;
658 result->riddata_len = ((le16_to_cpu(rridresp->frmlen) - 1) * 2);
659
660 }
661
662 /*----------------------------------------------------------------
663 * Completor object:
664 * This completor must be passed to hfa384x_usbctlx_complete_sync()
665 * when processing a CTLX that returns a hfa384x_cmdresult_t structure.
666 ----------------------------------------------------------------*/
667 struct usbctlx_cmd_completor {
668 struct usbctlx_completor head;
669
670 const hfa384x_usb_cmdresp_t *cmdresp;
671 hfa384x_cmdresult_t *result;
672 };
673
674 static inline int usbctlx_cmd_completor_fn(struct usbctlx_completor *head)
675 {
676 struct usbctlx_cmd_completor *complete;
677
678 complete = (struct usbctlx_cmd_completor *) head;
679 return usbctlx_get_status(complete->cmdresp, complete->result);
680 }
681
682 static inline struct usbctlx_completor *init_cmd_completor(
683 struct usbctlx_cmd_completor
684 *completor,
685 const hfa384x_usb_cmdresp_t
686 *cmdresp,
687 hfa384x_cmdresult_t *result)
688 {
689 completor->head.complete = usbctlx_cmd_completor_fn;
690 completor->cmdresp = cmdresp;
691 completor->result = result;
692 return &(completor->head);
693 }
694
695 /*----------------------------------------------------------------
696 * Completor object:
697 * This completor must be passed to hfa384x_usbctlx_complete_sync()
698 * when processing a CTLX that reads a RID.
699 ----------------------------------------------------------------*/
700 struct usbctlx_rrid_completor {
701 struct usbctlx_completor head;
702
703 const hfa384x_usb_rridresp_t *rridresp;
704 void *riddata;
705 unsigned int riddatalen;
706 };
707
708 static int usbctlx_rrid_completor_fn(struct usbctlx_completor *head)
709 {
710 struct usbctlx_rrid_completor *complete;
711 hfa384x_rridresult_t rridresult;
712
713 complete = (struct usbctlx_rrid_completor *) head;
714 usbctlx_get_rridresult(complete->rridresp, &rridresult);
715
716 /* Validate the length, note body len calculation in bytes */
717 if (rridresult.riddata_len != complete->riddatalen) {
718 printk(KERN_WARNING
719 "RID len mismatch, rid=0x%04x hlen=%d fwlen=%d\n",
720 rridresult.rid,
721 complete->riddatalen, rridresult.riddata_len);
722 return -ENODATA;
723 }
724
725 memcpy(complete->riddata, rridresult.riddata, complete->riddatalen);
726 return 0;
727 }
728
729 static inline struct usbctlx_completor *init_rrid_completor(
730 struct usbctlx_rrid_completor
731 *completor,
732 const hfa384x_usb_rridresp_t
733 *rridresp,
734 void *riddata,
735 unsigned int riddatalen)
736 {
737 completor->head.complete = usbctlx_rrid_completor_fn;
738 completor->rridresp = rridresp;
739 completor->riddata = riddata;
740 completor->riddatalen = riddatalen;
741 return &(completor->head);
742 }
743
744 /*----------------------------------------------------------------
745 * Completor object:
746 * Interprets the results of a synchronous RID-write
747 ----------------------------------------------------------------*/
748 typedef struct usbctlx_cmd_completor usbctlx_wrid_completor_t;
749 #define init_wrid_completor init_cmd_completor
750
751 /*----------------------------------------------------------------
752 * Completor object:
753 * Interprets the results of a synchronous memory-write
754 ----------------------------------------------------------------*/
755 typedef struct usbctlx_cmd_completor usbctlx_wmem_completor_t;
756 #define init_wmem_completor init_cmd_completor
757
758 /*----------------------------------------------------------------
759 * Completor object:
760 * Interprets the results of a synchronous memory-read
761 ----------------------------------------------------------------*/
762 struct usbctlx_rmem_completor {
763 struct usbctlx_completor head;
764
765 const hfa384x_usb_rmemresp_t *rmemresp;
766 void *data;
767 unsigned int len;
768 };
769 typedef struct usbctlx_rmem_completor usbctlx_rmem_completor_t;
770
771 static int usbctlx_rmem_completor_fn(struct usbctlx_completor *head)
772 {
773 usbctlx_rmem_completor_t *complete = (usbctlx_rmem_completor_t *) head;
774
775 pr_debug("rmemresp:len=%d\n", complete->rmemresp->frmlen);
776 memcpy(complete->data, complete->rmemresp->data, complete->len);
777 return 0;
778 }
779
780 static inline struct usbctlx_completor *init_rmem_completor(
781 usbctlx_rmem_completor_t
782 *completor,
783 hfa384x_usb_rmemresp_t
784 *rmemresp,
785 void *data,
786 unsigned int len)
787 {
788 completor->head.complete = usbctlx_rmem_completor_fn;
789 completor->rmemresp = rmemresp;
790 completor->data = data;
791 completor->len = len;
792 return &(completor->head);
793 }
794
795 /*----------------------------------------------------------------
796 * hfa384x_cb_status
797 *
798 * Ctlx_complete handler for async CMD type control exchanges.
799 * mark the hw struct as such.
800 *
801 * Note: If the handling is changed here, it should probably be
802 * changed in docmd as well.
803 *
804 * Arguments:
805 * hw hw struct
806 * ctlx completed CTLX
807 *
808 * Returns:
809 * nothing
810 *
811 * Side effects:
812 *
813 * Call context:
814 * interrupt
815 ----------------------------------------------------------------*/
816 static void hfa384x_cb_status(hfa384x_t *hw, const hfa384x_usbctlx_t *ctlx)
817 {
818 if (ctlx->usercb != NULL) {
819 hfa384x_cmdresult_t cmdresult;
820
821 if (ctlx->state != CTLX_COMPLETE) {
822 memset(&cmdresult, 0, sizeof(cmdresult));
823 cmdresult.status =
824 HFA384x_STATUS_RESULT_SET(HFA384x_CMD_ERR);
825 } else {
826 usbctlx_get_status(&ctlx->inbuf.cmdresp, &cmdresult);
827 }
828
829 ctlx->usercb(hw, &cmdresult, ctlx->usercb_data);
830 }
831 }
832
833 /*----------------------------------------------------------------
834 * hfa384x_cb_rrid
835 *
836 * CTLX completion handler for async RRID type control exchanges.
837 *
838 * Note: If the handling is changed here, it should probably be
839 * changed in dorrid as well.
840 *
841 * Arguments:
842 * hw hw struct
843 * ctlx completed CTLX
844 *
845 * Returns:
846 * nothing
847 *
848 * Side effects:
849 *
850 * Call context:
851 * interrupt
852 ----------------------------------------------------------------*/
853 static void hfa384x_cb_rrid(hfa384x_t *hw, const hfa384x_usbctlx_t *ctlx)
854 {
855 if (ctlx->usercb != NULL) {
856 hfa384x_rridresult_t rridresult;
857
858 if (ctlx->state != CTLX_COMPLETE) {
859 memset(&rridresult, 0, sizeof(rridresult));
860 rridresult.rid = le16_to_cpu(ctlx->outbuf.rridreq.rid);
861 } else {
862 usbctlx_get_rridresult(&ctlx->inbuf.rridresp,
863 &rridresult);
864 }
865
866 ctlx->usercb(hw, &rridresult, ctlx->usercb_data);
867 }
868 }
869
870 static inline int hfa384x_docmd_wait(hfa384x_t *hw, hfa384x_metacmd_t *cmd)
871 {
872 return hfa384x_docmd(hw, DOWAIT, cmd, NULL, NULL, NULL);
873 }
874
875 static inline int
876 hfa384x_docmd_async(hfa384x_t *hw,
877 hfa384x_metacmd_t *cmd,
878 ctlx_cmdcb_t cmdcb, ctlx_usercb_t usercb, void *usercb_data)
879 {
880 return hfa384x_docmd(hw, DOASYNC, cmd, cmdcb, usercb, usercb_data);
881 }
882
883 static inline int
884 hfa384x_dorrid_wait(hfa384x_t *hw, u16 rid, void *riddata,
885 unsigned int riddatalen)
886 {
887 return hfa384x_dorrid(hw, DOWAIT,
888 rid, riddata, riddatalen, NULL, NULL, NULL);
889 }
890
891 static inline int
892 hfa384x_dorrid_async(hfa384x_t *hw,
893 u16 rid, void *riddata, unsigned int riddatalen,
894 ctlx_cmdcb_t cmdcb,
895 ctlx_usercb_t usercb, void *usercb_data)
896 {
897 return hfa384x_dorrid(hw, DOASYNC,
898 rid, riddata, riddatalen,
899 cmdcb, usercb, usercb_data);
900 }
901
902 static inline int
903 hfa384x_dowrid_wait(hfa384x_t *hw, u16 rid, void *riddata,
904 unsigned int riddatalen)
905 {
906 return hfa384x_dowrid(hw, DOWAIT,
907 rid, riddata, riddatalen, NULL, NULL, NULL);
908 }
909
910 static inline int
911 hfa384x_dowrid_async(hfa384x_t *hw,
912 u16 rid, void *riddata, unsigned int riddatalen,
913 ctlx_cmdcb_t cmdcb,
914 ctlx_usercb_t usercb, void *usercb_data)
915 {
916 return hfa384x_dowrid(hw, DOASYNC,
917 rid, riddata, riddatalen,
918 cmdcb, usercb, usercb_data);
919 }
920
921 static inline int
922 hfa384x_dormem_wait(hfa384x_t *hw,
923 u16 page, u16 offset, void *data, unsigned int len)
924 {
925 return hfa384x_dormem(hw, DOWAIT,
926 page, offset, data, len, NULL, NULL, NULL);
927 }
928
929 static inline int
930 hfa384x_dormem_async(hfa384x_t *hw,
931 u16 page, u16 offset, void *data, unsigned int len,
932 ctlx_cmdcb_t cmdcb,
933 ctlx_usercb_t usercb, void *usercb_data)
934 {
935 return hfa384x_dormem(hw, DOASYNC,
936 page, offset, data, len,
937 cmdcb, usercb, usercb_data);
938 }
939
940 static inline int
941 hfa384x_dowmem_wait(hfa384x_t *hw,
942 u16 page, u16 offset, void *data, unsigned int len)
943 {
944 return hfa384x_dowmem(hw, DOWAIT,
945 page, offset, data, len, NULL, NULL, NULL);
946 }
947
948 static inline int
949 hfa384x_dowmem_async(hfa384x_t *hw,
950 u16 page,
951 u16 offset,
952 void *data,
953 unsigned int len,
954 ctlx_cmdcb_t cmdcb,
955 ctlx_usercb_t usercb, void *usercb_data)
956 {
957 return hfa384x_dowmem(hw, DOASYNC,
958 page, offset, data, len,
959 cmdcb, usercb, usercb_data);
960 }
961
962 /*----------------------------------------------------------------
963 * hfa384x_cmd_initialize
964 *
965 * Issues the initialize command and sets the hw->state based
966 * on the result.
967 *
968 * Arguments:
969 * hw device structure
970 *
971 * Returns:
972 * 0 success
973 * >0 f/w reported error - f/w status code
974 * <0 driver reported error
975 *
976 * Side effects:
977 *
978 * Call context:
979 * process
980 ----------------------------------------------------------------*/
981 int hfa384x_cmd_initialize(hfa384x_t *hw)
982 {
983 int result = 0;
984 int i;
985 hfa384x_metacmd_t cmd;
986
987 cmd.cmd = HFA384x_CMDCODE_INIT;
988 cmd.parm0 = 0;
989 cmd.parm1 = 0;
990 cmd.parm2 = 0;
991
992 result = hfa384x_docmd_wait(hw, &cmd);
993
994 pr_debug("cmdresp.init: "
995 "status=0x%04x, resp0=0x%04x, "
996 "resp1=0x%04x, resp2=0x%04x\n",
997 cmd.result.status,
998 cmd.result.resp0, cmd.result.resp1, cmd.result.resp2);
999 if (result == 0) {
1000 for (i = 0; i < HFA384x_NUMPORTS_MAX; i++)
1001 hw->port_enabled[i] = 0;
1002 }
1003
1004 hw->link_status = HFA384x_LINK_NOTCONNECTED;
1005
1006 return result;
1007 }
1008
1009 /*----------------------------------------------------------------
1010 * hfa384x_cmd_disable
1011 *
1012 * Issues the disable command to stop communications on one of
1013 * the MACs 'ports'.
1014 *
1015 * Arguments:
1016 * hw device structure
1017 * macport MAC port number (host order)
1018 *
1019 * Returns:
1020 * 0 success
1021 * >0 f/w reported failure - f/w status code
1022 * <0 driver reported error (timeout|bad arg)
1023 *
1024 * Side effects:
1025 *
1026 * Call context:
1027 * process
1028 ----------------------------------------------------------------*/
1029 int hfa384x_cmd_disable(hfa384x_t *hw, u16 macport)
1030 {
1031 int result = 0;
1032 hfa384x_metacmd_t cmd;
1033
1034 cmd.cmd = HFA384x_CMD_CMDCODE_SET(HFA384x_CMDCODE_DISABLE) |
1035 HFA384x_CMD_MACPORT_SET(macport);
1036 cmd.parm0 = 0;
1037 cmd.parm1 = 0;
1038 cmd.parm2 = 0;
1039
1040 result = hfa384x_docmd_wait(hw, &cmd);
1041
1042 return result;
1043 }
1044
1045 /*----------------------------------------------------------------
1046 * hfa384x_cmd_enable
1047 *
1048 * Issues the enable command to enable communications on one of
1049 * the MACs 'ports'.
1050 *
1051 * Arguments:
1052 * hw device structure
1053 * macport MAC port number
1054 *
1055 * Returns:
1056 * 0 success
1057 * >0 f/w reported failure - f/w status code
1058 * <0 driver reported error (timeout|bad arg)
1059 *
1060 * Side effects:
1061 *
1062 * Call context:
1063 * process
1064 ----------------------------------------------------------------*/
1065 int hfa384x_cmd_enable(hfa384x_t *hw, u16 macport)
1066 {
1067 int result = 0;
1068 hfa384x_metacmd_t cmd;
1069
1070 cmd.cmd = HFA384x_CMD_CMDCODE_SET(HFA384x_CMDCODE_ENABLE) |
1071 HFA384x_CMD_MACPORT_SET(macport);
1072 cmd.parm0 = 0;
1073 cmd.parm1 = 0;
1074 cmd.parm2 = 0;
1075
1076 result = hfa384x_docmd_wait(hw, &cmd);
1077
1078 return result;
1079 }
1080
1081 /*----------------------------------------------------------------
1082 * hfa384x_cmd_monitor
1083 *
1084 * Enables the 'monitor mode' of the MAC. Here's the description of
1085 * monitor mode that I've received thus far:
1086 *
1087 * "The "monitor mode" of operation is that the MAC passes all
1088 * frames for which the PLCP checks are correct. All received
1089 * MPDUs are passed to the host with MAC Port = 7, with a
1090 * receive status of good, FCS error, or undecryptable. Passing
1091 * certain MPDUs is a violation of the 802.11 standard, but useful
1092 * for a debugging tool." Normal communication is not possible
1093 * while monitor mode is enabled.
1094 *
1095 * Arguments:
1096 * hw device structure
1097 * enable a code (0x0b|0x0f) that enables/disables
1098 * monitor mode. (host order)
1099 *
1100 * Returns:
1101 * 0 success
1102 * >0 f/w reported failure - f/w status code
1103 * <0 driver reported error (timeout|bad arg)
1104 *
1105 * Side effects:
1106 *
1107 * Call context:
1108 * process
1109 ----------------------------------------------------------------*/
1110 int hfa384x_cmd_monitor(hfa384x_t *hw, u16 enable)
1111 {
1112 int result = 0;
1113 hfa384x_metacmd_t cmd;
1114
1115 cmd.cmd = HFA384x_CMD_CMDCODE_SET(HFA384x_CMDCODE_MONITOR) |
1116 HFA384x_CMD_AINFO_SET(enable);
1117 cmd.parm0 = 0;
1118 cmd.parm1 = 0;
1119 cmd.parm2 = 0;
1120
1121 result = hfa384x_docmd_wait(hw, &cmd);
1122
1123 return result;
1124 }
1125
1126 /*----------------------------------------------------------------
1127 * hfa384x_cmd_download
1128 *
1129 * Sets the controls for the MAC controller code/data download
1130 * process. The arguments set the mode and address associated
1131 * with a download. Note that the aux registers should be enabled
1132 * prior to setting one of the download enable modes.
1133 *
1134 * Arguments:
1135 * hw device structure
1136 * mode 0 - Disable programming and begin code exec
1137 * 1 - Enable volatile mem programming
1138 * 2 - Enable non-volatile mem programming
1139 * 3 - Program non-volatile section from NV download
1140 * buffer.
1141 * (host order)
1142 * lowaddr
1143 * highaddr For mode 1, sets the high & low order bits of
1144 * the "destination address". This address will be
1145 * the execution start address when download is
1146 * subsequently disabled.
1147 * For mode 2, sets the high & low order bits of
1148 * the destination in NV ram.
1149 * For modes 0 & 3, should be zero. (host order)
1150 * NOTE: these are CMD format.
1151 * codelen Length of the data to write in mode 2,
1152 * zero otherwise. (host order)
1153 *
1154 * Returns:
1155 * 0 success
1156 * >0 f/w reported failure - f/w status code
1157 * <0 driver reported error (timeout|bad arg)
1158 *
1159 * Side effects:
1160 *
1161 * Call context:
1162 * process
1163 ----------------------------------------------------------------*/
1164 int hfa384x_cmd_download(hfa384x_t *hw, u16 mode, u16 lowaddr,
1165 u16 highaddr, u16 codelen)
1166 {
1167 int result = 0;
1168 hfa384x_metacmd_t cmd;
1169
1170 pr_debug("mode=%d, lowaddr=0x%04x, highaddr=0x%04x, codelen=%d\n",
1171 mode, lowaddr, highaddr, codelen);
1172
1173 cmd.cmd = (HFA384x_CMD_CMDCODE_SET(HFA384x_CMDCODE_DOWNLD) |
1174 HFA384x_CMD_PROGMODE_SET(mode));
1175
1176 cmd.parm0 = lowaddr;
1177 cmd.parm1 = highaddr;
1178 cmd.parm2 = codelen;
1179
1180 result = hfa384x_docmd_wait(hw, &cmd);
1181
1182 return result;
1183 }
1184
1185 /*----------------------------------------------------------------
1186 * hfa384x_corereset
1187 *
1188 * Perform a reset of the hfa38xx MAC core. We assume that the hw
1189 * structure is in its "created" state. That is, it is initialized
1190 * with proper values. Note that if a reset is done after the
1191 * device has been active for awhile, the caller might have to clean
1192 * up some leftover cruft in the hw structure.
1193 *
1194 * Arguments:
1195 * hw device structure
1196 * holdtime how long (in ms) to hold the reset
1197 * settletime how long (in ms) to wait after releasing
1198 * the reset
1199 *
1200 * Returns:
1201 * nothing
1202 *
1203 * Side effects:
1204 *
1205 * Call context:
1206 * process
1207 ----------------------------------------------------------------*/
1208 int hfa384x_corereset(hfa384x_t *hw, int holdtime, int settletime, int genesis)
1209 {
1210 int result = 0;
1211
1212 result = usb_reset_device(hw->usb);
1213 if (result < 0) {
1214 printk(KERN_ERR "usb_reset_device() failed, result=%d.\n",
1215 result);
1216 }
1217
1218 return result;
1219 }
1220
1221 /*----------------------------------------------------------------
1222 * hfa384x_usbctlx_complete_sync
1223 *
1224 * Waits for a synchronous CTLX object to complete,
1225 * and then handles the response.
1226 *
1227 * Arguments:
1228 * hw device structure
1229 * ctlx CTLX ptr
1230 * completor functor object to decide what to
1231 * do with the CTLX's result.
1232 *
1233 * Returns:
1234 * 0 Success
1235 * -ERESTARTSYS Interrupted by a signal
1236 * -EIO CTLX failed
1237 * -ENODEV Adapter was unplugged
1238 * ??? Result from completor
1239 *
1240 * Side effects:
1241 *
1242 * Call context:
1243 * process
1244 ----------------------------------------------------------------*/
1245 static int hfa384x_usbctlx_complete_sync(hfa384x_t *hw,
1246 hfa384x_usbctlx_t *ctlx,
1247 struct usbctlx_completor *completor)
1248 {
1249 unsigned long flags;
1250 int result;
1251
1252 result = wait_for_completion_interruptible(&ctlx->done);
1253
1254 spin_lock_irqsave(&hw->ctlxq.lock, flags);
1255
1256 /*
1257 * We can only handle the CTLX if the USB disconnect
1258 * function has not run yet ...
1259 */
1260 cleanup:
1261 if (hw->wlandev->hwremoved) {
1262 spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
1263 result = -ENODEV;
1264 } else if (result != 0) {
1265 int runqueue = 0;
1266
1267 /*
1268 * We were probably interrupted, so delete
1269 * this CTLX asynchronously, kill the timers
1270 * and the URB, and then start the next
1271 * pending CTLX.
1272 *
1273 * NOTE: We can only delete the timers and
1274 * the URB if this CTLX is active.
1275 */
1276 if (ctlx == get_active_ctlx(hw)) {
1277 spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
1278
1279 del_singleshot_timer_sync(&hw->reqtimer);
1280 del_singleshot_timer_sync(&hw->resptimer);
1281 hw->req_timer_done = 1;
1282 hw->resp_timer_done = 1;
1283 usb_kill_urb(&hw->ctlx_urb);
1284
1285 spin_lock_irqsave(&hw->ctlxq.lock, flags);
1286
1287 runqueue = 1;
1288
1289 /*
1290 * This scenario is so unlikely that I'm
1291 * happy with a grubby "goto" solution ...
1292 */
1293 if (hw->wlandev->hwremoved)
1294 goto cleanup;
1295 }
1296
1297 /*
1298 * The completion task will send this CTLX
1299 * to the reaper the next time it runs. We
1300 * are no longer in a hurry.
1301 */
1302 ctlx->reapable = 1;
1303 ctlx->state = CTLX_REQ_FAILED;
1304 list_move_tail(&ctlx->list, &hw->ctlxq.completing);
1305
1306 spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
1307
1308 if (runqueue)
1309 hfa384x_usbctlxq_run(hw);
1310 } else {
1311 if (ctlx->state == CTLX_COMPLETE) {
1312 result = completor->complete(completor);
1313 } else {
1314 printk(KERN_WARNING "CTLX[%d] error: state(%s)\n",
1315 le16_to_cpu(ctlx->outbuf.type),
1316 ctlxstr(ctlx->state));
1317 result = -EIO;
1318 }
1319
1320 list_del(&ctlx->list);
1321 spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
1322 kfree(ctlx);
1323 }
1324
1325 return result;
1326 }
1327
1328 /*----------------------------------------------------------------
1329 * hfa384x_docmd
1330 *
1331 * Constructs a command CTLX and submits it.
1332 *
1333 * NOTE: Any changes to the 'post-submit' code in this function
1334 * need to be carried over to hfa384x_cbcmd() since the handling
1335 * is virtually identical.
1336 *
1337 * Arguments:
1338 * hw device structure
1339 * mode DOWAIT or DOASYNC
1340 * cmd cmd structure. Includes all arguments and result
1341 * data points. All in host order. in host order
1342 * cmdcb command-specific callback
1343 * usercb user callback for async calls, NULL for DOWAIT calls
1344 * usercb_data user supplied data pointer for async calls, NULL
1345 * for DOASYNC calls
1346 *
1347 * Returns:
1348 * 0 success
1349 * -EIO CTLX failure
1350 * -ERESTARTSYS Awakened on signal
1351 * >0 command indicated error, Status and Resp0-2 are
1352 * in hw structure.
1353 *
1354 * Side effects:
1355 *
1356 *
1357 * Call context:
1358 * process
1359 ----------------------------------------------------------------*/
1360 static int
1361 hfa384x_docmd(hfa384x_t *hw,
1362 enum cmd_mode mode,
1363 hfa384x_metacmd_t *cmd,
1364 ctlx_cmdcb_t cmdcb, ctlx_usercb_t usercb, void *usercb_data)
1365 {
1366 int result;
1367 hfa384x_usbctlx_t *ctlx;
1368
1369 ctlx = usbctlx_alloc();
1370 if (ctlx == NULL) {
1371 result = -ENOMEM;
1372 goto done;
1373 }
1374
1375 /* Initialize the command */
1376 ctlx->outbuf.cmdreq.type = cpu_to_le16(HFA384x_USB_CMDREQ);
1377 ctlx->outbuf.cmdreq.cmd = cpu_to_le16(cmd->cmd);
1378 ctlx->outbuf.cmdreq.parm0 = cpu_to_le16(cmd->parm0);
1379 ctlx->outbuf.cmdreq.parm1 = cpu_to_le16(cmd->parm1);
1380 ctlx->outbuf.cmdreq.parm2 = cpu_to_le16(cmd->parm2);
1381
1382 ctlx->outbufsize = sizeof(ctlx->outbuf.cmdreq);
1383
1384 pr_debug("cmdreq: cmd=0x%04x "
1385 "parm0=0x%04x parm1=0x%04x parm2=0x%04x\n",
1386 cmd->cmd, cmd->parm0, cmd->parm1, cmd->parm2);
1387
1388 ctlx->reapable = mode;
1389 ctlx->cmdcb = cmdcb;
1390 ctlx->usercb = usercb;
1391 ctlx->usercb_data = usercb_data;
1392
1393 result = hfa384x_usbctlx_submit(hw, ctlx);
1394 if (result != 0) {
1395 kfree(ctlx);
1396 } else if (mode == DOWAIT) {
1397 struct usbctlx_cmd_completor completor;
1398
1399 result =
1400 hfa384x_usbctlx_complete_sync(hw, ctlx,
1401 init_cmd_completor(&completor,
1402 &ctlx->
1403 inbuf.
1404 cmdresp,
1405 &cmd->
1406 result));
1407 }
1408
1409 done:
1410 return result;
1411 }
1412
1413 /*----------------------------------------------------------------
1414 * hfa384x_dorrid
1415 *
1416 * Constructs a read rid CTLX and issues it.
1417 *
1418 * NOTE: Any changes to the 'post-submit' code in this function
1419 * need to be carried over to hfa384x_cbrrid() since the handling
1420 * is virtually identical.
1421 *
1422 * Arguments:
1423 * hw device structure
1424 * mode DOWAIT or DOASYNC
1425 * rid Read RID number (host order)
1426 * riddata Caller supplied buffer that MAC formatted RID.data
1427 * record will be written to for DOWAIT calls. Should
1428 * be NULL for DOASYNC calls.
1429 * riddatalen Buffer length for DOWAIT calls. Zero for DOASYNC calls.
1430 * cmdcb command callback for async calls, NULL for DOWAIT calls
1431 * usercb user callback for async calls, NULL for DOWAIT calls
1432 * usercb_data user supplied data pointer for async calls, NULL
1433 * for DOWAIT calls
1434 *
1435 * Returns:
1436 * 0 success
1437 * -EIO CTLX failure
1438 * -ERESTARTSYS Awakened on signal
1439 * -ENODATA riddatalen != macdatalen
1440 * >0 command indicated error, Status and Resp0-2 are
1441 * in hw structure.
1442 *
1443 * Side effects:
1444 *
1445 * Call context:
1446 * interrupt (DOASYNC)
1447 * process (DOWAIT or DOASYNC)
1448 ----------------------------------------------------------------*/
1449 static int
1450 hfa384x_dorrid(hfa384x_t *hw,
1451 enum cmd_mode mode,
1452 u16 rid,
1453 void *riddata,
1454 unsigned int riddatalen,
1455 ctlx_cmdcb_t cmdcb, ctlx_usercb_t usercb, void *usercb_data)
1456 {
1457 int result;
1458 hfa384x_usbctlx_t *ctlx;
1459
1460 ctlx = usbctlx_alloc();
1461 if (ctlx == NULL) {
1462 result = -ENOMEM;
1463 goto done;
1464 }
1465
1466 /* Initialize the command */
1467 ctlx->outbuf.rridreq.type = cpu_to_le16(HFA384x_USB_RRIDREQ);
1468 ctlx->outbuf.rridreq.frmlen =
1469 cpu_to_le16(sizeof(ctlx->outbuf.rridreq.rid));
1470 ctlx->outbuf.rridreq.rid = cpu_to_le16(rid);
1471
1472 ctlx->outbufsize = sizeof(ctlx->outbuf.rridreq);
1473
1474 ctlx->reapable = mode;
1475 ctlx->cmdcb = cmdcb;
1476 ctlx->usercb = usercb;
1477 ctlx->usercb_data = usercb_data;
1478
1479 /* Submit the CTLX */
1480 result = hfa384x_usbctlx_submit(hw, ctlx);
1481 if (result != 0) {
1482 kfree(ctlx);
1483 } else if (mode == DOWAIT) {
1484 struct usbctlx_rrid_completor completor;
1485
1486 result =
1487 hfa384x_usbctlx_complete_sync(hw, ctlx,
1488 init_rrid_completor
1489 (&completor,
1490 &ctlx->inbuf.rridresp,
1491 riddata, riddatalen));
1492 }
1493
1494 done:
1495 return result;
1496 }
1497
1498 /*----------------------------------------------------------------
1499 * hfa384x_dowrid
1500 *
1501 * Constructs a write rid CTLX and issues it.
1502 *
1503 * NOTE: Any changes to the 'post-submit' code in this function
1504 * need to be carried over to hfa384x_cbwrid() since the handling
1505 * is virtually identical.
1506 *
1507 * Arguments:
1508 * hw device structure
1509 * enum cmd_mode DOWAIT or DOASYNC
1510 * rid RID code
1511 * riddata Data portion of RID formatted for MAC
1512 * riddatalen Length of the data portion in bytes
1513 * cmdcb command callback for async calls, NULL for DOWAIT calls
1514 * usercb user callback for async calls, NULL for DOWAIT calls
1515 * usercb_data user supplied data pointer for async calls
1516 *
1517 * Returns:
1518 * 0 success
1519 * -ETIMEDOUT timed out waiting for register ready or
1520 * command completion
1521 * >0 command indicated error, Status and Resp0-2 are
1522 * in hw structure.
1523 *
1524 * Side effects:
1525 *
1526 * Call context:
1527 * interrupt (DOASYNC)
1528 * process (DOWAIT or DOASYNC)
1529 ----------------------------------------------------------------*/
1530 static int
1531 hfa384x_dowrid(hfa384x_t *hw,
1532 enum cmd_mode mode,
1533 u16 rid,
1534 void *riddata,
1535 unsigned int riddatalen,
1536 ctlx_cmdcb_t cmdcb, ctlx_usercb_t usercb, void *usercb_data)
1537 {
1538 int result;
1539 hfa384x_usbctlx_t *ctlx;
1540
1541 ctlx = usbctlx_alloc();
1542 if (ctlx == NULL) {
1543 result = -ENOMEM;
1544 goto done;
1545 }
1546
1547 /* Initialize the command */
1548 ctlx->outbuf.wridreq.type = cpu_to_le16(HFA384x_USB_WRIDREQ);
1549 ctlx->outbuf.wridreq.frmlen = cpu_to_le16((sizeof
1550 (ctlx->outbuf.wridreq.rid) +
1551 riddatalen + 1) / 2);
1552 ctlx->outbuf.wridreq.rid = cpu_to_le16(rid);
1553 memcpy(ctlx->outbuf.wridreq.data, riddata, riddatalen);
1554
1555 ctlx->outbufsize = sizeof(ctlx->outbuf.wridreq.type) +
1556 sizeof(ctlx->outbuf.wridreq.frmlen) +
1557 sizeof(ctlx->outbuf.wridreq.rid) + riddatalen;
1558
1559 ctlx->reapable = mode;
1560 ctlx->cmdcb = cmdcb;
1561 ctlx->usercb = usercb;
1562 ctlx->usercb_data = usercb_data;
1563
1564 /* Submit the CTLX */
1565 result = hfa384x_usbctlx_submit(hw, ctlx);
1566 if (result != 0) {
1567 kfree(ctlx);
1568 } else if (mode == DOWAIT) {
1569 usbctlx_wrid_completor_t completor;
1570 hfa384x_cmdresult_t wridresult;
1571
1572 result = hfa384x_usbctlx_complete_sync(hw,
1573 ctlx,
1574 init_wrid_completor
1575 (&completor,
1576 &ctlx->inbuf.wridresp,
1577 &wridresult));
1578 }
1579
1580 done:
1581 return result;
1582 }
1583
1584 /*----------------------------------------------------------------
1585 * hfa384x_dormem
1586 *
1587 * Constructs a readmem CTLX and issues it.
1588 *
1589 * NOTE: Any changes to the 'post-submit' code in this function
1590 * need to be carried over to hfa384x_cbrmem() since the handling
1591 * is virtually identical.
1592 *
1593 * Arguments:
1594 * hw device structure
1595 * mode DOWAIT or DOASYNC
1596 * page MAC address space page (CMD format)
1597 * offset MAC address space offset
1598 * data Ptr to data buffer to receive read
1599 * len Length of the data to read (max == 2048)
1600 * cmdcb command callback for async calls, NULL for DOWAIT calls
1601 * usercb user callback for async calls, NULL for DOWAIT calls
1602 * usercb_data user supplied data pointer for async calls
1603 *
1604 * Returns:
1605 * 0 success
1606 * -ETIMEDOUT timed out waiting for register ready or
1607 * command completion
1608 * >0 command indicated error, Status and Resp0-2 are
1609 * in hw structure.
1610 *
1611 * Side effects:
1612 *
1613 * Call context:
1614 * interrupt (DOASYNC)
1615 * process (DOWAIT or DOASYNC)
1616 ----------------------------------------------------------------*/
1617 static int
1618 hfa384x_dormem(hfa384x_t *hw,
1619 enum cmd_mode mode,
1620 u16 page,
1621 u16 offset,
1622 void *data,
1623 unsigned int len,
1624 ctlx_cmdcb_t cmdcb, ctlx_usercb_t usercb, void *usercb_data)
1625 {
1626 int result;
1627 hfa384x_usbctlx_t *ctlx;
1628
1629 ctlx = usbctlx_alloc();
1630 if (ctlx == NULL) {
1631 result = -ENOMEM;
1632 goto done;
1633 }
1634
1635 /* Initialize the command */
1636 ctlx->outbuf.rmemreq.type = cpu_to_le16(HFA384x_USB_RMEMREQ);
1637 ctlx->outbuf.rmemreq.frmlen =
1638 cpu_to_le16(sizeof(ctlx->outbuf.rmemreq.offset) +
1639 sizeof(ctlx->outbuf.rmemreq.page) + len);
1640 ctlx->outbuf.rmemreq.offset = cpu_to_le16(offset);
1641 ctlx->outbuf.rmemreq.page = cpu_to_le16(page);
1642
1643 ctlx->outbufsize = sizeof(ctlx->outbuf.rmemreq);
1644
1645 pr_debug("type=0x%04x frmlen=%d offset=0x%04x page=0x%04x\n",
1646 ctlx->outbuf.rmemreq.type,
1647 ctlx->outbuf.rmemreq.frmlen,
1648 ctlx->outbuf.rmemreq.offset, ctlx->outbuf.rmemreq.page);
1649
1650 pr_debug("pktsize=%zd\n", ROUNDUP64(sizeof(ctlx->outbuf.rmemreq)));
1651
1652 ctlx->reapable = mode;
1653 ctlx->cmdcb = cmdcb;
1654 ctlx->usercb = usercb;
1655 ctlx->usercb_data = usercb_data;
1656
1657 result = hfa384x_usbctlx_submit(hw, ctlx);
1658 if (result != 0) {
1659 kfree(ctlx);
1660 } else if (mode == DOWAIT) {
1661 usbctlx_rmem_completor_t completor;
1662
1663 result =
1664 hfa384x_usbctlx_complete_sync(hw, ctlx,
1665 init_rmem_completor
1666 (&completor,
1667 &ctlx->inbuf.rmemresp, data,
1668 len));
1669 }
1670
1671 done:
1672 return result;
1673 }
1674
1675 /*----------------------------------------------------------------
1676 * hfa384x_dowmem
1677 *
1678 * Constructs a writemem CTLX and issues it.
1679 *
1680 * NOTE: Any changes to the 'post-submit' code in this function
1681 * need to be carried over to hfa384x_cbwmem() since the handling
1682 * is virtually identical.
1683 *
1684 * Arguments:
1685 * hw device structure
1686 * mode DOWAIT or DOASYNC
1687 * page MAC address space page (CMD format)
1688 * offset MAC address space offset
1689 * data Ptr to data buffer containing write data
1690 * len Length of the data to read (max == 2048)
1691 * cmdcb command callback for async calls, NULL for DOWAIT calls
1692 * usercb user callback for async calls, NULL for DOWAIT calls
1693 * usercb_data user supplied data pointer for async calls.
1694 *
1695 * Returns:
1696 * 0 success
1697 * -ETIMEDOUT timed out waiting for register ready or
1698 * command completion
1699 * >0 command indicated error, Status and Resp0-2 are
1700 * in hw structure.
1701 *
1702 * Side effects:
1703 *
1704 * Call context:
1705 * interrupt (DOWAIT)
1706 * process (DOWAIT or DOASYNC)
1707 ----------------------------------------------------------------*/
1708 static int
1709 hfa384x_dowmem(hfa384x_t *hw,
1710 enum cmd_mode mode,
1711 u16 page,
1712 u16 offset,
1713 void *data,
1714 unsigned int len,
1715 ctlx_cmdcb_t cmdcb, ctlx_usercb_t usercb, void *usercb_data)
1716 {
1717 int result;
1718 hfa384x_usbctlx_t *ctlx;
1719
1720 pr_debug("page=0x%04x offset=0x%04x len=%d\n", page, offset, len);
1721
1722 ctlx = usbctlx_alloc();
1723 if (ctlx == NULL) {
1724 result = -ENOMEM;
1725 goto done;
1726 }
1727
1728 /* Initialize the command */
1729 ctlx->outbuf.wmemreq.type = cpu_to_le16(HFA384x_USB_WMEMREQ);
1730 ctlx->outbuf.wmemreq.frmlen =
1731 cpu_to_le16(sizeof(ctlx->outbuf.wmemreq.offset) +
1732 sizeof(ctlx->outbuf.wmemreq.page) + len);
1733 ctlx->outbuf.wmemreq.offset = cpu_to_le16(offset);
1734 ctlx->outbuf.wmemreq.page = cpu_to_le16(page);
1735 memcpy(ctlx->outbuf.wmemreq.data, data, len);
1736
1737 ctlx->outbufsize = sizeof(ctlx->outbuf.wmemreq.type) +
1738 sizeof(ctlx->outbuf.wmemreq.frmlen) +
1739 sizeof(ctlx->outbuf.wmemreq.offset) +
1740 sizeof(ctlx->outbuf.wmemreq.page) + len;
1741
1742 ctlx->reapable = mode;
1743 ctlx->cmdcb = cmdcb;
1744 ctlx->usercb = usercb;
1745 ctlx->usercb_data = usercb_data;
1746
1747 result = hfa384x_usbctlx_submit(hw, ctlx);
1748 if (result != 0) {
1749 kfree(ctlx);
1750 } else if (mode == DOWAIT) {
1751 usbctlx_wmem_completor_t completor;
1752 hfa384x_cmdresult_t wmemresult;
1753
1754 result = hfa384x_usbctlx_complete_sync(hw,
1755 ctlx,
1756 init_wmem_completor
1757 (&completor,
1758 &ctlx->inbuf.wmemresp,
1759 &wmemresult));
1760 }
1761
1762 done:
1763 return result;
1764 }
1765
1766 /*----------------------------------------------------------------
1767 * hfa384x_drvr_commtallies
1768 *
1769 * Send a commtallies inquiry to the MAC. Note that this is an async
1770 * call that will result in an info frame arriving sometime later.
1771 *
1772 * Arguments:
1773 * hw device structure
1774 *
1775 * Returns:
1776 * zero success.
1777 *
1778 * Side effects:
1779 *
1780 * Call context:
1781 * process
1782 ----------------------------------------------------------------*/
1783 int hfa384x_drvr_commtallies(hfa384x_t *hw)
1784 {
1785 hfa384x_metacmd_t cmd;
1786
1787 cmd.cmd = HFA384x_CMDCODE_INQ;
1788 cmd.parm0 = HFA384x_IT_COMMTALLIES;
1789 cmd.parm1 = 0;
1790 cmd.parm2 = 0;
1791
1792 hfa384x_docmd_async(hw, &cmd, NULL, NULL, NULL);
1793
1794 return 0;
1795 }
1796
1797 /*----------------------------------------------------------------
1798 * hfa384x_drvr_disable
1799 *
1800 * Issues the disable command to stop communications on one of
1801 * the MACs 'ports'. Only macport 0 is valid for stations.
1802 * APs may also disable macports 1-6. Only ports that have been
1803 * previously enabled may be disabled.
1804 *
1805 * Arguments:
1806 * hw device structure
1807 * macport MAC port number (host order)
1808 *
1809 * Returns:
1810 * 0 success
1811 * >0 f/w reported failure - f/w status code
1812 * <0 driver reported error (timeout|bad arg)
1813 *
1814 * Side effects:
1815 *
1816 * Call context:
1817 * process
1818 ----------------------------------------------------------------*/
1819 int hfa384x_drvr_disable(hfa384x_t *hw, u16 macport)
1820 {
1821 int result = 0;
1822
1823 if ((!hw->isap && macport != 0) ||
1824 (hw->isap && !(macport <= HFA384x_PORTID_MAX)) ||
1825 !(hw->port_enabled[macport])) {
1826 result = -EINVAL;
1827 } else {
1828 result = hfa384x_cmd_disable(hw, macport);
1829 if (result == 0)
1830 hw->port_enabled[macport] = 0;
1831 }
1832 return result;
1833 }
1834
1835 /*----------------------------------------------------------------
1836 * hfa384x_drvr_enable
1837 *
1838 * Issues the enable command to enable communications on one of
1839 * the MACs 'ports'. Only macport 0 is valid for stations.
1840 * APs may also enable macports 1-6. Only ports that are currently
1841 * disabled may be enabled.
1842 *
1843 * Arguments:
1844 * hw device structure
1845 * macport MAC port number
1846 *
1847 * Returns:
1848 * 0 success
1849 * >0 f/w reported failure - f/w status code
1850 * <0 driver reported error (timeout|bad arg)
1851 *
1852 * Side effects:
1853 *
1854 * Call context:
1855 * process
1856 ----------------------------------------------------------------*/
1857 int hfa384x_drvr_enable(hfa384x_t *hw, u16 macport)
1858 {
1859 int result = 0;
1860
1861 if ((!hw->isap && macport != 0) ||
1862 (hw->isap && !(macport <= HFA384x_PORTID_MAX)) ||
1863 (hw->port_enabled[macport])) {
1864 result = -EINVAL;
1865 } else {
1866 result = hfa384x_cmd_enable(hw, macport);
1867 if (result == 0)
1868 hw->port_enabled[macport] = 1;
1869 }
1870 return result;
1871 }
1872
1873 /*----------------------------------------------------------------
1874 * hfa384x_drvr_flashdl_enable
1875 *
1876 * Begins the flash download state. Checks to see that we're not
1877 * already in a download state and that a port isn't enabled.
1878 * Sets the download state and retrieves the flash download
1879 * buffer location, buffer size, and timeout length.
1880 *
1881 * Arguments:
1882 * hw device structure
1883 *
1884 * Returns:
1885 * 0 success
1886 * >0 f/w reported error - f/w status code
1887 * <0 driver reported error
1888 *
1889 * Side effects:
1890 *
1891 * Call context:
1892 * process
1893 ----------------------------------------------------------------*/
1894 int hfa384x_drvr_flashdl_enable(hfa384x_t *hw)
1895 {
1896 int result = 0;
1897 int i;
1898
1899 /* Check that a port isn't active */
1900 for (i = 0; i < HFA384x_PORTID_MAX; i++) {
1901 if (hw->port_enabled[i]) {
1902 pr_debug("called when port enabled.\n");
1903 return -EINVAL;
1904 }
1905 }
1906
1907 /* Check that we're not already in a download state */
1908 if (hw->dlstate != HFA384x_DLSTATE_DISABLED)
1909 return -EINVAL;
1910
1911 /* Retrieve the buffer loc&size and timeout */
1912 result = hfa384x_drvr_getconfig(hw, HFA384x_RID_DOWNLOADBUFFER,
1913 &(hw->bufinfo), sizeof(hw->bufinfo));
1914 if (result)
1915 return result;
1916
1917 hw->bufinfo.page = le16_to_cpu(hw->bufinfo.page);
1918 hw->bufinfo.offset = le16_to_cpu(hw->bufinfo.offset);
1919 hw->bufinfo.len = le16_to_cpu(hw->bufinfo.len);
1920 result = hfa384x_drvr_getconfig16(hw, HFA384x_RID_MAXLOADTIME,
1921 &(hw->dltimeout));
1922 if (result)
1923 return result;
1924
1925 hw->dltimeout = le16_to_cpu(hw->dltimeout);
1926
1927 pr_debug("flashdl_enable\n");
1928
1929 hw->dlstate = HFA384x_DLSTATE_FLASHENABLED;
1930
1931 return result;
1932 }
1933
1934 /*----------------------------------------------------------------
1935 * hfa384x_drvr_flashdl_disable
1936 *
1937 * Ends the flash download state. Note that this will cause the MAC
1938 * firmware to restart.
1939 *
1940 * Arguments:
1941 * hw device structure
1942 *
1943 * Returns:
1944 * 0 success
1945 * >0 f/w reported error - f/w status code
1946 * <0 driver reported error
1947 *
1948 * Side effects:
1949 *
1950 * Call context:
1951 * process
1952 ----------------------------------------------------------------*/
1953 int hfa384x_drvr_flashdl_disable(hfa384x_t *hw)
1954 {
1955 /* Check that we're already in the download state */
1956 if (hw->dlstate != HFA384x_DLSTATE_FLASHENABLED)
1957 return -EINVAL;
1958
1959 pr_debug("flashdl_enable\n");
1960
1961 /* There isn't much we can do at this point, so I don't */
1962 /* bother w/ the return value */
1963 hfa384x_cmd_download(hw, HFA384x_PROGMODE_DISABLE, 0, 0, 0);
1964 hw->dlstate = HFA384x_DLSTATE_DISABLED;
1965
1966 return 0;
1967 }
1968
1969 /*----------------------------------------------------------------
1970 * hfa384x_drvr_flashdl_write
1971 *
1972 * Performs a FLASH download of a chunk of data. First checks to see
1973 * that we're in the FLASH download state, then sets the download
1974 * mode, uses the aux functions to 1) copy the data to the flash
1975 * buffer, 2) sets the download 'write flash' mode, 3) readback and
1976 * compare. Lather rinse, repeat as many times an necessary to get
1977 * all the given data into flash.
1978 * When all data has been written using this function (possibly
1979 * repeatedly), call drvr_flashdl_disable() to end the download state
1980 * and restart the MAC.
1981 *
1982 * Arguments:
1983 * hw device structure
1984 * daddr Card address to write to. (host order)
1985 * buf Ptr to data to write.
1986 * len Length of data (host order).
1987 *
1988 * Returns:
1989 * 0 success
1990 * >0 f/w reported error - f/w status code
1991 * <0 driver reported error
1992 *
1993 * Side effects:
1994 *
1995 * Call context:
1996 * process
1997 ----------------------------------------------------------------*/
1998 int hfa384x_drvr_flashdl_write(hfa384x_t *hw, u32 daddr, void *buf, u32 len)
1999 {
2000 int result = 0;
2001 u32 dlbufaddr;
2002 int nburns;
2003 u32 burnlen;
2004 u32 burndaddr;
2005 u16 burnlo;
2006 u16 burnhi;
2007 int nwrites;
2008 u8 *writebuf;
2009 u16 writepage;
2010 u16 writeoffset;
2011 u32 writelen;
2012 int i;
2013 int j;
2014
2015 pr_debug("daddr=0x%08x len=%d\n", daddr, len);
2016
2017 /* Check that we're in the flash download state */
2018 if (hw->dlstate != HFA384x_DLSTATE_FLASHENABLED)
2019 return -EINVAL;
2020
2021 printk(KERN_INFO "Download %d bytes to flash @0x%06x\n", len, daddr);
2022
2023 /* Convert to flat address for arithmetic */
2024 /* NOTE: dlbuffer RID stores the address in AUX format */
2025 dlbufaddr =
2026 HFA384x_ADDR_AUX_MKFLAT(hw->bufinfo.page, hw->bufinfo.offset);
2027 pr_debug("dlbuf.page=0x%04x dlbuf.offset=0x%04x dlbufaddr=0x%08x\n",
2028 hw->bufinfo.page, hw->bufinfo.offset, dlbufaddr);
2029
2030 #if 0
2031 printk(KERN_WARNING "dlbuf@0x%06lx len=%d to=%d\n", dlbufaddr,
2032 hw->bufinfo.len, hw->dltimeout);
2033 #endif
2034 /* Calculations to determine how many fills of the dlbuffer to do
2035 * and how many USB wmemreq's to do for each fill. At this point
2036 * in time, the dlbuffer size and the wmemreq size are the same.
2037 * Therefore, nwrites should always be 1. The extra complexity
2038 * here is a hedge against future changes.
2039 */
2040
2041 /* Figure out how many times to do the flash programming */
2042 nburns = len / hw->bufinfo.len;
2043 nburns += (len % hw->bufinfo.len) ? 1 : 0;
2044
2045 /* For each flash program cycle, how many USB wmemreq's are needed? */
2046 nwrites = hw->bufinfo.len / HFA384x_USB_RWMEM_MAXLEN;
2047 nwrites += (hw->bufinfo.len % HFA384x_USB_RWMEM_MAXLEN) ? 1 : 0;
2048
2049 /* For each burn */
2050 for (i = 0; i < nburns; i++) {
2051 /* Get the dest address and len */
2052 burnlen = (len - (hw->bufinfo.len * i)) > hw->bufinfo.len ?
2053 hw->bufinfo.len : (len - (hw->bufinfo.len * i));
2054 burndaddr = daddr + (hw->bufinfo.len * i);
2055 burnlo = HFA384x_ADDR_CMD_MKOFF(burndaddr);
2056 burnhi = HFA384x_ADDR_CMD_MKPAGE(burndaddr);
2057
2058 printk(KERN_INFO "Writing %d bytes to flash @0x%06x\n",
2059 burnlen, burndaddr);
2060
2061 /* Set the download mode */
2062 result = hfa384x_cmd_download(hw, HFA384x_PROGMODE_NV,
2063 burnlo, burnhi, burnlen);
2064 if (result) {
2065 printk(KERN_ERR "download(NV,lo=%x,hi=%x,len=%x) "
2066 "cmd failed, result=%d. Aborting d/l\n",
2067 burnlo, burnhi, burnlen, result);
2068 goto exit_proc;
2069 }
2070
2071 /* copy the data to the flash download buffer */
2072 for (j = 0; j < nwrites; j++) {
2073 writebuf = buf +
2074 (i * hw->bufinfo.len) +
2075 (j * HFA384x_USB_RWMEM_MAXLEN);
2076
2077 writepage = HFA384x_ADDR_CMD_MKPAGE(dlbufaddr +
2078 (j * HFA384x_USB_RWMEM_MAXLEN));
2079 writeoffset = HFA384x_ADDR_CMD_MKOFF(dlbufaddr +
2080 (j * HFA384x_USB_RWMEM_MAXLEN));
2081
2082 writelen = burnlen - (j * HFA384x_USB_RWMEM_MAXLEN);
2083 writelen = writelen > HFA384x_USB_RWMEM_MAXLEN ?
2084 HFA384x_USB_RWMEM_MAXLEN : writelen;
2085
2086 result = hfa384x_dowmem_wait(hw,
2087 writepage,
2088 writeoffset,
2089 writebuf, writelen);
2090 }
2091
2092 /* set the download 'write flash' mode */
2093 result = hfa384x_cmd_download(hw,
2094 HFA384x_PROGMODE_NVWRITE,
2095 0, 0, 0);
2096 if (result) {
2097 printk(KERN_ERR
2098 "download(NVWRITE,lo=%x,hi=%x,len=%x) "
2099 "cmd failed, result=%d. Aborting d/l\n",
2100 burnlo, burnhi, burnlen, result);
2101 goto exit_proc;
2102 }
2103
2104 /* TODO: We really should do a readback and compare. */
2105 }
2106
2107 exit_proc:
2108
2109 /* Leave the firmware in the 'post-prog' mode. flashdl_disable will */
2110 /* actually disable programming mode. Remember, that will cause the */
2111 /* the firmware to effectively reset itself. */
2112
2113 return result;
2114 }
2115
2116 /*----------------------------------------------------------------
2117 * hfa384x_drvr_getconfig
2118 *
2119 * Performs the sequence necessary to read a config/info item.
2120 *
2121 * Arguments:
2122 * hw device structure
2123 * rid config/info record id (host order)
2124 * buf host side record buffer. Upon return it will
2125 * contain the body portion of the record (minus the
2126 * RID and len).
2127 * len buffer length (in bytes, should match record length)
2128 *
2129 * Returns:
2130 * 0 success
2131 * >0 f/w reported error - f/w status code
2132 * <0 driver reported error
2133 * -ENODATA length mismatch between argument and retrieved
2134 * record.
2135 *
2136 * Side effects:
2137 *
2138 * Call context:
2139 * process
2140 ----------------------------------------------------------------*/
2141 int hfa384x_drvr_getconfig(hfa384x_t *hw, u16 rid, void *buf, u16 len)
2142 {
2143 return hfa384x_dorrid_wait(hw, rid, buf, len);
2144 }
2145
2146 /*----------------------------------------------------------------
2147 * hfa384x_drvr_getconfig_async
2148 *
2149 * Performs the sequence necessary to perform an async read of
2150 * of a config/info item.
2151 *
2152 * Arguments:
2153 * hw device structure
2154 * rid config/info record id (host order)
2155 * buf host side record buffer. Upon return it will
2156 * contain the body portion of the record (minus the
2157 * RID and len).
2158 * len buffer length (in bytes, should match record length)
2159 * cbfn caller supplied callback, called when the command
2160 * is done (successful or not).
2161 * cbfndata pointer to some caller supplied data that will be
2162 * passed in as an argument to the cbfn.
2163 *
2164 * Returns:
2165 * nothing the cbfn gets a status argument identifying if
2166 * any errors occur.
2167 * Side effects:
2168 * Queues an hfa384x_usbcmd_t for subsequent execution.
2169 *
2170 * Call context:
2171 * Any
2172 ----------------------------------------------------------------*/
2173 int
2174 hfa384x_drvr_getconfig_async(hfa384x_t *hw,
2175 u16 rid, ctlx_usercb_t usercb, void *usercb_data)
2176 {
2177 return hfa384x_dorrid_async(hw, rid, NULL, 0,
2178 hfa384x_cb_rrid, usercb, usercb_data);
2179 }
2180
2181 /*----------------------------------------------------------------
2182 * hfa384x_drvr_setconfig_async
2183 *
2184 * Performs the sequence necessary to write a config/info item.
2185 *
2186 * Arguments:
2187 * hw device structure
2188 * rid config/info record id (in host order)
2189 * buf host side record buffer
2190 * len buffer length (in bytes)
2191 * usercb completion callback
2192 * usercb_data completion callback argument
2193 *
2194 * Returns:
2195 * 0 success
2196 * >0 f/w reported error - f/w status code
2197 * <0 driver reported error
2198 *
2199 * Side effects:
2200 *
2201 * Call context:
2202 * process
2203 ----------------------------------------------------------------*/
2204 int
2205 hfa384x_drvr_setconfig_async(hfa384x_t *hw,
2206 u16 rid,
2207 void *buf,
2208 u16 len, ctlx_usercb_t usercb, void *usercb_data)
2209 {
2210 return hfa384x_dowrid_async(hw, rid, buf, len,
2211 hfa384x_cb_status, usercb, usercb_data);
2212 }
2213
2214 /*----------------------------------------------------------------
2215 * hfa384x_drvr_ramdl_disable
2216 *
2217 * Ends the ram download state.
2218 *
2219 * Arguments:
2220 * hw device structure
2221 *
2222 * Returns:
2223 * 0 success
2224 * >0 f/w reported error - f/w status code
2225 * <0 driver reported error
2226 *
2227 * Side effects:
2228 *
2229 * Call context:
2230 * process
2231 ----------------------------------------------------------------*/
2232 int hfa384x_drvr_ramdl_disable(hfa384x_t *hw)
2233 {
2234 /* Check that we're already in the download state */
2235 if (hw->dlstate != HFA384x_DLSTATE_RAMENABLED)
2236 return -EINVAL;
2237
2238 pr_debug("ramdl_disable()\n");
2239
2240 /* There isn't much we can do at this point, so I don't */
2241 /* bother w/ the return value */
2242 hfa384x_cmd_download(hw, HFA384x_PROGMODE_DISABLE, 0, 0, 0);
2243 hw->dlstate = HFA384x_DLSTATE_DISABLED;
2244
2245 return 0;
2246 }
2247
2248 /*----------------------------------------------------------------
2249 * hfa384x_drvr_ramdl_enable
2250 *
2251 * Begins the ram download state. Checks to see that we're not
2252 * already in a download state and that a port isn't enabled.
2253 * Sets the download state and calls cmd_download with the
2254 * ENABLE_VOLATILE subcommand and the exeaddr argument.
2255 *
2256 * Arguments:
2257 * hw device structure
2258 * exeaddr the card execution address that will be
2259 * jumped to when ramdl_disable() is called
2260 * (host order).
2261 *
2262 * Returns:
2263 * 0 success
2264 * >0 f/w reported error - f/w status code
2265 * <0 driver reported error
2266 *
2267 * Side effects:
2268 *
2269 * Call context:
2270 * process
2271 ----------------------------------------------------------------*/
2272 int hfa384x_drvr_ramdl_enable(hfa384x_t *hw, u32 exeaddr)
2273 {
2274 int result = 0;
2275 u16 lowaddr;
2276 u16 hiaddr;
2277 int i;
2278
2279 /* Check that a port isn't active */
2280 for (i = 0; i < HFA384x_PORTID_MAX; i++) {
2281 if (hw->port_enabled[i]) {
2282 printk(KERN_ERR
2283 "Can't download with a macport enabled.\n");
2284 return -EINVAL;
2285 }
2286 }
2287
2288 /* Check that we're not already in a download state */
2289 if (hw->dlstate != HFA384x_DLSTATE_DISABLED) {
2290 printk(KERN_ERR "Download state not disabled.\n");
2291 return -EINVAL;
2292 }
2293
2294 pr_debug("ramdl_enable, exeaddr=0x%08x\n", exeaddr);
2295
2296 /* Call the download(1,addr) function */
2297 lowaddr = HFA384x_ADDR_CMD_MKOFF(exeaddr);
2298 hiaddr = HFA384x_ADDR_CMD_MKPAGE(exeaddr);
2299
2300 result = hfa384x_cmd_download(hw, HFA384x_PROGMODE_RAM,
2301 lowaddr, hiaddr, 0);
2302
2303 if (result == 0) {
2304 /* Set the download state */
2305 hw->dlstate = HFA384x_DLSTATE_RAMENABLED;
2306 } else {
2307 pr_debug("cmd_download(0x%04x, 0x%04x) failed, result=%d.\n",
2308 lowaddr, hiaddr, result);
2309 }
2310
2311 return result;
2312 }
2313
2314 /*----------------------------------------------------------------
2315 * hfa384x_drvr_ramdl_write
2316 *
2317 * Performs a RAM download of a chunk of data. First checks to see
2318 * that we're in the RAM download state, then uses the [read|write]mem USB
2319 * commands to 1) copy the data, 2) readback and compare. The download
2320 * state is unaffected. When all data has been written using
2321 * this function, call drvr_ramdl_disable() to end the download state
2322 * and restart the MAC.
2323 *
2324 * Arguments:
2325 * hw device structure
2326 * daddr Card address to write to. (host order)
2327 * buf Ptr to data to write.
2328 * len Length of data (host order).
2329 *
2330 * Returns:
2331 * 0 success
2332 * >0 f/w reported error - f/w status code
2333 * <0 driver reported error
2334 *
2335 * Side effects:
2336 *
2337 * Call context:
2338 * process
2339 ----------------------------------------------------------------*/
2340 int hfa384x_drvr_ramdl_write(hfa384x_t *hw, u32 daddr, void *buf, u32 len)
2341 {
2342 int result = 0;
2343 int nwrites;
2344 u8 *data = buf;
2345 int i;
2346 u32 curraddr;
2347 u16 currpage;
2348 u16 curroffset;
2349 u16 currlen;
2350
2351 /* Check that we're in the ram download state */
2352 if (hw->dlstate != HFA384x_DLSTATE_RAMENABLED)
2353 return -EINVAL;
2354
2355 printk(KERN_INFO "Writing %d bytes to ram @0x%06x\n", len, daddr);
2356
2357 /* How many dowmem calls? */
2358 nwrites = len / HFA384x_USB_RWMEM_MAXLEN;
2359 nwrites += len % HFA384x_USB_RWMEM_MAXLEN ? 1 : 0;
2360
2361 /* Do blocking wmem's */
2362 for (i = 0; i < nwrites; i++) {
2363 /* make address args */
2364 curraddr = daddr + (i * HFA384x_USB_RWMEM_MAXLEN);
2365 currpage = HFA384x_ADDR_CMD_MKPAGE(curraddr);
2366 curroffset = HFA384x_ADDR_CMD_MKOFF(curraddr);
2367 currlen = len - (i * HFA384x_USB_RWMEM_MAXLEN);
2368 if (currlen > HFA384x_USB_RWMEM_MAXLEN)
2369 currlen = HFA384x_USB_RWMEM_MAXLEN;
2370
2371 /* Do blocking ctlx */
2372 result = hfa384x_dowmem_wait(hw,
2373 currpage,
2374 curroffset,
2375 data +
2376 (i * HFA384x_USB_RWMEM_MAXLEN),
2377 currlen);
2378
2379 if (result)
2380 break;
2381
2382 /* TODO: We really should have a readback. */
2383 }
2384
2385 return result;
2386 }
2387
2388 /*----------------------------------------------------------------
2389 * hfa384x_drvr_readpda
2390 *
2391 * Performs the sequence to read the PDA space. Note there is no
2392 * drvr_writepda() function. Writing a PDA is
2393 * generally implemented by a calling component via calls to
2394 * cmd_download and writing to the flash download buffer via the
2395 * aux regs.
2396 *
2397 * Arguments:
2398 * hw device structure
2399 * buf buffer to store PDA in
2400 * len buffer length
2401 *
2402 * Returns:
2403 * 0 success
2404 * >0 f/w reported error - f/w status code
2405 * <0 driver reported error
2406 * -ETIMEDOUT timout waiting for the cmd regs to become
2407 * available, or waiting for the control reg
2408 * to indicate the Aux port is enabled.
2409 * -ENODATA the buffer does NOT contain a valid PDA.
2410 * Either the card PDA is bad, or the auxdata
2411 * reads are giving us garbage.
2412
2413 *
2414 * Side effects:
2415 *
2416 * Call context:
2417 * process or non-card interrupt.
2418 ----------------------------------------------------------------*/
2419 int hfa384x_drvr_readpda(hfa384x_t *hw, void *buf, unsigned int len)
2420 {
2421 int result = 0;
2422 u16 *pda = buf;
2423 int pdaok = 0;
2424 int morepdrs = 1;
2425 int currpdr = 0; /* word offset of the current pdr */
2426 size_t i;
2427 u16 pdrlen; /* pdr length in bytes, host order */
2428 u16 pdrcode; /* pdr code, host order */
2429 u16 currpage;
2430 u16 curroffset;
2431 struct pdaloc {
2432 u32 cardaddr;
2433 u16 auxctl;
2434 } pdaloc[] = {
2435 {
2436 HFA3842_PDA_BASE, 0}, {
2437 HFA3841_PDA_BASE, 0}, {
2438 HFA3841_PDA_BOGUS_BASE, 0}
2439 };
2440
2441 /* Read the pda from each known address. */
2442 for (i = 0; i < ARRAY_SIZE(pdaloc); i++) {
2443 /* Make address */
2444 currpage = HFA384x_ADDR_CMD_MKPAGE(pdaloc[i].cardaddr);
2445 curroffset = HFA384x_ADDR_CMD_MKOFF(pdaloc[i].cardaddr);
2446
2447 /* units of bytes */
2448 result = hfa384x_dormem_wait(hw, currpage, curroffset, buf,
2449 len);
2450
2451 if (result) {
2452 printk(KERN_WARNING
2453 "Read from index %zd failed, continuing\n", i);
2454 continue;
2455 }
2456
2457 /* Test for garbage */
2458 pdaok = 1; /* initially assume good */
2459 morepdrs = 1;
2460 while (pdaok && morepdrs) {
2461 pdrlen = le16_to_cpu(pda[currpdr]) * 2;
2462 pdrcode = le16_to_cpu(pda[currpdr + 1]);
2463 /* Test the record length */
2464 if (pdrlen > HFA384x_PDR_LEN_MAX || pdrlen == 0) {
2465 printk(KERN_ERR "pdrlen invalid=%d\n", pdrlen);
2466 pdaok = 0;
2467 break;
2468 }
2469 /* Test the code */
2470 if (!hfa384x_isgood_pdrcode(pdrcode)) {
2471 printk(KERN_ERR "pdrcode invalid=%d\n",
2472 pdrcode);
2473 pdaok = 0;
2474 break;
2475 }
2476 /* Test for completion */
2477 if (pdrcode == HFA384x_PDR_END_OF_PDA)
2478 morepdrs = 0;
2479
2480 /* Move to the next pdr (if necessary) */
2481 if (morepdrs) {
2482 /* note the access to pda[], need words here */
2483 currpdr += le16_to_cpu(pda[currpdr]) + 1;
2484 }
2485 }
2486 if (pdaok) {
2487 printk(KERN_INFO
2488 "PDA Read from 0x%08x in %s space.\n",
2489 pdaloc[i].cardaddr,
2490 pdaloc[i].auxctl == 0 ? "EXTDS" :
2491 pdaloc[i].auxctl == 1 ? "NV" :
2492 pdaloc[i].auxctl == 2 ? "PHY" :
2493 pdaloc[i].auxctl == 3 ? "ICSRAM" :
2494 "<bogus auxctl>");
2495 break;
2496 }
2497 }
2498 result = pdaok ? 0 : -ENODATA;
2499
2500 if (result)
2501 pr_debug("Failure: pda is not okay\n");
2502
2503 return result;
2504 }
2505
2506 /*----------------------------------------------------------------
2507 * hfa384x_drvr_setconfig
2508 *
2509 * Performs the sequence necessary to write a config/info item.
2510 *
2511 * Arguments:
2512 * hw device structure
2513 * rid config/info record id (in host order)
2514 * buf host side record buffer
2515 * len buffer length (in bytes)
2516 *
2517 * Returns:
2518 * 0 success
2519 * >0 f/w reported error - f/w status code
2520 * <0 driver reported error
2521 *
2522 * Side effects:
2523 *
2524 * Call context:
2525 * process
2526 ----------------------------------------------------------------*/
2527 int hfa384x_drvr_setconfig(hfa384x_t *hw, u16 rid, void *buf, u16 len)
2528 {
2529 return hfa384x_dowrid_wait(hw, rid, buf, len);
2530 }
2531
2532 /*----------------------------------------------------------------
2533 * hfa384x_drvr_start
2534 *
2535 * Issues the MAC initialize command, sets up some data structures,
2536 * and enables the interrupts. After this function completes, the
2537 * low-level stuff should be ready for any/all commands.
2538 *
2539 * Arguments:
2540 * hw device structure
2541 * Returns:
2542 * 0 success
2543 * >0 f/w reported error - f/w status code
2544 * <0 driver reported error
2545 *
2546 * Side effects:
2547 *
2548 * Call context:
2549 * process
2550 ----------------------------------------------------------------*/
2551
2552 int hfa384x_drvr_start(hfa384x_t *hw)
2553 {
2554 int result, result1, result2;
2555 u16 status;
2556
2557 might_sleep();
2558
2559 /* Clear endpoint stalls - but only do this if the endpoint
2560 * is showing a stall status. Some prism2 cards seem to behave
2561 * badly if a clear_halt is called when the endpoint is already
2562 * ok
2563 */
2564 result =
2565 usb_get_status(hw->usb, USB_RECIP_ENDPOINT, hw->endp_in, &status);
2566 if (result < 0) {
2567 printk(KERN_ERR "Cannot get bulk in endpoint status.\n");
2568 goto done;
2569 }
2570 if ((status == 1) && usb_clear_halt(hw->usb, hw->endp_in))
2571 printk(KERN_ERR "Failed to reset bulk in endpoint.\n");
2572
2573 result =
2574 usb_get_status(hw->usb, USB_RECIP_ENDPOINT, hw->endp_out, &status);
2575 if (result < 0) {
2576 printk(KERN_ERR "Cannot get bulk out endpoint status.\n");
2577 goto done;
2578 }
2579 if ((status == 1) && usb_clear_halt(hw->usb, hw->endp_out))
2580 printk(KERN_ERR "Failed to reset bulk out endpoint.\n");
2581
2582 /* Synchronous unlink, in case we're trying to restart the driver */
2583 usb_kill_urb(&hw->rx_urb);
2584
2585 /* Post the IN urb */
2586 result = submit_rx_urb(hw, GFP_KERNEL);
2587 if (result != 0) {
2588 printk(KERN_ERR
2589 "Fatal, failed to submit RX URB, result=%d\n", result);
2590 goto done;
2591 }
2592
2593 /* Call initialize twice, with a 1 second sleep in between.
2594 * This is a nasty work-around since many prism2 cards seem to
2595 * need time to settle after an init from cold. The second
2596 * call to initialize in theory is not necessary - but we call
2597 * it anyway as a double insurance policy:
2598 * 1) If the first init should fail, the second may well succeed
2599 * and the card can still be used
2600 * 2) It helps ensures all is well with the card after the first
2601 * init and settle time.
2602 */
2603 result1 = hfa384x_cmd_initialize(hw);
2604 msleep(1000);
2605 result = result2 = hfa384x_cmd_initialize(hw);
2606 if (result1 != 0) {
2607 if (result2 != 0) {
2608 printk(KERN_ERR
2609 "cmd_initialize() failed on two attempts, results %d and %d\n",
2610 result1, result2);
2611 usb_kill_urb(&hw->rx_urb);
2612 goto done;
2613 } else {
2614 pr_debug("First cmd_initialize() failed (result %d),\n",
2615 result1);
2616 pr_debug("but second attempt succeeded. All should be ok\n");
2617 }
2618 } else if (result2 != 0) {
2619 printk(KERN_WARNING "First cmd_initialize() succeeded, but second attempt failed (result=%d)\n",
2620 result2);
2621 printk(KERN_WARNING
2622 "Most likely the card will be functional\n");
2623 goto done;
2624 }
2625
2626 hw->state = HFA384x_STATE_RUNNING;
2627
2628 done:
2629 return result;
2630 }
2631
2632 /*----------------------------------------------------------------
2633 * hfa384x_drvr_stop
2634 *
2635 * Shuts down the MAC to the point where it is safe to unload the
2636 * driver. Any subsystem that may be holding a data or function
2637 * ptr into the driver must be cleared/deinitialized.
2638 *
2639 * Arguments:
2640 * hw device structure
2641 * Returns:
2642 * 0 success
2643 * >0 f/w reported error - f/w status code
2644 * <0 driver reported error
2645 *
2646 * Side effects:
2647 *
2648 * Call context:
2649 * process
2650 ----------------------------------------------------------------*/
2651 int hfa384x_drvr_stop(hfa384x_t *hw)
2652 {
2653 int result = 0;
2654 int i;
2655
2656 might_sleep();
2657
2658 /* There's no need for spinlocks here. The USB "disconnect"
2659 * function sets this "removed" flag and then calls us.
2660 */
2661 if (!hw->wlandev->hwremoved) {
2662 /* Call initialize to leave the MAC in its 'reset' state */
2663 hfa384x_cmd_initialize(hw);
2664
2665 /* Cancel the rxurb */
2666 usb_kill_urb(&hw->rx_urb);
2667 }
2668
2669 hw->link_status = HFA384x_LINK_NOTCONNECTED;
2670 hw->state = HFA384x_STATE_INIT;
2671
2672 del_timer_sync(&hw->commsqual_timer);
2673
2674 /* Clear all the port status */
2675 for (i = 0; i < HFA384x_NUMPORTS_MAX; i++)
2676 hw->port_enabled[i] = 0;
2677
2678 return result;
2679 }
2680
2681 /*----------------------------------------------------------------
2682 * hfa384x_drvr_txframe
2683 *
2684 * Takes a frame from prism2sta and queues it for transmission.
2685 *
2686 * Arguments:
2687 * hw device structure
2688 * skb packet buffer struct. Contains an 802.11
2689 * data frame.
2690 * p80211_hdr points to the 802.11 header for the packet.
2691 * Returns:
2692 * 0 Success and more buffs available
2693 * 1 Success but no more buffs
2694 * 2 Allocation failure
2695 * 4 Buffer full or queue busy
2696 *
2697 * Side effects:
2698 *
2699 * Call context:
2700 * interrupt
2701 ----------------------------------------------------------------*/
2702 int hfa384x_drvr_txframe(hfa384x_t *hw, struct sk_buff *skb,
2703 union p80211_hdr *p80211_hdr,
2704 struct p80211_metawep *p80211_wep)
2705 {
2706 int usbpktlen = sizeof(hfa384x_tx_frame_t);
2707 int result;
2708 int ret;
2709 char *ptr;
2710
2711 if (hw->tx_urb.status == -EINPROGRESS) {
2712 printk(KERN_WARNING "TX URB already in use\n");
2713 result = 3;
2714 goto exit;
2715 }
2716
2717 /* Build Tx frame structure */
2718 /* Set up the control field */
2719 memset(&hw->txbuff.txfrm.desc, 0, sizeof(hw->txbuff.txfrm.desc));
2720
2721 /* Setup the usb type field */
2722 hw->txbuff.type = cpu_to_le16(HFA384x_USB_TXFRM);
2723
2724 /* Set up the sw_support field to identify this frame */
2725 hw->txbuff.txfrm.desc.sw_support = 0x0123;
2726
2727 /* Tx complete and Tx exception disable per dleach. Might be causing
2728 * buf depletion
2729 */
2730 /* #define DOEXC SLP -- doboth breaks horribly under load, doexc less so. */
2731 #if defined(DOBOTH)
2732 hw->txbuff.txfrm.desc.tx_control =
2733 HFA384x_TX_MACPORT_SET(0) | HFA384x_TX_STRUCTYPE_SET(1) |
2734 HFA384x_TX_TXEX_SET(1) | HFA384x_TX_TXOK_SET(1);
2735 #elif defined(DOEXC)
2736 hw->txbuff.txfrm.desc.tx_control =
2737 HFA384x_TX_MACPORT_SET(0) | HFA384x_TX_STRUCTYPE_SET(1) |
2738 HFA384x_TX_TXEX_SET(1) | HFA384x_TX_TXOK_SET(0);
2739 #else
2740 hw->txbuff.txfrm.desc.tx_control =
2741 HFA384x_TX_MACPORT_SET(0) | HFA384x_TX_STRUCTYPE_SET(1) |
2742 HFA384x_TX_TXEX_SET(0) | HFA384x_TX_TXOK_SET(0);
2743 #endif
2744 hw->txbuff.txfrm.desc.tx_control =
2745 cpu_to_le16(hw->txbuff.txfrm.desc.tx_control);
2746
2747 /* copy the header over to the txdesc */
2748 memcpy(&(hw->txbuff.txfrm.desc.frame_control), p80211_hdr,
2749 sizeof(union p80211_hdr));
2750
2751 /* if we're using host WEP, increase size by IV+ICV */
2752 if (p80211_wep->data) {
2753 hw->txbuff.txfrm.desc.data_len = cpu_to_le16(skb->len + 8);
2754 usbpktlen += 8;
2755 } else {
2756 hw->txbuff.txfrm.desc.data_len = cpu_to_le16(skb->len);
2757 }
2758
2759 usbpktlen += skb->len;
2760
2761 /* copy over the WEP IV if we are using host WEP */
2762 ptr = hw->txbuff.txfrm.data;
2763 if (p80211_wep->data) {
2764 memcpy(ptr, p80211_wep->iv, sizeof(p80211_wep->iv));
2765 ptr += sizeof(p80211_wep->iv);
2766 memcpy(ptr, p80211_wep->data, skb->len);
2767 } else {
2768 memcpy(ptr, skb->data, skb->len);
2769 }
2770 /* copy over the packet data */
2771 ptr += skb->len;
2772
2773 /* copy over the WEP ICV if we are using host WEP */
2774 if (p80211_wep->data)
2775 memcpy(ptr, p80211_wep->icv, sizeof(p80211_wep->icv));
2776
2777 /* Send the USB packet */
2778 usb_fill_bulk_urb(&(hw->tx_urb), hw->usb,
2779 hw->endp_out,
2780 &(hw->txbuff), ROUNDUP64(usbpktlen),
2781 hfa384x_usbout_callback, hw->wlandev);
2782 hw->tx_urb.transfer_flags |= USB_QUEUE_BULK;
2783
2784 result = 1;
2785 ret = submit_tx_urb(hw, &hw->tx_urb, GFP_ATOMIC);
2786 if (ret != 0) {
2787 printk(KERN_ERR "submit_tx_urb() failed, error=%d\n", ret);
2788 result = 3;
2789 }
2790
2791 exit:
2792 return result;
2793 }
2794
2795 void hfa384x_tx_timeout(wlandevice_t *wlandev)
2796 {
2797 hfa384x_t *hw = wlandev->priv;
2798 unsigned long flags;
2799
2800 spin_lock_irqsave(&hw->ctlxq.lock, flags);
2801
2802 if (!hw->wlandev->hwremoved) {
2803 int sched;
2804
2805 sched = !test_and_set_bit(WORK_TX_HALT, &hw->usb_flags);
2806 sched |= !test_and_set_bit(WORK_RX_HALT, &hw->usb_flags);
2807 if (sched)
2808 schedule_work(&hw->usb_work);
2809 }
2810
2811 spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
2812 }
2813
2814 /*----------------------------------------------------------------
2815 * hfa384x_usbctlx_reaper_task
2816 *
2817 * Tasklet to delete dead CTLX objects
2818 *
2819 * Arguments:
2820 * data ptr to a hfa384x_t
2821 *
2822 * Returns:
2823 *
2824 * Call context:
2825 * Interrupt
2826 ----------------------------------------------------------------*/
2827 static void hfa384x_usbctlx_reaper_task(unsigned long data)
2828 {
2829 hfa384x_t *hw = (hfa384x_t *) data;
2830 struct list_head *entry;
2831 struct list_head *temp;
2832 unsigned long flags;
2833
2834 spin_lock_irqsave(&hw->ctlxq.lock, flags);
2835
2836 /* This list is guaranteed to be empty if someone
2837 * has unplugged the adapter.
2838 */
2839 list_for_each_safe(entry, temp, &hw->ctlxq.reapable) {
2840 hfa384x_usbctlx_t *ctlx;
2841
2842 ctlx = list_entry(entry, hfa384x_usbctlx_t, list);
2843 list_del(&ctlx->list);
2844 kfree(ctlx);
2845 }
2846
2847 spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
2848
2849 }
2850
2851 /*----------------------------------------------------------------
2852 * hfa384x_usbctlx_completion_task
2853 *
2854 * Tasklet to call completion handlers for returned CTLXs
2855 *
2856 * Arguments:
2857 * data ptr to hfa384x_t
2858 *
2859 * Returns:
2860 * Nothing
2861 *
2862 * Call context:
2863 * Interrupt
2864 ----------------------------------------------------------------*/
2865 static void hfa384x_usbctlx_completion_task(unsigned long data)
2866 {
2867 hfa384x_t *hw = (hfa384x_t *) data;
2868 struct list_head *entry;
2869 struct list_head *temp;
2870 unsigned long flags;
2871
2872 int reap = 0;
2873
2874 spin_lock_irqsave(&hw->ctlxq.lock, flags);
2875
2876 /* This list is guaranteed to be empty if someone
2877 * has unplugged the adapter ...
2878 */
2879 list_for_each_safe(entry, temp, &hw->ctlxq.completing) {
2880 hfa384x_usbctlx_t *ctlx;
2881
2882 ctlx = list_entry(entry, hfa384x_usbctlx_t, list);
2883
2884 /* Call the completion function that this
2885 * command was assigned, assuming it has one.
2886 */
2887 if (ctlx->cmdcb != NULL) {
2888 spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
2889 ctlx->cmdcb(hw, ctlx);
2890 spin_lock_irqsave(&hw->ctlxq.lock, flags);
2891
2892 /* Make sure we don't try and complete
2893 * this CTLX more than once!
2894 */
2895 ctlx->cmdcb = NULL;
2896
2897 /* Did someone yank the adapter out
2898 * while our list was (briefly) unlocked?
2899 */
2900 if (hw->wlandev->hwremoved) {
2901 reap = 0;
2902 break;
2903 }
2904 }
2905
2906 /*
2907 * "Reapable" CTLXs are ones which don't have any
2908 * threads waiting for them to die. Hence they must
2909 * be delivered to The Reaper!
2910 */
2911 if (ctlx->reapable) {
2912 /* Move the CTLX off the "completing" list (hopefully)
2913 * on to the "reapable" list where the reaper task
2914 * can find it. And "reapable" means that this CTLX
2915 * isn't sitting on a wait-queue somewhere.
2916 */
2917 list_move_tail(&ctlx->list, &hw->ctlxq.reapable);
2918 reap = 1;
2919 }
2920
2921 complete(&ctlx->done);
2922 }
2923 spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
2924
2925 if (reap)
2926 tasklet_schedule(&hw->reaper_bh);
2927 }
2928
2929 /*----------------------------------------------------------------
2930 * unlocked_usbctlx_cancel_async
2931 *
2932 * Mark the CTLX dead asynchronously, and ensure that the
2933 * next command on the queue is run afterwards.
2934 *
2935 * Arguments:
2936 * hw ptr to the hfa384x_t structure
2937 * ctlx ptr to a CTLX structure
2938 *
2939 * Returns:
2940 * 0 the CTLX's URB is inactive
2941 * -EINPROGRESS the URB is currently being unlinked
2942 *
2943 * Call context:
2944 * Either process or interrupt, but presumably interrupt
2945 ----------------------------------------------------------------*/
2946 static int unlocked_usbctlx_cancel_async(hfa384x_t *hw,
2947 hfa384x_usbctlx_t *ctlx)
2948 {
2949 int ret;
2950
2951 /*
2952 * Try to delete the URB containing our request packet.
2953 * If we succeed, then its completion handler will be
2954 * called with a status of -ECONNRESET.
2955 */
2956 hw->ctlx_urb.transfer_flags |= URB_ASYNC_UNLINK;
2957 ret = usb_unlink_urb(&hw->ctlx_urb);
2958
2959 if (ret != -EINPROGRESS) {
2960 /*
2961 * The OUT URB had either already completed
2962 * or was still in the pending queue, so the
2963 * URB's completion function will not be called.
2964 * We will have to complete the CTLX ourselves.
2965 */
2966 ctlx->state = CTLX_REQ_FAILED;
2967 unlocked_usbctlx_complete(hw, ctlx);
2968 ret = 0;
2969 }
2970
2971 return ret;
2972 }
2973
2974 /*----------------------------------------------------------------
2975 * unlocked_usbctlx_complete
2976 *
2977 * A CTLX has completed. It may have been successful, it may not
2978 * have been. At this point, the CTLX should be quiescent. The URBs
2979 * aren't active and the timers should have been stopped.
2980 *
2981 * The CTLX is migrated to the "completing" queue, and the completing
2982 * tasklet is scheduled.
2983 *
2984 * Arguments:
2985 * hw ptr to a hfa384x_t structure
2986 * ctlx ptr to a ctlx structure
2987 *
2988 * Returns:
2989 * nothing
2990 *
2991 * Side effects:
2992 *
2993 * Call context:
2994 * Either, assume interrupt
2995 ----------------------------------------------------------------*/
2996 static void unlocked_usbctlx_complete(hfa384x_t *hw, hfa384x_usbctlx_t *ctlx)
2997 {
2998 /* Timers have been stopped, and ctlx should be in
2999 * a terminal state. Retire it from the "active"
3000 * queue.
3001 */
3002 list_move_tail(&ctlx->list, &hw->ctlxq.completing);
3003 tasklet_schedule(&hw->completion_bh);
3004
3005 switch (ctlx->state) {
3006 case CTLX_COMPLETE:
3007 case CTLX_REQ_FAILED:
3008 /* This are the correct terminating states. */
3009 break;
3010
3011 default:
3012 printk(KERN_ERR "CTLX[%d] not in a terminating state(%s)\n",
3013 le16_to_cpu(ctlx->outbuf.type), ctlxstr(ctlx->state));
3014 break;
3015 } /* switch */
3016 }
3017
3018 /*----------------------------------------------------------------
3019 * hfa384x_usbctlxq_run
3020 *
3021 * Checks to see if the head item is running. If not, starts it.
3022 *
3023 * Arguments:
3024 * hw ptr to hfa384x_t
3025 *
3026 * Returns:
3027 * nothing
3028 *
3029 * Side effects:
3030 *
3031 * Call context:
3032 * any
3033 ----------------------------------------------------------------*/
3034 static void hfa384x_usbctlxq_run(hfa384x_t *hw)
3035 {
3036 unsigned long flags;
3037
3038 /* acquire lock */
3039 spin_lock_irqsave(&hw->ctlxq.lock, flags);
3040
3041 /* Only one active CTLX at any one time, because there's no
3042 * other (reliable) way to match the response URB to the
3043 * correct CTLX.
3044 *
3045 * Don't touch any of these CTLXs if the hardware
3046 * has been removed or the USB subsystem is stalled.
3047 */
3048 if (!list_empty(&hw->ctlxq.active) ||
3049 test_bit(WORK_TX_HALT, &hw->usb_flags) || hw->wlandev->hwremoved)
3050 goto unlock;
3051
3052 while (!list_empty(&hw->ctlxq.pending)) {
3053 hfa384x_usbctlx_t *head;
3054 int result;
3055
3056 /* This is the first pending command */
3057 head = list_entry(hw->ctlxq.pending.next,
3058 hfa384x_usbctlx_t, list);
3059
3060 /* We need to split this off to avoid a race condition */
3061 list_move_tail(&head->list, &hw->ctlxq.active);
3062
3063 /* Fill the out packet */
3064 usb_fill_bulk_urb(&(hw->ctlx_urb), hw->usb,
3065 hw->endp_out,
3066 &(head->outbuf), ROUNDUP64(head->outbufsize),
3067 hfa384x_ctlxout_callback, hw);
3068 hw->ctlx_urb.transfer_flags |= USB_QUEUE_BULK;
3069
3070 /* Now submit the URB and update the CTLX's state */
3071 result = SUBMIT_URB(&hw->ctlx_urb, GFP_ATOMIC);
3072 if (result == 0) {
3073 /* This CTLX is now running on the active queue */
3074 head->state = CTLX_REQ_SUBMITTED;
3075
3076 /* Start the OUT wait timer */
3077 hw->req_timer_done = 0;
3078 hw->reqtimer.expires = jiffies + HZ;
3079 add_timer(&hw->reqtimer);
3080
3081 /* Start the IN wait timer */
3082 hw->resp_timer_done = 0;
3083 hw->resptimer.expires = jiffies + 2 * HZ;
3084 add_timer(&hw->resptimer);
3085
3086 break;
3087 }
3088
3089 if (result == -EPIPE) {
3090 /* The OUT pipe needs resetting, so put
3091 * this CTLX back in the "pending" queue
3092 * and schedule a reset ...
3093 */
3094 printk(KERN_WARNING
3095 "%s tx pipe stalled: requesting reset\n",
3096 hw->wlandev->netdev->name);
3097 list_move(&head->list, &hw->ctlxq.pending);
3098 set_bit(WORK_TX_HALT, &hw->usb_flags);
3099 schedule_work(&hw->usb_work);
3100 break;
3101 }
3102
3103 if (result == -ESHUTDOWN) {
3104 printk(KERN_WARNING "%s urb shutdown!\n",
3105 hw->wlandev->netdev->name);
3106 break;
3107 }
3108
3109 printk(KERN_ERR "Failed to submit CTLX[%d]: error=%d\n",
3110 le16_to_cpu(head->outbuf.type), result);
3111 unlocked_usbctlx_complete(hw, head);
3112 } /* while */
3113
3114 unlock:
3115 spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
3116 }
3117
3118 /*----------------------------------------------------------------
3119 * hfa384x_usbin_callback
3120 *
3121 * Callback for URBs on the BULKIN endpoint.
3122 *
3123 * Arguments:
3124 * urb ptr to the completed urb
3125 *
3126 * Returns:
3127 * nothing
3128 *
3129 * Side effects:
3130 *
3131 * Call context:
3132 * interrupt
3133 ----------------------------------------------------------------*/
3134 static void hfa384x_usbin_callback(struct urb *urb)
3135 {
3136 wlandevice_t *wlandev = urb->context;
3137 hfa384x_t *hw;
3138 hfa384x_usbin_t *usbin = (hfa384x_usbin_t *) urb->transfer_buffer;
3139 struct sk_buff *skb = NULL;
3140 int result;
3141 int urb_status;
3142 u16 type;
3143
3144 enum USBIN_ACTION {
3145 HANDLE,
3146 RESUBMIT,
3147 ABORT
3148 } action;
3149
3150 if (!wlandev || !wlandev->netdev || wlandev->hwremoved)
3151 goto exit;
3152
3153 hw = wlandev->priv;
3154 if (!hw)
3155 goto exit;
3156
3157 skb = hw->rx_urb_skb;
3158 BUG_ON(!skb || (skb->data != urb->transfer_buffer));
3159
3160 hw->rx_urb_skb = NULL;
3161
3162 /* Check for error conditions within the URB */
3163 switch (urb->status) {
3164 case 0:
3165 action = HANDLE;
3166
3167 /* Check for short packet */
3168 if (urb->actual_length == 0) {
3169 ++(wlandev->linux_stats.rx_errors);
3170 ++(wlandev->linux_stats.rx_length_errors);
3171 action = RESUBMIT;
3172 }
3173 break;
3174
3175 case -EPIPE:
3176 printk(KERN_WARNING "%s rx pipe stalled: requesting reset\n",
3177 wlandev->netdev->name);
3178 if (!test_and_set_bit(WORK_RX_HALT, &hw->usb_flags))
3179 schedule_work(&hw->usb_work);
3180 ++(wlandev->linux_stats.rx_errors);
3181 action = ABORT;
3182 break;
3183
3184 case -EILSEQ:
3185 case -ETIMEDOUT:
3186 case -EPROTO:
3187 if (!test_and_set_bit(THROTTLE_RX, &hw->usb_flags) &&
3188 !timer_pending(&hw->throttle)) {
3189 mod_timer(&hw->throttle, jiffies + THROTTLE_JIFFIES);
3190 }
3191 ++(wlandev->linux_stats.rx_errors);
3192 action = ABORT;
3193 break;
3194
3195 case -EOVERFLOW:
3196 ++(wlandev->linux_stats.rx_over_errors);
3197 action = RESUBMIT;
3198 break;
3199
3200 case -ENODEV:
3201 case -ESHUTDOWN:
3202 pr_debug("status=%d, device removed.\n", urb->status);
3203 action = ABORT;
3204 break;
3205
3206 case -ENOENT:
3207 case -ECONNRESET:
3208 pr_debug("status=%d, urb explicitly unlinked.\n", urb->status);
3209 action = ABORT;
3210 break;
3211
3212 default:
3213 pr_debug("urb status=%d, transfer flags=0x%x\n",
3214 urb->status, urb->transfer_flags);
3215 ++(wlandev->linux_stats.rx_errors);
3216 action = RESUBMIT;
3217 break;
3218 }
3219
3220 urb_status = urb->status;
3221
3222 if (action != ABORT) {
3223 /* Repost the RX URB */
3224 result = submit_rx_urb(hw, GFP_ATOMIC);
3225
3226 if (result != 0) {
3227 printk(KERN_ERR
3228 "Fatal, failed to resubmit rx_urb. error=%d\n",
3229 result);
3230 }
3231 }
3232
3233 /* Handle any USB-IN packet */
3234 /* Note: the check of the sw_support field, the type field doesn't
3235 * have bit 12 set like the docs suggest.
3236 */
3237 type = le16_to_cpu(usbin->type);
3238 if (HFA384x_USB_ISRXFRM(type)) {
3239 if (action == HANDLE) {
3240 if (usbin->txfrm.desc.sw_support == 0x0123) {
3241 hfa384x_usbin_txcompl(wlandev, usbin);
3242 } else {
3243 skb_put(skb, sizeof(*usbin));
3244 hfa384x_usbin_rx(wlandev, skb);
3245 skb = NULL;
3246 }
3247 }
3248 goto exit;
3249 }
3250 if (HFA384x_USB_ISTXFRM(type)) {
3251 if (action == HANDLE)
3252 hfa384x_usbin_txcompl(wlandev, usbin);
3253 goto exit;
3254 }
3255 switch (type) {
3256 case HFA384x_USB_INFOFRM:
3257 if (action == ABORT)
3258 goto exit;
3259 if (action == HANDLE)
3260 hfa384x_usbin_info(wlandev, usbin);
3261 break;
3262
3263 case HFA384x_USB_CMDRESP:
3264 case HFA384x_USB_WRIDRESP:
3265 case HFA384x_USB_RRIDRESP:
3266 case HFA384x_USB_WMEMRESP:
3267 case HFA384x_USB_RMEMRESP:
3268 /* ALWAYS, ALWAYS, ALWAYS handle this CTLX!!!! */
3269 hfa384x_usbin_ctlx(hw, usbin, urb_status);
3270 break;
3271
3272 case HFA384x_USB_BUFAVAIL:
3273 pr_debug("Received BUFAVAIL packet, frmlen=%d\n",
3274 usbin->bufavail.frmlen);
3275 break;
3276
3277 case HFA384x_USB_ERROR:
3278 pr_debug("Received USB_ERROR packet, errortype=%d\n",
3279 usbin->usberror.errortype);
3280 break;
3281
3282 default:
3283 pr_debug("Unrecognized USBIN packet, type=%x, status=%d\n",
3284 usbin->type, urb_status);
3285 break;
3286 } /* switch */
3287
3288 exit:
3289
3290 if (skb)
3291 dev_kfree_skb(skb);
3292 }
3293
3294 /*----------------------------------------------------------------
3295 * hfa384x_usbin_ctlx
3296 *
3297 * We've received a URB containing a Prism2 "response" message.
3298 * This message needs to be matched up with a CTLX on the active
3299 * queue and our state updated accordingly.
3300 *
3301 * Arguments:
3302 * hw ptr to hfa384x_t
3303 * usbin ptr to USB IN packet
3304 * urb_status status of this Bulk-In URB
3305 *
3306 * Returns:
3307 * nothing
3308 *
3309 * Side effects:
3310 *
3311 * Call context:
3312 * interrupt
3313 ----------------------------------------------------------------*/
3314 static void hfa384x_usbin_ctlx(hfa384x_t *hw, hfa384x_usbin_t *usbin,
3315 int urb_status)
3316 {
3317 hfa384x_usbctlx_t *ctlx;
3318 int run_queue = 0;
3319 unsigned long flags;
3320
3321 retry:
3322 spin_lock_irqsave(&hw->ctlxq.lock, flags);
3323
3324 /* There can be only one CTLX on the active queue
3325 * at any one time, and this is the CTLX that the
3326 * timers are waiting for.
3327 */
3328 if (list_empty(&hw->ctlxq.active))
3329 goto unlock;
3330
3331 /* Remove the "response timeout". It's possible that
3332 * we are already too late, and that the timeout is
3333 * already running. And that's just too bad for us,
3334 * because we could lose our CTLX from the active
3335 * queue here ...
3336 */
3337 if (del_timer(&hw->resptimer) == 0) {
3338 if (hw->resp_timer_done == 0) {
3339 spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
3340 goto retry;
3341 }
3342 } else {
3343 hw->resp_timer_done = 1;
3344 }
3345
3346 ctlx = get_active_ctlx(hw);
3347
3348 if (urb_status != 0) {
3349 /*
3350 * Bad CTLX, so get rid of it. But we only
3351 * remove it from the active queue if we're no
3352 * longer expecting the OUT URB to complete.
3353 */
3354 if (unlocked_usbctlx_cancel_async(hw, ctlx) == 0)
3355 run_queue = 1;
3356 } else {
3357 const u16 intype = (usbin->type & ~cpu_to_le16(0x8000));
3358
3359 /*
3360 * Check that our message is what we're expecting ...
3361 */
3362 if (ctlx->outbuf.type != intype) {
3363 printk(KERN_WARNING
3364 "Expected IN[%d], received IN[%d] - ignored.\n",
3365 le16_to_cpu(ctlx->outbuf.type),
3366 le16_to_cpu(intype));
3367 goto unlock;
3368 }
3369
3370 /* This URB has succeeded, so grab the data ... */
3371 memcpy(&ctlx->inbuf, usbin, sizeof(ctlx->inbuf));
3372
3373 switch (ctlx->state) {
3374 case CTLX_REQ_SUBMITTED:
3375 /*
3376 * We have received our response URB before
3377 * our request has been acknowledged. Odd,
3378 * but our OUT URB is still alive...
3379 */
3380 pr_debug("Causality violation: please reboot Universe\n");
3381 ctlx->state = CTLX_RESP_COMPLETE;
3382 break;
3383
3384 case CTLX_REQ_COMPLETE:
3385 /*
3386 * This is the usual path: our request
3387 * has already been acknowledged, and
3388 * now we have received the reply too.
3389 */
3390 ctlx->state = CTLX_COMPLETE;
3391 unlocked_usbctlx_complete(hw, ctlx);
3392 run_queue = 1;
3393 break;
3394
3395 default:
3396 /*
3397 * Throw this CTLX away ...
3398 */
3399 printk(KERN_ERR
3400 "Matched IN URB, CTLX[%d] in invalid state(%s)."
3401 " Discarded.\n",
3402 le16_to_cpu(ctlx->outbuf.type),
3403 ctlxstr(ctlx->state));
3404 if (unlocked_usbctlx_cancel_async(hw, ctlx) == 0)
3405 run_queue = 1;
3406 break;
3407 } /* switch */
3408 }
3409
3410 unlock:
3411 spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
3412
3413 if (run_queue)
3414 hfa384x_usbctlxq_run(hw);
3415 }
3416
3417 /*----------------------------------------------------------------
3418 * hfa384x_usbin_txcompl
3419 *
3420 * At this point we have the results of a previous transmit.
3421 *
3422 * Arguments:
3423 * wlandev wlan device
3424 * usbin ptr to the usb transfer buffer
3425 *
3426 * Returns:
3427 * nothing
3428 *
3429 * Side effects:
3430 *
3431 * Call context:
3432 * interrupt
3433 ----------------------------------------------------------------*/
3434 static void hfa384x_usbin_txcompl(wlandevice_t *wlandev,
3435 hfa384x_usbin_t *usbin)
3436 {
3437 u16 status;
3438
3439 status = le16_to_cpu(usbin->type); /* yeah I know it says type... */
3440
3441 /* Was there an error? */
3442 if (HFA384x_TXSTATUS_ISERROR(status))
3443 prism2sta_ev_txexc(wlandev, status);
3444 else
3445 prism2sta_ev_tx(wlandev, status);
3446 }
3447
3448 /*----------------------------------------------------------------
3449 * hfa384x_usbin_rx
3450 *
3451 * At this point we have a successful received a rx frame packet.
3452 *
3453 * Arguments:
3454 * wlandev wlan device
3455 * usbin ptr to the usb transfer buffer
3456 *
3457 * Returns:
3458 * nothing
3459 *
3460 * Side effects:
3461 *
3462 * Call context:
3463 * interrupt
3464 ----------------------------------------------------------------*/
3465 static void hfa384x_usbin_rx(wlandevice_t *wlandev, struct sk_buff *skb)
3466 {
3467 hfa384x_usbin_t *usbin = (hfa384x_usbin_t *) skb->data;
3468 hfa384x_t *hw = wlandev->priv;
3469 int hdrlen;
3470 struct p80211_rxmeta *rxmeta;
3471 u16 data_len;
3472 u16 fc;
3473
3474 /* Byte order convert once up front. */
3475 usbin->rxfrm.desc.status = le16_to_cpu(usbin->rxfrm.desc.status);
3476 usbin->rxfrm.desc.time = le32_to_cpu(usbin->rxfrm.desc.time);
3477
3478 /* Now handle frame based on port# */
3479 switch (HFA384x_RXSTATUS_MACPORT_GET(usbin->rxfrm.desc.status)) {
3480 case 0:
3481 fc = le16_to_cpu(usbin->rxfrm.desc.frame_control);
3482
3483 /* If exclude and we receive an unencrypted, drop it */
3484 if ((wlandev->hostwep & HOSTWEP_EXCLUDEUNENCRYPTED) &&
3485 !WLAN_GET_FC_ISWEP(fc)) {
3486 goto done;
3487 }
3488
3489 data_len = le16_to_cpu(usbin->rxfrm.desc.data_len);
3490
3491 /* How much header data do we have? */
3492 hdrlen = p80211_headerlen(fc);
3493
3494 /* Pull off the descriptor */
3495 skb_pull(skb, sizeof(hfa384x_rx_frame_t));
3496
3497 /* Now shunt the header block up against the data block
3498 * with an "overlapping" copy
3499 */
3500 memmove(skb_push(skb, hdrlen),
3501 &usbin->rxfrm.desc.frame_control, hdrlen);
3502
3503 skb->dev = wlandev->netdev;
3504 skb->dev->last_rx = jiffies;
3505
3506 /* And set the frame length properly */
3507 skb_trim(skb, data_len + hdrlen);
3508
3509 /* The prism2 series does not return the CRC */
3510 memset(skb_put(skb, WLAN_CRC_LEN), 0xff, WLAN_CRC_LEN);
3511
3512 skb_reset_mac_header(skb);
3513
3514 /* Attach the rxmeta, set some stuff */
3515 p80211skb_rxmeta_attach(wlandev, skb);
3516 rxmeta = P80211SKB_RXMETA(skb);
3517 rxmeta->mactime = usbin->rxfrm.desc.time;
3518 rxmeta->rxrate = usbin->rxfrm.desc.rate;
3519 rxmeta->signal = usbin->rxfrm.desc.signal - hw->dbmadjust;
3520 rxmeta->noise = usbin->rxfrm.desc.silence - hw->dbmadjust;
3521
3522 prism2sta_ev_rx(wlandev, skb);
3523
3524 break;
3525
3526 case 7:
3527 if (!HFA384x_RXSTATUS_ISFCSERR(usbin->rxfrm.desc.status)) {
3528 /* Copy to wlansnif skb */
3529 hfa384x_int_rxmonitor(wlandev, &usbin->rxfrm);
3530 dev_kfree_skb(skb);
3531 } else {
3532 pr_debug("Received monitor frame: FCSerr set\n");
3533 }
3534 break;
3535
3536 default:
3537 printk(KERN_WARNING "Received frame on unsupported port=%d\n",
3538 HFA384x_RXSTATUS_MACPORT_GET(usbin->rxfrm.desc.status));
3539 goto done;
3540 break;
3541 }
3542
3543 done:
3544 return;
3545 }
3546
3547 /*----------------------------------------------------------------
3548 * hfa384x_int_rxmonitor
3549 *
3550 * Helper function for int_rx. Handles monitor frames.
3551 * Note that this function allocates space for the FCS and sets it
3552 * to 0xffffffff. The hfa384x doesn't give us the FCS value but the
3553 * higher layers expect it. 0xffffffff is used as a flag to indicate
3554 * the FCS is bogus.
3555 *
3556 * Arguments:
3557 * wlandev wlan device structure
3558 * rxfrm rx descriptor read from card in int_rx
3559 *
3560 * Returns:
3561 * nothing
3562 *
3563 * Side effects:
3564 * Allocates an skb and passes it up via the PF_PACKET interface.
3565 * Call context:
3566 * interrupt
3567 ----------------------------------------------------------------*/
3568 static void hfa384x_int_rxmonitor(wlandevice_t *wlandev,
3569 hfa384x_usb_rxfrm_t *rxfrm)
3570 {
3571 hfa384x_rx_frame_t *rxdesc = &(rxfrm->desc);
3572 unsigned int hdrlen = 0;
3573 unsigned int datalen = 0;
3574 unsigned int skblen = 0;
3575 u8 *datap;
3576 u16 fc;
3577 struct sk_buff *skb;
3578 hfa384x_t *hw = wlandev->priv;
3579
3580 /* Remember the status, time, and data_len fields are in host order */
3581 /* Figure out how big the frame is */
3582 fc = le16_to_cpu(rxdesc->frame_control);
3583 hdrlen = p80211_headerlen(fc);
3584 datalen = le16_to_cpu(rxdesc->data_len);
3585
3586 /* Allocate an ind message+framesize skb */
3587 skblen = sizeof(struct p80211_caphdr) + hdrlen + datalen + WLAN_CRC_LEN;
3588
3589 /* sanity check the length */
3590 if (skblen >
3591 (sizeof(struct p80211_caphdr) +
3592 WLAN_HDR_A4_LEN + WLAN_DATA_MAXLEN + WLAN_CRC_LEN)) {
3593 pr_debug("overlen frm: len=%zd\n",
3594 skblen - sizeof(struct p80211_caphdr));
3595 }
3596
3597 skb = dev_alloc_skb(skblen);
3598 if (skb == NULL) {
3599 printk(KERN_ERR
3600 "alloc_skb failed trying to allocate %d bytes\n",
3601 skblen);
3602 return;
3603 }
3604
3605 /* only prepend the prism header if in the right mode */
3606 if ((wlandev->netdev->type == ARPHRD_IEEE80211_PRISM) &&
3607 (hw->sniffhdr != 0)) {
3608 struct p80211_caphdr *caphdr;
3609 /* The NEW header format! */
3610 datap = skb_put(skb, sizeof(struct p80211_caphdr));
3611 caphdr = (struct p80211_caphdr *) datap;
3612
3613 caphdr->version = htonl(P80211CAPTURE_VERSION);
3614 caphdr->length = htonl(sizeof(struct p80211_caphdr));
3615 caphdr->mactime = __cpu_to_be64(rxdesc->time) * 1000;
3616 caphdr->hosttime = __cpu_to_be64(jiffies);
3617 caphdr->phytype = htonl(4); /* dss_dot11_b */
3618 caphdr->channel = htonl(hw->sniff_channel);
3619 caphdr->datarate = htonl(rxdesc->rate);
3620 caphdr->antenna = htonl(0); /* unknown */
3621 caphdr->priority = htonl(0); /* unknown */
3622 caphdr->ssi_type = htonl(3); /* rssi_raw */
3623 caphdr->ssi_signal = htonl(rxdesc->signal);
3624 caphdr->ssi_noise = htonl(rxdesc->silence);
3625 caphdr->preamble = htonl(0); /* unknown */
3626 caphdr->encoding = htonl(1); /* cck */
3627 }
3628
3629 /* Copy the 802.11 header to the skb
3630 (ctl frames may be less than a full header) */
3631 datap = skb_put(skb, hdrlen);
3632 memcpy(datap, &(rxdesc->frame_control), hdrlen);
3633
3634 /* If any, copy the data from the card to the skb */
3635 if (datalen > 0) {
3636 datap = skb_put(skb, datalen);
3637 memcpy(datap, rxfrm->data, datalen);
3638
3639 /* check for unencrypted stuff if WEP bit set. */
3640 if (*(datap - hdrlen + 1) & 0x40) /* wep set */
3641 if ((*(datap) == 0xaa) && (*(datap + 1) == 0xaa))
3642 /* clear wep; it's the 802.2 header! */
3643 *(datap - hdrlen + 1) &= 0xbf;
3644 }
3645
3646 if (hw->sniff_fcs) {
3647 /* Set the FCS */
3648 datap = skb_put(skb, WLAN_CRC_LEN);
3649 memset(datap, 0xff, WLAN_CRC_LEN);
3650 }
3651
3652 /* pass it back up */
3653 prism2sta_ev_rx(wlandev, skb);
3654
3655 return;
3656 }
3657
3658 /*----------------------------------------------------------------
3659 * hfa384x_usbin_info
3660 *
3661 * At this point we have a successful received a Prism2 info frame.
3662 *
3663 * Arguments:
3664 * wlandev wlan device
3665 * usbin ptr to the usb transfer buffer
3666 *
3667 * Returns:
3668 * nothing
3669 *
3670 * Side effects:
3671 *
3672 * Call context:
3673 * interrupt
3674 ----------------------------------------------------------------*/
3675 static void hfa384x_usbin_info(wlandevice_t *wlandev, hfa384x_usbin_t *usbin)
3676 {
3677 usbin->infofrm.info.framelen =
3678 le16_to_cpu(usbin->infofrm.info.framelen);
3679 prism2sta_ev_info(wlandev, &usbin->infofrm.info);
3680 }
3681
3682 /*----------------------------------------------------------------
3683 * hfa384x_usbout_callback
3684 *
3685 * Callback for URBs on the BULKOUT endpoint.
3686 *
3687 * Arguments:
3688 * urb ptr to the completed urb
3689 *
3690 * Returns:
3691 * nothing
3692 *
3693 * Side effects:
3694 *
3695 * Call context:
3696 * interrupt
3697 ----------------------------------------------------------------*/
3698 static void hfa384x_usbout_callback(struct urb *urb)
3699 {
3700 wlandevice_t *wlandev = urb->context;
3701 hfa384x_usbout_t *usbout = urb->transfer_buffer;
3702
3703 #ifdef DEBUG_USB
3704 dbprint_urb(urb);
3705 #endif
3706
3707 if (wlandev && wlandev->netdev) {
3708
3709 switch (urb->status) {
3710 case 0:
3711 hfa384x_usbout_tx(wlandev, usbout);
3712 break;
3713
3714 case -EPIPE:
3715 {
3716 hfa384x_t *hw = wlandev->priv;
3717 printk(KERN_WARNING
3718 "%s tx pipe stalled: requesting reset\n",
3719 wlandev->netdev->name);
3720 if (!test_and_set_bit
3721 (WORK_TX_HALT, &hw->usb_flags))
3722 schedule_work(&hw->usb_work);
3723 ++(wlandev->linux_stats.tx_errors);
3724 break;
3725 }
3726
3727 case -EPROTO:
3728 case -ETIMEDOUT:
3729 case -EILSEQ:
3730 {
3731 hfa384x_t *hw = wlandev->priv;
3732
3733 if (!test_and_set_bit
3734 (THROTTLE_TX, &hw->usb_flags)
3735 && !timer_pending(&hw->throttle)) {
3736 mod_timer(&hw->throttle,
3737 jiffies + THROTTLE_JIFFIES);
3738 }
3739 ++(wlandev->linux_stats.tx_errors);
3740 netif_stop_queue(wlandev->netdev);
3741 break;
3742 }
3743
3744 case -ENOENT:
3745 case -ESHUTDOWN:
3746 /* Ignorable errors */
3747 break;
3748
3749 default:
3750 printk(KERN_INFO "unknown urb->status=%d\n",
3751 urb->status);
3752 ++(wlandev->linux_stats.tx_errors);
3753 break;
3754 } /* switch */
3755 }
3756 }
3757
3758 /*----------------------------------------------------------------
3759 * hfa384x_ctlxout_callback
3760 *
3761 * Callback for control data on the BULKOUT endpoint.
3762 *
3763 * Arguments:
3764 * urb ptr to the completed urb
3765 *
3766 * Returns:
3767 * nothing
3768 *
3769 * Side effects:
3770 *
3771 * Call context:
3772 * interrupt
3773 ----------------------------------------------------------------*/
3774 static void hfa384x_ctlxout_callback(struct urb *urb)
3775 {
3776 hfa384x_t *hw = urb->context;
3777 int delete_resptimer = 0;
3778 int timer_ok = 1;
3779 int run_queue = 0;
3780 hfa384x_usbctlx_t *ctlx;
3781 unsigned long flags;
3782
3783 pr_debug("urb->status=%d\n", urb->status);
3784 #ifdef DEBUG_USB
3785 dbprint_urb(urb);
3786 #endif
3787 if ((urb->status == -ESHUTDOWN) ||
3788 (urb->status == -ENODEV) || (hw == NULL))
3789 return;
3790
3791 retry:
3792 spin_lock_irqsave(&hw->ctlxq.lock, flags);
3793
3794 /*
3795 * Only one CTLX at a time on the "active" list, and
3796 * none at all if we are unplugged. However, we can
3797 * rely on the disconnect function to clean everything
3798 * up if someone unplugged the adapter.
3799 */
3800 if (list_empty(&hw->ctlxq.active)) {
3801 spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
3802 return;
3803 }
3804
3805 /*
3806 * Having something on the "active" queue means
3807 * that we have timers to worry about ...
3808 */
3809 if (del_timer(&hw->reqtimer) == 0) {
3810 if (hw->req_timer_done == 0) {
3811 /*
3812 * This timer was actually running while we
3813 * were trying to delete it. Let it terminate
3814 * gracefully instead.
3815 */
3816 spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
3817 goto retry;
3818 }
3819 } else {
3820 hw->req_timer_done = 1;
3821 }
3822
3823 ctlx = get_active_ctlx(hw);
3824
3825 if (urb->status == 0) {
3826 /* Request portion of a CTLX is successful */
3827 switch (ctlx->state) {
3828 case CTLX_REQ_SUBMITTED:
3829 /* This OUT-ACK received before IN */
3830 ctlx->state = CTLX_REQ_COMPLETE;
3831 break;
3832
3833 case CTLX_RESP_COMPLETE:
3834 /* IN already received before this OUT-ACK,
3835 * so this command must now be complete.
3836 */
3837 ctlx->state = CTLX_COMPLETE;
3838 unlocked_usbctlx_complete(hw, ctlx);
3839 run_queue = 1;
3840 break;
3841
3842 default:
3843 /* This is NOT a valid CTLX "success" state! */
3844 printk(KERN_ERR
3845 "Illegal CTLX[%d] success state(%s, %d) in OUT URB\n",
3846 le16_to_cpu(ctlx->outbuf.type),
3847 ctlxstr(ctlx->state), urb->status);
3848 break;
3849 } /* switch */
3850 } else {
3851 /* If the pipe has stalled then we need to reset it */
3852 if ((urb->status == -EPIPE) &&
3853 !test_and_set_bit(WORK_TX_HALT, &hw->usb_flags)) {
3854 printk(KERN_WARNING
3855 "%s tx pipe stalled: requesting reset\n",
3856 hw->wlandev->netdev->name);
3857 schedule_work(&hw->usb_work);
3858 }
3859
3860 /* If someone cancels the OUT URB then its status
3861 * should be either -ECONNRESET or -ENOENT.
3862 */
3863 ctlx->state = CTLX_REQ_FAILED;
3864 unlocked_usbctlx_complete(hw, ctlx);
3865 delete_resptimer = 1;
3866 run_queue = 1;
3867 }
3868
3869 delresp:
3870 if (delete_resptimer) {
3871 timer_ok = del_timer(&hw->resptimer);
3872 if (timer_ok != 0)
3873 hw->resp_timer_done = 1;
3874 }
3875
3876 spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
3877
3878 if (!timer_ok && (hw->resp_timer_done == 0)) {
3879 spin_lock_irqsave(&hw->ctlxq.lock, flags);
3880 goto delresp;
3881 }
3882
3883 if (run_queue)
3884 hfa384x_usbctlxq_run(hw);
3885 }
3886
3887 /*----------------------------------------------------------------
3888 * hfa384x_usbctlx_reqtimerfn
3889 *
3890 * Timer response function for CTLX request timeouts. If this
3891 * function is called, it means that the callback for the OUT
3892 * URB containing a Prism2.x XXX_Request was never called.
3893 *
3894 * Arguments:
3895 * data a ptr to the hfa384x_t
3896 *
3897 * Returns:
3898 * nothing
3899 *
3900 * Side effects:
3901 *
3902 * Call context:
3903 * interrupt
3904 ----------------------------------------------------------------*/
3905 static void hfa384x_usbctlx_reqtimerfn(unsigned long data)
3906 {
3907 hfa384x_t *hw = (hfa384x_t *) data;
3908 unsigned long flags;
3909
3910 spin_lock_irqsave(&hw->ctlxq.lock, flags);
3911
3912 hw->req_timer_done = 1;
3913
3914 /* Removing the hardware automatically empties
3915 * the active list ...
3916 */
3917 if (!list_empty(&hw->ctlxq.active)) {
3918 /*
3919 * We must ensure that our URB is removed from
3920 * the system, if it hasn't already expired.
3921 */
3922 hw->ctlx_urb.transfer_flags |= URB_ASYNC_UNLINK;
3923 if (usb_unlink_urb(&hw->ctlx_urb) == -EINPROGRESS) {
3924 hfa384x_usbctlx_t *ctlx = get_active_ctlx(hw);
3925
3926 ctlx->state = CTLX_REQ_FAILED;
3927
3928 /* This URB was active, but has now been
3929 * cancelled. It will now have a status of
3930 * -ECONNRESET in the callback function.
3931 *
3932 * We are cancelling this CTLX, so we're
3933 * not going to need to wait for a response.
3934 * The URB's callback function will check
3935 * that this timer is truly dead.
3936 */
3937 if (del_timer(&hw->resptimer) != 0)
3938 hw->resp_timer_done = 1;
3939 }
3940 }
3941
3942 spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
3943 }
3944
3945 /*----------------------------------------------------------------
3946 * hfa384x_usbctlx_resptimerfn
3947 *
3948 * Timer response function for CTLX response timeouts. If this
3949 * function is called, it means that the callback for the IN
3950 * URB containing a Prism2.x XXX_Response was never called.
3951 *
3952 * Arguments:
3953 * data a ptr to the hfa384x_t
3954 *
3955 * Returns:
3956 * nothing
3957 *
3958 * Side effects:
3959 *
3960 * Call context:
3961 * interrupt
3962 ----------------------------------------------------------------*/
3963 static void hfa384x_usbctlx_resptimerfn(unsigned long data)
3964 {
3965 hfa384x_t *hw = (hfa384x_t *) data;
3966 unsigned long flags;
3967
3968 spin_lock_irqsave(&hw->ctlxq.lock, flags);
3969
3970 hw->resp_timer_done = 1;
3971
3972 /* The active list will be empty if the
3973 * adapter has been unplugged ...
3974 */
3975 if (!list_empty(&hw->ctlxq.active)) {
3976 hfa384x_usbctlx_t *ctlx = get_active_ctlx(hw);
3977
3978 if (unlocked_usbctlx_cancel_async(hw, ctlx) == 0) {
3979 spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
3980 hfa384x_usbctlxq_run(hw);
3981 return;
3982 }
3983 }
3984 spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
3985 }
3986
3987 /*----------------------------------------------------------------
3988 * hfa384x_usb_throttlefn
3989 *
3990 *
3991 * Arguments:
3992 * data ptr to hw
3993 *
3994 * Returns:
3995 * Nothing
3996 *
3997 * Side effects:
3998 *
3999 * Call context:
4000 * Interrupt
4001 ----------------------------------------------------------------*/
4002 static void hfa384x_usb_throttlefn(unsigned long data)
4003 {
4004 hfa384x_t *hw = (hfa384x_t *) data;
4005 unsigned long flags;
4006
4007 spin_lock_irqsave(&hw->ctlxq.lock, flags);
4008
4009 /*
4010 * We need to check BOTH the RX and the TX throttle controls,
4011 * so we use the bitwise OR instead of the logical OR.
4012 */
4013 pr_debug("flags=0x%lx\n", hw->usb_flags);
4014 if (!hw->wlandev->hwremoved &&
4015 ((test_and_clear_bit(THROTTLE_RX, &hw->usb_flags) &&
4016 !test_and_set_bit(WORK_RX_RESUME, &hw->usb_flags))
4017 |
4018 (test_and_clear_bit(THROTTLE_TX, &hw->usb_flags) &&
4019 !test_and_set_bit(WORK_TX_RESUME, &hw->usb_flags))
4020 )) {
4021 schedule_work(&hw->usb_work);
4022 }
4023
4024 spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
4025 }
4026
4027 /*----------------------------------------------------------------
4028 * hfa384x_usbctlx_submit
4029 *
4030 * Called from the doxxx functions to submit a CTLX to the queue
4031 *
4032 * Arguments:
4033 * hw ptr to the hw struct
4034 * ctlx ctlx structure to enqueue
4035 *
4036 * Returns:
4037 * -ENODEV if the adapter is unplugged
4038 * 0
4039 *
4040 * Side effects:
4041 *
4042 * Call context:
4043 * process or interrupt
4044 ----------------------------------------------------------------*/
4045 static int hfa384x_usbctlx_submit(hfa384x_t *hw, hfa384x_usbctlx_t *ctlx)
4046 {
4047 unsigned long flags;
4048
4049 spin_lock_irqsave(&hw->ctlxq.lock, flags);
4050
4051 if (hw->wlandev->hwremoved) {
4052 spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
4053 return -ENODEV;
4054 }
4055
4056 ctlx->state = CTLX_PENDING;
4057 list_add_tail(&ctlx->list, &hw->ctlxq.pending);
4058 spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
4059 hfa384x_usbctlxq_run(hw);
4060
4061 return 0;
4062 }
4063
4064 /*----------------------------------------------------------------
4065 * hfa384x_usbout_tx
4066 *
4067 * At this point we have finished a send of a frame. Mark the URB
4068 * as available and call ev_alloc to notify higher layers we're
4069 * ready for more.
4070 *
4071 * Arguments:
4072 * wlandev wlan device
4073 * usbout ptr to the usb transfer buffer
4074 *
4075 * Returns:
4076 * nothing
4077 *
4078 * Side effects:
4079 *
4080 * Call context:
4081 * interrupt
4082 ----------------------------------------------------------------*/
4083 static void hfa384x_usbout_tx(wlandevice_t *wlandev, hfa384x_usbout_t *usbout)
4084 {
4085 prism2sta_ev_alloc(wlandev);
4086 }
4087
4088 /*----------------------------------------------------------------
4089 * hfa384x_isgood_pdrcore
4090 *
4091 * Quick check of PDR codes.
4092 *
4093 * Arguments:
4094 * pdrcode PDR code number (host order)
4095 *
4096 * Returns:
4097 * zero not good.
4098 * one is good.
4099 *
4100 * Side effects:
4101 *
4102 * Call context:
4103 ----------------------------------------------------------------*/
4104 static int hfa384x_isgood_pdrcode(u16 pdrcode)
4105 {
4106 switch (pdrcode) {
4107 case HFA384x_PDR_END_OF_PDA:
4108 case HFA384x_PDR_PCB_PARTNUM:
4109 case HFA384x_PDR_PDAVER:
4110 case HFA384x_PDR_NIC_SERIAL:
4111 case HFA384x_PDR_MKK_MEASUREMENTS:
4112 case HFA384x_PDR_NIC_RAMSIZE:
4113 case HFA384x_PDR_MFISUPRANGE:
4114 case HFA384x_PDR_CFISUPRANGE:
4115 case HFA384x_PDR_NICID:
4116 case HFA384x_PDR_MAC_ADDRESS:
4117 case HFA384x_PDR_REGDOMAIN:
4118 case HFA384x_PDR_ALLOWED_CHANNEL:
4119 case HFA384x_PDR_DEFAULT_CHANNEL:
4120 case HFA384x_PDR_TEMPTYPE:
4121 case HFA384x_PDR_IFR_SETTING:
4122 case HFA384x_PDR_RFR_SETTING:
4123 case HFA384x_PDR_HFA3861_BASELINE:
4124 case HFA384x_PDR_HFA3861_SHADOW:
4125 case HFA384x_PDR_HFA3861_IFRF:
4126 case HFA384x_PDR_HFA3861_CHCALSP:
4127 case HFA384x_PDR_HFA3861_CHCALI:
4128 case HFA384x_PDR_3842_NIC_CONFIG:
4129 case HFA384x_PDR_USB_ID:
4130 case HFA384x_PDR_PCI_ID:
4131 case HFA384x_PDR_PCI_IFCONF:
4132 case HFA384x_PDR_PCI_PMCONF:
4133 case HFA384x_PDR_RFENRGY:
4134 case HFA384x_PDR_HFA3861_MANF_TESTSP:
4135 case HFA384x_PDR_HFA3861_MANF_TESTI:
4136 /* code is OK */
4137 return 1;
4138 break;
4139 default:
4140 if (pdrcode < 0x1000) {
4141 /* code is OK, but we don't know exactly what it is */
4142 pr_debug("Encountered unknown PDR#=0x%04x, "
4143 "assuming it's ok.\n", pdrcode);
4144 return 1;
4145 } else {
4146 /* bad code */
4147 pr_debug("Encountered unknown PDR#=0x%04x, "
4148 "(>=0x1000), assuming it's bad.\n", pdrcode);
4149 return 0;
4150 }
4151 break;
4152 }
4153 return 0; /* avoid compiler warnings */
4154 }