staging: ti dspbridge: Rename words with camel case
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / staging / tidspbridge / rmgr / drv.c
1 /*
2 * drv.c
3 *
4 * DSP-BIOS Bridge driver support functions for TI OMAP processors.
5 *
6 * DSP/BIOS Bridge resource allocation module.
7 *
8 * Copyright (C) 2005-2006 Texas Instruments, Inc.
9 *
10 * This package is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License version 2 as
12 * published by the Free Software Foundation.
13 *
14 * THIS PACKAGE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR
15 * IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
16 * WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE.
17 */
18
19 /* ----------------------------------- Host OS */
20 #include <dspbridge/host_os.h>
21
22 /* ----------------------------------- DSP/BIOS Bridge */
23 #include <dspbridge/std.h>
24 #include <dspbridge/dbdefs.h>
25
26 /* ----------------------------------- Trace & Debug */
27 #include <dspbridge/dbc.h>
28
29 /* ----------------------------------- OS Adaptation Layer */
30 #include <dspbridge/cfg.h>
31 #include <dspbridge/list.h>
32
33 /* ----------------------------------- This */
34 #include <dspbridge/drv.h>
35 #include <dspbridge/dev.h>
36
37 #include <dspbridge/node.h>
38 #include <dspbridge/proc.h>
39 #include <dspbridge/strm.h>
40 #include <dspbridge/nodepriv.h>
41 #include <dspbridge/dspchnl.h>
42 #include <dspbridge/resourcecleanup.h>
43
44 /* ----------------------------------- Defines, Data Structures, Typedefs */
45 struct drv_object {
46 struct lst_list *dev_list;
47 struct lst_list *dev_node_string;
48 };
49
50 /*
51 * This is the Device Extension. Named with the Prefix
52 * DRV_ since it is living in this module
53 */
54 struct drv_ext {
55 struct list_head link;
56 char sz_string[MAXREGPATHLENGTH];
57 };
58
59 /* ----------------------------------- Globals */
60 static s32 refs;
61 static bool ext_phys_mem_pool_enabled;
62 struct ext_phys_mem_pool {
63 u32 phys_mem_base;
64 u32 phys_mem_size;
65 u32 virt_mem_base;
66 u32 next_phys_alloc_ptr;
67 };
68 static struct ext_phys_mem_pool ext_mem_pool;
69
70 /* ----------------------------------- Function Prototypes */
71 static int request_bridge_resources(struct cfg_hostres *res);
72
73
74 /* GPP PROCESS CLEANUP CODE */
75
76 static int drv_proc_free_node_res(void *process_ctxt);
77
78 /* Allocate and add a node resource element
79 * This function is called from .Node_Allocate. */
80 int drv_insert_node_res_element(void *hnode, void *node_resource,
81 void *process_ctxt)
82 {
83 struct node_res_object **node_res_obj =
84 (struct node_res_object **)node_resource;
85 struct process_context *ctxt = (struct process_context *)process_ctxt;
86 int status = 0;
87 struct node_res_object *temp_node_res = NULL;
88
89 *node_res_obj = kzalloc(sizeof(struct node_res_object), GFP_KERNEL);
90 if (*node_res_obj == NULL)
91 status = -EFAULT;
92
93 if (DSP_SUCCEEDED(status)) {
94 if (mutex_lock_interruptible(&ctxt->node_mutex)) {
95 kfree(*node_res_obj);
96 return -EPERM;
97 }
98 (*node_res_obj)->hnode = hnode;
99 if (ctxt->node_list != NULL) {
100 temp_node_res = ctxt->node_list;
101 while (temp_node_res->next != NULL)
102 temp_node_res = temp_node_res->next;
103
104 temp_node_res->next = *node_res_obj;
105 } else {
106 ctxt->node_list = *node_res_obj;
107 }
108 mutex_unlock(&ctxt->node_mutex);
109 }
110
111 return status;
112 }
113
114 /* Release all Node resources and its context
115 * This is called from .Node_Delete. */
116 int drv_remove_node_res_element(void *node_resource, void *process_ctxt)
117 {
118 struct node_res_object *node_res_obj =
119 (struct node_res_object *)node_resource;
120 struct process_context *ctxt = (struct process_context *)process_ctxt;
121 struct node_res_object *temp_node;
122 int status = 0;
123
124 if (mutex_lock_interruptible(&ctxt->node_mutex))
125 return -EPERM;
126 temp_node = ctxt->node_list;
127 if (temp_node == node_res_obj) {
128 ctxt->node_list = node_res_obj->next;
129 } else {
130 while (temp_node && temp_node->next != node_res_obj)
131 temp_node = temp_node->next;
132 if (!temp_node)
133 status = -ENOENT;
134 else
135 temp_node->next = node_res_obj->next;
136 }
137 mutex_unlock(&ctxt->node_mutex);
138 kfree(node_res_obj);
139 return status;
140 }
141
142 /* Actual Node De-Allocation */
143 static int drv_proc_free_node_res(void *process_ctxt)
144 {
145 struct process_context *ctxt = (struct process_context *)process_ctxt;
146 int status = 0;
147 struct node_res_object *node_list = NULL;
148 struct node_res_object *node_res_obj = NULL;
149 u32 node_state;
150
151 node_list = ctxt->node_list;
152 while (node_list != NULL) {
153 node_res_obj = node_list;
154 node_list = node_list->next;
155 if (node_res_obj->node_allocated) {
156 node_state = node_get_state(node_res_obj->hnode);
157 if (node_state <= NODE_DELETING) {
158 if ((node_state == NODE_RUNNING) ||
159 (node_state == NODE_PAUSED) ||
160 (node_state == NODE_TERMINATING))
161 status = node_terminate
162 (node_res_obj->hnode, &status);
163
164 status = node_delete(node_res_obj->hnode, ctxt);
165 }
166 }
167 }
168 return status;
169 }
170
171 /* Release all Mapped and Reserved DMM resources */
172 int drv_remove_all_dmm_res_elements(void *process_ctxt)
173 {
174 struct process_context *ctxt = (struct process_context *)process_ctxt;
175 int status = 0;
176 struct dmm_map_object *temp_map, *map_obj;
177 struct dmm_rsv_object *temp_rsv, *rsv_obj;
178
179 /* Free DMM mapped memory resources */
180 list_for_each_entry_safe(map_obj, temp_map, &ctxt->dmm_map_list, link) {
181 status = proc_un_map(ctxt->hprocessor,
182 (void *)map_obj->dsp_addr, ctxt);
183 if (DSP_FAILED(status))
184 pr_err("%s: proc_un_map failed!"
185 " status = 0x%xn", __func__, status);
186 }
187
188 /* Free DMM reserved memory resources */
189 list_for_each_entry_safe(rsv_obj, temp_rsv, &ctxt->dmm_rsv_list, link) {
190 status = proc_un_reserve_memory(ctxt->hprocessor, (void *)
191 rsv_obj->dsp_reserved_addr,
192 ctxt);
193 if (DSP_FAILED(status))
194 pr_err("%s: proc_un_reserve_memory failed!"
195 " status = 0x%xn", __func__, status);
196 }
197 return status;
198 }
199
200 /* Update Node allocation status */
201 void drv_proc_node_update_status(void *node_resource, s32 status)
202 {
203 struct node_res_object *node_res_obj =
204 (struct node_res_object *)node_resource;
205 DBC_ASSERT(node_resource != NULL);
206 node_res_obj->node_allocated = status;
207 }
208
209 /* Update Node Heap status */
210 void drv_proc_node_update_heap_status(void *node_resource, s32 status)
211 {
212 struct node_res_object *node_res_obj =
213 (struct node_res_object *)node_resource;
214 DBC_ASSERT(node_resource != NULL);
215 node_res_obj->heap_allocated = status;
216 }
217
218 /* Release all Node resources and its context
219 * This is called from .bridge_release.
220 */
221 int drv_remove_all_node_res_elements(void *process_ctxt)
222 {
223 struct process_context *ctxt = (struct process_context *)process_ctxt;
224 int status = 0;
225 struct node_res_object *temp_node2 = NULL;
226 struct node_res_object *temp_node = NULL;
227
228 drv_proc_free_node_res(ctxt);
229 temp_node = ctxt->node_list;
230 while (temp_node != NULL) {
231 temp_node2 = temp_node;
232 temp_node = temp_node->next;
233 kfree(temp_node2);
234 }
235 ctxt->node_list = NULL;
236 return status;
237 }
238
239 /* Getting the node resource element */
240 int drv_get_node_res_element(void *hnode, void *node_resource,
241 void *process_ctxt)
242 {
243 struct node_res_object **node_res =
244 (struct node_res_object **)node_resource;
245 struct process_context *ctxt = (struct process_context *)process_ctxt;
246 int status = 0;
247 struct node_res_object *temp_node2 = NULL;
248 struct node_res_object *temp_node = NULL;
249
250 if (mutex_lock_interruptible(&ctxt->node_mutex))
251 return -EPERM;
252
253 temp_node = ctxt->node_list;
254 while ((temp_node != NULL) && (temp_node->hnode != hnode)) {
255 temp_node2 = temp_node;
256 temp_node = temp_node->next;
257 }
258
259 mutex_unlock(&ctxt->node_mutex);
260
261 if (temp_node != NULL)
262 *node_res = temp_node;
263 else
264 status = -ENOENT;
265
266 return status;
267 }
268
269 /* Allocate the STRM resource element
270 * This is called after the actual resource is allocated
271 */
272 int drv_proc_insert_strm_res_element(void *stream_handle,
273 void *hstrm_res, void *process_ctxt)
274 {
275 struct strm_res_object **pstrm_res =
276 (struct strm_res_object **)hstrm_res;
277 struct process_context *ctxt = (struct process_context *)process_ctxt;
278 int status = 0;
279 struct strm_res_object *temp_strm_res = NULL;
280
281 *pstrm_res = kzalloc(sizeof(struct strm_res_object), GFP_KERNEL);
282 if (*pstrm_res == NULL)
283 status = -EFAULT;
284
285 if (DSP_SUCCEEDED(status)) {
286 if (mutex_lock_interruptible(&ctxt->strm_mutex)) {
287 kfree(*pstrm_res);
288 return -EPERM;
289 }
290 (*pstrm_res)->hstream = stream_handle;
291 if (ctxt->pstrm_list != NULL) {
292 temp_strm_res = ctxt->pstrm_list;
293 while (temp_strm_res->next != NULL)
294 temp_strm_res = temp_strm_res->next;
295
296 temp_strm_res->next = *pstrm_res;
297 } else {
298 ctxt->pstrm_list = *pstrm_res;
299 }
300 mutex_unlock(&ctxt->strm_mutex);
301 }
302 return status;
303 }
304
305 /* Release Stream resource element context
306 * This function called after the actual resource is freed
307 */
308 int drv_proc_remove_strm_res_element(void *hstrm_res, void *process_ctxt)
309 {
310 struct strm_res_object *pstrm_res = (struct strm_res_object *)hstrm_res;
311 struct process_context *ctxt = (struct process_context *)process_ctxt;
312 struct strm_res_object *temp_strm_res;
313 int status = 0;
314
315 if (mutex_lock_interruptible(&ctxt->strm_mutex))
316 return -EPERM;
317 temp_strm_res = ctxt->pstrm_list;
318
319 if (ctxt->pstrm_list == pstrm_res) {
320 ctxt->pstrm_list = pstrm_res->next;
321 } else {
322 while (temp_strm_res && temp_strm_res->next != pstrm_res)
323 temp_strm_res = temp_strm_res->next;
324 if (temp_strm_res == NULL)
325 status = -ENOENT;
326 else
327 temp_strm_res->next = pstrm_res->next;
328 }
329 mutex_unlock(&ctxt->strm_mutex);
330 kfree(pstrm_res);
331 return status;
332 }
333
334 /* Release all Stream resources and its context
335 * This is called from .bridge_release.
336 */
337 int drv_remove_all_strm_res_elements(void *process_ctxt)
338 {
339 struct process_context *ctxt = (struct process_context *)process_ctxt;
340 int status = 0;
341 struct strm_res_object *strm_res = NULL;
342 struct strm_res_object *strm_tmp = NULL;
343 struct stream_info strm_info;
344 struct dsp_streaminfo user;
345 u8 **ap_buffer = NULL;
346 u8 *buf_ptr;
347 u32 ul_bytes;
348 u32 dw_arg;
349 s32 ul_buf_size;
350
351 strm_tmp = ctxt->pstrm_list;
352 while (strm_tmp) {
353 strm_res = strm_tmp;
354 strm_tmp = strm_tmp->next;
355 if (strm_res->num_bufs) {
356 ap_buffer = kmalloc((strm_res->num_bufs *
357 sizeof(u8 *)), GFP_KERNEL);
358 if (ap_buffer) {
359 status = strm_free_buffer(strm_res->hstream,
360 ap_buffer,
361 strm_res->num_bufs,
362 ctxt);
363 kfree(ap_buffer);
364 }
365 }
366 strm_info.user_strm = &user;
367 user.number_bufs_in_stream = 0;
368 strm_get_info(strm_res->hstream, &strm_info, sizeof(strm_info));
369 while (user.number_bufs_in_stream--)
370 strm_reclaim(strm_res->hstream, &buf_ptr, &ul_bytes,
371 (u32 *) &ul_buf_size, &dw_arg);
372 status = strm_close(strm_res->hstream, ctxt);
373 }
374 return status;
375 }
376
377 /* Getting the stream resource element */
378 int drv_get_strm_res_element(void *stream_obj, void *hstrm_res,
379 void *process_ctxt)
380 {
381 struct strm_res_object **strm_res =
382 (struct strm_res_object **)hstrm_res;
383 struct process_context *ctxt = (struct process_context *)process_ctxt;
384 int status = 0;
385 struct strm_res_object *temp_strm2 = NULL;
386 struct strm_res_object *temp_strm;
387
388 if (mutex_lock_interruptible(&ctxt->strm_mutex))
389 return -EPERM;
390
391 temp_strm = ctxt->pstrm_list;
392 while ((temp_strm != NULL) && (temp_strm->hstream != stream_obj)) {
393 temp_strm2 = temp_strm;
394 temp_strm = temp_strm->next;
395 }
396
397 mutex_unlock(&ctxt->strm_mutex);
398
399 if (temp_strm != NULL)
400 *strm_res = temp_strm;
401 else
402 status = -ENOENT;
403
404 return status;
405 }
406
407 /* Updating the stream resource element */
408 int drv_proc_update_strm_res(u32 num_bufs, void *hstrm_res)
409 {
410 int status = 0;
411 struct strm_res_object **strm_res =
412 (struct strm_res_object **)hstrm_res;
413
414 (*strm_res)->num_bufs = num_bufs;
415 return status;
416 }
417
418 /* GPP PROCESS CLEANUP CODE END */
419
420 /*
421 * ======== = drv_create ======== =
422 * Purpose:
423 * DRV Object gets created only once during Driver Loading.
424 */
425 int drv_create(OUT struct drv_object **drv_obj)
426 {
427 int status = 0;
428 struct drv_object *pdrv_object = NULL;
429
430 DBC_REQUIRE(drv_obj != NULL);
431 DBC_REQUIRE(refs > 0);
432
433 pdrv_object = kzalloc(sizeof(struct drv_object), GFP_KERNEL);
434 if (pdrv_object) {
435 /* Create and Initialize List of device objects */
436 pdrv_object->dev_list = kzalloc(sizeof(struct lst_list),
437 GFP_KERNEL);
438 if (pdrv_object->dev_list) {
439 /* Create and Initialize List of device Extension */
440 pdrv_object->dev_node_string =
441 kzalloc(sizeof(struct lst_list), GFP_KERNEL);
442 if (!(pdrv_object->dev_node_string)) {
443 status = -EPERM;
444 } else {
445 INIT_LIST_HEAD(&pdrv_object->
446 dev_node_string->head);
447 INIT_LIST_HEAD(&pdrv_object->dev_list->head);
448 }
449 } else {
450 status = -ENOMEM;
451 }
452 } else {
453 status = -ENOMEM;
454 }
455 /* Store the DRV Object in the Registry */
456 if (DSP_SUCCEEDED(status))
457 status = cfg_set_object((u32) pdrv_object, REG_DRV_OBJECT);
458 if (DSP_SUCCEEDED(status)) {
459 *drv_obj = pdrv_object;
460 } else {
461 kfree(pdrv_object->dev_list);
462 kfree(pdrv_object->dev_node_string);
463 /* Free the DRV Object */
464 kfree(pdrv_object);
465 }
466
467 DBC_ENSURE(DSP_FAILED(status) || pdrv_object);
468 return status;
469 }
470
471 /*
472 * ======== drv_exit ========
473 * Purpose:
474 * Discontinue usage of the DRV module.
475 */
476 void drv_exit(void)
477 {
478 DBC_REQUIRE(refs > 0);
479
480 refs--;
481
482 DBC_ENSURE(refs >= 0);
483 }
484
485 /*
486 * ======== = drv_destroy ======== =
487 * purpose:
488 * Invoked during bridge de-initialization
489 */
490 int drv_destroy(struct drv_object *driver_obj)
491 {
492 int status = 0;
493 struct drv_object *pdrv_object = (struct drv_object *)driver_obj;
494
495 DBC_REQUIRE(refs > 0);
496 DBC_REQUIRE(pdrv_object);
497
498 /*
499 * Delete the List if it exists.Should not come here
500 * as the drv_remove_dev_object and the Last drv_request_resources
501 * removes the list if the lists are empty.
502 */
503 kfree(pdrv_object->dev_list);
504 kfree(pdrv_object->dev_node_string);
505 kfree(pdrv_object);
506 /* Update the DRV Object in Registry to be 0 */
507 (void)cfg_set_object(0, REG_DRV_OBJECT);
508
509 return status;
510 }
511
512 /*
513 * ======== drv_get_dev_object ========
514 * Purpose:
515 * Given a index, returns a handle to DevObject from the list.
516 */
517 int drv_get_dev_object(u32 index, struct drv_object *hdrv_obj,
518 struct dev_object **device_obj)
519 {
520 int status = 0;
521 #ifdef CONFIG_TIDSPBRIDGE_DEBUG
522 /* used only for Assertions and debug messages */
523 struct drv_object *pdrv_obj = (struct drv_object *)hdrv_obj;
524 #endif
525 struct dev_object *dev_obj;
526 u32 i;
527 DBC_REQUIRE(pdrv_obj);
528 DBC_REQUIRE(device_obj != NULL);
529 DBC_REQUIRE(index >= 0);
530 DBC_REQUIRE(refs > 0);
531 DBC_ASSERT(!(LST_IS_EMPTY(pdrv_obj->dev_list)));
532
533 dev_obj = (struct dev_object *)drv_get_first_dev_object();
534 for (i = 0; i < index; i++) {
535 dev_obj =
536 (struct dev_object *)drv_get_next_dev_object((u32) dev_obj);
537 }
538 if (dev_obj) {
539 *device_obj = (struct dev_object *)dev_obj;
540 } else {
541 *device_obj = NULL;
542 status = -EPERM;
543 }
544
545 return status;
546 }
547
548 /*
549 * ======== drv_get_first_dev_object ========
550 * Purpose:
551 * Retrieve the first Device Object handle from an internal linked list of
552 * of DEV_OBJECTs maintained by DRV.
553 */
554 u32 drv_get_first_dev_object(void)
555 {
556 u32 dw_dev_object = 0;
557 struct drv_object *pdrv_obj;
558
559 if (DSP_SUCCEEDED(cfg_get_object((u32 *) &pdrv_obj, REG_DRV_OBJECT))) {
560 if ((pdrv_obj->dev_list != NULL) &&
561 !LST_IS_EMPTY(pdrv_obj->dev_list))
562 dw_dev_object = (u32) lst_first(pdrv_obj->dev_list);
563 }
564
565 return dw_dev_object;
566 }
567
568 /*
569 * ======== DRV_GetFirstDevNodeString ========
570 * Purpose:
571 * Retrieve the first Device Extension from an internal linked list of
572 * of Pointer to dev_node Strings maintained by DRV.
573 */
574 u32 drv_get_first_dev_extension(void)
575 {
576 u32 dw_dev_extension = 0;
577 struct drv_object *pdrv_obj;
578
579 if (DSP_SUCCEEDED(cfg_get_object((u32 *) &pdrv_obj, REG_DRV_OBJECT))) {
580
581 if ((pdrv_obj->dev_node_string != NULL) &&
582 !LST_IS_EMPTY(pdrv_obj->dev_node_string)) {
583 dw_dev_extension =
584 (u32) lst_first(pdrv_obj->dev_node_string);
585 }
586 }
587
588 return dw_dev_extension;
589 }
590
591 /*
592 * ======== drv_get_next_dev_object ========
593 * Purpose:
594 * Retrieve the next Device Object handle from an internal linked list of
595 * of DEV_OBJECTs maintained by DRV, after having previously called
596 * drv_get_first_dev_object() and zero or more DRV_GetNext.
597 */
598 u32 drv_get_next_dev_object(u32 hdev_obj)
599 {
600 u32 dw_next_dev_object = 0;
601 struct drv_object *pdrv_obj;
602
603 DBC_REQUIRE(hdev_obj != 0);
604
605 if (DSP_SUCCEEDED(cfg_get_object((u32 *) &pdrv_obj, REG_DRV_OBJECT))) {
606
607 if ((pdrv_obj->dev_list != NULL) &&
608 !LST_IS_EMPTY(pdrv_obj->dev_list)) {
609 dw_next_dev_object = (u32) lst_next(pdrv_obj->dev_list,
610 (struct list_head *)
611 hdev_obj);
612 }
613 }
614 return dw_next_dev_object;
615 }
616
617 /*
618 * ======== drv_get_next_dev_extension ========
619 * Purpose:
620 * Retrieve the next Device Extension from an internal linked list of
621 * of pointer to DevNodeString maintained by DRV, after having previously
622 * called drv_get_first_dev_extension() and zero or more
623 * drv_get_next_dev_extension().
624 */
625 u32 drv_get_next_dev_extension(u32 dev_extension)
626 {
627 u32 dw_dev_extension = 0;
628 struct drv_object *pdrv_obj;
629
630 DBC_REQUIRE(dev_extension != 0);
631
632 if (DSP_SUCCEEDED(cfg_get_object((u32 *) &pdrv_obj, REG_DRV_OBJECT))) {
633 if ((pdrv_obj->dev_node_string != NULL) &&
634 !LST_IS_EMPTY(pdrv_obj->dev_node_string)) {
635 dw_dev_extension =
636 (u32) lst_next(pdrv_obj->dev_node_string,
637 (struct list_head *)dev_extension);
638 }
639 }
640
641 return dw_dev_extension;
642 }
643
644 /*
645 * ======== drv_init ========
646 * Purpose:
647 * Initialize DRV module private state.
648 */
649 int drv_init(void)
650 {
651 s32 ret = 1; /* function return value */
652
653 DBC_REQUIRE(refs >= 0);
654
655 if (ret)
656 refs++;
657
658 DBC_ENSURE((ret && (refs > 0)) || (!ret && (refs >= 0)));
659
660 return ret;
661 }
662
663 /*
664 * ======== drv_insert_dev_object ========
665 * Purpose:
666 * Insert a DevObject into the list of Manager object.
667 */
668 int drv_insert_dev_object(struct drv_object *driver_obj,
669 struct dev_object *hdev_obj)
670 {
671 int status = 0;
672 struct drv_object *pdrv_object = (struct drv_object *)driver_obj;
673
674 DBC_REQUIRE(refs > 0);
675 DBC_REQUIRE(hdev_obj != NULL);
676 DBC_REQUIRE(pdrv_object);
677 DBC_ASSERT(pdrv_object->dev_list);
678
679 lst_put_tail(pdrv_object->dev_list, (struct list_head *)hdev_obj);
680
681 DBC_ENSURE(DSP_SUCCEEDED(status)
682 && !LST_IS_EMPTY(pdrv_object->dev_list));
683
684 return status;
685 }
686
687 /*
688 * ======== drv_remove_dev_object ========
689 * Purpose:
690 * Search for and remove a DeviceObject from the given list of DRV
691 * objects.
692 */
693 int drv_remove_dev_object(struct drv_object *driver_obj,
694 struct dev_object *hdev_obj)
695 {
696 int status = -EPERM;
697 struct drv_object *pdrv_object = (struct drv_object *)driver_obj;
698 struct list_head *cur_elem;
699
700 DBC_REQUIRE(refs > 0);
701 DBC_REQUIRE(pdrv_object);
702 DBC_REQUIRE(hdev_obj != NULL);
703
704 DBC_REQUIRE(pdrv_object->dev_list != NULL);
705 DBC_REQUIRE(!LST_IS_EMPTY(pdrv_object->dev_list));
706
707 /* Search list for p_proc_object: */
708 for (cur_elem = lst_first(pdrv_object->dev_list); cur_elem != NULL;
709 cur_elem = lst_next(pdrv_object->dev_list, cur_elem)) {
710 /* If found, remove it. */
711 if ((struct dev_object *)cur_elem == hdev_obj) {
712 lst_remove_elem(pdrv_object->dev_list, cur_elem);
713 status = 0;
714 break;
715 }
716 }
717 /* Remove list if empty. */
718 if (LST_IS_EMPTY(pdrv_object->dev_list)) {
719 kfree(pdrv_object->dev_list);
720 pdrv_object->dev_list = NULL;
721 }
722 DBC_ENSURE((pdrv_object->dev_list == NULL) ||
723 !LST_IS_EMPTY(pdrv_object->dev_list));
724
725 return status;
726 }
727
728 /*
729 * ======== drv_request_resources ========
730 * Purpose:
731 * Requests resources from the OS.
732 */
733 int drv_request_resources(u32 dw_context, u32 *dev_node_strg)
734 {
735 int status = 0;
736 struct drv_object *pdrv_object;
737 struct drv_ext *pszdev_node;
738
739 DBC_REQUIRE(dw_context != 0);
740 DBC_REQUIRE(dev_node_strg != NULL);
741
742 /*
743 * Allocate memory to hold the string. This will live untill
744 * it is freed in the Release resources. Update the driver object
745 * list.
746 */
747
748 status = cfg_get_object((u32 *) &pdrv_object, REG_DRV_OBJECT);
749 if (DSP_SUCCEEDED(status)) {
750 pszdev_node = kzalloc(sizeof(struct drv_ext), GFP_KERNEL);
751 if (pszdev_node) {
752 lst_init_elem(&pszdev_node->link);
753 strncpy(pszdev_node->sz_string,
754 (char *)dw_context, MAXREGPATHLENGTH - 1);
755 pszdev_node->sz_string[MAXREGPATHLENGTH - 1] = '\0';
756 /* Update the Driver Object List */
757 *dev_node_strg = (u32) pszdev_node->sz_string;
758 lst_put_tail(pdrv_object->dev_node_string,
759 (struct list_head *)pszdev_node);
760 } else {
761 status = -ENOMEM;
762 *dev_node_strg = 0;
763 }
764 } else {
765 dev_dbg(bridge, "%s: Failed to get Driver Object from Registry",
766 __func__);
767 *dev_node_strg = 0;
768 }
769
770 DBC_ENSURE((DSP_SUCCEEDED(status) && dev_node_strg != NULL &&
771 !LST_IS_EMPTY(pdrv_object->dev_node_string)) ||
772 (DSP_FAILED(status) && *dev_node_strg == 0));
773
774 return status;
775 }
776
777 /*
778 * ======== drv_release_resources ========
779 * Purpose:
780 * Releases resources from the OS.
781 */
782 int drv_release_resources(u32 dw_context, struct drv_object *hdrv_obj)
783 {
784 int status = 0;
785 struct drv_object *pdrv_object = (struct drv_object *)hdrv_obj;
786 struct drv_ext *pszdev_node;
787
788 /*
789 * Irrespective of the status go ahead and clean it
790 * The following will over write the status.
791 */
792 for (pszdev_node = (struct drv_ext *)drv_get_first_dev_extension();
793 pszdev_node != NULL; pszdev_node = (struct drv_ext *)
794 drv_get_next_dev_extension((u32) pszdev_node)) {
795 if (!pdrv_object->dev_node_string) {
796 /* When this could happen? */
797 continue;
798 }
799 if ((u32) pszdev_node == dw_context) {
800 /* Found it */
801 /* Delete from the Driver object list */
802 lst_remove_elem(pdrv_object->dev_node_string,
803 (struct list_head *)pszdev_node);
804 kfree((void *)pszdev_node);
805 break;
806 }
807 /* Delete the List if it is empty */
808 if (LST_IS_EMPTY(pdrv_object->dev_node_string)) {
809 kfree(pdrv_object->dev_node_string);
810 pdrv_object->dev_node_string = NULL;
811 }
812 }
813 return status;
814 }
815
816 /*
817 * ======== request_bridge_resources ========
818 * Purpose:
819 * Reserves shared memory for bridge.
820 */
821 static int request_bridge_resources(struct cfg_hostres *res)
822 {
823 int status = 0;
824 struct cfg_hostres *host_res = res;
825
826 /* num_mem_windows must not be more than CFG_MAXMEMREGISTERS */
827 host_res->num_mem_windows = 2;
828
829 /* First window is for DSP internal memory */
830 host_res->dw_sys_ctrl_base = ioremap(OMAP_SYSC_BASE, OMAP_SYSC_SIZE);
831 dev_dbg(bridge, "dw_mem_base[0] 0x%x\n", host_res->dw_mem_base[0]);
832 dev_dbg(bridge, "dw_mem_base[3] 0x%x\n", host_res->dw_mem_base[3]);
833 dev_dbg(bridge, "dw_dmmu_base %p\n", host_res->dw_dmmu_base);
834
835 /* for 24xx base port is not mapping the mamory for DSP
836 * internal memory TODO Do a ioremap here */
837 /* Second window is for DSP external memory shared with MPU */
838
839 /* These are hard-coded values */
840 host_res->birq_registers = 0;
841 host_res->birq_attrib = 0;
842 host_res->dw_offset_for_monitor = 0;
843 host_res->dw_chnl_offset = 0;
844 /* CHNL_MAXCHANNELS */
845 host_res->dw_num_chnls = CHNL_MAXCHANNELS;
846 host_res->dw_chnl_buf_size = 0x400;
847
848 return status;
849 }
850
851 /*
852 * ======== drv_request_bridge_res_dsp ========
853 * Purpose:
854 * Reserves shared memory for bridge.
855 */
856 int drv_request_bridge_res_dsp(void **phost_resources)
857 {
858 int status = 0;
859 struct cfg_hostres *host_res;
860 u32 dw_buff_size;
861 u32 dma_addr;
862 u32 shm_size;
863 struct drv_data *drv_datap = dev_get_drvdata(bridge);
864
865 dw_buff_size = sizeof(struct cfg_hostres);
866
867 host_res = kzalloc(dw_buff_size, GFP_KERNEL);
868
869 if (host_res != NULL) {
870 request_bridge_resources(host_res);
871 /* num_mem_windows must not be more than CFG_MAXMEMREGISTERS */
872 host_res->num_mem_windows = 4;
873
874 host_res->dw_mem_base[0] = 0;
875 host_res->dw_mem_base[2] = (u32) ioremap(OMAP_DSP_MEM1_BASE,
876 OMAP_DSP_MEM1_SIZE);
877 host_res->dw_mem_base[3] = (u32) ioremap(OMAP_DSP_MEM2_BASE,
878 OMAP_DSP_MEM2_SIZE);
879 host_res->dw_mem_base[4] = (u32) ioremap(OMAP_DSP_MEM3_BASE,
880 OMAP_DSP_MEM3_SIZE);
881 host_res->dw_per_base = ioremap(OMAP_PER_CM_BASE,
882 OMAP_PER_CM_SIZE);
883 host_res->dw_per_pm_base = (u32) ioremap(OMAP_PER_PRM_BASE,
884 OMAP_PER_PRM_SIZE);
885 host_res->dw_core_pm_base = (u32) ioremap(OMAP_CORE_PRM_BASE,
886 OMAP_CORE_PRM_SIZE);
887 host_res->dw_dmmu_base = ioremap(OMAP_DMMU_BASE,
888 OMAP_DMMU_SIZE);
889
890 dev_dbg(bridge, "dw_mem_base[0] 0x%x\n",
891 host_res->dw_mem_base[0]);
892 dev_dbg(bridge, "dw_mem_base[1] 0x%x\n",
893 host_res->dw_mem_base[1]);
894 dev_dbg(bridge, "dw_mem_base[2] 0x%x\n",
895 host_res->dw_mem_base[2]);
896 dev_dbg(bridge, "dw_mem_base[3] 0x%x\n",
897 host_res->dw_mem_base[3]);
898 dev_dbg(bridge, "dw_mem_base[4] 0x%x\n",
899 host_res->dw_mem_base[4]);
900 dev_dbg(bridge, "dw_dmmu_base %p\n", host_res->dw_dmmu_base);
901
902 shm_size = drv_datap->shm_size;
903 if (shm_size >= 0x10000) {
904 /* Allocate Physically contiguous,
905 * non-cacheable memory */
906 host_res->dw_mem_base[1] =
907 (u32) mem_alloc_phys_mem(shm_size, 0x100000,
908 &dma_addr);
909 if (host_res->dw_mem_base[1] == 0) {
910 status = -ENOMEM;
911 pr_err("shm reservation Failed\n");
912 } else {
913 host_res->dw_mem_length[1] = shm_size;
914 host_res->dw_mem_phys[1] = dma_addr;
915
916 dev_dbg(bridge, "%s: Bridge shm address 0x%x "
917 "dma_addr %x size %x\n", __func__,
918 host_res->dw_mem_base[1],
919 dma_addr, shm_size);
920 }
921 }
922 if (DSP_SUCCEEDED(status)) {
923 /* These are hard-coded values */
924 host_res->birq_registers = 0;
925 host_res->birq_attrib = 0;
926 host_res->dw_offset_for_monitor = 0;
927 host_res->dw_chnl_offset = 0;
928 /* CHNL_MAXCHANNELS */
929 host_res->dw_num_chnls = CHNL_MAXCHANNELS;
930 host_res->dw_chnl_buf_size = 0x400;
931 dw_buff_size = sizeof(struct cfg_hostres);
932 }
933 *phost_resources = host_res;
934 }
935 /* End Mem alloc */
936 return status;
937 }
938
939 void mem_ext_phys_pool_init(u32 pool_phys_base, u32 pool_size)
940 {
941 u32 pool_virt_base;
942
943 /* get the virtual address for the physical memory pool passed */
944 pool_virt_base = (u32) ioremap(pool_phys_base, pool_size);
945
946 if ((void **)pool_virt_base == NULL) {
947 pr_err("%s: external physical memory map failed\n", __func__);
948 ext_phys_mem_pool_enabled = false;
949 } else {
950 ext_mem_pool.phys_mem_base = pool_phys_base;
951 ext_mem_pool.phys_mem_size = pool_size;
952 ext_mem_pool.virt_mem_base = pool_virt_base;
953 ext_mem_pool.next_phys_alloc_ptr = pool_phys_base;
954 ext_phys_mem_pool_enabled = true;
955 }
956 }
957
958 void mem_ext_phys_pool_release(void)
959 {
960 if (ext_phys_mem_pool_enabled) {
961 iounmap((void *)(ext_mem_pool.virt_mem_base));
962 ext_phys_mem_pool_enabled = false;
963 }
964 }
965
966 /*
967 * ======== mem_ext_phys_mem_alloc ========
968 * Purpose:
969 * Allocate physically contiguous, uncached memory from external memory pool
970 */
971
972 static void *mem_ext_phys_mem_alloc(u32 bytes, u32 align, OUT u32 * phys_addr)
973 {
974 u32 new_alloc_ptr;
975 u32 offset;
976 u32 virt_addr;
977
978 if (align == 0)
979 align = 1;
980
981 if (bytes > ((ext_mem_pool.phys_mem_base + ext_mem_pool.phys_mem_size)
982 - ext_mem_pool.next_phys_alloc_ptr)) {
983 phys_addr = NULL;
984 return NULL;
985 } else {
986 offset = (ext_mem_pool.next_phys_alloc_ptr & (align - 1));
987 if (offset == 0)
988 new_alloc_ptr = ext_mem_pool.next_phys_alloc_ptr;
989 else
990 new_alloc_ptr = (ext_mem_pool.next_phys_alloc_ptr) +
991 (align - offset);
992 if ((new_alloc_ptr + bytes) <=
993 (ext_mem_pool.phys_mem_base + ext_mem_pool.phys_mem_size)) {
994 /* we can allocate */
995 *phys_addr = new_alloc_ptr;
996 ext_mem_pool.next_phys_alloc_ptr =
997 new_alloc_ptr + bytes;
998 virt_addr =
999 ext_mem_pool.virt_mem_base + (new_alloc_ptr -
1000 ext_mem_pool.
1001 phys_mem_base);
1002 return (void *)virt_addr;
1003 } else {
1004 *phys_addr = 0;
1005 return NULL;
1006 }
1007 }
1008 }
1009
1010 /*
1011 * ======== mem_alloc_phys_mem ========
1012 * Purpose:
1013 * Allocate physically contiguous, uncached memory
1014 */
1015 void *mem_alloc_phys_mem(u32 byte_size, u32 align_mask,
1016 OUT u32 *physical_address)
1017 {
1018 void *va_mem = NULL;
1019 dma_addr_t pa_mem;
1020
1021 if (byte_size > 0) {
1022 if (ext_phys_mem_pool_enabled) {
1023 va_mem = mem_ext_phys_mem_alloc(byte_size, align_mask,
1024 (u32 *) &pa_mem);
1025 } else
1026 va_mem = dma_alloc_coherent(NULL, byte_size, &pa_mem,
1027 GFP_KERNEL);
1028 if (va_mem == NULL)
1029 *physical_address = 0;
1030 else
1031 *physical_address = pa_mem;
1032 }
1033 return va_mem;
1034 }
1035
1036 /*
1037 * ======== mem_free_phys_mem ========
1038 * Purpose:
1039 * Free the given block of physically contiguous memory.
1040 */
1041 void mem_free_phys_mem(void *virtual_address, u32 physical_address,
1042 u32 byte_size)
1043 {
1044 DBC_REQUIRE(virtual_address != NULL);
1045
1046 if (!ext_phys_mem_pool_enabled)
1047 dma_free_coherent(NULL, byte_size, virtual_address,
1048 physical_address);
1049 }