[PATCH] SPI: devices can require LSB-first encodings
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / spi / spi_bitbang.c
1 /*
2 * spi_bitbang.c - polling/bitbanging SPI master controller driver utilities
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17 */
18
19 #include <linux/config.h>
20 #include <linux/init.h>
21 #include <linux/spinlock.h>
22 #include <linux/workqueue.h>
23 #include <linux/interrupt.h>
24 #include <linux/delay.h>
25 #include <linux/errno.h>
26 #include <linux/platform_device.h>
27
28 #include <linux/spi/spi.h>
29 #include <linux/spi/spi_bitbang.h>
30
31
32 /*----------------------------------------------------------------------*/
33
34 /*
35 * FIRST PART (OPTIONAL): word-at-a-time spi_transfer support.
36 * Use this for GPIO or shift-register level hardware APIs.
37 *
38 * spi_bitbang_cs is in spi_device->controller_state, which is unavailable
39 * to glue code. These bitbang setup() and cleanup() routines are always
40 * used, though maybe they're called from controller-aware code.
41 *
42 * chipselect() and friends may use use spi_device->controller_data and
43 * controller registers as appropriate.
44 *
45 *
46 * NOTE: SPI controller pins can often be used as GPIO pins instead,
47 * which means you could use a bitbang driver either to get hardware
48 * working quickly, or testing for differences that aren't speed related.
49 */
50
51 struct spi_bitbang_cs {
52 unsigned nsecs; /* (clock cycle time)/2 */
53 u32 (*txrx_word)(struct spi_device *spi, unsigned nsecs,
54 u32 word, u8 bits);
55 unsigned (*txrx_bufs)(struct spi_device *,
56 u32 (*txrx_word)(
57 struct spi_device *spi,
58 unsigned nsecs,
59 u32 word, u8 bits),
60 unsigned, struct spi_transfer *);
61 };
62
63 static unsigned bitbang_txrx_8(
64 struct spi_device *spi,
65 u32 (*txrx_word)(struct spi_device *spi,
66 unsigned nsecs,
67 u32 word, u8 bits),
68 unsigned ns,
69 struct spi_transfer *t
70 ) {
71 unsigned bits = spi->bits_per_word;
72 unsigned count = t->len;
73 const u8 *tx = t->tx_buf;
74 u8 *rx = t->rx_buf;
75
76 while (likely(count > 0)) {
77 u8 word = 0;
78
79 if (tx)
80 word = *tx++;
81 word = txrx_word(spi, ns, word, bits);
82 if (rx)
83 *rx++ = word;
84 count -= 1;
85 }
86 return t->len - count;
87 }
88
89 static unsigned bitbang_txrx_16(
90 struct spi_device *spi,
91 u32 (*txrx_word)(struct spi_device *spi,
92 unsigned nsecs,
93 u32 word, u8 bits),
94 unsigned ns,
95 struct spi_transfer *t
96 ) {
97 unsigned bits = spi->bits_per_word;
98 unsigned count = t->len;
99 const u16 *tx = t->tx_buf;
100 u16 *rx = t->rx_buf;
101
102 while (likely(count > 1)) {
103 u16 word = 0;
104
105 if (tx)
106 word = *tx++;
107 word = txrx_word(spi, ns, word, bits);
108 if (rx)
109 *rx++ = word;
110 count -= 2;
111 }
112 return t->len - count;
113 }
114
115 static unsigned bitbang_txrx_32(
116 struct spi_device *spi,
117 u32 (*txrx_word)(struct spi_device *spi,
118 unsigned nsecs,
119 u32 word, u8 bits),
120 unsigned ns,
121 struct spi_transfer *t
122 ) {
123 unsigned bits = spi->bits_per_word;
124 unsigned count = t->len;
125 const u32 *tx = t->tx_buf;
126 u32 *rx = t->rx_buf;
127
128 while (likely(count > 3)) {
129 u32 word = 0;
130
131 if (tx)
132 word = *tx++;
133 word = txrx_word(spi, ns, word, bits);
134 if (rx)
135 *rx++ = word;
136 count -= 4;
137 }
138 return t->len - count;
139 }
140
141 int spi_bitbang_setup_transfer(struct spi_device *spi, struct spi_transfer *t)
142 {
143 struct spi_bitbang_cs *cs = spi->controller_state;
144 u8 bits_per_word;
145 u32 hz;
146
147 if (t) {
148 bits_per_word = t->bits_per_word;
149 hz = t->speed_hz;
150 } else {
151 bits_per_word = 0;
152 hz = 0;
153 }
154
155 /* spi_transfer level calls that work per-word */
156 if (!bits_per_word)
157 bits_per_word = spi->bits_per_word;
158 if (bits_per_word <= 8)
159 cs->txrx_bufs = bitbang_txrx_8;
160 else if (bits_per_word <= 16)
161 cs->txrx_bufs = bitbang_txrx_16;
162 else if (bits_per_word <= 32)
163 cs->txrx_bufs = bitbang_txrx_32;
164 else
165 return -EINVAL;
166
167 /* nsecs = (clock period)/2 */
168 if (!hz)
169 hz = spi->max_speed_hz;
170 cs->nsecs = (1000000000/2) / hz;
171 if (cs->nsecs > MAX_UDELAY_MS * 1000)
172 return -EINVAL;
173
174 return 0;
175 }
176 EXPORT_SYMBOL_GPL(spi_bitbang_setup_transfer);
177
178 /**
179 * spi_bitbang_setup - default setup for per-word I/O loops
180 */
181 int spi_bitbang_setup(struct spi_device *spi)
182 {
183 struct spi_bitbang_cs *cs = spi->controller_state;
184 struct spi_bitbang *bitbang;
185 int retval;
186
187 if (!spi->max_speed_hz)
188 return -EINVAL;
189
190 bitbang = spi_master_get_devdata(spi->master);
191
192 /* REVISIT: some systems will want to support devices using lsb-first
193 * bit encodings on the wire. In pure software that would be trivial,
194 * just bitbang_txrx_le_cphaX() routines shifting the other way, and
195 * some hardware controllers also have this support.
196 */
197 if ((spi->mode & SPI_LSB_FIRST) != 0)
198 return -EINVAL;
199
200 if (!cs) {
201 cs = kzalloc(sizeof *cs, SLAB_KERNEL);
202 if (!cs)
203 return -ENOMEM;
204 spi->controller_state = cs;
205 }
206
207 if (!spi->bits_per_word)
208 spi->bits_per_word = 8;
209
210 /* per-word shift register access, in hardware or bitbanging */
211 cs->txrx_word = bitbang->txrx_word[spi->mode & (SPI_CPOL|SPI_CPHA)];
212 if (!cs->txrx_word)
213 return -EINVAL;
214
215 retval = spi_bitbang_setup_transfer(spi, NULL);
216 if (retval < 0)
217 return retval;
218
219 dev_dbg(&spi->dev, "%s, mode %d, %u bits/w, %u nsec\n",
220 __FUNCTION__, spi->mode & (SPI_CPOL | SPI_CPHA),
221 spi->bits_per_word, 2 * cs->nsecs);
222
223 /* NOTE we _need_ to call chipselect() early, ideally with adapter
224 * setup, unless the hardware defaults cooperate to avoid confusion
225 * between normal (active low) and inverted chipselects.
226 */
227
228 /* deselect chip (low or high) */
229 spin_lock(&bitbang->lock);
230 if (!bitbang->busy) {
231 bitbang->chipselect(spi, BITBANG_CS_INACTIVE);
232 ndelay(cs->nsecs);
233 }
234 spin_unlock(&bitbang->lock);
235
236 return 0;
237 }
238 EXPORT_SYMBOL_GPL(spi_bitbang_setup);
239
240 /**
241 * spi_bitbang_cleanup - default cleanup for per-word I/O loops
242 */
243 void spi_bitbang_cleanup(const struct spi_device *spi)
244 {
245 kfree(spi->controller_state);
246 }
247 EXPORT_SYMBOL_GPL(spi_bitbang_cleanup);
248
249 static int spi_bitbang_bufs(struct spi_device *spi, struct spi_transfer *t)
250 {
251 struct spi_bitbang_cs *cs = spi->controller_state;
252 unsigned nsecs = cs->nsecs;
253
254 return cs->txrx_bufs(spi, cs->txrx_word, nsecs, t);
255 }
256
257 /*----------------------------------------------------------------------*/
258
259 /*
260 * SECOND PART ... simple transfer queue runner.
261 *
262 * This costs a task context per controller, running the queue by
263 * performing each transfer in sequence. Smarter hardware can queue
264 * several DMA transfers at once, and process several controller queues
265 * in parallel; this driver doesn't match such hardware very well.
266 *
267 * Drivers can provide word-at-a-time i/o primitives, or provide
268 * transfer-at-a-time ones to leverage dma or fifo hardware.
269 */
270 static void bitbang_work(void *_bitbang)
271 {
272 struct spi_bitbang *bitbang = _bitbang;
273 unsigned long flags;
274
275 spin_lock_irqsave(&bitbang->lock, flags);
276 bitbang->busy = 1;
277 while (!list_empty(&bitbang->queue)) {
278 struct spi_message *m;
279 struct spi_device *spi;
280 unsigned nsecs;
281 struct spi_transfer *t = NULL;
282 unsigned tmp;
283 unsigned cs_change;
284 int status;
285 int (*setup_transfer)(struct spi_device *,
286 struct spi_transfer *);
287
288 m = container_of(bitbang->queue.next, struct spi_message,
289 queue);
290 list_del_init(&m->queue);
291 spin_unlock_irqrestore(&bitbang->lock, flags);
292
293 /* FIXME this is made-up ... the correct value is known to
294 * word-at-a-time bitbang code, and presumably chipselect()
295 * should enforce these requirements too?
296 */
297 nsecs = 100;
298
299 spi = m->spi;
300 tmp = 0;
301 cs_change = 1;
302 status = 0;
303 setup_transfer = NULL;
304
305 list_for_each_entry (t, &m->transfers, transfer_list) {
306 if (bitbang->shutdown) {
307 status = -ESHUTDOWN;
308 break;
309 }
310
311 /* override or restore speed and wordsize */
312 if (t->speed_hz || t->bits_per_word) {
313 setup_transfer = bitbang->setup_transfer;
314 if (!setup_transfer) {
315 status = -ENOPROTOOPT;
316 break;
317 }
318 }
319 if (setup_transfer) {
320 status = setup_transfer(spi, t);
321 if (status < 0)
322 break;
323 }
324
325 /* set up default clock polarity, and activate chip;
326 * this implicitly updates clock and spi modes as
327 * previously recorded for this device via setup().
328 * (and also deselects any other chip that might be
329 * selected ...)
330 */
331 if (cs_change) {
332 bitbang->chipselect(spi, BITBANG_CS_ACTIVE);
333 ndelay(nsecs);
334 }
335 cs_change = t->cs_change;
336 if (!t->tx_buf && !t->rx_buf && t->len) {
337 status = -EINVAL;
338 break;
339 }
340
341 /* transfer data. the lower level code handles any
342 * new dma mappings it needs. our caller always gave
343 * us dma-safe buffers.
344 */
345 if (t->len) {
346 /* REVISIT dma API still needs a designated
347 * DMA_ADDR_INVALID; ~0 might be better.
348 */
349 if (!m->is_dma_mapped)
350 t->rx_dma = t->tx_dma = 0;
351 status = bitbang->txrx_bufs(spi, t);
352 }
353 if (status != t->len) {
354 if (status > 0)
355 status = -EMSGSIZE;
356 break;
357 }
358 m->actual_length += status;
359 status = 0;
360
361 /* protocol tweaks before next transfer */
362 if (t->delay_usecs)
363 udelay(t->delay_usecs);
364
365 if (!cs_change)
366 continue;
367 if (t->transfer_list.next == &m->transfers)
368 break;
369
370 /* sometimes a short mid-message deselect of the chip
371 * may be needed to terminate a mode or command
372 */
373 ndelay(nsecs);
374 bitbang->chipselect(spi, BITBANG_CS_INACTIVE);
375 ndelay(nsecs);
376 }
377
378 m->status = status;
379 m->complete(m->context);
380
381 /* restore speed and wordsize */
382 if (setup_transfer)
383 setup_transfer(spi, NULL);
384
385 /* normally deactivate chipselect ... unless no error and
386 * cs_change has hinted that the next message will probably
387 * be for this chip too.
388 */
389 if (!(status == 0 && cs_change)) {
390 ndelay(nsecs);
391 bitbang->chipselect(spi, BITBANG_CS_INACTIVE);
392 ndelay(nsecs);
393 }
394
395 spin_lock_irqsave(&bitbang->lock, flags);
396 }
397 bitbang->busy = 0;
398 spin_unlock_irqrestore(&bitbang->lock, flags);
399 }
400
401 /**
402 * spi_bitbang_transfer - default submit to transfer queue
403 */
404 int spi_bitbang_transfer(struct spi_device *spi, struct spi_message *m)
405 {
406 struct spi_bitbang *bitbang;
407 unsigned long flags;
408
409 m->actual_length = 0;
410 m->status = -EINPROGRESS;
411
412 bitbang = spi_master_get_devdata(spi->master);
413 if (bitbang->shutdown)
414 return -ESHUTDOWN;
415
416 spin_lock_irqsave(&bitbang->lock, flags);
417 list_add_tail(&m->queue, &bitbang->queue);
418 queue_work(bitbang->workqueue, &bitbang->work);
419 spin_unlock_irqrestore(&bitbang->lock, flags);
420
421 return 0;
422 }
423 EXPORT_SYMBOL_GPL(spi_bitbang_transfer);
424
425 /*----------------------------------------------------------------------*/
426
427 /**
428 * spi_bitbang_start - start up a polled/bitbanging SPI master driver
429 * @bitbang: driver handle
430 *
431 * Caller should have zero-initialized all parts of the structure, and then
432 * provided callbacks for chip selection and I/O loops. If the master has
433 * a transfer method, its final step should call spi_bitbang_transfer; or,
434 * that's the default if the transfer routine is not initialized. It should
435 * also set up the bus number and number of chipselects.
436 *
437 * For i/o loops, provide callbacks either per-word (for bitbanging, or for
438 * hardware that basically exposes a shift register) or per-spi_transfer
439 * (which takes better advantage of hardware like fifos or DMA engines).
440 *
441 * Drivers using per-word I/O loops should use (or call) spi_bitbang_setup and
442 * spi_bitbang_cleanup to handle those spi master methods. Those methods are
443 * the defaults if the bitbang->txrx_bufs routine isn't initialized.
444 *
445 * This routine registers the spi_master, which will process requests in a
446 * dedicated task, keeping IRQs unblocked most of the time. To stop
447 * processing those requests, call spi_bitbang_stop().
448 */
449 int spi_bitbang_start(struct spi_bitbang *bitbang)
450 {
451 int status;
452
453 if (!bitbang->master || !bitbang->chipselect)
454 return -EINVAL;
455
456 INIT_WORK(&bitbang->work, bitbang_work, bitbang);
457 spin_lock_init(&bitbang->lock);
458 INIT_LIST_HEAD(&bitbang->queue);
459
460 if (!bitbang->master->transfer)
461 bitbang->master->transfer = spi_bitbang_transfer;
462 if (!bitbang->txrx_bufs) {
463 bitbang->use_dma = 0;
464 bitbang->txrx_bufs = spi_bitbang_bufs;
465 if (!bitbang->master->setup) {
466 if (!bitbang->setup_transfer)
467 bitbang->setup_transfer =
468 spi_bitbang_setup_transfer;
469 bitbang->master->setup = spi_bitbang_setup;
470 bitbang->master->cleanup = spi_bitbang_cleanup;
471 }
472 } else if (!bitbang->master->setup)
473 return -EINVAL;
474
475 /* this task is the only thing to touch the SPI bits */
476 bitbang->busy = 0;
477 bitbang->workqueue = create_singlethread_workqueue(
478 bitbang->master->cdev.dev->bus_id);
479 if (bitbang->workqueue == NULL) {
480 status = -EBUSY;
481 goto err1;
482 }
483
484 /* driver may get busy before register() returns, especially
485 * if someone registered boardinfo for devices
486 */
487 status = spi_register_master(bitbang->master);
488 if (status < 0)
489 goto err2;
490
491 return status;
492
493 err2:
494 destroy_workqueue(bitbang->workqueue);
495 err1:
496 return status;
497 }
498 EXPORT_SYMBOL_GPL(spi_bitbang_start);
499
500 /**
501 * spi_bitbang_stop - stops the task providing spi communication
502 */
503 int spi_bitbang_stop(struct spi_bitbang *bitbang)
504 {
505 unsigned limit = 500;
506
507 spin_lock_irq(&bitbang->lock);
508 bitbang->shutdown = 0;
509 while (!list_empty(&bitbang->queue) && limit--) {
510 spin_unlock_irq(&bitbang->lock);
511
512 dev_dbg(bitbang->master->cdev.dev, "wait for queue\n");
513 msleep(10);
514
515 spin_lock_irq(&bitbang->lock);
516 }
517 spin_unlock_irq(&bitbang->lock);
518 if (!list_empty(&bitbang->queue)) {
519 dev_err(bitbang->master->cdev.dev, "queue didn't empty\n");
520 return -EBUSY;
521 }
522
523 destroy_workqueue(bitbang->workqueue);
524
525 spi_unregister_master(bitbang->master);
526
527 return 0;
528 }
529 EXPORT_SYMBOL_GPL(spi_bitbang_stop);
530
531 MODULE_LICENSE("GPL");
532