Merge tag 'v3.10.97' into update
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / spi / spi.c
1 /*
2 * SPI init/core code
3 *
4 * Copyright (C) 2005 David Brownell
5 * Copyright (C) 2008 Secret Lab Technologies Ltd.
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
20 */
21
22 #include <linux/kernel.h>
23 #include <linux/kmod.h>
24 #include <linux/device.h>
25 #include <linux/init.h>
26 #include <linux/cache.h>
27 #include <linux/mutex.h>
28 #include <linux/of_device.h>
29 #include <linux/of_irq.h>
30 #include <linux/slab.h>
31 #include <linux/mod_devicetable.h>
32 #include <linux/spi/spi.h>
33 #include <linux/of_gpio.h>
34 #include <linux/pm_runtime.h>
35 #include <linux/export.h>
36 #include <linux/sched/rt.h>
37 #include <linux/delay.h>
38 #include <linux/kthread.h>
39 #include <linux/ioport.h>
40 #include <linux/acpi.h>
41
42 static void spidev_release(struct device *dev)
43 {
44 struct spi_device *spi = to_spi_device(dev);
45
46 /* spi masters may cleanup for released devices */
47 if (spi->master->cleanup)
48 spi->master->cleanup(spi);
49
50 spi_master_put(spi->master);
51 kfree(spi);
52 }
53
54 static ssize_t
55 modalias_show(struct device *dev, struct device_attribute *a, char *buf)
56 {
57 const struct spi_device *spi = to_spi_device(dev);
58
59 return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
60 }
61
62 static struct device_attribute spi_dev_attrs[] = {
63 __ATTR_RO(modalias),
64 __ATTR_NULL,
65 };
66
67 /* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
68 * and the sysfs version makes coldplug work too.
69 */
70
71 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
72 const struct spi_device *sdev)
73 {
74 while (id->name[0]) {
75 if (!strcmp(sdev->modalias, id->name))
76 return id;
77 id++;
78 }
79 return NULL;
80 }
81
82 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
83 {
84 const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
85
86 return spi_match_id(sdrv->id_table, sdev);
87 }
88 EXPORT_SYMBOL_GPL(spi_get_device_id);
89
90 static int spi_match_device(struct device *dev, struct device_driver *drv)
91 {
92 const struct spi_device *spi = to_spi_device(dev);
93 const struct spi_driver *sdrv = to_spi_driver(drv);
94
95 /* Attempt an OF style match */
96 if (of_driver_match_device(dev, drv))
97 return 1;
98
99 /* Then try ACPI */
100 if (acpi_driver_match_device(dev, drv))
101 return 1;
102
103 if (sdrv->id_table)
104 return !!spi_match_id(sdrv->id_table, spi);
105
106 return strcmp(spi->modalias, drv->name) == 0;
107 }
108
109 static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
110 {
111 const struct spi_device *spi = to_spi_device(dev);
112
113 add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
114 return 0;
115 }
116
117 #ifdef CONFIG_PM_SLEEP
118 static int spi_legacy_suspend(struct device *dev, pm_message_t message)
119 {
120 int value = 0;
121 struct spi_driver *drv = to_spi_driver(dev->driver);
122
123 /* suspend will stop irqs and dma; no more i/o */
124 if (drv) {
125 if (drv->suspend)
126 value = drv->suspend(to_spi_device(dev), message);
127 else
128 dev_dbg(dev, "... can't suspend\n");
129 }
130 return value;
131 }
132
133 static int spi_legacy_resume(struct device *dev)
134 {
135 int value = 0;
136 struct spi_driver *drv = to_spi_driver(dev->driver);
137
138 /* resume may restart the i/o queue */
139 if (drv) {
140 if (drv->resume)
141 value = drv->resume(to_spi_device(dev));
142 else
143 dev_dbg(dev, "... can't resume\n");
144 }
145 return value;
146 }
147
148 static int spi_pm_suspend(struct device *dev)
149 {
150 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
151
152 if (pm)
153 return pm_generic_suspend(dev);
154 else
155 return spi_legacy_suspend(dev, PMSG_SUSPEND);
156 }
157
158 static int spi_pm_resume(struct device *dev)
159 {
160 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
161
162 if (pm)
163 return pm_generic_resume(dev);
164 else
165 return spi_legacy_resume(dev);
166 }
167
168 static int spi_pm_freeze(struct device *dev)
169 {
170 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
171
172 if (pm)
173 return pm_generic_freeze(dev);
174 else
175 return spi_legacy_suspend(dev, PMSG_FREEZE);
176 }
177
178 static int spi_pm_thaw(struct device *dev)
179 {
180 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
181
182 if (pm)
183 return pm_generic_thaw(dev);
184 else
185 return spi_legacy_resume(dev);
186 }
187
188 static int spi_pm_poweroff(struct device *dev)
189 {
190 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
191
192 if (pm)
193 return pm_generic_poweroff(dev);
194 else
195 return spi_legacy_suspend(dev, PMSG_HIBERNATE);
196 }
197
198 static int spi_pm_restore(struct device *dev)
199 {
200 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
201
202 if (pm)
203 return pm_generic_restore(dev);
204 else
205 return spi_legacy_resume(dev);
206 }
207 #else
208 #define spi_pm_suspend NULL
209 #define spi_pm_resume NULL
210 #define spi_pm_freeze NULL
211 #define spi_pm_thaw NULL
212 #define spi_pm_poweroff NULL
213 #define spi_pm_restore NULL
214 #endif
215
216 static const struct dev_pm_ops spi_pm = {
217 .suspend = spi_pm_suspend,
218 .resume = spi_pm_resume,
219 .freeze = spi_pm_freeze,
220 .thaw = spi_pm_thaw,
221 .poweroff = spi_pm_poweroff,
222 .restore = spi_pm_restore,
223 SET_RUNTIME_PM_OPS(
224 pm_generic_runtime_suspend,
225 pm_generic_runtime_resume,
226 pm_generic_runtime_idle
227 )
228 };
229
230 struct bus_type spi_bus_type = {
231 .name = "spi",
232 .dev_attrs = spi_dev_attrs,
233 .match = spi_match_device,
234 .uevent = spi_uevent,
235 .pm = &spi_pm,
236 };
237 EXPORT_SYMBOL_GPL(spi_bus_type);
238
239
240 static int spi_drv_probe(struct device *dev)
241 {
242 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
243
244 return sdrv->probe(to_spi_device(dev));
245 }
246
247 static int spi_drv_remove(struct device *dev)
248 {
249 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
250
251 return sdrv->remove(to_spi_device(dev));
252 }
253
254 static void spi_drv_shutdown(struct device *dev)
255 {
256 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
257
258 sdrv->shutdown(to_spi_device(dev));
259 }
260
261 /**
262 * spi_register_driver - register a SPI driver
263 * @sdrv: the driver to register
264 * Context: can sleep
265 */
266 int spi_register_driver(struct spi_driver *sdrv)
267 {
268 sdrv->driver.bus = &spi_bus_type;
269 if (sdrv->probe)
270 sdrv->driver.probe = spi_drv_probe;
271 if (sdrv->remove)
272 sdrv->driver.remove = spi_drv_remove;
273 if (sdrv->shutdown)
274 sdrv->driver.shutdown = spi_drv_shutdown;
275 return driver_register(&sdrv->driver);
276 }
277 EXPORT_SYMBOL_GPL(spi_register_driver);
278
279 /*-------------------------------------------------------------------------*/
280
281 /* SPI devices should normally not be created by SPI device drivers; that
282 * would make them board-specific. Similarly with SPI master drivers.
283 * Device registration normally goes into like arch/.../mach.../board-YYY.c
284 * with other readonly (flashable) information about mainboard devices.
285 */
286
287 struct boardinfo {
288 struct list_head list;
289 struct spi_board_info board_info;
290 };
291
292 static LIST_HEAD(board_list);
293 static LIST_HEAD(spi_master_list);
294
295 /*
296 * Used to protect add/del opertion for board_info list and
297 * spi_master list, and their matching process
298 */
299 static DEFINE_MUTEX(board_lock);
300
301 /**
302 * spi_alloc_device - Allocate a new SPI device
303 * @master: Controller to which device is connected
304 * Context: can sleep
305 *
306 * Allows a driver to allocate and initialize a spi_device without
307 * registering it immediately. This allows a driver to directly
308 * fill the spi_device with device parameters before calling
309 * spi_add_device() on it.
310 *
311 * Caller is responsible to call spi_add_device() on the returned
312 * spi_device structure to add it to the SPI master. If the caller
313 * needs to discard the spi_device without adding it, then it should
314 * call spi_dev_put() on it.
315 *
316 * Returns a pointer to the new device, or NULL.
317 */
318 struct spi_device *spi_alloc_device(struct spi_master *master)
319 {
320 struct spi_device *spi;
321 struct device *dev = master->dev.parent;
322
323 if (!spi_master_get(master))
324 return NULL;
325
326 spi = kzalloc(sizeof *spi, GFP_KERNEL);
327 if (!spi) {
328 dev_err(dev, "cannot alloc spi_device\n");
329 spi_master_put(master);
330 return NULL;
331 }
332
333 spi->master = master;
334 spi->dev.parent = &master->dev;
335 spi->dev.bus = &spi_bus_type;
336 spi->dev.release = spidev_release;
337 spi->cs_gpio = -ENOENT;
338 device_initialize(&spi->dev);
339 return spi;
340 }
341 EXPORT_SYMBOL_GPL(spi_alloc_device);
342
343 /**
344 * spi_add_device - Add spi_device allocated with spi_alloc_device
345 * @spi: spi_device to register
346 *
347 * Companion function to spi_alloc_device. Devices allocated with
348 * spi_alloc_device can be added onto the spi bus with this function.
349 *
350 * Returns 0 on success; negative errno on failure
351 */
352 int spi_add_device(struct spi_device *spi)
353 {
354 static DEFINE_MUTEX(spi_add_lock);
355 struct spi_master *master = spi->master;
356 struct device *dev = master->dev.parent;
357 struct device *d;
358 int status;
359
360 /* Chipselects are numbered 0..max; validate. */
361 if (spi->chip_select >= master->num_chipselect) {
362 dev_err(dev, "cs%d >= max %d\n",
363 spi->chip_select,
364 master->num_chipselect);
365 return -EINVAL;
366 }
367
368 /* Set the bus ID string */
369 dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->master->dev),
370 spi->chip_select);
371
372
373 /* We need to make sure there's no other device with this
374 * chipselect **BEFORE** we call setup(), else we'll trash
375 * its configuration. Lock against concurrent add() calls.
376 */
377 mutex_lock(&spi_add_lock);
378
379 d = bus_find_device_by_name(&spi_bus_type, NULL, dev_name(&spi->dev));
380 if (d != NULL) {
381 dev_err(dev, "chipselect %d already in use\n",
382 spi->chip_select);
383 put_device(d);
384 status = -EBUSY;
385 goto done;
386 }
387
388 if (master->cs_gpios)
389 spi->cs_gpio = master->cs_gpios[spi->chip_select];
390
391 /* Drivers may modify this initial i/o setup, but will
392 * normally rely on the device being setup. Devices
393 * using SPI_CS_HIGH can't coexist well otherwise...
394 */
395 status = spi_setup(spi);
396 if (status < 0) {
397 dev_err(dev, "can't setup %s, status %d\n",
398 dev_name(&spi->dev), status);
399 goto done;
400 }
401
402 /* Device may be bound to an active driver when this returns */
403 status = device_add(&spi->dev);
404 if (status < 0)
405 dev_err(dev, "can't add %s, status %d\n",
406 dev_name(&spi->dev), status);
407 else
408 dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
409
410 done:
411 mutex_unlock(&spi_add_lock);
412 return status;
413 }
414 EXPORT_SYMBOL_GPL(spi_add_device);
415
416 /**
417 * spi_new_device - instantiate one new SPI device
418 * @master: Controller to which device is connected
419 * @chip: Describes the SPI device
420 * Context: can sleep
421 *
422 * On typical mainboards, this is purely internal; and it's not needed
423 * after board init creates the hard-wired devices. Some development
424 * platforms may not be able to use spi_register_board_info though, and
425 * this is exported so that for example a USB or parport based adapter
426 * driver could add devices (which it would learn about out-of-band).
427 *
428 * Returns the new device, or NULL.
429 */
430 struct spi_device *spi_new_device(struct spi_master *master,
431 struct spi_board_info *chip)
432 {
433 struct spi_device *proxy;
434 int status;
435
436 /* NOTE: caller did any chip->bus_num checks necessary.
437 *
438 * Also, unless we change the return value convention to use
439 * error-or-pointer (not NULL-or-pointer), troubleshootability
440 * suggests syslogged diagnostics are best here (ugh).
441 */
442
443 proxy = spi_alloc_device(master);
444 if (!proxy)
445 return NULL;
446
447 WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
448
449 proxy->chip_select = chip->chip_select;
450 proxy->max_speed_hz = chip->max_speed_hz;
451 proxy->mode = chip->mode;
452 proxy->irq = chip->irq;
453 strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
454 proxy->dev.platform_data = (void *) chip->platform_data;
455 proxy->controller_data = chip->controller_data;
456 proxy->controller_state = NULL;
457
458 status = spi_add_device(proxy);
459 if (status < 0) {
460 spi_dev_put(proxy);
461 return NULL;
462 }
463
464 return proxy;
465 }
466 EXPORT_SYMBOL_GPL(spi_new_device);
467
468 static void spi_match_master_to_boardinfo(struct spi_master *master,
469 struct spi_board_info *bi)
470 {
471 struct spi_device *dev;
472
473 if (master->bus_num != bi->bus_num)
474 return;
475
476 dev = spi_new_device(master, bi);
477 if (!dev)
478 dev_err(master->dev.parent, "can't create new device for %s\n",
479 bi->modalias);
480 }
481
482 /**
483 * spi_register_board_info - register SPI devices for a given board
484 * @info: array of chip descriptors
485 * @n: how many descriptors are provided
486 * Context: can sleep
487 *
488 * Board-specific early init code calls this (probably during arch_initcall)
489 * with segments of the SPI device table. Any device nodes are created later,
490 * after the relevant parent SPI controller (bus_num) is defined. We keep
491 * this table of devices forever, so that reloading a controller driver will
492 * not make Linux forget about these hard-wired devices.
493 *
494 * Other code can also call this, e.g. a particular add-on board might provide
495 * SPI devices through its expansion connector, so code initializing that board
496 * would naturally declare its SPI devices.
497 *
498 * The board info passed can safely be __initdata ... but be careful of
499 * any embedded pointers (platform_data, etc), they're copied as-is.
500 */
501 int spi_register_board_info(struct spi_board_info const *info, unsigned n)
502 {
503 struct boardinfo *bi;
504 int i;
505
506 bi = kzalloc(n * sizeof(*bi), GFP_KERNEL);
507 if (!bi)
508 return -ENOMEM;
509
510 for (i = 0; i < n; i++, bi++, info++) {
511 struct spi_master *master;
512
513 memcpy(&bi->board_info, info, sizeof(*info));
514 mutex_lock(&board_lock);
515 list_add_tail(&bi->list, &board_list);
516 list_for_each_entry(master, &spi_master_list, list)
517 spi_match_master_to_boardinfo(master, &bi->board_info);
518 mutex_unlock(&board_lock);
519 }
520
521 return 0;
522 }
523
524 /*-------------------------------------------------------------------------*/
525
526 /**
527 * spi_pump_messages - kthread work function which processes spi message queue
528 * @work: pointer to kthread work struct contained in the master struct
529 *
530 * This function checks if there is any spi message in the queue that
531 * needs processing and if so call out to the driver to initialize hardware
532 * and transfer each message.
533 *
534 */
535 static void spi_pump_messages(struct kthread_work *work)
536 {
537 struct spi_master *master =
538 container_of(work, struct spi_master, pump_messages);
539 unsigned long flags;
540 bool was_busy = false;
541 int ret;
542
543 /* Lock queue and check for queue work */
544 spin_lock_irqsave(&master->queue_lock, flags);
545 if (list_empty(&master->queue) || !master->running) {
546 if (!master->busy) {
547 spin_unlock_irqrestore(&master->queue_lock, flags);
548 return;
549 }
550 master->busy = false;
551 spin_unlock_irqrestore(&master->queue_lock, flags);
552 if (master->unprepare_transfer_hardware &&
553 master->unprepare_transfer_hardware(master))
554 dev_err(&master->dev,
555 "failed to unprepare transfer hardware\n");
556 return;
557 }
558
559 /* Make sure we are not already running a message */
560 if (master->cur_msg) {
561 spin_unlock_irqrestore(&master->queue_lock, flags);
562 return;
563 }
564 /* Extract head of queue */
565 master->cur_msg =
566 list_entry(master->queue.next, struct spi_message, queue);
567
568 list_del_init(&master->cur_msg->queue);
569 if (master->busy)
570 was_busy = true;
571 else
572 master->busy = true;
573 spin_unlock_irqrestore(&master->queue_lock, flags);
574
575 if (!was_busy && master->prepare_transfer_hardware) {
576 ret = master->prepare_transfer_hardware(master);
577 if (ret) {
578 dev_err(&master->dev,
579 "failed to prepare transfer hardware\n");
580 return;
581 }
582 }
583
584 ret = master->transfer_one_message(master, master->cur_msg);
585 if (ret) {
586 dev_err(&master->dev,
587 "failed to transfer one message from queue\n");
588 return;
589 }
590 }
591
592 static int spi_init_queue(struct spi_master *master)
593 {
594 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
595
596 INIT_LIST_HEAD(&master->queue);
597 spin_lock_init(&master->queue_lock);
598
599 master->running = false;
600 master->busy = false;
601
602 init_kthread_worker(&master->kworker);
603 master->kworker_task = kthread_run(kthread_worker_fn,
604 &master->kworker,
605 dev_name(&master->dev));
606 if (IS_ERR(master->kworker_task)) {
607 dev_err(&master->dev, "failed to create message pump task\n");
608 return -ENOMEM;
609 }
610 init_kthread_work(&master->pump_messages, spi_pump_messages);
611
612 /*
613 * Master config will indicate if this controller should run the
614 * message pump with high (realtime) priority to reduce the transfer
615 * latency on the bus by minimising the delay between a transfer
616 * request and the scheduling of the message pump thread. Without this
617 * setting the message pump thread will remain at default priority.
618 */
619 if (master->rt) {
620 dev_info(&master->dev,
621 "will run message pump with realtime priority\n");
622 sched_setscheduler(master->kworker_task, SCHED_FIFO, &param);
623 }
624
625 return 0;
626 }
627
628 /**
629 * spi_get_next_queued_message() - called by driver to check for queued
630 * messages
631 * @master: the master to check for queued messages
632 *
633 * If there are more messages in the queue, the next message is returned from
634 * this call.
635 */
636 struct spi_message *spi_get_next_queued_message(struct spi_master *master)
637 {
638 struct spi_message *next;
639 unsigned long flags;
640
641 /* get a pointer to the next message, if any */
642 spin_lock_irqsave(&master->queue_lock, flags);
643 if (list_empty(&master->queue))
644 next = NULL;
645 else
646 next = list_entry(master->queue.next,
647 struct spi_message, queue);
648 spin_unlock_irqrestore(&master->queue_lock, flags);
649
650 return next;
651 }
652 EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
653
654 /**
655 * spi_finalize_current_message() - the current message is complete
656 * @master: the master to return the message to
657 *
658 * Called by the driver to notify the core that the message in the front of the
659 * queue is complete and can be removed from the queue.
660 */
661 void spi_finalize_current_message(struct spi_master *master)
662 {
663 struct spi_message *mesg;
664 unsigned long flags;
665
666 spin_lock_irqsave(&master->queue_lock, flags);
667 mesg = master->cur_msg;
668 master->cur_msg = NULL;
669
670 queue_kthread_work(&master->kworker, &master->pump_messages);
671 spin_unlock_irqrestore(&master->queue_lock, flags);
672
673 mesg->state = NULL;
674 if (mesg->complete)
675 mesg->complete(mesg->context);
676 }
677 EXPORT_SYMBOL_GPL(spi_finalize_current_message);
678
679 static int spi_start_queue(struct spi_master *master)
680 {
681 unsigned long flags;
682
683 spin_lock_irqsave(&master->queue_lock, flags);
684
685 if (master->running || master->busy) {
686 spin_unlock_irqrestore(&master->queue_lock, flags);
687 return -EBUSY;
688 }
689
690 master->running = true;
691 master->cur_msg = NULL;
692 spin_unlock_irqrestore(&master->queue_lock, flags);
693
694 queue_kthread_work(&master->kworker, &master->pump_messages);
695
696 return 0;
697 }
698
699 static int spi_stop_queue(struct spi_master *master)
700 {
701 unsigned long flags;
702 unsigned limit = 500;
703 int ret = 0;
704
705 spin_lock_irqsave(&master->queue_lock, flags);
706
707 /*
708 * This is a bit lame, but is optimized for the common execution path.
709 * A wait_queue on the master->busy could be used, but then the common
710 * execution path (pump_messages) would be required to call wake_up or
711 * friends on every SPI message. Do this instead.
712 */
713 while ((!list_empty(&master->queue) || master->busy) && limit--) {
714 spin_unlock_irqrestore(&master->queue_lock, flags);
715 msleep(10);
716 spin_lock_irqsave(&master->queue_lock, flags);
717 }
718
719 if (!list_empty(&master->queue) || master->busy)
720 ret = -EBUSY;
721 else
722 master->running = false;
723
724 spin_unlock_irqrestore(&master->queue_lock, flags);
725
726 if (ret) {
727 dev_warn(&master->dev,
728 "could not stop message queue\n");
729 return ret;
730 }
731 return ret;
732 }
733
734 static int spi_destroy_queue(struct spi_master *master)
735 {
736 int ret;
737
738 ret = spi_stop_queue(master);
739
740 /*
741 * flush_kthread_worker will block until all work is done.
742 * If the reason that stop_queue timed out is that the work will never
743 * finish, then it does no good to call flush/stop thread, so
744 * return anyway.
745 */
746 if (ret) {
747 dev_err(&master->dev, "problem destroying queue\n");
748 return ret;
749 }
750
751 flush_kthread_worker(&master->kworker);
752 kthread_stop(master->kworker_task);
753
754 return 0;
755 }
756
757 /**
758 * spi_queued_transfer - transfer function for queued transfers
759 * @spi: spi device which is requesting transfer
760 * @msg: spi message which is to handled is queued to driver queue
761 */
762 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
763 {
764 struct spi_master *master = spi->master;
765 unsigned long flags;
766
767 spin_lock_irqsave(&master->queue_lock, flags);
768
769 if (!master->running) {
770 spin_unlock_irqrestore(&master->queue_lock, flags);
771 return -ESHUTDOWN;
772 }
773 msg->actual_length = 0;
774 msg->status = -EINPROGRESS;
775
776 list_add_tail(&msg->queue, &master->queue);
777 if (master->running && !master->busy)
778 queue_kthread_work(&master->kworker, &master->pump_messages);
779
780 spin_unlock_irqrestore(&master->queue_lock, flags);
781 return 0;
782 }
783
784 static int spi_master_initialize_queue(struct spi_master *master)
785 {
786 int ret;
787
788 master->queued = true;
789 master->transfer = spi_queued_transfer;
790
791 /* Initialize and start queue */
792 ret = spi_init_queue(master);
793 if (ret) {
794 dev_err(&master->dev, "problem initializing queue\n");
795 goto err_init_queue;
796 }
797 ret = spi_start_queue(master);
798 if (ret) {
799 dev_err(&master->dev, "problem starting queue\n");
800 goto err_start_queue;
801 }
802
803 return 0;
804
805 err_start_queue:
806 err_init_queue:
807 spi_destroy_queue(master);
808 return ret;
809 }
810
811 /*-------------------------------------------------------------------------*/
812
813 #if defined(CONFIG_OF)
814 /**
815 * of_register_spi_devices() - Register child devices onto the SPI bus
816 * @master: Pointer to spi_master device
817 *
818 * Registers an spi_device for each child node of master node which has a 'reg'
819 * property.
820 */
821 static void of_register_spi_devices(struct spi_master *master)
822 {
823 struct spi_device *spi;
824 struct device_node *nc;
825 const __be32 *prop;
826 char modalias[SPI_NAME_SIZE + 4];
827 int rc;
828 int len;
829
830 if (!master->dev.of_node)
831 return;
832
833 for_each_available_child_of_node(master->dev.of_node, nc) {
834 /* Alloc an spi_device */
835 spi = spi_alloc_device(master);
836 if (!spi) {
837 dev_err(&master->dev, "spi_device alloc error for %s\n",
838 nc->full_name);
839 spi_dev_put(spi);
840 continue;
841 }
842
843 /* Select device driver */
844 if (of_modalias_node(nc, spi->modalias,
845 sizeof(spi->modalias)) < 0) {
846 dev_err(&master->dev, "cannot find modalias for %s\n",
847 nc->full_name);
848 spi_dev_put(spi);
849 continue;
850 }
851
852 /* Device address */
853 prop = of_get_property(nc, "reg", &len);
854 if (!prop || len < sizeof(*prop)) {
855 dev_err(&master->dev, "%s has no 'reg' property\n",
856 nc->full_name);
857 spi_dev_put(spi);
858 continue;
859 }
860 spi->chip_select = be32_to_cpup(prop);
861
862 /* Mode (clock phase/polarity/etc.) */
863 if (of_find_property(nc, "spi-cpha", NULL))
864 spi->mode |= SPI_CPHA;
865 if (of_find_property(nc, "spi-cpol", NULL))
866 spi->mode |= SPI_CPOL;
867 if (of_find_property(nc, "spi-cs-high", NULL))
868 spi->mode |= SPI_CS_HIGH;
869 if (of_find_property(nc, "spi-3wire", NULL))
870 spi->mode |= SPI_3WIRE;
871
872 /* Device speed */
873 prop = of_get_property(nc, "spi-max-frequency", &len);
874 if (!prop || len < sizeof(*prop)) {
875 dev_err(&master->dev, "%s has no 'spi-max-frequency' property\n",
876 nc->full_name);
877 spi_dev_put(spi);
878 continue;
879 }
880 spi->max_speed_hz = be32_to_cpup(prop);
881
882 /* IRQ */
883 spi->irq = irq_of_parse_and_map(nc, 0);
884
885 /* Store a pointer to the node in the device structure */
886 of_node_get(nc);
887 spi->dev.of_node = nc;
888
889 /* Register the new device */
890 snprintf(modalias, sizeof(modalias), "%s%s", SPI_MODULE_PREFIX,
891 spi->modalias);
892 request_module(modalias);
893 rc = spi_add_device(spi);
894 if (rc) {
895 dev_err(&master->dev, "spi_device register error %s\n",
896 nc->full_name);
897 spi_dev_put(spi);
898 }
899
900 }
901 }
902 #else
903 static void of_register_spi_devices(struct spi_master *master) { }
904 #endif
905
906 #ifdef CONFIG_ACPI
907 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
908 {
909 struct spi_device *spi = data;
910
911 if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
912 struct acpi_resource_spi_serialbus *sb;
913
914 sb = &ares->data.spi_serial_bus;
915 if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
916 spi->chip_select = sb->device_selection;
917 spi->max_speed_hz = sb->connection_speed;
918
919 if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
920 spi->mode |= SPI_CPHA;
921 if (sb->clock_polarity == ACPI_SPI_START_HIGH)
922 spi->mode |= SPI_CPOL;
923 if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
924 spi->mode |= SPI_CS_HIGH;
925 }
926 } else if (spi->irq < 0) {
927 struct resource r;
928
929 if (acpi_dev_resource_interrupt(ares, 0, &r))
930 spi->irq = r.start;
931 }
932
933 /* Always tell the ACPI core to skip this resource */
934 return 1;
935 }
936
937 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
938 void *data, void **return_value)
939 {
940 struct spi_master *master = data;
941 struct list_head resource_list;
942 struct acpi_device *adev;
943 struct spi_device *spi;
944 int ret;
945
946 if (acpi_bus_get_device(handle, &adev))
947 return AE_OK;
948 if (acpi_bus_get_status(adev) || !adev->status.present)
949 return AE_OK;
950
951 spi = spi_alloc_device(master);
952 if (!spi) {
953 dev_err(&master->dev, "failed to allocate SPI device for %s\n",
954 dev_name(&adev->dev));
955 return AE_NO_MEMORY;
956 }
957
958 ACPI_HANDLE_SET(&spi->dev, handle);
959 spi->irq = -1;
960
961 INIT_LIST_HEAD(&resource_list);
962 ret = acpi_dev_get_resources(adev, &resource_list,
963 acpi_spi_add_resource, spi);
964 acpi_dev_free_resource_list(&resource_list);
965
966 if (ret < 0 || !spi->max_speed_hz) {
967 spi_dev_put(spi);
968 return AE_OK;
969 }
970
971 strlcpy(spi->modalias, dev_name(&adev->dev), sizeof(spi->modalias));
972 if (spi_add_device(spi)) {
973 dev_err(&master->dev, "failed to add SPI device %s from ACPI\n",
974 dev_name(&adev->dev));
975 spi_dev_put(spi);
976 }
977
978 return AE_OK;
979 }
980
981 static void acpi_register_spi_devices(struct spi_master *master)
982 {
983 acpi_status status;
984 acpi_handle handle;
985
986 handle = ACPI_HANDLE(master->dev.parent);
987 if (!handle)
988 return;
989
990 status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle, 1,
991 acpi_spi_add_device, NULL,
992 master, NULL);
993 if (ACPI_FAILURE(status))
994 dev_warn(&master->dev, "failed to enumerate SPI slaves\n");
995 }
996 #else
997 static inline void acpi_register_spi_devices(struct spi_master *master) {}
998 #endif /* CONFIG_ACPI */
999
1000 static void spi_master_release(struct device *dev)
1001 {
1002 struct spi_master *master;
1003
1004 master = container_of(dev, struct spi_master, dev);
1005 kfree(master);
1006 }
1007
1008 static struct class spi_master_class = {
1009 .name = "spi_master",
1010 .owner = THIS_MODULE,
1011 .dev_release = spi_master_release,
1012 };
1013
1014
1015
1016 /**
1017 * spi_alloc_master - allocate SPI master controller
1018 * @dev: the controller, possibly using the platform_bus
1019 * @size: how much zeroed driver-private data to allocate; the pointer to this
1020 * memory is in the driver_data field of the returned device,
1021 * accessible with spi_master_get_devdata().
1022 * Context: can sleep
1023 *
1024 * This call is used only by SPI master controller drivers, which are the
1025 * only ones directly touching chip registers. It's how they allocate
1026 * an spi_master structure, prior to calling spi_register_master().
1027 *
1028 * This must be called from context that can sleep. It returns the SPI
1029 * master structure on success, else NULL.
1030 *
1031 * The caller is responsible for assigning the bus number and initializing
1032 * the master's methods before calling spi_register_master(); and (after errors
1033 * adding the device) calling spi_master_put() to prevent a memory leak.
1034 */
1035 struct spi_master *spi_alloc_master(struct device *dev, unsigned size)
1036 {
1037 struct spi_master *master;
1038
1039 if (!dev)
1040 return NULL;
1041
1042 master = kzalloc(size + sizeof *master, GFP_KERNEL);
1043 if (!master)
1044 return NULL;
1045
1046 device_initialize(&master->dev);
1047 master->bus_num = -1;
1048 master->num_chipselect = 1;
1049 master->dev.class = &spi_master_class;
1050 master->dev.parent = dev;
1051 spi_master_set_devdata(master, &master[1]);
1052
1053 return master;
1054 }
1055 EXPORT_SYMBOL_GPL(spi_alloc_master);
1056
1057 #ifdef CONFIG_OF
1058 static int of_spi_register_master(struct spi_master *master)
1059 {
1060 int nb, i, *cs;
1061 struct device_node *np = master->dev.of_node;
1062
1063 if (!np)
1064 return 0;
1065
1066 nb = of_gpio_named_count(np, "cs-gpios");
1067 master->num_chipselect = max(nb, (int)master->num_chipselect);
1068
1069 /* Return error only for an incorrectly formed cs-gpios property */
1070 if (nb == 0 || nb == -ENOENT)
1071 return 0;
1072 else if (nb < 0)
1073 return nb;
1074
1075 cs = devm_kzalloc(&master->dev,
1076 sizeof(int) * master->num_chipselect,
1077 GFP_KERNEL);
1078 master->cs_gpios = cs;
1079
1080 if (!master->cs_gpios)
1081 return -ENOMEM;
1082
1083 for (i = 0; i < master->num_chipselect; i++)
1084 cs[i] = -ENOENT;
1085
1086 for (i = 0; i < nb; i++)
1087 cs[i] = of_get_named_gpio(np, "cs-gpios", i);
1088
1089 return 0;
1090 }
1091 #else
1092 static int of_spi_register_master(struct spi_master *master)
1093 {
1094 return 0;
1095 }
1096 #endif
1097
1098 /**
1099 * spi_register_master - register SPI master controller
1100 * @master: initialized master, originally from spi_alloc_master()
1101 * Context: can sleep
1102 *
1103 * SPI master controllers connect to their drivers using some non-SPI bus,
1104 * such as the platform bus. The final stage of probe() in that code
1105 * includes calling spi_register_master() to hook up to this SPI bus glue.
1106 *
1107 * SPI controllers use board specific (often SOC specific) bus numbers,
1108 * and board-specific addressing for SPI devices combines those numbers
1109 * with chip select numbers. Since SPI does not directly support dynamic
1110 * device identification, boards need configuration tables telling which
1111 * chip is at which address.
1112 *
1113 * This must be called from context that can sleep. It returns zero on
1114 * success, else a negative error code (dropping the master's refcount).
1115 * After a successful return, the caller is responsible for calling
1116 * spi_unregister_master().
1117 */
1118 int spi_register_master(struct spi_master *master)
1119 {
1120 static atomic_t dyn_bus_id = ATOMIC_INIT((1<<15) - 1);
1121 struct device *dev = master->dev.parent;
1122 struct boardinfo *bi;
1123 int status = -ENODEV;
1124 int dynamic = 0;
1125
1126 if (!dev)
1127 return -ENODEV;
1128
1129 status = of_spi_register_master(master);
1130 if (status)
1131 return status;
1132
1133 /* even if it's just one always-selected device, there must
1134 * be at least one chipselect
1135 */
1136 if (master->num_chipselect == 0)
1137 return -EINVAL;
1138
1139 if ((master->bus_num < 0) && master->dev.of_node)
1140 master->bus_num = of_alias_get_id(master->dev.of_node, "spi");
1141
1142 /* convention: dynamically assigned bus IDs count down from the max */
1143 if (master->bus_num < 0) {
1144 /* FIXME switch to an IDR based scheme, something like
1145 * I2C now uses, so we can't run out of "dynamic" IDs
1146 */
1147 master->bus_num = atomic_dec_return(&dyn_bus_id);
1148 dynamic = 1;
1149 }
1150
1151 spin_lock_init(&master->bus_lock_spinlock);
1152 mutex_init(&master->bus_lock_mutex);
1153 master->bus_lock_flag = 0;
1154
1155 /* register the device, then userspace will see it.
1156 * registration fails if the bus ID is in use.
1157 */
1158 dev_set_name(&master->dev, "spi%u", master->bus_num);
1159 status = device_add(&master->dev);
1160 if (status < 0)
1161 goto done;
1162 dev_dbg(dev, "registered master %s%s\n", dev_name(&master->dev),
1163 dynamic ? " (dynamic)" : "");
1164
1165 /* If we're using a queued driver, start the queue */
1166 if (master->transfer)
1167 dev_info(dev, "master is unqueued, this is deprecated\n");
1168 else {
1169 status = spi_master_initialize_queue(master);
1170 if (status) {
1171 device_unregister(&master->dev);
1172 goto done;
1173 }
1174 }
1175
1176 mutex_lock(&board_lock);
1177 list_add_tail(&master->list, &spi_master_list);
1178 list_for_each_entry(bi, &board_list, list)
1179 spi_match_master_to_boardinfo(master, &bi->board_info);
1180 mutex_unlock(&board_lock);
1181
1182 /* Register devices from the device tree and ACPI */
1183 of_register_spi_devices(master);
1184 acpi_register_spi_devices(master);
1185 done:
1186 return status;
1187 }
1188 EXPORT_SYMBOL_GPL(spi_register_master);
1189
1190 static int __unregister(struct device *dev, void *null)
1191 {
1192 spi_unregister_device(to_spi_device(dev));
1193 return 0;
1194 }
1195
1196 /**
1197 * spi_unregister_master - unregister SPI master controller
1198 * @master: the master being unregistered
1199 * Context: can sleep
1200 *
1201 * This call is used only by SPI master controller drivers, which are the
1202 * only ones directly touching chip registers.
1203 *
1204 * This must be called from context that can sleep.
1205 */
1206 void spi_unregister_master(struct spi_master *master)
1207 {
1208 int dummy;
1209
1210 if (master->queued) {
1211 if (spi_destroy_queue(master))
1212 dev_err(&master->dev, "queue remove failed\n");
1213 }
1214
1215 mutex_lock(&board_lock);
1216 list_del(&master->list);
1217 mutex_unlock(&board_lock);
1218
1219 dummy = device_for_each_child(&master->dev, NULL, __unregister);
1220 device_unregister(&master->dev);
1221 }
1222 EXPORT_SYMBOL_GPL(spi_unregister_master);
1223
1224 int spi_master_suspend(struct spi_master *master)
1225 {
1226 int ret;
1227
1228 /* Basically no-ops for non-queued masters */
1229 if (!master->queued)
1230 return 0;
1231
1232 ret = spi_stop_queue(master);
1233 if (ret)
1234 dev_err(&master->dev, "queue stop failed\n");
1235
1236 return ret;
1237 }
1238 EXPORT_SYMBOL_GPL(spi_master_suspend);
1239
1240 int spi_master_resume(struct spi_master *master)
1241 {
1242 int ret;
1243
1244 if (!master->queued)
1245 return 0;
1246
1247 ret = spi_start_queue(master);
1248 if (ret)
1249 dev_err(&master->dev, "queue restart failed\n");
1250
1251 return ret;
1252 }
1253 EXPORT_SYMBOL_GPL(spi_master_resume);
1254
1255 static int __spi_master_match(struct device *dev, const void *data)
1256 {
1257 struct spi_master *m;
1258 const u16 *bus_num = data;
1259
1260 m = container_of(dev, struct spi_master, dev);
1261 return m->bus_num == *bus_num;
1262 }
1263
1264 /**
1265 * spi_busnum_to_master - look up master associated with bus_num
1266 * @bus_num: the master's bus number
1267 * Context: can sleep
1268 *
1269 * This call may be used with devices that are registered after
1270 * arch init time. It returns a refcounted pointer to the relevant
1271 * spi_master (which the caller must release), or NULL if there is
1272 * no such master registered.
1273 */
1274 struct spi_master *spi_busnum_to_master(u16 bus_num)
1275 {
1276 struct device *dev;
1277 struct spi_master *master = NULL;
1278
1279 dev = class_find_device(&spi_master_class, NULL, &bus_num,
1280 __spi_master_match);
1281 if (dev)
1282 master = container_of(dev, struct spi_master, dev);
1283 /* reference got in class_find_device */
1284 return master;
1285 }
1286 EXPORT_SYMBOL_GPL(spi_busnum_to_master);
1287
1288
1289 /*-------------------------------------------------------------------------*/
1290
1291 /* Core methods for SPI master protocol drivers. Some of the
1292 * other core methods are currently defined as inline functions.
1293 */
1294
1295 /**
1296 * spi_setup - setup SPI mode and clock rate
1297 * @spi: the device whose settings are being modified
1298 * Context: can sleep, and no requests are queued to the device
1299 *
1300 * SPI protocol drivers may need to update the transfer mode if the
1301 * device doesn't work with its default. They may likewise need
1302 * to update clock rates or word sizes from initial values. This function
1303 * changes those settings, and must be called from a context that can sleep.
1304 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
1305 * effect the next time the device is selected and data is transferred to
1306 * or from it. When this function returns, the spi device is deselected.
1307 *
1308 * Note that this call will fail if the protocol driver specifies an option
1309 * that the underlying controller or its driver does not support. For
1310 * example, not all hardware supports wire transfers using nine bit words,
1311 * LSB-first wire encoding, or active-high chipselects.
1312 */
1313 int spi_setup(struct spi_device *spi)
1314 {
1315 unsigned bad_bits;
1316 int status = 0;
1317
1318 /* help drivers fail *cleanly* when they need options
1319 * that aren't supported with their current master
1320 */
1321 bad_bits = spi->mode & ~spi->master->mode_bits;
1322 if (bad_bits) {
1323 dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
1324 bad_bits);
1325 return -EINVAL;
1326 }
1327
1328 if (!spi->bits_per_word)
1329 spi->bits_per_word = 8;
1330
1331 if (spi->master->setup)
1332 status = spi->master->setup(spi);
1333
1334 dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s"
1335 "%u bits/w, %u Hz max --> %d\n",
1336 (int) (spi->mode & (SPI_CPOL | SPI_CPHA)),
1337 (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
1338 (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
1339 (spi->mode & SPI_3WIRE) ? "3wire, " : "",
1340 (spi->mode & SPI_LOOP) ? "loopback, " : "",
1341 spi->bits_per_word, spi->max_speed_hz,
1342 status);
1343
1344 return status;
1345 }
1346 EXPORT_SYMBOL_GPL(spi_setup);
1347
1348 static int __spi_async(struct spi_device *spi, struct spi_message *message)
1349 {
1350 struct spi_master *master = spi->master;
1351 struct spi_transfer *xfer;
1352
1353 /* Half-duplex links include original MicroWire, and ones with
1354 * only one data pin like SPI_3WIRE (switches direction) or where
1355 * either MOSI or MISO is missing. They can also be caused by
1356 * software limitations.
1357 */
1358 if ((master->flags & SPI_MASTER_HALF_DUPLEX)
1359 || (spi->mode & SPI_3WIRE)) {
1360 unsigned flags = master->flags;
1361
1362 list_for_each_entry(xfer, &message->transfers, transfer_list) {
1363 if (xfer->rx_buf && xfer->tx_buf)
1364 return -EINVAL;
1365 if ((flags & SPI_MASTER_NO_TX) && xfer->tx_buf)
1366 return -EINVAL;
1367 if ((flags & SPI_MASTER_NO_RX) && xfer->rx_buf)
1368 return -EINVAL;
1369 }
1370 }
1371
1372 /**
1373 * Set transfer bits_per_word and max speed as spi device default if
1374 * it is not set for this transfer.
1375 */
1376 list_for_each_entry(xfer, &message->transfers, transfer_list) {
1377 if (!xfer->bits_per_word)
1378 xfer->bits_per_word = spi->bits_per_word;
1379 if (!xfer->speed_hz)
1380 xfer->speed_hz = spi->max_speed_hz;
1381 if (master->bits_per_word_mask) {
1382 /* Only 32 bits fit in the mask */
1383 if (xfer->bits_per_word > 32)
1384 return -EINVAL;
1385 if (!(master->bits_per_word_mask &
1386 BIT(xfer->bits_per_word - 1)))
1387 return -EINVAL;
1388 }
1389 }
1390
1391 message->spi = spi;
1392 message->status = -EINPROGRESS;
1393 return master->transfer(spi, message);
1394 }
1395
1396 /**
1397 * spi_async - asynchronous SPI transfer
1398 * @spi: device with which data will be exchanged
1399 * @message: describes the data transfers, including completion callback
1400 * Context: any (irqs may be blocked, etc)
1401 *
1402 * This call may be used in_irq and other contexts which can't sleep,
1403 * as well as from task contexts which can sleep.
1404 *
1405 * The completion callback is invoked in a context which can't sleep.
1406 * Before that invocation, the value of message->status is undefined.
1407 * When the callback is issued, message->status holds either zero (to
1408 * indicate complete success) or a negative error code. After that
1409 * callback returns, the driver which issued the transfer request may
1410 * deallocate the associated memory; it's no longer in use by any SPI
1411 * core or controller driver code.
1412 *
1413 * Note that although all messages to a spi_device are handled in
1414 * FIFO order, messages may go to different devices in other orders.
1415 * Some device might be higher priority, or have various "hard" access
1416 * time requirements, for example.
1417 *
1418 * On detection of any fault during the transfer, processing of
1419 * the entire message is aborted, and the device is deselected.
1420 * Until returning from the associated message completion callback,
1421 * no other spi_message queued to that device will be processed.
1422 * (This rule applies equally to all the synchronous transfer calls,
1423 * which are wrappers around this core asynchronous primitive.)
1424 */
1425 int spi_async(struct spi_device *spi, struct spi_message *message)
1426 {
1427 struct spi_master *master = spi->master;
1428 int ret;
1429 unsigned long flags;
1430
1431 spin_lock_irqsave(&master->bus_lock_spinlock, flags);
1432
1433 if (master->bus_lock_flag)
1434 ret = -EBUSY;
1435 else
1436 ret = __spi_async(spi, message);
1437
1438 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
1439
1440 return ret;
1441 }
1442 EXPORT_SYMBOL_GPL(spi_async);
1443
1444 /**
1445 * spi_async_locked - version of spi_async with exclusive bus usage
1446 * @spi: device with which data will be exchanged
1447 * @message: describes the data transfers, including completion callback
1448 * Context: any (irqs may be blocked, etc)
1449 *
1450 * This call may be used in_irq and other contexts which can't sleep,
1451 * as well as from task contexts which can sleep.
1452 *
1453 * The completion callback is invoked in a context which can't sleep.
1454 * Before that invocation, the value of message->status is undefined.
1455 * When the callback is issued, message->status holds either zero (to
1456 * indicate complete success) or a negative error code. After that
1457 * callback returns, the driver which issued the transfer request may
1458 * deallocate the associated memory; it's no longer in use by any SPI
1459 * core or controller driver code.
1460 *
1461 * Note that although all messages to a spi_device are handled in
1462 * FIFO order, messages may go to different devices in other orders.
1463 * Some device might be higher priority, or have various "hard" access
1464 * time requirements, for example.
1465 *
1466 * On detection of any fault during the transfer, processing of
1467 * the entire message is aborted, and the device is deselected.
1468 * Until returning from the associated message completion callback,
1469 * no other spi_message queued to that device will be processed.
1470 * (This rule applies equally to all the synchronous transfer calls,
1471 * which are wrappers around this core asynchronous primitive.)
1472 */
1473 int spi_async_locked(struct spi_device *spi, struct spi_message *message)
1474 {
1475 struct spi_master *master = spi->master;
1476 int ret;
1477 unsigned long flags;
1478
1479 spin_lock_irqsave(&master->bus_lock_spinlock, flags);
1480
1481 ret = __spi_async(spi, message);
1482
1483 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
1484
1485 return ret;
1486
1487 }
1488 EXPORT_SYMBOL_GPL(spi_async_locked);
1489
1490
1491 /*-------------------------------------------------------------------------*/
1492
1493 /* Utility methods for SPI master protocol drivers, layered on
1494 * top of the core. Some other utility methods are defined as
1495 * inline functions.
1496 */
1497
1498 static void spi_complete(void *arg)
1499 {
1500 complete(arg);
1501 }
1502
1503 static int __spi_sync(struct spi_device *spi, struct spi_message *message,
1504 int bus_locked)
1505 {
1506 DECLARE_COMPLETION_ONSTACK(done);
1507 int status;
1508 struct spi_master *master = spi->master;
1509
1510 message->complete = spi_complete;
1511 message->context = &done;
1512
1513 if (!bus_locked)
1514 mutex_lock(&master->bus_lock_mutex);
1515
1516 status = spi_async_locked(spi, message);
1517
1518 if (!bus_locked)
1519 mutex_unlock(&master->bus_lock_mutex);
1520
1521 if (status == 0) {
1522 wait_for_completion(&done);
1523 status = message->status;
1524 }
1525 message->context = NULL;
1526 return status;
1527 }
1528
1529 /**
1530 * spi_sync - blocking/synchronous SPI data transfers
1531 * @spi: device with which data will be exchanged
1532 * @message: describes the data transfers
1533 * Context: can sleep
1534 *
1535 * This call may only be used from a context that may sleep. The sleep
1536 * is non-interruptible, and has no timeout. Low-overhead controller
1537 * drivers may DMA directly into and out of the message buffers.
1538 *
1539 * Note that the SPI device's chip select is active during the message,
1540 * and then is normally disabled between messages. Drivers for some
1541 * frequently-used devices may want to minimize costs of selecting a chip,
1542 * by leaving it selected in anticipation that the next message will go
1543 * to the same chip. (That may increase power usage.)
1544 *
1545 * Also, the caller is guaranteeing that the memory associated with the
1546 * message will not be freed before this call returns.
1547 *
1548 * It returns zero on success, else a negative error code.
1549 */
1550 int spi_sync(struct spi_device *spi, struct spi_message *message)
1551 {
1552 return __spi_sync(spi, message, 0);
1553 }
1554 EXPORT_SYMBOL_GPL(spi_sync);
1555
1556 /**
1557 * spi_sync_locked - version of spi_sync with exclusive bus usage
1558 * @spi: device with which data will be exchanged
1559 * @message: describes the data transfers
1560 * Context: can sleep
1561 *
1562 * This call may only be used from a context that may sleep. The sleep
1563 * is non-interruptible, and has no timeout. Low-overhead controller
1564 * drivers may DMA directly into and out of the message buffers.
1565 *
1566 * This call should be used by drivers that require exclusive access to the
1567 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
1568 * be released by a spi_bus_unlock call when the exclusive access is over.
1569 *
1570 * It returns zero on success, else a negative error code.
1571 */
1572 int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
1573 {
1574 return __spi_sync(spi, message, 1);
1575 }
1576 EXPORT_SYMBOL_GPL(spi_sync_locked);
1577
1578 /**
1579 * spi_bus_lock - obtain a lock for exclusive SPI bus usage
1580 * @master: SPI bus master that should be locked for exclusive bus access
1581 * Context: can sleep
1582 *
1583 * This call may only be used from a context that may sleep. The sleep
1584 * is non-interruptible, and has no timeout.
1585 *
1586 * This call should be used by drivers that require exclusive access to the
1587 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
1588 * exclusive access is over. Data transfer must be done by spi_sync_locked
1589 * and spi_async_locked calls when the SPI bus lock is held.
1590 *
1591 * It returns zero on success, else a negative error code.
1592 */
1593 int spi_bus_lock(struct spi_master *master)
1594 {
1595 unsigned long flags;
1596
1597 mutex_lock(&master->bus_lock_mutex);
1598
1599 spin_lock_irqsave(&master->bus_lock_spinlock, flags);
1600 master->bus_lock_flag = 1;
1601 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
1602
1603 /* mutex remains locked until spi_bus_unlock is called */
1604
1605 return 0;
1606 }
1607 EXPORT_SYMBOL_GPL(spi_bus_lock);
1608
1609 /**
1610 * spi_bus_unlock - release the lock for exclusive SPI bus usage
1611 * @master: SPI bus master that was locked for exclusive bus access
1612 * Context: can sleep
1613 *
1614 * This call may only be used from a context that may sleep. The sleep
1615 * is non-interruptible, and has no timeout.
1616 *
1617 * This call releases an SPI bus lock previously obtained by an spi_bus_lock
1618 * call.
1619 *
1620 * It returns zero on success, else a negative error code.
1621 */
1622 int spi_bus_unlock(struct spi_master *master)
1623 {
1624 master->bus_lock_flag = 0;
1625
1626 mutex_unlock(&master->bus_lock_mutex);
1627
1628 return 0;
1629 }
1630 EXPORT_SYMBOL_GPL(spi_bus_unlock);
1631
1632 /* portable code must never pass more than 32 bytes */
1633 #define SPI_BUFSIZ max(32,SMP_CACHE_BYTES)
1634
1635 static u8 *buf;
1636
1637 /**
1638 * spi_write_then_read - SPI synchronous write followed by read
1639 * @spi: device with which data will be exchanged
1640 * @txbuf: data to be written (need not be dma-safe)
1641 * @n_tx: size of txbuf, in bytes
1642 * @rxbuf: buffer into which data will be read (need not be dma-safe)
1643 * @n_rx: size of rxbuf, in bytes
1644 * Context: can sleep
1645 *
1646 * This performs a half duplex MicroWire style transaction with the
1647 * device, sending txbuf and then reading rxbuf. The return value
1648 * is zero for success, else a negative errno status code.
1649 * This call may only be used from a context that may sleep.
1650 *
1651 * Parameters to this routine are always copied using a small buffer;
1652 * portable code should never use this for more than 32 bytes.
1653 * Performance-sensitive or bulk transfer code should instead use
1654 * spi_{async,sync}() calls with dma-safe buffers.
1655 */
1656 int spi_write_then_read(struct spi_device *spi,
1657 const void *txbuf, unsigned n_tx,
1658 void *rxbuf, unsigned n_rx)
1659 {
1660 static DEFINE_MUTEX(lock);
1661
1662 int status;
1663 struct spi_message message;
1664 struct spi_transfer x[2];
1665 u8 *local_buf;
1666
1667 /* Use preallocated DMA-safe buffer if we can. We can't avoid
1668 * copying here, (as a pure convenience thing), but we can
1669 * keep heap costs out of the hot path unless someone else is
1670 * using the pre-allocated buffer or the transfer is too large.
1671 */
1672 if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
1673 local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
1674 GFP_KERNEL | GFP_DMA);
1675 if (!local_buf)
1676 return -ENOMEM;
1677 } else {
1678 local_buf = buf;
1679 }
1680
1681 spi_message_init(&message);
1682 memset(x, 0, sizeof x);
1683 if (n_tx) {
1684 x[0].len = n_tx;
1685 spi_message_add_tail(&x[0], &message);
1686 }
1687 if (n_rx) {
1688 x[1].len = n_rx;
1689 spi_message_add_tail(&x[1], &message);
1690 }
1691
1692 memcpy(local_buf, txbuf, n_tx);
1693 x[0].tx_buf = local_buf;
1694 x[1].rx_buf = local_buf + n_tx;
1695
1696 /* do the i/o */
1697 status = spi_sync(spi, &message);
1698 if (status == 0)
1699 memcpy(rxbuf, x[1].rx_buf, n_rx);
1700
1701 if (x[0].tx_buf == buf)
1702 mutex_unlock(&lock);
1703 else
1704 kfree(local_buf);
1705
1706 return status;
1707 }
1708 EXPORT_SYMBOL_GPL(spi_write_then_read);
1709
1710 /*-------------------------------------------------------------------------*/
1711
1712 static int __init spi_init(void)
1713 {
1714 int status;
1715
1716 buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
1717 if (!buf) {
1718 status = -ENOMEM;
1719 goto err0;
1720 }
1721
1722 status = bus_register(&spi_bus_type);
1723 if (status < 0)
1724 goto err1;
1725
1726 status = class_register(&spi_master_class);
1727 if (status < 0)
1728 goto err2;
1729 return 0;
1730
1731 err2:
1732 bus_unregister(&spi_bus_type);
1733 err1:
1734 kfree(buf);
1735 buf = NULL;
1736 err0:
1737 return status;
1738 }
1739
1740 /* board_info is normally registered in arch_initcall(),
1741 * but even essential drivers wait till later
1742 *
1743 * REVISIT only boardinfo really needs static linking. the rest (device and
1744 * driver registration) _could_ be dynamically linked (modular) ... costs
1745 * include needing to have boardinfo data structures be much more public.
1746 */
1747 postcore_initcall(spi_init);
1748