drm/nouveau/bios: allow loading alternate vbios image as firmware
[GitHub/LineageOS/android_kernel_samsung_universal7580.git] / drivers / spi / spi-omap2-mcspi.c
1 /*
2 * OMAP2 McSPI controller driver
3 *
4 * Copyright (C) 2005, 2006 Nokia Corporation
5 * Author: Samuel Ortiz <samuel.ortiz@nokia.com> and
6 * Juha Yrj�l� <juha.yrjola@nokia.com>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
21 *
22 */
23
24 #include <linux/kernel.h>
25 #include <linux/init.h>
26 #include <linux/interrupt.h>
27 #include <linux/module.h>
28 #include <linux/device.h>
29 #include <linux/delay.h>
30 #include <linux/dma-mapping.h>
31 #include <linux/platform_device.h>
32 #include <linux/err.h>
33 #include <linux/clk.h>
34 #include <linux/io.h>
35 #include <linux/slab.h>
36 #include <linux/pm_runtime.h>
37 #include <linux/of.h>
38 #include <linux/of_device.h>
39
40 #include <linux/spi/spi.h>
41
42 #include <plat/dma.h>
43 #include <plat/clock.h>
44 #include <plat/mcspi.h>
45
46 #define OMAP2_MCSPI_MAX_FREQ 48000000
47
48 /* OMAP2 has 3 SPI controllers, while OMAP3 has 4 */
49 #define OMAP2_MCSPI_MAX_CTRL 4
50
51 #define OMAP2_MCSPI_REVISION 0x00
52 #define OMAP2_MCSPI_SYSSTATUS 0x14
53 #define OMAP2_MCSPI_IRQSTATUS 0x18
54 #define OMAP2_MCSPI_IRQENABLE 0x1c
55 #define OMAP2_MCSPI_WAKEUPENABLE 0x20
56 #define OMAP2_MCSPI_SYST 0x24
57 #define OMAP2_MCSPI_MODULCTRL 0x28
58
59 /* per-channel banks, 0x14 bytes each, first is: */
60 #define OMAP2_MCSPI_CHCONF0 0x2c
61 #define OMAP2_MCSPI_CHSTAT0 0x30
62 #define OMAP2_MCSPI_CHCTRL0 0x34
63 #define OMAP2_MCSPI_TX0 0x38
64 #define OMAP2_MCSPI_RX0 0x3c
65
66 /* per-register bitmasks: */
67
68 #define OMAP2_MCSPI_MODULCTRL_SINGLE BIT(0)
69 #define OMAP2_MCSPI_MODULCTRL_MS BIT(2)
70 #define OMAP2_MCSPI_MODULCTRL_STEST BIT(3)
71
72 #define OMAP2_MCSPI_CHCONF_PHA BIT(0)
73 #define OMAP2_MCSPI_CHCONF_POL BIT(1)
74 #define OMAP2_MCSPI_CHCONF_CLKD_MASK (0x0f << 2)
75 #define OMAP2_MCSPI_CHCONF_EPOL BIT(6)
76 #define OMAP2_MCSPI_CHCONF_WL_MASK (0x1f << 7)
77 #define OMAP2_MCSPI_CHCONF_TRM_RX_ONLY BIT(12)
78 #define OMAP2_MCSPI_CHCONF_TRM_TX_ONLY BIT(13)
79 #define OMAP2_MCSPI_CHCONF_TRM_MASK (0x03 << 12)
80 #define OMAP2_MCSPI_CHCONF_DMAW BIT(14)
81 #define OMAP2_MCSPI_CHCONF_DMAR BIT(15)
82 #define OMAP2_MCSPI_CHCONF_DPE0 BIT(16)
83 #define OMAP2_MCSPI_CHCONF_DPE1 BIT(17)
84 #define OMAP2_MCSPI_CHCONF_IS BIT(18)
85 #define OMAP2_MCSPI_CHCONF_TURBO BIT(19)
86 #define OMAP2_MCSPI_CHCONF_FORCE BIT(20)
87
88 #define OMAP2_MCSPI_CHSTAT_RXS BIT(0)
89 #define OMAP2_MCSPI_CHSTAT_TXS BIT(1)
90 #define OMAP2_MCSPI_CHSTAT_EOT BIT(2)
91
92 #define OMAP2_MCSPI_CHCTRL_EN BIT(0)
93
94 #define OMAP2_MCSPI_WAKEUPENABLE_WKEN BIT(0)
95
96 /* We have 2 DMA channels per CS, one for RX and one for TX */
97 struct omap2_mcspi_dma {
98 int dma_tx_channel;
99 int dma_rx_channel;
100
101 int dma_tx_sync_dev;
102 int dma_rx_sync_dev;
103
104 struct completion dma_tx_completion;
105 struct completion dma_rx_completion;
106 };
107
108 /* use PIO for small transfers, avoiding DMA setup/teardown overhead and
109 * cache operations; better heuristics consider wordsize and bitrate.
110 */
111 #define DMA_MIN_BYTES 160
112
113
114 struct omap2_mcspi {
115 struct work_struct work;
116 /* lock protects queue and registers */
117 spinlock_t lock;
118 struct list_head msg_queue;
119 struct spi_master *master;
120 /* Virtual base address of the controller */
121 void __iomem *base;
122 unsigned long phys;
123 /* SPI1 has 4 channels, while SPI2 has 2 */
124 struct omap2_mcspi_dma *dma_channels;
125 struct device *dev;
126 struct workqueue_struct *wq;
127 };
128
129 struct omap2_mcspi_cs {
130 void __iomem *base;
131 unsigned long phys;
132 int word_len;
133 struct list_head node;
134 /* Context save and restore shadow register */
135 u32 chconf0;
136 };
137
138 /* used for context save and restore, structure members to be updated whenever
139 * corresponding registers are modified.
140 */
141 struct omap2_mcspi_regs {
142 u32 modulctrl;
143 u32 wakeupenable;
144 struct list_head cs;
145 };
146
147 static struct omap2_mcspi_regs omap2_mcspi_ctx[OMAP2_MCSPI_MAX_CTRL];
148
149 #define MOD_REG_BIT(val, mask, set) do { \
150 if (set) \
151 val |= mask; \
152 else \
153 val &= ~mask; \
154 } while (0)
155
156 static inline void mcspi_write_reg(struct spi_master *master,
157 int idx, u32 val)
158 {
159 struct omap2_mcspi *mcspi = spi_master_get_devdata(master);
160
161 __raw_writel(val, mcspi->base + idx);
162 }
163
164 static inline u32 mcspi_read_reg(struct spi_master *master, int idx)
165 {
166 struct omap2_mcspi *mcspi = spi_master_get_devdata(master);
167
168 return __raw_readl(mcspi->base + idx);
169 }
170
171 static inline void mcspi_write_cs_reg(const struct spi_device *spi,
172 int idx, u32 val)
173 {
174 struct omap2_mcspi_cs *cs = spi->controller_state;
175
176 __raw_writel(val, cs->base + idx);
177 }
178
179 static inline u32 mcspi_read_cs_reg(const struct spi_device *spi, int idx)
180 {
181 struct omap2_mcspi_cs *cs = spi->controller_state;
182
183 return __raw_readl(cs->base + idx);
184 }
185
186 static inline u32 mcspi_cached_chconf0(const struct spi_device *spi)
187 {
188 struct omap2_mcspi_cs *cs = spi->controller_state;
189
190 return cs->chconf0;
191 }
192
193 static inline void mcspi_write_chconf0(const struct spi_device *spi, u32 val)
194 {
195 struct omap2_mcspi_cs *cs = spi->controller_state;
196
197 cs->chconf0 = val;
198 mcspi_write_cs_reg(spi, OMAP2_MCSPI_CHCONF0, val);
199 mcspi_read_cs_reg(spi, OMAP2_MCSPI_CHCONF0);
200 }
201
202 static void omap2_mcspi_set_dma_req(const struct spi_device *spi,
203 int is_read, int enable)
204 {
205 u32 l, rw;
206
207 l = mcspi_cached_chconf0(spi);
208
209 if (is_read) /* 1 is read, 0 write */
210 rw = OMAP2_MCSPI_CHCONF_DMAR;
211 else
212 rw = OMAP2_MCSPI_CHCONF_DMAW;
213
214 MOD_REG_BIT(l, rw, enable);
215 mcspi_write_chconf0(spi, l);
216 }
217
218 static void omap2_mcspi_set_enable(const struct spi_device *spi, int enable)
219 {
220 u32 l;
221
222 l = enable ? OMAP2_MCSPI_CHCTRL_EN : 0;
223 mcspi_write_cs_reg(spi, OMAP2_MCSPI_CHCTRL0, l);
224 /* Flash post-writes */
225 mcspi_read_cs_reg(spi, OMAP2_MCSPI_CHCTRL0);
226 }
227
228 static void omap2_mcspi_force_cs(struct spi_device *spi, int cs_active)
229 {
230 u32 l;
231
232 l = mcspi_cached_chconf0(spi);
233 MOD_REG_BIT(l, OMAP2_MCSPI_CHCONF_FORCE, cs_active);
234 mcspi_write_chconf0(spi, l);
235 }
236
237 static void omap2_mcspi_set_master_mode(struct spi_master *master)
238 {
239 u32 l;
240
241 /* setup when switching from (reset default) slave mode
242 * to single-channel master mode
243 */
244 l = mcspi_read_reg(master, OMAP2_MCSPI_MODULCTRL);
245 MOD_REG_BIT(l, OMAP2_MCSPI_MODULCTRL_STEST, 0);
246 MOD_REG_BIT(l, OMAP2_MCSPI_MODULCTRL_MS, 0);
247 MOD_REG_BIT(l, OMAP2_MCSPI_MODULCTRL_SINGLE, 1);
248 mcspi_write_reg(master, OMAP2_MCSPI_MODULCTRL, l);
249
250 omap2_mcspi_ctx[master->bus_num - 1].modulctrl = l;
251 }
252
253 static void omap2_mcspi_restore_ctx(struct omap2_mcspi *mcspi)
254 {
255 struct spi_master *spi_cntrl;
256 struct omap2_mcspi_cs *cs;
257 spi_cntrl = mcspi->master;
258
259 /* McSPI: context restore */
260 mcspi_write_reg(spi_cntrl, OMAP2_MCSPI_MODULCTRL,
261 omap2_mcspi_ctx[spi_cntrl->bus_num - 1].modulctrl);
262
263 mcspi_write_reg(spi_cntrl, OMAP2_MCSPI_WAKEUPENABLE,
264 omap2_mcspi_ctx[spi_cntrl->bus_num - 1].wakeupenable);
265
266 list_for_each_entry(cs, &omap2_mcspi_ctx[spi_cntrl->bus_num - 1].cs,
267 node)
268 __raw_writel(cs->chconf0, cs->base + OMAP2_MCSPI_CHCONF0);
269 }
270 static void omap2_mcspi_disable_clocks(struct omap2_mcspi *mcspi)
271 {
272 pm_runtime_put_sync(mcspi->dev);
273 }
274
275 static int omap2_mcspi_enable_clocks(struct omap2_mcspi *mcspi)
276 {
277 return pm_runtime_get_sync(mcspi->dev);
278 }
279
280 static int mcspi_wait_for_reg_bit(void __iomem *reg, unsigned long bit)
281 {
282 unsigned long timeout;
283
284 timeout = jiffies + msecs_to_jiffies(1000);
285 while (!(__raw_readl(reg) & bit)) {
286 if (time_after(jiffies, timeout))
287 return -1;
288 cpu_relax();
289 }
290 return 0;
291 }
292
293 static unsigned
294 omap2_mcspi_txrx_dma(struct spi_device *spi, struct spi_transfer *xfer)
295 {
296 struct omap2_mcspi *mcspi;
297 struct omap2_mcspi_cs *cs = spi->controller_state;
298 struct omap2_mcspi_dma *mcspi_dma;
299 unsigned int count, c;
300 unsigned long base, tx_reg, rx_reg;
301 int word_len, data_type, element_count;
302 int elements = 0;
303 u32 l;
304 u8 * rx;
305 const u8 * tx;
306 void __iomem *chstat_reg;
307
308 mcspi = spi_master_get_devdata(spi->master);
309 mcspi_dma = &mcspi->dma_channels[spi->chip_select];
310 l = mcspi_cached_chconf0(spi);
311
312 chstat_reg = cs->base + OMAP2_MCSPI_CHSTAT0;
313
314 count = xfer->len;
315 c = count;
316 word_len = cs->word_len;
317
318 base = cs->phys;
319 tx_reg = base + OMAP2_MCSPI_TX0;
320 rx_reg = base + OMAP2_MCSPI_RX0;
321 rx = xfer->rx_buf;
322 tx = xfer->tx_buf;
323
324 if (word_len <= 8) {
325 data_type = OMAP_DMA_DATA_TYPE_S8;
326 element_count = count;
327 } else if (word_len <= 16) {
328 data_type = OMAP_DMA_DATA_TYPE_S16;
329 element_count = count >> 1;
330 } else /* word_len <= 32 */ {
331 data_type = OMAP_DMA_DATA_TYPE_S32;
332 element_count = count >> 2;
333 }
334
335 if (tx != NULL) {
336 omap_set_dma_transfer_params(mcspi_dma->dma_tx_channel,
337 data_type, element_count, 1,
338 OMAP_DMA_SYNC_ELEMENT,
339 mcspi_dma->dma_tx_sync_dev, 0);
340
341 omap_set_dma_dest_params(mcspi_dma->dma_tx_channel, 0,
342 OMAP_DMA_AMODE_CONSTANT,
343 tx_reg, 0, 0);
344
345 omap_set_dma_src_params(mcspi_dma->dma_tx_channel, 0,
346 OMAP_DMA_AMODE_POST_INC,
347 xfer->tx_dma, 0, 0);
348 }
349
350 if (rx != NULL) {
351 elements = element_count - 1;
352 if (l & OMAP2_MCSPI_CHCONF_TURBO)
353 elements--;
354
355 omap_set_dma_transfer_params(mcspi_dma->dma_rx_channel,
356 data_type, elements, 1,
357 OMAP_DMA_SYNC_ELEMENT,
358 mcspi_dma->dma_rx_sync_dev, 1);
359
360 omap_set_dma_src_params(mcspi_dma->dma_rx_channel, 0,
361 OMAP_DMA_AMODE_CONSTANT,
362 rx_reg, 0, 0);
363
364 omap_set_dma_dest_params(mcspi_dma->dma_rx_channel, 0,
365 OMAP_DMA_AMODE_POST_INC,
366 xfer->rx_dma, 0, 0);
367 }
368
369 if (tx != NULL) {
370 omap_start_dma(mcspi_dma->dma_tx_channel);
371 omap2_mcspi_set_dma_req(spi, 0, 1);
372 }
373
374 if (rx != NULL) {
375 omap_start_dma(mcspi_dma->dma_rx_channel);
376 omap2_mcspi_set_dma_req(spi, 1, 1);
377 }
378
379 if (tx != NULL) {
380 wait_for_completion(&mcspi_dma->dma_tx_completion);
381 dma_unmap_single(&spi->dev, xfer->tx_dma, count, DMA_TO_DEVICE);
382
383 /* for TX_ONLY mode, be sure all words have shifted out */
384 if (rx == NULL) {
385 if (mcspi_wait_for_reg_bit(chstat_reg,
386 OMAP2_MCSPI_CHSTAT_TXS) < 0)
387 dev_err(&spi->dev, "TXS timed out\n");
388 else if (mcspi_wait_for_reg_bit(chstat_reg,
389 OMAP2_MCSPI_CHSTAT_EOT) < 0)
390 dev_err(&spi->dev, "EOT timed out\n");
391 }
392 }
393
394 if (rx != NULL) {
395 wait_for_completion(&mcspi_dma->dma_rx_completion);
396 dma_unmap_single(&spi->dev, xfer->rx_dma, count, DMA_FROM_DEVICE);
397 omap2_mcspi_set_enable(spi, 0);
398
399 if (l & OMAP2_MCSPI_CHCONF_TURBO) {
400
401 if (likely(mcspi_read_cs_reg(spi, OMAP2_MCSPI_CHSTAT0)
402 & OMAP2_MCSPI_CHSTAT_RXS)) {
403 u32 w;
404
405 w = mcspi_read_cs_reg(spi, OMAP2_MCSPI_RX0);
406 if (word_len <= 8)
407 ((u8 *)xfer->rx_buf)[elements++] = w;
408 else if (word_len <= 16)
409 ((u16 *)xfer->rx_buf)[elements++] = w;
410 else /* word_len <= 32 */
411 ((u32 *)xfer->rx_buf)[elements++] = w;
412 } else {
413 dev_err(&spi->dev,
414 "DMA RX penultimate word empty");
415 count -= (word_len <= 8) ? 2 :
416 (word_len <= 16) ? 4 :
417 /* word_len <= 32 */ 8;
418 omap2_mcspi_set_enable(spi, 1);
419 return count;
420 }
421 }
422
423 if (likely(mcspi_read_cs_reg(spi, OMAP2_MCSPI_CHSTAT0)
424 & OMAP2_MCSPI_CHSTAT_RXS)) {
425 u32 w;
426
427 w = mcspi_read_cs_reg(spi, OMAP2_MCSPI_RX0);
428 if (word_len <= 8)
429 ((u8 *)xfer->rx_buf)[elements] = w;
430 else if (word_len <= 16)
431 ((u16 *)xfer->rx_buf)[elements] = w;
432 else /* word_len <= 32 */
433 ((u32 *)xfer->rx_buf)[elements] = w;
434 } else {
435 dev_err(&spi->dev, "DMA RX last word empty");
436 count -= (word_len <= 8) ? 1 :
437 (word_len <= 16) ? 2 :
438 /* word_len <= 32 */ 4;
439 }
440 omap2_mcspi_set_enable(spi, 1);
441 }
442 return count;
443 }
444
445 static unsigned
446 omap2_mcspi_txrx_pio(struct spi_device *spi, struct spi_transfer *xfer)
447 {
448 struct omap2_mcspi *mcspi;
449 struct omap2_mcspi_cs *cs = spi->controller_state;
450 unsigned int count, c;
451 u32 l;
452 void __iomem *base = cs->base;
453 void __iomem *tx_reg;
454 void __iomem *rx_reg;
455 void __iomem *chstat_reg;
456 int word_len;
457
458 mcspi = spi_master_get_devdata(spi->master);
459 count = xfer->len;
460 c = count;
461 word_len = cs->word_len;
462
463 l = mcspi_cached_chconf0(spi);
464
465 /* We store the pre-calculated register addresses on stack to speed
466 * up the transfer loop. */
467 tx_reg = base + OMAP2_MCSPI_TX0;
468 rx_reg = base + OMAP2_MCSPI_RX0;
469 chstat_reg = base + OMAP2_MCSPI_CHSTAT0;
470
471 if (c < (word_len>>3))
472 return 0;
473
474 if (word_len <= 8) {
475 u8 *rx;
476 const u8 *tx;
477
478 rx = xfer->rx_buf;
479 tx = xfer->tx_buf;
480
481 do {
482 c -= 1;
483 if (tx != NULL) {
484 if (mcspi_wait_for_reg_bit(chstat_reg,
485 OMAP2_MCSPI_CHSTAT_TXS) < 0) {
486 dev_err(&spi->dev, "TXS timed out\n");
487 goto out;
488 }
489 dev_vdbg(&spi->dev, "write-%d %02x\n",
490 word_len, *tx);
491 __raw_writel(*tx++, tx_reg);
492 }
493 if (rx != NULL) {
494 if (mcspi_wait_for_reg_bit(chstat_reg,
495 OMAP2_MCSPI_CHSTAT_RXS) < 0) {
496 dev_err(&spi->dev, "RXS timed out\n");
497 goto out;
498 }
499
500 if (c == 1 && tx == NULL &&
501 (l & OMAP2_MCSPI_CHCONF_TURBO)) {
502 omap2_mcspi_set_enable(spi, 0);
503 *rx++ = __raw_readl(rx_reg);
504 dev_vdbg(&spi->dev, "read-%d %02x\n",
505 word_len, *(rx - 1));
506 if (mcspi_wait_for_reg_bit(chstat_reg,
507 OMAP2_MCSPI_CHSTAT_RXS) < 0) {
508 dev_err(&spi->dev,
509 "RXS timed out\n");
510 goto out;
511 }
512 c = 0;
513 } else if (c == 0 && tx == NULL) {
514 omap2_mcspi_set_enable(spi, 0);
515 }
516
517 *rx++ = __raw_readl(rx_reg);
518 dev_vdbg(&spi->dev, "read-%d %02x\n",
519 word_len, *(rx - 1));
520 }
521 } while (c);
522 } else if (word_len <= 16) {
523 u16 *rx;
524 const u16 *tx;
525
526 rx = xfer->rx_buf;
527 tx = xfer->tx_buf;
528 do {
529 c -= 2;
530 if (tx != NULL) {
531 if (mcspi_wait_for_reg_bit(chstat_reg,
532 OMAP2_MCSPI_CHSTAT_TXS) < 0) {
533 dev_err(&spi->dev, "TXS timed out\n");
534 goto out;
535 }
536 dev_vdbg(&spi->dev, "write-%d %04x\n",
537 word_len, *tx);
538 __raw_writel(*tx++, tx_reg);
539 }
540 if (rx != NULL) {
541 if (mcspi_wait_for_reg_bit(chstat_reg,
542 OMAP2_MCSPI_CHSTAT_RXS) < 0) {
543 dev_err(&spi->dev, "RXS timed out\n");
544 goto out;
545 }
546
547 if (c == 2 && tx == NULL &&
548 (l & OMAP2_MCSPI_CHCONF_TURBO)) {
549 omap2_mcspi_set_enable(spi, 0);
550 *rx++ = __raw_readl(rx_reg);
551 dev_vdbg(&spi->dev, "read-%d %04x\n",
552 word_len, *(rx - 1));
553 if (mcspi_wait_for_reg_bit(chstat_reg,
554 OMAP2_MCSPI_CHSTAT_RXS) < 0) {
555 dev_err(&spi->dev,
556 "RXS timed out\n");
557 goto out;
558 }
559 c = 0;
560 } else if (c == 0 && tx == NULL) {
561 omap2_mcspi_set_enable(spi, 0);
562 }
563
564 *rx++ = __raw_readl(rx_reg);
565 dev_vdbg(&spi->dev, "read-%d %04x\n",
566 word_len, *(rx - 1));
567 }
568 } while (c >= 2);
569 } else if (word_len <= 32) {
570 u32 *rx;
571 const u32 *tx;
572
573 rx = xfer->rx_buf;
574 tx = xfer->tx_buf;
575 do {
576 c -= 4;
577 if (tx != NULL) {
578 if (mcspi_wait_for_reg_bit(chstat_reg,
579 OMAP2_MCSPI_CHSTAT_TXS) < 0) {
580 dev_err(&spi->dev, "TXS timed out\n");
581 goto out;
582 }
583 dev_vdbg(&spi->dev, "write-%d %08x\n",
584 word_len, *tx);
585 __raw_writel(*tx++, tx_reg);
586 }
587 if (rx != NULL) {
588 if (mcspi_wait_for_reg_bit(chstat_reg,
589 OMAP2_MCSPI_CHSTAT_RXS) < 0) {
590 dev_err(&spi->dev, "RXS timed out\n");
591 goto out;
592 }
593
594 if (c == 4 && tx == NULL &&
595 (l & OMAP2_MCSPI_CHCONF_TURBO)) {
596 omap2_mcspi_set_enable(spi, 0);
597 *rx++ = __raw_readl(rx_reg);
598 dev_vdbg(&spi->dev, "read-%d %08x\n",
599 word_len, *(rx - 1));
600 if (mcspi_wait_for_reg_bit(chstat_reg,
601 OMAP2_MCSPI_CHSTAT_RXS) < 0) {
602 dev_err(&spi->dev,
603 "RXS timed out\n");
604 goto out;
605 }
606 c = 0;
607 } else if (c == 0 && tx == NULL) {
608 omap2_mcspi_set_enable(spi, 0);
609 }
610
611 *rx++ = __raw_readl(rx_reg);
612 dev_vdbg(&spi->dev, "read-%d %08x\n",
613 word_len, *(rx - 1));
614 }
615 } while (c >= 4);
616 }
617
618 /* for TX_ONLY mode, be sure all words have shifted out */
619 if (xfer->rx_buf == NULL) {
620 if (mcspi_wait_for_reg_bit(chstat_reg,
621 OMAP2_MCSPI_CHSTAT_TXS) < 0) {
622 dev_err(&spi->dev, "TXS timed out\n");
623 } else if (mcspi_wait_for_reg_bit(chstat_reg,
624 OMAP2_MCSPI_CHSTAT_EOT) < 0)
625 dev_err(&spi->dev, "EOT timed out\n");
626
627 /* disable chan to purge rx datas received in TX_ONLY transfer,
628 * otherwise these rx datas will affect the direct following
629 * RX_ONLY transfer.
630 */
631 omap2_mcspi_set_enable(spi, 0);
632 }
633 out:
634 omap2_mcspi_set_enable(spi, 1);
635 return count - c;
636 }
637
638 static u32 omap2_mcspi_calc_divisor(u32 speed_hz)
639 {
640 u32 div;
641
642 for (div = 0; div < 15; div++)
643 if (speed_hz >= (OMAP2_MCSPI_MAX_FREQ >> div))
644 return div;
645
646 return 15;
647 }
648
649 /* called only when no transfer is active to this device */
650 static int omap2_mcspi_setup_transfer(struct spi_device *spi,
651 struct spi_transfer *t)
652 {
653 struct omap2_mcspi_cs *cs = spi->controller_state;
654 struct omap2_mcspi *mcspi;
655 struct spi_master *spi_cntrl;
656 u32 l = 0, div = 0;
657 u8 word_len = spi->bits_per_word;
658 u32 speed_hz = spi->max_speed_hz;
659
660 mcspi = spi_master_get_devdata(spi->master);
661 spi_cntrl = mcspi->master;
662
663 if (t != NULL && t->bits_per_word)
664 word_len = t->bits_per_word;
665
666 cs->word_len = word_len;
667
668 if (t && t->speed_hz)
669 speed_hz = t->speed_hz;
670
671 speed_hz = min_t(u32, speed_hz, OMAP2_MCSPI_MAX_FREQ);
672 div = omap2_mcspi_calc_divisor(speed_hz);
673
674 l = mcspi_cached_chconf0(spi);
675
676 /* standard 4-wire master mode: SCK, MOSI/out, MISO/in, nCS
677 * REVISIT: this controller could support SPI_3WIRE mode.
678 */
679 l &= ~(OMAP2_MCSPI_CHCONF_IS|OMAP2_MCSPI_CHCONF_DPE1);
680 l |= OMAP2_MCSPI_CHCONF_DPE0;
681
682 /* wordlength */
683 l &= ~OMAP2_MCSPI_CHCONF_WL_MASK;
684 l |= (word_len - 1) << 7;
685
686 /* set chipselect polarity; manage with FORCE */
687 if (!(spi->mode & SPI_CS_HIGH))
688 l |= OMAP2_MCSPI_CHCONF_EPOL; /* active-low; normal */
689 else
690 l &= ~OMAP2_MCSPI_CHCONF_EPOL;
691
692 /* set clock divisor */
693 l &= ~OMAP2_MCSPI_CHCONF_CLKD_MASK;
694 l |= div << 2;
695
696 /* set SPI mode 0..3 */
697 if (spi->mode & SPI_CPOL)
698 l |= OMAP2_MCSPI_CHCONF_POL;
699 else
700 l &= ~OMAP2_MCSPI_CHCONF_POL;
701 if (spi->mode & SPI_CPHA)
702 l |= OMAP2_MCSPI_CHCONF_PHA;
703 else
704 l &= ~OMAP2_MCSPI_CHCONF_PHA;
705
706 mcspi_write_chconf0(spi, l);
707
708 dev_dbg(&spi->dev, "setup: speed %d, sample %s edge, clk %s\n",
709 OMAP2_MCSPI_MAX_FREQ >> div,
710 (spi->mode & SPI_CPHA) ? "trailing" : "leading",
711 (spi->mode & SPI_CPOL) ? "inverted" : "normal");
712
713 return 0;
714 }
715
716 static void omap2_mcspi_dma_rx_callback(int lch, u16 ch_status, void *data)
717 {
718 struct spi_device *spi = data;
719 struct omap2_mcspi *mcspi;
720 struct omap2_mcspi_dma *mcspi_dma;
721
722 mcspi = spi_master_get_devdata(spi->master);
723 mcspi_dma = &(mcspi->dma_channels[spi->chip_select]);
724
725 complete(&mcspi_dma->dma_rx_completion);
726
727 /* We must disable the DMA RX request */
728 omap2_mcspi_set_dma_req(spi, 1, 0);
729 }
730
731 static void omap2_mcspi_dma_tx_callback(int lch, u16 ch_status, void *data)
732 {
733 struct spi_device *spi = data;
734 struct omap2_mcspi *mcspi;
735 struct omap2_mcspi_dma *mcspi_dma;
736
737 mcspi = spi_master_get_devdata(spi->master);
738 mcspi_dma = &(mcspi->dma_channels[spi->chip_select]);
739
740 complete(&mcspi_dma->dma_tx_completion);
741
742 /* We must disable the DMA TX request */
743 omap2_mcspi_set_dma_req(spi, 0, 0);
744 }
745
746 static int omap2_mcspi_request_dma(struct spi_device *spi)
747 {
748 struct spi_master *master = spi->master;
749 struct omap2_mcspi *mcspi;
750 struct omap2_mcspi_dma *mcspi_dma;
751
752 mcspi = spi_master_get_devdata(master);
753 mcspi_dma = mcspi->dma_channels + spi->chip_select;
754
755 if (omap_request_dma(mcspi_dma->dma_rx_sync_dev, "McSPI RX",
756 omap2_mcspi_dma_rx_callback, spi,
757 &mcspi_dma->dma_rx_channel)) {
758 dev_err(&spi->dev, "no RX DMA channel for McSPI\n");
759 return -EAGAIN;
760 }
761
762 if (omap_request_dma(mcspi_dma->dma_tx_sync_dev, "McSPI TX",
763 omap2_mcspi_dma_tx_callback, spi,
764 &mcspi_dma->dma_tx_channel)) {
765 omap_free_dma(mcspi_dma->dma_rx_channel);
766 mcspi_dma->dma_rx_channel = -1;
767 dev_err(&spi->dev, "no TX DMA channel for McSPI\n");
768 return -EAGAIN;
769 }
770
771 init_completion(&mcspi_dma->dma_rx_completion);
772 init_completion(&mcspi_dma->dma_tx_completion);
773
774 return 0;
775 }
776
777 static int omap2_mcspi_setup(struct spi_device *spi)
778 {
779 int ret;
780 struct omap2_mcspi *mcspi;
781 struct omap2_mcspi_dma *mcspi_dma;
782 struct omap2_mcspi_cs *cs = spi->controller_state;
783
784 if (spi->bits_per_word < 4 || spi->bits_per_word > 32) {
785 dev_dbg(&spi->dev, "setup: unsupported %d bit words\n",
786 spi->bits_per_word);
787 return -EINVAL;
788 }
789
790 mcspi = spi_master_get_devdata(spi->master);
791 mcspi_dma = &mcspi->dma_channels[spi->chip_select];
792
793 if (!cs) {
794 cs = kzalloc(sizeof *cs, GFP_KERNEL);
795 if (!cs)
796 return -ENOMEM;
797 cs->base = mcspi->base + spi->chip_select * 0x14;
798 cs->phys = mcspi->phys + spi->chip_select * 0x14;
799 cs->chconf0 = 0;
800 spi->controller_state = cs;
801 /* Link this to context save list */
802 list_add_tail(&cs->node,
803 &omap2_mcspi_ctx[mcspi->master->bus_num - 1].cs);
804 }
805
806 if (mcspi_dma->dma_rx_channel == -1
807 || mcspi_dma->dma_tx_channel == -1) {
808 ret = omap2_mcspi_request_dma(spi);
809 if (ret < 0)
810 return ret;
811 }
812
813 ret = omap2_mcspi_enable_clocks(mcspi);
814 if (ret < 0)
815 return ret;
816
817 ret = omap2_mcspi_setup_transfer(spi, NULL);
818 omap2_mcspi_disable_clocks(mcspi);
819
820 return ret;
821 }
822
823 static void omap2_mcspi_cleanup(struct spi_device *spi)
824 {
825 struct omap2_mcspi *mcspi;
826 struct omap2_mcspi_dma *mcspi_dma;
827 struct omap2_mcspi_cs *cs;
828
829 mcspi = spi_master_get_devdata(spi->master);
830
831 if (spi->controller_state) {
832 /* Unlink controller state from context save list */
833 cs = spi->controller_state;
834 list_del(&cs->node);
835
836 kfree(spi->controller_state);
837 }
838
839 if (spi->chip_select < spi->master->num_chipselect) {
840 mcspi_dma = &mcspi->dma_channels[spi->chip_select];
841
842 if (mcspi_dma->dma_rx_channel != -1) {
843 omap_free_dma(mcspi_dma->dma_rx_channel);
844 mcspi_dma->dma_rx_channel = -1;
845 }
846 if (mcspi_dma->dma_tx_channel != -1) {
847 omap_free_dma(mcspi_dma->dma_tx_channel);
848 mcspi_dma->dma_tx_channel = -1;
849 }
850 }
851 }
852
853 static void omap2_mcspi_work(struct work_struct *work)
854 {
855 struct omap2_mcspi *mcspi;
856
857 mcspi = container_of(work, struct omap2_mcspi, work);
858
859 if (omap2_mcspi_enable_clocks(mcspi) < 0)
860 return;
861
862 spin_lock_irq(&mcspi->lock);
863
864 /* We only enable one channel at a time -- the one whose message is
865 * at the head of the queue -- although this controller would gladly
866 * arbitrate among multiple channels. This corresponds to "single
867 * channel" master mode. As a side effect, we need to manage the
868 * chipselect with the FORCE bit ... CS != channel enable.
869 */
870 while (!list_empty(&mcspi->msg_queue)) {
871 struct spi_message *m;
872 struct spi_device *spi;
873 struct spi_transfer *t = NULL;
874 int cs_active = 0;
875 struct omap2_mcspi_cs *cs;
876 struct omap2_mcspi_device_config *cd;
877 int par_override = 0;
878 int status = 0;
879 u32 chconf;
880
881 m = container_of(mcspi->msg_queue.next, struct spi_message,
882 queue);
883
884 list_del_init(&m->queue);
885 spin_unlock_irq(&mcspi->lock);
886
887 spi = m->spi;
888 cs = spi->controller_state;
889 cd = spi->controller_data;
890
891 omap2_mcspi_set_enable(spi, 1);
892 list_for_each_entry(t, &m->transfers, transfer_list) {
893 if (t->tx_buf == NULL && t->rx_buf == NULL && t->len) {
894 status = -EINVAL;
895 break;
896 }
897 if (par_override || t->speed_hz || t->bits_per_word) {
898 par_override = 1;
899 status = omap2_mcspi_setup_transfer(spi, t);
900 if (status < 0)
901 break;
902 if (!t->speed_hz && !t->bits_per_word)
903 par_override = 0;
904 }
905
906 if (!cs_active) {
907 omap2_mcspi_force_cs(spi, 1);
908 cs_active = 1;
909 }
910
911 chconf = mcspi_cached_chconf0(spi);
912 chconf &= ~OMAP2_MCSPI_CHCONF_TRM_MASK;
913 chconf &= ~OMAP2_MCSPI_CHCONF_TURBO;
914
915 if (t->tx_buf == NULL)
916 chconf |= OMAP2_MCSPI_CHCONF_TRM_RX_ONLY;
917 else if (t->rx_buf == NULL)
918 chconf |= OMAP2_MCSPI_CHCONF_TRM_TX_ONLY;
919
920 if (cd && cd->turbo_mode && t->tx_buf == NULL) {
921 /* Turbo mode is for more than one word */
922 if (t->len > ((cs->word_len + 7) >> 3))
923 chconf |= OMAP2_MCSPI_CHCONF_TURBO;
924 }
925
926 mcspi_write_chconf0(spi, chconf);
927
928 if (t->len) {
929 unsigned count;
930
931 /* RX_ONLY mode needs dummy data in TX reg */
932 if (t->tx_buf == NULL)
933 __raw_writel(0, cs->base
934 + OMAP2_MCSPI_TX0);
935
936 if (m->is_dma_mapped || t->len >= DMA_MIN_BYTES)
937 count = omap2_mcspi_txrx_dma(spi, t);
938 else
939 count = omap2_mcspi_txrx_pio(spi, t);
940 m->actual_length += count;
941
942 if (count != t->len) {
943 status = -EIO;
944 break;
945 }
946 }
947
948 if (t->delay_usecs)
949 udelay(t->delay_usecs);
950
951 /* ignore the "leave it on after last xfer" hint */
952 if (t->cs_change) {
953 omap2_mcspi_force_cs(spi, 0);
954 cs_active = 0;
955 }
956 }
957
958 /* Restore defaults if they were overriden */
959 if (par_override) {
960 par_override = 0;
961 status = omap2_mcspi_setup_transfer(spi, NULL);
962 }
963
964 if (cs_active)
965 omap2_mcspi_force_cs(spi, 0);
966
967 omap2_mcspi_set_enable(spi, 0);
968
969 m->status = status;
970 m->complete(m->context);
971
972 spin_lock_irq(&mcspi->lock);
973 }
974
975 spin_unlock_irq(&mcspi->lock);
976
977 omap2_mcspi_disable_clocks(mcspi);
978 }
979
980 static int omap2_mcspi_transfer(struct spi_device *spi, struct spi_message *m)
981 {
982 struct omap2_mcspi *mcspi;
983 unsigned long flags;
984 struct spi_transfer *t;
985
986 m->actual_length = 0;
987 m->status = 0;
988
989 /* reject invalid messages and transfers */
990 if (list_empty(&m->transfers) || !m->complete)
991 return -EINVAL;
992 list_for_each_entry(t, &m->transfers, transfer_list) {
993 const void *tx_buf = t->tx_buf;
994 void *rx_buf = t->rx_buf;
995 unsigned len = t->len;
996
997 if (t->speed_hz > OMAP2_MCSPI_MAX_FREQ
998 || (len && !(rx_buf || tx_buf))
999 || (t->bits_per_word &&
1000 ( t->bits_per_word < 4
1001 || t->bits_per_word > 32))) {
1002 dev_dbg(&spi->dev, "transfer: %d Hz, %d %s%s, %d bpw\n",
1003 t->speed_hz,
1004 len,
1005 tx_buf ? "tx" : "",
1006 rx_buf ? "rx" : "",
1007 t->bits_per_word);
1008 return -EINVAL;
1009 }
1010 if (t->speed_hz && t->speed_hz < (OMAP2_MCSPI_MAX_FREQ >> 15)) {
1011 dev_dbg(&spi->dev, "speed_hz %d below minimum %d Hz\n",
1012 t->speed_hz,
1013 OMAP2_MCSPI_MAX_FREQ >> 15);
1014 return -EINVAL;
1015 }
1016
1017 if (m->is_dma_mapped || len < DMA_MIN_BYTES)
1018 continue;
1019
1020 if (tx_buf != NULL) {
1021 t->tx_dma = dma_map_single(&spi->dev, (void *) tx_buf,
1022 len, DMA_TO_DEVICE);
1023 if (dma_mapping_error(&spi->dev, t->tx_dma)) {
1024 dev_dbg(&spi->dev, "dma %cX %d bytes error\n",
1025 'T', len);
1026 return -EINVAL;
1027 }
1028 }
1029 if (rx_buf != NULL) {
1030 t->rx_dma = dma_map_single(&spi->dev, rx_buf, t->len,
1031 DMA_FROM_DEVICE);
1032 if (dma_mapping_error(&spi->dev, t->rx_dma)) {
1033 dev_dbg(&spi->dev, "dma %cX %d bytes error\n",
1034 'R', len);
1035 if (tx_buf != NULL)
1036 dma_unmap_single(&spi->dev, t->tx_dma,
1037 len, DMA_TO_DEVICE);
1038 return -EINVAL;
1039 }
1040 }
1041 }
1042
1043 mcspi = spi_master_get_devdata(spi->master);
1044
1045 spin_lock_irqsave(&mcspi->lock, flags);
1046 list_add_tail(&m->queue, &mcspi->msg_queue);
1047 queue_work(mcspi->wq, &mcspi->work);
1048 spin_unlock_irqrestore(&mcspi->lock, flags);
1049
1050 return 0;
1051 }
1052
1053 static int __init omap2_mcspi_master_setup(struct omap2_mcspi *mcspi)
1054 {
1055 struct spi_master *master = mcspi->master;
1056 u32 tmp;
1057 int ret = 0;
1058
1059 ret = omap2_mcspi_enable_clocks(mcspi);
1060 if (ret < 0)
1061 return ret;
1062
1063 tmp = OMAP2_MCSPI_WAKEUPENABLE_WKEN;
1064 mcspi_write_reg(master, OMAP2_MCSPI_WAKEUPENABLE, tmp);
1065 omap2_mcspi_ctx[master->bus_num - 1].wakeupenable = tmp;
1066
1067 omap2_mcspi_set_master_mode(master);
1068 omap2_mcspi_disable_clocks(mcspi);
1069 return 0;
1070 }
1071
1072 static int omap_mcspi_runtime_resume(struct device *dev)
1073 {
1074 struct omap2_mcspi *mcspi;
1075 struct spi_master *master;
1076
1077 master = dev_get_drvdata(dev);
1078 mcspi = spi_master_get_devdata(master);
1079 omap2_mcspi_restore_ctx(mcspi);
1080
1081 return 0;
1082 }
1083
1084 static struct omap2_mcspi_platform_config omap2_pdata = {
1085 .regs_offset = 0,
1086 };
1087
1088 static struct omap2_mcspi_platform_config omap4_pdata = {
1089 .regs_offset = OMAP4_MCSPI_REG_OFFSET,
1090 };
1091
1092 static const struct of_device_id omap_mcspi_of_match[] = {
1093 {
1094 .compatible = "ti,omap2-mcspi",
1095 .data = &omap2_pdata,
1096 },
1097 {
1098 .compatible = "ti,omap4-mcspi",
1099 .data = &omap4_pdata,
1100 },
1101 { },
1102 };
1103 MODULE_DEVICE_TABLE(of, omap_mcspi_of_match);
1104
1105 static int __init omap2_mcspi_probe(struct platform_device *pdev)
1106 {
1107 struct spi_master *master;
1108 struct omap2_mcspi_platform_config *pdata;
1109 struct omap2_mcspi *mcspi;
1110 struct resource *r;
1111 int status = 0, i;
1112 char wq_name[20];
1113 u32 regs_offset = 0;
1114 static int bus_num = 1;
1115 struct device_node *node = pdev->dev.of_node;
1116 const struct of_device_id *match;
1117
1118 master = spi_alloc_master(&pdev->dev, sizeof *mcspi);
1119 if (master == NULL) {
1120 dev_dbg(&pdev->dev, "master allocation failed\n");
1121 return -ENOMEM;
1122 }
1123
1124 /* the spi->mode bits understood by this driver: */
1125 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1126
1127 master->setup = omap2_mcspi_setup;
1128 master->transfer = omap2_mcspi_transfer;
1129 master->cleanup = omap2_mcspi_cleanup;
1130 master->dev.of_node = node;
1131
1132 match = of_match_device(omap_mcspi_of_match, &pdev->dev);
1133 if (match) {
1134 u32 num_cs = 1; /* default number of chipselect */
1135 pdata = match->data;
1136
1137 of_property_read_u32(node, "ti,spi-num-cs", &num_cs);
1138 master->num_chipselect = num_cs;
1139 master->bus_num = bus_num++;
1140 } else {
1141 pdata = pdev->dev.platform_data;
1142 master->num_chipselect = pdata->num_cs;
1143 if (pdev->id != -1)
1144 master->bus_num = pdev->id;
1145 }
1146 regs_offset = pdata->regs_offset;
1147
1148 dev_set_drvdata(&pdev->dev, master);
1149
1150 mcspi = spi_master_get_devdata(master);
1151 mcspi->master = master;
1152
1153 sprintf(wq_name, "omap2_mcspi/%d", master->bus_num);
1154 mcspi->wq = alloc_workqueue(wq_name, WQ_MEM_RECLAIM, 1);
1155 if (mcspi->wq == NULL) {
1156 status = -ENOMEM;
1157 goto free_master;
1158 }
1159
1160 r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1161 if (r == NULL) {
1162 status = -ENODEV;
1163 goto free_master;
1164 }
1165
1166 r->start += regs_offset;
1167 r->end += regs_offset;
1168 mcspi->phys = r->start;
1169 if (!request_mem_region(r->start, resource_size(r),
1170 dev_name(&pdev->dev))) {
1171 status = -EBUSY;
1172 goto free_master;
1173 }
1174
1175 mcspi->base = ioremap(r->start, resource_size(r));
1176 if (!mcspi->base) {
1177 dev_dbg(&pdev->dev, "can't ioremap MCSPI\n");
1178 status = -ENOMEM;
1179 goto release_region;
1180 }
1181
1182 mcspi->dev = &pdev->dev;
1183 INIT_WORK(&mcspi->work, omap2_mcspi_work);
1184
1185 spin_lock_init(&mcspi->lock);
1186 INIT_LIST_HEAD(&mcspi->msg_queue);
1187 INIT_LIST_HEAD(&omap2_mcspi_ctx[master->bus_num - 1].cs);
1188
1189 mcspi->dma_channels = kcalloc(master->num_chipselect,
1190 sizeof(struct omap2_mcspi_dma),
1191 GFP_KERNEL);
1192
1193 if (mcspi->dma_channels == NULL)
1194 goto unmap_io;
1195
1196 for (i = 0; i < master->num_chipselect; i++) {
1197 char dma_ch_name[14];
1198 struct resource *dma_res;
1199
1200 sprintf(dma_ch_name, "rx%d", i);
1201 dma_res = platform_get_resource_byname(pdev, IORESOURCE_DMA,
1202 dma_ch_name);
1203 if (!dma_res) {
1204 dev_dbg(&pdev->dev, "cannot get DMA RX channel\n");
1205 status = -ENODEV;
1206 break;
1207 }
1208
1209 mcspi->dma_channels[i].dma_rx_channel = -1;
1210 mcspi->dma_channels[i].dma_rx_sync_dev = dma_res->start;
1211 sprintf(dma_ch_name, "tx%d", i);
1212 dma_res = platform_get_resource_byname(pdev, IORESOURCE_DMA,
1213 dma_ch_name);
1214 if (!dma_res) {
1215 dev_dbg(&pdev->dev, "cannot get DMA TX channel\n");
1216 status = -ENODEV;
1217 break;
1218 }
1219
1220 mcspi->dma_channels[i].dma_tx_channel = -1;
1221 mcspi->dma_channels[i].dma_tx_sync_dev = dma_res->start;
1222 }
1223
1224 if (status < 0)
1225 goto dma_chnl_free;
1226
1227 pm_runtime_enable(&pdev->dev);
1228
1229 if (status || omap2_mcspi_master_setup(mcspi) < 0)
1230 goto disable_pm;
1231
1232 status = spi_register_master(master);
1233 if (status < 0)
1234 goto err_spi_register;
1235
1236 return status;
1237
1238 err_spi_register:
1239 spi_master_put(master);
1240 disable_pm:
1241 pm_runtime_disable(&pdev->dev);
1242 dma_chnl_free:
1243 kfree(mcspi->dma_channels);
1244 unmap_io:
1245 iounmap(mcspi->base);
1246 release_region:
1247 release_mem_region(r->start, resource_size(r));
1248 free_master:
1249 kfree(master);
1250 platform_set_drvdata(pdev, NULL);
1251 return status;
1252 }
1253
1254 static int __exit omap2_mcspi_remove(struct platform_device *pdev)
1255 {
1256 struct spi_master *master;
1257 struct omap2_mcspi *mcspi;
1258 struct omap2_mcspi_dma *dma_channels;
1259 struct resource *r;
1260 void __iomem *base;
1261
1262 master = dev_get_drvdata(&pdev->dev);
1263 mcspi = spi_master_get_devdata(master);
1264 dma_channels = mcspi->dma_channels;
1265
1266 omap2_mcspi_disable_clocks(mcspi);
1267 pm_runtime_disable(&pdev->dev);
1268 r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1269 release_mem_region(r->start, resource_size(r));
1270
1271 base = mcspi->base;
1272 spi_unregister_master(master);
1273 iounmap(base);
1274 kfree(dma_channels);
1275 destroy_workqueue(mcspi->wq);
1276 platform_set_drvdata(pdev, NULL);
1277
1278 return 0;
1279 }
1280
1281 /* work with hotplug and coldplug */
1282 MODULE_ALIAS("platform:omap2_mcspi");
1283
1284 #ifdef CONFIG_SUSPEND
1285 /*
1286 * When SPI wake up from off-mode, CS is in activate state. If it was in
1287 * unactive state when driver was suspend, then force it to unactive state at
1288 * wake up.
1289 */
1290 static int omap2_mcspi_resume(struct device *dev)
1291 {
1292 struct spi_master *master = dev_get_drvdata(dev);
1293 struct omap2_mcspi *mcspi = spi_master_get_devdata(master);
1294 struct omap2_mcspi_cs *cs;
1295
1296 omap2_mcspi_enable_clocks(mcspi);
1297 list_for_each_entry(cs, &omap2_mcspi_ctx[master->bus_num - 1].cs,
1298 node) {
1299 if ((cs->chconf0 & OMAP2_MCSPI_CHCONF_FORCE) == 0) {
1300
1301 /*
1302 * We need to toggle CS state for OMAP take this
1303 * change in account.
1304 */
1305 MOD_REG_BIT(cs->chconf0, OMAP2_MCSPI_CHCONF_FORCE, 1);
1306 __raw_writel(cs->chconf0, cs->base + OMAP2_MCSPI_CHCONF0);
1307 MOD_REG_BIT(cs->chconf0, OMAP2_MCSPI_CHCONF_FORCE, 0);
1308 __raw_writel(cs->chconf0, cs->base + OMAP2_MCSPI_CHCONF0);
1309 }
1310 }
1311 omap2_mcspi_disable_clocks(mcspi);
1312 return 0;
1313 }
1314 #else
1315 #define omap2_mcspi_resume NULL
1316 #endif
1317
1318 static const struct dev_pm_ops omap2_mcspi_pm_ops = {
1319 .resume = omap2_mcspi_resume,
1320 .runtime_resume = omap_mcspi_runtime_resume,
1321 };
1322
1323 static struct platform_driver omap2_mcspi_driver = {
1324 .driver = {
1325 .name = "omap2_mcspi",
1326 .owner = THIS_MODULE,
1327 .pm = &omap2_mcspi_pm_ops,
1328 .of_match_table = omap_mcspi_of_match,
1329 },
1330 .remove = __exit_p(omap2_mcspi_remove),
1331 };
1332
1333
1334 static int __init omap2_mcspi_init(void)
1335 {
1336 return platform_driver_probe(&omap2_mcspi_driver, omap2_mcspi_probe);
1337 }
1338 subsys_initcall(omap2_mcspi_init);
1339
1340 static void __exit omap2_mcspi_exit(void)
1341 {
1342 platform_driver_unregister(&omap2_mcspi_driver);
1343
1344 }
1345 module_exit(omap2_mcspi_exit);
1346
1347 MODULE_LICENSE("GPL");