[COMMON] fimc-is2: fix GM1SP wrong settings
[GitHub/moto-9609/android_kernel_motorola_exynos9610.git] / drivers / spi / spi-fsl-espi.c
1 /*
2 * Freescale eSPI controller driver.
3 *
4 * Copyright 2010 Freescale Semiconductor, Inc.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License as published by the
8 * Free Software Foundation; either version 2 of the License, or (at your
9 * option) any later version.
10 */
11 #include <linux/delay.h>
12 #include <linux/err.h>
13 #include <linux/fsl_devices.h>
14 #include <linux/interrupt.h>
15 #include <linux/module.h>
16 #include <linux/mm.h>
17 #include <linux/of.h>
18 #include <linux/of_address.h>
19 #include <linux/of_irq.h>
20 #include <linux/of_platform.h>
21 #include <linux/platform_device.h>
22 #include <linux/spi/spi.h>
23 #include <linux/pm_runtime.h>
24 #include <sysdev/fsl_soc.h>
25
26 /* eSPI Controller registers */
27 #define ESPI_SPMODE 0x00 /* eSPI mode register */
28 #define ESPI_SPIE 0x04 /* eSPI event register */
29 #define ESPI_SPIM 0x08 /* eSPI mask register */
30 #define ESPI_SPCOM 0x0c /* eSPI command register */
31 #define ESPI_SPITF 0x10 /* eSPI transmit FIFO access register*/
32 #define ESPI_SPIRF 0x14 /* eSPI receive FIFO access register*/
33 #define ESPI_SPMODE0 0x20 /* eSPI cs0 mode register */
34
35 #define ESPI_SPMODEx(x) (ESPI_SPMODE0 + (x) * 4)
36
37 /* eSPI Controller mode register definitions */
38 #define SPMODE_ENABLE BIT(31)
39 #define SPMODE_LOOP BIT(30)
40 #define SPMODE_TXTHR(x) ((x) << 8)
41 #define SPMODE_RXTHR(x) ((x) << 0)
42
43 /* eSPI Controller CS mode register definitions */
44 #define CSMODE_CI_INACTIVEHIGH BIT(31)
45 #define CSMODE_CP_BEGIN_EDGECLK BIT(30)
46 #define CSMODE_REV BIT(29)
47 #define CSMODE_DIV16 BIT(28)
48 #define CSMODE_PM(x) ((x) << 24)
49 #define CSMODE_POL_1 BIT(20)
50 #define CSMODE_LEN(x) ((x) << 16)
51 #define CSMODE_BEF(x) ((x) << 12)
52 #define CSMODE_AFT(x) ((x) << 8)
53 #define CSMODE_CG(x) ((x) << 3)
54
55 #define FSL_ESPI_FIFO_SIZE 32
56 #define FSL_ESPI_RXTHR 15
57
58 /* Default mode/csmode for eSPI controller */
59 #define SPMODE_INIT_VAL (SPMODE_TXTHR(4) | SPMODE_RXTHR(FSL_ESPI_RXTHR))
60 #define CSMODE_INIT_VAL (CSMODE_POL_1 | CSMODE_BEF(0) \
61 | CSMODE_AFT(0) | CSMODE_CG(1))
62
63 /* SPIE register values */
64 #define SPIE_RXCNT(reg) ((reg >> 24) & 0x3F)
65 #define SPIE_TXCNT(reg) ((reg >> 16) & 0x3F)
66 #define SPIE_TXE BIT(15) /* TX FIFO empty */
67 #define SPIE_DON BIT(14) /* TX done */
68 #define SPIE_RXT BIT(13) /* RX FIFO threshold */
69 #define SPIE_RXF BIT(12) /* RX FIFO full */
70 #define SPIE_TXT BIT(11) /* TX FIFO threshold*/
71 #define SPIE_RNE BIT(9) /* RX FIFO not empty */
72 #define SPIE_TNF BIT(8) /* TX FIFO not full */
73
74 /* SPIM register values */
75 #define SPIM_TXE BIT(15) /* TX FIFO empty */
76 #define SPIM_DON BIT(14) /* TX done */
77 #define SPIM_RXT BIT(13) /* RX FIFO threshold */
78 #define SPIM_RXF BIT(12) /* RX FIFO full */
79 #define SPIM_TXT BIT(11) /* TX FIFO threshold*/
80 #define SPIM_RNE BIT(9) /* RX FIFO not empty */
81 #define SPIM_TNF BIT(8) /* TX FIFO not full */
82
83 /* SPCOM register values */
84 #define SPCOM_CS(x) ((x) << 30)
85 #define SPCOM_DO BIT(28) /* Dual output */
86 #define SPCOM_TO BIT(27) /* TX only */
87 #define SPCOM_RXSKIP(x) ((x) << 16)
88 #define SPCOM_TRANLEN(x) ((x) << 0)
89
90 #define SPCOM_TRANLEN_MAX 0x10000 /* Max transaction length */
91
92 #define AUTOSUSPEND_TIMEOUT 2000
93
94 struct fsl_espi {
95 struct device *dev;
96 void __iomem *reg_base;
97
98 struct list_head *m_transfers;
99 struct spi_transfer *tx_t;
100 unsigned int tx_pos;
101 bool tx_done;
102 struct spi_transfer *rx_t;
103 unsigned int rx_pos;
104 bool rx_done;
105
106 bool swab;
107 unsigned int rxskip;
108
109 spinlock_t lock;
110
111 u32 spibrg; /* SPIBRG input clock */
112
113 struct completion done;
114 };
115
116 struct fsl_espi_cs {
117 u32 hw_mode;
118 };
119
120 static inline u32 fsl_espi_read_reg(struct fsl_espi *espi, int offset)
121 {
122 return ioread32be(espi->reg_base + offset);
123 }
124
125 static inline u16 fsl_espi_read_reg16(struct fsl_espi *espi, int offset)
126 {
127 return ioread16be(espi->reg_base + offset);
128 }
129
130 static inline u8 fsl_espi_read_reg8(struct fsl_espi *espi, int offset)
131 {
132 return ioread8(espi->reg_base + offset);
133 }
134
135 static inline void fsl_espi_write_reg(struct fsl_espi *espi, int offset,
136 u32 val)
137 {
138 iowrite32be(val, espi->reg_base + offset);
139 }
140
141 static inline void fsl_espi_write_reg16(struct fsl_espi *espi, int offset,
142 u16 val)
143 {
144 iowrite16be(val, espi->reg_base + offset);
145 }
146
147 static inline void fsl_espi_write_reg8(struct fsl_espi *espi, int offset,
148 u8 val)
149 {
150 iowrite8(val, espi->reg_base + offset);
151 }
152
153 static int fsl_espi_check_message(struct spi_message *m)
154 {
155 struct fsl_espi *espi = spi_master_get_devdata(m->spi->master);
156 struct spi_transfer *t, *first;
157
158 if (m->frame_length > SPCOM_TRANLEN_MAX) {
159 dev_err(espi->dev, "message too long, size is %u bytes\n",
160 m->frame_length);
161 return -EMSGSIZE;
162 }
163
164 first = list_first_entry(&m->transfers, struct spi_transfer,
165 transfer_list);
166
167 list_for_each_entry(t, &m->transfers, transfer_list) {
168 if (first->bits_per_word != t->bits_per_word ||
169 first->speed_hz != t->speed_hz) {
170 dev_err(espi->dev, "bits_per_word/speed_hz should be the same for all transfers\n");
171 return -EINVAL;
172 }
173 }
174
175 /* ESPI supports MSB-first transfers for word size 8 / 16 only */
176 if (!(m->spi->mode & SPI_LSB_FIRST) && first->bits_per_word != 8 &&
177 first->bits_per_word != 16) {
178 dev_err(espi->dev,
179 "MSB-first transfer not supported for wordsize %u\n",
180 first->bits_per_word);
181 return -EINVAL;
182 }
183
184 return 0;
185 }
186
187 static unsigned int fsl_espi_check_rxskip_mode(struct spi_message *m)
188 {
189 struct spi_transfer *t;
190 unsigned int i = 0, rxskip = 0;
191
192 /*
193 * prerequisites for ESPI rxskip mode:
194 * - message has two transfers
195 * - first transfer is a write and second is a read
196 *
197 * In addition the current low-level transfer mechanism requires
198 * that the rxskip bytes fit into the TX FIFO. Else the transfer
199 * would hang because after the first FSL_ESPI_FIFO_SIZE bytes
200 * the TX FIFO isn't re-filled.
201 */
202 list_for_each_entry(t, &m->transfers, transfer_list) {
203 if (i == 0) {
204 if (!t->tx_buf || t->rx_buf ||
205 t->len > FSL_ESPI_FIFO_SIZE)
206 return 0;
207 rxskip = t->len;
208 } else if (i == 1) {
209 if (t->tx_buf || !t->rx_buf)
210 return 0;
211 }
212 i++;
213 }
214
215 return i == 2 ? rxskip : 0;
216 }
217
218 static void fsl_espi_fill_tx_fifo(struct fsl_espi *espi, u32 events)
219 {
220 u32 tx_fifo_avail;
221 unsigned int tx_left;
222 const void *tx_buf;
223
224 /* if events is zero transfer has not started and tx fifo is empty */
225 tx_fifo_avail = events ? SPIE_TXCNT(events) : FSL_ESPI_FIFO_SIZE;
226 start:
227 tx_left = espi->tx_t->len - espi->tx_pos;
228 tx_buf = espi->tx_t->tx_buf;
229 while (tx_fifo_avail >= min(4U, tx_left) && tx_left) {
230 if (tx_left >= 4) {
231 if (!tx_buf)
232 fsl_espi_write_reg(espi, ESPI_SPITF, 0);
233 else if (espi->swab)
234 fsl_espi_write_reg(espi, ESPI_SPITF,
235 swahb32p(tx_buf + espi->tx_pos));
236 else
237 fsl_espi_write_reg(espi, ESPI_SPITF,
238 *(u32 *)(tx_buf + espi->tx_pos));
239 espi->tx_pos += 4;
240 tx_left -= 4;
241 tx_fifo_avail -= 4;
242 } else if (tx_left >= 2 && tx_buf && espi->swab) {
243 fsl_espi_write_reg16(espi, ESPI_SPITF,
244 swab16p(tx_buf + espi->tx_pos));
245 espi->tx_pos += 2;
246 tx_left -= 2;
247 tx_fifo_avail -= 2;
248 } else {
249 if (!tx_buf)
250 fsl_espi_write_reg8(espi, ESPI_SPITF, 0);
251 else
252 fsl_espi_write_reg8(espi, ESPI_SPITF,
253 *(u8 *)(tx_buf + espi->tx_pos));
254 espi->tx_pos += 1;
255 tx_left -= 1;
256 tx_fifo_avail -= 1;
257 }
258 }
259
260 if (!tx_left) {
261 /* Last transfer finished, in rxskip mode only one is needed */
262 if (list_is_last(&espi->tx_t->transfer_list,
263 espi->m_transfers) || espi->rxskip) {
264 espi->tx_done = true;
265 return;
266 }
267 espi->tx_t = list_next_entry(espi->tx_t, transfer_list);
268 espi->tx_pos = 0;
269 /* continue with next transfer if tx fifo is not full */
270 if (tx_fifo_avail)
271 goto start;
272 }
273 }
274
275 static void fsl_espi_read_rx_fifo(struct fsl_espi *espi, u32 events)
276 {
277 u32 rx_fifo_avail = SPIE_RXCNT(events);
278 unsigned int rx_left;
279 void *rx_buf;
280
281 start:
282 rx_left = espi->rx_t->len - espi->rx_pos;
283 rx_buf = espi->rx_t->rx_buf;
284 while (rx_fifo_avail >= min(4U, rx_left) && rx_left) {
285 if (rx_left >= 4) {
286 u32 val = fsl_espi_read_reg(espi, ESPI_SPIRF);
287
288 if (rx_buf && espi->swab)
289 *(u32 *)(rx_buf + espi->rx_pos) = swahb32(val);
290 else if (rx_buf)
291 *(u32 *)(rx_buf + espi->rx_pos) = val;
292 espi->rx_pos += 4;
293 rx_left -= 4;
294 rx_fifo_avail -= 4;
295 } else if (rx_left >= 2 && rx_buf && espi->swab) {
296 u16 val = fsl_espi_read_reg16(espi, ESPI_SPIRF);
297
298 *(u16 *)(rx_buf + espi->rx_pos) = swab16(val);
299 espi->rx_pos += 2;
300 rx_left -= 2;
301 rx_fifo_avail -= 2;
302 } else {
303 u8 val = fsl_espi_read_reg8(espi, ESPI_SPIRF);
304
305 if (rx_buf)
306 *(u8 *)(rx_buf + espi->rx_pos) = val;
307 espi->rx_pos += 1;
308 rx_left -= 1;
309 rx_fifo_avail -= 1;
310 }
311 }
312
313 if (!rx_left) {
314 if (list_is_last(&espi->rx_t->transfer_list,
315 espi->m_transfers)) {
316 espi->rx_done = true;
317 return;
318 }
319 espi->rx_t = list_next_entry(espi->rx_t, transfer_list);
320 espi->rx_pos = 0;
321 /* continue with next transfer if rx fifo is not empty */
322 if (rx_fifo_avail)
323 goto start;
324 }
325 }
326
327 static void fsl_espi_setup_transfer(struct spi_device *spi,
328 struct spi_transfer *t)
329 {
330 struct fsl_espi *espi = spi_master_get_devdata(spi->master);
331 int bits_per_word = t ? t->bits_per_word : spi->bits_per_word;
332 u32 pm, hz = t ? t->speed_hz : spi->max_speed_hz;
333 struct fsl_espi_cs *cs = spi_get_ctldata(spi);
334 u32 hw_mode_old = cs->hw_mode;
335
336 /* mask out bits we are going to set */
337 cs->hw_mode &= ~(CSMODE_LEN(0xF) | CSMODE_DIV16 | CSMODE_PM(0xF));
338
339 cs->hw_mode |= CSMODE_LEN(bits_per_word - 1);
340
341 pm = DIV_ROUND_UP(espi->spibrg, hz * 4) - 1;
342
343 if (pm > 15) {
344 cs->hw_mode |= CSMODE_DIV16;
345 pm = DIV_ROUND_UP(espi->spibrg, hz * 16 * 4) - 1;
346 }
347
348 cs->hw_mode |= CSMODE_PM(pm);
349
350 /* don't write the mode register if the mode doesn't change */
351 if (cs->hw_mode != hw_mode_old)
352 fsl_espi_write_reg(espi, ESPI_SPMODEx(spi->chip_select),
353 cs->hw_mode);
354 }
355
356 static int fsl_espi_bufs(struct spi_device *spi, struct spi_transfer *t)
357 {
358 struct fsl_espi *espi = spi_master_get_devdata(spi->master);
359 unsigned int rx_len = t->len;
360 u32 mask, spcom;
361 int ret;
362
363 reinit_completion(&espi->done);
364
365 /* Set SPCOM[CS] and SPCOM[TRANLEN] field */
366 spcom = SPCOM_CS(spi->chip_select);
367 spcom |= SPCOM_TRANLEN(t->len - 1);
368
369 /* configure RXSKIP mode */
370 if (espi->rxskip) {
371 spcom |= SPCOM_RXSKIP(espi->rxskip);
372 rx_len = t->len - espi->rxskip;
373 if (t->rx_nbits == SPI_NBITS_DUAL)
374 spcom |= SPCOM_DO;
375 }
376
377 fsl_espi_write_reg(espi, ESPI_SPCOM, spcom);
378
379 /* enable interrupts */
380 mask = SPIM_DON;
381 if (rx_len > FSL_ESPI_FIFO_SIZE)
382 mask |= SPIM_RXT;
383 fsl_espi_write_reg(espi, ESPI_SPIM, mask);
384
385 /* Prevent filling the fifo from getting interrupted */
386 spin_lock_irq(&espi->lock);
387 fsl_espi_fill_tx_fifo(espi, 0);
388 spin_unlock_irq(&espi->lock);
389
390 /* Won't hang up forever, SPI bus sometimes got lost interrupts... */
391 ret = wait_for_completion_timeout(&espi->done, 2 * HZ);
392 if (ret == 0)
393 dev_err(espi->dev, "Transfer timed out!\n");
394
395 /* disable rx ints */
396 fsl_espi_write_reg(espi, ESPI_SPIM, 0);
397
398 return ret == 0 ? -ETIMEDOUT : 0;
399 }
400
401 static int fsl_espi_trans(struct spi_message *m, struct spi_transfer *trans)
402 {
403 struct fsl_espi *espi = spi_master_get_devdata(m->spi->master);
404 struct spi_device *spi = m->spi;
405 int ret;
406
407 /* In case of LSB-first and bits_per_word > 8 byte-swap all words */
408 espi->swab = spi->mode & SPI_LSB_FIRST && trans->bits_per_word > 8;
409
410 espi->m_transfers = &m->transfers;
411 espi->tx_t = list_first_entry(&m->transfers, struct spi_transfer,
412 transfer_list);
413 espi->tx_pos = 0;
414 espi->tx_done = false;
415 espi->rx_t = list_first_entry(&m->transfers, struct spi_transfer,
416 transfer_list);
417 espi->rx_pos = 0;
418 espi->rx_done = false;
419
420 espi->rxskip = fsl_espi_check_rxskip_mode(m);
421 if (trans->rx_nbits == SPI_NBITS_DUAL && !espi->rxskip) {
422 dev_err(espi->dev, "Dual output mode requires RXSKIP mode!\n");
423 return -EINVAL;
424 }
425
426 /* In RXSKIP mode skip first transfer for reads */
427 if (espi->rxskip)
428 espi->rx_t = list_next_entry(espi->rx_t, transfer_list);
429
430 fsl_espi_setup_transfer(spi, trans);
431
432 ret = fsl_espi_bufs(spi, trans);
433
434 if (trans->delay_usecs)
435 udelay(trans->delay_usecs);
436
437 return ret;
438 }
439
440 static int fsl_espi_do_one_msg(struct spi_master *master,
441 struct spi_message *m)
442 {
443 unsigned int delay_usecs = 0, rx_nbits = 0;
444 struct spi_transfer *t, trans = {};
445 int ret;
446
447 ret = fsl_espi_check_message(m);
448 if (ret)
449 goto out;
450
451 list_for_each_entry(t, &m->transfers, transfer_list) {
452 if (t->delay_usecs > delay_usecs)
453 delay_usecs = t->delay_usecs;
454 if (t->rx_nbits > rx_nbits)
455 rx_nbits = t->rx_nbits;
456 }
457
458 t = list_first_entry(&m->transfers, struct spi_transfer,
459 transfer_list);
460
461 trans.len = m->frame_length;
462 trans.speed_hz = t->speed_hz;
463 trans.bits_per_word = t->bits_per_word;
464 trans.delay_usecs = delay_usecs;
465 trans.rx_nbits = rx_nbits;
466
467 if (trans.len)
468 ret = fsl_espi_trans(m, &trans);
469
470 m->actual_length = ret ? 0 : trans.len;
471 out:
472 if (m->status == -EINPROGRESS)
473 m->status = ret;
474
475 spi_finalize_current_message(master);
476
477 return ret;
478 }
479
480 static int fsl_espi_setup(struct spi_device *spi)
481 {
482 struct fsl_espi *espi;
483 u32 loop_mode;
484 struct fsl_espi_cs *cs = spi_get_ctldata(spi);
485
486 if (!cs) {
487 cs = kzalloc(sizeof(*cs), GFP_KERNEL);
488 if (!cs)
489 return -ENOMEM;
490 spi_set_ctldata(spi, cs);
491 }
492
493 espi = spi_master_get_devdata(spi->master);
494
495 pm_runtime_get_sync(espi->dev);
496
497 cs->hw_mode = fsl_espi_read_reg(espi, ESPI_SPMODEx(spi->chip_select));
498 /* mask out bits we are going to set */
499 cs->hw_mode &= ~(CSMODE_CP_BEGIN_EDGECLK | CSMODE_CI_INACTIVEHIGH
500 | CSMODE_REV);
501
502 if (spi->mode & SPI_CPHA)
503 cs->hw_mode |= CSMODE_CP_BEGIN_EDGECLK;
504 if (spi->mode & SPI_CPOL)
505 cs->hw_mode |= CSMODE_CI_INACTIVEHIGH;
506 if (!(spi->mode & SPI_LSB_FIRST))
507 cs->hw_mode |= CSMODE_REV;
508
509 /* Handle the loop mode */
510 loop_mode = fsl_espi_read_reg(espi, ESPI_SPMODE);
511 loop_mode &= ~SPMODE_LOOP;
512 if (spi->mode & SPI_LOOP)
513 loop_mode |= SPMODE_LOOP;
514 fsl_espi_write_reg(espi, ESPI_SPMODE, loop_mode);
515
516 fsl_espi_setup_transfer(spi, NULL);
517
518 pm_runtime_mark_last_busy(espi->dev);
519 pm_runtime_put_autosuspend(espi->dev);
520
521 return 0;
522 }
523
524 static void fsl_espi_cleanup(struct spi_device *spi)
525 {
526 struct fsl_espi_cs *cs = spi_get_ctldata(spi);
527
528 kfree(cs);
529 spi_set_ctldata(spi, NULL);
530 }
531
532 static void fsl_espi_cpu_irq(struct fsl_espi *espi, u32 events)
533 {
534 if (!espi->rx_done)
535 fsl_espi_read_rx_fifo(espi, events);
536
537 if (!espi->tx_done)
538 fsl_espi_fill_tx_fifo(espi, events);
539
540 if (!espi->tx_done || !espi->rx_done)
541 return;
542
543 /* we're done, but check for errors before returning */
544 events = fsl_espi_read_reg(espi, ESPI_SPIE);
545
546 if (!(events & SPIE_DON))
547 dev_err(espi->dev,
548 "Transfer done but SPIE_DON isn't set!\n");
549
550 if (SPIE_RXCNT(events) || SPIE_TXCNT(events) != FSL_ESPI_FIFO_SIZE)
551 dev_err(espi->dev, "Transfer done but rx/tx fifo's aren't empty!\n");
552
553 complete(&espi->done);
554 }
555
556 static irqreturn_t fsl_espi_irq(s32 irq, void *context_data)
557 {
558 struct fsl_espi *espi = context_data;
559 u32 events;
560
561 spin_lock(&espi->lock);
562
563 /* Get interrupt events(tx/rx) */
564 events = fsl_espi_read_reg(espi, ESPI_SPIE);
565 if (!events) {
566 spin_unlock(&espi->lock);
567 return IRQ_NONE;
568 }
569
570 dev_vdbg(espi->dev, "%s: events %x\n", __func__, events);
571
572 fsl_espi_cpu_irq(espi, events);
573
574 /* Clear the events */
575 fsl_espi_write_reg(espi, ESPI_SPIE, events);
576
577 spin_unlock(&espi->lock);
578
579 return IRQ_HANDLED;
580 }
581
582 #ifdef CONFIG_PM
583 static int fsl_espi_runtime_suspend(struct device *dev)
584 {
585 struct spi_master *master = dev_get_drvdata(dev);
586 struct fsl_espi *espi = spi_master_get_devdata(master);
587 u32 regval;
588
589 regval = fsl_espi_read_reg(espi, ESPI_SPMODE);
590 regval &= ~SPMODE_ENABLE;
591 fsl_espi_write_reg(espi, ESPI_SPMODE, regval);
592
593 return 0;
594 }
595
596 static int fsl_espi_runtime_resume(struct device *dev)
597 {
598 struct spi_master *master = dev_get_drvdata(dev);
599 struct fsl_espi *espi = spi_master_get_devdata(master);
600 u32 regval;
601
602 regval = fsl_espi_read_reg(espi, ESPI_SPMODE);
603 regval |= SPMODE_ENABLE;
604 fsl_espi_write_reg(espi, ESPI_SPMODE, regval);
605
606 return 0;
607 }
608 #endif
609
610 static size_t fsl_espi_max_message_size(struct spi_device *spi)
611 {
612 return SPCOM_TRANLEN_MAX;
613 }
614
615 static void fsl_espi_init_regs(struct device *dev, bool initial)
616 {
617 struct spi_master *master = dev_get_drvdata(dev);
618 struct fsl_espi *espi = spi_master_get_devdata(master);
619 struct device_node *nc;
620 u32 csmode, cs, prop;
621 int ret;
622
623 /* SPI controller initializations */
624 fsl_espi_write_reg(espi, ESPI_SPMODE, 0);
625 fsl_espi_write_reg(espi, ESPI_SPIM, 0);
626 fsl_espi_write_reg(espi, ESPI_SPCOM, 0);
627 fsl_espi_write_reg(espi, ESPI_SPIE, 0xffffffff);
628
629 /* Init eSPI CS mode register */
630 for_each_available_child_of_node(master->dev.of_node, nc) {
631 /* get chip select */
632 ret = of_property_read_u32(nc, "reg", &cs);
633 if (ret || cs >= master->num_chipselect)
634 continue;
635
636 csmode = CSMODE_INIT_VAL;
637
638 /* check if CSBEF is set in device tree */
639 ret = of_property_read_u32(nc, "fsl,csbef", &prop);
640 if (!ret) {
641 csmode &= ~(CSMODE_BEF(0xf));
642 csmode |= CSMODE_BEF(prop);
643 }
644
645 /* check if CSAFT is set in device tree */
646 ret = of_property_read_u32(nc, "fsl,csaft", &prop);
647 if (!ret) {
648 csmode &= ~(CSMODE_AFT(0xf));
649 csmode |= CSMODE_AFT(prop);
650 }
651
652 fsl_espi_write_reg(espi, ESPI_SPMODEx(cs), csmode);
653
654 if (initial)
655 dev_info(dev, "cs=%u, init_csmode=0x%x\n", cs, csmode);
656 }
657
658 /* Enable SPI interface */
659 fsl_espi_write_reg(espi, ESPI_SPMODE, SPMODE_INIT_VAL | SPMODE_ENABLE);
660 }
661
662 static int fsl_espi_probe(struct device *dev, struct resource *mem,
663 unsigned int irq, unsigned int num_cs)
664 {
665 struct spi_master *master;
666 struct fsl_espi *espi;
667 int ret;
668
669 master = spi_alloc_master(dev, sizeof(struct fsl_espi));
670 if (!master)
671 return -ENOMEM;
672
673 dev_set_drvdata(dev, master);
674
675 master->mode_bits = SPI_RX_DUAL | SPI_CPOL | SPI_CPHA | SPI_CS_HIGH |
676 SPI_LSB_FIRST | SPI_LOOP;
677 master->dev.of_node = dev->of_node;
678 master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16);
679 master->setup = fsl_espi_setup;
680 master->cleanup = fsl_espi_cleanup;
681 master->transfer_one_message = fsl_espi_do_one_msg;
682 master->auto_runtime_pm = true;
683 master->max_message_size = fsl_espi_max_message_size;
684 master->num_chipselect = num_cs;
685
686 espi = spi_master_get_devdata(master);
687 spin_lock_init(&espi->lock);
688
689 espi->dev = dev;
690 espi->spibrg = fsl_get_sys_freq();
691 if (espi->spibrg == -1) {
692 dev_err(dev, "Can't get sys frequency!\n");
693 ret = -EINVAL;
694 goto err_probe;
695 }
696 /* determined by clock divider fields DIV16/PM in register SPMODEx */
697 master->min_speed_hz = DIV_ROUND_UP(espi->spibrg, 4 * 16 * 16);
698 master->max_speed_hz = DIV_ROUND_UP(espi->spibrg, 4);
699
700 init_completion(&espi->done);
701
702 espi->reg_base = devm_ioremap_resource(dev, mem);
703 if (IS_ERR(espi->reg_base)) {
704 ret = PTR_ERR(espi->reg_base);
705 goto err_probe;
706 }
707
708 /* Register for SPI Interrupt */
709 ret = devm_request_irq(dev, irq, fsl_espi_irq, 0, "fsl_espi", espi);
710 if (ret)
711 goto err_probe;
712
713 fsl_espi_init_regs(dev, true);
714
715 pm_runtime_set_autosuspend_delay(dev, AUTOSUSPEND_TIMEOUT);
716 pm_runtime_use_autosuspend(dev);
717 pm_runtime_set_active(dev);
718 pm_runtime_enable(dev);
719 pm_runtime_get_sync(dev);
720
721 ret = devm_spi_register_master(dev, master);
722 if (ret < 0)
723 goto err_pm;
724
725 dev_info(dev, "at 0x%p (irq = %u)\n", espi->reg_base, irq);
726
727 pm_runtime_mark_last_busy(dev);
728 pm_runtime_put_autosuspend(dev);
729
730 return 0;
731
732 err_pm:
733 pm_runtime_put_noidle(dev);
734 pm_runtime_disable(dev);
735 pm_runtime_set_suspended(dev);
736 err_probe:
737 spi_master_put(master);
738 return ret;
739 }
740
741 static int of_fsl_espi_get_chipselects(struct device *dev)
742 {
743 struct device_node *np = dev->of_node;
744 u32 num_cs;
745 int ret;
746
747 ret = of_property_read_u32(np, "fsl,espi-num-chipselects", &num_cs);
748 if (ret) {
749 dev_err(dev, "No 'fsl,espi-num-chipselects' property\n");
750 return 0;
751 }
752
753 return num_cs;
754 }
755
756 static int of_fsl_espi_probe(struct platform_device *ofdev)
757 {
758 struct device *dev = &ofdev->dev;
759 struct device_node *np = ofdev->dev.of_node;
760 struct resource mem;
761 unsigned int irq, num_cs;
762 int ret;
763
764 if (of_property_read_bool(np, "mode")) {
765 dev_err(dev, "mode property is not supported on ESPI!\n");
766 return -EINVAL;
767 }
768
769 num_cs = of_fsl_espi_get_chipselects(dev);
770 if (!num_cs)
771 return -EINVAL;
772
773 ret = of_address_to_resource(np, 0, &mem);
774 if (ret)
775 return ret;
776
777 irq = irq_of_parse_and_map(np, 0);
778 if (!irq)
779 return -EINVAL;
780
781 return fsl_espi_probe(dev, &mem, irq, num_cs);
782 }
783
784 static int of_fsl_espi_remove(struct platform_device *dev)
785 {
786 pm_runtime_disable(&dev->dev);
787
788 return 0;
789 }
790
791 #ifdef CONFIG_PM_SLEEP
792 static int of_fsl_espi_suspend(struct device *dev)
793 {
794 struct spi_master *master = dev_get_drvdata(dev);
795 int ret;
796
797 ret = spi_master_suspend(master);
798 if (ret) {
799 dev_warn(dev, "cannot suspend master\n");
800 return ret;
801 }
802
803 return pm_runtime_force_suspend(dev);
804 }
805
806 static int of_fsl_espi_resume(struct device *dev)
807 {
808 struct spi_master *master = dev_get_drvdata(dev);
809 int ret;
810
811 fsl_espi_init_regs(dev, false);
812
813 ret = pm_runtime_force_resume(dev);
814 if (ret < 0)
815 return ret;
816
817 return spi_master_resume(master);
818 }
819 #endif /* CONFIG_PM_SLEEP */
820
821 static const struct dev_pm_ops espi_pm = {
822 SET_RUNTIME_PM_OPS(fsl_espi_runtime_suspend,
823 fsl_espi_runtime_resume, NULL)
824 SET_SYSTEM_SLEEP_PM_OPS(of_fsl_espi_suspend, of_fsl_espi_resume)
825 };
826
827 static const struct of_device_id of_fsl_espi_match[] = {
828 { .compatible = "fsl,mpc8536-espi" },
829 {}
830 };
831 MODULE_DEVICE_TABLE(of, of_fsl_espi_match);
832
833 static struct platform_driver fsl_espi_driver = {
834 .driver = {
835 .name = "fsl_espi",
836 .of_match_table = of_fsl_espi_match,
837 .pm = &espi_pm,
838 },
839 .probe = of_fsl_espi_probe,
840 .remove = of_fsl_espi_remove,
841 };
842 module_platform_driver(fsl_espi_driver);
843
844 MODULE_AUTHOR("Mingkai Hu");
845 MODULE_DESCRIPTION("Enhanced Freescale SPI Driver");
846 MODULE_LICENSE("GPL");