35c0dd94566814c484758bae43d354bf4e282e13
[GitHub/moto-9609/android_kernel_motorola_exynos9610.git] / drivers / spi / spi-fsl-dspi.c
1 /*
2 * drivers/spi/spi-fsl-dspi.c
3 *
4 * Copyright 2013 Freescale Semiconductor, Inc.
5 *
6 * Freescale DSPI driver
7 * This file contains a driver for the Freescale DSPI
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 */
15
16 #include <linux/clk.h>
17 #include <linux/delay.h>
18 #include <linux/err.h>
19 #include <linux/errno.h>
20 #include <linux/interrupt.h>
21 #include <linux/io.h>
22 #include <linux/kernel.h>
23 #include <linux/math64.h>
24 #include <linux/module.h>
25 #include <linux/of.h>
26 #include <linux/of_device.h>
27 #include <linux/pinctrl/consumer.h>
28 #include <linux/platform_device.h>
29 #include <linux/pm_runtime.h>
30 #include <linux/regmap.h>
31 #include <linux/sched.h>
32 #include <linux/spi/spi.h>
33 #include <linux/spi/spi_bitbang.h>
34 #include <linux/time.h>
35
36 #define DRIVER_NAME "fsl-dspi"
37
38 #define TRAN_STATE_RX_VOID 0x01
39 #define TRAN_STATE_TX_VOID 0x02
40 #define TRAN_STATE_WORD_ODD_NUM 0x04
41
42 #define DSPI_FIFO_SIZE 4
43
44 #define SPI_MCR 0x00
45 #define SPI_MCR_MASTER (1 << 31)
46 #define SPI_MCR_PCSIS (0x3F << 16)
47 #define SPI_MCR_CLR_TXF (1 << 11)
48 #define SPI_MCR_CLR_RXF (1 << 10)
49
50 #define SPI_TCR 0x08
51 #define SPI_TCR_GET_TCNT(x) (((x) & 0xffff0000) >> 16)
52
53 #define SPI_CTAR(x) (0x0c + (((x) & 0x3) * 4))
54 #define SPI_CTAR_FMSZ(x) (((x) & 0x0000000f) << 27)
55 #define SPI_CTAR_CPOL(x) ((x) << 26)
56 #define SPI_CTAR_CPHA(x) ((x) << 25)
57 #define SPI_CTAR_LSBFE(x) ((x) << 24)
58 #define SPI_CTAR_PCSSCK(x) (((x) & 0x00000003) << 22)
59 #define SPI_CTAR_PASC(x) (((x) & 0x00000003) << 20)
60 #define SPI_CTAR_PDT(x) (((x) & 0x00000003) << 18)
61 #define SPI_CTAR_PBR(x) (((x) & 0x00000003) << 16)
62 #define SPI_CTAR_CSSCK(x) (((x) & 0x0000000f) << 12)
63 #define SPI_CTAR_ASC(x) (((x) & 0x0000000f) << 8)
64 #define SPI_CTAR_DT(x) (((x) & 0x0000000f) << 4)
65 #define SPI_CTAR_BR(x) ((x) & 0x0000000f)
66 #define SPI_CTAR_SCALE_BITS 0xf
67
68 #define SPI_CTAR0_SLAVE 0x0c
69
70 #define SPI_SR 0x2c
71 #define SPI_SR_EOQF 0x10000000
72 #define SPI_SR_TCFQF 0x80000000
73
74 #define SPI_RSER 0x30
75 #define SPI_RSER_EOQFE 0x10000000
76 #define SPI_RSER_TCFQE 0x80000000
77
78 #define SPI_PUSHR 0x34
79 #define SPI_PUSHR_CONT (1 << 31)
80 #define SPI_PUSHR_CTAS(x) (((x) & 0x00000003) << 28)
81 #define SPI_PUSHR_EOQ (1 << 27)
82 #define SPI_PUSHR_CTCNT (1 << 26)
83 #define SPI_PUSHR_PCS(x) (((1 << x) & 0x0000003f) << 16)
84 #define SPI_PUSHR_TXDATA(x) ((x) & 0x0000ffff)
85
86 #define SPI_PUSHR_SLAVE 0x34
87
88 #define SPI_POPR 0x38
89 #define SPI_POPR_RXDATA(x) ((x) & 0x0000ffff)
90
91 #define SPI_TXFR0 0x3c
92 #define SPI_TXFR1 0x40
93 #define SPI_TXFR2 0x44
94 #define SPI_TXFR3 0x48
95 #define SPI_RXFR0 0x7c
96 #define SPI_RXFR1 0x80
97 #define SPI_RXFR2 0x84
98 #define SPI_RXFR3 0x88
99
100 #define SPI_FRAME_BITS(bits) SPI_CTAR_FMSZ((bits) - 1)
101 #define SPI_FRAME_BITS_MASK SPI_CTAR_FMSZ(0xf)
102 #define SPI_FRAME_BITS_16 SPI_CTAR_FMSZ(0xf)
103 #define SPI_FRAME_BITS_8 SPI_CTAR_FMSZ(0x7)
104
105 #define SPI_CS_INIT 0x01
106 #define SPI_CS_ASSERT 0x02
107 #define SPI_CS_DROP 0x04
108
109 #define SPI_TCR_TCNT_MAX 0x10000
110
111 struct chip_data {
112 u32 mcr_val;
113 u32 ctar_val;
114 u16 void_write_data;
115 };
116
117 enum dspi_trans_mode {
118 DSPI_EOQ_MODE = 0,
119 DSPI_TCFQ_MODE,
120 };
121
122 struct fsl_dspi_devtype_data {
123 enum dspi_trans_mode trans_mode;
124 u8 max_clock_factor;
125 };
126
127 static const struct fsl_dspi_devtype_data vf610_data = {
128 .trans_mode = DSPI_EOQ_MODE,
129 .max_clock_factor = 2,
130 };
131
132 static const struct fsl_dspi_devtype_data ls1021a_v1_data = {
133 .trans_mode = DSPI_TCFQ_MODE,
134 .max_clock_factor = 8,
135 };
136
137 static const struct fsl_dspi_devtype_data ls2085a_data = {
138 .trans_mode = DSPI_TCFQ_MODE,
139 .max_clock_factor = 8,
140 };
141
142 struct fsl_dspi {
143 struct spi_master *master;
144 struct platform_device *pdev;
145
146 struct regmap *regmap;
147 int irq;
148 struct clk *clk;
149
150 struct spi_transfer *cur_transfer;
151 struct spi_message *cur_msg;
152 struct chip_data *cur_chip;
153 size_t len;
154 void *tx;
155 void *tx_end;
156 void *rx;
157 void *rx_end;
158 char dataflags;
159 u8 cs;
160 u16 void_write_data;
161 u32 cs_change;
162 const struct fsl_dspi_devtype_data *devtype_data;
163
164 wait_queue_head_t waitq;
165 u32 waitflags;
166
167 u32 spi_tcnt;
168 };
169
170 static inline int is_double_byte_mode(struct fsl_dspi *dspi)
171 {
172 unsigned int val;
173
174 regmap_read(dspi->regmap, SPI_CTAR(0), &val);
175
176 return ((val & SPI_FRAME_BITS_MASK) == SPI_FRAME_BITS(8)) ? 0 : 1;
177 }
178
179 static void hz_to_spi_baud(char *pbr, char *br, int speed_hz,
180 unsigned long clkrate)
181 {
182 /* Valid baud rate pre-scaler values */
183 int pbr_tbl[4] = {2, 3, 5, 7};
184 int brs[16] = { 2, 4, 6, 8,
185 16, 32, 64, 128,
186 256, 512, 1024, 2048,
187 4096, 8192, 16384, 32768 };
188 int scale_needed, scale, minscale = INT_MAX;
189 int i, j;
190
191 scale_needed = clkrate / speed_hz;
192 if (clkrate % speed_hz)
193 scale_needed++;
194
195 for (i = 0; i < ARRAY_SIZE(brs); i++)
196 for (j = 0; j < ARRAY_SIZE(pbr_tbl); j++) {
197 scale = brs[i] * pbr_tbl[j];
198 if (scale >= scale_needed) {
199 if (scale < minscale) {
200 minscale = scale;
201 *br = i;
202 *pbr = j;
203 }
204 break;
205 }
206 }
207
208 if (minscale == INT_MAX) {
209 pr_warn("Can not find valid baud rate,speed_hz is %d,clkrate is %ld, we use the max prescaler value.\n",
210 speed_hz, clkrate);
211 *pbr = ARRAY_SIZE(pbr_tbl) - 1;
212 *br = ARRAY_SIZE(brs) - 1;
213 }
214 }
215
216 static void ns_delay_scale(char *psc, char *sc, int delay_ns,
217 unsigned long clkrate)
218 {
219 int pscale_tbl[4] = {1, 3, 5, 7};
220 int scale_needed, scale, minscale = INT_MAX;
221 int i, j;
222 u32 remainder;
223
224 scale_needed = div_u64_rem((u64)delay_ns * clkrate, NSEC_PER_SEC,
225 &remainder);
226 if (remainder)
227 scale_needed++;
228
229 for (i = 0; i < ARRAY_SIZE(pscale_tbl); i++)
230 for (j = 0; j <= SPI_CTAR_SCALE_BITS; j++) {
231 scale = pscale_tbl[i] * (2 << j);
232 if (scale >= scale_needed) {
233 if (scale < minscale) {
234 minscale = scale;
235 *psc = i;
236 *sc = j;
237 }
238 break;
239 }
240 }
241
242 if (minscale == INT_MAX) {
243 pr_warn("Cannot find correct scale values for %dns delay at clkrate %ld, using max prescaler value",
244 delay_ns, clkrate);
245 *psc = ARRAY_SIZE(pscale_tbl) - 1;
246 *sc = SPI_CTAR_SCALE_BITS;
247 }
248 }
249
250 static u32 dspi_data_to_pushr(struct fsl_dspi *dspi, int tx_word)
251 {
252 u16 d16;
253
254 if (!(dspi->dataflags & TRAN_STATE_TX_VOID))
255 d16 = tx_word ? *(u16 *)dspi->tx : *(u8 *)dspi->tx;
256 else
257 d16 = dspi->void_write_data;
258
259 dspi->tx += tx_word + 1;
260 dspi->len -= tx_word + 1;
261
262 return SPI_PUSHR_TXDATA(d16) |
263 SPI_PUSHR_PCS(dspi->cs) |
264 SPI_PUSHR_CTAS(0) |
265 SPI_PUSHR_CONT;
266 }
267
268 static void dspi_data_from_popr(struct fsl_dspi *dspi, int rx_word)
269 {
270 u16 d;
271 unsigned int val;
272
273 regmap_read(dspi->regmap, SPI_POPR, &val);
274 d = SPI_POPR_RXDATA(val);
275
276 if (!(dspi->dataflags & TRAN_STATE_RX_VOID))
277 rx_word ? (*(u16 *)dspi->rx = d) : (*(u8 *)dspi->rx = d);
278
279 dspi->rx += rx_word + 1;
280 }
281
282 static int dspi_eoq_write(struct fsl_dspi *dspi)
283 {
284 int tx_count = 0;
285 int tx_word;
286 u32 dspi_pushr = 0;
287
288 tx_word = is_double_byte_mode(dspi);
289
290 while (dspi->len && (tx_count < DSPI_FIFO_SIZE)) {
291 /* If we are in word mode, only have a single byte to transfer
292 * switch to byte mode temporarily. Will switch back at the
293 * end of the transfer.
294 */
295 if (tx_word && (dspi->len == 1)) {
296 dspi->dataflags |= TRAN_STATE_WORD_ODD_NUM;
297 regmap_update_bits(dspi->regmap, SPI_CTAR(0),
298 SPI_FRAME_BITS_MASK, SPI_FRAME_BITS(8));
299 tx_word = 0;
300 }
301
302 dspi_pushr = dspi_data_to_pushr(dspi, tx_word);
303
304 if (dspi->len == 0 || tx_count == DSPI_FIFO_SIZE - 1) {
305 /* last transfer in the transfer */
306 dspi_pushr |= SPI_PUSHR_EOQ;
307 if ((dspi->cs_change) && (!dspi->len))
308 dspi_pushr &= ~SPI_PUSHR_CONT;
309 } else if (tx_word && (dspi->len == 1))
310 dspi_pushr |= SPI_PUSHR_EOQ;
311
312 regmap_write(dspi->regmap, SPI_PUSHR, dspi_pushr);
313
314 tx_count++;
315 }
316
317 return tx_count * (tx_word + 1);
318 }
319
320 static int dspi_eoq_read(struct fsl_dspi *dspi)
321 {
322 int rx_count = 0;
323 int rx_word = is_double_byte_mode(dspi);
324
325 while ((dspi->rx < dspi->rx_end)
326 && (rx_count < DSPI_FIFO_SIZE)) {
327 if (rx_word && (dspi->rx_end - dspi->rx) == 1)
328 rx_word = 0;
329
330 dspi_data_from_popr(dspi, rx_word);
331 rx_count++;
332 }
333
334 return rx_count;
335 }
336
337 static int dspi_tcfq_write(struct fsl_dspi *dspi)
338 {
339 int tx_word;
340 u32 dspi_pushr = 0;
341
342 tx_word = is_double_byte_mode(dspi);
343
344 if (tx_word && (dspi->len == 1)) {
345 dspi->dataflags |= TRAN_STATE_WORD_ODD_NUM;
346 regmap_update_bits(dspi->regmap, SPI_CTAR(0),
347 SPI_FRAME_BITS_MASK, SPI_FRAME_BITS(8));
348 tx_word = 0;
349 }
350
351 dspi_pushr = dspi_data_to_pushr(dspi, tx_word);
352
353 if ((dspi->cs_change) && (!dspi->len))
354 dspi_pushr &= ~SPI_PUSHR_CONT;
355
356 regmap_write(dspi->regmap, SPI_PUSHR, dspi_pushr);
357
358 return tx_word + 1;
359 }
360
361 static void dspi_tcfq_read(struct fsl_dspi *dspi)
362 {
363 int rx_word = is_double_byte_mode(dspi);
364
365 if (rx_word && (dspi->rx_end - dspi->rx) == 1)
366 rx_word = 0;
367
368 dspi_data_from_popr(dspi, rx_word);
369 }
370
371 static int dspi_transfer_one_message(struct spi_master *master,
372 struct spi_message *message)
373 {
374 struct fsl_dspi *dspi = spi_master_get_devdata(master);
375 struct spi_device *spi = message->spi;
376 struct spi_transfer *transfer;
377 int status = 0;
378 enum dspi_trans_mode trans_mode;
379 u32 spi_tcr;
380
381 regmap_read(dspi->regmap, SPI_TCR, &spi_tcr);
382 dspi->spi_tcnt = SPI_TCR_GET_TCNT(spi_tcr);
383
384 message->actual_length = 0;
385
386 list_for_each_entry(transfer, &message->transfers, transfer_list) {
387 dspi->cur_transfer = transfer;
388 dspi->cur_msg = message;
389 dspi->cur_chip = spi_get_ctldata(spi);
390 dspi->cs = spi->chip_select;
391 dspi->cs_change = 0;
392 if (list_is_last(&dspi->cur_transfer->transfer_list,
393 &dspi->cur_msg->transfers) || transfer->cs_change)
394 dspi->cs_change = 1;
395 dspi->void_write_data = dspi->cur_chip->void_write_data;
396
397 dspi->dataflags = 0;
398 dspi->tx = (void *)transfer->tx_buf;
399 dspi->tx_end = dspi->tx + transfer->len;
400 dspi->rx = transfer->rx_buf;
401 dspi->rx_end = dspi->rx + transfer->len;
402 dspi->len = transfer->len;
403
404 if (!dspi->rx)
405 dspi->dataflags |= TRAN_STATE_RX_VOID;
406
407 if (!dspi->tx)
408 dspi->dataflags |= TRAN_STATE_TX_VOID;
409
410 regmap_write(dspi->regmap, SPI_MCR, dspi->cur_chip->mcr_val);
411 regmap_update_bits(dspi->regmap, SPI_MCR,
412 SPI_MCR_CLR_TXF | SPI_MCR_CLR_RXF,
413 SPI_MCR_CLR_TXF | SPI_MCR_CLR_RXF);
414 regmap_write(dspi->regmap, SPI_CTAR(0),
415 dspi->cur_chip->ctar_val);
416
417 trans_mode = dspi->devtype_data->trans_mode;
418 switch (trans_mode) {
419 case DSPI_EOQ_MODE:
420 regmap_write(dspi->regmap, SPI_RSER, SPI_RSER_EOQFE);
421 dspi_eoq_write(dspi);
422 break;
423 case DSPI_TCFQ_MODE:
424 regmap_write(dspi->regmap, SPI_RSER, SPI_RSER_TCFQE);
425 dspi_tcfq_write(dspi);
426 break;
427 default:
428 dev_err(&dspi->pdev->dev, "unsupported trans_mode %u\n",
429 trans_mode);
430 status = -EINVAL;
431 goto out;
432 }
433
434 if (wait_event_interruptible(dspi->waitq, dspi->waitflags))
435 dev_err(&dspi->pdev->dev, "wait transfer complete fail!\n");
436 dspi->waitflags = 0;
437
438 if (transfer->delay_usecs)
439 udelay(transfer->delay_usecs);
440 }
441
442 out:
443 message->status = status;
444 spi_finalize_current_message(master);
445
446 return status;
447 }
448
449 static int dspi_setup(struct spi_device *spi)
450 {
451 struct chip_data *chip;
452 struct fsl_dspi *dspi = spi_master_get_devdata(spi->master);
453 u32 cs_sck_delay = 0, sck_cs_delay = 0;
454 unsigned char br = 0, pbr = 0, pcssck = 0, cssck = 0;
455 unsigned char pasc = 0, asc = 0, fmsz = 0;
456 unsigned long clkrate;
457
458 if ((spi->bits_per_word >= 4) && (spi->bits_per_word <= 16)) {
459 fmsz = spi->bits_per_word - 1;
460 } else {
461 pr_err("Invalid wordsize\n");
462 return -ENODEV;
463 }
464
465 /* Only alloc on first setup */
466 chip = spi_get_ctldata(spi);
467 if (chip == NULL) {
468 chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
469 if (!chip)
470 return -ENOMEM;
471 }
472
473 of_property_read_u32(spi->dev.of_node, "fsl,spi-cs-sck-delay",
474 &cs_sck_delay);
475
476 of_property_read_u32(spi->dev.of_node, "fsl,spi-sck-cs-delay",
477 &sck_cs_delay);
478
479 chip->mcr_val = SPI_MCR_MASTER | SPI_MCR_PCSIS |
480 SPI_MCR_CLR_TXF | SPI_MCR_CLR_RXF;
481
482 chip->void_write_data = 0;
483
484 clkrate = clk_get_rate(dspi->clk);
485 hz_to_spi_baud(&pbr, &br, spi->max_speed_hz, clkrate);
486
487 /* Set PCS to SCK delay scale values */
488 ns_delay_scale(&pcssck, &cssck, cs_sck_delay, clkrate);
489
490 /* Set After SCK delay scale values */
491 ns_delay_scale(&pasc, &asc, sck_cs_delay, clkrate);
492
493 chip->ctar_val = SPI_CTAR_FMSZ(fmsz)
494 | SPI_CTAR_CPOL(spi->mode & SPI_CPOL ? 1 : 0)
495 | SPI_CTAR_CPHA(spi->mode & SPI_CPHA ? 1 : 0)
496 | SPI_CTAR_LSBFE(spi->mode & SPI_LSB_FIRST ? 1 : 0)
497 | SPI_CTAR_PCSSCK(pcssck)
498 | SPI_CTAR_CSSCK(cssck)
499 | SPI_CTAR_PASC(pasc)
500 | SPI_CTAR_ASC(asc)
501 | SPI_CTAR_PBR(pbr)
502 | SPI_CTAR_BR(br);
503
504 spi_set_ctldata(spi, chip);
505
506 return 0;
507 }
508
509 static void dspi_cleanup(struct spi_device *spi)
510 {
511 struct chip_data *chip = spi_get_ctldata((struct spi_device *)spi);
512
513 dev_dbg(&spi->dev, "spi_device %u.%u cleanup\n",
514 spi->master->bus_num, spi->chip_select);
515
516 kfree(chip);
517 }
518
519 static irqreturn_t dspi_interrupt(int irq, void *dev_id)
520 {
521 struct fsl_dspi *dspi = (struct fsl_dspi *)dev_id;
522 struct spi_message *msg = dspi->cur_msg;
523 enum dspi_trans_mode trans_mode;
524 u32 spi_sr, spi_tcr;
525 u32 spi_tcnt, tcnt_diff;
526 int tx_word;
527
528 regmap_read(dspi->regmap, SPI_SR, &spi_sr);
529 regmap_write(dspi->regmap, SPI_SR, spi_sr);
530
531
532 if (spi_sr & (SPI_SR_EOQF | SPI_SR_TCFQF)) {
533 tx_word = is_double_byte_mode(dspi);
534
535 regmap_read(dspi->regmap, SPI_TCR, &spi_tcr);
536 spi_tcnt = SPI_TCR_GET_TCNT(spi_tcr);
537 /*
538 * The width of SPI Transfer Counter in SPI_TCR is 16bits,
539 * so the max couner is 65535. When the counter reach 65535,
540 * it will wrap around, counter reset to zero.
541 * spi_tcnt my be less than dspi->spi_tcnt, it means the
542 * counter already wrapped around.
543 * SPI Transfer Counter is a counter of transmitted frames.
544 * The size of frame maybe two bytes.
545 */
546 tcnt_diff = ((spi_tcnt + SPI_TCR_TCNT_MAX) - dspi->spi_tcnt)
547 % SPI_TCR_TCNT_MAX;
548 tcnt_diff *= (tx_word + 1);
549 if (dspi->dataflags & TRAN_STATE_WORD_ODD_NUM)
550 tcnt_diff--;
551
552 msg->actual_length += tcnt_diff;
553
554 dspi->spi_tcnt = spi_tcnt;
555
556 trans_mode = dspi->devtype_data->trans_mode;
557 switch (trans_mode) {
558 case DSPI_EOQ_MODE:
559 dspi_eoq_read(dspi);
560 break;
561 case DSPI_TCFQ_MODE:
562 dspi_tcfq_read(dspi);
563 break;
564 default:
565 dev_err(&dspi->pdev->dev, "unsupported trans_mode %u\n",
566 trans_mode);
567 return IRQ_HANDLED;
568 }
569
570 if (!dspi->len) {
571 if (dspi->dataflags & TRAN_STATE_WORD_ODD_NUM) {
572 regmap_update_bits(dspi->regmap,
573 SPI_CTAR(0),
574 SPI_FRAME_BITS_MASK,
575 SPI_FRAME_BITS(16));
576 dspi->dataflags &= ~TRAN_STATE_WORD_ODD_NUM;
577 }
578
579 dspi->waitflags = 1;
580 wake_up_interruptible(&dspi->waitq);
581 } else {
582 switch (trans_mode) {
583 case DSPI_EOQ_MODE:
584 dspi_eoq_write(dspi);
585 break;
586 case DSPI_TCFQ_MODE:
587 dspi_tcfq_write(dspi);
588 break;
589 default:
590 dev_err(&dspi->pdev->dev,
591 "unsupported trans_mode %u\n",
592 trans_mode);
593 }
594 }
595 }
596
597 return IRQ_HANDLED;
598 }
599
600 static const struct of_device_id fsl_dspi_dt_ids[] = {
601 { .compatible = "fsl,vf610-dspi", .data = (void *)&vf610_data, },
602 { .compatible = "fsl,ls1021a-v1.0-dspi",
603 .data = (void *)&ls1021a_v1_data, },
604 { .compatible = "fsl,ls2085a-dspi", .data = (void *)&ls2085a_data, },
605 { /* sentinel */ }
606 };
607 MODULE_DEVICE_TABLE(of, fsl_dspi_dt_ids);
608
609 #ifdef CONFIG_PM_SLEEP
610 static int dspi_suspend(struct device *dev)
611 {
612 struct spi_master *master = dev_get_drvdata(dev);
613 struct fsl_dspi *dspi = spi_master_get_devdata(master);
614
615 spi_master_suspend(master);
616 clk_disable_unprepare(dspi->clk);
617
618 pinctrl_pm_select_sleep_state(dev);
619
620 return 0;
621 }
622
623 static int dspi_resume(struct device *dev)
624 {
625 struct spi_master *master = dev_get_drvdata(dev);
626 struct fsl_dspi *dspi = spi_master_get_devdata(master);
627 int ret;
628
629 pinctrl_pm_select_default_state(dev);
630
631 ret = clk_prepare_enable(dspi->clk);
632 if (ret)
633 return ret;
634 spi_master_resume(master);
635
636 return 0;
637 }
638 #endif /* CONFIG_PM_SLEEP */
639
640 static SIMPLE_DEV_PM_OPS(dspi_pm, dspi_suspend, dspi_resume);
641
642 static const struct regmap_config dspi_regmap_config = {
643 .reg_bits = 32,
644 .val_bits = 32,
645 .reg_stride = 4,
646 .max_register = 0x88,
647 };
648
649 static int dspi_probe(struct platform_device *pdev)
650 {
651 struct device_node *np = pdev->dev.of_node;
652 struct spi_master *master;
653 struct fsl_dspi *dspi;
654 struct resource *res;
655 void __iomem *base;
656 int ret = 0, cs_num, bus_num;
657
658 master = spi_alloc_master(&pdev->dev, sizeof(struct fsl_dspi));
659 if (!master)
660 return -ENOMEM;
661
662 dspi = spi_master_get_devdata(master);
663 dspi->pdev = pdev;
664 dspi->master = master;
665
666 master->transfer = NULL;
667 master->setup = dspi_setup;
668 master->transfer_one_message = dspi_transfer_one_message;
669 master->dev.of_node = pdev->dev.of_node;
670
671 master->cleanup = dspi_cleanup;
672 master->mode_bits = SPI_CPOL | SPI_CPHA;
673 master->bits_per_word_mask = SPI_BPW_MASK(4) | SPI_BPW_MASK(8) |
674 SPI_BPW_MASK(16);
675
676 ret = of_property_read_u32(np, "spi-num-chipselects", &cs_num);
677 if (ret < 0) {
678 dev_err(&pdev->dev, "can't get spi-num-chipselects\n");
679 goto out_master_put;
680 }
681 master->num_chipselect = cs_num;
682
683 ret = of_property_read_u32(np, "bus-num", &bus_num);
684 if (ret < 0) {
685 dev_err(&pdev->dev, "can't get bus-num\n");
686 goto out_master_put;
687 }
688 master->bus_num = bus_num;
689
690 dspi->devtype_data = of_device_get_match_data(&pdev->dev);
691 if (!dspi->devtype_data) {
692 dev_err(&pdev->dev, "can't get devtype_data\n");
693 ret = -EFAULT;
694 goto out_master_put;
695 }
696
697 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
698 base = devm_ioremap_resource(&pdev->dev, res);
699 if (IS_ERR(base)) {
700 ret = PTR_ERR(base);
701 goto out_master_put;
702 }
703
704 dspi->regmap = devm_regmap_init_mmio_clk(&pdev->dev, NULL, base,
705 &dspi_regmap_config);
706 if (IS_ERR(dspi->regmap)) {
707 dev_err(&pdev->dev, "failed to init regmap: %ld\n",
708 PTR_ERR(dspi->regmap));
709 return PTR_ERR(dspi->regmap);
710 }
711
712 dspi->irq = platform_get_irq(pdev, 0);
713 if (dspi->irq < 0) {
714 dev_err(&pdev->dev, "can't get platform irq\n");
715 ret = dspi->irq;
716 goto out_master_put;
717 }
718
719 ret = devm_request_irq(&pdev->dev, dspi->irq, dspi_interrupt, 0,
720 pdev->name, dspi);
721 if (ret < 0) {
722 dev_err(&pdev->dev, "Unable to attach DSPI interrupt\n");
723 goto out_master_put;
724 }
725
726 dspi->clk = devm_clk_get(&pdev->dev, "dspi");
727 if (IS_ERR(dspi->clk)) {
728 ret = PTR_ERR(dspi->clk);
729 dev_err(&pdev->dev, "unable to get clock\n");
730 goto out_master_put;
731 }
732 ret = clk_prepare_enable(dspi->clk);
733 if (ret)
734 goto out_master_put;
735
736 master->max_speed_hz =
737 clk_get_rate(dspi->clk) / dspi->devtype_data->max_clock_factor;
738
739 init_waitqueue_head(&dspi->waitq);
740 platform_set_drvdata(pdev, master);
741
742 ret = spi_register_master(master);
743 if (ret != 0) {
744 dev_err(&pdev->dev, "Problem registering DSPI master\n");
745 goto out_clk_put;
746 }
747
748 return ret;
749
750 out_clk_put:
751 clk_disable_unprepare(dspi->clk);
752 out_master_put:
753 spi_master_put(master);
754
755 return ret;
756 }
757
758 static int dspi_remove(struct platform_device *pdev)
759 {
760 struct spi_master *master = platform_get_drvdata(pdev);
761 struct fsl_dspi *dspi = spi_master_get_devdata(master);
762
763 /* Disconnect from the SPI framework */
764 clk_disable_unprepare(dspi->clk);
765 spi_unregister_master(dspi->master);
766
767 return 0;
768 }
769
770 static struct platform_driver fsl_dspi_driver = {
771 .driver.name = DRIVER_NAME,
772 .driver.of_match_table = fsl_dspi_dt_ids,
773 .driver.owner = THIS_MODULE,
774 .driver.pm = &dspi_pm,
775 .probe = dspi_probe,
776 .remove = dspi_remove,
777 };
778 module_platform_driver(fsl_dspi_driver);
779
780 MODULE_DESCRIPTION("Freescale DSPI Controller Driver");
781 MODULE_LICENSE("GPL");
782 MODULE_ALIAS("platform:" DRIVER_NAME);