[SCSI] fix up request buffer reference in various scsi drivers
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / scsi / sym53c8xx_2 / sym_glue.c
1 /*
2 * Device driver for the SYMBIOS/LSILOGIC 53C8XX and 53C1010 family
3 * of PCI-SCSI IO processors.
4 *
5 * Copyright (C) 1999-2001 Gerard Roudier <groudier@free.fr>
6 * Copyright (c) 2003-2005 Matthew Wilcox <matthew@wil.cx>
7 *
8 * This driver is derived from the Linux sym53c8xx driver.
9 * Copyright (C) 1998-2000 Gerard Roudier
10 *
11 * The sym53c8xx driver is derived from the ncr53c8xx driver that had been
12 * a port of the FreeBSD ncr driver to Linux-1.2.13.
13 *
14 * The original ncr driver has been written for 386bsd and FreeBSD by
15 * Wolfgang Stanglmeier <wolf@cologne.de>
16 * Stefan Esser <se@mi.Uni-Koeln.de>
17 * Copyright (C) 1994 Wolfgang Stanglmeier
18 *
19 * Other major contributions:
20 *
21 * NVRAM detection and reading.
22 * Copyright (C) 1997 Richard Waltham <dormouse@farsrobt.demon.co.uk>
23 *
24 *-----------------------------------------------------------------------------
25 *
26 * This program is free software; you can redistribute it and/or modify
27 * it under the terms of the GNU General Public License as published by
28 * the Free Software Foundation; either version 2 of the License, or
29 * (at your option) any later version.
30 *
31 * This program is distributed in the hope that it will be useful,
32 * but WITHOUT ANY WARRANTY; without even the implied warranty of
33 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
34 * GNU General Public License for more details.
35 *
36 * You should have received a copy of the GNU General Public License
37 * along with this program; if not, write to the Free Software
38 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
39 */
40 #include <linux/ctype.h>
41 #include <linux/init.h>
42 #include <linux/interrupt.h>
43 #include <linux/module.h>
44 #include <linux/moduleparam.h>
45 #include <linux/spinlock.h>
46 #include <scsi/scsi.h>
47 #include <scsi/scsi_tcq.h>
48 #include <scsi/scsi_device.h>
49 #include <scsi/scsi_transport.h>
50
51 #include "sym_glue.h"
52 #include "sym_nvram.h"
53
54 #define NAME53C "sym53c"
55 #define NAME53C8XX "sym53c8xx"
56
57 /* SPARC just has to be different ... */
58 #ifdef __sparc__
59 #define IRQ_FMT "%s"
60 #define IRQ_PRM(x) __irq_itoa(x)
61 #else
62 #define IRQ_FMT "%d"
63 #define IRQ_PRM(x) (x)
64 #endif
65
66 struct sym_driver_setup sym_driver_setup = SYM_LINUX_DRIVER_SETUP;
67 unsigned int sym_debug_flags = 0;
68
69 static char *excl_string;
70 static char *safe_string;
71 module_param_named(cmd_per_lun, sym_driver_setup.max_tag, ushort, 0);
72 module_param_string(tag_ctrl, sym_driver_setup.tag_ctrl, 100, 0);
73 module_param_named(burst, sym_driver_setup.burst_order, byte, 0);
74 module_param_named(led, sym_driver_setup.scsi_led, byte, 0);
75 module_param_named(diff, sym_driver_setup.scsi_diff, byte, 0);
76 module_param_named(irqm, sym_driver_setup.irq_mode, byte, 0);
77 module_param_named(buschk, sym_driver_setup.scsi_bus_check, byte, 0);
78 module_param_named(hostid, sym_driver_setup.host_id, byte, 0);
79 module_param_named(verb, sym_driver_setup.verbose, byte, 0);
80 module_param_named(debug, sym_debug_flags, uint, 0);
81 module_param_named(settle, sym_driver_setup.settle_delay, byte, 0);
82 module_param_named(nvram, sym_driver_setup.use_nvram, byte, 0);
83 module_param_named(excl, excl_string, charp, 0);
84 module_param_named(safe, safe_string, charp, 0);
85
86 MODULE_PARM_DESC(cmd_per_lun, "The maximum number of tags to use by default");
87 MODULE_PARM_DESC(tag_ctrl, "More detailed control over tags per LUN");
88 MODULE_PARM_DESC(burst, "Maximum burst. 0 to disable, 255 to read from registers");
89 MODULE_PARM_DESC(led, "Set to 1 to enable LED support");
90 MODULE_PARM_DESC(diff, "0 for no differential mode, 1 for BIOS, 2 for always, 3 for not GPIO3");
91 MODULE_PARM_DESC(irqm, "0 for open drain, 1 to leave alone, 2 for totem pole");
92 MODULE_PARM_DESC(buschk, "0 to not check, 1 for detach on error, 2 for warn on error");
93 MODULE_PARM_DESC(hostid, "The SCSI ID to use for the host adapters");
94 MODULE_PARM_DESC(verb, "0 for minimal verbosity, 1 for normal, 2 for excessive");
95 MODULE_PARM_DESC(debug, "Set bits to enable debugging");
96 MODULE_PARM_DESC(settle, "Settle delay in seconds. Default 3");
97 MODULE_PARM_DESC(nvram, "Option currently not used");
98 MODULE_PARM_DESC(excl, "List ioport addresses here to prevent controllers from being attached");
99 MODULE_PARM_DESC(safe, "Set other settings to a \"safe mode\"");
100
101 MODULE_LICENSE("GPL");
102 MODULE_VERSION(SYM_VERSION);
103 MODULE_AUTHOR("Matthew Wilcox <matthew@wil.cx>");
104 MODULE_DESCRIPTION("NCR, Symbios and LSI 8xx and 1010 PCI SCSI adapters");
105
106 static void sym2_setup_params(void)
107 {
108 char *p = excl_string;
109 int xi = 0;
110
111 while (p && (xi < 8)) {
112 char *next_p;
113 int val = (int) simple_strtoul(p, &next_p, 0);
114 sym_driver_setup.excludes[xi++] = val;
115 p = next_p;
116 }
117
118 if (safe_string) {
119 if (*safe_string == 'y') {
120 sym_driver_setup.max_tag = 0;
121 sym_driver_setup.burst_order = 0;
122 sym_driver_setup.scsi_led = 0;
123 sym_driver_setup.scsi_diff = 1;
124 sym_driver_setup.irq_mode = 0;
125 sym_driver_setup.scsi_bus_check = 2;
126 sym_driver_setup.host_id = 7;
127 sym_driver_setup.verbose = 2;
128 sym_driver_setup.settle_delay = 10;
129 sym_driver_setup.use_nvram = 1;
130 } else if (*safe_string != 'n') {
131 printk(KERN_WARNING NAME53C8XX "Ignoring parameter %s"
132 " passed to safe option", safe_string);
133 }
134 }
135 }
136
137 static struct scsi_transport_template *sym2_transport_template = NULL;
138
139 /*
140 * Driver private area in the SCSI command structure.
141 */
142 struct sym_ucmd { /* Override the SCSI pointer structure */
143 dma_addr_t data_mapping;
144 unsigned char data_mapped;
145 unsigned char to_do; /* For error handling */
146 void (*old_done)(struct scsi_cmnd *); /* For error handling */
147 struct completion *eh_done; /* For error handling */
148 };
149
150 #define SYM_UCMD_PTR(cmd) ((struct sym_ucmd *)(&(cmd)->SCp))
151 #define SYM_SOFTC_PTR(cmd) sym_get_hcb(cmd->device->host)
152
153 static void __unmap_scsi_data(struct pci_dev *pdev, struct scsi_cmnd *cmd)
154 {
155 int dma_dir = cmd->sc_data_direction;
156
157 switch(SYM_UCMD_PTR(cmd)->data_mapped) {
158 case 2:
159 pci_unmap_sg(pdev, cmd->request_buffer, cmd->use_sg, dma_dir);
160 break;
161 case 1:
162 pci_unmap_single(pdev, SYM_UCMD_PTR(cmd)->data_mapping,
163 cmd->request_bufflen, dma_dir);
164 break;
165 }
166 SYM_UCMD_PTR(cmd)->data_mapped = 0;
167 }
168
169 static dma_addr_t __map_scsi_single_data(struct pci_dev *pdev, struct scsi_cmnd *cmd)
170 {
171 dma_addr_t mapping;
172 int dma_dir = cmd->sc_data_direction;
173
174 mapping = pci_map_single(pdev, cmd->request_buffer,
175 cmd->request_bufflen, dma_dir);
176 if (mapping) {
177 SYM_UCMD_PTR(cmd)->data_mapped = 1;
178 SYM_UCMD_PTR(cmd)->data_mapping = mapping;
179 }
180
181 return mapping;
182 }
183
184 static int __map_scsi_sg_data(struct pci_dev *pdev, struct scsi_cmnd *cmd)
185 {
186 int use_sg;
187 int dma_dir = cmd->sc_data_direction;
188
189 use_sg = pci_map_sg(pdev, cmd->request_buffer, cmd->use_sg, dma_dir);
190 if (use_sg > 0) {
191 SYM_UCMD_PTR(cmd)->data_mapped = 2;
192 SYM_UCMD_PTR(cmd)->data_mapping = use_sg;
193 }
194
195 return use_sg;
196 }
197
198 #define unmap_scsi_data(np, cmd) \
199 __unmap_scsi_data(np->s.device, cmd)
200 #define map_scsi_single_data(np, cmd) \
201 __map_scsi_single_data(np->s.device, cmd)
202 #define map_scsi_sg_data(np, cmd) \
203 __map_scsi_sg_data(np->s.device, cmd)
204 /*
205 * Complete a pending CAM CCB.
206 */
207 void sym_xpt_done(struct sym_hcb *np, struct scsi_cmnd *cmd)
208 {
209 unmap_scsi_data(np, cmd);
210 cmd->scsi_done(cmd);
211 }
212
213 static void sym_xpt_done2(struct sym_hcb *np, struct scsi_cmnd *cmd, int cam_status)
214 {
215 sym_set_cam_status(cmd, cam_status);
216 sym_xpt_done(np, cmd);
217 }
218
219
220 /*
221 * Tell the SCSI layer about a BUS RESET.
222 */
223 void sym_xpt_async_bus_reset(struct sym_hcb *np)
224 {
225 printf_notice("%s: SCSI BUS has been reset.\n", sym_name(np));
226 np->s.settle_time = jiffies + sym_driver_setup.settle_delay * HZ;
227 np->s.settle_time_valid = 1;
228 if (sym_verbose >= 2)
229 printf_info("%s: command processing suspended for %d seconds\n",
230 sym_name(np), sym_driver_setup.settle_delay);
231 }
232
233 /*
234 * Tell the SCSI layer about a BUS DEVICE RESET message sent.
235 */
236 void sym_xpt_async_sent_bdr(struct sym_hcb *np, int target)
237 {
238 printf_notice("%s: TARGET %d has been reset.\n", sym_name(np), target);
239 }
240
241 /*
242 * Choose the more appropriate CAM status if
243 * the IO encountered an extended error.
244 */
245 static int sym_xerr_cam_status(int cam_status, int x_status)
246 {
247 if (x_status) {
248 if (x_status & XE_PARITY_ERR)
249 cam_status = DID_PARITY;
250 else if (x_status &(XE_EXTRA_DATA|XE_SODL_UNRUN|XE_SWIDE_OVRUN))
251 cam_status = DID_ERROR;
252 else if (x_status & XE_BAD_PHASE)
253 cam_status = DID_ERROR;
254 else
255 cam_status = DID_ERROR;
256 }
257 return cam_status;
258 }
259
260 /*
261 * Build CAM result for a failed or auto-sensed IO.
262 */
263 void sym_set_cam_result_error(struct sym_hcb *np, struct sym_ccb *cp, int resid)
264 {
265 struct scsi_cmnd *cmd = cp->cmd;
266 u_int cam_status, scsi_status, drv_status;
267
268 drv_status = 0;
269 cam_status = DID_OK;
270 scsi_status = cp->ssss_status;
271
272 if (cp->host_flags & HF_SENSE) {
273 scsi_status = cp->sv_scsi_status;
274 resid = cp->sv_resid;
275 if (sym_verbose && cp->sv_xerr_status)
276 sym_print_xerr(cmd, cp->sv_xerr_status);
277 if (cp->host_status == HS_COMPLETE &&
278 cp->ssss_status == S_GOOD &&
279 cp->xerr_status == 0) {
280 cam_status = sym_xerr_cam_status(DID_OK,
281 cp->sv_xerr_status);
282 drv_status = DRIVER_SENSE;
283 /*
284 * Bounce back the sense data to user.
285 */
286 memset(&cmd->sense_buffer, 0, sizeof(cmd->sense_buffer));
287 memcpy(cmd->sense_buffer, cp->sns_bbuf,
288 min(sizeof(cmd->sense_buffer),
289 (size_t)SYM_SNS_BBUF_LEN));
290 #if 0
291 /*
292 * If the device reports a UNIT ATTENTION condition
293 * due to a RESET condition, we should consider all
294 * disconnect CCBs for this unit as aborted.
295 */
296 if (1) {
297 u_char *p;
298 p = (u_char *) cmd->sense_data;
299 if (p[0]==0x70 && p[2]==0x6 && p[12]==0x29)
300 sym_clear_tasks(np, DID_ABORT,
301 cp->target,cp->lun, -1);
302 }
303 #endif
304 } else {
305 /*
306 * Error return from our internal request sense. This
307 * is bad: we must clear the contingent allegiance
308 * condition otherwise the device will always return
309 * BUSY. Use a big stick.
310 */
311 sym_reset_scsi_target(np, cmd->device->id);
312 cam_status = DID_ERROR;
313 }
314 } else if (cp->host_status == HS_COMPLETE) /* Bad SCSI status */
315 cam_status = DID_OK;
316 else if (cp->host_status == HS_SEL_TIMEOUT) /* Selection timeout */
317 cam_status = DID_NO_CONNECT;
318 else if (cp->host_status == HS_UNEXPECTED) /* Unexpected BUS FREE*/
319 cam_status = DID_ERROR;
320 else { /* Extended error */
321 if (sym_verbose) {
322 sym_print_addr(cmd, "COMMAND FAILED (%x %x %x).\n",
323 cp->host_status, cp->ssss_status,
324 cp->xerr_status);
325 }
326 /*
327 * Set the most appropriate value for CAM status.
328 */
329 cam_status = sym_xerr_cam_status(DID_ERROR, cp->xerr_status);
330 }
331 cmd->resid = resid;
332 cmd->result = (drv_status << 24) + (cam_status << 16) + scsi_status;
333 }
334
335
336 /*
337 * Build the scatter/gather array for an I/O.
338 */
339
340 static int sym_scatter_no_sglist(struct sym_hcb *np, struct sym_ccb *cp, struct scsi_cmnd *cmd)
341 {
342 struct sym_tblmove *data = &cp->phys.data[SYM_CONF_MAX_SG-1];
343 int segment;
344 unsigned int len = cmd->request_bufflen;
345
346 if (len) {
347 dma_addr_t baddr = map_scsi_single_data(np, cmd);
348 if (baddr) {
349 if (len & 1) {
350 struct sym_tcb *tp = &np->target[cp->target];
351 if (tp->head.wval & EWS) {
352 len++;
353 cp->odd_byte_adjustment++;
354 }
355 }
356 cp->data_len = len;
357 sym_build_sge(np, data, baddr, len);
358 segment = 1;
359 } else {
360 segment = -2;
361 }
362 } else {
363 segment = 0;
364 }
365
366 return segment;
367 }
368
369 static int sym_scatter(struct sym_hcb *np, struct sym_ccb *cp, struct scsi_cmnd *cmd)
370 {
371 int segment;
372 int use_sg = (int) cmd->use_sg;
373
374 cp->data_len = 0;
375
376 if (!use_sg)
377 segment = sym_scatter_no_sglist(np, cp, cmd);
378 else if ((use_sg = map_scsi_sg_data(np, cmd)) > 0) {
379 struct scatterlist *scatter = (struct scatterlist *)cmd->request_buffer;
380 struct sym_tcb *tp = &np->target[cp->target];
381 struct sym_tblmove *data;
382
383 if (use_sg > SYM_CONF_MAX_SG) {
384 unmap_scsi_data(np, cmd);
385 return -1;
386 }
387
388 data = &cp->phys.data[SYM_CONF_MAX_SG - use_sg];
389
390 for (segment = 0; segment < use_sg; segment++) {
391 dma_addr_t baddr = sg_dma_address(&scatter[segment]);
392 unsigned int len = sg_dma_len(&scatter[segment]);
393
394 if ((len & 1) && (tp->head.wval & EWS)) {
395 len++;
396 cp->odd_byte_adjustment++;
397 }
398
399 sym_build_sge(np, &data[segment], baddr, len);
400 cp->data_len += len;
401 }
402 } else {
403 segment = -2;
404 }
405
406 return segment;
407 }
408
409 /*
410 * Queue a SCSI command.
411 */
412 static int sym_queue_command(struct sym_hcb *np, struct scsi_cmnd *cmd)
413 {
414 struct scsi_device *sdev = cmd->device;
415 struct sym_tcb *tp;
416 struct sym_lcb *lp;
417 struct sym_ccb *cp;
418 int order;
419
420 /*
421 * Minimal checkings, so that we will not
422 * go outside our tables.
423 */
424 if (sdev->id == np->myaddr) {
425 sym_xpt_done2(np, cmd, DID_NO_CONNECT);
426 return 0;
427 }
428
429 /*
430 * Retrieve the target descriptor.
431 */
432 tp = &np->target[sdev->id];
433
434 /*
435 * Select tagged/untagged.
436 */
437 lp = sym_lp(tp, sdev->lun);
438 order = (lp && lp->s.reqtags) ? M_SIMPLE_TAG : 0;
439
440 /*
441 * Queue the SCSI IO.
442 */
443 cp = sym_get_ccb(np, cmd, order);
444 if (!cp)
445 return 1; /* Means resource shortage */
446 sym_queue_scsiio(np, cmd, cp);
447 return 0;
448 }
449
450 /*
451 * Setup buffers and pointers that address the CDB.
452 */
453 static inline int sym_setup_cdb(struct sym_hcb *np, struct scsi_cmnd *cmd, struct sym_ccb *cp)
454 {
455 memcpy(cp->cdb_buf, cmd->cmnd, cmd->cmd_len);
456
457 cp->phys.cmd.addr = CCB_BA(cp, cdb_buf[0]);
458 cp->phys.cmd.size = cpu_to_scr(cmd->cmd_len);
459
460 return 0;
461 }
462
463 /*
464 * Setup pointers that address the data and start the I/O.
465 */
466 int sym_setup_data_and_start(struct sym_hcb *np, struct scsi_cmnd *cmd, struct sym_ccb *cp)
467 {
468 u32 lastp, goalp;
469 int dir;
470
471 /*
472 * Build the CDB.
473 */
474 if (sym_setup_cdb(np, cmd, cp))
475 goto out_abort;
476
477 /*
478 * No direction means no data.
479 */
480 dir = cmd->sc_data_direction;
481 if (dir != DMA_NONE) {
482 cp->segments = sym_scatter(np, cp, cmd);
483 if (cp->segments < 0) {
484 sym_set_cam_status(cmd, DID_ERROR);
485 goto out_abort;
486 }
487
488 /*
489 * No segments means no data.
490 */
491 if (!cp->segments)
492 dir = DMA_NONE;
493 } else {
494 cp->data_len = 0;
495 cp->segments = 0;
496 }
497
498 /*
499 * Set the data pointer.
500 */
501 switch (dir) {
502 case DMA_BIDIRECTIONAL:
503 printk("%s: got DMA_BIDIRECTIONAL command", sym_name(np));
504 sym_set_cam_status(cmd, DID_ERROR);
505 goto out_abort;
506 case DMA_TO_DEVICE:
507 goalp = SCRIPTA_BA(np, data_out2) + 8;
508 lastp = goalp - 8 - (cp->segments * (2*4));
509 break;
510 case DMA_FROM_DEVICE:
511 cp->host_flags |= HF_DATA_IN;
512 goalp = SCRIPTA_BA(np, data_in2) + 8;
513 lastp = goalp - 8 - (cp->segments * (2*4));
514 break;
515 case DMA_NONE:
516 default:
517 lastp = goalp = SCRIPTB_BA(np, no_data);
518 break;
519 }
520
521 /*
522 * Set all pointers values needed by SCRIPTS.
523 */
524 cp->phys.head.lastp = cpu_to_scr(lastp);
525 cp->phys.head.savep = cpu_to_scr(lastp);
526 cp->startp = cp->phys.head.savep;
527 cp->goalp = cpu_to_scr(goalp);
528
529 /*
530 * When `#ifed 1', the code below makes the driver
531 * panic on the first attempt to write to a SCSI device.
532 * It is the first test we want to do after a driver
533 * change that does not seem obviously safe. :)
534 */
535 #if 0
536 switch (cp->cdb_buf[0]) {
537 case 0x0A: case 0x2A: case 0xAA:
538 panic("XXXXXXXXXXXXX WRITE NOT YET ALLOWED XXXXXXXXXXXXXX\n");
539 break;
540 default:
541 break;
542 }
543 #endif
544
545 /*
546 * activate this job.
547 */
548 sym_put_start_queue(np, cp);
549 return 0;
550
551 out_abort:
552 sym_free_ccb(np, cp);
553 sym_xpt_done(np, cmd);
554 return 0;
555 }
556
557
558 /*
559 * timer daemon.
560 *
561 * Misused to keep the driver running when
562 * interrupts are not configured correctly.
563 */
564 static void sym_timer(struct sym_hcb *np)
565 {
566 unsigned long thistime = jiffies;
567
568 /*
569 * Restart the timer.
570 */
571 np->s.timer.expires = thistime + SYM_CONF_TIMER_INTERVAL;
572 add_timer(&np->s.timer);
573
574 /*
575 * If we are resetting the ncr, wait for settle_time before
576 * clearing it. Then command processing will be resumed.
577 */
578 if (np->s.settle_time_valid) {
579 if (time_before_eq(np->s.settle_time, thistime)) {
580 if (sym_verbose >= 2 )
581 printk("%s: command processing resumed\n",
582 sym_name(np));
583 np->s.settle_time_valid = 0;
584 }
585 return;
586 }
587
588 /*
589 * Nothing to do for now, but that may come.
590 */
591 if (np->s.lasttime + 4*HZ < thistime) {
592 np->s.lasttime = thistime;
593 }
594
595 #ifdef SYM_CONF_PCIQ_MAY_MISS_COMPLETIONS
596 /*
597 * Some way-broken PCI bridges may lead to
598 * completions being lost when the clearing
599 * of the INTFLY flag by the CPU occurs
600 * concurrently with the chip raising this flag.
601 * If this ever happen, lost completions will
602 * be reaped here.
603 */
604 sym_wakeup_done(np);
605 #endif
606 }
607
608
609 /*
610 * PCI BUS error handler.
611 */
612 void sym_log_bus_error(struct sym_hcb *np)
613 {
614 u_short pci_sts;
615 pci_read_config_word(np->s.device, PCI_STATUS, &pci_sts);
616 if (pci_sts & 0xf900) {
617 pci_write_config_word(np->s.device, PCI_STATUS, pci_sts);
618 printf("%s: PCI STATUS = 0x%04x\n",
619 sym_name(np), pci_sts & 0xf900);
620 }
621 }
622
623 /*
624 * queuecommand method. Entered with the host adapter lock held and
625 * interrupts disabled.
626 */
627 static int sym53c8xx_queue_command(struct scsi_cmnd *cmd,
628 void (*done)(struct scsi_cmnd *))
629 {
630 struct sym_hcb *np = SYM_SOFTC_PTR(cmd);
631 struct sym_ucmd *ucp = SYM_UCMD_PTR(cmd);
632 int sts = 0;
633
634 cmd->scsi_done = done;
635 memset(ucp, 0, sizeof(*ucp));
636
637 /*
638 * Shorten our settle_time if needed for
639 * this command not to time out.
640 */
641 if (np->s.settle_time_valid && cmd->timeout_per_command) {
642 unsigned long tlimit = jiffies + cmd->timeout_per_command;
643 tlimit -= SYM_CONF_TIMER_INTERVAL*2;
644 if (time_after(np->s.settle_time, tlimit)) {
645 np->s.settle_time = tlimit;
646 }
647 }
648
649 if (np->s.settle_time_valid)
650 return SCSI_MLQUEUE_HOST_BUSY;
651
652 sts = sym_queue_command(np, cmd);
653 if (sts)
654 return SCSI_MLQUEUE_HOST_BUSY;
655 return 0;
656 }
657
658 /*
659 * Linux entry point of the interrupt handler.
660 */
661 static irqreturn_t sym53c8xx_intr(int irq, void *dev_id, struct pt_regs * regs)
662 {
663 unsigned long flags;
664 struct sym_hcb *np = (struct sym_hcb *)dev_id;
665
666 if (DEBUG_FLAGS & DEBUG_TINY) printf_debug ("[");
667
668 spin_lock_irqsave(np->s.host->host_lock, flags);
669 sym_interrupt(np);
670 spin_unlock_irqrestore(np->s.host->host_lock, flags);
671
672 if (DEBUG_FLAGS & DEBUG_TINY) printf_debug ("]\n");
673
674 return IRQ_HANDLED;
675 }
676
677 /*
678 * Linux entry point of the timer handler
679 */
680 static void sym53c8xx_timer(unsigned long npref)
681 {
682 struct sym_hcb *np = (struct sym_hcb *)npref;
683 unsigned long flags;
684
685 spin_lock_irqsave(np->s.host->host_lock, flags);
686 sym_timer(np);
687 spin_unlock_irqrestore(np->s.host->host_lock, flags);
688 }
689
690
691 /*
692 * What the eh thread wants us to perform.
693 */
694 #define SYM_EH_ABORT 0
695 #define SYM_EH_DEVICE_RESET 1
696 #define SYM_EH_BUS_RESET 2
697 #define SYM_EH_HOST_RESET 3
698
699 /*
700 * What we will do regarding the involved SCSI command.
701 */
702 #define SYM_EH_DO_IGNORE 0
703 #define SYM_EH_DO_WAIT 2
704
705 /*
706 * scsi_done() alias when error recovery is in progress.
707 */
708 static void sym_eh_done(struct scsi_cmnd *cmd)
709 {
710 struct sym_ucmd *ucmd = SYM_UCMD_PTR(cmd);
711 BUILD_BUG_ON(sizeof(struct scsi_pointer) < sizeof(struct sym_ucmd));
712
713 cmd->scsi_done = ucmd->old_done;
714
715 if (ucmd->to_do == SYM_EH_DO_WAIT)
716 complete(ucmd->eh_done);
717 }
718
719 /*
720 * Generic method for our eh processing.
721 * The 'op' argument tells what we have to do.
722 */
723 static int sym_eh_handler(int op, char *opname, struct scsi_cmnd *cmd)
724 {
725 struct sym_hcb *np = SYM_SOFTC_PTR(cmd);
726 struct sym_ucmd *ucmd = SYM_UCMD_PTR(cmd);
727 struct Scsi_Host *host = cmd->device->host;
728 SYM_QUEHEAD *qp;
729 int to_do = SYM_EH_DO_IGNORE;
730 int sts = -1;
731 struct completion eh_done;
732
733 dev_warn(&cmd->device->sdev_gendev, "%s operation started.\n", opname);
734
735 spin_lock_irq(host->host_lock);
736 /* This one is queued in some place -> to wait for completion */
737 FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
738 struct sym_ccb *cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
739 if (cp->cmd == cmd) {
740 to_do = SYM_EH_DO_WAIT;
741 break;
742 }
743 }
744
745 if (to_do == SYM_EH_DO_WAIT) {
746 init_completion(&eh_done);
747 ucmd->old_done = cmd->scsi_done;
748 ucmd->eh_done = &eh_done;
749 wmb();
750 cmd->scsi_done = sym_eh_done;
751 }
752
753 /* Try to proceed the operation we have been asked for */
754 sts = -1;
755 switch(op) {
756 case SYM_EH_ABORT:
757 sts = sym_abort_scsiio(np, cmd, 1);
758 break;
759 case SYM_EH_DEVICE_RESET:
760 sts = sym_reset_scsi_target(np, cmd->device->id);
761 break;
762 case SYM_EH_BUS_RESET:
763 sym_reset_scsi_bus(np, 1);
764 sts = 0;
765 break;
766 case SYM_EH_HOST_RESET:
767 sym_reset_scsi_bus(np, 0);
768 sym_start_up (np, 1);
769 sts = 0;
770 break;
771 default:
772 break;
773 }
774
775 /* On error, restore everything and cross fingers :) */
776 if (sts) {
777 cmd->scsi_done = ucmd->old_done;
778 to_do = SYM_EH_DO_IGNORE;
779 }
780
781 ucmd->to_do = to_do;
782 spin_unlock_irq(host->host_lock);
783
784 if (to_do == SYM_EH_DO_WAIT) {
785 if (!wait_for_completion_timeout(&eh_done, 5*HZ)) {
786 ucmd->to_do = SYM_EH_DO_IGNORE;
787 wmb();
788 sts = -2;
789 }
790 }
791 dev_warn(&cmd->device->sdev_gendev, "%s operation %s.\n", opname,
792 sts==0 ? "complete" :sts==-2 ? "timed-out" : "failed");
793 return sts ? SCSI_FAILED : SCSI_SUCCESS;
794 }
795
796
797 /*
798 * Error handlers called from the eh thread (one thread per HBA).
799 */
800 static int sym53c8xx_eh_abort_handler(struct scsi_cmnd *cmd)
801 {
802 return sym_eh_handler(SYM_EH_ABORT, "ABORT", cmd);
803 }
804
805 static int sym53c8xx_eh_device_reset_handler(struct scsi_cmnd *cmd)
806 {
807 return sym_eh_handler(SYM_EH_DEVICE_RESET, "DEVICE RESET", cmd);
808 }
809
810 static int sym53c8xx_eh_bus_reset_handler(struct scsi_cmnd *cmd)
811 {
812 return sym_eh_handler(SYM_EH_BUS_RESET, "BUS RESET", cmd);
813 }
814
815 static int sym53c8xx_eh_host_reset_handler(struct scsi_cmnd *cmd)
816 {
817 return sym_eh_handler(SYM_EH_HOST_RESET, "HOST RESET", cmd);
818 }
819
820 /*
821 * Tune device queuing depth, according to various limits.
822 */
823 static void sym_tune_dev_queuing(struct sym_tcb *tp, int lun, u_short reqtags)
824 {
825 struct sym_lcb *lp = sym_lp(tp, lun);
826 u_short oldtags;
827
828 if (!lp)
829 return;
830
831 oldtags = lp->s.reqtags;
832
833 if (reqtags > lp->s.scdev_depth)
834 reqtags = lp->s.scdev_depth;
835
836 lp->s.reqtags = reqtags;
837
838 if (reqtags != oldtags) {
839 dev_info(&tp->starget->dev,
840 "tagged command queuing %s, command queue depth %d.\n",
841 lp->s.reqtags ? "enabled" : "disabled", reqtags);
842 }
843 }
844
845 /*
846 * Linux select queue depths function
847 */
848 #define DEF_DEPTH (sym_driver_setup.max_tag)
849 #define ALL_TARGETS -2
850 #define NO_TARGET -1
851 #define ALL_LUNS -2
852 #define NO_LUN -1
853
854 static int device_queue_depth(struct sym_hcb *np, int target, int lun)
855 {
856 int c, h, t, u, v;
857 char *p = sym_driver_setup.tag_ctrl;
858 char *ep;
859
860 h = -1;
861 t = NO_TARGET;
862 u = NO_LUN;
863 while ((c = *p++) != 0) {
864 v = simple_strtoul(p, &ep, 0);
865 switch(c) {
866 case '/':
867 ++h;
868 t = ALL_TARGETS;
869 u = ALL_LUNS;
870 break;
871 case 't':
872 if (t != target)
873 t = (target == v) ? v : NO_TARGET;
874 u = ALL_LUNS;
875 break;
876 case 'u':
877 if (u != lun)
878 u = (lun == v) ? v : NO_LUN;
879 break;
880 case 'q':
881 if (h == np->s.unit &&
882 (t == ALL_TARGETS || t == target) &&
883 (u == ALL_LUNS || u == lun))
884 return v;
885 break;
886 case '-':
887 t = ALL_TARGETS;
888 u = ALL_LUNS;
889 break;
890 default:
891 break;
892 }
893 p = ep;
894 }
895 return DEF_DEPTH;
896 }
897
898 static int sym53c8xx_slave_alloc(struct scsi_device *sdev)
899 {
900 struct sym_hcb *np = sym_get_hcb(sdev->host);
901 struct sym_tcb *tp = &np->target[sdev->id];
902 struct sym_lcb *lp;
903
904 if (sdev->id >= SYM_CONF_MAX_TARGET || sdev->lun >= SYM_CONF_MAX_LUN)
905 return -ENXIO;
906
907 tp->starget = sdev->sdev_target;
908 /*
909 * Fail the device init if the device is flagged NOSCAN at BOOT in
910 * the NVRAM. This may speed up boot and maintain coherency with
911 * BIOS device numbering. Clearing the flag allows the user to
912 * rescan skipped devices later. We also return an error for
913 * devices not flagged for SCAN LUNS in the NVRAM since some single
914 * lun devices behave badly when asked for a non zero LUN.
915 */
916
917 if (tp->usrflags & SYM_SCAN_BOOT_DISABLED) {
918 tp->usrflags &= ~SYM_SCAN_BOOT_DISABLED;
919 starget_printk(KERN_INFO, tp->starget,
920 "Scan at boot disabled in NVRAM\n");
921 return -ENXIO;
922 }
923
924 if (tp->usrflags & SYM_SCAN_LUNS_DISABLED) {
925 if (sdev->lun != 0)
926 return -ENXIO;
927 starget_printk(KERN_INFO, tp->starget,
928 "Multiple LUNs disabled in NVRAM\n");
929 }
930
931 lp = sym_alloc_lcb(np, sdev->id, sdev->lun);
932 if (!lp)
933 return -ENOMEM;
934
935 spi_min_period(tp->starget) = tp->usr_period;
936 spi_max_width(tp->starget) = tp->usr_width;
937
938 return 0;
939 }
940
941 /*
942 * Linux entry point for device queue sizing.
943 */
944 static int sym53c8xx_slave_configure(struct scsi_device *sdev)
945 {
946 struct sym_hcb *np = sym_get_hcb(sdev->host);
947 struct sym_tcb *tp = &np->target[sdev->id];
948 struct sym_lcb *lp = sym_lp(tp, sdev->lun);
949 int reqtags, depth_to_use;
950
951 /*
952 * Get user flags.
953 */
954 lp->curr_flags = lp->user_flags;
955
956 /*
957 * Select queue depth from driver setup.
958 * Donnot use more than configured by user.
959 * Use at least 2.
960 * Donnot use more than our maximum.
961 */
962 reqtags = device_queue_depth(np, sdev->id, sdev->lun);
963 if (reqtags > tp->usrtags)
964 reqtags = tp->usrtags;
965 if (!sdev->tagged_supported)
966 reqtags = 0;
967 #if 1 /* Avoid to locally queue commands for no good reasons */
968 if (reqtags > SYM_CONF_MAX_TAG)
969 reqtags = SYM_CONF_MAX_TAG;
970 depth_to_use = (reqtags ? reqtags : 2);
971 #else
972 depth_to_use = (reqtags ? SYM_CONF_MAX_TAG : 2);
973 #endif
974 scsi_adjust_queue_depth(sdev,
975 (sdev->tagged_supported ?
976 MSG_SIMPLE_TAG : 0),
977 depth_to_use);
978 lp->s.scdev_depth = depth_to_use;
979 sym_tune_dev_queuing(tp, sdev->lun, reqtags);
980
981 if (!spi_initial_dv(sdev->sdev_target))
982 spi_dv_device(sdev);
983
984 return 0;
985 }
986
987 static void sym53c8xx_slave_destroy(struct scsi_device *sdev)
988 {
989 struct sym_hcb *np = sym_get_hcb(sdev->host);
990 struct sym_lcb *lp = sym_lp(&np->target[sdev->id], sdev->lun);
991
992 if (lp->itlq_tbl)
993 sym_mfree_dma(lp->itlq_tbl, SYM_CONF_MAX_TASK * 4, "ITLQ_TBL");
994 kfree(lp->cb_tags);
995 sym_mfree_dma(lp, sizeof(*lp), "LCB");
996 }
997
998 /*
999 * Linux entry point for info() function
1000 */
1001 static const char *sym53c8xx_info (struct Scsi_Host *host)
1002 {
1003 return SYM_DRIVER_NAME;
1004 }
1005
1006
1007 #ifdef SYM_LINUX_PROC_INFO_SUPPORT
1008 /*
1009 * Proc file system stuff
1010 *
1011 * A read operation returns adapter information.
1012 * A write operation is a control command.
1013 * The string is parsed in the driver code and the command is passed
1014 * to the sym_usercmd() function.
1015 */
1016
1017 #ifdef SYM_LINUX_USER_COMMAND_SUPPORT
1018
1019 struct sym_usrcmd {
1020 u_long target;
1021 u_long lun;
1022 u_long data;
1023 u_long cmd;
1024 };
1025
1026 #define UC_SETSYNC 10
1027 #define UC_SETTAGS 11
1028 #define UC_SETDEBUG 12
1029 #define UC_SETWIDE 14
1030 #define UC_SETFLAG 15
1031 #define UC_SETVERBOSE 17
1032 #define UC_RESETDEV 18
1033 #define UC_CLEARDEV 19
1034
1035 static void sym_exec_user_command (struct sym_hcb *np, struct sym_usrcmd *uc)
1036 {
1037 struct sym_tcb *tp;
1038 int t, l;
1039
1040 switch (uc->cmd) {
1041 case 0: return;
1042
1043 #ifdef SYM_LINUX_DEBUG_CONTROL_SUPPORT
1044 case UC_SETDEBUG:
1045 sym_debug_flags = uc->data;
1046 break;
1047 #endif
1048 case UC_SETVERBOSE:
1049 np->verbose = uc->data;
1050 break;
1051 default:
1052 /*
1053 * We assume that other commands apply to targets.
1054 * This should always be the case and avoid the below
1055 * 4 lines to be repeated 6 times.
1056 */
1057 for (t = 0; t < SYM_CONF_MAX_TARGET; t++) {
1058 if (!((uc->target >> t) & 1))
1059 continue;
1060 tp = &np->target[t];
1061
1062 switch (uc->cmd) {
1063
1064 case UC_SETSYNC:
1065 if (!uc->data || uc->data >= 255) {
1066 tp->tgoal.iu = tp->tgoal.dt =
1067 tp->tgoal.qas = 0;
1068 tp->tgoal.offset = 0;
1069 } else if (uc->data <= 9 && np->minsync_dt) {
1070 if (uc->data < np->minsync_dt)
1071 uc->data = np->minsync_dt;
1072 tp->tgoal.iu = tp->tgoal.dt =
1073 tp->tgoal.qas = 1;
1074 tp->tgoal.width = 1;
1075 tp->tgoal.period = uc->data;
1076 tp->tgoal.offset = np->maxoffs_dt;
1077 } else {
1078 if (uc->data < np->minsync)
1079 uc->data = np->minsync;
1080 tp->tgoal.iu = tp->tgoal.dt =
1081 tp->tgoal.qas = 0;
1082 tp->tgoal.period = uc->data;
1083 tp->tgoal.offset = np->maxoffs;
1084 }
1085 tp->tgoal.check_nego = 1;
1086 break;
1087 case UC_SETWIDE:
1088 tp->tgoal.width = uc->data ? 1 : 0;
1089 tp->tgoal.check_nego = 1;
1090 break;
1091 case UC_SETTAGS:
1092 for (l = 0; l < SYM_CONF_MAX_LUN; l++)
1093 sym_tune_dev_queuing(tp, l, uc->data);
1094 break;
1095 case UC_RESETDEV:
1096 tp->to_reset = 1;
1097 np->istat_sem = SEM;
1098 OUTB(np, nc_istat, SIGP|SEM);
1099 break;
1100 case UC_CLEARDEV:
1101 for (l = 0; l < SYM_CONF_MAX_LUN; l++) {
1102 struct sym_lcb *lp = sym_lp(tp, l);
1103 if (lp) lp->to_clear = 1;
1104 }
1105 np->istat_sem = SEM;
1106 OUTB(np, nc_istat, SIGP|SEM);
1107 break;
1108 case UC_SETFLAG:
1109 tp->usrflags = uc->data;
1110 break;
1111 }
1112 }
1113 break;
1114 }
1115 }
1116
1117 static int skip_spaces(char *ptr, int len)
1118 {
1119 int cnt, c;
1120
1121 for (cnt = len; cnt > 0 && (c = *ptr++) && isspace(c); cnt--);
1122
1123 return (len - cnt);
1124 }
1125
1126 static int get_int_arg(char *ptr, int len, u_long *pv)
1127 {
1128 char *end;
1129
1130 *pv = simple_strtoul(ptr, &end, 10);
1131 return (end - ptr);
1132 }
1133
1134 static int is_keyword(char *ptr, int len, char *verb)
1135 {
1136 int verb_len = strlen(verb);
1137
1138 if (len >= verb_len && !memcmp(verb, ptr, verb_len))
1139 return verb_len;
1140 else
1141 return 0;
1142 }
1143
1144 #define SKIP_SPACES(ptr, len) \
1145 if ((arg_len = skip_spaces(ptr, len)) < 1) \
1146 return -EINVAL; \
1147 ptr += arg_len; len -= arg_len;
1148
1149 #define GET_INT_ARG(ptr, len, v) \
1150 if (!(arg_len = get_int_arg(ptr, len, &(v)))) \
1151 return -EINVAL; \
1152 ptr += arg_len; len -= arg_len;
1153
1154
1155 /*
1156 * Parse a control command
1157 */
1158
1159 static int sym_user_command(struct sym_hcb *np, char *buffer, int length)
1160 {
1161 char *ptr = buffer;
1162 int len = length;
1163 struct sym_usrcmd cmd, *uc = &cmd;
1164 int arg_len;
1165 u_long target;
1166
1167 memset(uc, 0, sizeof(*uc));
1168
1169 if (len > 0 && ptr[len-1] == '\n')
1170 --len;
1171
1172 if ((arg_len = is_keyword(ptr, len, "setsync")) != 0)
1173 uc->cmd = UC_SETSYNC;
1174 else if ((arg_len = is_keyword(ptr, len, "settags")) != 0)
1175 uc->cmd = UC_SETTAGS;
1176 else if ((arg_len = is_keyword(ptr, len, "setverbose")) != 0)
1177 uc->cmd = UC_SETVERBOSE;
1178 else if ((arg_len = is_keyword(ptr, len, "setwide")) != 0)
1179 uc->cmd = UC_SETWIDE;
1180 #ifdef SYM_LINUX_DEBUG_CONTROL_SUPPORT
1181 else if ((arg_len = is_keyword(ptr, len, "setdebug")) != 0)
1182 uc->cmd = UC_SETDEBUG;
1183 #endif
1184 else if ((arg_len = is_keyword(ptr, len, "setflag")) != 0)
1185 uc->cmd = UC_SETFLAG;
1186 else if ((arg_len = is_keyword(ptr, len, "resetdev")) != 0)
1187 uc->cmd = UC_RESETDEV;
1188 else if ((arg_len = is_keyword(ptr, len, "cleardev")) != 0)
1189 uc->cmd = UC_CLEARDEV;
1190 else
1191 arg_len = 0;
1192
1193 #ifdef DEBUG_PROC_INFO
1194 printk("sym_user_command: arg_len=%d, cmd=%ld\n", arg_len, uc->cmd);
1195 #endif
1196
1197 if (!arg_len)
1198 return -EINVAL;
1199 ptr += arg_len; len -= arg_len;
1200
1201 switch(uc->cmd) {
1202 case UC_SETSYNC:
1203 case UC_SETTAGS:
1204 case UC_SETWIDE:
1205 case UC_SETFLAG:
1206 case UC_RESETDEV:
1207 case UC_CLEARDEV:
1208 SKIP_SPACES(ptr, len);
1209 if ((arg_len = is_keyword(ptr, len, "all")) != 0) {
1210 ptr += arg_len; len -= arg_len;
1211 uc->target = ~0;
1212 } else {
1213 GET_INT_ARG(ptr, len, target);
1214 uc->target = (1<<target);
1215 #ifdef DEBUG_PROC_INFO
1216 printk("sym_user_command: target=%ld\n", target);
1217 #endif
1218 }
1219 break;
1220 }
1221
1222 switch(uc->cmd) {
1223 case UC_SETVERBOSE:
1224 case UC_SETSYNC:
1225 case UC_SETTAGS:
1226 case UC_SETWIDE:
1227 SKIP_SPACES(ptr, len);
1228 GET_INT_ARG(ptr, len, uc->data);
1229 #ifdef DEBUG_PROC_INFO
1230 printk("sym_user_command: data=%ld\n", uc->data);
1231 #endif
1232 break;
1233 #ifdef SYM_LINUX_DEBUG_CONTROL_SUPPORT
1234 case UC_SETDEBUG:
1235 while (len > 0) {
1236 SKIP_SPACES(ptr, len);
1237 if ((arg_len = is_keyword(ptr, len, "alloc")))
1238 uc->data |= DEBUG_ALLOC;
1239 else if ((arg_len = is_keyword(ptr, len, "phase")))
1240 uc->data |= DEBUG_PHASE;
1241 else if ((arg_len = is_keyword(ptr, len, "queue")))
1242 uc->data |= DEBUG_QUEUE;
1243 else if ((arg_len = is_keyword(ptr, len, "result")))
1244 uc->data |= DEBUG_RESULT;
1245 else if ((arg_len = is_keyword(ptr, len, "scatter")))
1246 uc->data |= DEBUG_SCATTER;
1247 else if ((arg_len = is_keyword(ptr, len, "script")))
1248 uc->data |= DEBUG_SCRIPT;
1249 else if ((arg_len = is_keyword(ptr, len, "tiny")))
1250 uc->data |= DEBUG_TINY;
1251 else if ((arg_len = is_keyword(ptr, len, "timing")))
1252 uc->data |= DEBUG_TIMING;
1253 else if ((arg_len = is_keyword(ptr, len, "nego")))
1254 uc->data |= DEBUG_NEGO;
1255 else if ((arg_len = is_keyword(ptr, len, "tags")))
1256 uc->data |= DEBUG_TAGS;
1257 else if ((arg_len = is_keyword(ptr, len, "pointer")))
1258 uc->data |= DEBUG_POINTER;
1259 else
1260 return -EINVAL;
1261 ptr += arg_len; len -= arg_len;
1262 }
1263 #ifdef DEBUG_PROC_INFO
1264 printk("sym_user_command: data=%ld\n", uc->data);
1265 #endif
1266 break;
1267 #endif /* SYM_LINUX_DEBUG_CONTROL_SUPPORT */
1268 case UC_SETFLAG:
1269 while (len > 0) {
1270 SKIP_SPACES(ptr, len);
1271 if ((arg_len = is_keyword(ptr, len, "no_disc")))
1272 uc->data &= ~SYM_DISC_ENABLED;
1273 else
1274 return -EINVAL;
1275 ptr += arg_len; len -= arg_len;
1276 }
1277 break;
1278 default:
1279 break;
1280 }
1281
1282 if (len)
1283 return -EINVAL;
1284 else {
1285 unsigned long flags;
1286
1287 spin_lock_irqsave(np->s.host->host_lock, flags);
1288 sym_exec_user_command (np, uc);
1289 spin_unlock_irqrestore(np->s.host->host_lock, flags);
1290 }
1291 return length;
1292 }
1293
1294 #endif /* SYM_LINUX_USER_COMMAND_SUPPORT */
1295
1296
1297 #ifdef SYM_LINUX_USER_INFO_SUPPORT
1298 /*
1299 * Informations through the proc file system.
1300 */
1301 struct info_str {
1302 char *buffer;
1303 int length;
1304 int offset;
1305 int pos;
1306 };
1307
1308 static void copy_mem_info(struct info_str *info, char *data, int len)
1309 {
1310 if (info->pos + len > info->length)
1311 len = info->length - info->pos;
1312
1313 if (info->pos + len < info->offset) {
1314 info->pos += len;
1315 return;
1316 }
1317 if (info->pos < info->offset) {
1318 data += (info->offset - info->pos);
1319 len -= (info->offset - info->pos);
1320 }
1321
1322 if (len > 0) {
1323 memcpy(info->buffer + info->pos, data, len);
1324 info->pos += len;
1325 }
1326 }
1327
1328 static int copy_info(struct info_str *info, char *fmt, ...)
1329 {
1330 va_list args;
1331 char buf[81];
1332 int len;
1333
1334 va_start(args, fmt);
1335 len = vsprintf(buf, fmt, args);
1336 va_end(args);
1337
1338 copy_mem_info(info, buf, len);
1339 return len;
1340 }
1341
1342 /*
1343 * Copy formatted information into the input buffer.
1344 */
1345 static int sym_host_info(struct sym_hcb *np, char *ptr, off_t offset, int len)
1346 {
1347 struct info_str info;
1348
1349 info.buffer = ptr;
1350 info.length = len;
1351 info.offset = offset;
1352 info.pos = 0;
1353
1354 copy_info(&info, "Chip " NAME53C "%s, device id 0x%x, "
1355 "revision id 0x%x\n",
1356 np->s.chip_name, np->device_id, np->revision_id);
1357 copy_info(&info, "At PCI address %s, IRQ " IRQ_FMT "\n",
1358 pci_name(np->s.device), IRQ_PRM(np->s.irq));
1359 copy_info(&info, "Min. period factor %d, %s SCSI BUS%s\n",
1360 (int) (np->minsync_dt ? np->minsync_dt : np->minsync),
1361 np->maxwide ? "Wide" : "Narrow",
1362 np->minsync_dt ? ", DT capable" : "");
1363
1364 copy_info(&info, "Max. started commands %d, "
1365 "max. commands per LUN %d\n",
1366 SYM_CONF_MAX_START, SYM_CONF_MAX_TAG);
1367
1368 return info.pos > info.offset? info.pos - info.offset : 0;
1369 }
1370 #endif /* SYM_LINUX_USER_INFO_SUPPORT */
1371
1372 /*
1373 * Entry point of the scsi proc fs of the driver.
1374 * - func = 0 means read (returns adapter infos)
1375 * - func = 1 means write (not yet merget from sym53c8xx)
1376 */
1377 static int sym53c8xx_proc_info(struct Scsi_Host *host, char *buffer,
1378 char **start, off_t offset, int length, int func)
1379 {
1380 struct sym_hcb *np = sym_get_hcb(host);
1381 int retv;
1382
1383 if (func) {
1384 #ifdef SYM_LINUX_USER_COMMAND_SUPPORT
1385 retv = sym_user_command(np, buffer, length);
1386 #else
1387 retv = -EINVAL;
1388 #endif
1389 } else {
1390 if (start)
1391 *start = buffer;
1392 #ifdef SYM_LINUX_USER_INFO_SUPPORT
1393 retv = sym_host_info(np, buffer, offset, length);
1394 #else
1395 retv = -EINVAL;
1396 #endif
1397 }
1398
1399 return retv;
1400 }
1401 #endif /* SYM_LINUX_PROC_INFO_SUPPORT */
1402
1403 /*
1404 * Free controller resources.
1405 */
1406 static void sym_free_resources(struct sym_hcb *np, struct pci_dev *pdev)
1407 {
1408 /*
1409 * Free O/S specific resources.
1410 */
1411 if (np->s.irq)
1412 free_irq(np->s.irq, np);
1413 if (np->s.ioaddr)
1414 pci_iounmap(pdev, np->s.ioaddr);
1415 if (np->s.ramaddr)
1416 pci_iounmap(pdev, np->s.ramaddr);
1417 /*
1418 * Free O/S independent resources.
1419 */
1420 sym_hcb_free(np);
1421
1422 sym_mfree_dma(np, sizeof(*np), "HCB");
1423 }
1424
1425 /*
1426 * Ask/tell the system about DMA addressing.
1427 */
1428 static int sym_setup_bus_dma_mask(struct sym_hcb *np)
1429 {
1430 #if SYM_CONF_DMA_ADDRESSING_MODE > 0
1431 #if SYM_CONF_DMA_ADDRESSING_MODE == 1
1432 #define DMA_DAC_MASK DMA_40BIT_MASK
1433 #elif SYM_CONF_DMA_ADDRESSING_MODE == 2
1434 #define DMA_DAC_MASK DMA_64BIT_MASK
1435 #endif
1436 if ((np->features & FE_DAC) &&
1437 !pci_set_dma_mask(np->s.device, DMA_DAC_MASK)) {
1438 np->use_dac = 1;
1439 return 0;
1440 }
1441 #endif
1442
1443 if (!pci_set_dma_mask(np->s.device, DMA_32BIT_MASK))
1444 return 0;
1445
1446 printf_warning("%s: No suitable DMA available\n", sym_name(np));
1447 return -1;
1448 }
1449
1450 /*
1451 * Host attach and initialisations.
1452 *
1453 * Allocate host data and ncb structure.
1454 * Remap MMIO region.
1455 * Do chip initialization.
1456 * If all is OK, install interrupt handling and
1457 * start the timer daemon.
1458 */
1459 static struct Scsi_Host * __devinit sym_attach(struct scsi_host_template *tpnt,
1460 int unit, struct sym_device *dev)
1461 {
1462 struct host_data *host_data;
1463 struct sym_hcb *np = NULL;
1464 struct Scsi_Host *instance = NULL;
1465 struct pci_dev *pdev = dev->pdev;
1466 unsigned long flags;
1467 struct sym_fw *fw;
1468
1469 printk(KERN_INFO
1470 "sym%d: <%s> rev 0x%x at pci %s irq " IRQ_FMT "\n",
1471 unit, dev->chip.name, dev->chip.revision_id,
1472 pci_name(pdev), IRQ_PRM(pdev->irq));
1473
1474 /*
1475 * Get the firmware for this chip.
1476 */
1477 fw = sym_find_firmware(&dev->chip);
1478 if (!fw)
1479 goto attach_failed;
1480
1481 /*
1482 * Allocate host_data structure
1483 */
1484 instance = scsi_host_alloc(tpnt, sizeof(*host_data));
1485 if (!instance)
1486 goto attach_failed;
1487 host_data = (struct host_data *) instance->hostdata;
1488
1489 /*
1490 * Allocate immediately the host control block,
1491 * since we are only expecting to succeed. :)
1492 * We keep track in the HCB of all the resources that
1493 * are to be released on error.
1494 */
1495 np = __sym_calloc_dma(&pdev->dev, sizeof(*np), "HCB");
1496 if (!np)
1497 goto attach_failed;
1498 np->s.device = pdev;
1499 np->bus_dmat = &pdev->dev; /* Result in 1 DMA pool per HBA */
1500 host_data->ncb = np;
1501 np->s.host = instance;
1502
1503 pci_set_drvdata(pdev, np);
1504
1505 /*
1506 * Copy some useful infos to the HCB.
1507 */
1508 np->hcb_ba = vtobus(np);
1509 np->verbose = sym_driver_setup.verbose;
1510 np->s.device = pdev;
1511 np->s.unit = unit;
1512 np->device_id = dev->chip.device_id;
1513 np->revision_id = dev->chip.revision_id;
1514 np->features = dev->chip.features;
1515 np->clock_divn = dev->chip.nr_divisor;
1516 np->maxoffs = dev->chip.offset_max;
1517 np->maxburst = dev->chip.burst_max;
1518 np->myaddr = dev->host_id;
1519
1520 /*
1521 * Edit its name.
1522 */
1523 strlcpy(np->s.chip_name, dev->chip.name, sizeof(np->s.chip_name));
1524 sprintf(np->s.inst_name, "sym%d", np->s.unit);
1525
1526 if (sym_setup_bus_dma_mask(np))
1527 goto attach_failed;
1528
1529 /*
1530 * Try to map the controller chip to
1531 * virtual and physical memory.
1532 */
1533 np->mmio_ba = (u32)dev->mmio_base;
1534 np->s.ioaddr = dev->s.ioaddr;
1535 np->s.ramaddr = dev->s.ramaddr;
1536 np->s.io_ws = (np->features & FE_IO256) ? 256 : 128;
1537
1538 /*
1539 * Map on-chip RAM if present and supported.
1540 */
1541 if (!(np->features & FE_RAM))
1542 dev->ram_base = 0;
1543 if (dev->ram_base) {
1544 np->ram_ba = (u32)dev->ram_base;
1545 np->ram_ws = (np->features & FE_RAM8K) ? 8192 : 4096;
1546 }
1547
1548 if (sym_hcb_attach(instance, fw, dev->nvram))
1549 goto attach_failed;
1550
1551 /*
1552 * Install the interrupt handler.
1553 * If we synchonize the C code with SCRIPTS on interrupt,
1554 * we do not want to share the INTR line at all.
1555 */
1556 if (request_irq(pdev->irq, sym53c8xx_intr, SA_SHIRQ, NAME53C8XX, np)) {
1557 printf_err("%s: request irq %d failure\n",
1558 sym_name(np), pdev->irq);
1559 goto attach_failed;
1560 }
1561 np->s.irq = pdev->irq;
1562
1563 /*
1564 * After SCSI devices have been opened, we cannot
1565 * reset the bus safely, so we do it here.
1566 */
1567 spin_lock_irqsave(instance->host_lock, flags);
1568 if (sym_reset_scsi_bus(np, 0))
1569 goto reset_failed;
1570
1571 /*
1572 * Start the SCRIPTS.
1573 */
1574 sym_start_up (np, 1);
1575
1576 /*
1577 * Start the timer daemon
1578 */
1579 init_timer(&np->s.timer);
1580 np->s.timer.data = (unsigned long) np;
1581 np->s.timer.function = sym53c8xx_timer;
1582 np->s.lasttime=0;
1583 sym_timer (np);
1584
1585 /*
1586 * Fill Linux host instance structure
1587 * and return success.
1588 */
1589 instance->max_channel = 0;
1590 instance->this_id = np->myaddr;
1591 instance->max_id = np->maxwide ? 16 : 8;
1592 instance->max_lun = SYM_CONF_MAX_LUN;
1593 instance->unique_id = pci_resource_start(pdev, 0);
1594 instance->cmd_per_lun = SYM_CONF_MAX_TAG;
1595 instance->can_queue = (SYM_CONF_MAX_START-2);
1596 instance->sg_tablesize = SYM_CONF_MAX_SG;
1597 instance->max_cmd_len = 16;
1598 BUG_ON(sym2_transport_template == NULL);
1599 instance->transportt = sym2_transport_template;
1600
1601 spin_unlock_irqrestore(instance->host_lock, flags);
1602
1603 return instance;
1604
1605 reset_failed:
1606 printf_err("%s: FATAL ERROR: CHECK SCSI BUS - CABLES, "
1607 "TERMINATION, DEVICE POWER etc.!\n", sym_name(np));
1608 spin_unlock_irqrestore(instance->host_lock, flags);
1609 attach_failed:
1610 if (!instance)
1611 return NULL;
1612 printf_info("%s: giving up ...\n", sym_name(np));
1613 if (np)
1614 sym_free_resources(np, pdev);
1615 scsi_host_put(instance);
1616
1617 return NULL;
1618 }
1619
1620
1621 /*
1622 * Detect and try to read SYMBIOS and TEKRAM NVRAM.
1623 */
1624 #if SYM_CONF_NVRAM_SUPPORT
1625 static void __devinit sym_get_nvram(struct sym_device *devp, struct sym_nvram *nvp)
1626 {
1627 devp->nvram = nvp;
1628 devp->device_id = devp->chip.device_id;
1629 nvp->type = 0;
1630
1631 sym_read_nvram(devp, nvp);
1632 }
1633 #else
1634 static inline void sym_get_nvram(struct sym_device *devp, struct sym_nvram *nvp)
1635 {
1636 }
1637 #endif /* SYM_CONF_NVRAM_SUPPORT */
1638
1639 static int __devinit sym_check_supported(struct sym_device *device)
1640 {
1641 struct sym_chip *chip;
1642 struct pci_dev *pdev = device->pdev;
1643 u_char revision;
1644 unsigned long io_port = pci_resource_start(pdev, 0);
1645 int i;
1646
1647 /*
1648 * If user excluded this chip, do not initialize it.
1649 * I hate this code so much. Must kill it.
1650 */
1651 if (io_port) {
1652 for (i = 0 ; i < 8 ; i++) {
1653 if (sym_driver_setup.excludes[i] == io_port)
1654 return -ENODEV;
1655 }
1656 }
1657
1658 /*
1659 * Check if the chip is supported. Then copy the chip description
1660 * to our device structure so we can make it match the actual device
1661 * and options.
1662 */
1663 pci_read_config_byte(pdev, PCI_CLASS_REVISION, &revision);
1664 chip = sym_lookup_chip_table(pdev->device, revision);
1665 if (!chip) {
1666 dev_info(&pdev->dev, "device not supported\n");
1667 return -ENODEV;
1668 }
1669 memcpy(&device->chip, chip, sizeof(device->chip));
1670 device->chip.revision_id = revision;
1671
1672 return 0;
1673 }
1674
1675 /*
1676 * Ignore Symbios chips controlled by various RAID controllers.
1677 * These controllers set value 0x52414944 at RAM end - 16.
1678 */
1679 static int __devinit sym_check_raid(struct sym_device *device)
1680 {
1681 unsigned int ram_size, ram_val;
1682
1683 if (!device->s.ramaddr)
1684 return 0;
1685
1686 if (device->chip.features & FE_RAM8K)
1687 ram_size = 8192;
1688 else
1689 ram_size = 4096;
1690
1691 ram_val = readl(device->s.ramaddr + ram_size - 16);
1692 if (ram_val != 0x52414944)
1693 return 0;
1694
1695 dev_info(&device->pdev->dev,
1696 "not initializing, driven by RAID controller.\n");
1697 return -ENODEV;
1698 }
1699
1700 static int __devinit sym_set_workarounds(struct sym_device *device)
1701 {
1702 struct sym_chip *chip = &device->chip;
1703 struct pci_dev *pdev = device->pdev;
1704 u_short status_reg;
1705
1706 /*
1707 * (ITEM 12 of a DEL about the 896 I haven't yet).
1708 * We must ensure the chip will use WRITE AND INVALIDATE.
1709 * The revision number limit is for now arbitrary.
1710 */
1711 if (pdev->device == PCI_DEVICE_ID_NCR_53C896 && chip->revision_id < 0x4) {
1712 chip->features |= (FE_WRIE | FE_CLSE);
1713 }
1714
1715 /* If the chip can do Memory Write Invalidate, enable it */
1716 if (chip->features & FE_WRIE) {
1717 if (pci_set_mwi(pdev))
1718 return -ENODEV;
1719 }
1720
1721 /*
1722 * Work around for errant bit in 895A. The 66Mhz
1723 * capable bit is set erroneously. Clear this bit.
1724 * (Item 1 DEL 533)
1725 *
1726 * Make sure Config space and Features agree.
1727 *
1728 * Recall: writes are not normal to status register -
1729 * write a 1 to clear and a 0 to leave unchanged.
1730 * Can only reset bits.
1731 */
1732 pci_read_config_word(pdev, PCI_STATUS, &status_reg);
1733 if (chip->features & FE_66MHZ) {
1734 if (!(status_reg & PCI_STATUS_66MHZ))
1735 chip->features &= ~FE_66MHZ;
1736 } else {
1737 if (status_reg & PCI_STATUS_66MHZ) {
1738 status_reg = PCI_STATUS_66MHZ;
1739 pci_write_config_word(pdev, PCI_STATUS, status_reg);
1740 pci_read_config_word(pdev, PCI_STATUS, &status_reg);
1741 }
1742 }
1743
1744 return 0;
1745 }
1746
1747 /*
1748 * Read and check the PCI configuration for any detected NCR
1749 * boards and save data for attaching after all boards have
1750 * been detected.
1751 */
1752 static void __devinit
1753 sym_init_device(struct pci_dev *pdev, struct sym_device *device)
1754 {
1755 int i = 2;
1756 struct pci_bus_region bus_addr;
1757
1758 device->host_id = SYM_SETUP_HOST_ID;
1759 device->pdev = pdev;
1760
1761 pcibios_resource_to_bus(pdev, &bus_addr, &pdev->resource[1]);
1762 device->mmio_base = bus_addr.start;
1763
1764 /*
1765 * If the BAR is 64-bit, resource 2 will be occupied by the
1766 * upper 32 bits
1767 */
1768 if (!pdev->resource[i].flags)
1769 i++;
1770 pcibios_resource_to_bus(pdev, &bus_addr, &pdev->resource[i]);
1771 device->ram_base = bus_addr.start;
1772
1773 #ifdef CONFIG_SCSI_SYM53C8XX_MMIO
1774 if (device->mmio_base)
1775 device->s.ioaddr = pci_iomap(pdev, 1,
1776 pci_resource_len(pdev, 1));
1777 #endif
1778 if (!device->s.ioaddr)
1779 device->s.ioaddr = pci_iomap(pdev, 0,
1780 pci_resource_len(pdev, 0));
1781 if (device->ram_base)
1782 device->s.ramaddr = pci_iomap(pdev, i,
1783 pci_resource_len(pdev, i));
1784 }
1785
1786 /*
1787 * The NCR PQS and PDS cards are constructed as a DEC bridge
1788 * behind which sits a proprietary NCR memory controller and
1789 * either four or two 53c875s as separate devices. We can tell
1790 * if an 875 is part of a PQS/PDS or not since if it is, it will
1791 * be on the same bus as the memory controller. In its usual
1792 * mode of operation, the 875s are slaved to the memory
1793 * controller for all transfers. To operate with the Linux
1794 * driver, the memory controller is disabled and the 875s
1795 * freed to function independently. The only wrinkle is that
1796 * the preset SCSI ID (which may be zero) must be read in from
1797 * a special configuration space register of the 875.
1798 */
1799 static void sym_config_pqs(struct pci_dev *pdev, struct sym_device *sym_dev)
1800 {
1801 int slot;
1802 u8 tmp;
1803
1804 for (slot = 0; slot < 256; slot++) {
1805 struct pci_dev *memc = pci_get_slot(pdev->bus, slot);
1806
1807 if (!memc || memc->vendor != 0x101a || memc->device == 0x0009) {
1808 pci_dev_put(memc);
1809 continue;
1810 }
1811
1812 /* bit 1: allow individual 875 configuration */
1813 pci_read_config_byte(memc, 0x44, &tmp);
1814 if ((tmp & 0x2) == 0) {
1815 tmp |= 0x2;
1816 pci_write_config_byte(memc, 0x44, tmp);
1817 }
1818
1819 /* bit 2: drive individual 875 interrupts to the bus */
1820 pci_read_config_byte(memc, 0x45, &tmp);
1821 if ((tmp & 0x4) == 0) {
1822 tmp |= 0x4;
1823 pci_write_config_byte(memc, 0x45, tmp);
1824 }
1825
1826 pci_dev_put(memc);
1827 break;
1828 }
1829
1830 pci_read_config_byte(pdev, 0x84, &tmp);
1831 sym_dev->host_id = tmp;
1832 }
1833
1834 /*
1835 * Called before unloading the module.
1836 * Detach the host.
1837 * We have to free resources and halt the NCR chip.
1838 */
1839 static int sym_detach(struct sym_hcb *np, struct pci_dev *pdev)
1840 {
1841 printk("%s: detaching ...\n", sym_name(np));
1842
1843 del_timer_sync(&np->s.timer);
1844
1845 /*
1846 * Reset NCR chip.
1847 * We should use sym_soft_reset(), but we don't want to do
1848 * so, since we may not be safe if interrupts occur.
1849 */
1850 printk("%s: resetting chip\n", sym_name(np));
1851 OUTB(np, nc_istat, SRST);
1852 INB(np, nc_mbox1);
1853 udelay(10);
1854 OUTB(np, nc_istat, 0);
1855
1856 sym_free_resources(np, pdev);
1857
1858 return 1;
1859 }
1860
1861 /*
1862 * Driver host template.
1863 */
1864 static struct scsi_host_template sym2_template = {
1865 .module = THIS_MODULE,
1866 .name = "sym53c8xx",
1867 .info = sym53c8xx_info,
1868 .queuecommand = sym53c8xx_queue_command,
1869 .slave_alloc = sym53c8xx_slave_alloc,
1870 .slave_configure = sym53c8xx_slave_configure,
1871 .slave_destroy = sym53c8xx_slave_destroy,
1872 .eh_abort_handler = sym53c8xx_eh_abort_handler,
1873 .eh_device_reset_handler = sym53c8xx_eh_device_reset_handler,
1874 .eh_bus_reset_handler = sym53c8xx_eh_bus_reset_handler,
1875 .eh_host_reset_handler = sym53c8xx_eh_host_reset_handler,
1876 .this_id = 7,
1877 .use_clustering = ENABLE_CLUSTERING,
1878 .max_sectors = 0xFFFF,
1879 #ifdef SYM_LINUX_PROC_INFO_SUPPORT
1880 .proc_info = sym53c8xx_proc_info,
1881 .proc_name = NAME53C8XX,
1882 #endif
1883 };
1884
1885 static int attach_count;
1886
1887 static int __devinit sym2_probe(struct pci_dev *pdev,
1888 const struct pci_device_id *ent)
1889 {
1890 struct sym_device sym_dev;
1891 struct sym_nvram nvram;
1892 struct Scsi_Host *instance;
1893
1894 memset(&sym_dev, 0, sizeof(sym_dev));
1895 memset(&nvram, 0, sizeof(nvram));
1896
1897 if (pci_enable_device(pdev))
1898 goto leave;
1899
1900 pci_set_master(pdev);
1901
1902 if (pci_request_regions(pdev, NAME53C8XX))
1903 goto disable;
1904
1905 sym_init_device(pdev, &sym_dev);
1906 if (sym_check_supported(&sym_dev))
1907 goto free;
1908
1909 if (sym_check_raid(&sym_dev))
1910 goto leave; /* Don't disable the device */
1911
1912 if (sym_set_workarounds(&sym_dev))
1913 goto free;
1914
1915 sym_config_pqs(pdev, &sym_dev);
1916
1917 sym_get_nvram(&sym_dev, &nvram);
1918
1919 instance = sym_attach(&sym2_template, attach_count, &sym_dev);
1920 if (!instance)
1921 goto free;
1922
1923 if (scsi_add_host(instance, &pdev->dev))
1924 goto detach;
1925 scsi_scan_host(instance);
1926
1927 attach_count++;
1928
1929 return 0;
1930
1931 detach:
1932 sym_detach(pci_get_drvdata(pdev), pdev);
1933 free:
1934 pci_release_regions(pdev);
1935 disable:
1936 pci_disable_device(pdev);
1937 leave:
1938 return -ENODEV;
1939 }
1940
1941 static void __devexit sym2_remove(struct pci_dev *pdev)
1942 {
1943 struct sym_hcb *np = pci_get_drvdata(pdev);
1944 struct Scsi_Host *host = np->s.host;
1945
1946 scsi_remove_host(host);
1947 scsi_host_put(host);
1948
1949 sym_detach(np, pdev);
1950
1951 pci_release_regions(pdev);
1952 pci_disable_device(pdev);
1953
1954 attach_count--;
1955 }
1956
1957 static void sym2_get_signalling(struct Scsi_Host *shost)
1958 {
1959 struct sym_hcb *np = sym_get_hcb(shost);
1960 enum spi_signal_type type;
1961
1962 switch (np->scsi_mode) {
1963 case SMODE_SE:
1964 type = SPI_SIGNAL_SE;
1965 break;
1966 case SMODE_LVD:
1967 type = SPI_SIGNAL_LVD;
1968 break;
1969 case SMODE_HVD:
1970 type = SPI_SIGNAL_HVD;
1971 break;
1972 default:
1973 type = SPI_SIGNAL_UNKNOWN;
1974 break;
1975 }
1976 spi_signalling(shost) = type;
1977 }
1978
1979 static void sym2_set_offset(struct scsi_target *starget, int offset)
1980 {
1981 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
1982 struct sym_hcb *np = sym_get_hcb(shost);
1983 struct sym_tcb *tp = &np->target[starget->id];
1984
1985 tp->tgoal.offset = offset;
1986 tp->tgoal.check_nego = 1;
1987 }
1988
1989 static void sym2_set_period(struct scsi_target *starget, int period)
1990 {
1991 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
1992 struct sym_hcb *np = sym_get_hcb(shost);
1993 struct sym_tcb *tp = &np->target[starget->id];
1994
1995 /* have to have DT for these transfers, but DT will also
1996 * set width, so check that this is allowed */
1997 if (period <= np->minsync && spi_width(starget))
1998 tp->tgoal.dt = 1;
1999
2000 tp->tgoal.period = period;
2001 tp->tgoal.check_nego = 1;
2002 }
2003
2004 static void sym2_set_width(struct scsi_target *starget, int width)
2005 {
2006 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
2007 struct sym_hcb *np = sym_get_hcb(shost);
2008 struct sym_tcb *tp = &np->target[starget->id];
2009
2010 /* It is illegal to have DT set on narrow transfers. If DT is
2011 * clear, we must also clear IU and QAS. */
2012 if (width == 0)
2013 tp->tgoal.iu = tp->tgoal.dt = tp->tgoal.qas = 0;
2014
2015 tp->tgoal.width = width;
2016 tp->tgoal.check_nego = 1;
2017 }
2018
2019 static void sym2_set_dt(struct scsi_target *starget, int dt)
2020 {
2021 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
2022 struct sym_hcb *np = sym_get_hcb(shost);
2023 struct sym_tcb *tp = &np->target[starget->id];
2024
2025 /* We must clear QAS and IU if DT is clear */
2026 if (dt)
2027 tp->tgoal.dt = 1;
2028 else
2029 tp->tgoal.iu = tp->tgoal.dt = tp->tgoal.qas = 0;
2030 tp->tgoal.check_nego = 1;
2031 }
2032
2033 #if 0
2034 static void sym2_set_iu(struct scsi_target *starget, int iu)
2035 {
2036 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
2037 struct sym_hcb *np = sym_get_hcb(shost);
2038 struct sym_tcb *tp = &np->target[starget->id];
2039
2040 if (iu)
2041 tp->tgoal.iu = tp->tgoal.dt = 1;
2042 else
2043 tp->tgoal.iu = 0;
2044 tp->tgoal.check_nego = 1;
2045 }
2046
2047 static void sym2_set_qas(struct scsi_target *starget, int qas)
2048 {
2049 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
2050 struct sym_hcb *np = sym_get_hcb(shost);
2051 struct sym_tcb *tp = &np->target[starget->id];
2052
2053 if (qas)
2054 tp->tgoal.dt = tp->tgoal.qas = 1;
2055 else
2056 tp->tgoal.qas = 0;
2057 tp->tgoal.check_nego = 1;
2058 }
2059 #endif
2060
2061 static struct spi_function_template sym2_transport_functions = {
2062 .set_offset = sym2_set_offset,
2063 .show_offset = 1,
2064 .set_period = sym2_set_period,
2065 .show_period = 1,
2066 .set_width = sym2_set_width,
2067 .show_width = 1,
2068 .set_dt = sym2_set_dt,
2069 .show_dt = 1,
2070 #if 0
2071 .set_iu = sym2_set_iu,
2072 .show_iu = 1,
2073 .set_qas = sym2_set_qas,
2074 .show_qas = 1,
2075 #endif
2076 .get_signalling = sym2_get_signalling,
2077 };
2078
2079 static struct pci_device_id sym2_id_table[] __devinitdata = {
2080 { PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_NCR_53C810,
2081 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
2082 { PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_NCR_53C820,
2083 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, /* new */
2084 { PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_NCR_53C825,
2085 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
2086 { PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_NCR_53C815,
2087 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
2088 { PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_53C810AP,
2089 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, /* new */
2090 { PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_NCR_53C860,
2091 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
2092 { PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_53C1510,
2093 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
2094 { PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_NCR_53C896,
2095 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
2096 { PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_NCR_53C895,
2097 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
2098 { PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_NCR_53C885,
2099 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
2100 { PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_NCR_53C875,
2101 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
2102 { PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_NCR_53C1510,
2103 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, /* new */
2104 { PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_53C895A,
2105 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
2106 { PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_53C875A,
2107 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
2108 { PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_53C1010_33,
2109 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
2110 { PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_53C1010_66,
2111 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
2112 { PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_NCR_53C875J,
2113 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
2114 { 0, }
2115 };
2116
2117 MODULE_DEVICE_TABLE(pci, sym2_id_table);
2118
2119 static struct pci_driver sym2_driver = {
2120 .name = NAME53C8XX,
2121 .id_table = sym2_id_table,
2122 .probe = sym2_probe,
2123 .remove = __devexit_p(sym2_remove),
2124 };
2125
2126 static int __init sym2_init(void)
2127 {
2128 int error;
2129
2130 sym2_setup_params();
2131 sym2_transport_template = spi_attach_transport(&sym2_transport_functions);
2132 if (!sym2_transport_template)
2133 return -ENODEV;
2134
2135 error = pci_register_driver(&sym2_driver);
2136 if (error)
2137 spi_release_transport(sym2_transport_template);
2138 return error;
2139 }
2140
2141 static void __exit sym2_exit(void)
2142 {
2143 pci_unregister_driver(&sym2_driver);
2144 spi_release_transport(sym2_transport_template);
2145 }
2146
2147 module_init(sym2_init);
2148 module_exit(sym2_exit);