Merge tag 'pci-v4.12-fixes-1' of git://git.kernel.org/pub/scm/linux/kernel/git/helgaa...
[GitHub/LineageOS/android_kernel_motorola_exynos9610.git] / drivers / scsi / sd.c
1 /*
2 * sd.c Copyright (C) 1992 Drew Eckhardt
3 * Copyright (C) 1993, 1994, 1995, 1999 Eric Youngdale
4 *
5 * Linux scsi disk driver
6 * Initial versions: Drew Eckhardt
7 * Subsequent revisions: Eric Youngdale
8 * Modification history:
9 * - Drew Eckhardt <drew@colorado.edu> original
10 * - Eric Youngdale <eric@andante.org> add scatter-gather, multiple
11 * outstanding request, and other enhancements.
12 * Support loadable low-level scsi drivers.
13 * - Jirka Hanika <geo@ff.cuni.cz> support more scsi disks using
14 * eight major numbers.
15 * - Richard Gooch <rgooch@atnf.csiro.au> support devfs.
16 * - Torben Mathiasen <tmm@image.dk> Resource allocation fixes in
17 * sd_init and cleanups.
18 * - Alex Davis <letmein@erols.com> Fix problem where partition info
19 * not being read in sd_open. Fix problem where removable media
20 * could be ejected after sd_open.
21 * - Douglas Gilbert <dgilbert@interlog.com> cleanup for lk 2.5.x
22 * - Badari Pulavarty <pbadari@us.ibm.com>, Matthew Wilcox
23 * <willy@debian.org>, Kurt Garloff <garloff@suse.de>:
24 * Support 32k/1M disks.
25 *
26 * Logging policy (needs CONFIG_SCSI_LOGGING defined):
27 * - setting up transfer: SCSI_LOG_HLQUEUE levels 1 and 2
28 * - end of transfer (bh + scsi_lib): SCSI_LOG_HLCOMPLETE level 1
29 * - entering sd_ioctl: SCSI_LOG_IOCTL level 1
30 * - entering other commands: SCSI_LOG_HLQUEUE level 3
31 * Note: when the logging level is set by the user, it must be greater
32 * than the level indicated above to trigger output.
33 */
34
35 #include <linux/module.h>
36 #include <linux/fs.h>
37 #include <linux/kernel.h>
38 #include <linux/mm.h>
39 #include <linux/bio.h>
40 #include <linux/genhd.h>
41 #include <linux/hdreg.h>
42 #include <linux/errno.h>
43 #include <linux/idr.h>
44 #include <linux/interrupt.h>
45 #include <linux/init.h>
46 #include <linux/blkdev.h>
47 #include <linux/blkpg.h>
48 #include <linux/delay.h>
49 #include <linux/mutex.h>
50 #include <linux/string_helpers.h>
51 #include <linux/async.h>
52 #include <linux/slab.h>
53 #include <linux/pm_runtime.h>
54 #include <linux/pr.h>
55 #include <linux/t10-pi.h>
56 #include <linux/uaccess.h>
57 #include <asm/unaligned.h>
58
59 #include <scsi/scsi.h>
60 #include <scsi/scsi_cmnd.h>
61 #include <scsi/scsi_dbg.h>
62 #include <scsi/scsi_device.h>
63 #include <scsi/scsi_driver.h>
64 #include <scsi/scsi_eh.h>
65 #include <scsi/scsi_host.h>
66 #include <scsi/scsi_ioctl.h>
67 #include <scsi/scsicam.h>
68
69 #include "sd.h"
70 #include "scsi_priv.h"
71 #include "scsi_logging.h"
72
73 MODULE_AUTHOR("Eric Youngdale");
74 MODULE_DESCRIPTION("SCSI disk (sd) driver");
75 MODULE_LICENSE("GPL");
76
77 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK0_MAJOR);
78 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK1_MAJOR);
79 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK2_MAJOR);
80 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK3_MAJOR);
81 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK4_MAJOR);
82 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK5_MAJOR);
83 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK6_MAJOR);
84 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK7_MAJOR);
85 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK8_MAJOR);
86 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK9_MAJOR);
87 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK10_MAJOR);
88 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK11_MAJOR);
89 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK12_MAJOR);
90 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK13_MAJOR);
91 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK14_MAJOR);
92 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK15_MAJOR);
93 MODULE_ALIAS_SCSI_DEVICE(TYPE_DISK);
94 MODULE_ALIAS_SCSI_DEVICE(TYPE_MOD);
95 MODULE_ALIAS_SCSI_DEVICE(TYPE_RBC);
96 MODULE_ALIAS_SCSI_DEVICE(TYPE_ZBC);
97
98 #if !defined(CONFIG_DEBUG_BLOCK_EXT_DEVT)
99 #define SD_MINORS 16
100 #else
101 #define SD_MINORS 0
102 #endif
103
104 static void sd_config_discard(struct scsi_disk *, unsigned int);
105 static void sd_config_write_same(struct scsi_disk *);
106 static int sd_revalidate_disk(struct gendisk *);
107 static void sd_unlock_native_capacity(struct gendisk *disk);
108 static int sd_probe(struct device *);
109 static int sd_remove(struct device *);
110 static void sd_shutdown(struct device *);
111 static int sd_suspend_system(struct device *);
112 static int sd_suspend_runtime(struct device *);
113 static int sd_resume(struct device *);
114 static void sd_rescan(struct device *);
115 static int sd_init_command(struct scsi_cmnd *SCpnt);
116 static void sd_uninit_command(struct scsi_cmnd *SCpnt);
117 static int sd_done(struct scsi_cmnd *);
118 static void sd_eh_reset(struct scsi_cmnd *);
119 static int sd_eh_action(struct scsi_cmnd *, int);
120 static void sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer);
121 static void scsi_disk_release(struct device *cdev);
122 static void sd_print_sense_hdr(struct scsi_disk *, struct scsi_sense_hdr *);
123 static void sd_print_result(const struct scsi_disk *, const char *, int);
124
125 static DEFINE_SPINLOCK(sd_index_lock);
126 static DEFINE_IDA(sd_index_ida);
127
128 /* This semaphore is used to mediate the 0->1 reference get in the
129 * face of object destruction (i.e. we can't allow a get on an
130 * object after last put) */
131 static DEFINE_MUTEX(sd_ref_mutex);
132
133 static struct kmem_cache *sd_cdb_cache;
134 static mempool_t *sd_cdb_pool;
135
136 static const char *sd_cache_types[] = {
137 "write through", "none", "write back",
138 "write back, no read (daft)"
139 };
140
141 static void sd_set_flush_flag(struct scsi_disk *sdkp)
142 {
143 bool wc = false, fua = false;
144
145 if (sdkp->WCE) {
146 wc = true;
147 if (sdkp->DPOFUA)
148 fua = true;
149 }
150
151 blk_queue_write_cache(sdkp->disk->queue, wc, fua);
152 }
153
154 static ssize_t
155 cache_type_store(struct device *dev, struct device_attribute *attr,
156 const char *buf, size_t count)
157 {
158 int i, ct = -1, rcd, wce, sp;
159 struct scsi_disk *sdkp = to_scsi_disk(dev);
160 struct scsi_device *sdp = sdkp->device;
161 char buffer[64];
162 char *buffer_data;
163 struct scsi_mode_data data;
164 struct scsi_sense_hdr sshdr;
165 static const char temp[] = "temporary ";
166 int len;
167
168 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
169 /* no cache control on RBC devices; theoretically they
170 * can do it, but there's probably so many exceptions
171 * it's not worth the risk */
172 return -EINVAL;
173
174 if (strncmp(buf, temp, sizeof(temp) - 1) == 0) {
175 buf += sizeof(temp) - 1;
176 sdkp->cache_override = 1;
177 } else {
178 sdkp->cache_override = 0;
179 }
180
181 for (i = 0; i < ARRAY_SIZE(sd_cache_types); i++) {
182 len = strlen(sd_cache_types[i]);
183 if (strncmp(sd_cache_types[i], buf, len) == 0 &&
184 buf[len] == '\n') {
185 ct = i;
186 break;
187 }
188 }
189 if (ct < 0)
190 return -EINVAL;
191 rcd = ct & 0x01 ? 1 : 0;
192 wce = (ct & 0x02) && !sdkp->write_prot ? 1 : 0;
193
194 if (sdkp->cache_override) {
195 sdkp->WCE = wce;
196 sdkp->RCD = rcd;
197 sd_set_flush_flag(sdkp);
198 return count;
199 }
200
201 if (scsi_mode_sense(sdp, 0x08, 8, buffer, sizeof(buffer), SD_TIMEOUT,
202 SD_MAX_RETRIES, &data, NULL))
203 return -EINVAL;
204 len = min_t(size_t, sizeof(buffer), data.length - data.header_length -
205 data.block_descriptor_length);
206 buffer_data = buffer + data.header_length +
207 data.block_descriptor_length;
208 buffer_data[2] &= ~0x05;
209 buffer_data[2] |= wce << 2 | rcd;
210 sp = buffer_data[0] & 0x80 ? 1 : 0;
211 buffer_data[0] &= ~0x80;
212
213 if (scsi_mode_select(sdp, 1, sp, 8, buffer_data, len, SD_TIMEOUT,
214 SD_MAX_RETRIES, &data, &sshdr)) {
215 if (scsi_sense_valid(&sshdr))
216 sd_print_sense_hdr(sdkp, &sshdr);
217 return -EINVAL;
218 }
219 revalidate_disk(sdkp->disk);
220 return count;
221 }
222
223 static ssize_t
224 manage_start_stop_show(struct device *dev, struct device_attribute *attr,
225 char *buf)
226 {
227 struct scsi_disk *sdkp = to_scsi_disk(dev);
228 struct scsi_device *sdp = sdkp->device;
229
230 return snprintf(buf, 20, "%u\n", sdp->manage_start_stop);
231 }
232
233 static ssize_t
234 manage_start_stop_store(struct device *dev, struct device_attribute *attr,
235 const char *buf, size_t count)
236 {
237 struct scsi_disk *sdkp = to_scsi_disk(dev);
238 struct scsi_device *sdp = sdkp->device;
239
240 if (!capable(CAP_SYS_ADMIN))
241 return -EACCES;
242
243 sdp->manage_start_stop = simple_strtoul(buf, NULL, 10);
244
245 return count;
246 }
247 static DEVICE_ATTR_RW(manage_start_stop);
248
249 static ssize_t
250 allow_restart_show(struct device *dev, struct device_attribute *attr, char *buf)
251 {
252 struct scsi_disk *sdkp = to_scsi_disk(dev);
253
254 return snprintf(buf, 40, "%d\n", sdkp->device->allow_restart);
255 }
256
257 static ssize_t
258 allow_restart_store(struct device *dev, struct device_attribute *attr,
259 const char *buf, size_t count)
260 {
261 struct scsi_disk *sdkp = to_scsi_disk(dev);
262 struct scsi_device *sdp = sdkp->device;
263
264 if (!capable(CAP_SYS_ADMIN))
265 return -EACCES;
266
267 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
268 return -EINVAL;
269
270 sdp->allow_restart = simple_strtoul(buf, NULL, 10);
271
272 return count;
273 }
274 static DEVICE_ATTR_RW(allow_restart);
275
276 static ssize_t
277 cache_type_show(struct device *dev, struct device_attribute *attr, char *buf)
278 {
279 struct scsi_disk *sdkp = to_scsi_disk(dev);
280 int ct = sdkp->RCD + 2*sdkp->WCE;
281
282 return snprintf(buf, 40, "%s\n", sd_cache_types[ct]);
283 }
284 static DEVICE_ATTR_RW(cache_type);
285
286 static ssize_t
287 FUA_show(struct device *dev, struct device_attribute *attr, char *buf)
288 {
289 struct scsi_disk *sdkp = to_scsi_disk(dev);
290
291 return snprintf(buf, 20, "%u\n", sdkp->DPOFUA);
292 }
293 static DEVICE_ATTR_RO(FUA);
294
295 static ssize_t
296 protection_type_show(struct device *dev, struct device_attribute *attr,
297 char *buf)
298 {
299 struct scsi_disk *sdkp = to_scsi_disk(dev);
300
301 return snprintf(buf, 20, "%u\n", sdkp->protection_type);
302 }
303
304 static ssize_t
305 protection_type_store(struct device *dev, struct device_attribute *attr,
306 const char *buf, size_t count)
307 {
308 struct scsi_disk *sdkp = to_scsi_disk(dev);
309 unsigned int val;
310 int err;
311
312 if (!capable(CAP_SYS_ADMIN))
313 return -EACCES;
314
315 err = kstrtouint(buf, 10, &val);
316
317 if (err)
318 return err;
319
320 if (val >= 0 && val <= T10_PI_TYPE3_PROTECTION)
321 sdkp->protection_type = val;
322
323 return count;
324 }
325 static DEVICE_ATTR_RW(protection_type);
326
327 static ssize_t
328 protection_mode_show(struct device *dev, struct device_attribute *attr,
329 char *buf)
330 {
331 struct scsi_disk *sdkp = to_scsi_disk(dev);
332 struct scsi_device *sdp = sdkp->device;
333 unsigned int dif, dix;
334
335 dif = scsi_host_dif_capable(sdp->host, sdkp->protection_type);
336 dix = scsi_host_dix_capable(sdp->host, sdkp->protection_type);
337
338 if (!dix && scsi_host_dix_capable(sdp->host, T10_PI_TYPE0_PROTECTION)) {
339 dif = 0;
340 dix = 1;
341 }
342
343 if (!dif && !dix)
344 return snprintf(buf, 20, "none\n");
345
346 return snprintf(buf, 20, "%s%u\n", dix ? "dix" : "dif", dif);
347 }
348 static DEVICE_ATTR_RO(protection_mode);
349
350 static ssize_t
351 app_tag_own_show(struct device *dev, struct device_attribute *attr, char *buf)
352 {
353 struct scsi_disk *sdkp = to_scsi_disk(dev);
354
355 return snprintf(buf, 20, "%u\n", sdkp->ATO);
356 }
357 static DEVICE_ATTR_RO(app_tag_own);
358
359 static ssize_t
360 thin_provisioning_show(struct device *dev, struct device_attribute *attr,
361 char *buf)
362 {
363 struct scsi_disk *sdkp = to_scsi_disk(dev);
364
365 return snprintf(buf, 20, "%u\n", sdkp->lbpme);
366 }
367 static DEVICE_ATTR_RO(thin_provisioning);
368
369 static const char *lbp_mode[] = {
370 [SD_LBP_FULL] = "full",
371 [SD_LBP_UNMAP] = "unmap",
372 [SD_LBP_WS16] = "writesame_16",
373 [SD_LBP_WS10] = "writesame_10",
374 [SD_LBP_ZERO] = "writesame_zero",
375 [SD_LBP_DISABLE] = "disabled",
376 };
377
378 static ssize_t
379 provisioning_mode_show(struct device *dev, struct device_attribute *attr,
380 char *buf)
381 {
382 struct scsi_disk *sdkp = to_scsi_disk(dev);
383
384 return snprintf(buf, 20, "%s\n", lbp_mode[sdkp->provisioning_mode]);
385 }
386
387 static ssize_t
388 provisioning_mode_store(struct device *dev, struct device_attribute *attr,
389 const char *buf, size_t count)
390 {
391 struct scsi_disk *sdkp = to_scsi_disk(dev);
392 struct scsi_device *sdp = sdkp->device;
393
394 if (!capable(CAP_SYS_ADMIN))
395 return -EACCES;
396
397 if (sd_is_zoned(sdkp)) {
398 sd_config_discard(sdkp, SD_LBP_DISABLE);
399 return count;
400 }
401
402 if (sdp->type != TYPE_DISK)
403 return -EINVAL;
404
405 if (!strncmp(buf, lbp_mode[SD_LBP_UNMAP], 20))
406 sd_config_discard(sdkp, SD_LBP_UNMAP);
407 else if (!strncmp(buf, lbp_mode[SD_LBP_WS16], 20))
408 sd_config_discard(sdkp, SD_LBP_WS16);
409 else if (!strncmp(buf, lbp_mode[SD_LBP_WS10], 20))
410 sd_config_discard(sdkp, SD_LBP_WS10);
411 else if (!strncmp(buf, lbp_mode[SD_LBP_ZERO], 20))
412 sd_config_discard(sdkp, SD_LBP_ZERO);
413 else if (!strncmp(buf, lbp_mode[SD_LBP_DISABLE], 20))
414 sd_config_discard(sdkp, SD_LBP_DISABLE);
415 else
416 return -EINVAL;
417
418 return count;
419 }
420 static DEVICE_ATTR_RW(provisioning_mode);
421
422 static const char *zeroing_mode[] = {
423 [SD_ZERO_WRITE] = "write",
424 [SD_ZERO_WS] = "writesame",
425 [SD_ZERO_WS16_UNMAP] = "writesame_16_unmap",
426 [SD_ZERO_WS10_UNMAP] = "writesame_10_unmap",
427 };
428
429 static ssize_t
430 zeroing_mode_show(struct device *dev, struct device_attribute *attr,
431 char *buf)
432 {
433 struct scsi_disk *sdkp = to_scsi_disk(dev);
434
435 return snprintf(buf, 20, "%s\n", zeroing_mode[sdkp->zeroing_mode]);
436 }
437
438 static ssize_t
439 zeroing_mode_store(struct device *dev, struct device_attribute *attr,
440 const char *buf, size_t count)
441 {
442 struct scsi_disk *sdkp = to_scsi_disk(dev);
443
444 if (!capable(CAP_SYS_ADMIN))
445 return -EACCES;
446
447 if (!strncmp(buf, zeroing_mode[SD_ZERO_WRITE], 20))
448 sdkp->zeroing_mode = SD_ZERO_WRITE;
449 else if (!strncmp(buf, zeroing_mode[SD_ZERO_WS], 20))
450 sdkp->zeroing_mode = SD_ZERO_WS;
451 else if (!strncmp(buf, zeroing_mode[SD_ZERO_WS16_UNMAP], 20))
452 sdkp->zeroing_mode = SD_ZERO_WS16_UNMAP;
453 else if (!strncmp(buf, zeroing_mode[SD_ZERO_WS10_UNMAP], 20))
454 sdkp->zeroing_mode = SD_ZERO_WS10_UNMAP;
455 else
456 return -EINVAL;
457
458 return count;
459 }
460 static DEVICE_ATTR_RW(zeroing_mode);
461
462 static ssize_t
463 max_medium_access_timeouts_show(struct device *dev,
464 struct device_attribute *attr, char *buf)
465 {
466 struct scsi_disk *sdkp = to_scsi_disk(dev);
467
468 return snprintf(buf, 20, "%u\n", sdkp->max_medium_access_timeouts);
469 }
470
471 static ssize_t
472 max_medium_access_timeouts_store(struct device *dev,
473 struct device_attribute *attr, const char *buf,
474 size_t count)
475 {
476 struct scsi_disk *sdkp = to_scsi_disk(dev);
477 int err;
478
479 if (!capable(CAP_SYS_ADMIN))
480 return -EACCES;
481
482 err = kstrtouint(buf, 10, &sdkp->max_medium_access_timeouts);
483
484 return err ? err : count;
485 }
486 static DEVICE_ATTR_RW(max_medium_access_timeouts);
487
488 static ssize_t
489 max_write_same_blocks_show(struct device *dev, struct device_attribute *attr,
490 char *buf)
491 {
492 struct scsi_disk *sdkp = to_scsi_disk(dev);
493
494 return snprintf(buf, 20, "%u\n", sdkp->max_ws_blocks);
495 }
496
497 static ssize_t
498 max_write_same_blocks_store(struct device *dev, struct device_attribute *attr,
499 const char *buf, size_t count)
500 {
501 struct scsi_disk *sdkp = to_scsi_disk(dev);
502 struct scsi_device *sdp = sdkp->device;
503 unsigned long max;
504 int err;
505
506 if (!capable(CAP_SYS_ADMIN))
507 return -EACCES;
508
509 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
510 return -EINVAL;
511
512 err = kstrtoul(buf, 10, &max);
513
514 if (err)
515 return err;
516
517 if (max == 0)
518 sdp->no_write_same = 1;
519 else if (max <= SD_MAX_WS16_BLOCKS) {
520 sdp->no_write_same = 0;
521 sdkp->max_ws_blocks = max;
522 }
523
524 sd_config_write_same(sdkp);
525
526 return count;
527 }
528 static DEVICE_ATTR_RW(max_write_same_blocks);
529
530 static struct attribute *sd_disk_attrs[] = {
531 &dev_attr_cache_type.attr,
532 &dev_attr_FUA.attr,
533 &dev_attr_allow_restart.attr,
534 &dev_attr_manage_start_stop.attr,
535 &dev_attr_protection_type.attr,
536 &dev_attr_protection_mode.attr,
537 &dev_attr_app_tag_own.attr,
538 &dev_attr_thin_provisioning.attr,
539 &dev_attr_provisioning_mode.attr,
540 &dev_attr_zeroing_mode.attr,
541 &dev_attr_max_write_same_blocks.attr,
542 &dev_attr_max_medium_access_timeouts.attr,
543 NULL,
544 };
545 ATTRIBUTE_GROUPS(sd_disk);
546
547 static struct class sd_disk_class = {
548 .name = "scsi_disk",
549 .owner = THIS_MODULE,
550 .dev_release = scsi_disk_release,
551 .dev_groups = sd_disk_groups,
552 };
553
554 static const struct dev_pm_ops sd_pm_ops = {
555 .suspend = sd_suspend_system,
556 .resume = sd_resume,
557 .poweroff = sd_suspend_system,
558 .restore = sd_resume,
559 .runtime_suspend = sd_suspend_runtime,
560 .runtime_resume = sd_resume,
561 };
562
563 static struct scsi_driver sd_template = {
564 .gendrv = {
565 .name = "sd",
566 .owner = THIS_MODULE,
567 .probe = sd_probe,
568 .remove = sd_remove,
569 .shutdown = sd_shutdown,
570 .pm = &sd_pm_ops,
571 },
572 .rescan = sd_rescan,
573 .init_command = sd_init_command,
574 .uninit_command = sd_uninit_command,
575 .done = sd_done,
576 .eh_action = sd_eh_action,
577 .eh_reset = sd_eh_reset,
578 };
579
580 /*
581 * Dummy kobj_map->probe function.
582 * The default ->probe function will call modprobe, which is
583 * pointless as this module is already loaded.
584 */
585 static struct kobject *sd_default_probe(dev_t devt, int *partno, void *data)
586 {
587 return NULL;
588 }
589
590 /*
591 * Device no to disk mapping:
592 *
593 * major disc2 disc p1
594 * |............|.............|....|....| <- dev_t
595 * 31 20 19 8 7 4 3 0
596 *
597 * Inside a major, we have 16k disks, however mapped non-
598 * contiguously. The first 16 disks are for major0, the next
599 * ones with major1, ... Disk 256 is for major0 again, disk 272
600 * for major1, ...
601 * As we stay compatible with our numbering scheme, we can reuse
602 * the well-know SCSI majors 8, 65--71, 136--143.
603 */
604 static int sd_major(int major_idx)
605 {
606 switch (major_idx) {
607 case 0:
608 return SCSI_DISK0_MAJOR;
609 case 1 ... 7:
610 return SCSI_DISK1_MAJOR + major_idx - 1;
611 case 8 ... 15:
612 return SCSI_DISK8_MAJOR + major_idx - 8;
613 default:
614 BUG();
615 return 0; /* shut up gcc */
616 }
617 }
618
619 static struct scsi_disk *scsi_disk_get(struct gendisk *disk)
620 {
621 struct scsi_disk *sdkp = NULL;
622
623 mutex_lock(&sd_ref_mutex);
624
625 if (disk->private_data) {
626 sdkp = scsi_disk(disk);
627 if (scsi_device_get(sdkp->device) == 0)
628 get_device(&sdkp->dev);
629 else
630 sdkp = NULL;
631 }
632 mutex_unlock(&sd_ref_mutex);
633 return sdkp;
634 }
635
636 static void scsi_disk_put(struct scsi_disk *sdkp)
637 {
638 struct scsi_device *sdev = sdkp->device;
639
640 mutex_lock(&sd_ref_mutex);
641 put_device(&sdkp->dev);
642 scsi_device_put(sdev);
643 mutex_unlock(&sd_ref_mutex);
644 }
645
646 static unsigned char sd_setup_protect_cmnd(struct scsi_cmnd *scmd,
647 unsigned int dix, unsigned int dif)
648 {
649 struct bio *bio = scmd->request->bio;
650 unsigned int prot_op = sd_prot_op(rq_data_dir(scmd->request), dix, dif);
651 unsigned int protect = 0;
652
653 if (dix) { /* DIX Type 0, 1, 2, 3 */
654 if (bio_integrity_flagged(bio, BIP_IP_CHECKSUM))
655 scmd->prot_flags |= SCSI_PROT_IP_CHECKSUM;
656
657 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false)
658 scmd->prot_flags |= SCSI_PROT_GUARD_CHECK;
659 }
660
661 if (dif != T10_PI_TYPE3_PROTECTION) { /* DIX/DIF Type 0, 1, 2 */
662 scmd->prot_flags |= SCSI_PROT_REF_INCREMENT;
663
664 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false)
665 scmd->prot_flags |= SCSI_PROT_REF_CHECK;
666 }
667
668 if (dif) { /* DIX/DIF Type 1, 2, 3 */
669 scmd->prot_flags |= SCSI_PROT_TRANSFER_PI;
670
671 if (bio_integrity_flagged(bio, BIP_DISK_NOCHECK))
672 protect = 3 << 5; /* Disable target PI checking */
673 else
674 protect = 1 << 5; /* Enable target PI checking */
675 }
676
677 scsi_set_prot_op(scmd, prot_op);
678 scsi_set_prot_type(scmd, dif);
679 scmd->prot_flags &= sd_prot_flag_mask(prot_op);
680
681 return protect;
682 }
683
684 static void sd_config_discard(struct scsi_disk *sdkp, unsigned int mode)
685 {
686 struct request_queue *q = sdkp->disk->queue;
687 unsigned int logical_block_size = sdkp->device->sector_size;
688 unsigned int max_blocks = 0;
689
690 q->limits.discard_alignment =
691 sdkp->unmap_alignment * logical_block_size;
692 q->limits.discard_granularity =
693 max(sdkp->physical_block_size,
694 sdkp->unmap_granularity * logical_block_size);
695 sdkp->provisioning_mode = mode;
696
697 switch (mode) {
698
699 case SD_LBP_DISABLE:
700 blk_queue_max_discard_sectors(q, 0);
701 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q);
702 return;
703
704 case SD_LBP_UNMAP:
705 max_blocks = min_not_zero(sdkp->max_unmap_blocks,
706 (u32)SD_MAX_WS16_BLOCKS);
707 break;
708
709 case SD_LBP_WS16:
710 max_blocks = min_not_zero(sdkp->max_ws_blocks,
711 (u32)SD_MAX_WS16_BLOCKS);
712 break;
713
714 case SD_LBP_WS10:
715 max_blocks = min_not_zero(sdkp->max_ws_blocks,
716 (u32)SD_MAX_WS10_BLOCKS);
717 break;
718
719 case SD_LBP_ZERO:
720 max_blocks = min_not_zero(sdkp->max_ws_blocks,
721 (u32)SD_MAX_WS10_BLOCKS);
722 break;
723 }
724
725 blk_queue_max_discard_sectors(q, max_blocks * (logical_block_size >> 9));
726 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
727 }
728
729 static int sd_setup_unmap_cmnd(struct scsi_cmnd *cmd)
730 {
731 struct scsi_device *sdp = cmd->device;
732 struct request *rq = cmd->request;
733 u64 sector = blk_rq_pos(rq) >> (ilog2(sdp->sector_size) - 9);
734 u32 nr_sectors = blk_rq_sectors(rq) >> (ilog2(sdp->sector_size) - 9);
735 unsigned int data_len = 24;
736 char *buf;
737
738 rq->special_vec.bv_page = alloc_page(GFP_ATOMIC | __GFP_ZERO);
739 if (!rq->special_vec.bv_page)
740 return BLKPREP_DEFER;
741 rq->special_vec.bv_offset = 0;
742 rq->special_vec.bv_len = data_len;
743 rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
744
745 cmd->cmd_len = 10;
746 cmd->cmnd[0] = UNMAP;
747 cmd->cmnd[8] = 24;
748
749 buf = page_address(rq->special_vec.bv_page);
750 put_unaligned_be16(6 + 16, &buf[0]);
751 put_unaligned_be16(16, &buf[2]);
752 put_unaligned_be64(sector, &buf[8]);
753 put_unaligned_be32(nr_sectors, &buf[16]);
754
755 cmd->allowed = SD_MAX_RETRIES;
756 cmd->transfersize = data_len;
757 rq->timeout = SD_TIMEOUT;
758 scsi_req(rq)->resid_len = data_len;
759
760 return scsi_init_io(cmd);
761 }
762
763 static int sd_setup_write_same16_cmnd(struct scsi_cmnd *cmd, bool unmap)
764 {
765 struct scsi_device *sdp = cmd->device;
766 struct request *rq = cmd->request;
767 u64 sector = blk_rq_pos(rq) >> (ilog2(sdp->sector_size) - 9);
768 u32 nr_sectors = blk_rq_sectors(rq) >> (ilog2(sdp->sector_size) - 9);
769 u32 data_len = sdp->sector_size;
770
771 rq->special_vec.bv_page = alloc_page(GFP_ATOMIC | __GFP_ZERO);
772 if (!rq->special_vec.bv_page)
773 return BLKPREP_DEFER;
774 rq->special_vec.bv_offset = 0;
775 rq->special_vec.bv_len = data_len;
776 rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
777
778 cmd->cmd_len = 16;
779 cmd->cmnd[0] = WRITE_SAME_16;
780 if (unmap)
781 cmd->cmnd[1] = 0x8; /* UNMAP */
782 put_unaligned_be64(sector, &cmd->cmnd[2]);
783 put_unaligned_be32(nr_sectors, &cmd->cmnd[10]);
784
785 cmd->allowed = SD_MAX_RETRIES;
786 cmd->transfersize = data_len;
787 rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT;
788 scsi_req(rq)->resid_len = data_len;
789
790 return scsi_init_io(cmd);
791 }
792
793 static int sd_setup_write_same10_cmnd(struct scsi_cmnd *cmd, bool unmap)
794 {
795 struct scsi_device *sdp = cmd->device;
796 struct request *rq = cmd->request;
797 u64 sector = blk_rq_pos(rq) >> (ilog2(sdp->sector_size) - 9);
798 u32 nr_sectors = blk_rq_sectors(rq) >> (ilog2(sdp->sector_size) - 9);
799 u32 data_len = sdp->sector_size;
800
801 rq->special_vec.bv_page = alloc_page(GFP_ATOMIC | __GFP_ZERO);
802 if (!rq->special_vec.bv_page)
803 return BLKPREP_DEFER;
804 rq->special_vec.bv_offset = 0;
805 rq->special_vec.bv_len = data_len;
806 rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
807
808 cmd->cmd_len = 10;
809 cmd->cmnd[0] = WRITE_SAME;
810 if (unmap)
811 cmd->cmnd[1] = 0x8; /* UNMAP */
812 put_unaligned_be32(sector, &cmd->cmnd[2]);
813 put_unaligned_be16(nr_sectors, &cmd->cmnd[7]);
814
815 cmd->allowed = SD_MAX_RETRIES;
816 cmd->transfersize = data_len;
817 rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT;
818 scsi_req(rq)->resid_len = data_len;
819
820 return scsi_init_io(cmd);
821 }
822
823 static int sd_setup_write_zeroes_cmnd(struct scsi_cmnd *cmd)
824 {
825 struct request *rq = cmd->request;
826 struct scsi_device *sdp = cmd->device;
827 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
828 u64 sector = blk_rq_pos(rq) >> (ilog2(sdp->sector_size) - 9);
829 u32 nr_sectors = blk_rq_sectors(rq) >> (ilog2(sdp->sector_size) - 9);
830 int ret;
831
832 if (!(rq->cmd_flags & REQ_NOUNMAP)) {
833 switch (sdkp->zeroing_mode) {
834 case SD_ZERO_WS16_UNMAP:
835 ret = sd_setup_write_same16_cmnd(cmd, true);
836 goto out;
837 case SD_ZERO_WS10_UNMAP:
838 ret = sd_setup_write_same10_cmnd(cmd, true);
839 goto out;
840 }
841 }
842
843 if (sdp->no_write_same)
844 return BLKPREP_INVALID;
845
846 if (sdkp->ws16 || sector > 0xffffffff || nr_sectors > 0xffff)
847 ret = sd_setup_write_same16_cmnd(cmd, false);
848 else
849 ret = sd_setup_write_same10_cmnd(cmd, false);
850
851 out:
852 if (sd_is_zoned(sdkp) && ret == BLKPREP_OK)
853 return sd_zbc_write_lock_zone(cmd);
854
855 return ret;
856 }
857
858 static void sd_config_write_same(struct scsi_disk *sdkp)
859 {
860 struct request_queue *q = sdkp->disk->queue;
861 unsigned int logical_block_size = sdkp->device->sector_size;
862
863 if (sdkp->device->no_write_same) {
864 sdkp->max_ws_blocks = 0;
865 goto out;
866 }
867
868 /* Some devices can not handle block counts above 0xffff despite
869 * supporting WRITE SAME(16). Consequently we default to 64k
870 * blocks per I/O unless the device explicitly advertises a
871 * bigger limit.
872 */
873 if (sdkp->max_ws_blocks > SD_MAX_WS10_BLOCKS)
874 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
875 (u32)SD_MAX_WS16_BLOCKS);
876 else if (sdkp->ws16 || sdkp->ws10 || sdkp->device->no_report_opcodes)
877 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
878 (u32)SD_MAX_WS10_BLOCKS);
879 else {
880 sdkp->device->no_write_same = 1;
881 sdkp->max_ws_blocks = 0;
882 }
883
884 if (sdkp->lbprz && sdkp->lbpws)
885 sdkp->zeroing_mode = SD_ZERO_WS16_UNMAP;
886 else if (sdkp->lbprz && sdkp->lbpws10)
887 sdkp->zeroing_mode = SD_ZERO_WS10_UNMAP;
888 else if (sdkp->max_ws_blocks)
889 sdkp->zeroing_mode = SD_ZERO_WS;
890 else
891 sdkp->zeroing_mode = SD_ZERO_WRITE;
892
893 out:
894 blk_queue_max_write_same_sectors(q, sdkp->max_ws_blocks *
895 (logical_block_size >> 9));
896 blk_queue_max_write_zeroes_sectors(q, sdkp->max_ws_blocks *
897 (logical_block_size >> 9));
898 }
899
900 /**
901 * sd_setup_write_same_cmnd - write the same data to multiple blocks
902 * @cmd: command to prepare
903 *
904 * Will set up either WRITE SAME(10) or WRITE SAME(16) depending on
905 * the preference indicated by the target device.
906 **/
907 static int sd_setup_write_same_cmnd(struct scsi_cmnd *cmd)
908 {
909 struct request *rq = cmd->request;
910 struct scsi_device *sdp = cmd->device;
911 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
912 struct bio *bio = rq->bio;
913 sector_t sector = blk_rq_pos(rq);
914 unsigned int nr_sectors = blk_rq_sectors(rq);
915 unsigned int nr_bytes = blk_rq_bytes(rq);
916 int ret;
917
918 if (sdkp->device->no_write_same)
919 return BLKPREP_INVALID;
920
921 BUG_ON(bio_offset(bio) || bio_iovec(bio).bv_len != sdp->sector_size);
922
923 if (sd_is_zoned(sdkp)) {
924 ret = sd_zbc_write_lock_zone(cmd);
925 if (ret != BLKPREP_OK)
926 return ret;
927 }
928
929 sector >>= ilog2(sdp->sector_size) - 9;
930 nr_sectors >>= ilog2(sdp->sector_size) - 9;
931
932 rq->timeout = SD_WRITE_SAME_TIMEOUT;
933
934 if (sdkp->ws16 || sector > 0xffffffff || nr_sectors > 0xffff) {
935 cmd->cmd_len = 16;
936 cmd->cmnd[0] = WRITE_SAME_16;
937 put_unaligned_be64(sector, &cmd->cmnd[2]);
938 put_unaligned_be32(nr_sectors, &cmd->cmnd[10]);
939 } else {
940 cmd->cmd_len = 10;
941 cmd->cmnd[0] = WRITE_SAME;
942 put_unaligned_be32(sector, &cmd->cmnd[2]);
943 put_unaligned_be16(nr_sectors, &cmd->cmnd[7]);
944 }
945
946 cmd->transfersize = sdp->sector_size;
947 cmd->allowed = SD_MAX_RETRIES;
948
949 /*
950 * For WRITE SAME the data transferred via the DATA OUT buffer is
951 * different from the amount of data actually written to the target.
952 *
953 * We set up __data_len to the amount of data transferred via the
954 * DATA OUT buffer so that blk_rq_map_sg sets up the proper S/G list
955 * to transfer a single sector of data first, but then reset it to
956 * the amount of data to be written right after so that the I/O path
957 * knows how much to actually write.
958 */
959 rq->__data_len = sdp->sector_size;
960 ret = scsi_init_io(cmd);
961 rq->__data_len = nr_bytes;
962
963 if (sd_is_zoned(sdkp) && ret != BLKPREP_OK)
964 sd_zbc_write_unlock_zone(cmd);
965
966 return ret;
967 }
968
969 static int sd_setup_flush_cmnd(struct scsi_cmnd *cmd)
970 {
971 struct request *rq = cmd->request;
972
973 /* flush requests don't perform I/O, zero the S/G table */
974 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
975
976 cmd->cmnd[0] = SYNCHRONIZE_CACHE;
977 cmd->cmd_len = 10;
978 cmd->transfersize = 0;
979 cmd->allowed = SD_MAX_RETRIES;
980
981 rq->timeout = rq->q->rq_timeout * SD_FLUSH_TIMEOUT_MULTIPLIER;
982 return BLKPREP_OK;
983 }
984
985 static int sd_setup_read_write_cmnd(struct scsi_cmnd *SCpnt)
986 {
987 struct request *rq = SCpnt->request;
988 struct scsi_device *sdp = SCpnt->device;
989 struct gendisk *disk = rq->rq_disk;
990 struct scsi_disk *sdkp = scsi_disk(disk);
991 sector_t block = blk_rq_pos(rq);
992 sector_t threshold;
993 unsigned int this_count = blk_rq_sectors(rq);
994 unsigned int dif, dix;
995 bool zoned_write = sd_is_zoned(sdkp) && rq_data_dir(rq) == WRITE;
996 int ret;
997 unsigned char protect;
998
999 if (zoned_write) {
1000 ret = sd_zbc_write_lock_zone(SCpnt);
1001 if (ret != BLKPREP_OK)
1002 return ret;
1003 }
1004
1005 ret = scsi_init_io(SCpnt);
1006 if (ret != BLKPREP_OK)
1007 goto out;
1008 SCpnt = rq->special;
1009
1010 /* from here on until we're complete, any goto out
1011 * is used for a killable error condition */
1012 ret = BLKPREP_KILL;
1013
1014 SCSI_LOG_HLQUEUE(1,
1015 scmd_printk(KERN_INFO, SCpnt,
1016 "%s: block=%llu, count=%d\n",
1017 __func__, (unsigned long long)block, this_count));
1018
1019 if (!sdp || !scsi_device_online(sdp) ||
1020 block + blk_rq_sectors(rq) > get_capacity(disk)) {
1021 SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt,
1022 "Finishing %u sectors\n",
1023 blk_rq_sectors(rq)));
1024 SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt,
1025 "Retry with 0x%p\n", SCpnt));
1026 goto out;
1027 }
1028
1029 if (sdp->changed) {
1030 /*
1031 * quietly refuse to do anything to a changed disc until
1032 * the changed bit has been reset
1033 */
1034 /* printk("SCSI disk has been changed or is not present. Prohibiting further I/O.\n"); */
1035 goto out;
1036 }
1037
1038 /*
1039 * Some SD card readers can't handle multi-sector accesses which touch
1040 * the last one or two hardware sectors. Split accesses as needed.
1041 */
1042 threshold = get_capacity(disk) - SD_LAST_BUGGY_SECTORS *
1043 (sdp->sector_size / 512);
1044
1045 if (unlikely(sdp->last_sector_bug && block + this_count > threshold)) {
1046 if (block < threshold) {
1047 /* Access up to the threshold but not beyond */
1048 this_count = threshold - block;
1049 } else {
1050 /* Access only a single hardware sector */
1051 this_count = sdp->sector_size / 512;
1052 }
1053 }
1054
1055 SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt, "block=%llu\n",
1056 (unsigned long long)block));
1057
1058 /*
1059 * If we have a 1K hardware sectorsize, prevent access to single
1060 * 512 byte sectors. In theory we could handle this - in fact
1061 * the scsi cdrom driver must be able to handle this because
1062 * we typically use 1K blocksizes, and cdroms typically have
1063 * 2K hardware sectorsizes. Of course, things are simpler
1064 * with the cdrom, since it is read-only. For performance
1065 * reasons, the filesystems should be able to handle this
1066 * and not force the scsi disk driver to use bounce buffers
1067 * for this.
1068 */
1069 if (sdp->sector_size == 1024) {
1070 if ((block & 1) || (blk_rq_sectors(rq) & 1)) {
1071 scmd_printk(KERN_ERR, SCpnt,
1072 "Bad block number requested\n");
1073 goto out;
1074 } else {
1075 block = block >> 1;
1076 this_count = this_count >> 1;
1077 }
1078 }
1079 if (sdp->sector_size == 2048) {
1080 if ((block & 3) || (blk_rq_sectors(rq) & 3)) {
1081 scmd_printk(KERN_ERR, SCpnt,
1082 "Bad block number requested\n");
1083 goto out;
1084 } else {
1085 block = block >> 2;
1086 this_count = this_count >> 2;
1087 }
1088 }
1089 if (sdp->sector_size == 4096) {
1090 if ((block & 7) || (blk_rq_sectors(rq) & 7)) {
1091 scmd_printk(KERN_ERR, SCpnt,
1092 "Bad block number requested\n");
1093 goto out;
1094 } else {
1095 block = block >> 3;
1096 this_count = this_count >> 3;
1097 }
1098 }
1099 if (rq_data_dir(rq) == WRITE) {
1100 SCpnt->cmnd[0] = WRITE_6;
1101
1102 if (blk_integrity_rq(rq))
1103 sd_dif_prepare(SCpnt);
1104
1105 } else if (rq_data_dir(rq) == READ) {
1106 SCpnt->cmnd[0] = READ_6;
1107 } else {
1108 scmd_printk(KERN_ERR, SCpnt, "Unknown command %d\n", req_op(rq));
1109 goto out;
1110 }
1111
1112 SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt,
1113 "%s %d/%u 512 byte blocks.\n",
1114 (rq_data_dir(rq) == WRITE) ?
1115 "writing" : "reading", this_count,
1116 blk_rq_sectors(rq)));
1117
1118 dix = scsi_prot_sg_count(SCpnt);
1119 dif = scsi_host_dif_capable(SCpnt->device->host, sdkp->protection_type);
1120
1121 if (dif || dix)
1122 protect = sd_setup_protect_cmnd(SCpnt, dix, dif);
1123 else
1124 protect = 0;
1125
1126 if (protect && sdkp->protection_type == T10_PI_TYPE2_PROTECTION) {
1127 SCpnt->cmnd = mempool_alloc(sd_cdb_pool, GFP_ATOMIC);
1128
1129 if (unlikely(SCpnt->cmnd == NULL)) {
1130 ret = BLKPREP_DEFER;
1131 goto out;
1132 }
1133
1134 SCpnt->cmd_len = SD_EXT_CDB_SIZE;
1135 memset(SCpnt->cmnd, 0, SCpnt->cmd_len);
1136 SCpnt->cmnd[0] = VARIABLE_LENGTH_CMD;
1137 SCpnt->cmnd[7] = 0x18;
1138 SCpnt->cmnd[9] = (rq_data_dir(rq) == READ) ? READ_32 : WRITE_32;
1139 SCpnt->cmnd[10] = protect | ((rq->cmd_flags & REQ_FUA) ? 0x8 : 0);
1140
1141 /* LBA */
1142 SCpnt->cmnd[12] = sizeof(block) > 4 ? (unsigned char) (block >> 56) & 0xff : 0;
1143 SCpnt->cmnd[13] = sizeof(block) > 4 ? (unsigned char) (block >> 48) & 0xff : 0;
1144 SCpnt->cmnd[14] = sizeof(block) > 4 ? (unsigned char) (block >> 40) & 0xff : 0;
1145 SCpnt->cmnd[15] = sizeof(block) > 4 ? (unsigned char) (block >> 32) & 0xff : 0;
1146 SCpnt->cmnd[16] = (unsigned char) (block >> 24) & 0xff;
1147 SCpnt->cmnd[17] = (unsigned char) (block >> 16) & 0xff;
1148 SCpnt->cmnd[18] = (unsigned char) (block >> 8) & 0xff;
1149 SCpnt->cmnd[19] = (unsigned char) block & 0xff;
1150
1151 /* Expected Indirect LBA */
1152 SCpnt->cmnd[20] = (unsigned char) (block >> 24) & 0xff;
1153 SCpnt->cmnd[21] = (unsigned char) (block >> 16) & 0xff;
1154 SCpnt->cmnd[22] = (unsigned char) (block >> 8) & 0xff;
1155 SCpnt->cmnd[23] = (unsigned char) block & 0xff;
1156
1157 /* Transfer length */
1158 SCpnt->cmnd[28] = (unsigned char) (this_count >> 24) & 0xff;
1159 SCpnt->cmnd[29] = (unsigned char) (this_count >> 16) & 0xff;
1160 SCpnt->cmnd[30] = (unsigned char) (this_count >> 8) & 0xff;
1161 SCpnt->cmnd[31] = (unsigned char) this_count & 0xff;
1162 } else if (sdp->use_16_for_rw || (this_count > 0xffff)) {
1163 SCpnt->cmnd[0] += READ_16 - READ_6;
1164 SCpnt->cmnd[1] = protect | ((rq->cmd_flags & REQ_FUA) ? 0x8 : 0);
1165 SCpnt->cmnd[2] = sizeof(block) > 4 ? (unsigned char) (block >> 56) & 0xff : 0;
1166 SCpnt->cmnd[3] = sizeof(block) > 4 ? (unsigned char) (block >> 48) & 0xff : 0;
1167 SCpnt->cmnd[4] = sizeof(block) > 4 ? (unsigned char) (block >> 40) & 0xff : 0;
1168 SCpnt->cmnd[5] = sizeof(block) > 4 ? (unsigned char) (block >> 32) & 0xff : 0;
1169 SCpnt->cmnd[6] = (unsigned char) (block >> 24) & 0xff;
1170 SCpnt->cmnd[7] = (unsigned char) (block >> 16) & 0xff;
1171 SCpnt->cmnd[8] = (unsigned char) (block >> 8) & 0xff;
1172 SCpnt->cmnd[9] = (unsigned char) block & 0xff;
1173 SCpnt->cmnd[10] = (unsigned char) (this_count >> 24) & 0xff;
1174 SCpnt->cmnd[11] = (unsigned char) (this_count >> 16) & 0xff;
1175 SCpnt->cmnd[12] = (unsigned char) (this_count >> 8) & 0xff;
1176 SCpnt->cmnd[13] = (unsigned char) this_count & 0xff;
1177 SCpnt->cmnd[14] = SCpnt->cmnd[15] = 0;
1178 } else if ((this_count > 0xff) || (block > 0x1fffff) ||
1179 scsi_device_protection(SCpnt->device) ||
1180 SCpnt->device->use_10_for_rw) {
1181 SCpnt->cmnd[0] += READ_10 - READ_6;
1182 SCpnt->cmnd[1] = protect | ((rq->cmd_flags & REQ_FUA) ? 0x8 : 0);
1183 SCpnt->cmnd[2] = (unsigned char) (block >> 24) & 0xff;
1184 SCpnt->cmnd[3] = (unsigned char) (block >> 16) & 0xff;
1185 SCpnt->cmnd[4] = (unsigned char) (block >> 8) & 0xff;
1186 SCpnt->cmnd[5] = (unsigned char) block & 0xff;
1187 SCpnt->cmnd[6] = SCpnt->cmnd[9] = 0;
1188 SCpnt->cmnd[7] = (unsigned char) (this_count >> 8) & 0xff;
1189 SCpnt->cmnd[8] = (unsigned char) this_count & 0xff;
1190 } else {
1191 if (unlikely(rq->cmd_flags & REQ_FUA)) {
1192 /*
1193 * This happens only if this drive failed
1194 * 10byte rw command with ILLEGAL_REQUEST
1195 * during operation and thus turned off
1196 * use_10_for_rw.
1197 */
1198 scmd_printk(KERN_ERR, SCpnt,
1199 "FUA write on READ/WRITE(6) drive\n");
1200 goto out;
1201 }
1202
1203 SCpnt->cmnd[1] |= (unsigned char) ((block >> 16) & 0x1f);
1204 SCpnt->cmnd[2] = (unsigned char) ((block >> 8) & 0xff);
1205 SCpnt->cmnd[3] = (unsigned char) block & 0xff;
1206 SCpnt->cmnd[4] = (unsigned char) this_count;
1207 SCpnt->cmnd[5] = 0;
1208 }
1209 SCpnt->sdb.length = this_count * sdp->sector_size;
1210
1211 /*
1212 * We shouldn't disconnect in the middle of a sector, so with a dumb
1213 * host adapter, it's safe to assume that we can at least transfer
1214 * this many bytes between each connect / disconnect.
1215 */
1216 SCpnt->transfersize = sdp->sector_size;
1217 SCpnt->underflow = this_count << 9;
1218 SCpnt->allowed = SD_MAX_RETRIES;
1219
1220 /*
1221 * This indicates that the command is ready from our end to be
1222 * queued.
1223 */
1224 ret = BLKPREP_OK;
1225 out:
1226 if (zoned_write && ret != BLKPREP_OK)
1227 sd_zbc_write_unlock_zone(SCpnt);
1228
1229 return ret;
1230 }
1231
1232 static int sd_init_command(struct scsi_cmnd *cmd)
1233 {
1234 struct request *rq = cmd->request;
1235
1236 switch (req_op(rq)) {
1237 case REQ_OP_DISCARD:
1238 switch (scsi_disk(rq->rq_disk)->provisioning_mode) {
1239 case SD_LBP_UNMAP:
1240 return sd_setup_unmap_cmnd(cmd);
1241 case SD_LBP_WS16:
1242 return sd_setup_write_same16_cmnd(cmd, true);
1243 case SD_LBP_WS10:
1244 return sd_setup_write_same10_cmnd(cmd, true);
1245 case SD_LBP_ZERO:
1246 return sd_setup_write_same10_cmnd(cmd, false);
1247 default:
1248 return BLKPREP_INVALID;
1249 }
1250 case REQ_OP_WRITE_ZEROES:
1251 return sd_setup_write_zeroes_cmnd(cmd);
1252 case REQ_OP_WRITE_SAME:
1253 return sd_setup_write_same_cmnd(cmd);
1254 case REQ_OP_FLUSH:
1255 return sd_setup_flush_cmnd(cmd);
1256 case REQ_OP_READ:
1257 case REQ_OP_WRITE:
1258 return sd_setup_read_write_cmnd(cmd);
1259 case REQ_OP_ZONE_REPORT:
1260 return sd_zbc_setup_report_cmnd(cmd);
1261 case REQ_OP_ZONE_RESET:
1262 return sd_zbc_setup_reset_cmnd(cmd);
1263 default:
1264 BUG();
1265 }
1266 }
1267
1268 static void sd_uninit_command(struct scsi_cmnd *SCpnt)
1269 {
1270 struct request *rq = SCpnt->request;
1271
1272 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1273 __free_page(rq->special_vec.bv_page);
1274
1275 if (SCpnt->cmnd != scsi_req(rq)->cmd) {
1276 mempool_free(SCpnt->cmnd, sd_cdb_pool);
1277 SCpnt->cmnd = NULL;
1278 SCpnt->cmd_len = 0;
1279 }
1280 }
1281
1282 /**
1283 * sd_open - open a scsi disk device
1284 * @bdev: Block device of the scsi disk to open
1285 * @mode: FMODE_* mask
1286 *
1287 * Returns 0 if successful. Returns a negated errno value in case
1288 * of error.
1289 *
1290 * Note: This can be called from a user context (e.g. fsck(1) )
1291 * or from within the kernel (e.g. as a result of a mount(1) ).
1292 * In the latter case @inode and @filp carry an abridged amount
1293 * of information as noted above.
1294 *
1295 * Locking: called with bdev->bd_mutex held.
1296 **/
1297 static int sd_open(struct block_device *bdev, fmode_t mode)
1298 {
1299 struct scsi_disk *sdkp = scsi_disk_get(bdev->bd_disk);
1300 struct scsi_device *sdev;
1301 int retval;
1302
1303 if (!sdkp)
1304 return -ENXIO;
1305
1306 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_open\n"));
1307
1308 sdev = sdkp->device;
1309
1310 /*
1311 * If the device is in error recovery, wait until it is done.
1312 * If the device is offline, then disallow any access to it.
1313 */
1314 retval = -ENXIO;
1315 if (!scsi_block_when_processing_errors(sdev))
1316 goto error_out;
1317
1318 if (sdev->removable || sdkp->write_prot)
1319 check_disk_change(bdev);
1320
1321 /*
1322 * If the drive is empty, just let the open fail.
1323 */
1324 retval = -ENOMEDIUM;
1325 if (sdev->removable && !sdkp->media_present && !(mode & FMODE_NDELAY))
1326 goto error_out;
1327
1328 /*
1329 * If the device has the write protect tab set, have the open fail
1330 * if the user expects to be able to write to the thing.
1331 */
1332 retval = -EROFS;
1333 if (sdkp->write_prot && (mode & FMODE_WRITE))
1334 goto error_out;
1335
1336 /*
1337 * It is possible that the disk changing stuff resulted in
1338 * the device being taken offline. If this is the case,
1339 * report this to the user, and don't pretend that the
1340 * open actually succeeded.
1341 */
1342 retval = -ENXIO;
1343 if (!scsi_device_online(sdev))
1344 goto error_out;
1345
1346 if ((atomic_inc_return(&sdkp->openers) == 1) && sdev->removable) {
1347 if (scsi_block_when_processing_errors(sdev))
1348 scsi_set_medium_removal(sdev, SCSI_REMOVAL_PREVENT);
1349 }
1350
1351 return 0;
1352
1353 error_out:
1354 scsi_disk_put(sdkp);
1355 return retval;
1356 }
1357
1358 /**
1359 * sd_release - invoked when the (last) close(2) is called on this
1360 * scsi disk.
1361 * @disk: disk to release
1362 * @mode: FMODE_* mask
1363 *
1364 * Returns 0.
1365 *
1366 * Note: may block (uninterruptible) if error recovery is underway
1367 * on this disk.
1368 *
1369 * Locking: called with bdev->bd_mutex held.
1370 **/
1371 static void sd_release(struct gendisk *disk, fmode_t mode)
1372 {
1373 struct scsi_disk *sdkp = scsi_disk(disk);
1374 struct scsi_device *sdev = sdkp->device;
1375
1376 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_release\n"));
1377
1378 if (atomic_dec_return(&sdkp->openers) == 0 && sdev->removable) {
1379 if (scsi_block_when_processing_errors(sdev))
1380 scsi_set_medium_removal(sdev, SCSI_REMOVAL_ALLOW);
1381 }
1382
1383 /*
1384 * XXX and what if there are packets in flight and this close()
1385 * XXX is followed by a "rmmod sd_mod"?
1386 */
1387
1388 scsi_disk_put(sdkp);
1389 }
1390
1391 static int sd_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1392 {
1393 struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1394 struct scsi_device *sdp = sdkp->device;
1395 struct Scsi_Host *host = sdp->host;
1396 sector_t capacity = logical_to_sectors(sdp, sdkp->capacity);
1397 int diskinfo[4];
1398
1399 /* default to most commonly used values */
1400 diskinfo[0] = 0x40; /* 1 << 6 */
1401 diskinfo[1] = 0x20; /* 1 << 5 */
1402 diskinfo[2] = capacity >> 11;
1403
1404 /* override with calculated, extended default, or driver values */
1405 if (host->hostt->bios_param)
1406 host->hostt->bios_param(sdp, bdev, capacity, diskinfo);
1407 else
1408 scsicam_bios_param(bdev, capacity, diskinfo);
1409
1410 geo->heads = diskinfo[0];
1411 geo->sectors = diskinfo[1];
1412 geo->cylinders = diskinfo[2];
1413 return 0;
1414 }
1415
1416 /**
1417 * sd_ioctl - process an ioctl
1418 * @bdev: target block device
1419 * @mode: FMODE_* mask
1420 * @cmd: ioctl command number
1421 * @arg: this is third argument given to ioctl(2) system call.
1422 * Often contains a pointer.
1423 *
1424 * Returns 0 if successful (some ioctls return positive numbers on
1425 * success as well). Returns a negated errno value in case of error.
1426 *
1427 * Note: most ioctls are forward onto the block subsystem or further
1428 * down in the scsi subsystem.
1429 **/
1430 static int sd_ioctl(struct block_device *bdev, fmode_t mode,
1431 unsigned int cmd, unsigned long arg)
1432 {
1433 struct gendisk *disk = bdev->bd_disk;
1434 struct scsi_disk *sdkp = scsi_disk(disk);
1435 struct scsi_device *sdp = sdkp->device;
1436 void __user *p = (void __user *)arg;
1437 int error;
1438
1439 SCSI_LOG_IOCTL(1, sd_printk(KERN_INFO, sdkp, "sd_ioctl: disk=%s, "
1440 "cmd=0x%x\n", disk->disk_name, cmd));
1441
1442 error = scsi_verify_blk_ioctl(bdev, cmd);
1443 if (error < 0)
1444 return error;
1445
1446 /*
1447 * If we are in the middle of error recovery, don't let anyone
1448 * else try and use this device. Also, if error recovery fails, it
1449 * may try and take the device offline, in which case all further
1450 * access to the device is prohibited.
1451 */
1452 error = scsi_ioctl_block_when_processing_errors(sdp, cmd,
1453 (mode & FMODE_NDELAY) != 0);
1454 if (error)
1455 goto out;
1456
1457 /*
1458 * Send SCSI addressing ioctls directly to mid level, send other
1459 * ioctls to block level and then onto mid level if they can't be
1460 * resolved.
1461 */
1462 switch (cmd) {
1463 case SCSI_IOCTL_GET_IDLUN:
1464 case SCSI_IOCTL_GET_BUS_NUMBER:
1465 error = scsi_ioctl(sdp, cmd, p);
1466 break;
1467 default:
1468 error = scsi_cmd_blk_ioctl(bdev, mode, cmd, p);
1469 if (error != -ENOTTY)
1470 break;
1471 error = scsi_ioctl(sdp, cmd, p);
1472 break;
1473 }
1474 out:
1475 return error;
1476 }
1477
1478 static void set_media_not_present(struct scsi_disk *sdkp)
1479 {
1480 if (sdkp->media_present)
1481 sdkp->device->changed = 1;
1482
1483 if (sdkp->device->removable) {
1484 sdkp->media_present = 0;
1485 sdkp->capacity = 0;
1486 }
1487 }
1488
1489 static int media_not_present(struct scsi_disk *sdkp,
1490 struct scsi_sense_hdr *sshdr)
1491 {
1492 if (!scsi_sense_valid(sshdr))
1493 return 0;
1494
1495 /* not invoked for commands that could return deferred errors */
1496 switch (sshdr->sense_key) {
1497 case UNIT_ATTENTION:
1498 case NOT_READY:
1499 /* medium not present */
1500 if (sshdr->asc == 0x3A) {
1501 set_media_not_present(sdkp);
1502 return 1;
1503 }
1504 }
1505 return 0;
1506 }
1507
1508 /**
1509 * sd_check_events - check media events
1510 * @disk: kernel device descriptor
1511 * @clearing: disk events currently being cleared
1512 *
1513 * Returns mask of DISK_EVENT_*.
1514 *
1515 * Note: this function is invoked from the block subsystem.
1516 **/
1517 static unsigned int sd_check_events(struct gendisk *disk, unsigned int clearing)
1518 {
1519 struct scsi_disk *sdkp = scsi_disk_get(disk);
1520 struct scsi_device *sdp;
1521 int retval;
1522
1523 if (!sdkp)
1524 return 0;
1525
1526 sdp = sdkp->device;
1527 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_check_events\n"));
1528
1529 /*
1530 * If the device is offline, don't send any commands - just pretend as
1531 * if the command failed. If the device ever comes back online, we
1532 * can deal with it then. It is only because of unrecoverable errors
1533 * that we would ever take a device offline in the first place.
1534 */
1535 if (!scsi_device_online(sdp)) {
1536 set_media_not_present(sdkp);
1537 goto out;
1538 }
1539
1540 /*
1541 * Using TEST_UNIT_READY enables differentiation between drive with
1542 * no cartridge loaded - NOT READY, drive with changed cartridge -
1543 * UNIT ATTENTION, or with same cartridge - GOOD STATUS.
1544 *
1545 * Drives that auto spin down. eg iomega jaz 1G, will be started
1546 * by sd_spinup_disk() from sd_revalidate_disk(), which happens whenever
1547 * sd_revalidate() is called.
1548 */
1549 if (scsi_block_when_processing_errors(sdp)) {
1550 struct scsi_sense_hdr sshdr = { 0, };
1551
1552 retval = scsi_test_unit_ready(sdp, SD_TIMEOUT, SD_MAX_RETRIES,
1553 &sshdr);
1554
1555 /* failed to execute TUR, assume media not present */
1556 if (host_byte(retval)) {
1557 set_media_not_present(sdkp);
1558 goto out;
1559 }
1560
1561 if (media_not_present(sdkp, &sshdr))
1562 goto out;
1563 }
1564
1565 /*
1566 * For removable scsi disk we have to recognise the presence
1567 * of a disk in the drive.
1568 */
1569 if (!sdkp->media_present)
1570 sdp->changed = 1;
1571 sdkp->media_present = 1;
1572 out:
1573 /*
1574 * sdp->changed is set under the following conditions:
1575 *
1576 * Medium present state has changed in either direction.
1577 * Device has indicated UNIT_ATTENTION.
1578 */
1579 retval = sdp->changed ? DISK_EVENT_MEDIA_CHANGE : 0;
1580 sdp->changed = 0;
1581 scsi_disk_put(sdkp);
1582 return retval;
1583 }
1584
1585 static int sd_sync_cache(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr)
1586 {
1587 int retries, res;
1588 struct scsi_device *sdp = sdkp->device;
1589 const int timeout = sdp->request_queue->rq_timeout
1590 * SD_FLUSH_TIMEOUT_MULTIPLIER;
1591 struct scsi_sense_hdr my_sshdr;
1592
1593 if (!scsi_device_online(sdp))
1594 return -ENODEV;
1595
1596 /* caller might not be interested in sense, but we need it */
1597 if (!sshdr)
1598 sshdr = &my_sshdr;
1599
1600 for (retries = 3; retries > 0; --retries) {
1601 unsigned char cmd[10] = { 0 };
1602
1603 cmd[0] = SYNCHRONIZE_CACHE;
1604 /*
1605 * Leave the rest of the command zero to indicate
1606 * flush everything.
1607 */
1608 res = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, sshdr,
1609 timeout, SD_MAX_RETRIES, 0, RQF_PM, NULL);
1610 if (res == 0)
1611 break;
1612 }
1613
1614 if (res) {
1615 sd_print_result(sdkp, "Synchronize Cache(10) failed", res);
1616
1617 if (driver_byte(res) & DRIVER_SENSE)
1618 sd_print_sense_hdr(sdkp, sshdr);
1619
1620 /* we need to evaluate the error return */
1621 if (scsi_sense_valid(sshdr) &&
1622 (sshdr->asc == 0x3a || /* medium not present */
1623 sshdr->asc == 0x20)) /* invalid command */
1624 /* this is no error here */
1625 return 0;
1626
1627 switch (host_byte(res)) {
1628 /* ignore errors due to racing a disconnection */
1629 case DID_BAD_TARGET:
1630 case DID_NO_CONNECT:
1631 return 0;
1632 /* signal the upper layer it might try again */
1633 case DID_BUS_BUSY:
1634 case DID_IMM_RETRY:
1635 case DID_REQUEUE:
1636 case DID_SOFT_ERROR:
1637 return -EBUSY;
1638 default:
1639 return -EIO;
1640 }
1641 }
1642 return 0;
1643 }
1644
1645 static void sd_rescan(struct device *dev)
1646 {
1647 struct scsi_disk *sdkp = dev_get_drvdata(dev);
1648
1649 revalidate_disk(sdkp->disk);
1650 }
1651
1652
1653 #ifdef CONFIG_COMPAT
1654 /*
1655 * This gets directly called from VFS. When the ioctl
1656 * is not recognized we go back to the other translation paths.
1657 */
1658 static int sd_compat_ioctl(struct block_device *bdev, fmode_t mode,
1659 unsigned int cmd, unsigned long arg)
1660 {
1661 struct scsi_device *sdev = scsi_disk(bdev->bd_disk)->device;
1662 int error;
1663
1664 error = scsi_ioctl_block_when_processing_errors(sdev, cmd,
1665 (mode & FMODE_NDELAY) != 0);
1666 if (error)
1667 return error;
1668
1669 /*
1670 * Let the static ioctl translation table take care of it.
1671 */
1672 if (!sdev->host->hostt->compat_ioctl)
1673 return -ENOIOCTLCMD;
1674 return sdev->host->hostt->compat_ioctl(sdev, cmd, (void __user *)arg);
1675 }
1676 #endif
1677
1678 static char sd_pr_type(enum pr_type type)
1679 {
1680 switch (type) {
1681 case PR_WRITE_EXCLUSIVE:
1682 return 0x01;
1683 case PR_EXCLUSIVE_ACCESS:
1684 return 0x03;
1685 case PR_WRITE_EXCLUSIVE_REG_ONLY:
1686 return 0x05;
1687 case PR_EXCLUSIVE_ACCESS_REG_ONLY:
1688 return 0x06;
1689 case PR_WRITE_EXCLUSIVE_ALL_REGS:
1690 return 0x07;
1691 case PR_EXCLUSIVE_ACCESS_ALL_REGS:
1692 return 0x08;
1693 default:
1694 return 0;
1695 }
1696 };
1697
1698 static int sd_pr_command(struct block_device *bdev, u8 sa,
1699 u64 key, u64 sa_key, u8 type, u8 flags)
1700 {
1701 struct scsi_device *sdev = scsi_disk(bdev->bd_disk)->device;
1702 struct scsi_sense_hdr sshdr;
1703 int result;
1704 u8 cmd[16] = { 0, };
1705 u8 data[24] = { 0, };
1706
1707 cmd[0] = PERSISTENT_RESERVE_OUT;
1708 cmd[1] = sa;
1709 cmd[2] = type;
1710 put_unaligned_be32(sizeof(data), &cmd[5]);
1711
1712 put_unaligned_be64(key, &data[0]);
1713 put_unaligned_be64(sa_key, &data[8]);
1714 data[20] = flags;
1715
1716 result = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, &data, sizeof(data),
1717 &sshdr, SD_TIMEOUT, SD_MAX_RETRIES, NULL);
1718
1719 if ((driver_byte(result) & DRIVER_SENSE) &&
1720 (scsi_sense_valid(&sshdr))) {
1721 sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result);
1722 scsi_print_sense_hdr(sdev, NULL, &sshdr);
1723 }
1724
1725 return result;
1726 }
1727
1728 static int sd_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
1729 u32 flags)
1730 {
1731 if (flags & ~PR_FL_IGNORE_KEY)
1732 return -EOPNOTSUPP;
1733 return sd_pr_command(bdev, (flags & PR_FL_IGNORE_KEY) ? 0x06 : 0x00,
1734 old_key, new_key, 0,
1735 (1 << 0) /* APTPL */);
1736 }
1737
1738 static int sd_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
1739 u32 flags)
1740 {
1741 if (flags)
1742 return -EOPNOTSUPP;
1743 return sd_pr_command(bdev, 0x01, key, 0, sd_pr_type(type), 0);
1744 }
1745
1746 static int sd_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
1747 {
1748 return sd_pr_command(bdev, 0x02, key, 0, sd_pr_type(type), 0);
1749 }
1750
1751 static int sd_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
1752 enum pr_type type, bool abort)
1753 {
1754 return sd_pr_command(bdev, abort ? 0x05 : 0x04, old_key, new_key,
1755 sd_pr_type(type), 0);
1756 }
1757
1758 static int sd_pr_clear(struct block_device *bdev, u64 key)
1759 {
1760 return sd_pr_command(bdev, 0x03, key, 0, 0, 0);
1761 }
1762
1763 static const struct pr_ops sd_pr_ops = {
1764 .pr_register = sd_pr_register,
1765 .pr_reserve = sd_pr_reserve,
1766 .pr_release = sd_pr_release,
1767 .pr_preempt = sd_pr_preempt,
1768 .pr_clear = sd_pr_clear,
1769 };
1770
1771 static const struct block_device_operations sd_fops = {
1772 .owner = THIS_MODULE,
1773 .open = sd_open,
1774 .release = sd_release,
1775 .ioctl = sd_ioctl,
1776 .getgeo = sd_getgeo,
1777 #ifdef CONFIG_COMPAT
1778 .compat_ioctl = sd_compat_ioctl,
1779 #endif
1780 .check_events = sd_check_events,
1781 .revalidate_disk = sd_revalidate_disk,
1782 .unlock_native_capacity = sd_unlock_native_capacity,
1783 .pr_ops = &sd_pr_ops,
1784 };
1785
1786 /**
1787 * sd_eh_reset - reset error handling callback
1788 * @scmd: sd-issued command that has failed
1789 *
1790 * This function is called by the SCSI midlayer before starting
1791 * SCSI EH. When counting medium access failures we have to be
1792 * careful to register it only only once per device and SCSI EH run;
1793 * there might be several timed out commands which will cause the
1794 * 'max_medium_access_timeouts' counter to trigger after the first
1795 * SCSI EH run already and set the device to offline.
1796 * So this function resets the internal counter before starting SCSI EH.
1797 **/
1798 static void sd_eh_reset(struct scsi_cmnd *scmd)
1799 {
1800 struct scsi_disk *sdkp = scsi_disk(scmd->request->rq_disk);
1801
1802 /* New SCSI EH run, reset gate variable */
1803 sdkp->ignore_medium_access_errors = false;
1804 }
1805
1806 /**
1807 * sd_eh_action - error handling callback
1808 * @scmd: sd-issued command that has failed
1809 * @eh_disp: The recovery disposition suggested by the midlayer
1810 *
1811 * This function is called by the SCSI midlayer upon completion of an
1812 * error test command (currently TEST UNIT READY). The result of sending
1813 * the eh command is passed in eh_disp. We're looking for devices that
1814 * fail medium access commands but are OK with non access commands like
1815 * test unit ready (so wrongly see the device as having a successful
1816 * recovery)
1817 **/
1818 static int sd_eh_action(struct scsi_cmnd *scmd, int eh_disp)
1819 {
1820 struct scsi_disk *sdkp = scsi_disk(scmd->request->rq_disk);
1821
1822 if (!scsi_device_online(scmd->device) ||
1823 !scsi_medium_access_command(scmd) ||
1824 host_byte(scmd->result) != DID_TIME_OUT ||
1825 eh_disp != SUCCESS)
1826 return eh_disp;
1827
1828 /*
1829 * The device has timed out executing a medium access command.
1830 * However, the TEST UNIT READY command sent during error
1831 * handling completed successfully. Either the device is in the
1832 * process of recovering or has it suffered an internal failure
1833 * that prevents access to the storage medium.
1834 */
1835 if (!sdkp->ignore_medium_access_errors) {
1836 sdkp->medium_access_timed_out++;
1837 sdkp->ignore_medium_access_errors = true;
1838 }
1839
1840 /*
1841 * If the device keeps failing read/write commands but TEST UNIT
1842 * READY always completes successfully we assume that medium
1843 * access is no longer possible and take the device offline.
1844 */
1845 if (sdkp->medium_access_timed_out >= sdkp->max_medium_access_timeouts) {
1846 scmd_printk(KERN_ERR, scmd,
1847 "Medium access timeout failure. Offlining disk!\n");
1848 scsi_device_set_state(scmd->device, SDEV_OFFLINE);
1849
1850 return SUCCESS;
1851 }
1852
1853 return eh_disp;
1854 }
1855
1856 static unsigned int sd_completed_bytes(struct scsi_cmnd *scmd)
1857 {
1858 struct request *req = scmd->request;
1859 struct scsi_device *sdev = scmd->device;
1860 unsigned int transferred, good_bytes;
1861 u64 start_lba, end_lba, bad_lba;
1862
1863 /*
1864 * Some commands have a payload smaller than the device logical
1865 * block size (e.g. INQUIRY on a 4K disk).
1866 */
1867 if (scsi_bufflen(scmd) <= sdev->sector_size)
1868 return 0;
1869
1870 /* Check if we have a 'bad_lba' information */
1871 if (!scsi_get_sense_info_fld(scmd->sense_buffer,
1872 SCSI_SENSE_BUFFERSIZE,
1873 &bad_lba))
1874 return 0;
1875
1876 /*
1877 * If the bad lba was reported incorrectly, we have no idea where
1878 * the error is.
1879 */
1880 start_lba = sectors_to_logical(sdev, blk_rq_pos(req));
1881 end_lba = start_lba + bytes_to_logical(sdev, scsi_bufflen(scmd));
1882 if (bad_lba < start_lba || bad_lba >= end_lba)
1883 return 0;
1884
1885 /*
1886 * resid is optional but mostly filled in. When it's unused,
1887 * its value is zero, so we assume the whole buffer transferred
1888 */
1889 transferred = scsi_bufflen(scmd) - scsi_get_resid(scmd);
1890
1891 /* This computation should always be done in terms of the
1892 * resolution of the device's medium.
1893 */
1894 good_bytes = logical_to_bytes(sdev, bad_lba - start_lba);
1895
1896 return min(good_bytes, transferred);
1897 }
1898
1899 /**
1900 * sd_done - bottom half handler: called when the lower level
1901 * driver has completed (successfully or otherwise) a scsi command.
1902 * @SCpnt: mid-level's per command structure.
1903 *
1904 * Note: potentially run from within an ISR. Must not block.
1905 **/
1906 static int sd_done(struct scsi_cmnd *SCpnt)
1907 {
1908 int result = SCpnt->result;
1909 unsigned int good_bytes = result ? 0 : scsi_bufflen(SCpnt);
1910 unsigned int sector_size = SCpnt->device->sector_size;
1911 unsigned int resid;
1912 struct scsi_sense_hdr sshdr;
1913 struct scsi_disk *sdkp = scsi_disk(SCpnt->request->rq_disk);
1914 struct request *req = SCpnt->request;
1915 int sense_valid = 0;
1916 int sense_deferred = 0;
1917
1918 switch (req_op(req)) {
1919 case REQ_OP_DISCARD:
1920 case REQ_OP_WRITE_ZEROES:
1921 case REQ_OP_WRITE_SAME:
1922 case REQ_OP_ZONE_RESET:
1923 if (!result) {
1924 good_bytes = blk_rq_bytes(req);
1925 scsi_set_resid(SCpnt, 0);
1926 } else {
1927 good_bytes = 0;
1928 scsi_set_resid(SCpnt, blk_rq_bytes(req));
1929 }
1930 break;
1931 case REQ_OP_ZONE_REPORT:
1932 if (!result) {
1933 good_bytes = scsi_bufflen(SCpnt)
1934 - scsi_get_resid(SCpnt);
1935 scsi_set_resid(SCpnt, 0);
1936 } else {
1937 good_bytes = 0;
1938 scsi_set_resid(SCpnt, blk_rq_bytes(req));
1939 }
1940 break;
1941 default:
1942 /*
1943 * In case of bogus fw or device, we could end up having
1944 * an unaligned partial completion. Check this here and force
1945 * alignment.
1946 */
1947 resid = scsi_get_resid(SCpnt);
1948 if (resid & (sector_size - 1)) {
1949 sd_printk(KERN_INFO, sdkp,
1950 "Unaligned partial completion (resid=%u, sector_sz=%u)\n",
1951 resid, sector_size);
1952 resid = min(scsi_bufflen(SCpnt),
1953 round_up(resid, sector_size));
1954 scsi_set_resid(SCpnt, resid);
1955 }
1956 }
1957
1958 if (result) {
1959 sense_valid = scsi_command_normalize_sense(SCpnt, &sshdr);
1960 if (sense_valid)
1961 sense_deferred = scsi_sense_is_deferred(&sshdr);
1962 }
1963 sdkp->medium_access_timed_out = 0;
1964
1965 if (driver_byte(result) != DRIVER_SENSE &&
1966 (!sense_valid || sense_deferred))
1967 goto out;
1968
1969 switch (sshdr.sense_key) {
1970 case HARDWARE_ERROR:
1971 case MEDIUM_ERROR:
1972 good_bytes = sd_completed_bytes(SCpnt);
1973 break;
1974 case RECOVERED_ERROR:
1975 good_bytes = scsi_bufflen(SCpnt);
1976 break;
1977 case NO_SENSE:
1978 /* This indicates a false check condition, so ignore it. An
1979 * unknown amount of data was transferred so treat it as an
1980 * error.
1981 */
1982 SCpnt->result = 0;
1983 memset(SCpnt->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
1984 break;
1985 case ABORTED_COMMAND:
1986 if (sshdr.asc == 0x10) /* DIF: Target detected corruption */
1987 good_bytes = sd_completed_bytes(SCpnt);
1988 break;
1989 case ILLEGAL_REQUEST:
1990 switch (sshdr.asc) {
1991 case 0x10: /* DIX: Host detected corruption */
1992 good_bytes = sd_completed_bytes(SCpnt);
1993 break;
1994 case 0x20: /* INVALID COMMAND OPCODE */
1995 case 0x24: /* INVALID FIELD IN CDB */
1996 switch (SCpnt->cmnd[0]) {
1997 case UNMAP:
1998 sd_config_discard(sdkp, SD_LBP_DISABLE);
1999 break;
2000 case WRITE_SAME_16:
2001 case WRITE_SAME:
2002 if (SCpnt->cmnd[1] & 8) { /* UNMAP */
2003 sd_config_discard(sdkp, SD_LBP_DISABLE);
2004 } else {
2005 sdkp->device->no_write_same = 1;
2006 sd_config_write_same(sdkp);
2007 req->__data_len = blk_rq_bytes(req);
2008 req->rq_flags |= RQF_QUIET;
2009 }
2010 break;
2011 }
2012 }
2013 break;
2014 default:
2015 break;
2016 }
2017
2018 out:
2019 if (sd_is_zoned(sdkp))
2020 sd_zbc_complete(SCpnt, good_bytes, &sshdr);
2021
2022 SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, SCpnt,
2023 "sd_done: completed %d of %d bytes\n",
2024 good_bytes, scsi_bufflen(SCpnt)));
2025
2026 if (rq_data_dir(SCpnt->request) == READ && scsi_prot_sg_count(SCpnt))
2027 sd_dif_complete(SCpnt, good_bytes);
2028
2029 return good_bytes;
2030 }
2031
2032 /*
2033 * spinup disk - called only in sd_revalidate_disk()
2034 */
2035 static void
2036 sd_spinup_disk(struct scsi_disk *sdkp)
2037 {
2038 unsigned char cmd[10];
2039 unsigned long spintime_expire = 0;
2040 int retries, spintime;
2041 unsigned int the_result;
2042 struct scsi_sense_hdr sshdr;
2043 int sense_valid = 0;
2044
2045 spintime = 0;
2046
2047 /* Spin up drives, as required. Only do this at boot time */
2048 /* Spinup needs to be done for module loads too. */
2049 do {
2050 retries = 0;
2051
2052 do {
2053 cmd[0] = TEST_UNIT_READY;
2054 memset((void *) &cmd[1], 0, 9);
2055
2056 the_result = scsi_execute_req(sdkp->device, cmd,
2057 DMA_NONE, NULL, 0,
2058 &sshdr, SD_TIMEOUT,
2059 SD_MAX_RETRIES, NULL);
2060
2061 /*
2062 * If the drive has indicated to us that it
2063 * doesn't have any media in it, don't bother
2064 * with any more polling.
2065 */
2066 if (media_not_present(sdkp, &sshdr))
2067 return;
2068
2069 if (the_result)
2070 sense_valid = scsi_sense_valid(&sshdr);
2071 retries++;
2072 } while (retries < 3 &&
2073 (!scsi_status_is_good(the_result) ||
2074 ((driver_byte(the_result) & DRIVER_SENSE) &&
2075 sense_valid && sshdr.sense_key == UNIT_ATTENTION)));
2076
2077 if ((driver_byte(the_result) & DRIVER_SENSE) == 0) {
2078 /* no sense, TUR either succeeded or failed
2079 * with a status error */
2080 if(!spintime && !scsi_status_is_good(the_result)) {
2081 sd_print_result(sdkp, "Test Unit Ready failed",
2082 the_result);
2083 }
2084 break;
2085 }
2086
2087 /*
2088 * The device does not want the automatic start to be issued.
2089 */
2090 if (sdkp->device->no_start_on_add)
2091 break;
2092
2093 if (sense_valid && sshdr.sense_key == NOT_READY) {
2094 if (sshdr.asc == 4 && sshdr.ascq == 3)
2095 break; /* manual intervention required */
2096 if (sshdr.asc == 4 && sshdr.ascq == 0xb)
2097 break; /* standby */
2098 if (sshdr.asc == 4 && sshdr.ascq == 0xc)
2099 break; /* unavailable */
2100 /*
2101 * Issue command to spin up drive when not ready
2102 */
2103 if (!spintime) {
2104 sd_printk(KERN_NOTICE, sdkp, "Spinning up disk...");
2105 cmd[0] = START_STOP;
2106 cmd[1] = 1; /* Return immediately */
2107 memset((void *) &cmd[2], 0, 8);
2108 cmd[4] = 1; /* Start spin cycle */
2109 if (sdkp->device->start_stop_pwr_cond)
2110 cmd[4] |= 1 << 4;
2111 scsi_execute_req(sdkp->device, cmd, DMA_NONE,
2112 NULL, 0, &sshdr,
2113 SD_TIMEOUT, SD_MAX_RETRIES,
2114 NULL);
2115 spintime_expire = jiffies + 100 * HZ;
2116 spintime = 1;
2117 }
2118 /* Wait 1 second for next try */
2119 msleep(1000);
2120 printk(".");
2121
2122 /*
2123 * Wait for USB flash devices with slow firmware.
2124 * Yes, this sense key/ASC combination shouldn't
2125 * occur here. It's characteristic of these devices.
2126 */
2127 } else if (sense_valid &&
2128 sshdr.sense_key == UNIT_ATTENTION &&
2129 sshdr.asc == 0x28) {
2130 if (!spintime) {
2131 spintime_expire = jiffies + 5 * HZ;
2132 spintime = 1;
2133 }
2134 /* Wait 1 second for next try */
2135 msleep(1000);
2136 } else {
2137 /* we don't understand the sense code, so it's
2138 * probably pointless to loop */
2139 if(!spintime) {
2140 sd_printk(KERN_NOTICE, sdkp, "Unit Not Ready\n");
2141 sd_print_sense_hdr(sdkp, &sshdr);
2142 }
2143 break;
2144 }
2145
2146 } while (spintime && time_before_eq(jiffies, spintime_expire));
2147
2148 if (spintime) {
2149 if (scsi_status_is_good(the_result))
2150 printk("ready\n");
2151 else
2152 printk("not responding...\n");
2153 }
2154 }
2155
2156 /*
2157 * Determine whether disk supports Data Integrity Field.
2158 */
2159 static int sd_read_protection_type(struct scsi_disk *sdkp, unsigned char *buffer)
2160 {
2161 struct scsi_device *sdp = sdkp->device;
2162 u8 type;
2163 int ret = 0;
2164
2165 if (scsi_device_protection(sdp) == 0 || (buffer[12] & 1) == 0)
2166 return ret;
2167
2168 type = ((buffer[12] >> 1) & 7) + 1; /* P_TYPE 0 = Type 1 */
2169
2170 if (type > T10_PI_TYPE3_PROTECTION)
2171 ret = -ENODEV;
2172 else if (scsi_host_dif_capable(sdp->host, type))
2173 ret = 1;
2174
2175 if (sdkp->first_scan || type != sdkp->protection_type)
2176 switch (ret) {
2177 case -ENODEV:
2178 sd_printk(KERN_ERR, sdkp, "formatted with unsupported" \
2179 " protection type %u. Disabling disk!\n",
2180 type);
2181 break;
2182 case 1:
2183 sd_printk(KERN_NOTICE, sdkp,
2184 "Enabling DIF Type %u protection\n", type);
2185 break;
2186 case 0:
2187 sd_printk(KERN_NOTICE, sdkp,
2188 "Disabling DIF Type %u protection\n", type);
2189 break;
2190 }
2191
2192 sdkp->protection_type = type;
2193
2194 return ret;
2195 }
2196
2197 static void read_capacity_error(struct scsi_disk *sdkp, struct scsi_device *sdp,
2198 struct scsi_sense_hdr *sshdr, int sense_valid,
2199 int the_result)
2200 {
2201 if (driver_byte(the_result) & DRIVER_SENSE)
2202 sd_print_sense_hdr(sdkp, sshdr);
2203 else
2204 sd_printk(KERN_NOTICE, sdkp, "Sense not available.\n");
2205
2206 /*
2207 * Set dirty bit for removable devices if not ready -
2208 * sometimes drives will not report this properly.
2209 */
2210 if (sdp->removable &&
2211 sense_valid && sshdr->sense_key == NOT_READY)
2212 set_media_not_present(sdkp);
2213
2214 /*
2215 * We used to set media_present to 0 here to indicate no media
2216 * in the drive, but some drives fail read capacity even with
2217 * media present, so we can't do that.
2218 */
2219 sdkp->capacity = 0; /* unknown mapped to zero - as usual */
2220 }
2221
2222 #define RC16_LEN 32
2223 #if RC16_LEN > SD_BUF_SIZE
2224 #error RC16_LEN must not be more than SD_BUF_SIZE
2225 #endif
2226
2227 #define READ_CAPACITY_RETRIES_ON_RESET 10
2228
2229 /*
2230 * Ensure that we don't overflow sector_t when CONFIG_LBDAF is not set
2231 * and the reported logical block size is bigger than 512 bytes. Note
2232 * that last_sector is a u64 and therefore logical_to_sectors() is not
2233 * applicable.
2234 */
2235 static bool sd_addressable_capacity(u64 lba, unsigned int sector_size)
2236 {
2237 u64 last_sector = (lba + 1ULL) << (ilog2(sector_size) - 9);
2238
2239 if (sizeof(sector_t) == 4 && last_sector > U32_MAX)
2240 return false;
2241
2242 return true;
2243 }
2244
2245 static int read_capacity_16(struct scsi_disk *sdkp, struct scsi_device *sdp,
2246 unsigned char *buffer)
2247 {
2248 unsigned char cmd[16];
2249 struct scsi_sense_hdr sshdr;
2250 int sense_valid = 0;
2251 int the_result;
2252 int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET;
2253 unsigned int alignment;
2254 unsigned long long lba;
2255 unsigned sector_size;
2256
2257 if (sdp->no_read_capacity_16)
2258 return -EINVAL;
2259
2260 do {
2261 memset(cmd, 0, 16);
2262 cmd[0] = SERVICE_ACTION_IN_16;
2263 cmd[1] = SAI_READ_CAPACITY_16;
2264 cmd[13] = RC16_LEN;
2265 memset(buffer, 0, RC16_LEN);
2266
2267 the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE,
2268 buffer, RC16_LEN, &sshdr,
2269 SD_TIMEOUT, SD_MAX_RETRIES, NULL);
2270
2271 if (media_not_present(sdkp, &sshdr))
2272 return -ENODEV;
2273
2274 if (the_result) {
2275 sense_valid = scsi_sense_valid(&sshdr);
2276 if (sense_valid &&
2277 sshdr.sense_key == ILLEGAL_REQUEST &&
2278 (sshdr.asc == 0x20 || sshdr.asc == 0x24) &&
2279 sshdr.ascq == 0x00)
2280 /* Invalid Command Operation Code or
2281 * Invalid Field in CDB, just retry
2282 * silently with RC10 */
2283 return -EINVAL;
2284 if (sense_valid &&
2285 sshdr.sense_key == UNIT_ATTENTION &&
2286 sshdr.asc == 0x29 && sshdr.ascq == 0x00)
2287 /* Device reset might occur several times,
2288 * give it one more chance */
2289 if (--reset_retries > 0)
2290 continue;
2291 }
2292 retries--;
2293
2294 } while (the_result && retries);
2295
2296 if (the_result) {
2297 sd_print_result(sdkp, "Read Capacity(16) failed", the_result);
2298 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2299 return -EINVAL;
2300 }
2301
2302 sector_size = get_unaligned_be32(&buffer[8]);
2303 lba = get_unaligned_be64(&buffer[0]);
2304
2305 if (sd_read_protection_type(sdkp, buffer) < 0) {
2306 sdkp->capacity = 0;
2307 return -ENODEV;
2308 }
2309
2310 if (!sd_addressable_capacity(lba, sector_size)) {
2311 sd_printk(KERN_ERR, sdkp, "Too big for this kernel. Use a "
2312 "kernel compiled with support for large block "
2313 "devices.\n");
2314 sdkp->capacity = 0;
2315 return -EOVERFLOW;
2316 }
2317
2318 /* Logical blocks per physical block exponent */
2319 sdkp->physical_block_size = (1 << (buffer[13] & 0xf)) * sector_size;
2320
2321 /* RC basis */
2322 sdkp->rc_basis = (buffer[12] >> 4) & 0x3;
2323
2324 /* Lowest aligned logical block */
2325 alignment = ((buffer[14] & 0x3f) << 8 | buffer[15]) * sector_size;
2326 blk_queue_alignment_offset(sdp->request_queue, alignment);
2327 if (alignment && sdkp->first_scan)
2328 sd_printk(KERN_NOTICE, sdkp,
2329 "physical block alignment offset: %u\n", alignment);
2330
2331 if (buffer[14] & 0x80) { /* LBPME */
2332 sdkp->lbpme = 1;
2333
2334 if (buffer[14] & 0x40) /* LBPRZ */
2335 sdkp->lbprz = 1;
2336
2337 sd_config_discard(sdkp, SD_LBP_WS16);
2338 }
2339
2340 sdkp->capacity = lba + 1;
2341 return sector_size;
2342 }
2343
2344 static int read_capacity_10(struct scsi_disk *sdkp, struct scsi_device *sdp,
2345 unsigned char *buffer)
2346 {
2347 unsigned char cmd[16];
2348 struct scsi_sense_hdr sshdr;
2349 int sense_valid = 0;
2350 int the_result;
2351 int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET;
2352 sector_t lba;
2353 unsigned sector_size;
2354
2355 do {
2356 cmd[0] = READ_CAPACITY;
2357 memset(&cmd[1], 0, 9);
2358 memset(buffer, 0, 8);
2359
2360 the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE,
2361 buffer, 8, &sshdr,
2362 SD_TIMEOUT, SD_MAX_RETRIES, NULL);
2363
2364 if (media_not_present(sdkp, &sshdr))
2365 return -ENODEV;
2366
2367 if (the_result) {
2368 sense_valid = scsi_sense_valid(&sshdr);
2369 if (sense_valid &&
2370 sshdr.sense_key == UNIT_ATTENTION &&
2371 sshdr.asc == 0x29 && sshdr.ascq == 0x00)
2372 /* Device reset might occur several times,
2373 * give it one more chance */
2374 if (--reset_retries > 0)
2375 continue;
2376 }
2377 retries--;
2378
2379 } while (the_result && retries);
2380
2381 if (the_result) {
2382 sd_print_result(sdkp, "Read Capacity(10) failed", the_result);
2383 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2384 return -EINVAL;
2385 }
2386
2387 sector_size = get_unaligned_be32(&buffer[4]);
2388 lba = get_unaligned_be32(&buffer[0]);
2389
2390 if (sdp->no_read_capacity_16 && (lba == 0xffffffff)) {
2391 /* Some buggy (usb cardreader) devices return an lba of
2392 0xffffffff when the want to report a size of 0 (with
2393 which they really mean no media is present) */
2394 sdkp->capacity = 0;
2395 sdkp->physical_block_size = sector_size;
2396 return sector_size;
2397 }
2398
2399 if (!sd_addressable_capacity(lba, sector_size)) {
2400 sd_printk(KERN_ERR, sdkp, "Too big for this kernel. Use a "
2401 "kernel compiled with support for large block "
2402 "devices.\n");
2403 sdkp->capacity = 0;
2404 return -EOVERFLOW;
2405 }
2406
2407 sdkp->capacity = lba + 1;
2408 sdkp->physical_block_size = sector_size;
2409 return sector_size;
2410 }
2411
2412 static int sd_try_rc16_first(struct scsi_device *sdp)
2413 {
2414 if (sdp->host->max_cmd_len < 16)
2415 return 0;
2416 if (sdp->try_rc_10_first)
2417 return 0;
2418 if (sdp->scsi_level > SCSI_SPC_2)
2419 return 1;
2420 if (scsi_device_protection(sdp))
2421 return 1;
2422 return 0;
2423 }
2424
2425 /*
2426 * read disk capacity
2427 */
2428 static void
2429 sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer)
2430 {
2431 int sector_size;
2432 struct scsi_device *sdp = sdkp->device;
2433
2434 if (sd_try_rc16_first(sdp)) {
2435 sector_size = read_capacity_16(sdkp, sdp, buffer);
2436 if (sector_size == -EOVERFLOW)
2437 goto got_data;
2438 if (sector_size == -ENODEV)
2439 return;
2440 if (sector_size < 0)
2441 sector_size = read_capacity_10(sdkp, sdp, buffer);
2442 if (sector_size < 0)
2443 return;
2444 } else {
2445 sector_size = read_capacity_10(sdkp, sdp, buffer);
2446 if (sector_size == -EOVERFLOW)
2447 goto got_data;
2448 if (sector_size < 0)
2449 return;
2450 if ((sizeof(sdkp->capacity) > 4) &&
2451 (sdkp->capacity > 0xffffffffULL)) {
2452 int old_sector_size = sector_size;
2453 sd_printk(KERN_NOTICE, sdkp, "Very big device. "
2454 "Trying to use READ CAPACITY(16).\n");
2455 sector_size = read_capacity_16(sdkp, sdp, buffer);
2456 if (sector_size < 0) {
2457 sd_printk(KERN_NOTICE, sdkp,
2458 "Using 0xffffffff as device size\n");
2459 sdkp->capacity = 1 + (sector_t) 0xffffffff;
2460 sector_size = old_sector_size;
2461 goto got_data;
2462 }
2463 }
2464 }
2465
2466 /* Some devices are known to return the total number of blocks,
2467 * not the highest block number. Some devices have versions
2468 * which do this and others which do not. Some devices we might
2469 * suspect of doing this but we don't know for certain.
2470 *
2471 * If we know the reported capacity is wrong, decrement it. If
2472 * we can only guess, then assume the number of blocks is even
2473 * (usually true but not always) and err on the side of lowering
2474 * the capacity.
2475 */
2476 if (sdp->fix_capacity ||
2477 (sdp->guess_capacity && (sdkp->capacity & 0x01))) {
2478 sd_printk(KERN_INFO, sdkp, "Adjusting the sector count "
2479 "from its reported value: %llu\n",
2480 (unsigned long long) sdkp->capacity);
2481 --sdkp->capacity;
2482 }
2483
2484 got_data:
2485 if (sector_size == 0) {
2486 sector_size = 512;
2487 sd_printk(KERN_NOTICE, sdkp, "Sector size 0 reported, "
2488 "assuming 512.\n");
2489 }
2490
2491 if (sector_size != 512 &&
2492 sector_size != 1024 &&
2493 sector_size != 2048 &&
2494 sector_size != 4096) {
2495 sd_printk(KERN_NOTICE, sdkp, "Unsupported sector size %d.\n",
2496 sector_size);
2497 /*
2498 * The user might want to re-format the drive with
2499 * a supported sectorsize. Once this happens, it
2500 * would be relatively trivial to set the thing up.
2501 * For this reason, we leave the thing in the table.
2502 */
2503 sdkp->capacity = 0;
2504 /*
2505 * set a bogus sector size so the normal read/write
2506 * logic in the block layer will eventually refuse any
2507 * request on this device without tripping over power
2508 * of two sector size assumptions
2509 */
2510 sector_size = 512;
2511 }
2512 blk_queue_logical_block_size(sdp->request_queue, sector_size);
2513 blk_queue_physical_block_size(sdp->request_queue,
2514 sdkp->physical_block_size);
2515 sdkp->device->sector_size = sector_size;
2516
2517 if (sdkp->capacity > 0xffffffff)
2518 sdp->use_16_for_rw = 1;
2519
2520 }
2521
2522 /*
2523 * Print disk capacity
2524 */
2525 static void
2526 sd_print_capacity(struct scsi_disk *sdkp,
2527 sector_t old_capacity)
2528 {
2529 int sector_size = sdkp->device->sector_size;
2530 char cap_str_2[10], cap_str_10[10];
2531
2532 string_get_size(sdkp->capacity, sector_size,
2533 STRING_UNITS_2, cap_str_2, sizeof(cap_str_2));
2534 string_get_size(sdkp->capacity, sector_size,
2535 STRING_UNITS_10, cap_str_10,
2536 sizeof(cap_str_10));
2537
2538 if (sdkp->first_scan || old_capacity != sdkp->capacity) {
2539 sd_printk(KERN_NOTICE, sdkp,
2540 "%llu %d-byte logical blocks: (%s/%s)\n",
2541 (unsigned long long)sdkp->capacity,
2542 sector_size, cap_str_10, cap_str_2);
2543
2544 if (sdkp->physical_block_size != sector_size)
2545 sd_printk(KERN_NOTICE, sdkp,
2546 "%u-byte physical blocks\n",
2547 sdkp->physical_block_size);
2548
2549 sd_zbc_print_zones(sdkp);
2550 }
2551 }
2552
2553 /* called with buffer of length 512 */
2554 static inline int
2555 sd_do_mode_sense(struct scsi_device *sdp, int dbd, int modepage,
2556 unsigned char *buffer, int len, struct scsi_mode_data *data,
2557 struct scsi_sense_hdr *sshdr)
2558 {
2559 return scsi_mode_sense(sdp, dbd, modepage, buffer, len,
2560 SD_TIMEOUT, SD_MAX_RETRIES, data,
2561 sshdr);
2562 }
2563
2564 /*
2565 * read write protect setting, if possible - called only in sd_revalidate_disk()
2566 * called with buffer of length SD_BUF_SIZE
2567 */
2568 static void
2569 sd_read_write_protect_flag(struct scsi_disk *sdkp, unsigned char *buffer)
2570 {
2571 int res;
2572 struct scsi_device *sdp = sdkp->device;
2573 struct scsi_mode_data data;
2574 int old_wp = sdkp->write_prot;
2575
2576 set_disk_ro(sdkp->disk, 0);
2577 if (sdp->skip_ms_page_3f) {
2578 sd_first_printk(KERN_NOTICE, sdkp, "Assuming Write Enabled\n");
2579 return;
2580 }
2581
2582 if (sdp->use_192_bytes_for_3f) {
2583 res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 192, &data, NULL);
2584 } else {
2585 /*
2586 * First attempt: ask for all pages (0x3F), but only 4 bytes.
2587 * We have to start carefully: some devices hang if we ask
2588 * for more than is available.
2589 */
2590 res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 4, &data, NULL);
2591
2592 /*
2593 * Second attempt: ask for page 0 When only page 0 is
2594 * implemented, a request for page 3F may return Sense Key
2595 * 5: Illegal Request, Sense Code 24: Invalid field in
2596 * CDB.
2597 */
2598 if (!scsi_status_is_good(res))
2599 res = sd_do_mode_sense(sdp, 0, 0, buffer, 4, &data, NULL);
2600
2601 /*
2602 * Third attempt: ask 255 bytes, as we did earlier.
2603 */
2604 if (!scsi_status_is_good(res))
2605 res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 255,
2606 &data, NULL);
2607 }
2608
2609 if (!scsi_status_is_good(res)) {
2610 sd_first_printk(KERN_WARNING, sdkp,
2611 "Test WP failed, assume Write Enabled\n");
2612 } else {
2613 sdkp->write_prot = ((data.device_specific & 0x80) != 0);
2614 set_disk_ro(sdkp->disk, sdkp->write_prot);
2615 if (sdkp->first_scan || old_wp != sdkp->write_prot) {
2616 sd_printk(KERN_NOTICE, sdkp, "Write Protect is %s\n",
2617 sdkp->write_prot ? "on" : "off");
2618 sd_printk(KERN_DEBUG, sdkp, "Mode Sense: %4ph\n", buffer);
2619 }
2620 }
2621 }
2622
2623 /*
2624 * sd_read_cache_type - called only from sd_revalidate_disk()
2625 * called with buffer of length SD_BUF_SIZE
2626 */
2627 static void
2628 sd_read_cache_type(struct scsi_disk *sdkp, unsigned char *buffer)
2629 {
2630 int len = 0, res;
2631 struct scsi_device *sdp = sdkp->device;
2632
2633 int dbd;
2634 int modepage;
2635 int first_len;
2636 struct scsi_mode_data data;
2637 struct scsi_sense_hdr sshdr;
2638 int old_wce = sdkp->WCE;
2639 int old_rcd = sdkp->RCD;
2640 int old_dpofua = sdkp->DPOFUA;
2641
2642
2643 if (sdkp->cache_override)
2644 return;
2645
2646 first_len = 4;
2647 if (sdp->skip_ms_page_8) {
2648 if (sdp->type == TYPE_RBC)
2649 goto defaults;
2650 else {
2651 if (sdp->skip_ms_page_3f)
2652 goto defaults;
2653 modepage = 0x3F;
2654 if (sdp->use_192_bytes_for_3f)
2655 first_len = 192;
2656 dbd = 0;
2657 }
2658 } else if (sdp->type == TYPE_RBC) {
2659 modepage = 6;
2660 dbd = 8;
2661 } else {
2662 modepage = 8;
2663 dbd = 0;
2664 }
2665
2666 /* cautiously ask */
2667 res = sd_do_mode_sense(sdp, dbd, modepage, buffer, first_len,
2668 &data, &sshdr);
2669
2670 if (!scsi_status_is_good(res))
2671 goto bad_sense;
2672
2673 if (!data.header_length) {
2674 modepage = 6;
2675 first_len = 0;
2676 sd_first_printk(KERN_ERR, sdkp,
2677 "Missing header in MODE_SENSE response\n");
2678 }
2679
2680 /* that went OK, now ask for the proper length */
2681 len = data.length;
2682
2683 /*
2684 * We're only interested in the first three bytes, actually.
2685 * But the data cache page is defined for the first 20.
2686 */
2687 if (len < 3)
2688 goto bad_sense;
2689 else if (len > SD_BUF_SIZE) {
2690 sd_first_printk(KERN_NOTICE, sdkp, "Truncating mode parameter "
2691 "data from %d to %d bytes\n", len, SD_BUF_SIZE);
2692 len = SD_BUF_SIZE;
2693 }
2694 if (modepage == 0x3F && sdp->use_192_bytes_for_3f)
2695 len = 192;
2696
2697 /* Get the data */
2698 if (len > first_len)
2699 res = sd_do_mode_sense(sdp, dbd, modepage, buffer, len,
2700 &data, &sshdr);
2701
2702 if (scsi_status_is_good(res)) {
2703 int offset = data.header_length + data.block_descriptor_length;
2704
2705 while (offset < len) {
2706 u8 page_code = buffer[offset] & 0x3F;
2707 u8 spf = buffer[offset] & 0x40;
2708
2709 if (page_code == 8 || page_code == 6) {
2710 /* We're interested only in the first 3 bytes.
2711 */
2712 if (len - offset <= 2) {
2713 sd_first_printk(KERN_ERR, sdkp,
2714 "Incomplete mode parameter "
2715 "data\n");
2716 goto defaults;
2717 } else {
2718 modepage = page_code;
2719 goto Page_found;
2720 }
2721 } else {
2722 /* Go to the next page */
2723 if (spf && len - offset > 3)
2724 offset += 4 + (buffer[offset+2] << 8) +
2725 buffer[offset+3];
2726 else if (!spf && len - offset > 1)
2727 offset += 2 + buffer[offset+1];
2728 else {
2729 sd_first_printk(KERN_ERR, sdkp,
2730 "Incomplete mode "
2731 "parameter data\n");
2732 goto defaults;
2733 }
2734 }
2735 }
2736
2737 sd_first_printk(KERN_ERR, sdkp, "No Caching mode page found\n");
2738 goto defaults;
2739
2740 Page_found:
2741 if (modepage == 8) {
2742 sdkp->WCE = ((buffer[offset + 2] & 0x04) != 0);
2743 sdkp->RCD = ((buffer[offset + 2] & 0x01) != 0);
2744 } else {
2745 sdkp->WCE = ((buffer[offset + 2] & 0x01) == 0);
2746 sdkp->RCD = 0;
2747 }
2748
2749 sdkp->DPOFUA = (data.device_specific & 0x10) != 0;
2750 if (sdp->broken_fua) {
2751 sd_first_printk(KERN_NOTICE, sdkp, "Disabling FUA\n");
2752 sdkp->DPOFUA = 0;
2753 } else if (sdkp->DPOFUA && !sdkp->device->use_10_for_rw &&
2754 !sdkp->device->use_16_for_rw) {
2755 sd_first_printk(KERN_NOTICE, sdkp,
2756 "Uses READ/WRITE(6), disabling FUA\n");
2757 sdkp->DPOFUA = 0;
2758 }
2759
2760 /* No cache flush allowed for write protected devices */
2761 if (sdkp->WCE && sdkp->write_prot)
2762 sdkp->WCE = 0;
2763
2764 if (sdkp->first_scan || old_wce != sdkp->WCE ||
2765 old_rcd != sdkp->RCD || old_dpofua != sdkp->DPOFUA)
2766 sd_printk(KERN_NOTICE, sdkp,
2767 "Write cache: %s, read cache: %s, %s\n",
2768 sdkp->WCE ? "enabled" : "disabled",
2769 sdkp->RCD ? "disabled" : "enabled",
2770 sdkp->DPOFUA ? "supports DPO and FUA"
2771 : "doesn't support DPO or FUA");
2772
2773 return;
2774 }
2775
2776 bad_sense:
2777 if (scsi_sense_valid(&sshdr) &&
2778 sshdr.sense_key == ILLEGAL_REQUEST &&
2779 sshdr.asc == 0x24 && sshdr.ascq == 0x0)
2780 /* Invalid field in CDB */
2781 sd_first_printk(KERN_NOTICE, sdkp, "Cache data unavailable\n");
2782 else
2783 sd_first_printk(KERN_ERR, sdkp,
2784 "Asking for cache data failed\n");
2785
2786 defaults:
2787 if (sdp->wce_default_on) {
2788 sd_first_printk(KERN_NOTICE, sdkp,
2789 "Assuming drive cache: write back\n");
2790 sdkp->WCE = 1;
2791 } else {
2792 sd_first_printk(KERN_ERR, sdkp,
2793 "Assuming drive cache: write through\n");
2794 sdkp->WCE = 0;
2795 }
2796 sdkp->RCD = 0;
2797 sdkp->DPOFUA = 0;
2798 }
2799
2800 /*
2801 * The ATO bit indicates whether the DIF application tag is available
2802 * for use by the operating system.
2803 */
2804 static void sd_read_app_tag_own(struct scsi_disk *sdkp, unsigned char *buffer)
2805 {
2806 int res, offset;
2807 struct scsi_device *sdp = sdkp->device;
2808 struct scsi_mode_data data;
2809 struct scsi_sense_hdr sshdr;
2810
2811 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
2812 return;
2813
2814 if (sdkp->protection_type == 0)
2815 return;
2816
2817 res = scsi_mode_sense(sdp, 1, 0x0a, buffer, 36, SD_TIMEOUT,
2818 SD_MAX_RETRIES, &data, &sshdr);
2819
2820 if (!scsi_status_is_good(res) || !data.header_length ||
2821 data.length < 6) {
2822 sd_first_printk(KERN_WARNING, sdkp,
2823 "getting Control mode page failed, assume no ATO\n");
2824
2825 if (scsi_sense_valid(&sshdr))
2826 sd_print_sense_hdr(sdkp, &sshdr);
2827
2828 return;
2829 }
2830
2831 offset = data.header_length + data.block_descriptor_length;
2832
2833 if ((buffer[offset] & 0x3f) != 0x0a) {
2834 sd_first_printk(KERN_ERR, sdkp, "ATO Got wrong page\n");
2835 return;
2836 }
2837
2838 if ((buffer[offset + 5] & 0x80) == 0)
2839 return;
2840
2841 sdkp->ATO = 1;
2842
2843 return;
2844 }
2845
2846 /**
2847 * sd_read_block_limits - Query disk device for preferred I/O sizes.
2848 * @sdkp: disk to query
2849 */
2850 static void sd_read_block_limits(struct scsi_disk *sdkp)
2851 {
2852 unsigned int sector_sz = sdkp->device->sector_size;
2853 const int vpd_len = 64;
2854 unsigned char *buffer = kmalloc(vpd_len, GFP_KERNEL);
2855
2856 if (!buffer ||
2857 /* Block Limits VPD */
2858 scsi_get_vpd_page(sdkp->device, 0xb0, buffer, vpd_len))
2859 goto out;
2860
2861 blk_queue_io_min(sdkp->disk->queue,
2862 get_unaligned_be16(&buffer[6]) * sector_sz);
2863
2864 sdkp->max_xfer_blocks = get_unaligned_be32(&buffer[8]);
2865 sdkp->opt_xfer_blocks = get_unaligned_be32(&buffer[12]);
2866
2867 if (buffer[3] == 0x3c) {
2868 unsigned int lba_count, desc_count;
2869
2870 sdkp->max_ws_blocks = (u32)get_unaligned_be64(&buffer[36]);
2871
2872 if (!sdkp->lbpme)
2873 goto out;
2874
2875 lba_count = get_unaligned_be32(&buffer[20]);
2876 desc_count = get_unaligned_be32(&buffer[24]);
2877
2878 if (lba_count && desc_count)
2879 sdkp->max_unmap_blocks = lba_count;
2880
2881 sdkp->unmap_granularity = get_unaligned_be32(&buffer[28]);
2882
2883 if (buffer[32] & 0x80)
2884 sdkp->unmap_alignment =
2885 get_unaligned_be32(&buffer[32]) & ~(1 << 31);
2886
2887 if (!sdkp->lbpvpd) { /* LBP VPD page not provided */
2888
2889 if (sdkp->max_unmap_blocks)
2890 sd_config_discard(sdkp, SD_LBP_UNMAP);
2891 else
2892 sd_config_discard(sdkp, SD_LBP_WS16);
2893
2894 } else { /* LBP VPD page tells us what to use */
2895 if (sdkp->lbpu && sdkp->max_unmap_blocks)
2896 sd_config_discard(sdkp, SD_LBP_UNMAP);
2897 else if (sdkp->lbpws)
2898 sd_config_discard(sdkp, SD_LBP_WS16);
2899 else if (sdkp->lbpws10)
2900 sd_config_discard(sdkp, SD_LBP_WS10);
2901 else if (sdkp->lbpu && sdkp->max_unmap_blocks)
2902 sd_config_discard(sdkp, SD_LBP_UNMAP);
2903 else
2904 sd_config_discard(sdkp, SD_LBP_DISABLE);
2905 }
2906 }
2907
2908 out:
2909 kfree(buffer);
2910 }
2911
2912 /**
2913 * sd_read_block_characteristics - Query block dev. characteristics
2914 * @sdkp: disk to query
2915 */
2916 static void sd_read_block_characteristics(struct scsi_disk *sdkp)
2917 {
2918 struct request_queue *q = sdkp->disk->queue;
2919 unsigned char *buffer;
2920 u16 rot;
2921 const int vpd_len = 64;
2922
2923 buffer = kmalloc(vpd_len, GFP_KERNEL);
2924
2925 if (!buffer ||
2926 /* Block Device Characteristics VPD */
2927 scsi_get_vpd_page(sdkp->device, 0xb1, buffer, vpd_len))
2928 goto out;
2929
2930 rot = get_unaligned_be16(&buffer[4]);
2931
2932 if (rot == 1) {
2933 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, q);
2934 queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, q);
2935 }
2936
2937 if (sdkp->device->type == TYPE_ZBC) {
2938 /* Host-managed */
2939 q->limits.zoned = BLK_ZONED_HM;
2940 } else {
2941 sdkp->zoned = (buffer[8] >> 4) & 3;
2942 if (sdkp->zoned == 1)
2943 /* Host-aware */
2944 q->limits.zoned = BLK_ZONED_HA;
2945 else
2946 /*
2947 * Treat drive-managed devices as
2948 * regular block devices.
2949 */
2950 q->limits.zoned = BLK_ZONED_NONE;
2951 }
2952 if (blk_queue_is_zoned(q) && sdkp->first_scan)
2953 sd_printk(KERN_NOTICE, sdkp, "Host-%s zoned block device\n",
2954 q->limits.zoned == BLK_ZONED_HM ? "managed" : "aware");
2955
2956 out:
2957 kfree(buffer);
2958 }
2959
2960 /**
2961 * sd_read_block_provisioning - Query provisioning VPD page
2962 * @sdkp: disk to query
2963 */
2964 static void sd_read_block_provisioning(struct scsi_disk *sdkp)
2965 {
2966 unsigned char *buffer;
2967 const int vpd_len = 8;
2968
2969 if (sdkp->lbpme == 0)
2970 return;
2971
2972 buffer = kmalloc(vpd_len, GFP_KERNEL);
2973
2974 if (!buffer || scsi_get_vpd_page(sdkp->device, 0xb2, buffer, vpd_len))
2975 goto out;
2976
2977 sdkp->lbpvpd = 1;
2978 sdkp->lbpu = (buffer[5] >> 7) & 1; /* UNMAP */
2979 sdkp->lbpws = (buffer[5] >> 6) & 1; /* WRITE SAME(16) with UNMAP */
2980 sdkp->lbpws10 = (buffer[5] >> 5) & 1; /* WRITE SAME(10) with UNMAP */
2981
2982 out:
2983 kfree(buffer);
2984 }
2985
2986 static void sd_read_write_same(struct scsi_disk *sdkp, unsigned char *buffer)
2987 {
2988 struct scsi_device *sdev = sdkp->device;
2989
2990 if (sdev->host->no_write_same) {
2991 sdev->no_write_same = 1;
2992
2993 return;
2994 }
2995
2996 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, INQUIRY) < 0) {
2997 /* too large values might cause issues with arcmsr */
2998 int vpd_buf_len = 64;
2999
3000 sdev->no_report_opcodes = 1;
3001
3002 /* Disable WRITE SAME if REPORT SUPPORTED OPERATION
3003 * CODES is unsupported and the device has an ATA
3004 * Information VPD page (SAT).
3005 */
3006 if (!scsi_get_vpd_page(sdev, 0x89, buffer, vpd_buf_len))
3007 sdev->no_write_same = 1;
3008 }
3009
3010 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME_16) == 1)
3011 sdkp->ws16 = 1;
3012
3013 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME) == 1)
3014 sdkp->ws10 = 1;
3015 }
3016
3017 /**
3018 * sd_revalidate_disk - called the first time a new disk is seen,
3019 * performs disk spin up, read_capacity, etc.
3020 * @disk: struct gendisk we care about
3021 **/
3022 static int sd_revalidate_disk(struct gendisk *disk)
3023 {
3024 struct scsi_disk *sdkp = scsi_disk(disk);
3025 struct scsi_device *sdp = sdkp->device;
3026 struct request_queue *q = sdkp->disk->queue;
3027 sector_t old_capacity = sdkp->capacity;
3028 unsigned char *buffer;
3029 unsigned int dev_max, rw_max;
3030
3031 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp,
3032 "sd_revalidate_disk\n"));
3033
3034 /*
3035 * If the device is offline, don't try and read capacity or any
3036 * of the other niceties.
3037 */
3038 if (!scsi_device_online(sdp))
3039 goto out;
3040
3041 buffer = kmalloc(SD_BUF_SIZE, GFP_KERNEL);
3042 if (!buffer) {
3043 sd_printk(KERN_WARNING, sdkp, "sd_revalidate_disk: Memory "
3044 "allocation failure.\n");
3045 goto out;
3046 }
3047
3048 sd_spinup_disk(sdkp);
3049
3050 /*
3051 * Without media there is no reason to ask; moreover, some devices
3052 * react badly if we do.
3053 */
3054 if (sdkp->media_present) {
3055 sd_read_capacity(sdkp, buffer);
3056
3057 if (scsi_device_supports_vpd(sdp)) {
3058 sd_read_block_provisioning(sdkp);
3059 sd_read_block_limits(sdkp);
3060 sd_read_block_characteristics(sdkp);
3061 sd_zbc_read_zones(sdkp, buffer);
3062 }
3063
3064 sd_print_capacity(sdkp, old_capacity);
3065
3066 sd_read_write_protect_flag(sdkp, buffer);
3067 sd_read_cache_type(sdkp, buffer);
3068 sd_read_app_tag_own(sdkp, buffer);
3069 sd_read_write_same(sdkp, buffer);
3070 }
3071
3072 sdkp->first_scan = 0;
3073
3074 /*
3075 * We now have all cache related info, determine how we deal
3076 * with flush requests.
3077 */
3078 sd_set_flush_flag(sdkp);
3079
3080 /* Initial block count limit based on CDB TRANSFER LENGTH field size. */
3081 dev_max = sdp->use_16_for_rw ? SD_MAX_XFER_BLOCKS : SD_DEF_XFER_BLOCKS;
3082
3083 /* Some devices report a maximum block count for READ/WRITE requests. */
3084 dev_max = min_not_zero(dev_max, sdkp->max_xfer_blocks);
3085 q->limits.max_dev_sectors = logical_to_sectors(sdp, dev_max);
3086
3087 /*
3088 * Use the device's preferred I/O size for reads and writes
3089 * unless the reported value is unreasonably small, large, or
3090 * garbage.
3091 */
3092 if (sdkp->opt_xfer_blocks &&
3093 sdkp->opt_xfer_blocks <= dev_max &&
3094 sdkp->opt_xfer_blocks <= SD_DEF_XFER_BLOCKS &&
3095 logical_to_bytes(sdp, sdkp->opt_xfer_blocks) >= PAGE_SIZE) {
3096 q->limits.io_opt = logical_to_bytes(sdp, sdkp->opt_xfer_blocks);
3097 rw_max = logical_to_sectors(sdp, sdkp->opt_xfer_blocks);
3098 } else
3099 rw_max = min_not_zero(logical_to_sectors(sdp, dev_max),
3100 (sector_t)BLK_DEF_MAX_SECTORS);
3101
3102 /* Combine with controller limits */
3103 q->limits.max_sectors = min(rw_max, queue_max_hw_sectors(q));
3104
3105 set_capacity(disk, logical_to_sectors(sdp, sdkp->capacity));
3106 sd_config_write_same(sdkp);
3107 kfree(buffer);
3108
3109 out:
3110 return 0;
3111 }
3112
3113 /**
3114 * sd_unlock_native_capacity - unlock native capacity
3115 * @disk: struct gendisk to set capacity for
3116 *
3117 * Block layer calls this function if it detects that partitions
3118 * on @disk reach beyond the end of the device. If the SCSI host
3119 * implements ->unlock_native_capacity() method, it's invoked to
3120 * give it a chance to adjust the device capacity.
3121 *
3122 * CONTEXT:
3123 * Defined by block layer. Might sleep.
3124 */
3125 static void sd_unlock_native_capacity(struct gendisk *disk)
3126 {
3127 struct scsi_device *sdev = scsi_disk(disk)->device;
3128
3129 if (sdev->host->hostt->unlock_native_capacity)
3130 sdev->host->hostt->unlock_native_capacity(sdev);
3131 }
3132
3133 /**
3134 * sd_format_disk_name - format disk name
3135 * @prefix: name prefix - ie. "sd" for SCSI disks
3136 * @index: index of the disk to format name for
3137 * @buf: output buffer
3138 * @buflen: length of the output buffer
3139 *
3140 * SCSI disk names starts at sda. The 26th device is sdz and the
3141 * 27th is sdaa. The last one for two lettered suffix is sdzz
3142 * which is followed by sdaaa.
3143 *
3144 * This is basically 26 base counting with one extra 'nil' entry
3145 * at the beginning from the second digit on and can be
3146 * determined using similar method as 26 base conversion with the
3147 * index shifted -1 after each digit is computed.
3148 *
3149 * CONTEXT:
3150 * Don't care.
3151 *
3152 * RETURNS:
3153 * 0 on success, -errno on failure.
3154 */
3155 static int sd_format_disk_name(char *prefix, int index, char *buf, int buflen)
3156 {
3157 const int base = 'z' - 'a' + 1;
3158 char *begin = buf + strlen(prefix);
3159 char *end = buf + buflen;
3160 char *p;
3161 int unit;
3162
3163 p = end - 1;
3164 *p = '\0';
3165 unit = base;
3166 do {
3167 if (p == begin)
3168 return -EINVAL;
3169 *--p = 'a' + (index % unit);
3170 index = (index / unit) - 1;
3171 } while (index >= 0);
3172
3173 memmove(begin, p, end - p);
3174 memcpy(buf, prefix, strlen(prefix));
3175
3176 return 0;
3177 }
3178
3179 /*
3180 * The asynchronous part of sd_probe
3181 */
3182 static void sd_probe_async(void *data, async_cookie_t cookie)
3183 {
3184 struct scsi_disk *sdkp = data;
3185 struct scsi_device *sdp;
3186 struct gendisk *gd;
3187 u32 index;
3188 struct device *dev;
3189
3190 sdp = sdkp->device;
3191 gd = sdkp->disk;
3192 index = sdkp->index;
3193 dev = &sdp->sdev_gendev;
3194
3195 gd->major = sd_major((index & 0xf0) >> 4);
3196 gd->first_minor = ((index & 0xf) << 4) | (index & 0xfff00);
3197 gd->minors = SD_MINORS;
3198
3199 gd->fops = &sd_fops;
3200 gd->private_data = &sdkp->driver;
3201 gd->queue = sdkp->device->request_queue;
3202
3203 /* defaults, until the device tells us otherwise */
3204 sdp->sector_size = 512;
3205 sdkp->capacity = 0;
3206 sdkp->media_present = 1;
3207 sdkp->write_prot = 0;
3208 sdkp->cache_override = 0;
3209 sdkp->WCE = 0;
3210 sdkp->RCD = 0;
3211 sdkp->ATO = 0;
3212 sdkp->first_scan = 1;
3213 sdkp->max_medium_access_timeouts = SD_MAX_MEDIUM_TIMEOUTS;
3214
3215 sd_revalidate_disk(gd);
3216
3217 gd->flags = GENHD_FL_EXT_DEVT;
3218 if (sdp->removable) {
3219 gd->flags |= GENHD_FL_REMOVABLE;
3220 gd->events |= DISK_EVENT_MEDIA_CHANGE;
3221 }
3222
3223 blk_pm_runtime_init(sdp->request_queue, dev);
3224 device_add_disk(dev, gd);
3225 if (sdkp->capacity)
3226 sd_dif_config_host(sdkp);
3227
3228 sd_revalidate_disk(gd);
3229
3230 sd_printk(KERN_NOTICE, sdkp, "Attached SCSI %sdisk\n",
3231 sdp->removable ? "removable " : "");
3232 scsi_autopm_put_device(sdp);
3233 put_device(&sdkp->dev);
3234 }
3235
3236 /**
3237 * sd_probe - called during driver initialization and whenever a
3238 * new scsi device is attached to the system. It is called once
3239 * for each scsi device (not just disks) present.
3240 * @dev: pointer to device object
3241 *
3242 * Returns 0 if successful (or not interested in this scsi device
3243 * (e.g. scanner)); 1 when there is an error.
3244 *
3245 * Note: this function is invoked from the scsi mid-level.
3246 * This function sets up the mapping between a given
3247 * <host,channel,id,lun> (found in sdp) and new device name
3248 * (e.g. /dev/sda). More precisely it is the block device major
3249 * and minor number that is chosen here.
3250 *
3251 * Assume sd_probe is not re-entrant (for time being)
3252 * Also think about sd_probe() and sd_remove() running coincidentally.
3253 **/
3254 static int sd_probe(struct device *dev)
3255 {
3256 struct scsi_device *sdp = to_scsi_device(dev);
3257 struct scsi_disk *sdkp;
3258 struct gendisk *gd;
3259 int index;
3260 int error;
3261
3262 scsi_autopm_get_device(sdp);
3263 error = -ENODEV;
3264 if (sdp->type != TYPE_DISK &&
3265 sdp->type != TYPE_ZBC &&
3266 sdp->type != TYPE_MOD &&
3267 sdp->type != TYPE_RBC)
3268 goto out;
3269
3270 #ifndef CONFIG_BLK_DEV_ZONED
3271 if (sdp->type == TYPE_ZBC)
3272 goto out;
3273 #endif
3274 SCSI_LOG_HLQUEUE(3, sdev_printk(KERN_INFO, sdp,
3275 "sd_probe\n"));
3276
3277 error = -ENOMEM;
3278 sdkp = kzalloc(sizeof(*sdkp), GFP_KERNEL);
3279 if (!sdkp)
3280 goto out;
3281
3282 gd = alloc_disk(SD_MINORS);
3283 if (!gd)
3284 goto out_free;
3285
3286 do {
3287 if (!ida_pre_get(&sd_index_ida, GFP_KERNEL))
3288 goto out_put;
3289
3290 spin_lock(&sd_index_lock);
3291 error = ida_get_new(&sd_index_ida, &index);
3292 spin_unlock(&sd_index_lock);
3293 } while (error == -EAGAIN);
3294
3295 if (error) {
3296 sdev_printk(KERN_WARNING, sdp, "sd_probe: memory exhausted.\n");
3297 goto out_put;
3298 }
3299
3300 error = sd_format_disk_name("sd", index, gd->disk_name, DISK_NAME_LEN);
3301 if (error) {
3302 sdev_printk(KERN_WARNING, sdp, "SCSI disk (sd) name length exceeded.\n");
3303 goto out_free_index;
3304 }
3305
3306 sdkp->device = sdp;
3307 sdkp->driver = &sd_template;
3308 sdkp->disk = gd;
3309 sdkp->index = index;
3310 atomic_set(&sdkp->openers, 0);
3311 atomic_set(&sdkp->device->ioerr_cnt, 0);
3312
3313 if (!sdp->request_queue->rq_timeout) {
3314 if (sdp->type != TYPE_MOD)
3315 blk_queue_rq_timeout(sdp->request_queue, SD_TIMEOUT);
3316 else
3317 blk_queue_rq_timeout(sdp->request_queue,
3318 SD_MOD_TIMEOUT);
3319 }
3320
3321 device_initialize(&sdkp->dev);
3322 sdkp->dev.parent = dev;
3323 sdkp->dev.class = &sd_disk_class;
3324 dev_set_name(&sdkp->dev, "%s", dev_name(dev));
3325
3326 error = device_add(&sdkp->dev);
3327 if (error)
3328 goto out_free_index;
3329
3330 get_device(dev);
3331 dev_set_drvdata(dev, sdkp);
3332
3333 get_device(&sdkp->dev); /* prevent release before async_schedule */
3334 async_schedule_domain(sd_probe_async, sdkp, &scsi_sd_probe_domain);
3335
3336 return 0;
3337
3338 out_free_index:
3339 spin_lock(&sd_index_lock);
3340 ida_remove(&sd_index_ida, index);
3341 spin_unlock(&sd_index_lock);
3342 out_put:
3343 put_disk(gd);
3344 out_free:
3345 kfree(sdkp);
3346 out:
3347 scsi_autopm_put_device(sdp);
3348 return error;
3349 }
3350
3351 /**
3352 * sd_remove - called whenever a scsi disk (previously recognized by
3353 * sd_probe) is detached from the system. It is called (potentially
3354 * multiple times) during sd module unload.
3355 * @dev: pointer to device object
3356 *
3357 * Note: this function is invoked from the scsi mid-level.
3358 * This function potentially frees up a device name (e.g. /dev/sdc)
3359 * that could be re-used by a subsequent sd_probe().
3360 * This function is not called when the built-in sd driver is "exit-ed".
3361 **/
3362 static int sd_remove(struct device *dev)
3363 {
3364 struct scsi_disk *sdkp;
3365 dev_t devt;
3366
3367 sdkp = dev_get_drvdata(dev);
3368 devt = disk_devt(sdkp->disk);
3369 scsi_autopm_get_device(sdkp->device);
3370
3371 async_synchronize_full_domain(&scsi_sd_pm_domain);
3372 async_synchronize_full_domain(&scsi_sd_probe_domain);
3373 device_del(&sdkp->dev);
3374 del_gendisk(sdkp->disk);
3375 sd_shutdown(dev);
3376
3377 sd_zbc_remove(sdkp);
3378
3379 blk_register_region(devt, SD_MINORS, NULL,
3380 sd_default_probe, NULL, NULL);
3381
3382 mutex_lock(&sd_ref_mutex);
3383 dev_set_drvdata(dev, NULL);
3384 put_device(&sdkp->dev);
3385 mutex_unlock(&sd_ref_mutex);
3386
3387 return 0;
3388 }
3389
3390 /**
3391 * scsi_disk_release - Called to free the scsi_disk structure
3392 * @dev: pointer to embedded class device
3393 *
3394 * sd_ref_mutex must be held entering this routine. Because it is
3395 * called on last put, you should always use the scsi_disk_get()
3396 * scsi_disk_put() helpers which manipulate the semaphore directly
3397 * and never do a direct put_device.
3398 **/
3399 static void scsi_disk_release(struct device *dev)
3400 {
3401 struct scsi_disk *sdkp = to_scsi_disk(dev);
3402 struct gendisk *disk = sdkp->disk;
3403
3404 spin_lock(&sd_index_lock);
3405 ida_remove(&sd_index_ida, sdkp->index);
3406 spin_unlock(&sd_index_lock);
3407
3408 disk->private_data = NULL;
3409 put_disk(disk);
3410 put_device(&sdkp->device->sdev_gendev);
3411
3412 kfree(sdkp);
3413 }
3414
3415 static int sd_start_stop_device(struct scsi_disk *sdkp, int start)
3416 {
3417 unsigned char cmd[6] = { START_STOP }; /* START_VALID */
3418 struct scsi_sense_hdr sshdr;
3419 struct scsi_device *sdp = sdkp->device;
3420 int res;
3421
3422 if (start)
3423 cmd[4] |= 1; /* START */
3424
3425 if (sdp->start_stop_pwr_cond)
3426 cmd[4] |= start ? 1 << 4 : 3 << 4; /* Active or Standby */
3427
3428 if (!scsi_device_online(sdp))
3429 return -ENODEV;
3430
3431 res = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, &sshdr,
3432 SD_TIMEOUT, SD_MAX_RETRIES, 0, RQF_PM, NULL);
3433 if (res) {
3434 sd_print_result(sdkp, "Start/Stop Unit failed", res);
3435 if (driver_byte(res) & DRIVER_SENSE)
3436 sd_print_sense_hdr(sdkp, &sshdr);
3437 if (scsi_sense_valid(&sshdr) &&
3438 /* 0x3a is medium not present */
3439 sshdr.asc == 0x3a)
3440 res = 0;
3441 }
3442
3443 /* SCSI error codes must not go to the generic layer */
3444 if (res)
3445 return -EIO;
3446
3447 return 0;
3448 }
3449
3450 /*
3451 * Send a SYNCHRONIZE CACHE instruction down to the device through
3452 * the normal SCSI command structure. Wait for the command to
3453 * complete.
3454 */
3455 static void sd_shutdown(struct device *dev)
3456 {
3457 struct scsi_disk *sdkp = dev_get_drvdata(dev);
3458
3459 if (!sdkp)
3460 return; /* this can happen */
3461
3462 if (pm_runtime_suspended(dev))
3463 return;
3464
3465 if (sdkp->WCE && sdkp->media_present) {
3466 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
3467 sd_sync_cache(sdkp, NULL);
3468 }
3469
3470 if (system_state != SYSTEM_RESTART && sdkp->device->manage_start_stop) {
3471 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
3472 sd_start_stop_device(sdkp, 0);
3473 }
3474 }
3475
3476 static int sd_suspend_common(struct device *dev, bool ignore_stop_errors)
3477 {
3478 struct scsi_disk *sdkp = dev_get_drvdata(dev);
3479 struct scsi_sense_hdr sshdr;
3480 int ret = 0;
3481
3482 if (!sdkp) /* E.g.: runtime suspend following sd_remove() */
3483 return 0;
3484
3485 if (sdkp->WCE && sdkp->media_present) {
3486 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
3487 ret = sd_sync_cache(sdkp, &sshdr);
3488
3489 if (ret) {
3490 /* ignore OFFLINE device */
3491 if (ret == -ENODEV)
3492 return 0;
3493
3494 if (!scsi_sense_valid(&sshdr) ||
3495 sshdr.sense_key != ILLEGAL_REQUEST)
3496 return ret;
3497
3498 /*
3499 * sshdr.sense_key == ILLEGAL_REQUEST means this drive
3500 * doesn't support sync. There's not much to do and
3501 * suspend shouldn't fail.
3502 */
3503 ret = 0;
3504 }
3505 }
3506
3507 if (sdkp->device->manage_start_stop) {
3508 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
3509 /* an error is not worth aborting a system sleep */
3510 ret = sd_start_stop_device(sdkp, 0);
3511 if (ignore_stop_errors)
3512 ret = 0;
3513 }
3514
3515 return ret;
3516 }
3517
3518 static int sd_suspend_system(struct device *dev)
3519 {
3520 return sd_suspend_common(dev, true);
3521 }
3522
3523 static int sd_suspend_runtime(struct device *dev)
3524 {
3525 return sd_suspend_common(dev, false);
3526 }
3527
3528 static int sd_resume(struct device *dev)
3529 {
3530 struct scsi_disk *sdkp = dev_get_drvdata(dev);
3531
3532 if (!sdkp) /* E.g.: runtime resume at the start of sd_probe() */
3533 return 0;
3534
3535 if (!sdkp->device->manage_start_stop)
3536 return 0;
3537
3538 sd_printk(KERN_NOTICE, sdkp, "Starting disk\n");
3539 return sd_start_stop_device(sdkp, 1);
3540 }
3541
3542 /**
3543 * init_sd - entry point for this driver (both when built in or when
3544 * a module).
3545 *
3546 * Note: this function registers this driver with the scsi mid-level.
3547 **/
3548 static int __init init_sd(void)
3549 {
3550 int majors = 0, i, err;
3551
3552 SCSI_LOG_HLQUEUE(3, printk("init_sd: sd driver entry point\n"));
3553
3554 for (i = 0; i < SD_MAJORS; i++) {
3555 if (register_blkdev(sd_major(i), "sd") != 0)
3556 continue;
3557 majors++;
3558 blk_register_region(sd_major(i), SD_MINORS, NULL,
3559 sd_default_probe, NULL, NULL);
3560 }
3561
3562 if (!majors)
3563 return -ENODEV;
3564
3565 err = class_register(&sd_disk_class);
3566 if (err)
3567 goto err_out;
3568
3569 sd_cdb_cache = kmem_cache_create("sd_ext_cdb", SD_EXT_CDB_SIZE,
3570 0, 0, NULL);
3571 if (!sd_cdb_cache) {
3572 printk(KERN_ERR "sd: can't init extended cdb cache\n");
3573 err = -ENOMEM;
3574 goto err_out_class;
3575 }
3576
3577 sd_cdb_pool = mempool_create_slab_pool(SD_MEMPOOL_SIZE, sd_cdb_cache);
3578 if (!sd_cdb_pool) {
3579 printk(KERN_ERR "sd: can't init extended cdb pool\n");
3580 err = -ENOMEM;
3581 goto err_out_cache;
3582 }
3583
3584 err = scsi_register_driver(&sd_template.gendrv);
3585 if (err)
3586 goto err_out_driver;
3587
3588 return 0;
3589
3590 err_out_driver:
3591 mempool_destroy(sd_cdb_pool);
3592
3593 err_out_cache:
3594 kmem_cache_destroy(sd_cdb_cache);
3595
3596 err_out_class:
3597 class_unregister(&sd_disk_class);
3598 err_out:
3599 for (i = 0; i < SD_MAJORS; i++)
3600 unregister_blkdev(sd_major(i), "sd");
3601 return err;
3602 }
3603
3604 /**
3605 * exit_sd - exit point for this driver (when it is a module).
3606 *
3607 * Note: this function unregisters this driver from the scsi mid-level.
3608 **/
3609 static void __exit exit_sd(void)
3610 {
3611 int i;
3612
3613 SCSI_LOG_HLQUEUE(3, printk("exit_sd: exiting sd driver\n"));
3614
3615 scsi_unregister_driver(&sd_template.gendrv);
3616 mempool_destroy(sd_cdb_pool);
3617 kmem_cache_destroy(sd_cdb_cache);
3618
3619 class_unregister(&sd_disk_class);
3620
3621 for (i = 0; i < SD_MAJORS; i++) {
3622 blk_unregister_region(sd_major(i), SD_MINORS);
3623 unregister_blkdev(sd_major(i), "sd");
3624 }
3625 }
3626
3627 module_init(init_sd);
3628 module_exit(exit_sd);
3629
3630 static void sd_print_sense_hdr(struct scsi_disk *sdkp,
3631 struct scsi_sense_hdr *sshdr)
3632 {
3633 scsi_print_sense_hdr(sdkp->device,
3634 sdkp->disk ? sdkp->disk->disk_name : NULL, sshdr);
3635 }
3636
3637 static void sd_print_result(const struct scsi_disk *sdkp, const char *msg,
3638 int result)
3639 {
3640 const char *hb_string = scsi_hostbyte_string(result);
3641 const char *db_string = scsi_driverbyte_string(result);
3642
3643 if (hb_string || db_string)
3644 sd_printk(KERN_INFO, sdkp,
3645 "%s: Result: hostbyte=%s driverbyte=%s\n", msg,
3646 hb_string ? hb_string : "invalid",
3647 db_string ? db_string : "invalid");
3648 else
3649 sd_printk(KERN_INFO, sdkp,
3650 "%s: Result: hostbyte=0x%02x driverbyte=0x%02x\n",
3651 msg, host_byte(result), driver_byte(result));
3652 }
3653