Merge tag 'ipvs-fixes-for-v4.12' of http://git.kernel.org/pub/scm/linux/kernel/git...
[GitHub/LineageOS/android_kernel_motorola_exynos9610.git] / drivers / scsi / scsi_lib.c
1 /*
2 * Copyright (C) 1999 Eric Youngdale
3 * Copyright (C) 2014 Christoph Hellwig
4 *
5 * SCSI queueing library.
6 * Initial versions: Eric Youngdale (eric@andante.org).
7 * Based upon conversations with large numbers
8 * of people at Linux Expo.
9 */
10
11 #include <linux/bio.h>
12 #include <linux/bitops.h>
13 #include <linux/blkdev.h>
14 #include <linux/completion.h>
15 #include <linux/kernel.h>
16 #include <linux/export.h>
17 #include <linux/init.h>
18 #include <linux/pci.h>
19 #include <linux/delay.h>
20 #include <linux/hardirq.h>
21 #include <linux/scatterlist.h>
22 #include <linux/blk-mq.h>
23 #include <linux/ratelimit.h>
24 #include <asm/unaligned.h>
25
26 #include <scsi/scsi.h>
27 #include <scsi/scsi_cmnd.h>
28 #include <scsi/scsi_dbg.h>
29 #include <scsi/scsi_device.h>
30 #include <scsi/scsi_driver.h>
31 #include <scsi/scsi_eh.h>
32 #include <scsi/scsi_host.h>
33 #include <scsi/scsi_dh.h>
34
35 #include <trace/events/scsi.h>
36
37 #include "scsi_debugfs.h"
38 #include "scsi_priv.h"
39 #include "scsi_logging.h"
40
41 static struct kmem_cache *scsi_sdb_cache;
42 static struct kmem_cache *scsi_sense_cache;
43 static struct kmem_cache *scsi_sense_isadma_cache;
44 static DEFINE_MUTEX(scsi_sense_cache_mutex);
45
46 static inline struct kmem_cache *
47 scsi_select_sense_cache(struct Scsi_Host *shost)
48 {
49 return shost->unchecked_isa_dma ?
50 scsi_sense_isadma_cache : scsi_sense_cache;
51 }
52
53 static void scsi_free_sense_buffer(struct Scsi_Host *shost,
54 unsigned char *sense_buffer)
55 {
56 kmem_cache_free(scsi_select_sense_cache(shost), sense_buffer);
57 }
58
59 static unsigned char *scsi_alloc_sense_buffer(struct Scsi_Host *shost,
60 gfp_t gfp_mask, int numa_node)
61 {
62 return kmem_cache_alloc_node(scsi_select_sense_cache(shost), gfp_mask,
63 numa_node);
64 }
65
66 int scsi_init_sense_cache(struct Scsi_Host *shost)
67 {
68 struct kmem_cache *cache;
69 int ret = 0;
70
71 cache = scsi_select_sense_cache(shost);
72 if (cache)
73 return 0;
74
75 mutex_lock(&scsi_sense_cache_mutex);
76 if (shost->unchecked_isa_dma) {
77 scsi_sense_isadma_cache =
78 kmem_cache_create("scsi_sense_cache(DMA)",
79 SCSI_SENSE_BUFFERSIZE, 0,
80 SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA, NULL);
81 if (!scsi_sense_isadma_cache)
82 ret = -ENOMEM;
83 } else {
84 scsi_sense_cache =
85 kmem_cache_create("scsi_sense_cache",
86 SCSI_SENSE_BUFFERSIZE, 0, SLAB_HWCACHE_ALIGN, NULL);
87 if (!scsi_sense_cache)
88 ret = -ENOMEM;
89 }
90
91 mutex_unlock(&scsi_sense_cache_mutex);
92 return ret;
93 }
94
95 /*
96 * When to reinvoke queueing after a resource shortage. It's 3 msecs to
97 * not change behaviour from the previous unplug mechanism, experimentation
98 * may prove this needs changing.
99 */
100 #define SCSI_QUEUE_DELAY 3
101
102 static void
103 scsi_set_blocked(struct scsi_cmnd *cmd, int reason)
104 {
105 struct Scsi_Host *host = cmd->device->host;
106 struct scsi_device *device = cmd->device;
107 struct scsi_target *starget = scsi_target(device);
108
109 /*
110 * Set the appropriate busy bit for the device/host.
111 *
112 * If the host/device isn't busy, assume that something actually
113 * completed, and that we should be able to queue a command now.
114 *
115 * Note that the prior mid-layer assumption that any host could
116 * always queue at least one command is now broken. The mid-layer
117 * will implement a user specifiable stall (see
118 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
119 * if a command is requeued with no other commands outstanding
120 * either for the device or for the host.
121 */
122 switch (reason) {
123 case SCSI_MLQUEUE_HOST_BUSY:
124 atomic_set(&host->host_blocked, host->max_host_blocked);
125 break;
126 case SCSI_MLQUEUE_DEVICE_BUSY:
127 case SCSI_MLQUEUE_EH_RETRY:
128 atomic_set(&device->device_blocked,
129 device->max_device_blocked);
130 break;
131 case SCSI_MLQUEUE_TARGET_BUSY:
132 atomic_set(&starget->target_blocked,
133 starget->max_target_blocked);
134 break;
135 }
136 }
137
138 static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd)
139 {
140 struct scsi_device *sdev = cmd->device;
141
142 blk_mq_requeue_request(cmd->request, true);
143 put_device(&sdev->sdev_gendev);
144 }
145
146 /**
147 * __scsi_queue_insert - private queue insertion
148 * @cmd: The SCSI command being requeued
149 * @reason: The reason for the requeue
150 * @unbusy: Whether the queue should be unbusied
151 *
152 * This is a private queue insertion. The public interface
153 * scsi_queue_insert() always assumes the queue should be unbusied
154 * because it's always called before the completion. This function is
155 * for a requeue after completion, which should only occur in this
156 * file.
157 */
158 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, int unbusy)
159 {
160 struct scsi_device *device = cmd->device;
161 struct request_queue *q = device->request_queue;
162 unsigned long flags;
163
164 SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd,
165 "Inserting command %p into mlqueue\n", cmd));
166
167 scsi_set_blocked(cmd, reason);
168
169 /*
170 * Decrement the counters, since these commands are no longer
171 * active on the host/device.
172 */
173 if (unbusy)
174 scsi_device_unbusy(device);
175
176 /*
177 * Requeue this command. It will go before all other commands
178 * that are already in the queue. Schedule requeue work under
179 * lock such that the kblockd_schedule_work() call happens
180 * before blk_cleanup_queue() finishes.
181 */
182 cmd->result = 0;
183 if (q->mq_ops) {
184 scsi_mq_requeue_cmd(cmd);
185 return;
186 }
187 spin_lock_irqsave(q->queue_lock, flags);
188 blk_requeue_request(q, cmd->request);
189 kblockd_schedule_work(&device->requeue_work);
190 spin_unlock_irqrestore(q->queue_lock, flags);
191 }
192
193 /*
194 * Function: scsi_queue_insert()
195 *
196 * Purpose: Insert a command in the midlevel queue.
197 *
198 * Arguments: cmd - command that we are adding to queue.
199 * reason - why we are inserting command to queue.
200 *
201 * Lock status: Assumed that lock is not held upon entry.
202 *
203 * Returns: Nothing.
204 *
205 * Notes: We do this for one of two cases. Either the host is busy
206 * and it cannot accept any more commands for the time being,
207 * or the device returned QUEUE_FULL and can accept no more
208 * commands.
209 * Notes: This could be called either from an interrupt context or a
210 * normal process context.
211 */
212 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
213 {
214 __scsi_queue_insert(cmd, reason, 1);
215 }
216
217
218 /**
219 * scsi_execute - insert request and wait for the result
220 * @sdev: scsi device
221 * @cmd: scsi command
222 * @data_direction: data direction
223 * @buffer: data buffer
224 * @bufflen: len of buffer
225 * @sense: optional sense buffer
226 * @sshdr: optional decoded sense header
227 * @timeout: request timeout in seconds
228 * @retries: number of times to retry request
229 * @flags: flags for ->cmd_flags
230 * @rq_flags: flags for ->rq_flags
231 * @resid: optional residual length
232 *
233 * Returns the scsi_cmnd result field if a command was executed, or a negative
234 * Linux error code if we didn't get that far.
235 */
236 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
237 int data_direction, void *buffer, unsigned bufflen,
238 unsigned char *sense, struct scsi_sense_hdr *sshdr,
239 int timeout, int retries, u64 flags, req_flags_t rq_flags,
240 int *resid)
241 {
242 struct request *req;
243 struct scsi_request *rq;
244 int ret = DRIVER_ERROR << 24;
245
246 req = blk_get_request(sdev->request_queue,
247 data_direction == DMA_TO_DEVICE ?
248 REQ_OP_SCSI_OUT : REQ_OP_SCSI_IN, __GFP_RECLAIM);
249 if (IS_ERR(req))
250 return ret;
251 rq = scsi_req(req);
252 scsi_req_init(req);
253
254 if (bufflen && blk_rq_map_kern(sdev->request_queue, req,
255 buffer, bufflen, __GFP_RECLAIM))
256 goto out;
257
258 rq->cmd_len = COMMAND_SIZE(cmd[0]);
259 memcpy(rq->cmd, cmd, rq->cmd_len);
260 rq->retries = retries;
261 req->timeout = timeout;
262 req->cmd_flags |= flags;
263 req->rq_flags |= rq_flags | RQF_QUIET | RQF_PREEMPT;
264
265 /*
266 * head injection *required* here otherwise quiesce won't work
267 */
268 blk_execute_rq(req->q, NULL, req, 1);
269
270 /*
271 * Some devices (USB mass-storage in particular) may transfer
272 * garbage data together with a residue indicating that the data
273 * is invalid. Prevent the garbage from being misinterpreted
274 * and prevent security leaks by zeroing out the excess data.
275 */
276 if (unlikely(rq->resid_len > 0 && rq->resid_len <= bufflen))
277 memset(buffer + (bufflen - rq->resid_len), 0, rq->resid_len);
278
279 if (resid)
280 *resid = rq->resid_len;
281 if (sense && rq->sense_len)
282 memcpy(sense, rq->sense, SCSI_SENSE_BUFFERSIZE);
283 if (sshdr)
284 scsi_normalize_sense(rq->sense, rq->sense_len, sshdr);
285 ret = rq->result;
286 out:
287 blk_put_request(req);
288
289 return ret;
290 }
291 EXPORT_SYMBOL(scsi_execute);
292
293 /*
294 * Function: scsi_init_cmd_errh()
295 *
296 * Purpose: Initialize cmd fields related to error handling.
297 *
298 * Arguments: cmd - command that is ready to be queued.
299 *
300 * Notes: This function has the job of initializing a number of
301 * fields related to error handling. Typically this will
302 * be called once for each command, as required.
303 */
304 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
305 {
306 cmd->serial_number = 0;
307 scsi_set_resid(cmd, 0);
308 memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
309 if (cmd->cmd_len == 0)
310 cmd->cmd_len = scsi_command_size(cmd->cmnd);
311 }
312
313 void scsi_device_unbusy(struct scsi_device *sdev)
314 {
315 struct Scsi_Host *shost = sdev->host;
316 struct scsi_target *starget = scsi_target(sdev);
317 unsigned long flags;
318
319 atomic_dec(&shost->host_busy);
320 if (starget->can_queue > 0)
321 atomic_dec(&starget->target_busy);
322
323 if (unlikely(scsi_host_in_recovery(shost) &&
324 (shost->host_failed || shost->host_eh_scheduled))) {
325 spin_lock_irqsave(shost->host_lock, flags);
326 scsi_eh_wakeup(shost);
327 spin_unlock_irqrestore(shost->host_lock, flags);
328 }
329
330 atomic_dec(&sdev->device_busy);
331 }
332
333 static void scsi_kick_queue(struct request_queue *q)
334 {
335 if (q->mq_ops)
336 blk_mq_start_hw_queues(q);
337 else
338 blk_run_queue(q);
339 }
340
341 /*
342 * Called for single_lun devices on IO completion. Clear starget_sdev_user,
343 * and call blk_run_queue for all the scsi_devices on the target -
344 * including current_sdev first.
345 *
346 * Called with *no* scsi locks held.
347 */
348 static void scsi_single_lun_run(struct scsi_device *current_sdev)
349 {
350 struct Scsi_Host *shost = current_sdev->host;
351 struct scsi_device *sdev, *tmp;
352 struct scsi_target *starget = scsi_target(current_sdev);
353 unsigned long flags;
354
355 spin_lock_irqsave(shost->host_lock, flags);
356 starget->starget_sdev_user = NULL;
357 spin_unlock_irqrestore(shost->host_lock, flags);
358
359 /*
360 * Call blk_run_queue for all LUNs on the target, starting with
361 * current_sdev. We race with others (to set starget_sdev_user),
362 * but in most cases, we will be first. Ideally, each LU on the
363 * target would get some limited time or requests on the target.
364 */
365 scsi_kick_queue(current_sdev->request_queue);
366
367 spin_lock_irqsave(shost->host_lock, flags);
368 if (starget->starget_sdev_user)
369 goto out;
370 list_for_each_entry_safe(sdev, tmp, &starget->devices,
371 same_target_siblings) {
372 if (sdev == current_sdev)
373 continue;
374 if (scsi_device_get(sdev))
375 continue;
376
377 spin_unlock_irqrestore(shost->host_lock, flags);
378 scsi_kick_queue(sdev->request_queue);
379 spin_lock_irqsave(shost->host_lock, flags);
380
381 scsi_device_put(sdev);
382 }
383 out:
384 spin_unlock_irqrestore(shost->host_lock, flags);
385 }
386
387 static inline bool scsi_device_is_busy(struct scsi_device *sdev)
388 {
389 if (atomic_read(&sdev->device_busy) >= sdev->queue_depth)
390 return true;
391 if (atomic_read(&sdev->device_blocked) > 0)
392 return true;
393 return false;
394 }
395
396 static inline bool scsi_target_is_busy(struct scsi_target *starget)
397 {
398 if (starget->can_queue > 0) {
399 if (atomic_read(&starget->target_busy) >= starget->can_queue)
400 return true;
401 if (atomic_read(&starget->target_blocked) > 0)
402 return true;
403 }
404 return false;
405 }
406
407 static inline bool scsi_host_is_busy(struct Scsi_Host *shost)
408 {
409 if (shost->can_queue > 0 &&
410 atomic_read(&shost->host_busy) >= shost->can_queue)
411 return true;
412 if (atomic_read(&shost->host_blocked) > 0)
413 return true;
414 if (shost->host_self_blocked)
415 return true;
416 return false;
417 }
418
419 static void scsi_starved_list_run(struct Scsi_Host *shost)
420 {
421 LIST_HEAD(starved_list);
422 struct scsi_device *sdev;
423 unsigned long flags;
424
425 spin_lock_irqsave(shost->host_lock, flags);
426 list_splice_init(&shost->starved_list, &starved_list);
427
428 while (!list_empty(&starved_list)) {
429 struct request_queue *slq;
430
431 /*
432 * As long as shost is accepting commands and we have
433 * starved queues, call blk_run_queue. scsi_request_fn
434 * drops the queue_lock and can add us back to the
435 * starved_list.
436 *
437 * host_lock protects the starved_list and starved_entry.
438 * scsi_request_fn must get the host_lock before checking
439 * or modifying starved_list or starved_entry.
440 */
441 if (scsi_host_is_busy(shost))
442 break;
443
444 sdev = list_entry(starved_list.next,
445 struct scsi_device, starved_entry);
446 list_del_init(&sdev->starved_entry);
447 if (scsi_target_is_busy(scsi_target(sdev))) {
448 list_move_tail(&sdev->starved_entry,
449 &shost->starved_list);
450 continue;
451 }
452
453 /*
454 * Once we drop the host lock, a racing scsi_remove_device()
455 * call may remove the sdev from the starved list and destroy
456 * it and the queue. Mitigate by taking a reference to the
457 * queue and never touching the sdev again after we drop the
458 * host lock. Note: if __scsi_remove_device() invokes
459 * blk_cleanup_queue() before the queue is run from this
460 * function then blk_run_queue() will return immediately since
461 * blk_cleanup_queue() marks the queue with QUEUE_FLAG_DYING.
462 */
463 slq = sdev->request_queue;
464 if (!blk_get_queue(slq))
465 continue;
466 spin_unlock_irqrestore(shost->host_lock, flags);
467
468 scsi_kick_queue(slq);
469 blk_put_queue(slq);
470
471 spin_lock_irqsave(shost->host_lock, flags);
472 }
473 /* put any unprocessed entries back */
474 list_splice(&starved_list, &shost->starved_list);
475 spin_unlock_irqrestore(shost->host_lock, flags);
476 }
477
478 /*
479 * Function: scsi_run_queue()
480 *
481 * Purpose: Select a proper request queue to serve next
482 *
483 * Arguments: q - last request's queue
484 *
485 * Returns: Nothing
486 *
487 * Notes: The previous command was completely finished, start
488 * a new one if possible.
489 */
490 static void scsi_run_queue(struct request_queue *q)
491 {
492 struct scsi_device *sdev = q->queuedata;
493
494 if (scsi_target(sdev)->single_lun)
495 scsi_single_lun_run(sdev);
496 if (!list_empty(&sdev->host->starved_list))
497 scsi_starved_list_run(sdev->host);
498
499 if (q->mq_ops)
500 blk_mq_run_hw_queues(q, false);
501 else
502 blk_run_queue(q);
503 }
504
505 void scsi_requeue_run_queue(struct work_struct *work)
506 {
507 struct scsi_device *sdev;
508 struct request_queue *q;
509
510 sdev = container_of(work, struct scsi_device, requeue_work);
511 q = sdev->request_queue;
512 scsi_run_queue(q);
513 }
514
515 /*
516 * Function: scsi_requeue_command()
517 *
518 * Purpose: Handle post-processing of completed commands.
519 *
520 * Arguments: q - queue to operate on
521 * cmd - command that may need to be requeued.
522 *
523 * Returns: Nothing
524 *
525 * Notes: After command completion, there may be blocks left
526 * over which weren't finished by the previous command
527 * this can be for a number of reasons - the main one is
528 * I/O errors in the middle of the request, in which case
529 * we need to request the blocks that come after the bad
530 * sector.
531 * Notes: Upon return, cmd is a stale pointer.
532 */
533 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
534 {
535 struct scsi_device *sdev = cmd->device;
536 struct request *req = cmd->request;
537 unsigned long flags;
538
539 spin_lock_irqsave(q->queue_lock, flags);
540 blk_unprep_request(req);
541 req->special = NULL;
542 scsi_put_command(cmd);
543 blk_requeue_request(q, req);
544 spin_unlock_irqrestore(q->queue_lock, flags);
545
546 scsi_run_queue(q);
547
548 put_device(&sdev->sdev_gendev);
549 }
550
551 void scsi_run_host_queues(struct Scsi_Host *shost)
552 {
553 struct scsi_device *sdev;
554
555 shost_for_each_device(sdev, shost)
556 scsi_run_queue(sdev->request_queue);
557 }
558
559 static void scsi_uninit_cmd(struct scsi_cmnd *cmd)
560 {
561 if (!blk_rq_is_passthrough(cmd->request)) {
562 struct scsi_driver *drv = scsi_cmd_to_driver(cmd);
563
564 if (drv->uninit_command)
565 drv->uninit_command(cmd);
566 }
567 }
568
569 static void scsi_mq_free_sgtables(struct scsi_cmnd *cmd)
570 {
571 struct scsi_data_buffer *sdb;
572
573 if (cmd->sdb.table.nents)
574 sg_free_table_chained(&cmd->sdb.table, true);
575 if (cmd->request->next_rq) {
576 sdb = cmd->request->next_rq->special;
577 if (sdb)
578 sg_free_table_chained(&sdb->table, true);
579 }
580 if (scsi_prot_sg_count(cmd))
581 sg_free_table_chained(&cmd->prot_sdb->table, true);
582 }
583
584 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd)
585 {
586 struct scsi_device *sdev = cmd->device;
587 struct Scsi_Host *shost = sdev->host;
588 unsigned long flags;
589
590 scsi_mq_free_sgtables(cmd);
591 scsi_uninit_cmd(cmd);
592
593 if (shost->use_cmd_list) {
594 BUG_ON(list_empty(&cmd->list));
595 spin_lock_irqsave(&sdev->list_lock, flags);
596 list_del_init(&cmd->list);
597 spin_unlock_irqrestore(&sdev->list_lock, flags);
598 }
599 }
600
601 /*
602 * Function: scsi_release_buffers()
603 *
604 * Purpose: Free resources allocate for a scsi_command.
605 *
606 * Arguments: cmd - command that we are bailing.
607 *
608 * Lock status: Assumed that no lock is held upon entry.
609 *
610 * Returns: Nothing
611 *
612 * Notes: In the event that an upper level driver rejects a
613 * command, we must release resources allocated during
614 * the __init_io() function. Primarily this would involve
615 * the scatter-gather table.
616 */
617 static void scsi_release_buffers(struct scsi_cmnd *cmd)
618 {
619 if (cmd->sdb.table.nents)
620 sg_free_table_chained(&cmd->sdb.table, false);
621
622 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
623
624 if (scsi_prot_sg_count(cmd))
625 sg_free_table_chained(&cmd->prot_sdb->table, false);
626 }
627
628 static void scsi_release_bidi_buffers(struct scsi_cmnd *cmd)
629 {
630 struct scsi_data_buffer *bidi_sdb = cmd->request->next_rq->special;
631
632 sg_free_table_chained(&bidi_sdb->table, false);
633 kmem_cache_free(scsi_sdb_cache, bidi_sdb);
634 cmd->request->next_rq->special = NULL;
635 }
636
637 static bool scsi_end_request(struct request *req, int error,
638 unsigned int bytes, unsigned int bidi_bytes)
639 {
640 struct scsi_cmnd *cmd = req->special;
641 struct scsi_device *sdev = cmd->device;
642 struct request_queue *q = sdev->request_queue;
643
644 if (blk_update_request(req, error, bytes))
645 return true;
646
647 /* Bidi request must be completed as a whole */
648 if (unlikely(bidi_bytes) &&
649 blk_update_request(req->next_rq, error, bidi_bytes))
650 return true;
651
652 if (blk_queue_add_random(q))
653 add_disk_randomness(req->rq_disk);
654
655 if (req->mq_ctx) {
656 /*
657 * In the MQ case the command gets freed by __blk_mq_end_request,
658 * so we have to do all cleanup that depends on it earlier.
659 *
660 * We also can't kick the queues from irq context, so we
661 * will have to defer it to a workqueue.
662 */
663 scsi_mq_uninit_cmd(cmd);
664
665 __blk_mq_end_request(req, error);
666
667 if (scsi_target(sdev)->single_lun ||
668 !list_empty(&sdev->host->starved_list))
669 kblockd_schedule_work(&sdev->requeue_work);
670 else
671 blk_mq_run_hw_queues(q, true);
672 } else {
673 unsigned long flags;
674
675 if (bidi_bytes)
676 scsi_release_bidi_buffers(cmd);
677 scsi_release_buffers(cmd);
678 scsi_put_command(cmd);
679
680 spin_lock_irqsave(q->queue_lock, flags);
681 blk_finish_request(req, error);
682 spin_unlock_irqrestore(q->queue_lock, flags);
683
684 scsi_run_queue(q);
685 }
686
687 put_device(&sdev->sdev_gendev);
688 return false;
689 }
690
691 /**
692 * __scsi_error_from_host_byte - translate SCSI error code into errno
693 * @cmd: SCSI command (unused)
694 * @result: scsi error code
695 *
696 * Translate SCSI error code into standard UNIX errno.
697 * Return values:
698 * -ENOLINK temporary transport failure
699 * -EREMOTEIO permanent target failure, do not retry
700 * -EBADE permanent nexus failure, retry on other path
701 * -ENOSPC No write space available
702 * -ENODATA Medium error
703 * -EIO unspecified I/O error
704 */
705 static int __scsi_error_from_host_byte(struct scsi_cmnd *cmd, int result)
706 {
707 int error = 0;
708
709 switch(host_byte(result)) {
710 case DID_TRANSPORT_FAILFAST:
711 error = -ENOLINK;
712 break;
713 case DID_TARGET_FAILURE:
714 set_host_byte(cmd, DID_OK);
715 error = -EREMOTEIO;
716 break;
717 case DID_NEXUS_FAILURE:
718 set_host_byte(cmd, DID_OK);
719 error = -EBADE;
720 break;
721 case DID_ALLOC_FAILURE:
722 set_host_byte(cmd, DID_OK);
723 error = -ENOSPC;
724 break;
725 case DID_MEDIUM_ERROR:
726 set_host_byte(cmd, DID_OK);
727 error = -ENODATA;
728 break;
729 default:
730 error = -EIO;
731 break;
732 }
733
734 return error;
735 }
736
737 /*
738 * Function: scsi_io_completion()
739 *
740 * Purpose: Completion processing for block device I/O requests.
741 *
742 * Arguments: cmd - command that is finished.
743 *
744 * Lock status: Assumed that no lock is held upon entry.
745 *
746 * Returns: Nothing
747 *
748 * Notes: We will finish off the specified number of sectors. If we
749 * are done, the command block will be released and the queue
750 * function will be goosed. If we are not done then we have to
751 * figure out what to do next:
752 *
753 * a) We can call scsi_requeue_command(). The request
754 * will be unprepared and put back on the queue. Then
755 * a new command will be created for it. This should
756 * be used if we made forward progress, or if we want
757 * to switch from READ(10) to READ(6) for example.
758 *
759 * b) We can call __scsi_queue_insert(). The request will
760 * be put back on the queue and retried using the same
761 * command as before, possibly after a delay.
762 *
763 * c) We can call scsi_end_request() with -EIO to fail
764 * the remainder of the request.
765 */
766 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
767 {
768 int result = cmd->result;
769 struct request_queue *q = cmd->device->request_queue;
770 struct request *req = cmd->request;
771 int error = 0;
772 struct scsi_sense_hdr sshdr;
773 bool sense_valid = false;
774 int sense_deferred = 0, level = 0;
775 enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
776 ACTION_DELAYED_RETRY} action;
777 unsigned long wait_for = (cmd->allowed + 1) * req->timeout;
778
779 if (result) {
780 sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
781 if (sense_valid)
782 sense_deferred = scsi_sense_is_deferred(&sshdr);
783 }
784
785 if (blk_rq_is_passthrough(req)) {
786 if (result) {
787 if (sense_valid) {
788 /*
789 * SG_IO wants current and deferred errors
790 */
791 scsi_req(req)->sense_len =
792 min(8 + cmd->sense_buffer[7],
793 SCSI_SENSE_BUFFERSIZE);
794 }
795 if (!sense_deferred)
796 error = __scsi_error_from_host_byte(cmd, result);
797 }
798 /*
799 * __scsi_error_from_host_byte may have reset the host_byte
800 */
801 scsi_req(req)->result = cmd->result;
802 scsi_req(req)->resid_len = scsi_get_resid(cmd);
803
804 if (scsi_bidi_cmnd(cmd)) {
805 /*
806 * Bidi commands Must be complete as a whole,
807 * both sides at once.
808 */
809 scsi_req(req->next_rq)->resid_len = scsi_in(cmd)->resid;
810 if (scsi_end_request(req, 0, blk_rq_bytes(req),
811 blk_rq_bytes(req->next_rq)))
812 BUG();
813 return;
814 }
815 } else if (blk_rq_bytes(req) == 0 && result && !sense_deferred) {
816 /*
817 * Flush commands do not transfers any data, and thus cannot use
818 * good_bytes != blk_rq_bytes(req) as the signal for an error.
819 * This sets the error explicitly for the problem case.
820 */
821 error = __scsi_error_from_host_byte(cmd, result);
822 }
823
824 /* no bidi support for !blk_rq_is_passthrough yet */
825 BUG_ON(blk_bidi_rq(req));
826
827 /*
828 * Next deal with any sectors which we were able to correctly
829 * handle.
830 */
831 SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd,
832 "%u sectors total, %d bytes done.\n",
833 blk_rq_sectors(req), good_bytes));
834
835 /*
836 * Recovered errors need reporting, but they're always treated as
837 * success, so fiddle the result code here. For passthrough requests
838 * we already took a copy of the original into sreq->result which
839 * is what gets returned to the user
840 */
841 if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
842 /* if ATA PASS-THROUGH INFORMATION AVAILABLE skip
843 * print since caller wants ATA registers. Only occurs on
844 * SCSI ATA PASS_THROUGH commands when CK_COND=1
845 */
846 if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
847 ;
848 else if (!(req->rq_flags & RQF_QUIET))
849 scsi_print_sense(cmd);
850 result = 0;
851 /* for passthrough error may be set */
852 error = 0;
853 }
854
855 /*
856 * special case: failed zero length commands always need to
857 * drop down into the retry code. Otherwise, if we finished
858 * all bytes in the request we are done now.
859 */
860 if (!(blk_rq_bytes(req) == 0 && error) &&
861 !scsi_end_request(req, error, good_bytes, 0))
862 return;
863
864 /*
865 * Kill remainder if no retrys.
866 */
867 if (error && scsi_noretry_cmd(cmd)) {
868 if (scsi_end_request(req, error, blk_rq_bytes(req), 0))
869 BUG();
870 return;
871 }
872
873 /*
874 * If there had been no error, but we have leftover bytes in the
875 * requeues just queue the command up again.
876 */
877 if (result == 0)
878 goto requeue;
879
880 error = __scsi_error_from_host_byte(cmd, result);
881
882 if (host_byte(result) == DID_RESET) {
883 /* Third party bus reset or reset for error recovery
884 * reasons. Just retry the command and see what
885 * happens.
886 */
887 action = ACTION_RETRY;
888 } else if (sense_valid && !sense_deferred) {
889 switch (sshdr.sense_key) {
890 case UNIT_ATTENTION:
891 if (cmd->device->removable) {
892 /* Detected disc change. Set a bit
893 * and quietly refuse further access.
894 */
895 cmd->device->changed = 1;
896 action = ACTION_FAIL;
897 } else {
898 /* Must have been a power glitch, or a
899 * bus reset. Could not have been a
900 * media change, so we just retry the
901 * command and see what happens.
902 */
903 action = ACTION_RETRY;
904 }
905 break;
906 case ILLEGAL_REQUEST:
907 /* If we had an ILLEGAL REQUEST returned, then
908 * we may have performed an unsupported
909 * command. The only thing this should be
910 * would be a ten byte read where only a six
911 * byte read was supported. Also, on a system
912 * where READ CAPACITY failed, we may have
913 * read past the end of the disk.
914 */
915 if ((cmd->device->use_10_for_rw &&
916 sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
917 (cmd->cmnd[0] == READ_10 ||
918 cmd->cmnd[0] == WRITE_10)) {
919 /* This will issue a new 6-byte command. */
920 cmd->device->use_10_for_rw = 0;
921 action = ACTION_REPREP;
922 } else if (sshdr.asc == 0x10) /* DIX */ {
923 action = ACTION_FAIL;
924 error = -EILSEQ;
925 /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
926 } else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
927 action = ACTION_FAIL;
928 error = -EREMOTEIO;
929 } else
930 action = ACTION_FAIL;
931 break;
932 case ABORTED_COMMAND:
933 action = ACTION_FAIL;
934 if (sshdr.asc == 0x10) /* DIF */
935 error = -EILSEQ;
936 break;
937 case NOT_READY:
938 /* If the device is in the process of becoming
939 * ready, or has a temporary blockage, retry.
940 */
941 if (sshdr.asc == 0x04) {
942 switch (sshdr.ascq) {
943 case 0x01: /* becoming ready */
944 case 0x04: /* format in progress */
945 case 0x05: /* rebuild in progress */
946 case 0x06: /* recalculation in progress */
947 case 0x07: /* operation in progress */
948 case 0x08: /* Long write in progress */
949 case 0x09: /* self test in progress */
950 case 0x14: /* space allocation in progress */
951 action = ACTION_DELAYED_RETRY;
952 break;
953 default:
954 action = ACTION_FAIL;
955 break;
956 }
957 } else
958 action = ACTION_FAIL;
959 break;
960 case VOLUME_OVERFLOW:
961 /* See SSC3rXX or current. */
962 action = ACTION_FAIL;
963 break;
964 default:
965 action = ACTION_FAIL;
966 break;
967 }
968 } else
969 action = ACTION_FAIL;
970
971 if (action != ACTION_FAIL &&
972 time_before(cmd->jiffies_at_alloc + wait_for, jiffies))
973 action = ACTION_FAIL;
974
975 switch (action) {
976 case ACTION_FAIL:
977 /* Give up and fail the remainder of the request */
978 if (!(req->rq_flags & RQF_QUIET)) {
979 static DEFINE_RATELIMIT_STATE(_rs,
980 DEFAULT_RATELIMIT_INTERVAL,
981 DEFAULT_RATELIMIT_BURST);
982
983 if (unlikely(scsi_logging_level))
984 level = SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT,
985 SCSI_LOG_MLCOMPLETE_BITS);
986
987 /*
988 * if logging is enabled the failure will be printed
989 * in scsi_log_completion(), so avoid duplicate messages
990 */
991 if (!level && __ratelimit(&_rs)) {
992 scsi_print_result(cmd, NULL, FAILED);
993 if (driver_byte(result) & DRIVER_SENSE)
994 scsi_print_sense(cmd);
995 scsi_print_command(cmd);
996 }
997 }
998 if (!scsi_end_request(req, error, blk_rq_err_bytes(req), 0))
999 return;
1000 /*FALLTHRU*/
1001 case ACTION_REPREP:
1002 requeue:
1003 /* Unprep the request and put it back at the head of the queue.
1004 * A new command will be prepared and issued.
1005 */
1006 if (q->mq_ops) {
1007 cmd->request->rq_flags &= ~RQF_DONTPREP;
1008 scsi_mq_uninit_cmd(cmd);
1009 scsi_mq_requeue_cmd(cmd);
1010 } else {
1011 scsi_release_buffers(cmd);
1012 scsi_requeue_command(q, cmd);
1013 }
1014 break;
1015 case ACTION_RETRY:
1016 /* Retry the same command immediately */
1017 __scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, 0);
1018 break;
1019 case ACTION_DELAYED_RETRY:
1020 /* Retry the same command after a delay */
1021 __scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, 0);
1022 break;
1023 }
1024 }
1025
1026 static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb)
1027 {
1028 int count;
1029
1030 /*
1031 * If sg table allocation fails, requeue request later.
1032 */
1033 if (unlikely(sg_alloc_table_chained(&sdb->table,
1034 blk_rq_nr_phys_segments(req), sdb->table.sgl)))
1035 return BLKPREP_DEFER;
1036
1037 /*
1038 * Next, walk the list, and fill in the addresses and sizes of
1039 * each segment.
1040 */
1041 count = blk_rq_map_sg(req->q, req, sdb->table.sgl);
1042 BUG_ON(count > sdb->table.nents);
1043 sdb->table.nents = count;
1044 sdb->length = blk_rq_payload_bytes(req);
1045 return BLKPREP_OK;
1046 }
1047
1048 /*
1049 * Function: scsi_init_io()
1050 *
1051 * Purpose: SCSI I/O initialize function.
1052 *
1053 * Arguments: cmd - Command descriptor we wish to initialize
1054 *
1055 * Returns: 0 on success
1056 * BLKPREP_DEFER if the failure is retryable
1057 * BLKPREP_KILL if the failure is fatal
1058 */
1059 int scsi_init_io(struct scsi_cmnd *cmd)
1060 {
1061 struct scsi_device *sdev = cmd->device;
1062 struct request *rq = cmd->request;
1063 bool is_mq = (rq->mq_ctx != NULL);
1064 int error = BLKPREP_KILL;
1065
1066 if (WARN_ON_ONCE(!blk_rq_nr_phys_segments(rq)))
1067 goto err_exit;
1068
1069 error = scsi_init_sgtable(rq, &cmd->sdb);
1070 if (error)
1071 goto err_exit;
1072
1073 if (blk_bidi_rq(rq)) {
1074 if (!rq->q->mq_ops) {
1075 struct scsi_data_buffer *bidi_sdb =
1076 kmem_cache_zalloc(scsi_sdb_cache, GFP_ATOMIC);
1077 if (!bidi_sdb) {
1078 error = BLKPREP_DEFER;
1079 goto err_exit;
1080 }
1081
1082 rq->next_rq->special = bidi_sdb;
1083 }
1084
1085 error = scsi_init_sgtable(rq->next_rq, rq->next_rq->special);
1086 if (error)
1087 goto err_exit;
1088 }
1089
1090 if (blk_integrity_rq(rq)) {
1091 struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1092 int ivecs, count;
1093
1094 if (prot_sdb == NULL) {
1095 /*
1096 * This can happen if someone (e.g. multipath)
1097 * queues a command to a device on an adapter
1098 * that does not support DIX.
1099 */
1100 WARN_ON_ONCE(1);
1101 error = BLKPREP_KILL;
1102 goto err_exit;
1103 }
1104
1105 ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1106
1107 if (sg_alloc_table_chained(&prot_sdb->table, ivecs,
1108 prot_sdb->table.sgl)) {
1109 error = BLKPREP_DEFER;
1110 goto err_exit;
1111 }
1112
1113 count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1114 prot_sdb->table.sgl);
1115 BUG_ON(unlikely(count > ivecs));
1116 BUG_ON(unlikely(count > queue_max_integrity_segments(rq->q)));
1117
1118 cmd->prot_sdb = prot_sdb;
1119 cmd->prot_sdb->table.nents = count;
1120 }
1121
1122 return BLKPREP_OK;
1123 err_exit:
1124 if (is_mq) {
1125 scsi_mq_free_sgtables(cmd);
1126 } else {
1127 scsi_release_buffers(cmd);
1128 cmd->request->special = NULL;
1129 scsi_put_command(cmd);
1130 put_device(&sdev->sdev_gendev);
1131 }
1132 return error;
1133 }
1134 EXPORT_SYMBOL(scsi_init_io);
1135
1136 void scsi_init_command(struct scsi_device *dev, struct scsi_cmnd *cmd)
1137 {
1138 void *buf = cmd->sense_buffer;
1139 void *prot = cmd->prot_sdb;
1140 unsigned long flags;
1141
1142 /* zero out the cmd, except for the embedded scsi_request */
1143 memset((char *)cmd + sizeof(cmd->req), 0,
1144 sizeof(*cmd) - sizeof(cmd->req) + dev->host->hostt->cmd_size);
1145
1146 cmd->device = dev;
1147 cmd->sense_buffer = buf;
1148 cmd->prot_sdb = prot;
1149 INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler);
1150 cmd->jiffies_at_alloc = jiffies;
1151
1152 spin_lock_irqsave(&dev->list_lock, flags);
1153 list_add_tail(&cmd->list, &dev->cmd_list);
1154 spin_unlock_irqrestore(&dev->list_lock, flags);
1155 }
1156
1157 static int scsi_setup_scsi_cmnd(struct scsi_device *sdev, struct request *req)
1158 {
1159 struct scsi_cmnd *cmd = req->special;
1160
1161 /*
1162 * Passthrough requests may transfer data, in which case they must
1163 * a bio attached to them. Or they might contain a SCSI command
1164 * that does not transfer data, in which case they may optionally
1165 * submit a request without an attached bio.
1166 */
1167 if (req->bio) {
1168 int ret = scsi_init_io(cmd);
1169 if (unlikely(ret))
1170 return ret;
1171 } else {
1172 BUG_ON(blk_rq_bytes(req));
1173
1174 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1175 }
1176
1177 cmd->cmd_len = scsi_req(req)->cmd_len;
1178 cmd->cmnd = scsi_req(req)->cmd;
1179 cmd->transfersize = blk_rq_bytes(req);
1180 cmd->allowed = scsi_req(req)->retries;
1181 return BLKPREP_OK;
1182 }
1183
1184 /*
1185 * Setup a normal block command. These are simple request from filesystems
1186 * that still need to be translated to SCSI CDBs from the ULD.
1187 */
1188 static int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1189 {
1190 struct scsi_cmnd *cmd = req->special;
1191
1192 if (unlikely(sdev->handler && sdev->handler->prep_fn)) {
1193 int ret = sdev->handler->prep_fn(sdev, req);
1194 if (ret != BLKPREP_OK)
1195 return ret;
1196 }
1197
1198 cmd->cmnd = scsi_req(req)->cmd = scsi_req(req)->__cmd;
1199 memset(cmd->cmnd, 0, BLK_MAX_CDB);
1200 return scsi_cmd_to_driver(cmd)->init_command(cmd);
1201 }
1202
1203 static int scsi_setup_cmnd(struct scsi_device *sdev, struct request *req)
1204 {
1205 struct scsi_cmnd *cmd = req->special;
1206
1207 if (!blk_rq_bytes(req))
1208 cmd->sc_data_direction = DMA_NONE;
1209 else if (rq_data_dir(req) == WRITE)
1210 cmd->sc_data_direction = DMA_TO_DEVICE;
1211 else
1212 cmd->sc_data_direction = DMA_FROM_DEVICE;
1213
1214 if (blk_rq_is_scsi(req))
1215 return scsi_setup_scsi_cmnd(sdev, req);
1216 else
1217 return scsi_setup_fs_cmnd(sdev, req);
1218 }
1219
1220 static int
1221 scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1222 {
1223 int ret = BLKPREP_OK;
1224
1225 /*
1226 * If the device is not in running state we will reject some
1227 * or all commands.
1228 */
1229 if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1230 switch (sdev->sdev_state) {
1231 case SDEV_OFFLINE:
1232 case SDEV_TRANSPORT_OFFLINE:
1233 /*
1234 * If the device is offline we refuse to process any
1235 * commands. The device must be brought online
1236 * before trying any recovery commands.
1237 */
1238 sdev_printk(KERN_ERR, sdev,
1239 "rejecting I/O to offline device\n");
1240 ret = BLKPREP_KILL;
1241 break;
1242 case SDEV_DEL:
1243 /*
1244 * If the device is fully deleted, we refuse to
1245 * process any commands as well.
1246 */
1247 sdev_printk(KERN_ERR, sdev,
1248 "rejecting I/O to dead device\n");
1249 ret = BLKPREP_KILL;
1250 break;
1251 case SDEV_BLOCK:
1252 case SDEV_CREATED_BLOCK:
1253 ret = BLKPREP_DEFER;
1254 break;
1255 case SDEV_QUIESCE:
1256 /*
1257 * If the devices is blocked we defer normal commands.
1258 */
1259 if (!(req->rq_flags & RQF_PREEMPT))
1260 ret = BLKPREP_DEFER;
1261 break;
1262 default:
1263 /*
1264 * For any other not fully online state we only allow
1265 * special commands. In particular any user initiated
1266 * command is not allowed.
1267 */
1268 if (!(req->rq_flags & RQF_PREEMPT))
1269 ret = BLKPREP_KILL;
1270 break;
1271 }
1272 }
1273 return ret;
1274 }
1275
1276 static int
1277 scsi_prep_return(struct request_queue *q, struct request *req, int ret)
1278 {
1279 struct scsi_device *sdev = q->queuedata;
1280
1281 switch (ret) {
1282 case BLKPREP_KILL:
1283 case BLKPREP_INVALID:
1284 scsi_req(req)->result = DID_NO_CONNECT << 16;
1285 /* release the command and kill it */
1286 if (req->special) {
1287 struct scsi_cmnd *cmd = req->special;
1288 scsi_release_buffers(cmd);
1289 scsi_put_command(cmd);
1290 put_device(&sdev->sdev_gendev);
1291 req->special = NULL;
1292 }
1293 break;
1294 case BLKPREP_DEFER:
1295 /*
1296 * If we defer, the blk_peek_request() returns NULL, but the
1297 * queue must be restarted, so we schedule a callback to happen
1298 * shortly.
1299 */
1300 if (atomic_read(&sdev->device_busy) == 0)
1301 blk_delay_queue(q, SCSI_QUEUE_DELAY);
1302 break;
1303 default:
1304 req->rq_flags |= RQF_DONTPREP;
1305 }
1306
1307 return ret;
1308 }
1309
1310 static int scsi_prep_fn(struct request_queue *q, struct request *req)
1311 {
1312 struct scsi_device *sdev = q->queuedata;
1313 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1314 int ret;
1315
1316 ret = scsi_prep_state_check(sdev, req);
1317 if (ret != BLKPREP_OK)
1318 goto out;
1319
1320 if (!req->special) {
1321 /* Bail if we can't get a reference to the device */
1322 if (unlikely(!get_device(&sdev->sdev_gendev))) {
1323 ret = BLKPREP_DEFER;
1324 goto out;
1325 }
1326
1327 scsi_init_command(sdev, cmd);
1328 req->special = cmd;
1329 }
1330
1331 cmd->tag = req->tag;
1332 cmd->request = req;
1333 cmd->prot_op = SCSI_PROT_NORMAL;
1334
1335 ret = scsi_setup_cmnd(sdev, req);
1336 out:
1337 return scsi_prep_return(q, req, ret);
1338 }
1339
1340 static void scsi_unprep_fn(struct request_queue *q, struct request *req)
1341 {
1342 scsi_uninit_cmd(req->special);
1343 }
1344
1345 /*
1346 * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1347 * return 0.
1348 *
1349 * Called with the queue_lock held.
1350 */
1351 static inline int scsi_dev_queue_ready(struct request_queue *q,
1352 struct scsi_device *sdev)
1353 {
1354 unsigned int busy;
1355
1356 busy = atomic_inc_return(&sdev->device_busy) - 1;
1357 if (atomic_read(&sdev->device_blocked)) {
1358 if (busy)
1359 goto out_dec;
1360
1361 /*
1362 * unblock after device_blocked iterates to zero
1363 */
1364 if (atomic_dec_return(&sdev->device_blocked) > 0) {
1365 /*
1366 * For the MQ case we take care of this in the caller.
1367 */
1368 if (!q->mq_ops)
1369 blk_delay_queue(q, SCSI_QUEUE_DELAY);
1370 goto out_dec;
1371 }
1372 SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev,
1373 "unblocking device at zero depth\n"));
1374 }
1375
1376 if (busy >= sdev->queue_depth)
1377 goto out_dec;
1378
1379 return 1;
1380 out_dec:
1381 atomic_dec(&sdev->device_busy);
1382 return 0;
1383 }
1384
1385 /*
1386 * scsi_target_queue_ready: checks if there we can send commands to target
1387 * @sdev: scsi device on starget to check.
1388 */
1389 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1390 struct scsi_device *sdev)
1391 {
1392 struct scsi_target *starget = scsi_target(sdev);
1393 unsigned int busy;
1394
1395 if (starget->single_lun) {
1396 spin_lock_irq(shost->host_lock);
1397 if (starget->starget_sdev_user &&
1398 starget->starget_sdev_user != sdev) {
1399 spin_unlock_irq(shost->host_lock);
1400 return 0;
1401 }
1402 starget->starget_sdev_user = sdev;
1403 spin_unlock_irq(shost->host_lock);
1404 }
1405
1406 if (starget->can_queue <= 0)
1407 return 1;
1408
1409 busy = atomic_inc_return(&starget->target_busy) - 1;
1410 if (atomic_read(&starget->target_blocked) > 0) {
1411 if (busy)
1412 goto starved;
1413
1414 /*
1415 * unblock after target_blocked iterates to zero
1416 */
1417 if (atomic_dec_return(&starget->target_blocked) > 0)
1418 goto out_dec;
1419
1420 SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1421 "unblocking target at zero depth\n"));
1422 }
1423
1424 if (busy >= starget->can_queue)
1425 goto starved;
1426
1427 return 1;
1428
1429 starved:
1430 spin_lock_irq(shost->host_lock);
1431 list_move_tail(&sdev->starved_entry, &shost->starved_list);
1432 spin_unlock_irq(shost->host_lock);
1433 out_dec:
1434 if (starget->can_queue > 0)
1435 atomic_dec(&starget->target_busy);
1436 return 0;
1437 }
1438
1439 /*
1440 * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1441 * return 0. We must end up running the queue again whenever 0 is
1442 * returned, else IO can hang.
1443 */
1444 static inline int scsi_host_queue_ready(struct request_queue *q,
1445 struct Scsi_Host *shost,
1446 struct scsi_device *sdev)
1447 {
1448 unsigned int busy;
1449
1450 if (scsi_host_in_recovery(shost))
1451 return 0;
1452
1453 busy = atomic_inc_return(&shost->host_busy) - 1;
1454 if (atomic_read(&shost->host_blocked) > 0) {
1455 if (busy)
1456 goto starved;
1457
1458 /*
1459 * unblock after host_blocked iterates to zero
1460 */
1461 if (atomic_dec_return(&shost->host_blocked) > 0)
1462 goto out_dec;
1463
1464 SCSI_LOG_MLQUEUE(3,
1465 shost_printk(KERN_INFO, shost,
1466 "unblocking host at zero depth\n"));
1467 }
1468
1469 if (shost->can_queue > 0 && busy >= shost->can_queue)
1470 goto starved;
1471 if (shost->host_self_blocked)
1472 goto starved;
1473
1474 /* We're OK to process the command, so we can't be starved */
1475 if (!list_empty(&sdev->starved_entry)) {
1476 spin_lock_irq(shost->host_lock);
1477 if (!list_empty(&sdev->starved_entry))
1478 list_del_init(&sdev->starved_entry);
1479 spin_unlock_irq(shost->host_lock);
1480 }
1481
1482 return 1;
1483
1484 starved:
1485 spin_lock_irq(shost->host_lock);
1486 if (list_empty(&sdev->starved_entry))
1487 list_add_tail(&sdev->starved_entry, &shost->starved_list);
1488 spin_unlock_irq(shost->host_lock);
1489 out_dec:
1490 atomic_dec(&shost->host_busy);
1491 return 0;
1492 }
1493
1494 /*
1495 * Busy state exporting function for request stacking drivers.
1496 *
1497 * For efficiency, no lock is taken to check the busy state of
1498 * shost/starget/sdev, since the returned value is not guaranteed and
1499 * may be changed after request stacking drivers call the function,
1500 * regardless of taking lock or not.
1501 *
1502 * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1503 * needs to return 'not busy'. Otherwise, request stacking drivers
1504 * may hold requests forever.
1505 */
1506 static int scsi_lld_busy(struct request_queue *q)
1507 {
1508 struct scsi_device *sdev = q->queuedata;
1509 struct Scsi_Host *shost;
1510
1511 if (blk_queue_dying(q))
1512 return 0;
1513
1514 shost = sdev->host;
1515
1516 /*
1517 * Ignore host/starget busy state.
1518 * Since block layer does not have a concept of fairness across
1519 * multiple queues, congestion of host/starget needs to be handled
1520 * in SCSI layer.
1521 */
1522 if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1523 return 1;
1524
1525 return 0;
1526 }
1527
1528 /*
1529 * Kill a request for a dead device
1530 */
1531 static void scsi_kill_request(struct request *req, struct request_queue *q)
1532 {
1533 struct scsi_cmnd *cmd = req->special;
1534 struct scsi_device *sdev;
1535 struct scsi_target *starget;
1536 struct Scsi_Host *shost;
1537
1538 blk_start_request(req);
1539
1540 scmd_printk(KERN_INFO, cmd, "killing request\n");
1541
1542 sdev = cmd->device;
1543 starget = scsi_target(sdev);
1544 shost = sdev->host;
1545 scsi_init_cmd_errh(cmd);
1546 cmd->result = DID_NO_CONNECT << 16;
1547 atomic_inc(&cmd->device->iorequest_cnt);
1548
1549 /*
1550 * SCSI request completion path will do scsi_device_unbusy(),
1551 * bump busy counts. To bump the counters, we need to dance
1552 * with the locks as normal issue path does.
1553 */
1554 atomic_inc(&sdev->device_busy);
1555 atomic_inc(&shost->host_busy);
1556 if (starget->can_queue > 0)
1557 atomic_inc(&starget->target_busy);
1558
1559 blk_complete_request(req);
1560 }
1561
1562 static void scsi_softirq_done(struct request *rq)
1563 {
1564 struct scsi_cmnd *cmd = rq->special;
1565 unsigned long wait_for = (cmd->allowed + 1) * rq->timeout;
1566 int disposition;
1567
1568 INIT_LIST_HEAD(&cmd->eh_entry);
1569
1570 atomic_inc(&cmd->device->iodone_cnt);
1571 if (cmd->result)
1572 atomic_inc(&cmd->device->ioerr_cnt);
1573
1574 disposition = scsi_decide_disposition(cmd);
1575 if (disposition != SUCCESS &&
1576 time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1577 sdev_printk(KERN_ERR, cmd->device,
1578 "timing out command, waited %lus\n",
1579 wait_for/HZ);
1580 disposition = SUCCESS;
1581 }
1582
1583 scsi_log_completion(cmd, disposition);
1584
1585 switch (disposition) {
1586 case SUCCESS:
1587 scsi_finish_command(cmd);
1588 break;
1589 case NEEDS_RETRY:
1590 scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1591 break;
1592 case ADD_TO_MLQUEUE:
1593 scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1594 break;
1595 default:
1596 scsi_eh_scmd_add(cmd);
1597 break;
1598 }
1599 }
1600
1601 /**
1602 * scsi_dispatch_command - Dispatch a command to the low-level driver.
1603 * @cmd: command block we are dispatching.
1604 *
1605 * Return: nonzero return request was rejected and device's queue needs to be
1606 * plugged.
1607 */
1608 static int scsi_dispatch_cmd(struct scsi_cmnd *cmd)
1609 {
1610 struct Scsi_Host *host = cmd->device->host;
1611 int rtn = 0;
1612
1613 atomic_inc(&cmd->device->iorequest_cnt);
1614
1615 /* check if the device is still usable */
1616 if (unlikely(cmd->device->sdev_state == SDEV_DEL)) {
1617 /* in SDEV_DEL we error all commands. DID_NO_CONNECT
1618 * returns an immediate error upwards, and signals
1619 * that the device is no longer present */
1620 cmd->result = DID_NO_CONNECT << 16;
1621 goto done;
1622 }
1623
1624 /* Check to see if the scsi lld made this device blocked. */
1625 if (unlikely(scsi_device_blocked(cmd->device))) {
1626 /*
1627 * in blocked state, the command is just put back on
1628 * the device queue. The suspend state has already
1629 * blocked the queue so future requests should not
1630 * occur until the device transitions out of the
1631 * suspend state.
1632 */
1633 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1634 "queuecommand : device blocked\n"));
1635 return SCSI_MLQUEUE_DEVICE_BUSY;
1636 }
1637
1638 /* Store the LUN value in cmnd, if needed. */
1639 if (cmd->device->lun_in_cdb)
1640 cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) |
1641 (cmd->device->lun << 5 & 0xe0);
1642
1643 scsi_log_send(cmd);
1644
1645 /*
1646 * Before we queue this command, check if the command
1647 * length exceeds what the host adapter can handle.
1648 */
1649 if (cmd->cmd_len > cmd->device->host->max_cmd_len) {
1650 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1651 "queuecommand : command too long. "
1652 "cdb_size=%d host->max_cmd_len=%d\n",
1653 cmd->cmd_len, cmd->device->host->max_cmd_len));
1654 cmd->result = (DID_ABORT << 16);
1655 goto done;
1656 }
1657
1658 if (unlikely(host->shost_state == SHOST_DEL)) {
1659 cmd->result = (DID_NO_CONNECT << 16);
1660 goto done;
1661
1662 }
1663
1664 trace_scsi_dispatch_cmd_start(cmd);
1665 rtn = host->hostt->queuecommand(host, cmd);
1666 if (rtn) {
1667 trace_scsi_dispatch_cmd_error(cmd, rtn);
1668 if (rtn != SCSI_MLQUEUE_DEVICE_BUSY &&
1669 rtn != SCSI_MLQUEUE_TARGET_BUSY)
1670 rtn = SCSI_MLQUEUE_HOST_BUSY;
1671
1672 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1673 "queuecommand : request rejected\n"));
1674 }
1675
1676 return rtn;
1677 done:
1678 cmd->scsi_done(cmd);
1679 return 0;
1680 }
1681
1682 /**
1683 * scsi_done - Invoke completion on finished SCSI command.
1684 * @cmd: The SCSI Command for which a low-level device driver (LLDD) gives
1685 * ownership back to SCSI Core -- i.e. the LLDD has finished with it.
1686 *
1687 * Description: This function is the mid-level's (SCSI Core) interrupt routine,
1688 * which regains ownership of the SCSI command (de facto) from a LLDD, and
1689 * calls blk_complete_request() for further processing.
1690 *
1691 * This function is interrupt context safe.
1692 */
1693 static void scsi_done(struct scsi_cmnd *cmd)
1694 {
1695 trace_scsi_dispatch_cmd_done(cmd);
1696 blk_complete_request(cmd->request);
1697 }
1698
1699 /*
1700 * Function: scsi_request_fn()
1701 *
1702 * Purpose: Main strategy routine for SCSI.
1703 *
1704 * Arguments: q - Pointer to actual queue.
1705 *
1706 * Returns: Nothing
1707 *
1708 * Lock status: IO request lock assumed to be held when called.
1709 */
1710 static void scsi_request_fn(struct request_queue *q)
1711 __releases(q->queue_lock)
1712 __acquires(q->queue_lock)
1713 {
1714 struct scsi_device *sdev = q->queuedata;
1715 struct Scsi_Host *shost;
1716 struct scsi_cmnd *cmd;
1717 struct request *req;
1718
1719 /*
1720 * To start with, we keep looping until the queue is empty, or until
1721 * the host is no longer able to accept any more requests.
1722 */
1723 shost = sdev->host;
1724 for (;;) {
1725 int rtn;
1726 /*
1727 * get next queueable request. We do this early to make sure
1728 * that the request is fully prepared even if we cannot
1729 * accept it.
1730 */
1731 req = blk_peek_request(q);
1732 if (!req)
1733 break;
1734
1735 if (unlikely(!scsi_device_online(sdev))) {
1736 sdev_printk(KERN_ERR, sdev,
1737 "rejecting I/O to offline device\n");
1738 scsi_kill_request(req, q);
1739 continue;
1740 }
1741
1742 if (!scsi_dev_queue_ready(q, sdev))
1743 break;
1744
1745 /*
1746 * Remove the request from the request list.
1747 */
1748 if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1749 blk_start_request(req);
1750
1751 spin_unlock_irq(q->queue_lock);
1752 cmd = req->special;
1753 if (unlikely(cmd == NULL)) {
1754 printk(KERN_CRIT "impossible request in %s.\n"
1755 "please mail a stack trace to "
1756 "linux-scsi@vger.kernel.org\n",
1757 __func__);
1758 blk_dump_rq_flags(req, "foo");
1759 BUG();
1760 }
1761
1762 /*
1763 * We hit this when the driver is using a host wide
1764 * tag map. For device level tag maps the queue_depth check
1765 * in the device ready fn would prevent us from trying
1766 * to allocate a tag. Since the map is a shared host resource
1767 * we add the dev to the starved list so it eventually gets
1768 * a run when a tag is freed.
1769 */
1770 if (blk_queue_tagged(q) && !(req->rq_flags & RQF_QUEUED)) {
1771 spin_lock_irq(shost->host_lock);
1772 if (list_empty(&sdev->starved_entry))
1773 list_add_tail(&sdev->starved_entry,
1774 &shost->starved_list);
1775 spin_unlock_irq(shost->host_lock);
1776 goto not_ready;
1777 }
1778
1779 if (!scsi_target_queue_ready(shost, sdev))
1780 goto not_ready;
1781
1782 if (!scsi_host_queue_ready(q, shost, sdev))
1783 goto host_not_ready;
1784
1785 if (sdev->simple_tags)
1786 cmd->flags |= SCMD_TAGGED;
1787 else
1788 cmd->flags &= ~SCMD_TAGGED;
1789
1790 /*
1791 * Finally, initialize any error handling parameters, and set up
1792 * the timers for timeouts.
1793 */
1794 scsi_init_cmd_errh(cmd);
1795
1796 /*
1797 * Dispatch the command to the low-level driver.
1798 */
1799 cmd->scsi_done = scsi_done;
1800 rtn = scsi_dispatch_cmd(cmd);
1801 if (rtn) {
1802 scsi_queue_insert(cmd, rtn);
1803 spin_lock_irq(q->queue_lock);
1804 goto out_delay;
1805 }
1806 spin_lock_irq(q->queue_lock);
1807 }
1808
1809 return;
1810
1811 host_not_ready:
1812 if (scsi_target(sdev)->can_queue > 0)
1813 atomic_dec(&scsi_target(sdev)->target_busy);
1814 not_ready:
1815 /*
1816 * lock q, handle tag, requeue req, and decrement device_busy. We
1817 * must return with queue_lock held.
1818 *
1819 * Decrementing device_busy without checking it is OK, as all such
1820 * cases (host limits or settings) should run the queue at some
1821 * later time.
1822 */
1823 spin_lock_irq(q->queue_lock);
1824 blk_requeue_request(q, req);
1825 atomic_dec(&sdev->device_busy);
1826 out_delay:
1827 if (!atomic_read(&sdev->device_busy) && !scsi_device_blocked(sdev))
1828 blk_delay_queue(q, SCSI_QUEUE_DELAY);
1829 }
1830
1831 static inline int prep_to_mq(int ret)
1832 {
1833 switch (ret) {
1834 case BLKPREP_OK:
1835 return BLK_MQ_RQ_QUEUE_OK;
1836 case BLKPREP_DEFER:
1837 return BLK_MQ_RQ_QUEUE_BUSY;
1838 default:
1839 return BLK_MQ_RQ_QUEUE_ERROR;
1840 }
1841 }
1842
1843 static int scsi_mq_prep_fn(struct request *req)
1844 {
1845 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1846 struct scsi_device *sdev = req->q->queuedata;
1847 struct Scsi_Host *shost = sdev->host;
1848 unsigned char *sense_buf = cmd->sense_buffer;
1849 struct scatterlist *sg;
1850
1851 /* zero out the cmd, except for the embedded scsi_request */
1852 memset((char *)cmd + sizeof(cmd->req), 0,
1853 sizeof(*cmd) - sizeof(cmd->req));
1854
1855 req->special = cmd;
1856
1857 cmd->request = req;
1858 cmd->device = sdev;
1859 cmd->sense_buffer = sense_buf;
1860
1861 cmd->tag = req->tag;
1862
1863 cmd->prot_op = SCSI_PROT_NORMAL;
1864
1865 INIT_LIST_HEAD(&cmd->list);
1866 INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler);
1867 cmd->jiffies_at_alloc = jiffies;
1868
1869 if (shost->use_cmd_list) {
1870 spin_lock_irq(&sdev->list_lock);
1871 list_add_tail(&cmd->list, &sdev->cmd_list);
1872 spin_unlock_irq(&sdev->list_lock);
1873 }
1874
1875 sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
1876 cmd->sdb.table.sgl = sg;
1877
1878 if (scsi_host_get_prot(shost)) {
1879 cmd->prot_sdb = (void *)sg +
1880 min_t(unsigned int,
1881 shost->sg_tablesize, SG_CHUNK_SIZE) *
1882 sizeof(struct scatterlist);
1883 memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer));
1884
1885 cmd->prot_sdb->table.sgl =
1886 (struct scatterlist *)(cmd->prot_sdb + 1);
1887 }
1888
1889 if (blk_bidi_rq(req)) {
1890 struct request *next_rq = req->next_rq;
1891 struct scsi_data_buffer *bidi_sdb = blk_mq_rq_to_pdu(next_rq);
1892
1893 memset(bidi_sdb, 0, sizeof(struct scsi_data_buffer));
1894 bidi_sdb->table.sgl =
1895 (struct scatterlist *)(bidi_sdb + 1);
1896
1897 next_rq->special = bidi_sdb;
1898 }
1899
1900 blk_mq_start_request(req);
1901
1902 return scsi_setup_cmnd(sdev, req);
1903 }
1904
1905 static void scsi_mq_done(struct scsi_cmnd *cmd)
1906 {
1907 trace_scsi_dispatch_cmd_done(cmd);
1908 blk_mq_complete_request(cmd->request);
1909 }
1910
1911 static int scsi_queue_rq(struct blk_mq_hw_ctx *hctx,
1912 const struct blk_mq_queue_data *bd)
1913 {
1914 struct request *req = bd->rq;
1915 struct request_queue *q = req->q;
1916 struct scsi_device *sdev = q->queuedata;
1917 struct Scsi_Host *shost = sdev->host;
1918 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1919 int ret;
1920 int reason;
1921
1922 ret = prep_to_mq(scsi_prep_state_check(sdev, req));
1923 if (ret != BLK_MQ_RQ_QUEUE_OK)
1924 goto out;
1925
1926 ret = BLK_MQ_RQ_QUEUE_BUSY;
1927 if (!get_device(&sdev->sdev_gendev))
1928 goto out;
1929
1930 if (!scsi_dev_queue_ready(q, sdev))
1931 goto out_put_device;
1932 if (!scsi_target_queue_ready(shost, sdev))
1933 goto out_dec_device_busy;
1934 if (!scsi_host_queue_ready(q, shost, sdev))
1935 goto out_dec_target_busy;
1936
1937 if (!(req->rq_flags & RQF_DONTPREP)) {
1938 ret = prep_to_mq(scsi_mq_prep_fn(req));
1939 if (ret != BLK_MQ_RQ_QUEUE_OK)
1940 goto out_dec_host_busy;
1941 req->rq_flags |= RQF_DONTPREP;
1942 } else {
1943 blk_mq_start_request(req);
1944 }
1945
1946 if (sdev->simple_tags)
1947 cmd->flags |= SCMD_TAGGED;
1948 else
1949 cmd->flags &= ~SCMD_TAGGED;
1950
1951 scsi_init_cmd_errh(cmd);
1952 cmd->scsi_done = scsi_mq_done;
1953
1954 reason = scsi_dispatch_cmd(cmd);
1955 if (reason) {
1956 scsi_set_blocked(cmd, reason);
1957 ret = BLK_MQ_RQ_QUEUE_BUSY;
1958 goto out_dec_host_busy;
1959 }
1960
1961 return BLK_MQ_RQ_QUEUE_OK;
1962
1963 out_dec_host_busy:
1964 atomic_dec(&shost->host_busy);
1965 out_dec_target_busy:
1966 if (scsi_target(sdev)->can_queue > 0)
1967 atomic_dec(&scsi_target(sdev)->target_busy);
1968 out_dec_device_busy:
1969 atomic_dec(&sdev->device_busy);
1970 out_put_device:
1971 put_device(&sdev->sdev_gendev);
1972 out:
1973 switch (ret) {
1974 case BLK_MQ_RQ_QUEUE_BUSY:
1975 if (atomic_read(&sdev->device_busy) == 0 &&
1976 !scsi_device_blocked(sdev))
1977 blk_mq_delay_run_hw_queue(hctx, SCSI_QUEUE_DELAY);
1978 break;
1979 case BLK_MQ_RQ_QUEUE_ERROR:
1980 /*
1981 * Make sure to release all allocated ressources when
1982 * we hit an error, as we will never see this command
1983 * again.
1984 */
1985 if (req->rq_flags & RQF_DONTPREP)
1986 scsi_mq_uninit_cmd(cmd);
1987 break;
1988 default:
1989 break;
1990 }
1991 return ret;
1992 }
1993
1994 static enum blk_eh_timer_return scsi_timeout(struct request *req,
1995 bool reserved)
1996 {
1997 if (reserved)
1998 return BLK_EH_RESET_TIMER;
1999 return scsi_times_out(req);
2000 }
2001
2002 static int scsi_init_request(struct blk_mq_tag_set *set, struct request *rq,
2003 unsigned int hctx_idx, unsigned int numa_node)
2004 {
2005 struct Scsi_Host *shost = set->driver_data;
2006 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
2007
2008 cmd->sense_buffer =
2009 scsi_alloc_sense_buffer(shost, GFP_KERNEL, numa_node);
2010 if (!cmd->sense_buffer)
2011 return -ENOMEM;
2012 cmd->req.sense = cmd->sense_buffer;
2013 return 0;
2014 }
2015
2016 static void scsi_exit_request(struct blk_mq_tag_set *set, struct request *rq,
2017 unsigned int hctx_idx)
2018 {
2019 struct Scsi_Host *shost = set->driver_data;
2020 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
2021
2022 scsi_free_sense_buffer(shost, cmd->sense_buffer);
2023 }
2024
2025 static int scsi_map_queues(struct blk_mq_tag_set *set)
2026 {
2027 struct Scsi_Host *shost = container_of(set, struct Scsi_Host, tag_set);
2028
2029 if (shost->hostt->map_queues)
2030 return shost->hostt->map_queues(shost);
2031 return blk_mq_map_queues(set);
2032 }
2033
2034 static u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
2035 {
2036 struct device *host_dev;
2037 u64 bounce_limit = 0xffffffff;
2038
2039 if (shost->unchecked_isa_dma)
2040 return BLK_BOUNCE_ISA;
2041 /*
2042 * Platforms with virtual-DMA translation
2043 * hardware have no practical limit.
2044 */
2045 if (!PCI_DMA_BUS_IS_PHYS)
2046 return BLK_BOUNCE_ANY;
2047
2048 host_dev = scsi_get_device(shost);
2049 if (host_dev && host_dev->dma_mask)
2050 bounce_limit = (u64)dma_max_pfn(host_dev) << PAGE_SHIFT;
2051
2052 return bounce_limit;
2053 }
2054
2055 void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q)
2056 {
2057 struct device *dev = shost->dma_dev;
2058
2059 /*
2060 * this limit is imposed by hardware restrictions
2061 */
2062 blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
2063 SG_MAX_SEGMENTS));
2064
2065 if (scsi_host_prot_dma(shost)) {
2066 shost->sg_prot_tablesize =
2067 min_not_zero(shost->sg_prot_tablesize,
2068 (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
2069 BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
2070 blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
2071 }
2072
2073 blk_queue_max_hw_sectors(q, shost->max_sectors);
2074 blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
2075 blk_queue_segment_boundary(q, shost->dma_boundary);
2076 dma_set_seg_boundary(dev, shost->dma_boundary);
2077
2078 blk_queue_max_segment_size(q, dma_get_max_seg_size(dev));
2079
2080 if (!shost->use_clustering)
2081 q->limits.cluster = 0;
2082
2083 /*
2084 * set a reasonable default alignment on word boundaries: the
2085 * host and device may alter it using
2086 * blk_queue_update_dma_alignment() later.
2087 */
2088 blk_queue_dma_alignment(q, 0x03);
2089 }
2090 EXPORT_SYMBOL_GPL(__scsi_init_queue);
2091
2092 static int scsi_init_rq(struct request_queue *q, struct request *rq, gfp_t gfp)
2093 {
2094 struct Scsi_Host *shost = q->rq_alloc_data;
2095 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
2096
2097 memset(cmd, 0, sizeof(*cmd));
2098
2099 cmd->sense_buffer = scsi_alloc_sense_buffer(shost, gfp, NUMA_NO_NODE);
2100 if (!cmd->sense_buffer)
2101 goto fail;
2102 cmd->req.sense = cmd->sense_buffer;
2103
2104 if (scsi_host_get_prot(shost) >= SHOST_DIX_TYPE0_PROTECTION) {
2105 cmd->prot_sdb = kmem_cache_zalloc(scsi_sdb_cache, gfp);
2106 if (!cmd->prot_sdb)
2107 goto fail_free_sense;
2108 }
2109
2110 return 0;
2111
2112 fail_free_sense:
2113 scsi_free_sense_buffer(shost, cmd->sense_buffer);
2114 fail:
2115 return -ENOMEM;
2116 }
2117
2118 static void scsi_exit_rq(struct request_queue *q, struct request *rq)
2119 {
2120 struct Scsi_Host *shost = q->rq_alloc_data;
2121 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
2122
2123 if (cmd->prot_sdb)
2124 kmem_cache_free(scsi_sdb_cache, cmd->prot_sdb);
2125 scsi_free_sense_buffer(shost, cmd->sense_buffer);
2126 }
2127
2128 struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
2129 {
2130 struct Scsi_Host *shost = sdev->host;
2131 struct request_queue *q;
2132
2133 q = blk_alloc_queue_node(GFP_KERNEL, NUMA_NO_NODE);
2134 if (!q)
2135 return NULL;
2136 q->cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
2137 q->rq_alloc_data = shost;
2138 q->request_fn = scsi_request_fn;
2139 q->init_rq_fn = scsi_init_rq;
2140 q->exit_rq_fn = scsi_exit_rq;
2141
2142 if (blk_init_allocated_queue(q) < 0) {
2143 blk_cleanup_queue(q);
2144 return NULL;
2145 }
2146
2147 __scsi_init_queue(shost, q);
2148 blk_queue_prep_rq(q, scsi_prep_fn);
2149 blk_queue_unprep_rq(q, scsi_unprep_fn);
2150 blk_queue_softirq_done(q, scsi_softirq_done);
2151 blk_queue_rq_timed_out(q, scsi_times_out);
2152 blk_queue_lld_busy(q, scsi_lld_busy);
2153 return q;
2154 }
2155
2156 static const struct blk_mq_ops scsi_mq_ops = {
2157 .queue_rq = scsi_queue_rq,
2158 .complete = scsi_softirq_done,
2159 .timeout = scsi_timeout,
2160 #ifdef CONFIG_BLK_DEBUG_FS
2161 .show_rq = scsi_show_rq,
2162 #endif
2163 .init_request = scsi_init_request,
2164 .exit_request = scsi_exit_request,
2165 .map_queues = scsi_map_queues,
2166 };
2167
2168 struct request_queue *scsi_mq_alloc_queue(struct scsi_device *sdev)
2169 {
2170 sdev->request_queue = blk_mq_init_queue(&sdev->host->tag_set);
2171 if (IS_ERR(sdev->request_queue))
2172 return NULL;
2173
2174 sdev->request_queue->queuedata = sdev;
2175 __scsi_init_queue(sdev->host, sdev->request_queue);
2176 return sdev->request_queue;
2177 }
2178
2179 int scsi_mq_setup_tags(struct Scsi_Host *shost)
2180 {
2181 unsigned int cmd_size, sgl_size, tbl_size;
2182
2183 tbl_size = shost->sg_tablesize;
2184 if (tbl_size > SG_CHUNK_SIZE)
2185 tbl_size = SG_CHUNK_SIZE;
2186 sgl_size = tbl_size * sizeof(struct scatterlist);
2187 cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size;
2188 if (scsi_host_get_prot(shost))
2189 cmd_size += sizeof(struct scsi_data_buffer) + sgl_size;
2190
2191 memset(&shost->tag_set, 0, sizeof(shost->tag_set));
2192 shost->tag_set.ops = &scsi_mq_ops;
2193 shost->tag_set.nr_hw_queues = shost->nr_hw_queues ? : 1;
2194 shost->tag_set.queue_depth = shost->can_queue;
2195 shost->tag_set.cmd_size = cmd_size;
2196 shost->tag_set.numa_node = NUMA_NO_NODE;
2197 shost->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
2198 shost->tag_set.flags |=
2199 BLK_ALLOC_POLICY_TO_MQ_FLAG(shost->hostt->tag_alloc_policy);
2200 shost->tag_set.driver_data = shost;
2201
2202 return blk_mq_alloc_tag_set(&shost->tag_set);
2203 }
2204
2205 void scsi_mq_destroy_tags(struct Scsi_Host *shost)
2206 {
2207 blk_mq_free_tag_set(&shost->tag_set);
2208 }
2209
2210 /**
2211 * scsi_device_from_queue - return sdev associated with a request_queue
2212 * @q: The request queue to return the sdev from
2213 *
2214 * Return the sdev associated with a request queue or NULL if the
2215 * request_queue does not reference a SCSI device.
2216 */
2217 struct scsi_device *scsi_device_from_queue(struct request_queue *q)
2218 {
2219 struct scsi_device *sdev = NULL;
2220
2221 if (q->mq_ops) {
2222 if (q->mq_ops == &scsi_mq_ops)
2223 sdev = q->queuedata;
2224 } else if (q->request_fn == scsi_request_fn)
2225 sdev = q->queuedata;
2226 if (!sdev || !get_device(&sdev->sdev_gendev))
2227 sdev = NULL;
2228
2229 return sdev;
2230 }
2231 EXPORT_SYMBOL_GPL(scsi_device_from_queue);
2232
2233 /*
2234 * Function: scsi_block_requests()
2235 *
2236 * Purpose: Utility function used by low-level drivers to prevent further
2237 * commands from being queued to the device.
2238 *
2239 * Arguments: shost - Host in question
2240 *
2241 * Returns: Nothing
2242 *
2243 * Lock status: No locks are assumed held.
2244 *
2245 * Notes: There is no timer nor any other means by which the requests
2246 * get unblocked other than the low-level driver calling
2247 * scsi_unblock_requests().
2248 */
2249 void scsi_block_requests(struct Scsi_Host *shost)
2250 {
2251 shost->host_self_blocked = 1;
2252 }
2253 EXPORT_SYMBOL(scsi_block_requests);
2254
2255 /*
2256 * Function: scsi_unblock_requests()
2257 *
2258 * Purpose: Utility function used by low-level drivers to allow further
2259 * commands from being queued to the device.
2260 *
2261 * Arguments: shost - Host in question
2262 *
2263 * Returns: Nothing
2264 *
2265 * Lock status: No locks are assumed held.
2266 *
2267 * Notes: There is no timer nor any other means by which the requests
2268 * get unblocked other than the low-level driver calling
2269 * scsi_unblock_requests().
2270 *
2271 * This is done as an API function so that changes to the
2272 * internals of the scsi mid-layer won't require wholesale
2273 * changes to drivers that use this feature.
2274 */
2275 void scsi_unblock_requests(struct Scsi_Host *shost)
2276 {
2277 shost->host_self_blocked = 0;
2278 scsi_run_host_queues(shost);
2279 }
2280 EXPORT_SYMBOL(scsi_unblock_requests);
2281
2282 int __init scsi_init_queue(void)
2283 {
2284 scsi_sdb_cache = kmem_cache_create("scsi_data_buffer",
2285 sizeof(struct scsi_data_buffer),
2286 0, 0, NULL);
2287 if (!scsi_sdb_cache) {
2288 printk(KERN_ERR "SCSI: can't init scsi sdb cache\n");
2289 return -ENOMEM;
2290 }
2291
2292 return 0;
2293 }
2294
2295 void scsi_exit_queue(void)
2296 {
2297 kmem_cache_destroy(scsi_sense_cache);
2298 kmem_cache_destroy(scsi_sense_isadma_cache);
2299 kmem_cache_destroy(scsi_sdb_cache);
2300 }
2301
2302 /**
2303 * scsi_mode_select - issue a mode select
2304 * @sdev: SCSI device to be queried
2305 * @pf: Page format bit (1 == standard, 0 == vendor specific)
2306 * @sp: Save page bit (0 == don't save, 1 == save)
2307 * @modepage: mode page being requested
2308 * @buffer: request buffer (may not be smaller than eight bytes)
2309 * @len: length of request buffer.
2310 * @timeout: command timeout
2311 * @retries: number of retries before failing
2312 * @data: returns a structure abstracting the mode header data
2313 * @sshdr: place to put sense data (or NULL if no sense to be collected).
2314 * must be SCSI_SENSE_BUFFERSIZE big.
2315 *
2316 * Returns zero if successful; negative error number or scsi
2317 * status on error
2318 *
2319 */
2320 int
2321 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
2322 unsigned char *buffer, int len, int timeout, int retries,
2323 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2324 {
2325 unsigned char cmd[10];
2326 unsigned char *real_buffer;
2327 int ret;
2328
2329 memset(cmd, 0, sizeof(cmd));
2330 cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
2331
2332 if (sdev->use_10_for_ms) {
2333 if (len > 65535)
2334 return -EINVAL;
2335 real_buffer = kmalloc(8 + len, GFP_KERNEL);
2336 if (!real_buffer)
2337 return -ENOMEM;
2338 memcpy(real_buffer + 8, buffer, len);
2339 len += 8;
2340 real_buffer[0] = 0;
2341 real_buffer[1] = 0;
2342 real_buffer[2] = data->medium_type;
2343 real_buffer[3] = data->device_specific;
2344 real_buffer[4] = data->longlba ? 0x01 : 0;
2345 real_buffer[5] = 0;
2346 real_buffer[6] = data->block_descriptor_length >> 8;
2347 real_buffer[7] = data->block_descriptor_length;
2348
2349 cmd[0] = MODE_SELECT_10;
2350 cmd[7] = len >> 8;
2351 cmd[8] = len;
2352 } else {
2353 if (len > 255 || data->block_descriptor_length > 255 ||
2354 data->longlba)
2355 return -EINVAL;
2356
2357 real_buffer = kmalloc(4 + len, GFP_KERNEL);
2358 if (!real_buffer)
2359 return -ENOMEM;
2360 memcpy(real_buffer + 4, buffer, len);
2361 len += 4;
2362 real_buffer[0] = 0;
2363 real_buffer[1] = data->medium_type;
2364 real_buffer[2] = data->device_specific;
2365 real_buffer[3] = data->block_descriptor_length;
2366
2367
2368 cmd[0] = MODE_SELECT;
2369 cmd[4] = len;
2370 }
2371
2372 ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
2373 sshdr, timeout, retries, NULL);
2374 kfree(real_buffer);
2375 return ret;
2376 }
2377 EXPORT_SYMBOL_GPL(scsi_mode_select);
2378
2379 /**
2380 * scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
2381 * @sdev: SCSI device to be queried
2382 * @dbd: set if mode sense will allow block descriptors to be returned
2383 * @modepage: mode page being requested
2384 * @buffer: request buffer (may not be smaller than eight bytes)
2385 * @len: length of request buffer.
2386 * @timeout: command timeout
2387 * @retries: number of retries before failing
2388 * @data: returns a structure abstracting the mode header data
2389 * @sshdr: place to put sense data (or NULL if no sense to be collected).
2390 * must be SCSI_SENSE_BUFFERSIZE big.
2391 *
2392 * Returns zero if unsuccessful, or the header offset (either 4
2393 * or 8 depending on whether a six or ten byte command was
2394 * issued) if successful.
2395 */
2396 int
2397 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
2398 unsigned char *buffer, int len, int timeout, int retries,
2399 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2400 {
2401 unsigned char cmd[12];
2402 int use_10_for_ms;
2403 int header_length;
2404 int result, retry_count = retries;
2405 struct scsi_sense_hdr my_sshdr;
2406
2407 memset(data, 0, sizeof(*data));
2408 memset(&cmd[0], 0, 12);
2409 cmd[1] = dbd & 0x18; /* allows DBD and LLBA bits */
2410 cmd[2] = modepage;
2411
2412 /* caller might not be interested in sense, but we need it */
2413 if (!sshdr)
2414 sshdr = &my_sshdr;
2415
2416 retry:
2417 use_10_for_ms = sdev->use_10_for_ms;
2418
2419 if (use_10_for_ms) {
2420 if (len < 8)
2421 len = 8;
2422
2423 cmd[0] = MODE_SENSE_10;
2424 cmd[8] = len;
2425 header_length = 8;
2426 } else {
2427 if (len < 4)
2428 len = 4;
2429
2430 cmd[0] = MODE_SENSE;
2431 cmd[4] = len;
2432 header_length = 4;
2433 }
2434
2435 memset(buffer, 0, len);
2436
2437 result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
2438 sshdr, timeout, retries, NULL);
2439
2440 /* This code looks awful: what it's doing is making sure an
2441 * ILLEGAL REQUEST sense return identifies the actual command
2442 * byte as the problem. MODE_SENSE commands can return
2443 * ILLEGAL REQUEST if the code page isn't supported */
2444
2445 if (use_10_for_ms && !scsi_status_is_good(result) &&
2446 (driver_byte(result) & DRIVER_SENSE)) {
2447 if (scsi_sense_valid(sshdr)) {
2448 if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
2449 (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
2450 /*
2451 * Invalid command operation code
2452 */
2453 sdev->use_10_for_ms = 0;
2454 goto retry;
2455 }
2456 }
2457 }
2458
2459 if(scsi_status_is_good(result)) {
2460 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2461 (modepage == 6 || modepage == 8))) {
2462 /* Initio breakage? */
2463 header_length = 0;
2464 data->length = 13;
2465 data->medium_type = 0;
2466 data->device_specific = 0;
2467 data->longlba = 0;
2468 data->block_descriptor_length = 0;
2469 } else if(use_10_for_ms) {
2470 data->length = buffer[0]*256 + buffer[1] + 2;
2471 data->medium_type = buffer[2];
2472 data->device_specific = buffer[3];
2473 data->longlba = buffer[4] & 0x01;
2474 data->block_descriptor_length = buffer[6]*256
2475 + buffer[7];
2476 } else {
2477 data->length = buffer[0] + 1;
2478 data->medium_type = buffer[1];
2479 data->device_specific = buffer[2];
2480 data->block_descriptor_length = buffer[3];
2481 }
2482 data->header_length = header_length;
2483 } else if ((status_byte(result) == CHECK_CONDITION) &&
2484 scsi_sense_valid(sshdr) &&
2485 sshdr->sense_key == UNIT_ATTENTION && retry_count) {
2486 retry_count--;
2487 goto retry;
2488 }
2489
2490 return result;
2491 }
2492 EXPORT_SYMBOL(scsi_mode_sense);
2493
2494 /**
2495 * scsi_test_unit_ready - test if unit is ready
2496 * @sdev: scsi device to change the state of.
2497 * @timeout: command timeout
2498 * @retries: number of retries before failing
2499 * @sshdr: outpout pointer for decoded sense information.
2500 *
2501 * Returns zero if unsuccessful or an error if TUR failed. For
2502 * removable media, UNIT_ATTENTION sets ->changed flag.
2503 **/
2504 int
2505 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2506 struct scsi_sense_hdr *sshdr)
2507 {
2508 char cmd[] = {
2509 TEST_UNIT_READY, 0, 0, 0, 0, 0,
2510 };
2511 int result;
2512
2513 /* try to eat the UNIT_ATTENTION if there are enough retries */
2514 do {
2515 result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2516 timeout, retries, NULL);
2517 if (sdev->removable && scsi_sense_valid(sshdr) &&
2518 sshdr->sense_key == UNIT_ATTENTION)
2519 sdev->changed = 1;
2520 } while (scsi_sense_valid(sshdr) &&
2521 sshdr->sense_key == UNIT_ATTENTION && --retries);
2522
2523 return result;
2524 }
2525 EXPORT_SYMBOL(scsi_test_unit_ready);
2526
2527 /**
2528 * scsi_device_set_state - Take the given device through the device state model.
2529 * @sdev: scsi device to change the state of.
2530 * @state: state to change to.
2531 *
2532 * Returns zero if unsuccessful or an error if the requested
2533 * transition is illegal.
2534 */
2535 int
2536 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2537 {
2538 enum scsi_device_state oldstate = sdev->sdev_state;
2539
2540 if (state == oldstate)
2541 return 0;
2542
2543 switch (state) {
2544 case SDEV_CREATED:
2545 switch (oldstate) {
2546 case SDEV_CREATED_BLOCK:
2547 break;
2548 default:
2549 goto illegal;
2550 }
2551 break;
2552
2553 case SDEV_RUNNING:
2554 switch (oldstate) {
2555 case SDEV_CREATED:
2556 case SDEV_OFFLINE:
2557 case SDEV_TRANSPORT_OFFLINE:
2558 case SDEV_QUIESCE:
2559 case SDEV_BLOCK:
2560 break;
2561 default:
2562 goto illegal;
2563 }
2564 break;
2565
2566 case SDEV_QUIESCE:
2567 switch (oldstate) {
2568 case SDEV_RUNNING:
2569 case SDEV_OFFLINE:
2570 case SDEV_TRANSPORT_OFFLINE:
2571 break;
2572 default:
2573 goto illegal;
2574 }
2575 break;
2576
2577 case SDEV_OFFLINE:
2578 case SDEV_TRANSPORT_OFFLINE:
2579 switch (oldstate) {
2580 case SDEV_CREATED:
2581 case SDEV_RUNNING:
2582 case SDEV_QUIESCE:
2583 case SDEV_BLOCK:
2584 break;
2585 default:
2586 goto illegal;
2587 }
2588 break;
2589
2590 case SDEV_BLOCK:
2591 switch (oldstate) {
2592 case SDEV_RUNNING:
2593 case SDEV_CREATED_BLOCK:
2594 break;
2595 default:
2596 goto illegal;
2597 }
2598 break;
2599
2600 case SDEV_CREATED_BLOCK:
2601 switch (oldstate) {
2602 case SDEV_CREATED:
2603 break;
2604 default:
2605 goto illegal;
2606 }
2607 break;
2608
2609 case SDEV_CANCEL:
2610 switch (oldstate) {
2611 case SDEV_CREATED:
2612 case SDEV_RUNNING:
2613 case SDEV_QUIESCE:
2614 case SDEV_OFFLINE:
2615 case SDEV_TRANSPORT_OFFLINE:
2616 case SDEV_BLOCK:
2617 break;
2618 default:
2619 goto illegal;
2620 }
2621 break;
2622
2623 case SDEV_DEL:
2624 switch (oldstate) {
2625 case SDEV_CREATED:
2626 case SDEV_RUNNING:
2627 case SDEV_OFFLINE:
2628 case SDEV_TRANSPORT_OFFLINE:
2629 case SDEV_CANCEL:
2630 case SDEV_CREATED_BLOCK:
2631 break;
2632 default:
2633 goto illegal;
2634 }
2635 break;
2636
2637 }
2638 sdev->sdev_state = state;
2639 return 0;
2640
2641 illegal:
2642 SCSI_LOG_ERROR_RECOVERY(1,
2643 sdev_printk(KERN_ERR, sdev,
2644 "Illegal state transition %s->%s",
2645 scsi_device_state_name(oldstate),
2646 scsi_device_state_name(state))
2647 );
2648 return -EINVAL;
2649 }
2650 EXPORT_SYMBOL(scsi_device_set_state);
2651
2652 /**
2653 * sdev_evt_emit - emit a single SCSI device uevent
2654 * @sdev: associated SCSI device
2655 * @evt: event to emit
2656 *
2657 * Send a single uevent (scsi_event) to the associated scsi_device.
2658 */
2659 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2660 {
2661 int idx = 0;
2662 char *envp[3];
2663
2664 switch (evt->evt_type) {
2665 case SDEV_EVT_MEDIA_CHANGE:
2666 envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2667 break;
2668 case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2669 scsi_rescan_device(&sdev->sdev_gendev);
2670 envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED";
2671 break;
2672 case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2673 envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED";
2674 break;
2675 case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2676 envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED";
2677 break;
2678 case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2679 envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED";
2680 break;
2681 case SDEV_EVT_LUN_CHANGE_REPORTED:
2682 envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED";
2683 break;
2684 case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2685 envp[idx++] = "SDEV_UA=ASYMMETRIC_ACCESS_STATE_CHANGED";
2686 break;
2687 default:
2688 /* do nothing */
2689 break;
2690 }
2691
2692 envp[idx++] = NULL;
2693
2694 kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2695 }
2696
2697 /**
2698 * sdev_evt_thread - send a uevent for each scsi event
2699 * @work: work struct for scsi_device
2700 *
2701 * Dispatch queued events to their associated scsi_device kobjects
2702 * as uevents.
2703 */
2704 void scsi_evt_thread(struct work_struct *work)
2705 {
2706 struct scsi_device *sdev;
2707 enum scsi_device_event evt_type;
2708 LIST_HEAD(event_list);
2709
2710 sdev = container_of(work, struct scsi_device, event_work);
2711
2712 for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++)
2713 if (test_and_clear_bit(evt_type, sdev->pending_events))
2714 sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL);
2715
2716 while (1) {
2717 struct scsi_event *evt;
2718 struct list_head *this, *tmp;
2719 unsigned long flags;
2720
2721 spin_lock_irqsave(&sdev->list_lock, flags);
2722 list_splice_init(&sdev->event_list, &event_list);
2723 spin_unlock_irqrestore(&sdev->list_lock, flags);
2724
2725 if (list_empty(&event_list))
2726 break;
2727
2728 list_for_each_safe(this, tmp, &event_list) {
2729 evt = list_entry(this, struct scsi_event, node);
2730 list_del(&evt->node);
2731 scsi_evt_emit(sdev, evt);
2732 kfree(evt);
2733 }
2734 }
2735 }
2736
2737 /**
2738 * sdev_evt_send - send asserted event to uevent thread
2739 * @sdev: scsi_device event occurred on
2740 * @evt: event to send
2741 *
2742 * Assert scsi device event asynchronously.
2743 */
2744 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2745 {
2746 unsigned long flags;
2747
2748 #if 0
2749 /* FIXME: currently this check eliminates all media change events
2750 * for polled devices. Need to update to discriminate between AN
2751 * and polled events */
2752 if (!test_bit(evt->evt_type, sdev->supported_events)) {
2753 kfree(evt);
2754 return;
2755 }
2756 #endif
2757
2758 spin_lock_irqsave(&sdev->list_lock, flags);
2759 list_add_tail(&evt->node, &sdev->event_list);
2760 schedule_work(&sdev->event_work);
2761 spin_unlock_irqrestore(&sdev->list_lock, flags);
2762 }
2763 EXPORT_SYMBOL_GPL(sdev_evt_send);
2764
2765 /**
2766 * sdev_evt_alloc - allocate a new scsi event
2767 * @evt_type: type of event to allocate
2768 * @gfpflags: GFP flags for allocation
2769 *
2770 * Allocates and returns a new scsi_event.
2771 */
2772 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2773 gfp_t gfpflags)
2774 {
2775 struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2776 if (!evt)
2777 return NULL;
2778
2779 evt->evt_type = evt_type;
2780 INIT_LIST_HEAD(&evt->node);
2781
2782 /* evt_type-specific initialization, if any */
2783 switch (evt_type) {
2784 case SDEV_EVT_MEDIA_CHANGE:
2785 case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2786 case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2787 case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2788 case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2789 case SDEV_EVT_LUN_CHANGE_REPORTED:
2790 case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2791 default:
2792 /* do nothing */
2793 break;
2794 }
2795
2796 return evt;
2797 }
2798 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2799
2800 /**
2801 * sdev_evt_send_simple - send asserted event to uevent thread
2802 * @sdev: scsi_device event occurred on
2803 * @evt_type: type of event to send
2804 * @gfpflags: GFP flags for allocation
2805 *
2806 * Assert scsi device event asynchronously, given an event type.
2807 */
2808 void sdev_evt_send_simple(struct scsi_device *sdev,
2809 enum scsi_device_event evt_type, gfp_t gfpflags)
2810 {
2811 struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2812 if (!evt) {
2813 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2814 evt_type);
2815 return;
2816 }
2817
2818 sdev_evt_send(sdev, evt);
2819 }
2820 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2821
2822 /**
2823 * scsi_request_fn_active() - number of kernel threads inside scsi_request_fn()
2824 * @sdev: SCSI device to count the number of scsi_request_fn() callers for.
2825 */
2826 static int scsi_request_fn_active(struct scsi_device *sdev)
2827 {
2828 struct request_queue *q = sdev->request_queue;
2829 int request_fn_active;
2830
2831 WARN_ON_ONCE(sdev->host->use_blk_mq);
2832
2833 spin_lock_irq(q->queue_lock);
2834 request_fn_active = q->request_fn_active;
2835 spin_unlock_irq(q->queue_lock);
2836
2837 return request_fn_active;
2838 }
2839
2840 /**
2841 * scsi_wait_for_queuecommand() - wait for ongoing queuecommand() calls
2842 * @sdev: SCSI device pointer.
2843 *
2844 * Wait until the ongoing shost->hostt->queuecommand() calls that are
2845 * invoked from scsi_request_fn() have finished.
2846 */
2847 static void scsi_wait_for_queuecommand(struct scsi_device *sdev)
2848 {
2849 WARN_ON_ONCE(sdev->host->use_blk_mq);
2850
2851 while (scsi_request_fn_active(sdev))
2852 msleep(20);
2853 }
2854
2855 /**
2856 * scsi_device_quiesce - Block user issued commands.
2857 * @sdev: scsi device to quiesce.
2858 *
2859 * This works by trying to transition to the SDEV_QUIESCE state
2860 * (which must be a legal transition). When the device is in this
2861 * state, only special requests will be accepted, all others will
2862 * be deferred. Since special requests may also be requeued requests,
2863 * a successful return doesn't guarantee the device will be
2864 * totally quiescent.
2865 *
2866 * Must be called with user context, may sleep.
2867 *
2868 * Returns zero if unsuccessful or an error if not.
2869 */
2870 int
2871 scsi_device_quiesce(struct scsi_device *sdev)
2872 {
2873 int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2874 if (err)
2875 return err;
2876
2877 scsi_run_queue(sdev->request_queue);
2878 while (atomic_read(&sdev->device_busy)) {
2879 msleep_interruptible(200);
2880 scsi_run_queue(sdev->request_queue);
2881 }
2882 return 0;
2883 }
2884 EXPORT_SYMBOL(scsi_device_quiesce);
2885
2886 /**
2887 * scsi_device_resume - Restart user issued commands to a quiesced device.
2888 * @sdev: scsi device to resume.
2889 *
2890 * Moves the device from quiesced back to running and restarts the
2891 * queues.
2892 *
2893 * Must be called with user context, may sleep.
2894 */
2895 void scsi_device_resume(struct scsi_device *sdev)
2896 {
2897 /* check if the device state was mutated prior to resume, and if
2898 * so assume the state is being managed elsewhere (for example
2899 * device deleted during suspend)
2900 */
2901 if (sdev->sdev_state != SDEV_QUIESCE ||
2902 scsi_device_set_state(sdev, SDEV_RUNNING))
2903 return;
2904 scsi_run_queue(sdev->request_queue);
2905 }
2906 EXPORT_SYMBOL(scsi_device_resume);
2907
2908 static void
2909 device_quiesce_fn(struct scsi_device *sdev, void *data)
2910 {
2911 scsi_device_quiesce(sdev);
2912 }
2913
2914 void
2915 scsi_target_quiesce(struct scsi_target *starget)
2916 {
2917 starget_for_each_device(starget, NULL, device_quiesce_fn);
2918 }
2919 EXPORT_SYMBOL(scsi_target_quiesce);
2920
2921 static void
2922 device_resume_fn(struct scsi_device *sdev, void *data)
2923 {
2924 scsi_device_resume(sdev);
2925 }
2926
2927 void
2928 scsi_target_resume(struct scsi_target *starget)
2929 {
2930 starget_for_each_device(starget, NULL, device_resume_fn);
2931 }
2932 EXPORT_SYMBOL(scsi_target_resume);
2933
2934 /**
2935 * scsi_internal_device_block - internal function to put a device temporarily into the SDEV_BLOCK state
2936 * @sdev: device to block
2937 * @wait: Whether or not to wait until ongoing .queuecommand() /
2938 * .queue_rq() calls have finished.
2939 *
2940 * Block request made by scsi lld's to temporarily stop all
2941 * scsi commands on the specified device. May sleep.
2942 *
2943 * Returns zero if successful or error if not
2944 *
2945 * Notes:
2946 * This routine transitions the device to the SDEV_BLOCK state
2947 * (which must be a legal transition). When the device is in this
2948 * state, all commands are deferred until the scsi lld reenables
2949 * the device with scsi_device_unblock or device_block_tmo fires.
2950 *
2951 * To do: avoid that scsi_send_eh_cmnd() calls queuecommand() after
2952 * scsi_internal_device_block() has blocked a SCSI device and also
2953 * remove the rport mutex lock and unlock calls from srp_queuecommand().
2954 */
2955 int
2956 scsi_internal_device_block(struct scsi_device *sdev, bool wait)
2957 {
2958 struct request_queue *q = sdev->request_queue;
2959 unsigned long flags;
2960 int err = 0;
2961
2962 err = scsi_device_set_state(sdev, SDEV_BLOCK);
2963 if (err) {
2964 err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2965
2966 if (err)
2967 return err;
2968 }
2969
2970 /*
2971 * The device has transitioned to SDEV_BLOCK. Stop the
2972 * block layer from calling the midlayer with this device's
2973 * request queue.
2974 */
2975 if (q->mq_ops) {
2976 if (wait)
2977 blk_mq_quiesce_queue(q);
2978 else
2979 blk_mq_stop_hw_queues(q);
2980 } else {
2981 spin_lock_irqsave(q->queue_lock, flags);
2982 blk_stop_queue(q);
2983 spin_unlock_irqrestore(q->queue_lock, flags);
2984 if (wait)
2985 scsi_wait_for_queuecommand(sdev);
2986 }
2987
2988 return 0;
2989 }
2990 EXPORT_SYMBOL_GPL(scsi_internal_device_block);
2991
2992 /**
2993 * scsi_internal_device_unblock - resume a device after a block request
2994 * @sdev: device to resume
2995 * @new_state: state to set devices to after unblocking
2996 *
2997 * Called by scsi lld's or the midlayer to restart the device queue
2998 * for the previously suspended scsi device. Called from interrupt or
2999 * normal process context.
3000 *
3001 * Returns zero if successful or error if not.
3002 *
3003 * Notes:
3004 * This routine transitions the device to the SDEV_RUNNING state
3005 * or to one of the offline states (which must be a legal transition)
3006 * allowing the midlayer to goose the queue for this device.
3007 */
3008 int
3009 scsi_internal_device_unblock(struct scsi_device *sdev,
3010 enum scsi_device_state new_state)
3011 {
3012 struct request_queue *q = sdev->request_queue;
3013 unsigned long flags;
3014
3015 /*
3016 * Try to transition the scsi device to SDEV_RUNNING or one of the
3017 * offlined states and goose the device queue if successful.
3018 */
3019 if ((sdev->sdev_state == SDEV_BLOCK) ||
3020 (sdev->sdev_state == SDEV_TRANSPORT_OFFLINE))
3021 sdev->sdev_state = new_state;
3022 else if (sdev->sdev_state == SDEV_CREATED_BLOCK) {
3023 if (new_state == SDEV_TRANSPORT_OFFLINE ||
3024 new_state == SDEV_OFFLINE)
3025 sdev->sdev_state = new_state;
3026 else
3027 sdev->sdev_state = SDEV_CREATED;
3028 } else if (sdev->sdev_state != SDEV_CANCEL &&
3029 sdev->sdev_state != SDEV_OFFLINE)
3030 return -EINVAL;
3031
3032 if (q->mq_ops) {
3033 blk_mq_start_stopped_hw_queues(q, false);
3034 } else {
3035 spin_lock_irqsave(q->queue_lock, flags);
3036 blk_start_queue(q);
3037 spin_unlock_irqrestore(q->queue_lock, flags);
3038 }
3039
3040 return 0;
3041 }
3042 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
3043
3044 static void
3045 device_block(struct scsi_device *sdev, void *data)
3046 {
3047 scsi_internal_device_block(sdev, true);
3048 }
3049
3050 static int
3051 target_block(struct device *dev, void *data)
3052 {
3053 if (scsi_is_target_device(dev))
3054 starget_for_each_device(to_scsi_target(dev), NULL,
3055 device_block);
3056 return 0;
3057 }
3058
3059 void
3060 scsi_target_block(struct device *dev)
3061 {
3062 if (scsi_is_target_device(dev))
3063 starget_for_each_device(to_scsi_target(dev), NULL,
3064 device_block);
3065 else
3066 device_for_each_child(dev, NULL, target_block);
3067 }
3068 EXPORT_SYMBOL_GPL(scsi_target_block);
3069
3070 static void
3071 device_unblock(struct scsi_device *sdev, void *data)
3072 {
3073 scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
3074 }
3075
3076 static int
3077 target_unblock(struct device *dev, void *data)
3078 {
3079 if (scsi_is_target_device(dev))
3080 starget_for_each_device(to_scsi_target(dev), data,
3081 device_unblock);
3082 return 0;
3083 }
3084
3085 void
3086 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
3087 {
3088 if (scsi_is_target_device(dev))
3089 starget_for_each_device(to_scsi_target(dev), &new_state,
3090 device_unblock);
3091 else
3092 device_for_each_child(dev, &new_state, target_unblock);
3093 }
3094 EXPORT_SYMBOL_GPL(scsi_target_unblock);
3095
3096 /**
3097 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
3098 * @sgl: scatter-gather list
3099 * @sg_count: number of segments in sg
3100 * @offset: offset in bytes into sg, on return offset into the mapped area
3101 * @len: bytes to map, on return number of bytes mapped
3102 *
3103 * Returns virtual address of the start of the mapped page
3104 */
3105 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
3106 size_t *offset, size_t *len)
3107 {
3108 int i;
3109 size_t sg_len = 0, len_complete = 0;
3110 struct scatterlist *sg;
3111 struct page *page;
3112
3113 WARN_ON(!irqs_disabled());
3114
3115 for_each_sg(sgl, sg, sg_count, i) {
3116 len_complete = sg_len; /* Complete sg-entries */
3117 sg_len += sg->length;
3118 if (sg_len > *offset)
3119 break;
3120 }
3121
3122 if (unlikely(i == sg_count)) {
3123 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
3124 "elements %d\n",
3125 __func__, sg_len, *offset, sg_count);
3126 WARN_ON(1);
3127 return NULL;
3128 }
3129
3130 /* Offset starting from the beginning of first page in this sg-entry */
3131 *offset = *offset - len_complete + sg->offset;
3132
3133 /* Assumption: contiguous pages can be accessed as "page + i" */
3134 page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
3135 *offset &= ~PAGE_MASK;
3136
3137 /* Bytes in this sg-entry from *offset to the end of the page */
3138 sg_len = PAGE_SIZE - *offset;
3139 if (*len > sg_len)
3140 *len = sg_len;
3141
3142 return kmap_atomic(page);
3143 }
3144 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
3145
3146 /**
3147 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
3148 * @virt: virtual address to be unmapped
3149 */
3150 void scsi_kunmap_atomic_sg(void *virt)
3151 {
3152 kunmap_atomic(virt);
3153 }
3154 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
3155
3156 void sdev_disable_disk_events(struct scsi_device *sdev)
3157 {
3158 atomic_inc(&sdev->disk_events_disable_depth);
3159 }
3160 EXPORT_SYMBOL(sdev_disable_disk_events);
3161
3162 void sdev_enable_disk_events(struct scsi_device *sdev)
3163 {
3164 if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0))
3165 return;
3166 atomic_dec(&sdev->disk_events_disable_depth);
3167 }
3168 EXPORT_SYMBOL(sdev_enable_disk_events);
3169
3170 /**
3171 * scsi_vpd_lun_id - return a unique device identification
3172 * @sdev: SCSI device
3173 * @id: buffer for the identification
3174 * @id_len: length of the buffer
3175 *
3176 * Copies a unique device identification into @id based
3177 * on the information in the VPD page 0x83 of the device.
3178 * The string will be formatted as a SCSI name string.
3179 *
3180 * Returns the length of the identification or error on failure.
3181 * If the identifier is longer than the supplied buffer the actual
3182 * identifier length is returned and the buffer is not zero-padded.
3183 */
3184 int scsi_vpd_lun_id(struct scsi_device *sdev, char *id, size_t id_len)
3185 {
3186 u8 cur_id_type = 0xff;
3187 u8 cur_id_size = 0;
3188 unsigned char *d, *cur_id_str;
3189 unsigned char __rcu *vpd_pg83;
3190 int id_size = -EINVAL;
3191
3192 rcu_read_lock();
3193 vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3194 if (!vpd_pg83) {
3195 rcu_read_unlock();
3196 return -ENXIO;
3197 }
3198
3199 /*
3200 * Look for the correct descriptor.
3201 * Order of preference for lun descriptor:
3202 * - SCSI name string
3203 * - NAA IEEE Registered Extended
3204 * - EUI-64 based 16-byte
3205 * - EUI-64 based 12-byte
3206 * - NAA IEEE Registered
3207 * - NAA IEEE Extended
3208 * - T10 Vendor ID
3209 * as longer descriptors reduce the likelyhood
3210 * of identification clashes.
3211 */
3212
3213 /* The id string must be at least 20 bytes + terminating NULL byte */
3214 if (id_len < 21) {
3215 rcu_read_unlock();
3216 return -EINVAL;
3217 }
3218
3219 memset(id, 0, id_len);
3220 d = vpd_pg83 + 4;
3221 while (d < vpd_pg83 + sdev->vpd_pg83_len) {
3222 /* Skip designators not referring to the LUN */
3223 if ((d[1] & 0x30) != 0x00)
3224 goto next_desig;
3225
3226 switch (d[1] & 0xf) {
3227 case 0x1:
3228 /* T10 Vendor ID */
3229 if (cur_id_size > d[3])
3230 break;
3231 /* Prefer anything */
3232 if (cur_id_type > 0x01 && cur_id_type != 0xff)
3233 break;
3234 cur_id_size = d[3];
3235 if (cur_id_size + 4 > id_len)
3236 cur_id_size = id_len - 4;
3237 cur_id_str = d + 4;
3238 cur_id_type = d[1] & 0xf;
3239 id_size = snprintf(id, id_len, "t10.%*pE",
3240 cur_id_size, cur_id_str);
3241 break;
3242 case 0x2:
3243 /* EUI-64 */
3244 if (cur_id_size > d[3])
3245 break;
3246 /* Prefer NAA IEEE Registered Extended */
3247 if (cur_id_type == 0x3 &&
3248 cur_id_size == d[3])
3249 break;
3250 cur_id_size = d[3];
3251 cur_id_str = d + 4;
3252 cur_id_type = d[1] & 0xf;
3253 switch (cur_id_size) {
3254 case 8:
3255 id_size = snprintf(id, id_len,
3256 "eui.%8phN",
3257 cur_id_str);
3258 break;
3259 case 12:
3260 id_size = snprintf(id, id_len,
3261 "eui.%12phN",
3262 cur_id_str);
3263 break;
3264 case 16:
3265 id_size = snprintf(id, id_len,
3266 "eui.%16phN",
3267 cur_id_str);
3268 break;
3269 default:
3270 cur_id_size = 0;
3271 break;
3272 }
3273 break;
3274 case 0x3:
3275 /* NAA */
3276 if (cur_id_size > d[3])
3277 break;
3278 cur_id_size = d[3];
3279 cur_id_str = d + 4;
3280 cur_id_type = d[1] & 0xf;
3281 switch (cur_id_size) {
3282 case 8:
3283 id_size = snprintf(id, id_len,
3284 "naa.%8phN",
3285 cur_id_str);
3286 break;
3287 case 16:
3288 id_size = snprintf(id, id_len,
3289 "naa.%16phN",
3290 cur_id_str);
3291 break;
3292 default:
3293 cur_id_size = 0;
3294 break;
3295 }
3296 break;
3297 case 0x8:
3298 /* SCSI name string */
3299 if (cur_id_size + 4 > d[3])
3300 break;
3301 /* Prefer others for truncated descriptor */
3302 if (cur_id_size && d[3] > id_len)
3303 break;
3304 cur_id_size = id_size = d[3];
3305 cur_id_str = d + 4;
3306 cur_id_type = d[1] & 0xf;
3307 if (cur_id_size >= id_len)
3308 cur_id_size = id_len - 1;
3309 memcpy(id, cur_id_str, cur_id_size);
3310 /* Decrease priority for truncated descriptor */
3311 if (cur_id_size != id_size)
3312 cur_id_size = 6;
3313 break;
3314 default:
3315 break;
3316 }
3317 next_desig:
3318 d += d[3] + 4;
3319 }
3320 rcu_read_unlock();
3321
3322 return id_size;
3323 }
3324 EXPORT_SYMBOL(scsi_vpd_lun_id);
3325
3326 /*
3327 * scsi_vpd_tpg_id - return a target port group identifier
3328 * @sdev: SCSI device
3329 *
3330 * Returns the Target Port Group identifier from the information
3331 * froom VPD page 0x83 of the device.
3332 *
3333 * Returns the identifier or error on failure.
3334 */
3335 int scsi_vpd_tpg_id(struct scsi_device *sdev, int *rel_id)
3336 {
3337 unsigned char *d;
3338 unsigned char __rcu *vpd_pg83;
3339 int group_id = -EAGAIN, rel_port = -1;
3340
3341 rcu_read_lock();
3342 vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3343 if (!vpd_pg83) {
3344 rcu_read_unlock();
3345 return -ENXIO;
3346 }
3347
3348 d = sdev->vpd_pg83 + 4;
3349 while (d < sdev->vpd_pg83 + sdev->vpd_pg83_len) {
3350 switch (d[1] & 0xf) {
3351 case 0x4:
3352 /* Relative target port */
3353 rel_port = get_unaligned_be16(&d[6]);
3354 break;
3355 case 0x5:
3356 /* Target port group */
3357 group_id = get_unaligned_be16(&d[6]);
3358 break;
3359 default:
3360 break;
3361 }
3362 d += d[3] + 4;
3363 }
3364 rcu_read_unlock();
3365
3366 if (group_id >= 0 && rel_id && rel_port != -1)
3367 *rel_id = rel_port;
3368
3369 return group_id;
3370 }
3371 EXPORT_SYMBOL(scsi_vpd_tpg_id);