TOMOYO: Fix wrong domainname validation.
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / scsi / scsi_lib.c
1 /*
2 * scsi_lib.c Copyright (C) 1999 Eric Youngdale
3 *
4 * SCSI queueing library.
5 * Initial versions: Eric Youngdale (eric@andante.org).
6 * Based upon conversations with large numbers
7 * of people at Linux Expo.
8 */
9
10 #include <linux/bio.h>
11 #include <linux/bitops.h>
12 #include <linux/blkdev.h>
13 #include <linux/completion.h>
14 #include <linux/kernel.h>
15 #include <linux/mempool.h>
16 #include <linux/slab.h>
17 #include <linux/init.h>
18 #include <linux/pci.h>
19 #include <linux/delay.h>
20 #include <linux/hardirq.h>
21 #include <linux/scatterlist.h>
22
23 #include <scsi/scsi.h>
24 #include <scsi/scsi_cmnd.h>
25 #include <scsi/scsi_dbg.h>
26 #include <scsi/scsi_device.h>
27 #include <scsi/scsi_driver.h>
28 #include <scsi/scsi_eh.h>
29 #include <scsi/scsi_host.h>
30
31 #include "scsi_priv.h"
32 #include "scsi_logging.h"
33
34
35 #define SG_MEMPOOL_NR ARRAY_SIZE(scsi_sg_pools)
36 #define SG_MEMPOOL_SIZE 2
37
38 struct scsi_host_sg_pool {
39 size_t size;
40 char *name;
41 struct kmem_cache *slab;
42 mempool_t *pool;
43 };
44
45 #define SP(x) { x, "sgpool-" __stringify(x) }
46 #if (SCSI_MAX_SG_SEGMENTS < 32)
47 #error SCSI_MAX_SG_SEGMENTS is too small (must be 32 or greater)
48 #endif
49 static struct scsi_host_sg_pool scsi_sg_pools[] = {
50 SP(8),
51 SP(16),
52 #if (SCSI_MAX_SG_SEGMENTS > 32)
53 SP(32),
54 #if (SCSI_MAX_SG_SEGMENTS > 64)
55 SP(64),
56 #if (SCSI_MAX_SG_SEGMENTS > 128)
57 SP(128),
58 #if (SCSI_MAX_SG_SEGMENTS > 256)
59 #error SCSI_MAX_SG_SEGMENTS is too large (256 MAX)
60 #endif
61 #endif
62 #endif
63 #endif
64 SP(SCSI_MAX_SG_SEGMENTS)
65 };
66 #undef SP
67
68 struct kmem_cache *scsi_sdb_cache;
69
70 /*
71 * When to reinvoke queueing after a resource shortage. It's 3 msecs to
72 * not change behaviour from the previous unplug mechanism, experimentation
73 * may prove this needs changing.
74 */
75 #define SCSI_QUEUE_DELAY 3
76
77 static void scsi_run_queue(struct request_queue *q);
78
79 /*
80 * Function: scsi_unprep_request()
81 *
82 * Purpose: Remove all preparation done for a request, including its
83 * associated scsi_cmnd, so that it can be requeued.
84 *
85 * Arguments: req - request to unprepare
86 *
87 * Lock status: Assumed that no locks are held upon entry.
88 *
89 * Returns: Nothing.
90 */
91 static void scsi_unprep_request(struct request *req)
92 {
93 struct scsi_cmnd *cmd = req->special;
94
95 blk_unprep_request(req);
96 req->special = NULL;
97
98 scsi_put_command(cmd);
99 }
100
101 /**
102 * __scsi_queue_insert - private queue insertion
103 * @cmd: The SCSI command being requeued
104 * @reason: The reason for the requeue
105 * @unbusy: Whether the queue should be unbusied
106 *
107 * This is a private queue insertion. The public interface
108 * scsi_queue_insert() always assumes the queue should be unbusied
109 * because it's always called before the completion. This function is
110 * for a requeue after completion, which should only occur in this
111 * file.
112 */
113 static int __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, int unbusy)
114 {
115 struct Scsi_Host *host = cmd->device->host;
116 struct scsi_device *device = cmd->device;
117 struct scsi_target *starget = scsi_target(device);
118 struct request_queue *q = device->request_queue;
119 unsigned long flags;
120
121 SCSI_LOG_MLQUEUE(1,
122 printk("Inserting command %p into mlqueue\n", cmd));
123
124 /*
125 * Set the appropriate busy bit for the device/host.
126 *
127 * If the host/device isn't busy, assume that something actually
128 * completed, and that we should be able to queue a command now.
129 *
130 * Note that the prior mid-layer assumption that any host could
131 * always queue at least one command is now broken. The mid-layer
132 * will implement a user specifiable stall (see
133 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
134 * if a command is requeued with no other commands outstanding
135 * either for the device or for the host.
136 */
137 switch (reason) {
138 case SCSI_MLQUEUE_HOST_BUSY:
139 host->host_blocked = host->max_host_blocked;
140 break;
141 case SCSI_MLQUEUE_DEVICE_BUSY:
142 device->device_blocked = device->max_device_blocked;
143 break;
144 case SCSI_MLQUEUE_TARGET_BUSY:
145 starget->target_blocked = starget->max_target_blocked;
146 break;
147 }
148
149 /*
150 * Decrement the counters, since these commands are no longer
151 * active on the host/device.
152 */
153 if (unbusy)
154 scsi_device_unbusy(device);
155
156 /*
157 * Requeue this command. It will go before all other commands
158 * that are already in the queue.
159 */
160 spin_lock_irqsave(q->queue_lock, flags);
161 blk_requeue_request(q, cmd->request);
162 spin_unlock_irqrestore(q->queue_lock, flags);
163
164 scsi_run_queue(q);
165
166 return 0;
167 }
168
169 /*
170 * Function: scsi_queue_insert()
171 *
172 * Purpose: Insert a command in the midlevel queue.
173 *
174 * Arguments: cmd - command that we are adding to queue.
175 * reason - why we are inserting command to queue.
176 *
177 * Lock status: Assumed that lock is not held upon entry.
178 *
179 * Returns: Nothing.
180 *
181 * Notes: We do this for one of two cases. Either the host is busy
182 * and it cannot accept any more commands for the time being,
183 * or the device returned QUEUE_FULL and can accept no more
184 * commands.
185 * Notes: This could be called either from an interrupt context or a
186 * normal process context.
187 */
188 int scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
189 {
190 return __scsi_queue_insert(cmd, reason, 1);
191 }
192 /**
193 * scsi_execute - insert request and wait for the result
194 * @sdev: scsi device
195 * @cmd: scsi command
196 * @data_direction: data direction
197 * @buffer: data buffer
198 * @bufflen: len of buffer
199 * @sense: optional sense buffer
200 * @timeout: request timeout in seconds
201 * @retries: number of times to retry request
202 * @flags: or into request flags;
203 * @resid: optional residual length
204 *
205 * returns the req->errors value which is the scsi_cmnd result
206 * field.
207 */
208 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
209 int data_direction, void *buffer, unsigned bufflen,
210 unsigned char *sense, int timeout, int retries, int flags,
211 int *resid)
212 {
213 struct request *req;
214 int write = (data_direction == DMA_TO_DEVICE);
215 int ret = DRIVER_ERROR << 24;
216
217 req = blk_get_request(sdev->request_queue, write, __GFP_WAIT);
218
219 if (bufflen && blk_rq_map_kern(sdev->request_queue, req,
220 buffer, bufflen, __GFP_WAIT))
221 goto out;
222
223 req->cmd_len = COMMAND_SIZE(cmd[0]);
224 memcpy(req->cmd, cmd, req->cmd_len);
225 req->sense = sense;
226 req->sense_len = 0;
227 req->retries = retries;
228 req->timeout = timeout;
229 req->cmd_type = REQ_TYPE_BLOCK_PC;
230 req->cmd_flags |= flags | REQ_QUIET | REQ_PREEMPT;
231
232 /*
233 * head injection *required* here otherwise quiesce won't work
234 */
235 blk_execute_rq(req->q, NULL, req, 1);
236
237 /*
238 * Some devices (USB mass-storage in particular) may transfer
239 * garbage data together with a residue indicating that the data
240 * is invalid. Prevent the garbage from being misinterpreted
241 * and prevent security leaks by zeroing out the excess data.
242 */
243 if (unlikely(req->resid_len > 0 && req->resid_len <= bufflen))
244 memset(buffer + (bufflen - req->resid_len), 0, req->resid_len);
245
246 if (resid)
247 *resid = req->resid_len;
248 ret = req->errors;
249 out:
250 blk_put_request(req);
251
252 return ret;
253 }
254 EXPORT_SYMBOL(scsi_execute);
255
256
257 int scsi_execute_req(struct scsi_device *sdev, const unsigned char *cmd,
258 int data_direction, void *buffer, unsigned bufflen,
259 struct scsi_sense_hdr *sshdr, int timeout, int retries,
260 int *resid)
261 {
262 char *sense = NULL;
263 int result;
264
265 if (sshdr) {
266 sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO);
267 if (!sense)
268 return DRIVER_ERROR << 24;
269 }
270 result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen,
271 sense, timeout, retries, 0, resid);
272 if (sshdr)
273 scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr);
274
275 kfree(sense);
276 return result;
277 }
278 EXPORT_SYMBOL(scsi_execute_req);
279
280 /*
281 * Function: scsi_init_cmd_errh()
282 *
283 * Purpose: Initialize cmd fields related to error handling.
284 *
285 * Arguments: cmd - command that is ready to be queued.
286 *
287 * Notes: This function has the job of initializing a number of
288 * fields related to error handling. Typically this will
289 * be called once for each command, as required.
290 */
291 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
292 {
293 cmd->serial_number = 0;
294 scsi_set_resid(cmd, 0);
295 memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
296 if (cmd->cmd_len == 0)
297 cmd->cmd_len = scsi_command_size(cmd->cmnd);
298 }
299
300 void scsi_device_unbusy(struct scsi_device *sdev)
301 {
302 struct Scsi_Host *shost = sdev->host;
303 struct scsi_target *starget = scsi_target(sdev);
304 unsigned long flags;
305
306 spin_lock_irqsave(shost->host_lock, flags);
307 shost->host_busy--;
308 starget->target_busy--;
309 if (unlikely(scsi_host_in_recovery(shost) &&
310 (shost->host_failed || shost->host_eh_scheduled)))
311 scsi_eh_wakeup(shost);
312 spin_unlock(shost->host_lock);
313 spin_lock(sdev->request_queue->queue_lock);
314 sdev->device_busy--;
315 spin_unlock_irqrestore(sdev->request_queue->queue_lock, flags);
316 }
317
318 /*
319 * Called for single_lun devices on IO completion. Clear starget_sdev_user,
320 * and call blk_run_queue for all the scsi_devices on the target -
321 * including current_sdev first.
322 *
323 * Called with *no* scsi locks held.
324 */
325 static void scsi_single_lun_run(struct scsi_device *current_sdev)
326 {
327 struct Scsi_Host *shost = current_sdev->host;
328 struct scsi_device *sdev, *tmp;
329 struct scsi_target *starget = scsi_target(current_sdev);
330 unsigned long flags;
331
332 spin_lock_irqsave(shost->host_lock, flags);
333 starget->starget_sdev_user = NULL;
334 spin_unlock_irqrestore(shost->host_lock, flags);
335
336 /*
337 * Call blk_run_queue for all LUNs on the target, starting with
338 * current_sdev. We race with others (to set starget_sdev_user),
339 * but in most cases, we will be first. Ideally, each LU on the
340 * target would get some limited time or requests on the target.
341 */
342 blk_run_queue(current_sdev->request_queue);
343
344 spin_lock_irqsave(shost->host_lock, flags);
345 if (starget->starget_sdev_user)
346 goto out;
347 list_for_each_entry_safe(sdev, tmp, &starget->devices,
348 same_target_siblings) {
349 if (sdev == current_sdev)
350 continue;
351 if (scsi_device_get(sdev))
352 continue;
353
354 spin_unlock_irqrestore(shost->host_lock, flags);
355 blk_run_queue(sdev->request_queue);
356 spin_lock_irqsave(shost->host_lock, flags);
357
358 scsi_device_put(sdev);
359 }
360 out:
361 spin_unlock_irqrestore(shost->host_lock, flags);
362 }
363
364 static inline int scsi_device_is_busy(struct scsi_device *sdev)
365 {
366 if (sdev->device_busy >= sdev->queue_depth || sdev->device_blocked)
367 return 1;
368
369 return 0;
370 }
371
372 static inline int scsi_target_is_busy(struct scsi_target *starget)
373 {
374 return ((starget->can_queue > 0 &&
375 starget->target_busy >= starget->can_queue) ||
376 starget->target_blocked);
377 }
378
379 static inline int scsi_host_is_busy(struct Scsi_Host *shost)
380 {
381 if ((shost->can_queue > 0 && shost->host_busy >= shost->can_queue) ||
382 shost->host_blocked || shost->host_self_blocked)
383 return 1;
384
385 return 0;
386 }
387
388 /*
389 * Function: scsi_run_queue()
390 *
391 * Purpose: Select a proper request queue to serve next
392 *
393 * Arguments: q - last request's queue
394 *
395 * Returns: Nothing
396 *
397 * Notes: The previous command was completely finished, start
398 * a new one if possible.
399 */
400 static void scsi_run_queue(struct request_queue *q)
401 {
402 struct scsi_device *sdev = q->queuedata;
403 struct Scsi_Host *shost = sdev->host;
404 LIST_HEAD(starved_list);
405 unsigned long flags;
406
407 if (scsi_target(sdev)->single_lun)
408 scsi_single_lun_run(sdev);
409
410 spin_lock_irqsave(shost->host_lock, flags);
411 list_splice_init(&shost->starved_list, &starved_list);
412
413 while (!list_empty(&starved_list)) {
414 int flagset;
415
416 /*
417 * As long as shost is accepting commands and we have
418 * starved queues, call blk_run_queue. scsi_request_fn
419 * drops the queue_lock and can add us back to the
420 * starved_list.
421 *
422 * host_lock protects the starved_list and starved_entry.
423 * scsi_request_fn must get the host_lock before checking
424 * or modifying starved_list or starved_entry.
425 */
426 if (scsi_host_is_busy(shost))
427 break;
428
429 sdev = list_entry(starved_list.next,
430 struct scsi_device, starved_entry);
431 list_del_init(&sdev->starved_entry);
432 if (scsi_target_is_busy(scsi_target(sdev))) {
433 list_move_tail(&sdev->starved_entry,
434 &shost->starved_list);
435 continue;
436 }
437
438 spin_unlock(shost->host_lock);
439
440 spin_lock(sdev->request_queue->queue_lock);
441 flagset = test_bit(QUEUE_FLAG_REENTER, &q->queue_flags) &&
442 !test_bit(QUEUE_FLAG_REENTER,
443 &sdev->request_queue->queue_flags);
444 if (flagset)
445 queue_flag_set(QUEUE_FLAG_REENTER, sdev->request_queue);
446 __blk_run_queue(sdev->request_queue);
447 if (flagset)
448 queue_flag_clear(QUEUE_FLAG_REENTER, sdev->request_queue);
449 spin_unlock(sdev->request_queue->queue_lock);
450
451 spin_lock(shost->host_lock);
452 }
453 /* put any unprocessed entries back */
454 list_splice(&starved_list, &shost->starved_list);
455 spin_unlock_irqrestore(shost->host_lock, flags);
456
457 blk_run_queue(q);
458 }
459
460 /*
461 * Function: scsi_requeue_command()
462 *
463 * Purpose: Handle post-processing of completed commands.
464 *
465 * Arguments: q - queue to operate on
466 * cmd - command that may need to be requeued.
467 *
468 * Returns: Nothing
469 *
470 * Notes: After command completion, there may be blocks left
471 * over which weren't finished by the previous command
472 * this can be for a number of reasons - the main one is
473 * I/O errors in the middle of the request, in which case
474 * we need to request the blocks that come after the bad
475 * sector.
476 * Notes: Upon return, cmd is a stale pointer.
477 */
478 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
479 {
480 struct request *req = cmd->request;
481 unsigned long flags;
482
483 spin_lock_irqsave(q->queue_lock, flags);
484 scsi_unprep_request(req);
485 blk_requeue_request(q, req);
486 spin_unlock_irqrestore(q->queue_lock, flags);
487
488 scsi_run_queue(q);
489 }
490
491 void scsi_next_command(struct scsi_cmnd *cmd)
492 {
493 struct scsi_device *sdev = cmd->device;
494 struct request_queue *q = sdev->request_queue;
495
496 /* need to hold a reference on the device before we let go of the cmd */
497 get_device(&sdev->sdev_gendev);
498
499 scsi_put_command(cmd);
500 scsi_run_queue(q);
501
502 /* ok to remove device now */
503 put_device(&sdev->sdev_gendev);
504 }
505
506 void scsi_run_host_queues(struct Scsi_Host *shost)
507 {
508 struct scsi_device *sdev;
509
510 shost_for_each_device(sdev, shost)
511 scsi_run_queue(sdev->request_queue);
512 }
513
514 static void __scsi_release_buffers(struct scsi_cmnd *, int);
515
516 /*
517 * Function: scsi_end_request()
518 *
519 * Purpose: Post-processing of completed commands (usually invoked at end
520 * of upper level post-processing and scsi_io_completion).
521 *
522 * Arguments: cmd - command that is complete.
523 * error - 0 if I/O indicates success, < 0 for I/O error.
524 * bytes - number of bytes of completed I/O
525 * requeue - indicates whether we should requeue leftovers.
526 *
527 * Lock status: Assumed that lock is not held upon entry.
528 *
529 * Returns: cmd if requeue required, NULL otherwise.
530 *
531 * Notes: This is called for block device requests in order to
532 * mark some number of sectors as complete.
533 *
534 * We are guaranteeing that the request queue will be goosed
535 * at some point during this call.
536 * Notes: If cmd was requeued, upon return it will be a stale pointer.
537 */
538 static struct scsi_cmnd *scsi_end_request(struct scsi_cmnd *cmd, int error,
539 int bytes, int requeue)
540 {
541 struct request_queue *q = cmd->device->request_queue;
542 struct request *req = cmd->request;
543
544 /*
545 * If there are blocks left over at the end, set up the command
546 * to queue the remainder of them.
547 */
548 if (blk_end_request(req, error, bytes)) {
549 /* kill remainder if no retrys */
550 if (error && scsi_noretry_cmd(cmd))
551 blk_end_request_all(req, error);
552 else {
553 if (requeue) {
554 /*
555 * Bleah. Leftovers again. Stick the
556 * leftovers in the front of the
557 * queue, and goose the queue again.
558 */
559 scsi_release_buffers(cmd);
560 scsi_requeue_command(q, cmd);
561 cmd = NULL;
562 }
563 return cmd;
564 }
565 }
566
567 /*
568 * This will goose the queue request function at the end, so we don't
569 * need to worry about launching another command.
570 */
571 __scsi_release_buffers(cmd, 0);
572 scsi_next_command(cmd);
573 return NULL;
574 }
575
576 static inline unsigned int scsi_sgtable_index(unsigned short nents)
577 {
578 unsigned int index;
579
580 BUG_ON(nents > SCSI_MAX_SG_SEGMENTS);
581
582 if (nents <= 8)
583 index = 0;
584 else
585 index = get_count_order(nents) - 3;
586
587 return index;
588 }
589
590 static void scsi_sg_free(struct scatterlist *sgl, unsigned int nents)
591 {
592 struct scsi_host_sg_pool *sgp;
593
594 sgp = scsi_sg_pools + scsi_sgtable_index(nents);
595 mempool_free(sgl, sgp->pool);
596 }
597
598 static struct scatterlist *scsi_sg_alloc(unsigned int nents, gfp_t gfp_mask)
599 {
600 struct scsi_host_sg_pool *sgp;
601
602 sgp = scsi_sg_pools + scsi_sgtable_index(nents);
603 return mempool_alloc(sgp->pool, gfp_mask);
604 }
605
606 static int scsi_alloc_sgtable(struct scsi_data_buffer *sdb, int nents,
607 gfp_t gfp_mask)
608 {
609 int ret;
610
611 BUG_ON(!nents);
612
613 ret = __sg_alloc_table(&sdb->table, nents, SCSI_MAX_SG_SEGMENTS,
614 gfp_mask, scsi_sg_alloc);
615 if (unlikely(ret))
616 __sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS,
617 scsi_sg_free);
618
619 return ret;
620 }
621
622 static void scsi_free_sgtable(struct scsi_data_buffer *sdb)
623 {
624 __sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS, scsi_sg_free);
625 }
626
627 static void __scsi_release_buffers(struct scsi_cmnd *cmd, int do_bidi_check)
628 {
629
630 if (cmd->sdb.table.nents)
631 scsi_free_sgtable(&cmd->sdb);
632
633 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
634
635 if (do_bidi_check && scsi_bidi_cmnd(cmd)) {
636 struct scsi_data_buffer *bidi_sdb =
637 cmd->request->next_rq->special;
638 scsi_free_sgtable(bidi_sdb);
639 kmem_cache_free(scsi_sdb_cache, bidi_sdb);
640 cmd->request->next_rq->special = NULL;
641 }
642
643 if (scsi_prot_sg_count(cmd))
644 scsi_free_sgtable(cmd->prot_sdb);
645 }
646
647 /*
648 * Function: scsi_release_buffers()
649 *
650 * Purpose: Completion processing for block device I/O requests.
651 *
652 * Arguments: cmd - command that we are bailing.
653 *
654 * Lock status: Assumed that no lock is held upon entry.
655 *
656 * Returns: Nothing
657 *
658 * Notes: In the event that an upper level driver rejects a
659 * command, we must release resources allocated during
660 * the __init_io() function. Primarily this would involve
661 * the scatter-gather table, and potentially any bounce
662 * buffers.
663 */
664 void scsi_release_buffers(struct scsi_cmnd *cmd)
665 {
666 __scsi_release_buffers(cmd, 1);
667 }
668 EXPORT_SYMBOL(scsi_release_buffers);
669
670 static int __scsi_error_from_host_byte(struct scsi_cmnd *cmd, int result)
671 {
672 int error = 0;
673
674 switch(host_byte(result)) {
675 case DID_TRANSPORT_FAILFAST:
676 error = -ENOLINK;
677 break;
678 case DID_TARGET_FAILURE:
679 cmd->result |= (DID_OK << 16);
680 error = -EREMOTEIO;
681 break;
682 case DID_NEXUS_FAILURE:
683 cmd->result |= (DID_OK << 16);
684 error = -EBADE;
685 break;
686 default:
687 error = -EIO;
688 break;
689 }
690
691 return error;
692 }
693
694 /*
695 * Function: scsi_io_completion()
696 *
697 * Purpose: Completion processing for block device I/O requests.
698 *
699 * Arguments: cmd - command that is finished.
700 *
701 * Lock status: Assumed that no lock is held upon entry.
702 *
703 * Returns: Nothing
704 *
705 * Notes: This function is matched in terms of capabilities to
706 * the function that created the scatter-gather list.
707 * In other words, if there are no bounce buffers
708 * (the normal case for most drivers), we don't need
709 * the logic to deal with cleaning up afterwards.
710 *
711 * We must call scsi_end_request(). This will finish off
712 * the specified number of sectors. If we are done, the
713 * command block will be released and the queue function
714 * will be goosed. If we are not done then we have to
715 * figure out what to do next:
716 *
717 * a) We can call scsi_requeue_command(). The request
718 * will be unprepared and put back on the queue. Then
719 * a new command will be created for it. This should
720 * be used if we made forward progress, or if we want
721 * to switch from READ(10) to READ(6) for example.
722 *
723 * b) We can call scsi_queue_insert(). The request will
724 * be put back on the queue and retried using the same
725 * command as before, possibly after a delay.
726 *
727 * c) We can call blk_end_request() with -EIO to fail
728 * the remainder of the request.
729 */
730 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
731 {
732 int result = cmd->result;
733 struct request_queue *q = cmd->device->request_queue;
734 struct request *req = cmd->request;
735 int error = 0;
736 struct scsi_sense_hdr sshdr;
737 int sense_valid = 0;
738 int sense_deferred = 0;
739 enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
740 ACTION_DELAYED_RETRY} action;
741 char *description = NULL;
742
743 if (result) {
744 sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
745 if (sense_valid)
746 sense_deferred = scsi_sense_is_deferred(&sshdr);
747 }
748
749 if (req->cmd_type == REQ_TYPE_BLOCK_PC) { /* SG_IO ioctl from block level */
750 req->errors = result;
751 if (result) {
752 if (sense_valid && req->sense) {
753 /*
754 * SG_IO wants current and deferred errors
755 */
756 int len = 8 + cmd->sense_buffer[7];
757
758 if (len > SCSI_SENSE_BUFFERSIZE)
759 len = SCSI_SENSE_BUFFERSIZE;
760 memcpy(req->sense, cmd->sense_buffer, len);
761 req->sense_len = len;
762 }
763 if (!sense_deferred)
764 error = __scsi_error_from_host_byte(cmd, result);
765 }
766
767 req->resid_len = scsi_get_resid(cmd);
768
769 if (scsi_bidi_cmnd(cmd)) {
770 /*
771 * Bidi commands Must be complete as a whole,
772 * both sides at once.
773 */
774 req->next_rq->resid_len = scsi_in(cmd)->resid;
775
776 scsi_release_buffers(cmd);
777 blk_end_request_all(req, 0);
778
779 scsi_next_command(cmd);
780 return;
781 }
782 }
783
784 /* no bidi support for !REQ_TYPE_BLOCK_PC yet */
785 BUG_ON(blk_bidi_rq(req));
786
787 /*
788 * Next deal with any sectors which we were able to correctly
789 * handle.
790 */
791 SCSI_LOG_HLCOMPLETE(1, printk("%u sectors total, "
792 "%d bytes done.\n",
793 blk_rq_sectors(req), good_bytes));
794
795 /*
796 * Recovered errors need reporting, but they're always treated
797 * as success, so fiddle the result code here. For BLOCK_PC
798 * we already took a copy of the original into rq->errors which
799 * is what gets returned to the user
800 */
801 if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
802 /* if ATA PASS-THROUGH INFORMATION AVAILABLE skip
803 * print since caller wants ATA registers. Only occurs on
804 * SCSI ATA PASS_THROUGH commands when CK_COND=1
805 */
806 if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
807 ;
808 else if (!(req->cmd_flags & REQ_QUIET))
809 scsi_print_sense("", cmd);
810 result = 0;
811 /* BLOCK_PC may have set error */
812 error = 0;
813 }
814
815 /*
816 * A number of bytes were successfully read. If there
817 * are leftovers and there is some kind of error
818 * (result != 0), retry the rest.
819 */
820 if (scsi_end_request(cmd, error, good_bytes, result == 0) == NULL)
821 return;
822
823 error = __scsi_error_from_host_byte(cmd, result);
824
825 if (host_byte(result) == DID_RESET) {
826 /* Third party bus reset or reset for error recovery
827 * reasons. Just retry the command and see what
828 * happens.
829 */
830 action = ACTION_RETRY;
831 } else if (sense_valid && !sense_deferred) {
832 switch (sshdr.sense_key) {
833 case UNIT_ATTENTION:
834 if (cmd->device->removable) {
835 /* Detected disc change. Set a bit
836 * and quietly refuse further access.
837 */
838 cmd->device->changed = 1;
839 description = "Media Changed";
840 action = ACTION_FAIL;
841 } else {
842 /* Must have been a power glitch, or a
843 * bus reset. Could not have been a
844 * media change, so we just retry the
845 * command and see what happens.
846 */
847 action = ACTION_RETRY;
848 }
849 break;
850 case ILLEGAL_REQUEST:
851 /* If we had an ILLEGAL REQUEST returned, then
852 * we may have performed an unsupported
853 * command. The only thing this should be
854 * would be a ten byte read where only a six
855 * byte read was supported. Also, on a system
856 * where READ CAPACITY failed, we may have
857 * read past the end of the disk.
858 */
859 if ((cmd->device->use_10_for_rw &&
860 sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
861 (cmd->cmnd[0] == READ_10 ||
862 cmd->cmnd[0] == WRITE_10)) {
863 /* This will issue a new 6-byte command. */
864 cmd->device->use_10_for_rw = 0;
865 action = ACTION_REPREP;
866 } else if (sshdr.asc == 0x10) /* DIX */ {
867 description = "Host Data Integrity Failure";
868 action = ACTION_FAIL;
869 error = -EILSEQ;
870 /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
871 } else if ((sshdr.asc == 0x20 || sshdr.asc == 0x24) &&
872 (cmd->cmnd[0] == UNMAP ||
873 cmd->cmnd[0] == WRITE_SAME_16 ||
874 cmd->cmnd[0] == WRITE_SAME)) {
875 description = "Discard failure";
876 action = ACTION_FAIL;
877 } else
878 action = ACTION_FAIL;
879 break;
880 case ABORTED_COMMAND:
881 action = ACTION_FAIL;
882 if (sshdr.asc == 0x10) { /* DIF */
883 description = "Target Data Integrity Failure";
884 error = -EILSEQ;
885 }
886 break;
887 case NOT_READY:
888 /* If the device is in the process of becoming
889 * ready, or has a temporary blockage, retry.
890 */
891 if (sshdr.asc == 0x04) {
892 switch (sshdr.ascq) {
893 case 0x01: /* becoming ready */
894 case 0x04: /* format in progress */
895 case 0x05: /* rebuild in progress */
896 case 0x06: /* recalculation in progress */
897 case 0x07: /* operation in progress */
898 case 0x08: /* Long write in progress */
899 case 0x09: /* self test in progress */
900 case 0x14: /* space allocation in progress */
901 action = ACTION_DELAYED_RETRY;
902 break;
903 default:
904 description = "Device not ready";
905 action = ACTION_FAIL;
906 break;
907 }
908 } else {
909 description = "Device not ready";
910 action = ACTION_FAIL;
911 }
912 break;
913 case VOLUME_OVERFLOW:
914 /* See SSC3rXX or current. */
915 action = ACTION_FAIL;
916 break;
917 default:
918 description = "Unhandled sense code";
919 action = ACTION_FAIL;
920 break;
921 }
922 } else {
923 description = "Unhandled error code";
924 action = ACTION_FAIL;
925 }
926
927 switch (action) {
928 case ACTION_FAIL:
929 /* Give up and fail the remainder of the request */
930 scsi_release_buffers(cmd);
931 if (!(req->cmd_flags & REQ_QUIET)) {
932 if (description)
933 scmd_printk(KERN_INFO, cmd, "%s\n",
934 description);
935 scsi_print_result(cmd);
936 if (driver_byte(result) & DRIVER_SENSE)
937 scsi_print_sense("", cmd);
938 scsi_print_command(cmd);
939 }
940 if (blk_end_request_err(req, error))
941 scsi_requeue_command(q, cmd);
942 else
943 scsi_next_command(cmd);
944 break;
945 case ACTION_REPREP:
946 /* Unprep the request and put it back at the head of the queue.
947 * A new command will be prepared and issued.
948 */
949 scsi_release_buffers(cmd);
950 scsi_requeue_command(q, cmd);
951 break;
952 case ACTION_RETRY:
953 /* Retry the same command immediately */
954 __scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, 0);
955 break;
956 case ACTION_DELAYED_RETRY:
957 /* Retry the same command after a delay */
958 __scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, 0);
959 break;
960 }
961 }
962
963 static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb,
964 gfp_t gfp_mask)
965 {
966 int count;
967
968 /*
969 * If sg table allocation fails, requeue request later.
970 */
971 if (unlikely(scsi_alloc_sgtable(sdb, req->nr_phys_segments,
972 gfp_mask))) {
973 return BLKPREP_DEFER;
974 }
975
976 req->buffer = NULL;
977
978 /*
979 * Next, walk the list, and fill in the addresses and sizes of
980 * each segment.
981 */
982 count = blk_rq_map_sg(req->q, req, sdb->table.sgl);
983 BUG_ON(count > sdb->table.nents);
984 sdb->table.nents = count;
985 sdb->length = blk_rq_bytes(req);
986 return BLKPREP_OK;
987 }
988
989 /*
990 * Function: scsi_init_io()
991 *
992 * Purpose: SCSI I/O initialize function.
993 *
994 * Arguments: cmd - Command descriptor we wish to initialize
995 *
996 * Returns: 0 on success
997 * BLKPREP_DEFER if the failure is retryable
998 * BLKPREP_KILL if the failure is fatal
999 */
1000 int scsi_init_io(struct scsi_cmnd *cmd, gfp_t gfp_mask)
1001 {
1002 struct request *rq = cmd->request;
1003
1004 int error = scsi_init_sgtable(rq, &cmd->sdb, gfp_mask);
1005 if (error)
1006 goto err_exit;
1007
1008 if (blk_bidi_rq(rq)) {
1009 struct scsi_data_buffer *bidi_sdb = kmem_cache_zalloc(
1010 scsi_sdb_cache, GFP_ATOMIC);
1011 if (!bidi_sdb) {
1012 error = BLKPREP_DEFER;
1013 goto err_exit;
1014 }
1015
1016 rq->next_rq->special = bidi_sdb;
1017 error = scsi_init_sgtable(rq->next_rq, bidi_sdb, GFP_ATOMIC);
1018 if (error)
1019 goto err_exit;
1020 }
1021
1022 if (blk_integrity_rq(rq)) {
1023 struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1024 int ivecs, count;
1025
1026 BUG_ON(prot_sdb == NULL);
1027 ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1028
1029 if (scsi_alloc_sgtable(prot_sdb, ivecs, gfp_mask)) {
1030 error = BLKPREP_DEFER;
1031 goto err_exit;
1032 }
1033
1034 count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1035 prot_sdb->table.sgl);
1036 BUG_ON(unlikely(count > ivecs));
1037 BUG_ON(unlikely(count > queue_max_integrity_segments(rq->q)));
1038
1039 cmd->prot_sdb = prot_sdb;
1040 cmd->prot_sdb->table.nents = count;
1041 }
1042
1043 return BLKPREP_OK ;
1044
1045 err_exit:
1046 scsi_release_buffers(cmd);
1047 cmd->request->special = NULL;
1048 scsi_put_command(cmd);
1049 return error;
1050 }
1051 EXPORT_SYMBOL(scsi_init_io);
1052
1053 static struct scsi_cmnd *scsi_get_cmd_from_req(struct scsi_device *sdev,
1054 struct request *req)
1055 {
1056 struct scsi_cmnd *cmd;
1057
1058 if (!req->special) {
1059 cmd = scsi_get_command(sdev, GFP_ATOMIC);
1060 if (unlikely(!cmd))
1061 return NULL;
1062 req->special = cmd;
1063 } else {
1064 cmd = req->special;
1065 }
1066
1067 /* pull a tag out of the request if we have one */
1068 cmd->tag = req->tag;
1069 cmd->request = req;
1070
1071 cmd->cmnd = req->cmd;
1072 cmd->prot_op = SCSI_PROT_NORMAL;
1073
1074 return cmd;
1075 }
1076
1077 int scsi_setup_blk_pc_cmnd(struct scsi_device *sdev, struct request *req)
1078 {
1079 struct scsi_cmnd *cmd;
1080 int ret = scsi_prep_state_check(sdev, req);
1081
1082 if (ret != BLKPREP_OK)
1083 return ret;
1084
1085 cmd = scsi_get_cmd_from_req(sdev, req);
1086 if (unlikely(!cmd))
1087 return BLKPREP_DEFER;
1088
1089 /*
1090 * BLOCK_PC requests may transfer data, in which case they must
1091 * a bio attached to them. Or they might contain a SCSI command
1092 * that does not transfer data, in which case they may optionally
1093 * submit a request without an attached bio.
1094 */
1095 if (req->bio) {
1096 int ret;
1097
1098 BUG_ON(!req->nr_phys_segments);
1099
1100 ret = scsi_init_io(cmd, GFP_ATOMIC);
1101 if (unlikely(ret))
1102 return ret;
1103 } else {
1104 BUG_ON(blk_rq_bytes(req));
1105
1106 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1107 req->buffer = NULL;
1108 }
1109
1110 cmd->cmd_len = req->cmd_len;
1111 if (!blk_rq_bytes(req))
1112 cmd->sc_data_direction = DMA_NONE;
1113 else if (rq_data_dir(req) == WRITE)
1114 cmd->sc_data_direction = DMA_TO_DEVICE;
1115 else
1116 cmd->sc_data_direction = DMA_FROM_DEVICE;
1117
1118 cmd->transfersize = blk_rq_bytes(req);
1119 cmd->allowed = req->retries;
1120 return BLKPREP_OK;
1121 }
1122 EXPORT_SYMBOL(scsi_setup_blk_pc_cmnd);
1123
1124 /*
1125 * Setup a REQ_TYPE_FS command. These are simple read/write request
1126 * from filesystems that still need to be translated to SCSI CDBs from
1127 * the ULD.
1128 */
1129 int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1130 {
1131 struct scsi_cmnd *cmd;
1132 int ret = scsi_prep_state_check(sdev, req);
1133
1134 if (ret != BLKPREP_OK)
1135 return ret;
1136
1137 if (unlikely(sdev->scsi_dh_data && sdev->scsi_dh_data->scsi_dh
1138 && sdev->scsi_dh_data->scsi_dh->prep_fn)) {
1139 ret = sdev->scsi_dh_data->scsi_dh->prep_fn(sdev, req);
1140 if (ret != BLKPREP_OK)
1141 return ret;
1142 }
1143
1144 /*
1145 * Filesystem requests must transfer data.
1146 */
1147 BUG_ON(!req->nr_phys_segments);
1148
1149 cmd = scsi_get_cmd_from_req(sdev, req);
1150 if (unlikely(!cmd))
1151 return BLKPREP_DEFER;
1152
1153 memset(cmd->cmnd, 0, BLK_MAX_CDB);
1154 return scsi_init_io(cmd, GFP_ATOMIC);
1155 }
1156 EXPORT_SYMBOL(scsi_setup_fs_cmnd);
1157
1158 int scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1159 {
1160 int ret = BLKPREP_OK;
1161
1162 /*
1163 * If the device is not in running state we will reject some
1164 * or all commands.
1165 */
1166 if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1167 switch (sdev->sdev_state) {
1168 case SDEV_OFFLINE:
1169 /*
1170 * If the device is offline we refuse to process any
1171 * commands. The device must be brought online
1172 * before trying any recovery commands.
1173 */
1174 sdev_printk(KERN_ERR, sdev,
1175 "rejecting I/O to offline device\n");
1176 ret = BLKPREP_KILL;
1177 break;
1178 case SDEV_DEL:
1179 /*
1180 * If the device is fully deleted, we refuse to
1181 * process any commands as well.
1182 */
1183 sdev_printk(KERN_ERR, sdev,
1184 "rejecting I/O to dead device\n");
1185 ret = BLKPREP_KILL;
1186 break;
1187 case SDEV_QUIESCE:
1188 case SDEV_BLOCK:
1189 case SDEV_CREATED_BLOCK:
1190 /*
1191 * If the devices is blocked we defer normal commands.
1192 */
1193 if (!(req->cmd_flags & REQ_PREEMPT))
1194 ret = BLKPREP_DEFER;
1195 break;
1196 default:
1197 /*
1198 * For any other not fully online state we only allow
1199 * special commands. In particular any user initiated
1200 * command is not allowed.
1201 */
1202 if (!(req->cmd_flags & REQ_PREEMPT))
1203 ret = BLKPREP_KILL;
1204 break;
1205 }
1206 }
1207 return ret;
1208 }
1209 EXPORT_SYMBOL(scsi_prep_state_check);
1210
1211 int scsi_prep_return(struct request_queue *q, struct request *req, int ret)
1212 {
1213 struct scsi_device *sdev = q->queuedata;
1214
1215 switch (ret) {
1216 case BLKPREP_KILL:
1217 req->errors = DID_NO_CONNECT << 16;
1218 /* release the command and kill it */
1219 if (req->special) {
1220 struct scsi_cmnd *cmd = req->special;
1221 scsi_release_buffers(cmd);
1222 scsi_put_command(cmd);
1223 req->special = NULL;
1224 }
1225 break;
1226 case BLKPREP_DEFER:
1227 /*
1228 * If we defer, the blk_peek_request() returns NULL, but the
1229 * queue must be restarted, so we schedule a callback to happen
1230 * shortly.
1231 */
1232 if (sdev->device_busy == 0)
1233 blk_delay_queue(q, SCSI_QUEUE_DELAY);
1234 break;
1235 default:
1236 req->cmd_flags |= REQ_DONTPREP;
1237 }
1238
1239 return ret;
1240 }
1241 EXPORT_SYMBOL(scsi_prep_return);
1242
1243 int scsi_prep_fn(struct request_queue *q, struct request *req)
1244 {
1245 struct scsi_device *sdev = q->queuedata;
1246 int ret = BLKPREP_KILL;
1247
1248 if (req->cmd_type == REQ_TYPE_BLOCK_PC)
1249 ret = scsi_setup_blk_pc_cmnd(sdev, req);
1250 return scsi_prep_return(q, req, ret);
1251 }
1252 EXPORT_SYMBOL(scsi_prep_fn);
1253
1254 /*
1255 * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1256 * return 0.
1257 *
1258 * Called with the queue_lock held.
1259 */
1260 static inline int scsi_dev_queue_ready(struct request_queue *q,
1261 struct scsi_device *sdev)
1262 {
1263 if (sdev->device_busy == 0 && sdev->device_blocked) {
1264 /*
1265 * unblock after device_blocked iterates to zero
1266 */
1267 if (--sdev->device_blocked == 0) {
1268 SCSI_LOG_MLQUEUE(3,
1269 sdev_printk(KERN_INFO, sdev,
1270 "unblocking device at zero depth\n"));
1271 } else {
1272 blk_delay_queue(q, SCSI_QUEUE_DELAY);
1273 return 0;
1274 }
1275 }
1276 if (scsi_device_is_busy(sdev))
1277 return 0;
1278
1279 return 1;
1280 }
1281
1282
1283 /*
1284 * scsi_target_queue_ready: checks if there we can send commands to target
1285 * @sdev: scsi device on starget to check.
1286 *
1287 * Called with the host lock held.
1288 */
1289 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1290 struct scsi_device *sdev)
1291 {
1292 struct scsi_target *starget = scsi_target(sdev);
1293
1294 if (starget->single_lun) {
1295 if (starget->starget_sdev_user &&
1296 starget->starget_sdev_user != sdev)
1297 return 0;
1298 starget->starget_sdev_user = sdev;
1299 }
1300
1301 if (starget->target_busy == 0 && starget->target_blocked) {
1302 /*
1303 * unblock after target_blocked iterates to zero
1304 */
1305 if (--starget->target_blocked == 0) {
1306 SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1307 "unblocking target at zero depth\n"));
1308 } else
1309 return 0;
1310 }
1311
1312 if (scsi_target_is_busy(starget)) {
1313 if (list_empty(&sdev->starved_entry))
1314 list_add_tail(&sdev->starved_entry,
1315 &shost->starved_list);
1316 return 0;
1317 }
1318
1319 /* We're OK to process the command, so we can't be starved */
1320 if (!list_empty(&sdev->starved_entry))
1321 list_del_init(&sdev->starved_entry);
1322 return 1;
1323 }
1324
1325 /*
1326 * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1327 * return 0. We must end up running the queue again whenever 0 is
1328 * returned, else IO can hang.
1329 *
1330 * Called with host_lock held.
1331 */
1332 static inline int scsi_host_queue_ready(struct request_queue *q,
1333 struct Scsi_Host *shost,
1334 struct scsi_device *sdev)
1335 {
1336 if (scsi_host_in_recovery(shost))
1337 return 0;
1338 if (shost->host_busy == 0 && shost->host_blocked) {
1339 /*
1340 * unblock after host_blocked iterates to zero
1341 */
1342 if (--shost->host_blocked == 0) {
1343 SCSI_LOG_MLQUEUE(3,
1344 printk("scsi%d unblocking host at zero depth\n",
1345 shost->host_no));
1346 } else {
1347 return 0;
1348 }
1349 }
1350 if (scsi_host_is_busy(shost)) {
1351 if (list_empty(&sdev->starved_entry))
1352 list_add_tail(&sdev->starved_entry, &shost->starved_list);
1353 return 0;
1354 }
1355
1356 /* We're OK to process the command, so we can't be starved */
1357 if (!list_empty(&sdev->starved_entry))
1358 list_del_init(&sdev->starved_entry);
1359
1360 return 1;
1361 }
1362
1363 /*
1364 * Busy state exporting function for request stacking drivers.
1365 *
1366 * For efficiency, no lock is taken to check the busy state of
1367 * shost/starget/sdev, since the returned value is not guaranteed and
1368 * may be changed after request stacking drivers call the function,
1369 * regardless of taking lock or not.
1370 *
1371 * When scsi can't dispatch I/Os anymore and needs to kill I/Os
1372 * (e.g. !sdev), scsi needs to return 'not busy'.
1373 * Otherwise, request stacking drivers may hold requests forever.
1374 */
1375 static int scsi_lld_busy(struct request_queue *q)
1376 {
1377 struct scsi_device *sdev = q->queuedata;
1378 struct Scsi_Host *shost;
1379 struct scsi_target *starget;
1380
1381 if (!sdev)
1382 return 0;
1383
1384 shost = sdev->host;
1385 starget = scsi_target(sdev);
1386
1387 if (scsi_host_in_recovery(shost) || scsi_host_is_busy(shost) ||
1388 scsi_target_is_busy(starget) || scsi_device_is_busy(sdev))
1389 return 1;
1390
1391 return 0;
1392 }
1393
1394 /*
1395 * Kill a request for a dead device
1396 */
1397 static void scsi_kill_request(struct request *req, struct request_queue *q)
1398 {
1399 struct scsi_cmnd *cmd = req->special;
1400 struct scsi_device *sdev;
1401 struct scsi_target *starget;
1402 struct Scsi_Host *shost;
1403
1404 blk_start_request(req);
1405
1406 sdev = cmd->device;
1407 starget = scsi_target(sdev);
1408 shost = sdev->host;
1409 scsi_init_cmd_errh(cmd);
1410 cmd->result = DID_NO_CONNECT << 16;
1411 atomic_inc(&cmd->device->iorequest_cnt);
1412
1413 /*
1414 * SCSI request completion path will do scsi_device_unbusy(),
1415 * bump busy counts. To bump the counters, we need to dance
1416 * with the locks as normal issue path does.
1417 */
1418 sdev->device_busy++;
1419 spin_unlock(sdev->request_queue->queue_lock);
1420 spin_lock(shost->host_lock);
1421 shost->host_busy++;
1422 starget->target_busy++;
1423 spin_unlock(shost->host_lock);
1424 spin_lock(sdev->request_queue->queue_lock);
1425
1426 blk_complete_request(req);
1427 }
1428
1429 static void scsi_softirq_done(struct request *rq)
1430 {
1431 struct scsi_cmnd *cmd = rq->special;
1432 unsigned long wait_for = (cmd->allowed + 1) * rq->timeout;
1433 int disposition;
1434
1435 INIT_LIST_HEAD(&cmd->eh_entry);
1436
1437 atomic_inc(&cmd->device->iodone_cnt);
1438 if (cmd->result)
1439 atomic_inc(&cmd->device->ioerr_cnt);
1440
1441 disposition = scsi_decide_disposition(cmd);
1442 if (disposition != SUCCESS &&
1443 time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1444 sdev_printk(KERN_ERR, cmd->device,
1445 "timing out command, waited %lus\n",
1446 wait_for/HZ);
1447 disposition = SUCCESS;
1448 }
1449
1450 scsi_log_completion(cmd, disposition);
1451
1452 switch (disposition) {
1453 case SUCCESS:
1454 scsi_finish_command(cmd);
1455 break;
1456 case NEEDS_RETRY:
1457 scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1458 break;
1459 case ADD_TO_MLQUEUE:
1460 scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1461 break;
1462 default:
1463 if (!scsi_eh_scmd_add(cmd, 0))
1464 scsi_finish_command(cmd);
1465 }
1466 }
1467
1468 /*
1469 * Function: scsi_request_fn()
1470 *
1471 * Purpose: Main strategy routine for SCSI.
1472 *
1473 * Arguments: q - Pointer to actual queue.
1474 *
1475 * Returns: Nothing
1476 *
1477 * Lock status: IO request lock assumed to be held when called.
1478 */
1479 static void scsi_request_fn(struct request_queue *q)
1480 {
1481 struct scsi_device *sdev = q->queuedata;
1482 struct Scsi_Host *shost;
1483 struct scsi_cmnd *cmd;
1484 struct request *req;
1485
1486 if (!sdev) {
1487 printk("scsi: killing requests for dead queue\n");
1488 while ((req = blk_peek_request(q)) != NULL)
1489 scsi_kill_request(req, q);
1490 return;
1491 }
1492
1493 if(!get_device(&sdev->sdev_gendev))
1494 /* We must be tearing the block queue down already */
1495 return;
1496
1497 /*
1498 * To start with, we keep looping until the queue is empty, or until
1499 * the host is no longer able to accept any more requests.
1500 */
1501 shost = sdev->host;
1502 for (;;) {
1503 int rtn;
1504 /*
1505 * get next queueable request. We do this early to make sure
1506 * that the request is fully prepared even if we cannot
1507 * accept it.
1508 */
1509 req = blk_peek_request(q);
1510 if (!req || !scsi_dev_queue_ready(q, sdev))
1511 break;
1512
1513 if (unlikely(!scsi_device_online(sdev))) {
1514 sdev_printk(KERN_ERR, sdev,
1515 "rejecting I/O to offline device\n");
1516 scsi_kill_request(req, q);
1517 continue;
1518 }
1519
1520
1521 /*
1522 * Remove the request from the request list.
1523 */
1524 if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1525 blk_start_request(req);
1526 sdev->device_busy++;
1527
1528 spin_unlock(q->queue_lock);
1529 cmd = req->special;
1530 if (unlikely(cmd == NULL)) {
1531 printk(KERN_CRIT "impossible request in %s.\n"
1532 "please mail a stack trace to "
1533 "linux-scsi@vger.kernel.org\n",
1534 __func__);
1535 blk_dump_rq_flags(req, "foo");
1536 BUG();
1537 }
1538 spin_lock(shost->host_lock);
1539
1540 /*
1541 * We hit this when the driver is using a host wide
1542 * tag map. For device level tag maps the queue_depth check
1543 * in the device ready fn would prevent us from trying
1544 * to allocate a tag. Since the map is a shared host resource
1545 * we add the dev to the starved list so it eventually gets
1546 * a run when a tag is freed.
1547 */
1548 if (blk_queue_tagged(q) && !blk_rq_tagged(req)) {
1549 if (list_empty(&sdev->starved_entry))
1550 list_add_tail(&sdev->starved_entry,
1551 &shost->starved_list);
1552 goto not_ready;
1553 }
1554
1555 if (!scsi_target_queue_ready(shost, sdev))
1556 goto not_ready;
1557
1558 if (!scsi_host_queue_ready(q, shost, sdev))
1559 goto not_ready;
1560
1561 scsi_target(sdev)->target_busy++;
1562 shost->host_busy++;
1563
1564 /*
1565 * XXX(hch): This is rather suboptimal, scsi_dispatch_cmd will
1566 * take the lock again.
1567 */
1568 spin_unlock_irq(shost->host_lock);
1569
1570 /*
1571 * Finally, initialize any error handling parameters, and set up
1572 * the timers for timeouts.
1573 */
1574 scsi_init_cmd_errh(cmd);
1575
1576 /*
1577 * Dispatch the command to the low-level driver.
1578 */
1579 rtn = scsi_dispatch_cmd(cmd);
1580 spin_lock_irq(q->queue_lock);
1581 if (rtn)
1582 goto out_delay;
1583 }
1584
1585 goto out;
1586
1587 not_ready:
1588 spin_unlock_irq(shost->host_lock);
1589
1590 /*
1591 * lock q, handle tag, requeue req, and decrement device_busy. We
1592 * must return with queue_lock held.
1593 *
1594 * Decrementing device_busy without checking it is OK, as all such
1595 * cases (host limits or settings) should run the queue at some
1596 * later time.
1597 */
1598 spin_lock_irq(q->queue_lock);
1599 blk_requeue_request(q, req);
1600 sdev->device_busy--;
1601 out_delay:
1602 if (sdev->device_busy == 0)
1603 blk_delay_queue(q, SCSI_QUEUE_DELAY);
1604 out:
1605 /* must be careful here...if we trigger the ->remove() function
1606 * we cannot be holding the q lock */
1607 spin_unlock_irq(q->queue_lock);
1608 put_device(&sdev->sdev_gendev);
1609 spin_lock_irq(q->queue_lock);
1610 }
1611
1612 u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
1613 {
1614 struct device *host_dev;
1615 u64 bounce_limit = 0xffffffff;
1616
1617 if (shost->unchecked_isa_dma)
1618 return BLK_BOUNCE_ISA;
1619 /*
1620 * Platforms with virtual-DMA translation
1621 * hardware have no practical limit.
1622 */
1623 if (!PCI_DMA_BUS_IS_PHYS)
1624 return BLK_BOUNCE_ANY;
1625
1626 host_dev = scsi_get_device(shost);
1627 if (host_dev && host_dev->dma_mask)
1628 bounce_limit = *host_dev->dma_mask;
1629
1630 return bounce_limit;
1631 }
1632 EXPORT_SYMBOL(scsi_calculate_bounce_limit);
1633
1634 struct request_queue *__scsi_alloc_queue(struct Scsi_Host *shost,
1635 request_fn_proc *request_fn)
1636 {
1637 struct request_queue *q;
1638 struct device *dev = shost->shost_gendev.parent;
1639
1640 q = blk_init_queue(request_fn, NULL);
1641 if (!q)
1642 return NULL;
1643
1644 /*
1645 * this limit is imposed by hardware restrictions
1646 */
1647 blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
1648 SCSI_MAX_SG_CHAIN_SEGMENTS));
1649
1650 if (scsi_host_prot_dma(shost)) {
1651 shost->sg_prot_tablesize =
1652 min_not_zero(shost->sg_prot_tablesize,
1653 (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
1654 BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
1655 blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
1656 }
1657
1658 blk_queue_max_hw_sectors(q, shost->max_sectors);
1659 blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
1660 blk_queue_segment_boundary(q, shost->dma_boundary);
1661 dma_set_seg_boundary(dev, shost->dma_boundary);
1662
1663 blk_queue_max_segment_size(q, dma_get_max_seg_size(dev));
1664
1665 if (!shost->use_clustering)
1666 q->limits.cluster = 0;
1667
1668 /*
1669 * set a reasonable default alignment on word boundaries: the
1670 * host and device may alter it using
1671 * blk_queue_update_dma_alignment() later.
1672 */
1673 blk_queue_dma_alignment(q, 0x03);
1674
1675 return q;
1676 }
1677 EXPORT_SYMBOL(__scsi_alloc_queue);
1678
1679 struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
1680 {
1681 struct request_queue *q;
1682
1683 q = __scsi_alloc_queue(sdev->host, scsi_request_fn);
1684 if (!q)
1685 return NULL;
1686
1687 blk_queue_prep_rq(q, scsi_prep_fn);
1688 blk_queue_softirq_done(q, scsi_softirq_done);
1689 blk_queue_rq_timed_out(q, scsi_times_out);
1690 blk_queue_lld_busy(q, scsi_lld_busy);
1691 return q;
1692 }
1693
1694 void scsi_free_queue(struct request_queue *q)
1695 {
1696 blk_cleanup_queue(q);
1697 }
1698
1699 /*
1700 * Function: scsi_block_requests()
1701 *
1702 * Purpose: Utility function used by low-level drivers to prevent further
1703 * commands from being queued to the device.
1704 *
1705 * Arguments: shost - Host in question
1706 *
1707 * Returns: Nothing
1708 *
1709 * Lock status: No locks are assumed held.
1710 *
1711 * Notes: There is no timer nor any other means by which the requests
1712 * get unblocked other than the low-level driver calling
1713 * scsi_unblock_requests().
1714 */
1715 void scsi_block_requests(struct Scsi_Host *shost)
1716 {
1717 shost->host_self_blocked = 1;
1718 }
1719 EXPORT_SYMBOL(scsi_block_requests);
1720
1721 /*
1722 * Function: scsi_unblock_requests()
1723 *
1724 * Purpose: Utility function used by low-level drivers to allow further
1725 * commands from being queued to the device.
1726 *
1727 * Arguments: shost - Host in question
1728 *
1729 * Returns: Nothing
1730 *
1731 * Lock status: No locks are assumed held.
1732 *
1733 * Notes: There is no timer nor any other means by which the requests
1734 * get unblocked other than the low-level driver calling
1735 * scsi_unblock_requests().
1736 *
1737 * This is done as an API function so that changes to the
1738 * internals of the scsi mid-layer won't require wholesale
1739 * changes to drivers that use this feature.
1740 */
1741 void scsi_unblock_requests(struct Scsi_Host *shost)
1742 {
1743 shost->host_self_blocked = 0;
1744 scsi_run_host_queues(shost);
1745 }
1746 EXPORT_SYMBOL(scsi_unblock_requests);
1747
1748 int __init scsi_init_queue(void)
1749 {
1750 int i;
1751
1752 scsi_sdb_cache = kmem_cache_create("scsi_data_buffer",
1753 sizeof(struct scsi_data_buffer),
1754 0, 0, NULL);
1755 if (!scsi_sdb_cache) {
1756 printk(KERN_ERR "SCSI: can't init scsi sdb cache\n");
1757 return -ENOMEM;
1758 }
1759
1760 for (i = 0; i < SG_MEMPOOL_NR; i++) {
1761 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1762 int size = sgp->size * sizeof(struct scatterlist);
1763
1764 sgp->slab = kmem_cache_create(sgp->name, size, 0,
1765 SLAB_HWCACHE_ALIGN, NULL);
1766 if (!sgp->slab) {
1767 printk(KERN_ERR "SCSI: can't init sg slab %s\n",
1768 sgp->name);
1769 goto cleanup_sdb;
1770 }
1771
1772 sgp->pool = mempool_create_slab_pool(SG_MEMPOOL_SIZE,
1773 sgp->slab);
1774 if (!sgp->pool) {
1775 printk(KERN_ERR "SCSI: can't init sg mempool %s\n",
1776 sgp->name);
1777 goto cleanup_sdb;
1778 }
1779 }
1780
1781 return 0;
1782
1783 cleanup_sdb:
1784 for (i = 0; i < SG_MEMPOOL_NR; i++) {
1785 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1786 if (sgp->pool)
1787 mempool_destroy(sgp->pool);
1788 if (sgp->slab)
1789 kmem_cache_destroy(sgp->slab);
1790 }
1791 kmem_cache_destroy(scsi_sdb_cache);
1792
1793 return -ENOMEM;
1794 }
1795
1796 void scsi_exit_queue(void)
1797 {
1798 int i;
1799
1800 kmem_cache_destroy(scsi_sdb_cache);
1801
1802 for (i = 0; i < SG_MEMPOOL_NR; i++) {
1803 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1804 mempool_destroy(sgp->pool);
1805 kmem_cache_destroy(sgp->slab);
1806 }
1807 }
1808
1809 /**
1810 * scsi_mode_select - issue a mode select
1811 * @sdev: SCSI device to be queried
1812 * @pf: Page format bit (1 == standard, 0 == vendor specific)
1813 * @sp: Save page bit (0 == don't save, 1 == save)
1814 * @modepage: mode page being requested
1815 * @buffer: request buffer (may not be smaller than eight bytes)
1816 * @len: length of request buffer.
1817 * @timeout: command timeout
1818 * @retries: number of retries before failing
1819 * @data: returns a structure abstracting the mode header data
1820 * @sshdr: place to put sense data (or NULL if no sense to be collected).
1821 * must be SCSI_SENSE_BUFFERSIZE big.
1822 *
1823 * Returns zero if successful; negative error number or scsi
1824 * status on error
1825 *
1826 */
1827 int
1828 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
1829 unsigned char *buffer, int len, int timeout, int retries,
1830 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1831 {
1832 unsigned char cmd[10];
1833 unsigned char *real_buffer;
1834 int ret;
1835
1836 memset(cmd, 0, sizeof(cmd));
1837 cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
1838
1839 if (sdev->use_10_for_ms) {
1840 if (len > 65535)
1841 return -EINVAL;
1842 real_buffer = kmalloc(8 + len, GFP_KERNEL);
1843 if (!real_buffer)
1844 return -ENOMEM;
1845 memcpy(real_buffer + 8, buffer, len);
1846 len += 8;
1847 real_buffer[0] = 0;
1848 real_buffer[1] = 0;
1849 real_buffer[2] = data->medium_type;
1850 real_buffer[3] = data->device_specific;
1851 real_buffer[4] = data->longlba ? 0x01 : 0;
1852 real_buffer[5] = 0;
1853 real_buffer[6] = data->block_descriptor_length >> 8;
1854 real_buffer[7] = data->block_descriptor_length;
1855
1856 cmd[0] = MODE_SELECT_10;
1857 cmd[7] = len >> 8;
1858 cmd[8] = len;
1859 } else {
1860 if (len > 255 || data->block_descriptor_length > 255 ||
1861 data->longlba)
1862 return -EINVAL;
1863
1864 real_buffer = kmalloc(4 + len, GFP_KERNEL);
1865 if (!real_buffer)
1866 return -ENOMEM;
1867 memcpy(real_buffer + 4, buffer, len);
1868 len += 4;
1869 real_buffer[0] = 0;
1870 real_buffer[1] = data->medium_type;
1871 real_buffer[2] = data->device_specific;
1872 real_buffer[3] = data->block_descriptor_length;
1873
1874
1875 cmd[0] = MODE_SELECT;
1876 cmd[4] = len;
1877 }
1878
1879 ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
1880 sshdr, timeout, retries, NULL);
1881 kfree(real_buffer);
1882 return ret;
1883 }
1884 EXPORT_SYMBOL_GPL(scsi_mode_select);
1885
1886 /**
1887 * scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
1888 * @sdev: SCSI device to be queried
1889 * @dbd: set if mode sense will allow block descriptors to be returned
1890 * @modepage: mode page being requested
1891 * @buffer: request buffer (may not be smaller than eight bytes)
1892 * @len: length of request buffer.
1893 * @timeout: command timeout
1894 * @retries: number of retries before failing
1895 * @data: returns a structure abstracting the mode header data
1896 * @sshdr: place to put sense data (or NULL if no sense to be collected).
1897 * must be SCSI_SENSE_BUFFERSIZE big.
1898 *
1899 * Returns zero if unsuccessful, or the header offset (either 4
1900 * or 8 depending on whether a six or ten byte command was
1901 * issued) if successful.
1902 */
1903 int
1904 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
1905 unsigned char *buffer, int len, int timeout, int retries,
1906 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1907 {
1908 unsigned char cmd[12];
1909 int use_10_for_ms;
1910 int header_length;
1911 int result;
1912 struct scsi_sense_hdr my_sshdr;
1913
1914 memset(data, 0, sizeof(*data));
1915 memset(&cmd[0], 0, 12);
1916 cmd[1] = dbd & 0x18; /* allows DBD and LLBA bits */
1917 cmd[2] = modepage;
1918
1919 /* caller might not be interested in sense, but we need it */
1920 if (!sshdr)
1921 sshdr = &my_sshdr;
1922
1923 retry:
1924 use_10_for_ms = sdev->use_10_for_ms;
1925
1926 if (use_10_for_ms) {
1927 if (len < 8)
1928 len = 8;
1929
1930 cmd[0] = MODE_SENSE_10;
1931 cmd[8] = len;
1932 header_length = 8;
1933 } else {
1934 if (len < 4)
1935 len = 4;
1936
1937 cmd[0] = MODE_SENSE;
1938 cmd[4] = len;
1939 header_length = 4;
1940 }
1941
1942 memset(buffer, 0, len);
1943
1944 result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
1945 sshdr, timeout, retries, NULL);
1946
1947 /* This code looks awful: what it's doing is making sure an
1948 * ILLEGAL REQUEST sense return identifies the actual command
1949 * byte as the problem. MODE_SENSE commands can return
1950 * ILLEGAL REQUEST if the code page isn't supported */
1951
1952 if (use_10_for_ms && !scsi_status_is_good(result) &&
1953 (driver_byte(result) & DRIVER_SENSE)) {
1954 if (scsi_sense_valid(sshdr)) {
1955 if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
1956 (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
1957 /*
1958 * Invalid command operation code
1959 */
1960 sdev->use_10_for_ms = 0;
1961 goto retry;
1962 }
1963 }
1964 }
1965
1966 if(scsi_status_is_good(result)) {
1967 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
1968 (modepage == 6 || modepage == 8))) {
1969 /* Initio breakage? */
1970 header_length = 0;
1971 data->length = 13;
1972 data->medium_type = 0;
1973 data->device_specific = 0;
1974 data->longlba = 0;
1975 data->block_descriptor_length = 0;
1976 } else if(use_10_for_ms) {
1977 data->length = buffer[0]*256 + buffer[1] + 2;
1978 data->medium_type = buffer[2];
1979 data->device_specific = buffer[3];
1980 data->longlba = buffer[4] & 0x01;
1981 data->block_descriptor_length = buffer[6]*256
1982 + buffer[7];
1983 } else {
1984 data->length = buffer[0] + 1;
1985 data->medium_type = buffer[1];
1986 data->device_specific = buffer[2];
1987 data->block_descriptor_length = buffer[3];
1988 }
1989 data->header_length = header_length;
1990 }
1991
1992 return result;
1993 }
1994 EXPORT_SYMBOL(scsi_mode_sense);
1995
1996 /**
1997 * scsi_test_unit_ready - test if unit is ready
1998 * @sdev: scsi device to change the state of.
1999 * @timeout: command timeout
2000 * @retries: number of retries before failing
2001 * @sshdr_external: Optional pointer to struct scsi_sense_hdr for
2002 * returning sense. Make sure that this is cleared before passing
2003 * in.
2004 *
2005 * Returns zero if unsuccessful or an error if TUR failed. For
2006 * removable media, UNIT_ATTENTION sets ->changed flag.
2007 **/
2008 int
2009 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2010 struct scsi_sense_hdr *sshdr_external)
2011 {
2012 char cmd[] = {
2013 TEST_UNIT_READY, 0, 0, 0, 0, 0,
2014 };
2015 struct scsi_sense_hdr *sshdr;
2016 int result;
2017
2018 if (!sshdr_external)
2019 sshdr = kzalloc(sizeof(*sshdr), GFP_KERNEL);
2020 else
2021 sshdr = sshdr_external;
2022
2023 /* try to eat the UNIT_ATTENTION if there are enough retries */
2024 do {
2025 result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2026 timeout, retries, NULL);
2027 if (sdev->removable && scsi_sense_valid(sshdr) &&
2028 sshdr->sense_key == UNIT_ATTENTION)
2029 sdev->changed = 1;
2030 } while (scsi_sense_valid(sshdr) &&
2031 sshdr->sense_key == UNIT_ATTENTION && --retries);
2032
2033 if (!sshdr_external)
2034 kfree(sshdr);
2035 return result;
2036 }
2037 EXPORT_SYMBOL(scsi_test_unit_ready);
2038
2039 /**
2040 * scsi_device_set_state - Take the given device through the device state model.
2041 * @sdev: scsi device to change the state of.
2042 * @state: state to change to.
2043 *
2044 * Returns zero if unsuccessful or an error if the requested
2045 * transition is illegal.
2046 */
2047 int
2048 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2049 {
2050 enum scsi_device_state oldstate = sdev->sdev_state;
2051
2052 if (state == oldstate)
2053 return 0;
2054
2055 switch (state) {
2056 case SDEV_CREATED:
2057 switch (oldstate) {
2058 case SDEV_CREATED_BLOCK:
2059 break;
2060 default:
2061 goto illegal;
2062 }
2063 break;
2064
2065 case SDEV_RUNNING:
2066 switch (oldstate) {
2067 case SDEV_CREATED:
2068 case SDEV_OFFLINE:
2069 case SDEV_QUIESCE:
2070 case SDEV_BLOCK:
2071 break;
2072 default:
2073 goto illegal;
2074 }
2075 break;
2076
2077 case SDEV_QUIESCE:
2078 switch (oldstate) {
2079 case SDEV_RUNNING:
2080 case SDEV_OFFLINE:
2081 break;
2082 default:
2083 goto illegal;
2084 }
2085 break;
2086
2087 case SDEV_OFFLINE:
2088 switch (oldstate) {
2089 case SDEV_CREATED:
2090 case SDEV_RUNNING:
2091 case SDEV_QUIESCE:
2092 case SDEV_BLOCK:
2093 break;
2094 default:
2095 goto illegal;
2096 }
2097 break;
2098
2099 case SDEV_BLOCK:
2100 switch (oldstate) {
2101 case SDEV_RUNNING:
2102 case SDEV_CREATED_BLOCK:
2103 break;
2104 default:
2105 goto illegal;
2106 }
2107 break;
2108
2109 case SDEV_CREATED_BLOCK:
2110 switch (oldstate) {
2111 case SDEV_CREATED:
2112 break;
2113 default:
2114 goto illegal;
2115 }
2116 break;
2117
2118 case SDEV_CANCEL:
2119 switch (oldstate) {
2120 case SDEV_CREATED:
2121 case SDEV_RUNNING:
2122 case SDEV_QUIESCE:
2123 case SDEV_OFFLINE:
2124 case SDEV_BLOCK:
2125 break;
2126 default:
2127 goto illegal;
2128 }
2129 break;
2130
2131 case SDEV_DEL:
2132 switch (oldstate) {
2133 case SDEV_CREATED:
2134 case SDEV_RUNNING:
2135 case SDEV_OFFLINE:
2136 case SDEV_CANCEL:
2137 break;
2138 default:
2139 goto illegal;
2140 }
2141 break;
2142
2143 }
2144 sdev->sdev_state = state;
2145 return 0;
2146
2147 illegal:
2148 SCSI_LOG_ERROR_RECOVERY(1,
2149 sdev_printk(KERN_ERR, sdev,
2150 "Illegal state transition %s->%s\n",
2151 scsi_device_state_name(oldstate),
2152 scsi_device_state_name(state))
2153 );
2154 return -EINVAL;
2155 }
2156 EXPORT_SYMBOL(scsi_device_set_state);
2157
2158 /**
2159 * sdev_evt_emit - emit a single SCSI device uevent
2160 * @sdev: associated SCSI device
2161 * @evt: event to emit
2162 *
2163 * Send a single uevent (scsi_event) to the associated scsi_device.
2164 */
2165 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2166 {
2167 int idx = 0;
2168 char *envp[3];
2169
2170 switch (evt->evt_type) {
2171 case SDEV_EVT_MEDIA_CHANGE:
2172 envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2173 break;
2174
2175 default:
2176 /* do nothing */
2177 break;
2178 }
2179
2180 envp[idx++] = NULL;
2181
2182 kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2183 }
2184
2185 /**
2186 * sdev_evt_thread - send a uevent for each scsi event
2187 * @work: work struct for scsi_device
2188 *
2189 * Dispatch queued events to their associated scsi_device kobjects
2190 * as uevents.
2191 */
2192 void scsi_evt_thread(struct work_struct *work)
2193 {
2194 struct scsi_device *sdev;
2195 LIST_HEAD(event_list);
2196
2197 sdev = container_of(work, struct scsi_device, event_work);
2198
2199 while (1) {
2200 struct scsi_event *evt;
2201 struct list_head *this, *tmp;
2202 unsigned long flags;
2203
2204 spin_lock_irqsave(&sdev->list_lock, flags);
2205 list_splice_init(&sdev->event_list, &event_list);
2206 spin_unlock_irqrestore(&sdev->list_lock, flags);
2207
2208 if (list_empty(&event_list))
2209 break;
2210
2211 list_for_each_safe(this, tmp, &event_list) {
2212 evt = list_entry(this, struct scsi_event, node);
2213 list_del(&evt->node);
2214 scsi_evt_emit(sdev, evt);
2215 kfree(evt);
2216 }
2217 }
2218 }
2219
2220 /**
2221 * sdev_evt_send - send asserted event to uevent thread
2222 * @sdev: scsi_device event occurred on
2223 * @evt: event to send
2224 *
2225 * Assert scsi device event asynchronously.
2226 */
2227 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2228 {
2229 unsigned long flags;
2230
2231 #if 0
2232 /* FIXME: currently this check eliminates all media change events
2233 * for polled devices. Need to update to discriminate between AN
2234 * and polled events */
2235 if (!test_bit(evt->evt_type, sdev->supported_events)) {
2236 kfree(evt);
2237 return;
2238 }
2239 #endif
2240
2241 spin_lock_irqsave(&sdev->list_lock, flags);
2242 list_add_tail(&evt->node, &sdev->event_list);
2243 schedule_work(&sdev->event_work);
2244 spin_unlock_irqrestore(&sdev->list_lock, flags);
2245 }
2246 EXPORT_SYMBOL_GPL(sdev_evt_send);
2247
2248 /**
2249 * sdev_evt_alloc - allocate a new scsi event
2250 * @evt_type: type of event to allocate
2251 * @gfpflags: GFP flags for allocation
2252 *
2253 * Allocates and returns a new scsi_event.
2254 */
2255 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2256 gfp_t gfpflags)
2257 {
2258 struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2259 if (!evt)
2260 return NULL;
2261
2262 evt->evt_type = evt_type;
2263 INIT_LIST_HEAD(&evt->node);
2264
2265 /* evt_type-specific initialization, if any */
2266 switch (evt_type) {
2267 case SDEV_EVT_MEDIA_CHANGE:
2268 default:
2269 /* do nothing */
2270 break;
2271 }
2272
2273 return evt;
2274 }
2275 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2276
2277 /**
2278 * sdev_evt_send_simple - send asserted event to uevent thread
2279 * @sdev: scsi_device event occurred on
2280 * @evt_type: type of event to send
2281 * @gfpflags: GFP flags for allocation
2282 *
2283 * Assert scsi device event asynchronously, given an event type.
2284 */
2285 void sdev_evt_send_simple(struct scsi_device *sdev,
2286 enum scsi_device_event evt_type, gfp_t gfpflags)
2287 {
2288 struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2289 if (!evt) {
2290 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2291 evt_type);
2292 return;
2293 }
2294
2295 sdev_evt_send(sdev, evt);
2296 }
2297 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2298
2299 /**
2300 * scsi_device_quiesce - Block user issued commands.
2301 * @sdev: scsi device to quiesce.
2302 *
2303 * This works by trying to transition to the SDEV_QUIESCE state
2304 * (which must be a legal transition). When the device is in this
2305 * state, only special requests will be accepted, all others will
2306 * be deferred. Since special requests may also be requeued requests,
2307 * a successful return doesn't guarantee the device will be
2308 * totally quiescent.
2309 *
2310 * Must be called with user context, may sleep.
2311 *
2312 * Returns zero if unsuccessful or an error if not.
2313 */
2314 int
2315 scsi_device_quiesce(struct scsi_device *sdev)
2316 {
2317 int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2318 if (err)
2319 return err;
2320
2321 scsi_run_queue(sdev->request_queue);
2322 while (sdev->device_busy) {
2323 msleep_interruptible(200);
2324 scsi_run_queue(sdev->request_queue);
2325 }
2326 return 0;
2327 }
2328 EXPORT_SYMBOL(scsi_device_quiesce);
2329
2330 /**
2331 * scsi_device_resume - Restart user issued commands to a quiesced device.
2332 * @sdev: scsi device to resume.
2333 *
2334 * Moves the device from quiesced back to running and restarts the
2335 * queues.
2336 *
2337 * Must be called with user context, may sleep.
2338 */
2339 void
2340 scsi_device_resume(struct scsi_device *sdev)
2341 {
2342 if(scsi_device_set_state(sdev, SDEV_RUNNING))
2343 return;
2344 scsi_run_queue(sdev->request_queue);
2345 }
2346 EXPORT_SYMBOL(scsi_device_resume);
2347
2348 static void
2349 device_quiesce_fn(struct scsi_device *sdev, void *data)
2350 {
2351 scsi_device_quiesce(sdev);
2352 }
2353
2354 void
2355 scsi_target_quiesce(struct scsi_target *starget)
2356 {
2357 starget_for_each_device(starget, NULL, device_quiesce_fn);
2358 }
2359 EXPORT_SYMBOL(scsi_target_quiesce);
2360
2361 static void
2362 device_resume_fn(struct scsi_device *sdev, void *data)
2363 {
2364 scsi_device_resume(sdev);
2365 }
2366
2367 void
2368 scsi_target_resume(struct scsi_target *starget)
2369 {
2370 starget_for_each_device(starget, NULL, device_resume_fn);
2371 }
2372 EXPORT_SYMBOL(scsi_target_resume);
2373
2374 /**
2375 * scsi_internal_device_block - internal function to put a device temporarily into the SDEV_BLOCK state
2376 * @sdev: device to block
2377 *
2378 * Block request made by scsi lld's to temporarily stop all
2379 * scsi commands on the specified device. Called from interrupt
2380 * or normal process context.
2381 *
2382 * Returns zero if successful or error if not
2383 *
2384 * Notes:
2385 * This routine transitions the device to the SDEV_BLOCK state
2386 * (which must be a legal transition). When the device is in this
2387 * state, all commands are deferred until the scsi lld reenables
2388 * the device with scsi_device_unblock or device_block_tmo fires.
2389 * This routine assumes the host_lock is held on entry.
2390 */
2391 int
2392 scsi_internal_device_block(struct scsi_device *sdev)
2393 {
2394 struct request_queue *q = sdev->request_queue;
2395 unsigned long flags;
2396 int err = 0;
2397
2398 err = scsi_device_set_state(sdev, SDEV_BLOCK);
2399 if (err) {
2400 err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2401
2402 if (err)
2403 return err;
2404 }
2405
2406 /*
2407 * The device has transitioned to SDEV_BLOCK. Stop the
2408 * block layer from calling the midlayer with this device's
2409 * request queue.
2410 */
2411 spin_lock_irqsave(q->queue_lock, flags);
2412 blk_stop_queue(q);
2413 spin_unlock_irqrestore(q->queue_lock, flags);
2414
2415 return 0;
2416 }
2417 EXPORT_SYMBOL_GPL(scsi_internal_device_block);
2418
2419 /**
2420 * scsi_internal_device_unblock - resume a device after a block request
2421 * @sdev: device to resume
2422 *
2423 * Called by scsi lld's or the midlayer to restart the device queue
2424 * for the previously suspended scsi device. Called from interrupt or
2425 * normal process context.
2426 *
2427 * Returns zero if successful or error if not.
2428 *
2429 * Notes:
2430 * This routine transitions the device to the SDEV_RUNNING state
2431 * (which must be a legal transition) allowing the midlayer to
2432 * goose the queue for this device. This routine assumes the
2433 * host_lock is held upon entry.
2434 */
2435 int
2436 scsi_internal_device_unblock(struct scsi_device *sdev)
2437 {
2438 struct request_queue *q = sdev->request_queue;
2439 unsigned long flags;
2440
2441 /*
2442 * Try to transition the scsi device to SDEV_RUNNING
2443 * and goose the device queue if successful.
2444 */
2445 if (sdev->sdev_state == SDEV_BLOCK)
2446 sdev->sdev_state = SDEV_RUNNING;
2447 else if (sdev->sdev_state == SDEV_CREATED_BLOCK)
2448 sdev->sdev_state = SDEV_CREATED;
2449 else if (sdev->sdev_state != SDEV_CANCEL &&
2450 sdev->sdev_state != SDEV_OFFLINE)
2451 return -EINVAL;
2452
2453 spin_lock_irqsave(q->queue_lock, flags);
2454 blk_start_queue(q);
2455 spin_unlock_irqrestore(q->queue_lock, flags);
2456
2457 return 0;
2458 }
2459 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
2460
2461 static void
2462 device_block(struct scsi_device *sdev, void *data)
2463 {
2464 scsi_internal_device_block(sdev);
2465 }
2466
2467 static int
2468 target_block(struct device *dev, void *data)
2469 {
2470 if (scsi_is_target_device(dev))
2471 starget_for_each_device(to_scsi_target(dev), NULL,
2472 device_block);
2473 return 0;
2474 }
2475
2476 void
2477 scsi_target_block(struct device *dev)
2478 {
2479 if (scsi_is_target_device(dev))
2480 starget_for_each_device(to_scsi_target(dev), NULL,
2481 device_block);
2482 else
2483 device_for_each_child(dev, NULL, target_block);
2484 }
2485 EXPORT_SYMBOL_GPL(scsi_target_block);
2486
2487 static void
2488 device_unblock(struct scsi_device *sdev, void *data)
2489 {
2490 scsi_internal_device_unblock(sdev);
2491 }
2492
2493 static int
2494 target_unblock(struct device *dev, void *data)
2495 {
2496 if (scsi_is_target_device(dev))
2497 starget_for_each_device(to_scsi_target(dev), NULL,
2498 device_unblock);
2499 return 0;
2500 }
2501
2502 void
2503 scsi_target_unblock(struct device *dev)
2504 {
2505 if (scsi_is_target_device(dev))
2506 starget_for_each_device(to_scsi_target(dev), NULL,
2507 device_unblock);
2508 else
2509 device_for_each_child(dev, NULL, target_unblock);
2510 }
2511 EXPORT_SYMBOL_GPL(scsi_target_unblock);
2512
2513 /**
2514 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2515 * @sgl: scatter-gather list
2516 * @sg_count: number of segments in sg
2517 * @offset: offset in bytes into sg, on return offset into the mapped area
2518 * @len: bytes to map, on return number of bytes mapped
2519 *
2520 * Returns virtual address of the start of the mapped page
2521 */
2522 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
2523 size_t *offset, size_t *len)
2524 {
2525 int i;
2526 size_t sg_len = 0, len_complete = 0;
2527 struct scatterlist *sg;
2528 struct page *page;
2529
2530 WARN_ON(!irqs_disabled());
2531
2532 for_each_sg(sgl, sg, sg_count, i) {
2533 len_complete = sg_len; /* Complete sg-entries */
2534 sg_len += sg->length;
2535 if (sg_len > *offset)
2536 break;
2537 }
2538
2539 if (unlikely(i == sg_count)) {
2540 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2541 "elements %d\n",
2542 __func__, sg_len, *offset, sg_count);
2543 WARN_ON(1);
2544 return NULL;
2545 }
2546
2547 /* Offset starting from the beginning of first page in this sg-entry */
2548 *offset = *offset - len_complete + sg->offset;
2549
2550 /* Assumption: contiguous pages can be accessed as "page + i" */
2551 page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
2552 *offset &= ~PAGE_MASK;
2553
2554 /* Bytes in this sg-entry from *offset to the end of the page */
2555 sg_len = PAGE_SIZE - *offset;
2556 if (*len > sg_len)
2557 *len = sg_len;
2558
2559 return kmap_atomic(page, KM_BIO_SRC_IRQ);
2560 }
2561 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
2562
2563 /**
2564 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
2565 * @virt: virtual address to be unmapped
2566 */
2567 void scsi_kunmap_atomic_sg(void *virt)
2568 {
2569 kunmap_atomic(virt, KM_BIO_SRC_IRQ);
2570 }
2571 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);