TOMOYO: Fix wrong domainname validation.
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / scsi / mpt2sas / mpt2sas_ctl.c
1 /*
2 * Management Module Support for MPT (Message Passing Technology) based
3 * controllers
4 *
5 * This code is based on drivers/scsi/mpt2sas/mpt2_ctl.c
6 * Copyright (C) 2007-2010 LSI Corporation
7 * (mailto:DL-MPTFusionLinux@lsi.com)
8 *
9 * This program is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU General Public License
11 * as published by the Free Software Foundation; either version 2
12 * of the License, or (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * NO WARRANTY
20 * THE PROGRAM IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR
21 * CONDITIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED INCLUDING, WITHOUT
22 * LIMITATION, ANY WARRANTIES OR CONDITIONS OF TITLE, NON-INFRINGEMENT,
23 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Each Recipient is
24 * solely responsible for determining the appropriateness of using and
25 * distributing the Program and assumes all risks associated with its
26 * exercise of rights under this Agreement, including but not limited to
27 * the risks and costs of program errors, damage to or loss of data,
28 * programs or equipment, and unavailability or interruption of operations.
29
30 * DISCLAIMER OF LIABILITY
31 * NEITHER RECIPIENT NOR ANY CONTRIBUTORS SHALL HAVE ANY LIABILITY FOR ANY
32 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33 * DAMAGES (INCLUDING WITHOUT LIMITATION LOST PROFITS), HOWEVER CAUSED AND
34 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
35 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
36 * USE OR DISTRIBUTION OF THE PROGRAM OR THE EXERCISE OF ANY RIGHTS GRANTED
37 * HEREUNDER, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES
38
39 * You should have received a copy of the GNU General Public License
40 * along with this program; if not, write to the Free Software
41 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301,
42 * USA.
43 */
44
45 #include <linux/version.h>
46 #include <linux/kernel.h>
47 #include <linux/module.h>
48 #include <linux/errno.h>
49 #include <linux/init.h>
50 #include <linux/slab.h>
51 #include <linux/types.h>
52 #include <linux/pci.h>
53 #include <linux/delay.h>
54 #include <linux/mutex.h>
55 #include <linux/compat.h>
56 #include <linux/poll.h>
57
58 #include <linux/io.h>
59 #include <linux/uaccess.h>
60
61 #include "mpt2sas_base.h"
62 #include "mpt2sas_ctl.h"
63
64 static DEFINE_MUTEX(_ctl_mutex);
65 static struct fasync_struct *async_queue;
66 static DECLARE_WAIT_QUEUE_HEAD(ctl_poll_wait);
67
68 static int _ctl_send_release(struct MPT2SAS_ADAPTER *ioc, u8 buffer_type,
69 u8 *issue_reset);
70
71 /**
72 * enum block_state - blocking state
73 * @NON_BLOCKING: non blocking
74 * @BLOCKING: blocking
75 *
76 * These states are for ioctls that need to wait for a response
77 * from firmware, so they probably require sleep.
78 */
79 enum block_state {
80 NON_BLOCKING,
81 BLOCKING,
82 };
83
84 #ifdef CONFIG_SCSI_MPT2SAS_LOGGING
85 /**
86 * _ctl_sas_device_find_by_handle - sas device search
87 * @ioc: per adapter object
88 * @handle: sas device handle (assigned by firmware)
89 * Context: Calling function should acquire ioc->sas_device_lock
90 *
91 * This searches for sas_device based on sas_address, then return sas_device
92 * object.
93 */
94 static struct _sas_device *
95 _ctl_sas_device_find_by_handle(struct MPT2SAS_ADAPTER *ioc, u16 handle)
96 {
97 struct _sas_device *sas_device, *r;
98
99 r = NULL;
100 list_for_each_entry(sas_device, &ioc->sas_device_list, list) {
101 if (sas_device->handle != handle)
102 continue;
103 r = sas_device;
104 goto out;
105 }
106
107 out:
108 return r;
109 }
110
111 /**
112 * _ctl_display_some_debug - debug routine
113 * @ioc: per adapter object
114 * @smid: system request message index
115 * @calling_function_name: string pass from calling function
116 * @mpi_reply: reply message frame
117 * Context: none.
118 *
119 * Function for displaying debug info helpful when debugging issues
120 * in this module.
121 */
122 static void
123 _ctl_display_some_debug(struct MPT2SAS_ADAPTER *ioc, u16 smid,
124 char *calling_function_name, MPI2DefaultReply_t *mpi_reply)
125 {
126 Mpi2ConfigRequest_t *mpi_request;
127 char *desc = NULL;
128
129 if (!(ioc->logging_level & MPT_DEBUG_IOCTL))
130 return;
131
132 mpi_request = mpt2sas_base_get_msg_frame(ioc, smid);
133 switch (mpi_request->Function) {
134 case MPI2_FUNCTION_SCSI_IO_REQUEST:
135 {
136 Mpi2SCSIIORequest_t *scsi_request =
137 (Mpi2SCSIIORequest_t *)mpi_request;
138
139 snprintf(ioc->tmp_string, MPT_STRING_LENGTH,
140 "scsi_io, cmd(0x%02x), cdb_len(%d)",
141 scsi_request->CDB.CDB32[0],
142 le16_to_cpu(scsi_request->IoFlags) & 0xF);
143 desc = ioc->tmp_string;
144 break;
145 }
146 case MPI2_FUNCTION_SCSI_TASK_MGMT:
147 desc = "task_mgmt";
148 break;
149 case MPI2_FUNCTION_IOC_INIT:
150 desc = "ioc_init";
151 break;
152 case MPI2_FUNCTION_IOC_FACTS:
153 desc = "ioc_facts";
154 break;
155 case MPI2_FUNCTION_CONFIG:
156 {
157 Mpi2ConfigRequest_t *config_request =
158 (Mpi2ConfigRequest_t *)mpi_request;
159
160 snprintf(ioc->tmp_string, MPT_STRING_LENGTH,
161 "config, type(0x%02x), ext_type(0x%02x), number(%d)",
162 (config_request->Header.PageType &
163 MPI2_CONFIG_PAGETYPE_MASK), config_request->ExtPageType,
164 config_request->Header.PageNumber);
165 desc = ioc->tmp_string;
166 break;
167 }
168 case MPI2_FUNCTION_PORT_FACTS:
169 desc = "port_facts";
170 break;
171 case MPI2_FUNCTION_PORT_ENABLE:
172 desc = "port_enable";
173 break;
174 case MPI2_FUNCTION_EVENT_NOTIFICATION:
175 desc = "event_notification";
176 break;
177 case MPI2_FUNCTION_FW_DOWNLOAD:
178 desc = "fw_download";
179 break;
180 case MPI2_FUNCTION_FW_UPLOAD:
181 desc = "fw_upload";
182 break;
183 case MPI2_FUNCTION_RAID_ACTION:
184 desc = "raid_action";
185 break;
186 case MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH:
187 {
188 Mpi2SCSIIORequest_t *scsi_request =
189 (Mpi2SCSIIORequest_t *)mpi_request;
190
191 snprintf(ioc->tmp_string, MPT_STRING_LENGTH,
192 "raid_pass, cmd(0x%02x), cdb_len(%d)",
193 scsi_request->CDB.CDB32[0],
194 le16_to_cpu(scsi_request->IoFlags) & 0xF);
195 desc = ioc->tmp_string;
196 break;
197 }
198 case MPI2_FUNCTION_SAS_IO_UNIT_CONTROL:
199 desc = "sas_iounit_cntl";
200 break;
201 case MPI2_FUNCTION_SATA_PASSTHROUGH:
202 desc = "sata_pass";
203 break;
204 case MPI2_FUNCTION_DIAG_BUFFER_POST:
205 desc = "diag_buffer_post";
206 break;
207 case MPI2_FUNCTION_DIAG_RELEASE:
208 desc = "diag_release";
209 break;
210 case MPI2_FUNCTION_SMP_PASSTHROUGH:
211 desc = "smp_passthrough";
212 break;
213 }
214
215 if (!desc)
216 return;
217
218 printk(MPT2SAS_INFO_FMT "%s: %s, smid(%d)\n",
219 ioc->name, calling_function_name, desc, smid);
220
221 if (!mpi_reply)
222 return;
223
224 if (mpi_reply->IOCStatus || mpi_reply->IOCLogInfo)
225 printk(MPT2SAS_INFO_FMT
226 "\tiocstatus(0x%04x), loginfo(0x%08x)\n",
227 ioc->name, le16_to_cpu(mpi_reply->IOCStatus),
228 le32_to_cpu(mpi_reply->IOCLogInfo));
229
230 if (mpi_request->Function == MPI2_FUNCTION_SCSI_IO_REQUEST ||
231 mpi_request->Function ==
232 MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH) {
233 Mpi2SCSIIOReply_t *scsi_reply =
234 (Mpi2SCSIIOReply_t *)mpi_reply;
235 struct _sas_device *sas_device = NULL;
236 unsigned long flags;
237
238 spin_lock_irqsave(&ioc->sas_device_lock, flags);
239 sas_device = _ctl_sas_device_find_by_handle(ioc,
240 le16_to_cpu(scsi_reply->DevHandle));
241 if (sas_device) {
242 printk(MPT2SAS_WARN_FMT "\tsas_address(0x%016llx), "
243 "phy(%d)\n", ioc->name, (unsigned long long)
244 sas_device->sas_address, sas_device->phy);
245 printk(MPT2SAS_WARN_FMT
246 "\tenclosure_logical_id(0x%016llx), slot(%d)\n",
247 ioc->name, sas_device->enclosure_logical_id,
248 sas_device->slot);
249 }
250 spin_unlock_irqrestore(&ioc->sas_device_lock, flags);
251 if (scsi_reply->SCSIState || scsi_reply->SCSIStatus)
252 printk(MPT2SAS_INFO_FMT
253 "\tscsi_state(0x%02x), scsi_status"
254 "(0x%02x)\n", ioc->name,
255 scsi_reply->SCSIState,
256 scsi_reply->SCSIStatus);
257 }
258 }
259 #endif
260
261 /**
262 * mpt2sas_ctl_done - ctl module completion routine
263 * @ioc: per adapter object
264 * @smid: system request message index
265 * @msix_index: MSIX table index supplied by the OS
266 * @reply: reply message frame(lower 32bit addr)
267 * Context: none.
268 *
269 * The callback handler when using ioc->ctl_cb_idx.
270 *
271 * Return 1 meaning mf should be freed from _base_interrupt
272 * 0 means the mf is freed from this function.
273 */
274 u8
275 mpt2sas_ctl_done(struct MPT2SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
276 u32 reply)
277 {
278 MPI2DefaultReply_t *mpi_reply;
279 Mpi2SCSIIOReply_t *scsiio_reply;
280 const void *sense_data;
281 u32 sz;
282
283 if (ioc->ctl_cmds.status == MPT2_CMD_NOT_USED)
284 return 1;
285 if (ioc->ctl_cmds.smid != smid)
286 return 1;
287 ioc->ctl_cmds.status |= MPT2_CMD_COMPLETE;
288 mpi_reply = mpt2sas_base_get_reply_virt_addr(ioc, reply);
289 if (mpi_reply) {
290 memcpy(ioc->ctl_cmds.reply, mpi_reply, mpi_reply->MsgLength*4);
291 ioc->ctl_cmds.status |= MPT2_CMD_REPLY_VALID;
292 /* get sense data */
293 if (mpi_reply->Function == MPI2_FUNCTION_SCSI_IO_REQUEST ||
294 mpi_reply->Function ==
295 MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH) {
296 scsiio_reply = (Mpi2SCSIIOReply_t *)mpi_reply;
297 if (scsiio_reply->SCSIState &
298 MPI2_SCSI_STATE_AUTOSENSE_VALID) {
299 sz = min_t(u32, SCSI_SENSE_BUFFERSIZE,
300 le32_to_cpu(scsiio_reply->SenseCount));
301 sense_data = mpt2sas_base_get_sense_buffer(ioc,
302 smid);
303 memcpy(ioc->ctl_cmds.sense, sense_data, sz);
304 }
305 }
306 }
307 #ifdef CONFIG_SCSI_MPT2SAS_LOGGING
308 _ctl_display_some_debug(ioc, smid, "ctl_done", mpi_reply);
309 #endif
310 ioc->ctl_cmds.status &= ~MPT2_CMD_PENDING;
311 complete(&ioc->ctl_cmds.done);
312 return 1;
313 }
314
315 /**
316 * _ctl_check_event_type - determines when an event needs logging
317 * @ioc: per adapter object
318 * @event: firmware event
319 *
320 * The bitmask in ioc->event_type[] indicates which events should be
321 * be saved in the driver event_log. This bitmask is set by application.
322 *
323 * Returns 1 when event should be captured, or zero means no match.
324 */
325 static int
326 _ctl_check_event_type(struct MPT2SAS_ADAPTER *ioc, u16 event)
327 {
328 u16 i;
329 u32 desired_event;
330
331 if (event >= 128 || !event || !ioc->event_log)
332 return 0;
333
334 desired_event = (1 << (event % 32));
335 if (!desired_event)
336 desired_event = 1;
337 i = event / 32;
338 return desired_event & ioc->event_type[i];
339 }
340
341 /**
342 * mpt2sas_ctl_add_to_event_log - add event
343 * @ioc: per adapter object
344 * @mpi_reply: reply message frame
345 *
346 * Return nothing.
347 */
348 void
349 mpt2sas_ctl_add_to_event_log(struct MPT2SAS_ADAPTER *ioc,
350 Mpi2EventNotificationReply_t *mpi_reply)
351 {
352 struct MPT2_IOCTL_EVENTS *event_log;
353 u16 event;
354 int i;
355 u32 sz, event_data_sz;
356 u8 send_aen = 0;
357
358 if (!ioc->event_log)
359 return;
360
361 event = le16_to_cpu(mpi_reply->Event);
362
363 if (_ctl_check_event_type(ioc, event)) {
364
365 /* insert entry into circular event_log */
366 i = ioc->event_context % MPT2SAS_CTL_EVENT_LOG_SIZE;
367 event_log = ioc->event_log;
368 event_log[i].event = event;
369 event_log[i].context = ioc->event_context++;
370
371 event_data_sz = le16_to_cpu(mpi_reply->EventDataLength)*4;
372 sz = min_t(u32, event_data_sz, MPT2_EVENT_DATA_SIZE);
373 memset(event_log[i].data, 0, MPT2_EVENT_DATA_SIZE);
374 memcpy(event_log[i].data, mpi_reply->EventData, sz);
375 send_aen = 1;
376 }
377
378 /* This aen_event_read_flag flag is set until the
379 * application has read the event log.
380 * For MPI2_EVENT_LOG_ENTRY_ADDED, we always notify.
381 */
382 if (event == MPI2_EVENT_LOG_ENTRY_ADDED ||
383 (send_aen && !ioc->aen_event_read_flag)) {
384 ioc->aen_event_read_flag = 1;
385 wake_up_interruptible(&ctl_poll_wait);
386 if (async_queue)
387 kill_fasync(&async_queue, SIGIO, POLL_IN);
388 }
389 }
390
391 /**
392 * mpt2sas_ctl_event_callback - firmware event handler (called at ISR time)
393 * @ioc: per adapter object
394 * @msix_index: MSIX table index supplied by the OS
395 * @reply: reply message frame(lower 32bit addr)
396 * Context: interrupt.
397 *
398 * This function merely adds a new work task into ioc->firmware_event_thread.
399 * The tasks are worked from _firmware_event_work in user context.
400 *
401 * Return 1 meaning mf should be freed from _base_interrupt
402 * 0 means the mf is freed from this function.
403 */
404 u8
405 mpt2sas_ctl_event_callback(struct MPT2SAS_ADAPTER *ioc, u8 msix_index,
406 u32 reply)
407 {
408 Mpi2EventNotificationReply_t *mpi_reply;
409
410 mpi_reply = mpt2sas_base_get_reply_virt_addr(ioc, reply);
411 mpt2sas_ctl_add_to_event_log(ioc, mpi_reply);
412 return 1;
413 }
414
415 /**
416 * _ctl_verify_adapter - validates ioc_number passed from application
417 * @ioc: per adapter object
418 * @iocpp: The ioc pointer is returned in this.
419 *
420 * Return (-1) means error, else ioc_number.
421 */
422 static int
423 _ctl_verify_adapter(int ioc_number, struct MPT2SAS_ADAPTER **iocpp)
424 {
425 struct MPT2SAS_ADAPTER *ioc;
426
427 list_for_each_entry(ioc, &mpt2sas_ioc_list, list) {
428 if (ioc->id != ioc_number)
429 continue;
430 *iocpp = ioc;
431 return ioc_number;
432 }
433 *iocpp = NULL;
434 return -1;
435 }
436
437 /**
438 * mpt2sas_ctl_reset_handler - reset callback handler (for ctl)
439 * @ioc: per adapter object
440 * @reset_phase: phase
441 *
442 * The handler for doing any required cleanup or initialization.
443 *
444 * The reset phase can be MPT2_IOC_PRE_RESET, MPT2_IOC_AFTER_RESET,
445 * MPT2_IOC_DONE_RESET
446 */
447 void
448 mpt2sas_ctl_reset_handler(struct MPT2SAS_ADAPTER *ioc, int reset_phase)
449 {
450 int i;
451 u8 issue_reset;
452
453 switch (reset_phase) {
454 case MPT2_IOC_PRE_RESET:
455 dtmprintk(ioc, printk(MPT2SAS_INFO_FMT "%s: "
456 "MPT2_IOC_PRE_RESET\n", ioc->name, __func__));
457 for (i = 0; i < MPI2_DIAG_BUF_TYPE_COUNT; i++) {
458 if (!(ioc->diag_buffer_status[i] &
459 MPT2_DIAG_BUFFER_IS_REGISTERED))
460 continue;
461 if ((ioc->diag_buffer_status[i] &
462 MPT2_DIAG_BUFFER_IS_RELEASED))
463 continue;
464 _ctl_send_release(ioc, i, &issue_reset);
465 }
466 break;
467 case MPT2_IOC_AFTER_RESET:
468 dtmprintk(ioc, printk(MPT2SAS_INFO_FMT "%s: "
469 "MPT2_IOC_AFTER_RESET\n", ioc->name, __func__));
470 if (ioc->ctl_cmds.status & MPT2_CMD_PENDING) {
471 ioc->ctl_cmds.status |= MPT2_CMD_RESET;
472 mpt2sas_base_free_smid(ioc, ioc->ctl_cmds.smid);
473 complete(&ioc->ctl_cmds.done);
474 }
475 break;
476 case MPT2_IOC_DONE_RESET:
477 dtmprintk(ioc, printk(MPT2SAS_INFO_FMT "%s: "
478 "MPT2_IOC_DONE_RESET\n", ioc->name, __func__));
479
480 for (i = 0; i < MPI2_DIAG_BUF_TYPE_COUNT; i++) {
481 if (!(ioc->diag_buffer_status[i] &
482 MPT2_DIAG_BUFFER_IS_REGISTERED))
483 continue;
484 if ((ioc->diag_buffer_status[i] &
485 MPT2_DIAG_BUFFER_IS_RELEASED))
486 continue;
487 ioc->diag_buffer_status[i] |=
488 MPT2_DIAG_BUFFER_IS_DIAG_RESET;
489 }
490 break;
491 }
492 }
493
494 /**
495 * _ctl_fasync -
496 * @fd -
497 * @filep -
498 * @mode -
499 *
500 * Called when application request fasyn callback handler.
501 */
502 static int
503 _ctl_fasync(int fd, struct file *filep, int mode)
504 {
505 return fasync_helper(fd, filep, mode, &async_queue);
506 }
507
508 /**
509 * _ctl_release -
510 * @inode -
511 * @filep -
512 *
513 * Called when application releases the fasyn callback handler.
514 */
515 static int
516 _ctl_release(struct inode *inode, struct file *filep)
517 {
518 return fasync_helper(-1, filep, 0, &async_queue);
519 }
520
521 /**
522 * _ctl_poll -
523 * @file -
524 * @wait -
525 *
526 */
527 static unsigned int
528 _ctl_poll(struct file *filep, poll_table *wait)
529 {
530 struct MPT2SAS_ADAPTER *ioc;
531
532 poll_wait(filep, &ctl_poll_wait, wait);
533
534 list_for_each_entry(ioc, &mpt2sas_ioc_list, list) {
535 if (ioc->aen_event_read_flag)
536 return POLLIN | POLLRDNORM;
537 }
538 return 0;
539 }
540
541 /**
542 * _ctl_set_task_mid - assign an active smid to tm request
543 * @ioc: per adapter object
544 * @karg - (struct mpt2_ioctl_command)
545 * @tm_request - pointer to mf from user space
546 *
547 * Returns 0 when an smid if found, else fail.
548 * during failure, the reply frame is filled.
549 */
550 static int
551 _ctl_set_task_mid(struct MPT2SAS_ADAPTER *ioc, struct mpt2_ioctl_command *karg,
552 Mpi2SCSITaskManagementRequest_t *tm_request)
553 {
554 u8 found = 0;
555 u16 i;
556 u16 handle;
557 struct scsi_cmnd *scmd;
558 struct MPT2SAS_DEVICE *priv_data;
559 unsigned long flags;
560 Mpi2SCSITaskManagementReply_t *tm_reply;
561 u32 sz;
562 u32 lun;
563 char *desc = NULL;
564
565 if (tm_request->TaskType == MPI2_SCSITASKMGMT_TASKTYPE_ABORT_TASK)
566 desc = "abort_task";
567 else if (tm_request->TaskType == MPI2_SCSITASKMGMT_TASKTYPE_QUERY_TASK)
568 desc = "query_task";
569 else
570 return 0;
571
572 lun = scsilun_to_int((struct scsi_lun *)tm_request->LUN);
573
574 handle = le16_to_cpu(tm_request->DevHandle);
575 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
576 for (i = ioc->scsiio_depth; i && !found; i--) {
577 scmd = ioc->scsi_lookup[i - 1].scmd;
578 if (scmd == NULL || scmd->device == NULL ||
579 scmd->device->hostdata == NULL)
580 continue;
581 if (lun != scmd->device->lun)
582 continue;
583 priv_data = scmd->device->hostdata;
584 if (priv_data->sas_target == NULL)
585 continue;
586 if (priv_data->sas_target->handle != handle)
587 continue;
588 tm_request->TaskMID = cpu_to_le16(ioc->scsi_lookup[i - 1].smid);
589 found = 1;
590 }
591 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
592
593 if (!found) {
594 dctlprintk(ioc, printk(MPT2SAS_INFO_FMT "%s: "
595 "handle(0x%04x), lun(%d), no active mid!!\n", ioc->name,
596 desc, le16_to_cpu(tm_request->DevHandle), lun));
597 tm_reply = ioc->ctl_cmds.reply;
598 tm_reply->DevHandle = tm_request->DevHandle;
599 tm_reply->Function = MPI2_FUNCTION_SCSI_TASK_MGMT;
600 tm_reply->TaskType = tm_request->TaskType;
601 tm_reply->MsgLength = sizeof(Mpi2SCSITaskManagementReply_t)/4;
602 tm_reply->VP_ID = tm_request->VP_ID;
603 tm_reply->VF_ID = tm_request->VF_ID;
604 sz = min_t(u32, karg->max_reply_bytes, ioc->reply_sz);
605 if (copy_to_user(karg->reply_frame_buf_ptr, ioc->ctl_cmds.reply,
606 sz))
607 printk(KERN_ERR "failure at %s:%d/%s()!\n", __FILE__,
608 __LINE__, __func__);
609 return 1;
610 }
611
612 dctlprintk(ioc, printk(MPT2SAS_INFO_FMT "%s: "
613 "handle(0x%04x), lun(%d), task_mid(%d)\n", ioc->name,
614 desc, le16_to_cpu(tm_request->DevHandle), lun,
615 le16_to_cpu(tm_request->TaskMID)));
616 return 0;
617 }
618
619 /**
620 * _ctl_do_mpt_command - main handler for MPT2COMMAND opcode
621 * @ioc: per adapter object
622 * @karg - (struct mpt2_ioctl_command)
623 * @mf - pointer to mf in user space
624 * @state - NON_BLOCKING or BLOCKING
625 */
626 static long
627 _ctl_do_mpt_command(struct MPT2SAS_ADAPTER *ioc,
628 struct mpt2_ioctl_command karg, void __user *mf, enum block_state state)
629 {
630 MPI2RequestHeader_t *mpi_request = NULL, *request;
631 MPI2DefaultReply_t *mpi_reply;
632 u32 ioc_state;
633 u16 ioc_status;
634 u16 smid;
635 unsigned long timeout, timeleft;
636 u8 issue_reset;
637 u32 sz;
638 void *psge;
639 void *data_out = NULL;
640 dma_addr_t data_out_dma;
641 size_t data_out_sz = 0;
642 void *data_in = NULL;
643 dma_addr_t data_in_dma;
644 size_t data_in_sz = 0;
645 u32 sgl_flags;
646 long ret;
647 u16 wait_state_count;
648
649 issue_reset = 0;
650
651 if (state == NON_BLOCKING && !mutex_trylock(&ioc->ctl_cmds.mutex))
652 return -EAGAIN;
653 else if (mutex_lock_interruptible(&ioc->ctl_cmds.mutex))
654 return -ERESTARTSYS;
655
656 if (ioc->ctl_cmds.status != MPT2_CMD_NOT_USED) {
657 printk(MPT2SAS_ERR_FMT "%s: ctl_cmd in use\n",
658 ioc->name, __func__);
659 ret = -EAGAIN;
660 goto out;
661 }
662
663 wait_state_count = 0;
664 ioc_state = mpt2sas_base_get_iocstate(ioc, 1);
665 while (ioc_state != MPI2_IOC_STATE_OPERATIONAL) {
666 if (wait_state_count++ == 10) {
667 printk(MPT2SAS_ERR_FMT
668 "%s: failed due to ioc not operational\n",
669 ioc->name, __func__);
670 ret = -EFAULT;
671 goto out;
672 }
673 ssleep(1);
674 ioc_state = mpt2sas_base_get_iocstate(ioc, 1);
675 printk(MPT2SAS_INFO_FMT "%s: waiting for "
676 "operational state(count=%d)\n", ioc->name,
677 __func__, wait_state_count);
678 }
679 if (wait_state_count)
680 printk(MPT2SAS_INFO_FMT "%s: ioc is operational\n",
681 ioc->name, __func__);
682
683 mpi_request = kzalloc(ioc->request_sz, GFP_KERNEL);
684 if (!mpi_request) {
685 printk(MPT2SAS_ERR_FMT "%s: failed obtaining a memory for "
686 "mpi_request\n", ioc->name, __func__);
687 ret = -ENOMEM;
688 goto out;
689 }
690
691 /* copy in request message frame from user */
692 if (copy_from_user(mpi_request, mf, karg.data_sge_offset*4)) {
693 printk(KERN_ERR "failure at %s:%d/%s()!\n", __FILE__, __LINE__,
694 __func__);
695 ret = -EFAULT;
696 goto out;
697 }
698
699 if (mpi_request->Function == MPI2_FUNCTION_SCSI_TASK_MGMT) {
700 smid = mpt2sas_base_get_smid_hpr(ioc, ioc->ctl_cb_idx);
701 if (!smid) {
702 printk(MPT2SAS_ERR_FMT "%s: failed obtaining a smid\n",
703 ioc->name, __func__);
704 ret = -EAGAIN;
705 goto out;
706 }
707 } else {
708
709 smid = mpt2sas_base_get_smid_scsiio(ioc, ioc->ctl_cb_idx, NULL);
710 if (!smid) {
711 printk(MPT2SAS_ERR_FMT "%s: failed obtaining a smid\n",
712 ioc->name, __func__);
713 ret = -EAGAIN;
714 goto out;
715 }
716 }
717
718 ret = 0;
719 ioc->ctl_cmds.status = MPT2_CMD_PENDING;
720 memset(ioc->ctl_cmds.reply, 0, ioc->reply_sz);
721 request = mpt2sas_base_get_msg_frame(ioc, smid);
722 memcpy(request, mpi_request, karg.data_sge_offset*4);
723 ioc->ctl_cmds.smid = smid;
724 data_out_sz = karg.data_out_size;
725 data_in_sz = karg.data_in_size;
726
727 if (mpi_request->Function == MPI2_FUNCTION_SCSI_IO_REQUEST ||
728 mpi_request->Function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH) {
729 if (!le16_to_cpu(mpi_request->FunctionDependent1) ||
730 le16_to_cpu(mpi_request->FunctionDependent1) >
731 ioc->facts.MaxDevHandle) {
732 ret = -EINVAL;
733 mpt2sas_base_free_smid(ioc, smid);
734 goto out;
735 }
736 }
737
738 /* obtain dma-able memory for data transfer */
739 if (data_out_sz) /* WRITE */ {
740 data_out = pci_alloc_consistent(ioc->pdev, data_out_sz,
741 &data_out_dma);
742 if (!data_out) {
743 printk(KERN_ERR "failure at %s:%d/%s()!\n", __FILE__,
744 __LINE__, __func__);
745 ret = -ENOMEM;
746 mpt2sas_base_free_smid(ioc, smid);
747 goto out;
748 }
749 if (copy_from_user(data_out, karg.data_out_buf_ptr,
750 data_out_sz)) {
751 printk(KERN_ERR "failure at %s:%d/%s()!\n", __FILE__,
752 __LINE__, __func__);
753 ret = -EFAULT;
754 mpt2sas_base_free_smid(ioc, smid);
755 goto out;
756 }
757 }
758
759 if (data_in_sz) /* READ */ {
760 data_in = pci_alloc_consistent(ioc->pdev, data_in_sz,
761 &data_in_dma);
762 if (!data_in) {
763 printk(KERN_ERR "failure at %s:%d/%s()!\n", __FILE__,
764 __LINE__, __func__);
765 ret = -ENOMEM;
766 mpt2sas_base_free_smid(ioc, smid);
767 goto out;
768 }
769 }
770
771 /* add scatter gather elements */
772 psge = (void *)request + (karg.data_sge_offset*4);
773
774 if (!data_out_sz && !data_in_sz) {
775 mpt2sas_base_build_zero_len_sge(ioc, psge);
776 } else if (data_out_sz && data_in_sz) {
777 /* WRITE sgel first */
778 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
779 MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_HOST_TO_IOC);
780 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
781 ioc->base_add_sg_single(psge, sgl_flags |
782 data_out_sz, data_out_dma);
783
784 /* incr sgel */
785 psge += ioc->sge_size;
786
787 /* READ sgel last */
788 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
789 MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
790 MPI2_SGE_FLAGS_END_OF_LIST);
791 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
792 ioc->base_add_sg_single(psge, sgl_flags |
793 data_in_sz, data_in_dma);
794 } else if (data_out_sz) /* WRITE */ {
795 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
796 MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
797 MPI2_SGE_FLAGS_END_OF_LIST | MPI2_SGE_FLAGS_HOST_TO_IOC);
798 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
799 ioc->base_add_sg_single(psge, sgl_flags |
800 data_out_sz, data_out_dma);
801 } else if (data_in_sz) /* READ */ {
802 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
803 MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
804 MPI2_SGE_FLAGS_END_OF_LIST);
805 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
806 ioc->base_add_sg_single(psge, sgl_flags |
807 data_in_sz, data_in_dma);
808 }
809
810 /* send command to firmware */
811 #ifdef CONFIG_SCSI_MPT2SAS_LOGGING
812 _ctl_display_some_debug(ioc, smid, "ctl_request", NULL);
813 #endif
814
815 switch (mpi_request->Function) {
816 case MPI2_FUNCTION_SCSI_IO_REQUEST:
817 case MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH:
818 {
819 Mpi2SCSIIORequest_t *scsiio_request =
820 (Mpi2SCSIIORequest_t *)request;
821 scsiio_request->SenseBufferLength = SCSI_SENSE_BUFFERSIZE;
822 scsiio_request->SenseBufferLowAddress =
823 mpt2sas_base_get_sense_buffer_dma(ioc, smid);
824 memset(ioc->ctl_cmds.sense, 0, SCSI_SENSE_BUFFERSIZE);
825 if (mpi_request->Function == MPI2_FUNCTION_SCSI_IO_REQUEST)
826 mpt2sas_base_put_smid_scsi_io(ioc, smid,
827 le16_to_cpu(mpi_request->FunctionDependent1));
828 else
829 mpt2sas_base_put_smid_default(ioc, smid);
830 break;
831 }
832 case MPI2_FUNCTION_SCSI_TASK_MGMT:
833 {
834 Mpi2SCSITaskManagementRequest_t *tm_request =
835 (Mpi2SCSITaskManagementRequest_t *)request;
836
837 dtmprintk(ioc, printk(MPT2SAS_INFO_FMT "TASK_MGMT: "
838 "handle(0x%04x), task_type(0x%02x)\n", ioc->name,
839 le16_to_cpu(tm_request->DevHandle), tm_request->TaskType));
840
841 if (tm_request->TaskType ==
842 MPI2_SCSITASKMGMT_TASKTYPE_ABORT_TASK ||
843 tm_request->TaskType ==
844 MPI2_SCSITASKMGMT_TASKTYPE_QUERY_TASK) {
845 if (_ctl_set_task_mid(ioc, &karg, tm_request)) {
846 mpt2sas_base_free_smid(ioc, smid);
847 goto out;
848 }
849 }
850
851 mpt2sas_scsih_set_tm_flag(ioc, le16_to_cpu(
852 tm_request->DevHandle));
853 mpt2sas_base_put_smid_hi_priority(ioc, smid);
854 break;
855 }
856 case MPI2_FUNCTION_SMP_PASSTHROUGH:
857 {
858 Mpi2SmpPassthroughRequest_t *smp_request =
859 (Mpi2SmpPassthroughRequest_t *)mpi_request;
860 u8 *data;
861
862 /* ioc determines which port to use */
863 smp_request->PhysicalPort = 0xFF;
864 if (smp_request->PassthroughFlags &
865 MPI2_SMP_PT_REQ_PT_FLAGS_IMMEDIATE)
866 data = (u8 *)&smp_request->SGL;
867 else
868 data = data_out;
869
870 if (data[1] == 0x91 && (data[10] == 1 || data[10] == 2)) {
871 ioc->ioc_link_reset_in_progress = 1;
872 ioc->ignore_loginfos = 1;
873 }
874 mpt2sas_base_put_smid_default(ioc, smid);
875 break;
876 }
877 case MPI2_FUNCTION_SAS_IO_UNIT_CONTROL:
878 {
879 Mpi2SasIoUnitControlRequest_t *sasiounit_request =
880 (Mpi2SasIoUnitControlRequest_t *)mpi_request;
881
882 if (sasiounit_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET
883 || sasiounit_request->Operation ==
884 MPI2_SAS_OP_PHY_LINK_RESET) {
885 ioc->ioc_link_reset_in_progress = 1;
886 ioc->ignore_loginfos = 1;
887 }
888 mpt2sas_base_put_smid_default(ioc, smid);
889 break;
890 }
891 default:
892 mpt2sas_base_put_smid_default(ioc, smid);
893 break;
894 }
895
896 if (karg.timeout < MPT2_IOCTL_DEFAULT_TIMEOUT)
897 timeout = MPT2_IOCTL_DEFAULT_TIMEOUT;
898 else
899 timeout = karg.timeout;
900 init_completion(&ioc->ctl_cmds.done);
901 timeleft = wait_for_completion_timeout(&ioc->ctl_cmds.done,
902 timeout*HZ);
903 if (mpi_request->Function == MPI2_FUNCTION_SCSI_TASK_MGMT) {
904 Mpi2SCSITaskManagementRequest_t *tm_request =
905 (Mpi2SCSITaskManagementRequest_t *)mpi_request;
906 mpt2sas_scsih_clear_tm_flag(ioc, le16_to_cpu(
907 tm_request->DevHandle));
908 } else if ((mpi_request->Function == MPI2_FUNCTION_SMP_PASSTHROUGH ||
909 mpi_request->Function == MPI2_FUNCTION_SAS_IO_UNIT_CONTROL) &&
910 ioc->ioc_link_reset_in_progress) {
911 ioc->ioc_link_reset_in_progress = 0;
912 ioc->ignore_loginfos = 0;
913 }
914 if (!(ioc->ctl_cmds.status & MPT2_CMD_COMPLETE)) {
915 printk(MPT2SAS_ERR_FMT "%s: timeout\n", ioc->name,
916 __func__);
917 _debug_dump_mf(mpi_request, karg.data_sge_offset);
918 if (!(ioc->ctl_cmds.status & MPT2_CMD_RESET))
919 issue_reset = 1;
920 goto issue_host_reset;
921 }
922
923 mpi_reply = ioc->ctl_cmds.reply;
924 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK;
925
926 #ifdef CONFIG_SCSI_MPT2SAS_LOGGING
927 if (mpi_reply->Function == MPI2_FUNCTION_SCSI_TASK_MGMT &&
928 (ioc->logging_level & MPT_DEBUG_TM)) {
929 Mpi2SCSITaskManagementReply_t *tm_reply =
930 (Mpi2SCSITaskManagementReply_t *)mpi_reply;
931
932 printk(MPT2SAS_INFO_FMT "TASK_MGMT: "
933 "IOCStatus(0x%04x), IOCLogInfo(0x%08x), "
934 "TerminationCount(0x%08x)\n", ioc->name,
935 le16_to_cpu(tm_reply->IOCStatus),
936 le32_to_cpu(tm_reply->IOCLogInfo),
937 le32_to_cpu(tm_reply->TerminationCount));
938 }
939 #endif
940 /* copy out xdata to user */
941 if (data_in_sz) {
942 if (copy_to_user(karg.data_in_buf_ptr, data_in,
943 data_in_sz)) {
944 printk(KERN_ERR "failure at %s:%d/%s()!\n", __FILE__,
945 __LINE__, __func__);
946 ret = -ENODATA;
947 goto out;
948 }
949 }
950
951 /* copy out reply message frame to user */
952 if (karg.max_reply_bytes) {
953 sz = min_t(u32, karg.max_reply_bytes, ioc->reply_sz);
954 if (copy_to_user(karg.reply_frame_buf_ptr, ioc->ctl_cmds.reply,
955 sz)) {
956 printk(KERN_ERR "failure at %s:%d/%s()!\n", __FILE__,
957 __LINE__, __func__);
958 ret = -ENODATA;
959 goto out;
960 }
961 }
962
963 /* copy out sense to user */
964 if (karg.max_sense_bytes && (mpi_request->Function ==
965 MPI2_FUNCTION_SCSI_IO_REQUEST || mpi_request->Function ==
966 MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH)) {
967 sz = min_t(u32, karg.max_sense_bytes, SCSI_SENSE_BUFFERSIZE);
968 if (copy_to_user(karg.sense_data_ptr,
969 ioc->ctl_cmds.sense, sz)) {
970 printk(KERN_ERR "failure at %s:%d/%s()!\n", __FILE__,
971 __LINE__, __func__);
972 ret = -ENODATA;
973 goto out;
974 }
975 }
976
977 issue_host_reset:
978 if (issue_reset) {
979 ret = -ENODATA;
980 if ((mpi_request->Function == MPI2_FUNCTION_SCSI_IO_REQUEST ||
981 mpi_request->Function ==
982 MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH)) {
983 printk(MPT2SAS_INFO_FMT "issue target reset: handle "
984 "= (0x%04x)\n", ioc->name,
985 le16_to_cpu(mpi_request->FunctionDependent1));
986 mpt2sas_halt_firmware(ioc);
987 mpt2sas_scsih_issue_tm(ioc,
988 le16_to_cpu(mpi_request->FunctionDependent1), 0, 0,
989 0, MPI2_SCSITASKMGMT_TASKTYPE_TARGET_RESET, 0, 10,
990 NULL);
991 ioc->tm_cmds.status = MPT2_CMD_NOT_USED;
992 } else
993 mpt2sas_base_hard_reset_handler(ioc, CAN_SLEEP,
994 FORCE_BIG_HAMMER);
995 }
996
997 out:
998
999 /* free memory associated with sg buffers */
1000 if (data_in)
1001 pci_free_consistent(ioc->pdev, data_in_sz, data_in,
1002 data_in_dma);
1003
1004 if (data_out)
1005 pci_free_consistent(ioc->pdev, data_out_sz, data_out,
1006 data_out_dma);
1007
1008 kfree(mpi_request);
1009 ioc->ctl_cmds.status = MPT2_CMD_NOT_USED;
1010 mutex_unlock(&ioc->ctl_cmds.mutex);
1011 return ret;
1012 }
1013
1014 /**
1015 * _ctl_getiocinfo - main handler for MPT2IOCINFO opcode
1016 * @arg - user space buffer containing ioctl content
1017 */
1018 static long
1019 _ctl_getiocinfo(void __user *arg)
1020 {
1021 struct mpt2_ioctl_iocinfo karg;
1022 struct MPT2SAS_ADAPTER *ioc;
1023 u8 revision;
1024
1025 if (copy_from_user(&karg, arg, sizeof(karg))) {
1026 printk(KERN_ERR "failure at %s:%d/%s()!\n",
1027 __FILE__, __LINE__, __func__);
1028 return -EFAULT;
1029 }
1030 if (_ctl_verify_adapter(karg.hdr.ioc_number, &ioc) == -1 || !ioc)
1031 return -ENODEV;
1032
1033 dctlprintk(ioc, printk(MPT2SAS_INFO_FMT "%s: enter\n", ioc->name,
1034 __func__));
1035
1036 memset(&karg, 0 , sizeof(karg));
1037 karg.adapter_type = MPT2_IOCTL_INTERFACE_SAS2;
1038 if (ioc->pfacts)
1039 karg.port_number = ioc->pfacts[0].PortNumber;
1040 pci_read_config_byte(ioc->pdev, PCI_CLASS_REVISION, &revision);
1041 karg.hw_rev = revision;
1042 karg.pci_id = ioc->pdev->device;
1043 karg.subsystem_device = ioc->pdev->subsystem_device;
1044 karg.subsystem_vendor = ioc->pdev->subsystem_vendor;
1045 karg.pci_information.u.bits.bus = ioc->pdev->bus->number;
1046 karg.pci_information.u.bits.device = PCI_SLOT(ioc->pdev->devfn);
1047 karg.pci_information.u.bits.function = PCI_FUNC(ioc->pdev->devfn);
1048 karg.pci_information.segment_id = pci_domain_nr(ioc->pdev->bus);
1049 karg.firmware_version = ioc->facts.FWVersion.Word;
1050 strcpy(karg.driver_version, MPT2SAS_DRIVER_NAME);
1051 strcat(karg.driver_version, "-");
1052 strcat(karg.driver_version, MPT2SAS_DRIVER_VERSION);
1053 karg.bios_version = le32_to_cpu(ioc->bios_pg3.BiosVersion);
1054
1055 if (copy_to_user(arg, &karg, sizeof(karg))) {
1056 printk(KERN_ERR "failure at %s:%d/%s()!\n",
1057 __FILE__, __LINE__, __func__);
1058 return -EFAULT;
1059 }
1060 return 0;
1061 }
1062
1063 /**
1064 * _ctl_eventquery - main handler for MPT2EVENTQUERY opcode
1065 * @arg - user space buffer containing ioctl content
1066 */
1067 static long
1068 _ctl_eventquery(void __user *arg)
1069 {
1070 struct mpt2_ioctl_eventquery karg;
1071 struct MPT2SAS_ADAPTER *ioc;
1072
1073 if (copy_from_user(&karg, arg, sizeof(karg))) {
1074 printk(KERN_ERR "failure at %s:%d/%s()!\n",
1075 __FILE__, __LINE__, __func__);
1076 return -EFAULT;
1077 }
1078 if (_ctl_verify_adapter(karg.hdr.ioc_number, &ioc) == -1 || !ioc)
1079 return -ENODEV;
1080
1081 dctlprintk(ioc, printk(MPT2SAS_INFO_FMT "%s: enter\n", ioc->name,
1082 __func__));
1083
1084 karg.event_entries = MPT2SAS_CTL_EVENT_LOG_SIZE;
1085 memcpy(karg.event_types, ioc->event_type,
1086 MPI2_EVENT_NOTIFY_EVENTMASK_WORDS * sizeof(u32));
1087
1088 if (copy_to_user(arg, &karg, sizeof(karg))) {
1089 printk(KERN_ERR "failure at %s:%d/%s()!\n",
1090 __FILE__, __LINE__, __func__);
1091 return -EFAULT;
1092 }
1093 return 0;
1094 }
1095
1096 /**
1097 * _ctl_eventenable - main handler for MPT2EVENTENABLE opcode
1098 * @arg - user space buffer containing ioctl content
1099 */
1100 static long
1101 _ctl_eventenable(void __user *arg)
1102 {
1103 struct mpt2_ioctl_eventenable karg;
1104 struct MPT2SAS_ADAPTER *ioc;
1105
1106 if (copy_from_user(&karg, arg, sizeof(karg))) {
1107 printk(KERN_ERR "failure at %s:%d/%s()!\n",
1108 __FILE__, __LINE__, __func__);
1109 return -EFAULT;
1110 }
1111 if (_ctl_verify_adapter(karg.hdr.ioc_number, &ioc) == -1 || !ioc)
1112 return -ENODEV;
1113
1114 dctlprintk(ioc, printk(MPT2SAS_INFO_FMT "%s: enter\n", ioc->name,
1115 __func__));
1116
1117 if (ioc->event_log)
1118 return 0;
1119 memcpy(ioc->event_type, karg.event_types,
1120 MPI2_EVENT_NOTIFY_EVENTMASK_WORDS * sizeof(u32));
1121 mpt2sas_base_validate_event_type(ioc, ioc->event_type);
1122
1123 /* initialize event_log */
1124 ioc->event_context = 0;
1125 ioc->aen_event_read_flag = 0;
1126 ioc->event_log = kcalloc(MPT2SAS_CTL_EVENT_LOG_SIZE,
1127 sizeof(struct MPT2_IOCTL_EVENTS), GFP_KERNEL);
1128 if (!ioc->event_log) {
1129 printk(KERN_ERR "failure at %s:%d/%s()!\n",
1130 __FILE__, __LINE__, __func__);
1131 return -ENOMEM;
1132 }
1133 return 0;
1134 }
1135
1136 /**
1137 * _ctl_eventreport - main handler for MPT2EVENTREPORT opcode
1138 * @arg - user space buffer containing ioctl content
1139 */
1140 static long
1141 _ctl_eventreport(void __user *arg)
1142 {
1143 struct mpt2_ioctl_eventreport karg;
1144 struct MPT2SAS_ADAPTER *ioc;
1145 u32 number_bytes, max_events, max;
1146 struct mpt2_ioctl_eventreport __user *uarg = arg;
1147
1148 if (copy_from_user(&karg, arg, sizeof(karg))) {
1149 printk(KERN_ERR "failure at %s:%d/%s()!\n",
1150 __FILE__, __LINE__, __func__);
1151 return -EFAULT;
1152 }
1153 if (_ctl_verify_adapter(karg.hdr.ioc_number, &ioc) == -1 || !ioc)
1154 return -ENODEV;
1155
1156 dctlprintk(ioc, printk(MPT2SAS_INFO_FMT "%s: enter\n", ioc->name,
1157 __func__));
1158
1159 number_bytes = karg.hdr.max_data_size -
1160 sizeof(struct mpt2_ioctl_header);
1161 max_events = number_bytes/sizeof(struct MPT2_IOCTL_EVENTS);
1162 max = min_t(u32, MPT2SAS_CTL_EVENT_LOG_SIZE, max_events);
1163
1164 /* If fewer than 1 event is requested, there must have
1165 * been some type of error.
1166 */
1167 if (!max || !ioc->event_log)
1168 return -ENODATA;
1169
1170 number_bytes = max * sizeof(struct MPT2_IOCTL_EVENTS);
1171 if (copy_to_user(uarg->event_data, ioc->event_log, number_bytes)) {
1172 printk(KERN_ERR "failure at %s:%d/%s()!\n",
1173 __FILE__, __LINE__, __func__);
1174 return -EFAULT;
1175 }
1176
1177 /* reset flag so SIGIO can restart */
1178 ioc->aen_event_read_flag = 0;
1179 return 0;
1180 }
1181
1182 /**
1183 * _ctl_do_reset - main handler for MPT2HARDRESET opcode
1184 * @arg - user space buffer containing ioctl content
1185 */
1186 static long
1187 _ctl_do_reset(void __user *arg)
1188 {
1189 struct mpt2_ioctl_diag_reset karg;
1190 struct MPT2SAS_ADAPTER *ioc;
1191 int retval;
1192
1193 if (copy_from_user(&karg, arg, sizeof(karg))) {
1194 printk(KERN_ERR "failure at %s:%d/%s()!\n",
1195 __FILE__, __LINE__, __func__);
1196 return -EFAULT;
1197 }
1198 if (_ctl_verify_adapter(karg.hdr.ioc_number, &ioc) == -1 || !ioc)
1199 return -ENODEV;
1200
1201 dctlprintk(ioc, printk(MPT2SAS_INFO_FMT "%s: enter\n", ioc->name,
1202 __func__));
1203
1204 retval = mpt2sas_base_hard_reset_handler(ioc, CAN_SLEEP,
1205 FORCE_BIG_HAMMER);
1206 printk(MPT2SAS_INFO_FMT "host reset: %s\n",
1207 ioc->name, ((!retval) ? "SUCCESS" : "FAILED"));
1208 return 0;
1209 }
1210
1211 /**
1212 * _ctl_btdh_search_sas_device - searching for sas device
1213 * @ioc: per adapter object
1214 * @btdh: btdh ioctl payload
1215 */
1216 static int
1217 _ctl_btdh_search_sas_device(struct MPT2SAS_ADAPTER *ioc,
1218 struct mpt2_ioctl_btdh_mapping *btdh)
1219 {
1220 struct _sas_device *sas_device;
1221 unsigned long flags;
1222 int rc = 0;
1223
1224 if (list_empty(&ioc->sas_device_list))
1225 return rc;
1226
1227 spin_lock_irqsave(&ioc->sas_device_lock, flags);
1228 list_for_each_entry(sas_device, &ioc->sas_device_list, list) {
1229 if (btdh->bus == 0xFFFFFFFF && btdh->id == 0xFFFFFFFF &&
1230 btdh->handle == sas_device->handle) {
1231 btdh->bus = sas_device->channel;
1232 btdh->id = sas_device->id;
1233 rc = 1;
1234 goto out;
1235 } else if (btdh->bus == sas_device->channel && btdh->id ==
1236 sas_device->id && btdh->handle == 0xFFFF) {
1237 btdh->handle = sas_device->handle;
1238 rc = 1;
1239 goto out;
1240 }
1241 }
1242 out:
1243 spin_unlock_irqrestore(&ioc->sas_device_lock, flags);
1244 return rc;
1245 }
1246
1247 /**
1248 * _ctl_btdh_search_raid_device - searching for raid device
1249 * @ioc: per adapter object
1250 * @btdh: btdh ioctl payload
1251 */
1252 static int
1253 _ctl_btdh_search_raid_device(struct MPT2SAS_ADAPTER *ioc,
1254 struct mpt2_ioctl_btdh_mapping *btdh)
1255 {
1256 struct _raid_device *raid_device;
1257 unsigned long flags;
1258 int rc = 0;
1259
1260 if (list_empty(&ioc->raid_device_list))
1261 return rc;
1262
1263 spin_lock_irqsave(&ioc->raid_device_lock, flags);
1264 list_for_each_entry(raid_device, &ioc->raid_device_list, list) {
1265 if (btdh->bus == 0xFFFFFFFF && btdh->id == 0xFFFFFFFF &&
1266 btdh->handle == raid_device->handle) {
1267 btdh->bus = raid_device->channel;
1268 btdh->id = raid_device->id;
1269 rc = 1;
1270 goto out;
1271 } else if (btdh->bus == raid_device->channel && btdh->id ==
1272 raid_device->id && btdh->handle == 0xFFFF) {
1273 btdh->handle = raid_device->handle;
1274 rc = 1;
1275 goto out;
1276 }
1277 }
1278 out:
1279 spin_unlock_irqrestore(&ioc->raid_device_lock, flags);
1280 return rc;
1281 }
1282
1283 /**
1284 * _ctl_btdh_mapping - main handler for MPT2BTDHMAPPING opcode
1285 * @arg - user space buffer containing ioctl content
1286 */
1287 static long
1288 _ctl_btdh_mapping(void __user *arg)
1289 {
1290 struct mpt2_ioctl_btdh_mapping karg;
1291 struct MPT2SAS_ADAPTER *ioc;
1292 int rc;
1293
1294 if (copy_from_user(&karg, arg, sizeof(karg))) {
1295 printk(KERN_ERR "failure at %s:%d/%s()!\n",
1296 __FILE__, __LINE__, __func__);
1297 return -EFAULT;
1298 }
1299 if (_ctl_verify_adapter(karg.hdr.ioc_number, &ioc) == -1 || !ioc)
1300 return -ENODEV;
1301
1302 dctlprintk(ioc, printk(MPT2SAS_INFO_FMT "%s\n", ioc->name,
1303 __func__));
1304
1305 rc = _ctl_btdh_search_sas_device(ioc, &karg);
1306 if (!rc)
1307 _ctl_btdh_search_raid_device(ioc, &karg);
1308
1309 if (copy_to_user(arg, &karg, sizeof(karg))) {
1310 printk(KERN_ERR "failure at %s:%d/%s()!\n",
1311 __FILE__, __LINE__, __func__);
1312 return -EFAULT;
1313 }
1314 return 0;
1315 }
1316
1317 /**
1318 * _ctl_diag_capability - return diag buffer capability
1319 * @ioc: per adapter object
1320 * @buffer_type: specifies either TRACE, SNAPSHOT, or EXTENDED
1321 *
1322 * returns 1 when diag buffer support is enabled in firmware
1323 */
1324 static u8
1325 _ctl_diag_capability(struct MPT2SAS_ADAPTER *ioc, u8 buffer_type)
1326 {
1327 u8 rc = 0;
1328
1329 switch (buffer_type) {
1330 case MPI2_DIAG_BUF_TYPE_TRACE:
1331 if (ioc->facts.IOCCapabilities &
1332 MPI2_IOCFACTS_CAPABILITY_DIAG_TRACE_BUFFER)
1333 rc = 1;
1334 break;
1335 case MPI2_DIAG_BUF_TYPE_SNAPSHOT:
1336 if (ioc->facts.IOCCapabilities &
1337 MPI2_IOCFACTS_CAPABILITY_SNAPSHOT_BUFFER)
1338 rc = 1;
1339 break;
1340 case MPI2_DIAG_BUF_TYPE_EXTENDED:
1341 if (ioc->facts.IOCCapabilities &
1342 MPI2_IOCFACTS_CAPABILITY_EXTENDED_BUFFER)
1343 rc = 1;
1344 }
1345
1346 return rc;
1347 }
1348
1349 /**
1350 * _ctl_diag_register_2 - wrapper for registering diag buffer support
1351 * @ioc: per adapter object
1352 * @diag_register: the diag_register struct passed in from user space
1353 *
1354 */
1355 static long
1356 _ctl_diag_register_2(struct MPT2SAS_ADAPTER *ioc,
1357 struct mpt2_diag_register *diag_register)
1358 {
1359 int rc, i;
1360 void *request_data = NULL;
1361 dma_addr_t request_data_dma;
1362 u32 request_data_sz = 0;
1363 Mpi2DiagBufferPostRequest_t *mpi_request;
1364 Mpi2DiagBufferPostReply_t *mpi_reply;
1365 u8 buffer_type;
1366 unsigned long timeleft;
1367 u16 smid;
1368 u16 ioc_status;
1369 u8 issue_reset = 0;
1370
1371 dctlprintk(ioc, printk(MPT2SAS_INFO_FMT "%s\n", ioc->name,
1372 __func__));
1373
1374 if (ioc->ctl_cmds.status != MPT2_CMD_NOT_USED) {
1375 printk(MPT2SAS_ERR_FMT "%s: ctl_cmd in use\n",
1376 ioc->name, __func__);
1377 rc = -EAGAIN;
1378 goto out;
1379 }
1380
1381 buffer_type = diag_register->buffer_type;
1382 if (!_ctl_diag_capability(ioc, buffer_type)) {
1383 printk(MPT2SAS_ERR_FMT "%s: doesn't have capability for "
1384 "buffer_type(0x%02x)\n", ioc->name, __func__, buffer_type);
1385 return -EPERM;
1386 }
1387
1388 if (ioc->diag_buffer_status[buffer_type] &
1389 MPT2_DIAG_BUFFER_IS_REGISTERED) {
1390 printk(MPT2SAS_ERR_FMT "%s: already has a registered "
1391 "buffer for buffer_type(0x%02x)\n", ioc->name, __func__,
1392 buffer_type);
1393 return -EINVAL;
1394 }
1395
1396 if (diag_register->requested_buffer_size % 4) {
1397 printk(MPT2SAS_ERR_FMT "%s: the requested_buffer_size "
1398 "is not 4 byte aligned\n", ioc->name, __func__);
1399 return -EINVAL;
1400 }
1401
1402 smid = mpt2sas_base_get_smid(ioc, ioc->ctl_cb_idx);
1403 if (!smid) {
1404 printk(MPT2SAS_ERR_FMT "%s: failed obtaining a smid\n",
1405 ioc->name, __func__);
1406 rc = -EAGAIN;
1407 goto out;
1408 }
1409
1410 rc = 0;
1411 ioc->ctl_cmds.status = MPT2_CMD_PENDING;
1412 memset(ioc->ctl_cmds.reply, 0, ioc->reply_sz);
1413 mpi_request = mpt2sas_base_get_msg_frame(ioc, smid);
1414 ioc->ctl_cmds.smid = smid;
1415
1416 request_data = ioc->diag_buffer[buffer_type];
1417 request_data_sz = diag_register->requested_buffer_size;
1418 ioc->unique_id[buffer_type] = diag_register->unique_id;
1419 ioc->diag_buffer_status[buffer_type] = 0;
1420 memcpy(ioc->product_specific[buffer_type],
1421 diag_register->product_specific, MPT2_PRODUCT_SPECIFIC_DWORDS);
1422 ioc->diagnostic_flags[buffer_type] = diag_register->diagnostic_flags;
1423
1424 if (request_data) {
1425 request_data_dma = ioc->diag_buffer_dma[buffer_type];
1426 if (request_data_sz != ioc->diag_buffer_sz[buffer_type]) {
1427 pci_free_consistent(ioc->pdev,
1428 ioc->diag_buffer_sz[buffer_type],
1429 request_data, request_data_dma);
1430 request_data = NULL;
1431 }
1432 }
1433
1434 if (request_data == NULL) {
1435 ioc->diag_buffer_sz[buffer_type] = 0;
1436 ioc->diag_buffer_dma[buffer_type] = 0;
1437 request_data = pci_alloc_consistent(
1438 ioc->pdev, request_data_sz, &request_data_dma);
1439 if (request_data == NULL) {
1440 printk(MPT2SAS_ERR_FMT "%s: failed allocating memory"
1441 " for diag buffers, requested size(%d)\n",
1442 ioc->name, __func__, request_data_sz);
1443 mpt2sas_base_free_smid(ioc, smid);
1444 return -ENOMEM;
1445 }
1446 ioc->diag_buffer[buffer_type] = request_data;
1447 ioc->diag_buffer_sz[buffer_type] = request_data_sz;
1448 ioc->diag_buffer_dma[buffer_type] = request_data_dma;
1449 }
1450
1451 mpi_request->Function = MPI2_FUNCTION_DIAG_BUFFER_POST;
1452 mpi_request->BufferType = diag_register->buffer_type;
1453 mpi_request->Flags = cpu_to_le32(diag_register->diagnostic_flags);
1454 mpi_request->BufferAddress = cpu_to_le64(request_data_dma);
1455 mpi_request->BufferLength = cpu_to_le32(request_data_sz);
1456 mpi_request->VF_ID = 0; /* TODO */
1457 mpi_request->VP_ID = 0;
1458
1459 dctlprintk(ioc, printk(MPT2SAS_INFO_FMT "%s: diag_buffer(0x%p), "
1460 "dma(0x%llx), sz(%d)\n", ioc->name, __func__, request_data,
1461 (unsigned long long)request_data_dma,
1462 le32_to_cpu(mpi_request->BufferLength)));
1463
1464 for (i = 0; i < MPT2_PRODUCT_SPECIFIC_DWORDS; i++)
1465 mpi_request->ProductSpecific[i] =
1466 cpu_to_le32(ioc->product_specific[buffer_type][i]);
1467
1468 mpt2sas_base_put_smid_default(ioc, smid);
1469 init_completion(&ioc->ctl_cmds.done);
1470 timeleft = wait_for_completion_timeout(&ioc->ctl_cmds.done,
1471 MPT2_IOCTL_DEFAULT_TIMEOUT*HZ);
1472
1473 if (!(ioc->ctl_cmds.status & MPT2_CMD_COMPLETE)) {
1474 printk(MPT2SAS_ERR_FMT "%s: timeout\n", ioc->name,
1475 __func__);
1476 _debug_dump_mf(mpi_request,
1477 sizeof(Mpi2DiagBufferPostRequest_t)/4);
1478 if (!(ioc->ctl_cmds.status & MPT2_CMD_RESET))
1479 issue_reset = 1;
1480 goto issue_host_reset;
1481 }
1482
1483 /* process the completed Reply Message Frame */
1484 if ((ioc->ctl_cmds.status & MPT2_CMD_REPLY_VALID) == 0) {
1485 printk(MPT2SAS_ERR_FMT "%s: no reply message\n",
1486 ioc->name, __func__);
1487 rc = -EFAULT;
1488 goto out;
1489 }
1490
1491 mpi_reply = ioc->ctl_cmds.reply;
1492 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK;
1493
1494 if (ioc_status == MPI2_IOCSTATUS_SUCCESS) {
1495 ioc->diag_buffer_status[buffer_type] |=
1496 MPT2_DIAG_BUFFER_IS_REGISTERED;
1497 dctlprintk(ioc, printk(MPT2SAS_INFO_FMT "%s: success\n",
1498 ioc->name, __func__));
1499 } else {
1500 printk(MPT2SAS_INFO_FMT "%s: ioc_status(0x%04x) "
1501 "log_info(0x%08x)\n", ioc->name, __func__,
1502 ioc_status, le32_to_cpu(mpi_reply->IOCLogInfo));
1503 rc = -EFAULT;
1504 }
1505
1506 issue_host_reset:
1507 if (issue_reset)
1508 mpt2sas_base_hard_reset_handler(ioc, CAN_SLEEP,
1509 FORCE_BIG_HAMMER);
1510
1511 out:
1512
1513 if (rc && request_data)
1514 pci_free_consistent(ioc->pdev, request_data_sz,
1515 request_data, request_data_dma);
1516
1517 ioc->ctl_cmds.status = MPT2_CMD_NOT_USED;
1518 return rc;
1519 }
1520
1521 /**
1522 * mpt2sas_enable_diag_buffer - enabling diag_buffers support driver load time
1523 * @ioc: per adapter object
1524 * @bits_to_register: bitwise field where trace is bit 0, and snapshot is bit 1
1525 *
1526 * This is called when command line option diag_buffer_enable is enabled
1527 * at driver load time.
1528 */
1529 void
1530 mpt2sas_enable_diag_buffer(struct MPT2SAS_ADAPTER *ioc, u8 bits_to_register)
1531 {
1532 struct mpt2_diag_register diag_register;
1533
1534 memset(&diag_register, 0, sizeof(struct mpt2_diag_register));
1535
1536 if (bits_to_register & 1) {
1537 printk(MPT2SAS_INFO_FMT "registering trace buffer support\n",
1538 ioc->name);
1539 diag_register.buffer_type = MPI2_DIAG_BUF_TYPE_TRACE;
1540 /* register for 1MB buffers */
1541 diag_register.requested_buffer_size = (1024 * 1024);
1542 diag_register.unique_id = 0x7075900;
1543 _ctl_diag_register_2(ioc, &diag_register);
1544 }
1545
1546 if (bits_to_register & 2) {
1547 printk(MPT2SAS_INFO_FMT "registering snapshot buffer support\n",
1548 ioc->name);
1549 diag_register.buffer_type = MPI2_DIAG_BUF_TYPE_SNAPSHOT;
1550 /* register for 2MB buffers */
1551 diag_register.requested_buffer_size = 2 * (1024 * 1024);
1552 diag_register.unique_id = 0x7075901;
1553 _ctl_diag_register_2(ioc, &diag_register);
1554 }
1555
1556 if (bits_to_register & 4) {
1557 printk(MPT2SAS_INFO_FMT "registering extended buffer support\n",
1558 ioc->name);
1559 diag_register.buffer_type = MPI2_DIAG_BUF_TYPE_EXTENDED;
1560 /* register for 2MB buffers */
1561 diag_register.requested_buffer_size = 2 * (1024 * 1024);
1562 diag_register.unique_id = 0x7075901;
1563 _ctl_diag_register_2(ioc, &diag_register);
1564 }
1565 }
1566
1567 /**
1568 * _ctl_diag_register - application register with driver
1569 * @arg - user space buffer containing ioctl content
1570 * @state - NON_BLOCKING or BLOCKING
1571 *
1572 * This will allow the driver to setup any required buffers that will be
1573 * needed by firmware to communicate with the driver.
1574 */
1575 static long
1576 _ctl_diag_register(void __user *arg, enum block_state state)
1577 {
1578 struct mpt2_diag_register karg;
1579 struct MPT2SAS_ADAPTER *ioc;
1580 long rc;
1581
1582 if (copy_from_user(&karg, arg, sizeof(karg))) {
1583 printk(KERN_ERR "failure at %s:%d/%s()!\n",
1584 __FILE__, __LINE__, __func__);
1585 return -EFAULT;
1586 }
1587 if (_ctl_verify_adapter(karg.hdr.ioc_number, &ioc) == -1 || !ioc)
1588 return -ENODEV;
1589
1590 if (state == NON_BLOCKING && !mutex_trylock(&ioc->ctl_cmds.mutex))
1591 return -EAGAIN;
1592 else if (mutex_lock_interruptible(&ioc->ctl_cmds.mutex))
1593 return -ERESTARTSYS;
1594 rc = _ctl_diag_register_2(ioc, &karg);
1595 mutex_unlock(&ioc->ctl_cmds.mutex);
1596 return rc;
1597 }
1598
1599 /**
1600 * _ctl_diag_unregister - application unregister with driver
1601 * @arg - user space buffer containing ioctl content
1602 *
1603 * This will allow the driver to cleanup any memory allocated for diag
1604 * messages and to free up any resources.
1605 */
1606 static long
1607 _ctl_diag_unregister(void __user *arg)
1608 {
1609 struct mpt2_diag_unregister karg;
1610 struct MPT2SAS_ADAPTER *ioc;
1611 void *request_data;
1612 dma_addr_t request_data_dma;
1613 u32 request_data_sz;
1614 u8 buffer_type;
1615
1616 if (copy_from_user(&karg, arg, sizeof(karg))) {
1617 printk(KERN_ERR "failure at %s:%d/%s()!\n",
1618 __FILE__, __LINE__, __func__);
1619 return -EFAULT;
1620 }
1621 if (_ctl_verify_adapter(karg.hdr.ioc_number, &ioc) == -1 || !ioc)
1622 return -ENODEV;
1623
1624 dctlprintk(ioc, printk(MPT2SAS_INFO_FMT "%s\n", ioc->name,
1625 __func__));
1626
1627 buffer_type = karg.unique_id & 0x000000ff;
1628 if (!_ctl_diag_capability(ioc, buffer_type)) {
1629 printk(MPT2SAS_ERR_FMT "%s: doesn't have capability for "
1630 "buffer_type(0x%02x)\n", ioc->name, __func__, buffer_type);
1631 return -EPERM;
1632 }
1633
1634 if ((ioc->diag_buffer_status[buffer_type] &
1635 MPT2_DIAG_BUFFER_IS_REGISTERED) == 0) {
1636 printk(MPT2SAS_ERR_FMT "%s: buffer_type(0x%02x) is not "
1637 "registered\n", ioc->name, __func__, buffer_type);
1638 return -EINVAL;
1639 }
1640 if ((ioc->diag_buffer_status[buffer_type] &
1641 MPT2_DIAG_BUFFER_IS_RELEASED) == 0) {
1642 printk(MPT2SAS_ERR_FMT "%s: buffer_type(0x%02x) has not been "
1643 "released\n", ioc->name, __func__, buffer_type);
1644 return -EINVAL;
1645 }
1646
1647 if (karg.unique_id != ioc->unique_id[buffer_type]) {
1648 printk(MPT2SAS_ERR_FMT "%s: unique_id(0x%08x) is not "
1649 "registered\n", ioc->name, __func__, karg.unique_id);
1650 return -EINVAL;
1651 }
1652
1653 request_data = ioc->diag_buffer[buffer_type];
1654 if (!request_data) {
1655 printk(MPT2SAS_ERR_FMT "%s: doesn't have memory allocated for "
1656 "buffer_type(0x%02x)\n", ioc->name, __func__, buffer_type);
1657 return -ENOMEM;
1658 }
1659
1660 request_data_sz = ioc->diag_buffer_sz[buffer_type];
1661 request_data_dma = ioc->diag_buffer_dma[buffer_type];
1662 pci_free_consistent(ioc->pdev, request_data_sz,
1663 request_data, request_data_dma);
1664 ioc->diag_buffer[buffer_type] = NULL;
1665 ioc->diag_buffer_status[buffer_type] = 0;
1666 return 0;
1667 }
1668
1669 /**
1670 * _ctl_diag_query - query relevant info associated with diag buffers
1671 * @arg - user space buffer containing ioctl content
1672 *
1673 * The application will send only buffer_type and unique_id. Driver will
1674 * inspect unique_id first, if valid, fill in all the info. If unique_id is
1675 * 0x00, the driver will return info specified by Buffer Type.
1676 */
1677 static long
1678 _ctl_diag_query(void __user *arg)
1679 {
1680 struct mpt2_diag_query karg;
1681 struct MPT2SAS_ADAPTER *ioc;
1682 void *request_data;
1683 int i;
1684 u8 buffer_type;
1685
1686 if (copy_from_user(&karg, arg, sizeof(karg))) {
1687 printk(KERN_ERR "failure at %s:%d/%s()!\n",
1688 __FILE__, __LINE__, __func__);
1689 return -EFAULT;
1690 }
1691 if (_ctl_verify_adapter(karg.hdr.ioc_number, &ioc) == -1 || !ioc)
1692 return -ENODEV;
1693
1694 dctlprintk(ioc, printk(MPT2SAS_INFO_FMT "%s\n", ioc->name,
1695 __func__));
1696
1697 karg.application_flags = 0;
1698 buffer_type = karg.buffer_type;
1699
1700 if (!_ctl_diag_capability(ioc, buffer_type)) {
1701 printk(MPT2SAS_ERR_FMT "%s: doesn't have capability for "
1702 "buffer_type(0x%02x)\n", ioc->name, __func__, buffer_type);
1703 return -EPERM;
1704 }
1705
1706 if ((ioc->diag_buffer_status[buffer_type] &
1707 MPT2_DIAG_BUFFER_IS_REGISTERED) == 0) {
1708 printk(MPT2SAS_ERR_FMT "%s: buffer_type(0x%02x) is not "
1709 "registered\n", ioc->name, __func__, buffer_type);
1710 return -EINVAL;
1711 }
1712
1713 if (karg.unique_id & 0xffffff00) {
1714 if (karg.unique_id != ioc->unique_id[buffer_type]) {
1715 printk(MPT2SAS_ERR_FMT "%s: unique_id(0x%08x) is not "
1716 "registered\n", ioc->name, __func__,
1717 karg.unique_id);
1718 return -EINVAL;
1719 }
1720 }
1721
1722 request_data = ioc->diag_buffer[buffer_type];
1723 if (!request_data) {
1724 printk(MPT2SAS_ERR_FMT "%s: doesn't have buffer for "
1725 "buffer_type(0x%02x)\n", ioc->name, __func__, buffer_type);
1726 return -ENOMEM;
1727 }
1728
1729 if (ioc->diag_buffer_status[buffer_type] & MPT2_DIAG_BUFFER_IS_RELEASED)
1730 karg.application_flags = (MPT2_APP_FLAGS_APP_OWNED |
1731 MPT2_APP_FLAGS_BUFFER_VALID);
1732 else
1733 karg.application_flags = (MPT2_APP_FLAGS_APP_OWNED |
1734 MPT2_APP_FLAGS_BUFFER_VALID |
1735 MPT2_APP_FLAGS_FW_BUFFER_ACCESS);
1736
1737 for (i = 0; i < MPT2_PRODUCT_SPECIFIC_DWORDS; i++)
1738 karg.product_specific[i] =
1739 ioc->product_specific[buffer_type][i];
1740
1741 karg.total_buffer_size = ioc->diag_buffer_sz[buffer_type];
1742 karg.driver_added_buffer_size = 0;
1743 karg.unique_id = ioc->unique_id[buffer_type];
1744 karg.diagnostic_flags = ioc->diagnostic_flags[buffer_type];
1745
1746 if (copy_to_user(arg, &karg, sizeof(struct mpt2_diag_query))) {
1747 printk(MPT2SAS_ERR_FMT "%s: unable to write mpt2_diag_query "
1748 "data @ %p\n", ioc->name, __func__, arg);
1749 return -EFAULT;
1750 }
1751 return 0;
1752 }
1753
1754 /**
1755 * _ctl_send_release - Diag Release Message
1756 * @ioc: per adapter object
1757 * @buffer_type - specifies either TRACE, SNAPSHOT, or EXTENDED
1758 * @issue_reset - specifies whether host reset is required.
1759 *
1760 */
1761 static int
1762 _ctl_send_release(struct MPT2SAS_ADAPTER *ioc, u8 buffer_type, u8 *issue_reset)
1763 {
1764 Mpi2DiagReleaseRequest_t *mpi_request;
1765 Mpi2DiagReleaseReply_t *mpi_reply;
1766 u16 smid;
1767 u16 ioc_status;
1768 u32 ioc_state;
1769 int rc;
1770 unsigned long timeleft;
1771
1772 dctlprintk(ioc, printk(MPT2SAS_INFO_FMT "%s\n", ioc->name,
1773 __func__));
1774
1775 rc = 0;
1776 *issue_reset = 0;
1777
1778 ioc_state = mpt2sas_base_get_iocstate(ioc, 1);
1779 if (ioc_state != MPI2_IOC_STATE_OPERATIONAL) {
1780 dctlprintk(ioc, printk(MPT2SAS_INFO_FMT "%s: "
1781 "skipping due to FAULT state\n", ioc->name,
1782 __func__));
1783 rc = -EAGAIN;
1784 goto out;
1785 }
1786
1787 if (ioc->ctl_cmds.status != MPT2_CMD_NOT_USED) {
1788 printk(MPT2SAS_ERR_FMT "%s: ctl_cmd in use\n",
1789 ioc->name, __func__);
1790 rc = -EAGAIN;
1791 goto out;
1792 }
1793
1794 smid = mpt2sas_base_get_smid(ioc, ioc->ctl_cb_idx);
1795 if (!smid) {
1796 printk(MPT2SAS_ERR_FMT "%s: failed obtaining a smid\n",
1797 ioc->name, __func__);
1798 rc = -EAGAIN;
1799 goto out;
1800 }
1801
1802 ioc->ctl_cmds.status = MPT2_CMD_PENDING;
1803 memset(ioc->ctl_cmds.reply, 0, ioc->reply_sz);
1804 mpi_request = mpt2sas_base_get_msg_frame(ioc, smid);
1805 ioc->ctl_cmds.smid = smid;
1806
1807 mpi_request->Function = MPI2_FUNCTION_DIAG_RELEASE;
1808 mpi_request->BufferType = buffer_type;
1809 mpi_request->VF_ID = 0; /* TODO */
1810 mpi_request->VP_ID = 0;
1811
1812 mpt2sas_base_put_smid_default(ioc, smid);
1813 init_completion(&ioc->ctl_cmds.done);
1814 timeleft = wait_for_completion_timeout(&ioc->ctl_cmds.done,
1815 MPT2_IOCTL_DEFAULT_TIMEOUT*HZ);
1816
1817 if (!(ioc->ctl_cmds.status & MPT2_CMD_COMPLETE)) {
1818 printk(MPT2SAS_ERR_FMT "%s: timeout\n", ioc->name,
1819 __func__);
1820 _debug_dump_mf(mpi_request,
1821 sizeof(Mpi2DiagReleaseRequest_t)/4);
1822 if (!(ioc->ctl_cmds.status & MPT2_CMD_RESET))
1823 *issue_reset = 1;
1824 rc = -EFAULT;
1825 goto out;
1826 }
1827
1828 /* process the completed Reply Message Frame */
1829 if ((ioc->ctl_cmds.status & MPT2_CMD_REPLY_VALID) == 0) {
1830 printk(MPT2SAS_ERR_FMT "%s: no reply message\n",
1831 ioc->name, __func__);
1832 rc = -EFAULT;
1833 goto out;
1834 }
1835
1836 mpi_reply = ioc->ctl_cmds.reply;
1837 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK;
1838
1839 if (ioc_status == MPI2_IOCSTATUS_SUCCESS) {
1840 ioc->diag_buffer_status[buffer_type] |=
1841 MPT2_DIAG_BUFFER_IS_RELEASED;
1842 dctlprintk(ioc, printk(MPT2SAS_INFO_FMT "%s: success\n",
1843 ioc->name, __func__));
1844 } else {
1845 printk(MPT2SAS_INFO_FMT "%s: ioc_status(0x%04x) "
1846 "log_info(0x%08x)\n", ioc->name, __func__,
1847 ioc_status, le32_to_cpu(mpi_reply->IOCLogInfo));
1848 rc = -EFAULT;
1849 }
1850
1851 out:
1852 ioc->ctl_cmds.status = MPT2_CMD_NOT_USED;
1853 return rc;
1854 }
1855
1856 /**
1857 * _ctl_diag_release - request to send Diag Release Message to firmware
1858 * @arg - user space buffer containing ioctl content
1859 * @state - NON_BLOCKING or BLOCKING
1860 *
1861 * This allows ownership of the specified buffer to returned to the driver,
1862 * allowing an application to read the buffer without fear that firmware is
1863 * overwritting information in the buffer.
1864 */
1865 static long
1866 _ctl_diag_release(void __user *arg, enum block_state state)
1867 {
1868 struct mpt2_diag_release karg;
1869 struct MPT2SAS_ADAPTER *ioc;
1870 void *request_data;
1871 int rc;
1872 u8 buffer_type;
1873 u8 issue_reset = 0;
1874
1875 if (copy_from_user(&karg, arg, sizeof(karg))) {
1876 printk(KERN_ERR "failure at %s:%d/%s()!\n",
1877 __FILE__, __LINE__, __func__);
1878 return -EFAULT;
1879 }
1880 if (_ctl_verify_adapter(karg.hdr.ioc_number, &ioc) == -1 || !ioc)
1881 return -ENODEV;
1882
1883 dctlprintk(ioc, printk(MPT2SAS_INFO_FMT "%s\n", ioc->name,
1884 __func__));
1885
1886 buffer_type = karg.unique_id & 0x000000ff;
1887 if (!_ctl_diag_capability(ioc, buffer_type)) {
1888 printk(MPT2SAS_ERR_FMT "%s: doesn't have capability for "
1889 "buffer_type(0x%02x)\n", ioc->name, __func__, buffer_type);
1890 return -EPERM;
1891 }
1892
1893 if ((ioc->diag_buffer_status[buffer_type] &
1894 MPT2_DIAG_BUFFER_IS_REGISTERED) == 0) {
1895 printk(MPT2SAS_ERR_FMT "%s: buffer_type(0x%02x) is not "
1896 "registered\n", ioc->name, __func__, buffer_type);
1897 return -EINVAL;
1898 }
1899
1900 if (karg.unique_id != ioc->unique_id[buffer_type]) {
1901 printk(MPT2SAS_ERR_FMT "%s: unique_id(0x%08x) is not "
1902 "registered\n", ioc->name, __func__, karg.unique_id);
1903 return -EINVAL;
1904 }
1905
1906 if (ioc->diag_buffer_status[buffer_type] &
1907 MPT2_DIAG_BUFFER_IS_RELEASED) {
1908 printk(MPT2SAS_ERR_FMT "%s: buffer_type(0x%02x) "
1909 "is already released\n", ioc->name, __func__,
1910 buffer_type);
1911 return 0;
1912 }
1913
1914 request_data = ioc->diag_buffer[buffer_type];
1915
1916 if (!request_data) {
1917 printk(MPT2SAS_ERR_FMT "%s: doesn't have memory allocated for "
1918 "buffer_type(0x%02x)\n", ioc->name, __func__, buffer_type);
1919 return -ENOMEM;
1920 }
1921
1922 /* buffers were released by due to host reset */
1923 if ((ioc->diag_buffer_status[buffer_type] &
1924 MPT2_DIAG_BUFFER_IS_DIAG_RESET)) {
1925 ioc->diag_buffer_status[buffer_type] |=
1926 MPT2_DIAG_BUFFER_IS_RELEASED;
1927 ioc->diag_buffer_status[buffer_type] &=
1928 ~MPT2_DIAG_BUFFER_IS_DIAG_RESET;
1929 printk(MPT2SAS_ERR_FMT "%s: buffer_type(0x%02x) "
1930 "was released due to host reset\n", ioc->name, __func__,
1931 buffer_type);
1932 return 0;
1933 }
1934
1935 if (state == NON_BLOCKING && !mutex_trylock(&ioc->ctl_cmds.mutex))
1936 return -EAGAIN;
1937 else if (mutex_lock_interruptible(&ioc->ctl_cmds.mutex))
1938 return -ERESTARTSYS;
1939
1940 rc = _ctl_send_release(ioc, buffer_type, &issue_reset);
1941
1942 if (issue_reset)
1943 mpt2sas_base_hard_reset_handler(ioc, CAN_SLEEP,
1944 FORCE_BIG_HAMMER);
1945
1946 mutex_unlock(&ioc->ctl_cmds.mutex);
1947 return rc;
1948 }
1949
1950 /**
1951 * _ctl_diag_read_buffer - request for copy of the diag buffer
1952 * @arg - user space buffer containing ioctl content
1953 * @state - NON_BLOCKING or BLOCKING
1954 */
1955 static long
1956 _ctl_diag_read_buffer(void __user *arg, enum block_state state)
1957 {
1958 struct mpt2_diag_read_buffer karg;
1959 struct mpt2_diag_read_buffer __user *uarg = arg;
1960 struct MPT2SAS_ADAPTER *ioc;
1961 void *request_data, *diag_data;
1962 Mpi2DiagBufferPostRequest_t *mpi_request;
1963 Mpi2DiagBufferPostReply_t *mpi_reply;
1964 int rc, i;
1965 u8 buffer_type;
1966 unsigned long timeleft;
1967 u16 smid;
1968 u16 ioc_status;
1969 u8 issue_reset = 0;
1970
1971 if (copy_from_user(&karg, arg, sizeof(karg))) {
1972 printk(KERN_ERR "failure at %s:%d/%s()!\n",
1973 __FILE__, __LINE__, __func__);
1974 return -EFAULT;
1975 }
1976 if (_ctl_verify_adapter(karg.hdr.ioc_number, &ioc) == -1 || !ioc)
1977 return -ENODEV;
1978
1979 dctlprintk(ioc, printk(MPT2SAS_INFO_FMT "%s\n", ioc->name,
1980 __func__));
1981
1982 buffer_type = karg.unique_id & 0x000000ff;
1983 if (!_ctl_diag_capability(ioc, buffer_type)) {
1984 printk(MPT2SAS_ERR_FMT "%s: doesn't have capability for "
1985 "buffer_type(0x%02x)\n", ioc->name, __func__, buffer_type);
1986 return -EPERM;
1987 }
1988
1989 if (karg.unique_id != ioc->unique_id[buffer_type]) {
1990 printk(MPT2SAS_ERR_FMT "%s: unique_id(0x%08x) is not "
1991 "registered\n", ioc->name, __func__, karg.unique_id);
1992 return -EINVAL;
1993 }
1994
1995 request_data = ioc->diag_buffer[buffer_type];
1996 if (!request_data) {
1997 printk(MPT2SAS_ERR_FMT "%s: doesn't have buffer for "
1998 "buffer_type(0x%02x)\n", ioc->name, __func__, buffer_type);
1999 return -ENOMEM;
2000 }
2001
2002 if ((karg.starting_offset % 4) || (karg.bytes_to_read % 4)) {
2003 printk(MPT2SAS_ERR_FMT "%s: either the starting_offset "
2004 "or bytes_to_read are not 4 byte aligned\n", ioc->name,
2005 __func__);
2006 return -EINVAL;
2007 }
2008
2009 diag_data = (void *)(request_data + karg.starting_offset);
2010 dctlprintk(ioc, printk(MPT2SAS_INFO_FMT "%s: diag_buffer(%p), "
2011 "offset(%d), sz(%d)\n", ioc->name, __func__,
2012 diag_data, karg.starting_offset, karg.bytes_to_read));
2013
2014 if (copy_to_user((void __user *)uarg->diagnostic_data,
2015 diag_data, karg.bytes_to_read)) {
2016 printk(MPT2SAS_ERR_FMT "%s: Unable to write "
2017 "mpt_diag_read_buffer_t data @ %p\n", ioc->name,
2018 __func__, diag_data);
2019 return -EFAULT;
2020 }
2021
2022 if ((karg.flags & MPT2_FLAGS_REREGISTER) == 0)
2023 return 0;
2024
2025 dctlprintk(ioc, printk(MPT2SAS_INFO_FMT "%s: Reregister "
2026 "buffer_type(0x%02x)\n", ioc->name, __func__, buffer_type));
2027 if ((ioc->diag_buffer_status[buffer_type] &
2028 MPT2_DIAG_BUFFER_IS_RELEASED) == 0) {
2029 dctlprintk(ioc, printk(MPT2SAS_INFO_FMT "%s: "
2030 "buffer_type(0x%02x) is still registered\n", ioc->name,
2031 __func__, buffer_type));
2032 return 0;
2033 }
2034 /* Get a free request frame and save the message context.
2035 */
2036 if (state == NON_BLOCKING && !mutex_trylock(&ioc->ctl_cmds.mutex))
2037 return -EAGAIN;
2038 else if (mutex_lock_interruptible(&ioc->ctl_cmds.mutex))
2039 return -ERESTARTSYS;
2040
2041 if (ioc->ctl_cmds.status != MPT2_CMD_NOT_USED) {
2042 printk(MPT2SAS_ERR_FMT "%s: ctl_cmd in use\n",
2043 ioc->name, __func__);
2044 rc = -EAGAIN;
2045 goto out;
2046 }
2047
2048 smid = mpt2sas_base_get_smid(ioc, ioc->ctl_cb_idx);
2049 if (!smid) {
2050 printk(MPT2SAS_ERR_FMT "%s: failed obtaining a smid\n",
2051 ioc->name, __func__);
2052 rc = -EAGAIN;
2053 goto out;
2054 }
2055
2056 rc = 0;
2057 ioc->ctl_cmds.status = MPT2_CMD_PENDING;
2058 memset(ioc->ctl_cmds.reply, 0, ioc->reply_sz);
2059 mpi_request = mpt2sas_base_get_msg_frame(ioc, smid);
2060 ioc->ctl_cmds.smid = smid;
2061
2062 mpi_request->Function = MPI2_FUNCTION_DIAG_BUFFER_POST;
2063 mpi_request->BufferType = buffer_type;
2064 mpi_request->BufferLength =
2065 cpu_to_le32(ioc->diag_buffer_sz[buffer_type]);
2066 mpi_request->BufferAddress =
2067 cpu_to_le64(ioc->diag_buffer_dma[buffer_type]);
2068 for (i = 0; i < MPT2_PRODUCT_SPECIFIC_DWORDS; i++)
2069 mpi_request->ProductSpecific[i] =
2070 cpu_to_le32(ioc->product_specific[buffer_type][i]);
2071 mpi_request->VF_ID = 0; /* TODO */
2072 mpi_request->VP_ID = 0;
2073
2074 mpt2sas_base_put_smid_default(ioc, smid);
2075 init_completion(&ioc->ctl_cmds.done);
2076 timeleft = wait_for_completion_timeout(&ioc->ctl_cmds.done,
2077 MPT2_IOCTL_DEFAULT_TIMEOUT*HZ);
2078
2079 if (!(ioc->ctl_cmds.status & MPT2_CMD_COMPLETE)) {
2080 printk(MPT2SAS_ERR_FMT "%s: timeout\n", ioc->name,
2081 __func__);
2082 _debug_dump_mf(mpi_request,
2083 sizeof(Mpi2DiagBufferPostRequest_t)/4);
2084 if (!(ioc->ctl_cmds.status & MPT2_CMD_RESET))
2085 issue_reset = 1;
2086 goto issue_host_reset;
2087 }
2088
2089 /* process the completed Reply Message Frame */
2090 if ((ioc->ctl_cmds.status & MPT2_CMD_REPLY_VALID) == 0) {
2091 printk(MPT2SAS_ERR_FMT "%s: no reply message\n",
2092 ioc->name, __func__);
2093 rc = -EFAULT;
2094 goto out;
2095 }
2096
2097 mpi_reply = ioc->ctl_cmds.reply;
2098 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK;
2099
2100 if (ioc_status == MPI2_IOCSTATUS_SUCCESS) {
2101 ioc->diag_buffer_status[buffer_type] |=
2102 MPT2_DIAG_BUFFER_IS_REGISTERED;
2103 dctlprintk(ioc, printk(MPT2SAS_INFO_FMT "%s: success\n",
2104 ioc->name, __func__));
2105 } else {
2106 printk(MPT2SAS_INFO_FMT "%s: ioc_status(0x%04x) "
2107 "log_info(0x%08x)\n", ioc->name, __func__,
2108 ioc_status, le32_to_cpu(mpi_reply->IOCLogInfo));
2109 rc = -EFAULT;
2110 }
2111
2112 issue_host_reset:
2113 if (issue_reset)
2114 mpt2sas_base_hard_reset_handler(ioc, CAN_SLEEP,
2115 FORCE_BIG_HAMMER);
2116
2117 out:
2118
2119 ioc->ctl_cmds.status = MPT2_CMD_NOT_USED;
2120 mutex_unlock(&ioc->ctl_cmds.mutex);
2121 return rc;
2122 }
2123
2124 /**
2125 * _ctl_ioctl_main - main ioctl entry point
2126 * @file - (struct file)
2127 * @cmd - ioctl opcode
2128 * @arg -
2129 */
2130 static long
2131 _ctl_ioctl_main(struct file *file, unsigned int cmd, void __user *arg)
2132 {
2133 enum block_state state;
2134 long ret = -EINVAL;
2135
2136 state = (file->f_flags & O_NONBLOCK) ? NON_BLOCKING :
2137 BLOCKING;
2138
2139 switch (cmd) {
2140 case MPT2IOCINFO:
2141 if (_IOC_SIZE(cmd) == sizeof(struct mpt2_ioctl_iocinfo))
2142 ret = _ctl_getiocinfo(arg);
2143 break;
2144 case MPT2COMMAND:
2145 {
2146 struct mpt2_ioctl_command karg;
2147 struct mpt2_ioctl_command __user *uarg;
2148 struct MPT2SAS_ADAPTER *ioc;
2149
2150 if (copy_from_user(&karg, arg, sizeof(karg))) {
2151 printk(KERN_ERR "failure at %s:%d/%s()!\n",
2152 __FILE__, __LINE__, __func__);
2153 return -EFAULT;
2154 }
2155
2156 if (_ctl_verify_adapter(karg.hdr.ioc_number, &ioc) == -1 ||
2157 !ioc)
2158 return -ENODEV;
2159
2160 if (ioc->shost_recovery || ioc->pci_error_recovery)
2161 return -EAGAIN;
2162
2163 if (_IOC_SIZE(cmd) == sizeof(struct mpt2_ioctl_command)) {
2164 uarg = arg;
2165 ret = _ctl_do_mpt_command(ioc, karg, &uarg->mf, state);
2166 }
2167 break;
2168 }
2169 case MPT2EVENTQUERY:
2170 if (_IOC_SIZE(cmd) == sizeof(struct mpt2_ioctl_eventquery))
2171 ret = _ctl_eventquery(arg);
2172 break;
2173 case MPT2EVENTENABLE:
2174 if (_IOC_SIZE(cmd) == sizeof(struct mpt2_ioctl_eventenable))
2175 ret = _ctl_eventenable(arg);
2176 break;
2177 case MPT2EVENTREPORT:
2178 ret = _ctl_eventreport(arg);
2179 break;
2180 case MPT2HARDRESET:
2181 if (_IOC_SIZE(cmd) == sizeof(struct mpt2_ioctl_diag_reset))
2182 ret = _ctl_do_reset(arg);
2183 break;
2184 case MPT2BTDHMAPPING:
2185 if (_IOC_SIZE(cmd) == sizeof(struct mpt2_ioctl_btdh_mapping))
2186 ret = _ctl_btdh_mapping(arg);
2187 break;
2188 case MPT2DIAGREGISTER:
2189 if (_IOC_SIZE(cmd) == sizeof(struct mpt2_diag_register))
2190 ret = _ctl_diag_register(arg, state);
2191 break;
2192 case MPT2DIAGUNREGISTER:
2193 if (_IOC_SIZE(cmd) == sizeof(struct mpt2_diag_unregister))
2194 ret = _ctl_diag_unregister(arg);
2195 break;
2196 case MPT2DIAGQUERY:
2197 if (_IOC_SIZE(cmd) == sizeof(struct mpt2_diag_query))
2198 ret = _ctl_diag_query(arg);
2199 break;
2200 case MPT2DIAGRELEASE:
2201 if (_IOC_SIZE(cmd) == sizeof(struct mpt2_diag_release))
2202 ret = _ctl_diag_release(arg, state);
2203 break;
2204 case MPT2DIAGREADBUFFER:
2205 if (_IOC_SIZE(cmd) == sizeof(struct mpt2_diag_read_buffer))
2206 ret = _ctl_diag_read_buffer(arg, state);
2207 break;
2208 default:
2209 {
2210 struct mpt2_ioctl_command karg;
2211 struct MPT2SAS_ADAPTER *ioc;
2212
2213 if (copy_from_user(&karg, arg, sizeof(karg))) {
2214 printk(KERN_ERR "failure at %s:%d/%s()!\n",
2215 __FILE__, __LINE__, __func__);
2216 return -EFAULT;
2217 }
2218
2219 if (_ctl_verify_adapter(karg.hdr.ioc_number, &ioc) == -1 ||
2220 !ioc)
2221 return -ENODEV;
2222
2223 dctlprintk(ioc, printk(MPT2SAS_INFO_FMT
2224 "unsupported ioctl opcode(0x%08x)\n", ioc->name, cmd));
2225 break;
2226 }
2227 }
2228 return ret;
2229 }
2230
2231 /**
2232 * _ctl_ioctl - main ioctl entry point (unlocked)
2233 * @file - (struct file)
2234 * @cmd - ioctl opcode
2235 * @arg -
2236 */
2237 static long
2238 _ctl_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2239 {
2240 long ret;
2241
2242 mutex_lock(&_ctl_mutex);
2243 ret = _ctl_ioctl_main(file, cmd, (void __user *)arg);
2244 mutex_unlock(&_ctl_mutex);
2245 return ret;
2246 }
2247
2248 #ifdef CONFIG_COMPAT
2249 /**
2250 * _ctl_compat_mpt_command - convert 32bit pointers to 64bit.
2251 * @file - (struct file)
2252 * @cmd - ioctl opcode
2253 * @arg - (struct mpt2_ioctl_command32)
2254 *
2255 * MPT2COMMAND32 - Handle 32bit applications running on 64bit os.
2256 */
2257 static long
2258 _ctl_compat_mpt_command(struct file *file, unsigned cmd, unsigned long arg)
2259 {
2260 struct mpt2_ioctl_command32 karg32;
2261 struct mpt2_ioctl_command32 __user *uarg;
2262 struct mpt2_ioctl_command karg;
2263 struct MPT2SAS_ADAPTER *ioc;
2264 enum block_state state;
2265
2266 if (_IOC_SIZE(cmd) != sizeof(struct mpt2_ioctl_command32))
2267 return -EINVAL;
2268
2269 uarg = (struct mpt2_ioctl_command32 __user *) arg;
2270
2271 if (copy_from_user(&karg32, (char __user *)arg, sizeof(karg32))) {
2272 printk(KERN_ERR "failure at %s:%d/%s()!\n",
2273 __FILE__, __LINE__, __func__);
2274 return -EFAULT;
2275 }
2276 if (_ctl_verify_adapter(karg32.hdr.ioc_number, &ioc) == -1 || !ioc)
2277 return -ENODEV;
2278
2279 if (ioc->shost_recovery || ioc->pci_error_recovery)
2280 return -EAGAIN;
2281
2282 memset(&karg, 0, sizeof(struct mpt2_ioctl_command));
2283 karg.hdr.ioc_number = karg32.hdr.ioc_number;
2284 karg.hdr.port_number = karg32.hdr.port_number;
2285 karg.hdr.max_data_size = karg32.hdr.max_data_size;
2286 karg.timeout = karg32.timeout;
2287 karg.max_reply_bytes = karg32.max_reply_bytes;
2288 karg.data_in_size = karg32.data_in_size;
2289 karg.data_out_size = karg32.data_out_size;
2290 karg.max_sense_bytes = karg32.max_sense_bytes;
2291 karg.data_sge_offset = karg32.data_sge_offset;
2292 karg.reply_frame_buf_ptr = compat_ptr(karg32.reply_frame_buf_ptr);
2293 karg.data_in_buf_ptr = compat_ptr(karg32.data_in_buf_ptr);
2294 karg.data_out_buf_ptr = compat_ptr(karg32.data_out_buf_ptr);
2295 karg.sense_data_ptr = compat_ptr(karg32.sense_data_ptr);
2296 state = (file->f_flags & O_NONBLOCK) ? NON_BLOCKING : BLOCKING;
2297 return _ctl_do_mpt_command(ioc, karg, &uarg->mf, state);
2298 }
2299
2300 /**
2301 * _ctl_ioctl_compat - main ioctl entry point (compat)
2302 * @file -
2303 * @cmd -
2304 * @arg -
2305 *
2306 * This routine handles 32 bit applications in 64bit os.
2307 */
2308 static long
2309 _ctl_ioctl_compat(struct file *file, unsigned cmd, unsigned long arg)
2310 {
2311 long ret;
2312
2313 mutex_lock(&_ctl_mutex);
2314 if (cmd == MPT2COMMAND32)
2315 ret = _ctl_compat_mpt_command(file, cmd, arg);
2316 else
2317 ret = _ctl_ioctl_main(file, cmd, (void __user *)arg);
2318 mutex_unlock(&_ctl_mutex);
2319 return ret;
2320 }
2321 #endif
2322
2323 /* scsi host attributes */
2324
2325 /**
2326 * _ctl_version_fw_show - firmware version
2327 * @cdev - pointer to embedded class device
2328 * @buf - the buffer returned
2329 *
2330 * A sysfs 'read-only' shost attribute.
2331 */
2332 static ssize_t
2333 _ctl_version_fw_show(struct device *cdev, struct device_attribute *attr,
2334 char *buf)
2335 {
2336 struct Scsi_Host *shost = class_to_shost(cdev);
2337 struct MPT2SAS_ADAPTER *ioc = shost_priv(shost);
2338
2339 return snprintf(buf, PAGE_SIZE, "%02d.%02d.%02d.%02d\n",
2340 (ioc->facts.FWVersion.Word & 0xFF000000) >> 24,
2341 (ioc->facts.FWVersion.Word & 0x00FF0000) >> 16,
2342 (ioc->facts.FWVersion.Word & 0x0000FF00) >> 8,
2343 ioc->facts.FWVersion.Word & 0x000000FF);
2344 }
2345 static DEVICE_ATTR(version_fw, S_IRUGO, _ctl_version_fw_show, NULL);
2346
2347 /**
2348 * _ctl_version_bios_show - bios version
2349 * @cdev - pointer to embedded class device
2350 * @buf - the buffer returned
2351 *
2352 * A sysfs 'read-only' shost attribute.
2353 */
2354 static ssize_t
2355 _ctl_version_bios_show(struct device *cdev, struct device_attribute *attr,
2356 char *buf)
2357 {
2358 struct Scsi_Host *shost = class_to_shost(cdev);
2359 struct MPT2SAS_ADAPTER *ioc = shost_priv(shost);
2360
2361 u32 version = le32_to_cpu(ioc->bios_pg3.BiosVersion);
2362
2363 return snprintf(buf, PAGE_SIZE, "%02d.%02d.%02d.%02d\n",
2364 (version & 0xFF000000) >> 24,
2365 (version & 0x00FF0000) >> 16,
2366 (version & 0x0000FF00) >> 8,
2367 version & 0x000000FF);
2368 }
2369 static DEVICE_ATTR(version_bios, S_IRUGO, _ctl_version_bios_show, NULL);
2370
2371 /**
2372 * _ctl_version_mpi_show - MPI (message passing interface) version
2373 * @cdev - pointer to embedded class device
2374 * @buf - the buffer returned
2375 *
2376 * A sysfs 'read-only' shost attribute.
2377 */
2378 static ssize_t
2379 _ctl_version_mpi_show(struct device *cdev, struct device_attribute *attr,
2380 char *buf)
2381 {
2382 struct Scsi_Host *shost = class_to_shost(cdev);
2383 struct MPT2SAS_ADAPTER *ioc = shost_priv(shost);
2384
2385 return snprintf(buf, PAGE_SIZE, "%03x.%02x\n",
2386 ioc->facts.MsgVersion, ioc->facts.HeaderVersion >> 8);
2387 }
2388 static DEVICE_ATTR(version_mpi, S_IRUGO, _ctl_version_mpi_show, NULL);
2389
2390 /**
2391 * _ctl_version_product_show - product name
2392 * @cdev - pointer to embedded class device
2393 * @buf - the buffer returned
2394 *
2395 * A sysfs 'read-only' shost attribute.
2396 */
2397 static ssize_t
2398 _ctl_version_product_show(struct device *cdev, struct device_attribute *attr,
2399 char *buf)
2400 {
2401 struct Scsi_Host *shost = class_to_shost(cdev);
2402 struct MPT2SAS_ADAPTER *ioc = shost_priv(shost);
2403
2404 return snprintf(buf, 16, "%s\n", ioc->manu_pg0.ChipName);
2405 }
2406 static DEVICE_ATTR(version_product, S_IRUGO,
2407 _ctl_version_product_show, NULL);
2408
2409 /**
2410 * _ctl_version_nvdata_persistent_show - ndvata persistent version
2411 * @cdev - pointer to embedded class device
2412 * @buf - the buffer returned
2413 *
2414 * A sysfs 'read-only' shost attribute.
2415 */
2416 static ssize_t
2417 _ctl_version_nvdata_persistent_show(struct device *cdev,
2418 struct device_attribute *attr, char *buf)
2419 {
2420 struct Scsi_Host *shost = class_to_shost(cdev);
2421 struct MPT2SAS_ADAPTER *ioc = shost_priv(shost);
2422
2423 return snprintf(buf, PAGE_SIZE, "%08xh\n",
2424 le32_to_cpu(ioc->iounit_pg0.NvdataVersionPersistent.Word));
2425 }
2426 static DEVICE_ATTR(version_nvdata_persistent, S_IRUGO,
2427 _ctl_version_nvdata_persistent_show, NULL);
2428
2429 /**
2430 * _ctl_version_nvdata_default_show - nvdata default version
2431 * @cdev - pointer to embedded class device
2432 * @buf - the buffer returned
2433 *
2434 * A sysfs 'read-only' shost attribute.
2435 */
2436 static ssize_t
2437 _ctl_version_nvdata_default_show(struct device *cdev,
2438 struct device_attribute *attr, char *buf)
2439 {
2440 struct Scsi_Host *shost = class_to_shost(cdev);
2441 struct MPT2SAS_ADAPTER *ioc = shost_priv(shost);
2442
2443 return snprintf(buf, PAGE_SIZE, "%08xh\n",
2444 le32_to_cpu(ioc->iounit_pg0.NvdataVersionDefault.Word));
2445 }
2446 static DEVICE_ATTR(version_nvdata_default, S_IRUGO,
2447 _ctl_version_nvdata_default_show, NULL);
2448
2449 /**
2450 * _ctl_board_name_show - board name
2451 * @cdev - pointer to embedded class device
2452 * @buf - the buffer returned
2453 *
2454 * A sysfs 'read-only' shost attribute.
2455 */
2456 static ssize_t
2457 _ctl_board_name_show(struct device *cdev, struct device_attribute *attr,
2458 char *buf)
2459 {
2460 struct Scsi_Host *shost = class_to_shost(cdev);
2461 struct MPT2SAS_ADAPTER *ioc = shost_priv(shost);
2462
2463 return snprintf(buf, 16, "%s\n", ioc->manu_pg0.BoardName);
2464 }
2465 static DEVICE_ATTR(board_name, S_IRUGO, _ctl_board_name_show, NULL);
2466
2467 /**
2468 * _ctl_board_assembly_show - board assembly name
2469 * @cdev - pointer to embedded class device
2470 * @buf - the buffer returned
2471 *
2472 * A sysfs 'read-only' shost attribute.
2473 */
2474 static ssize_t
2475 _ctl_board_assembly_show(struct device *cdev, struct device_attribute *attr,
2476 char *buf)
2477 {
2478 struct Scsi_Host *shost = class_to_shost(cdev);
2479 struct MPT2SAS_ADAPTER *ioc = shost_priv(shost);
2480
2481 return snprintf(buf, 16, "%s\n", ioc->manu_pg0.BoardAssembly);
2482 }
2483 static DEVICE_ATTR(board_assembly, S_IRUGO,
2484 _ctl_board_assembly_show, NULL);
2485
2486 /**
2487 * _ctl_board_tracer_show - board tracer number
2488 * @cdev - pointer to embedded class device
2489 * @buf - the buffer returned
2490 *
2491 * A sysfs 'read-only' shost attribute.
2492 */
2493 static ssize_t
2494 _ctl_board_tracer_show(struct device *cdev, struct device_attribute *attr,
2495 char *buf)
2496 {
2497 struct Scsi_Host *shost = class_to_shost(cdev);
2498 struct MPT2SAS_ADAPTER *ioc = shost_priv(shost);
2499
2500 return snprintf(buf, 16, "%s\n", ioc->manu_pg0.BoardTracerNumber);
2501 }
2502 static DEVICE_ATTR(board_tracer, S_IRUGO,
2503 _ctl_board_tracer_show, NULL);
2504
2505 /**
2506 * _ctl_io_delay_show - io missing delay
2507 * @cdev - pointer to embedded class device
2508 * @buf - the buffer returned
2509 *
2510 * This is for firmware implemention for deboucing device
2511 * removal events.
2512 *
2513 * A sysfs 'read-only' shost attribute.
2514 */
2515 static ssize_t
2516 _ctl_io_delay_show(struct device *cdev, struct device_attribute *attr,
2517 char *buf)
2518 {
2519 struct Scsi_Host *shost = class_to_shost(cdev);
2520 struct MPT2SAS_ADAPTER *ioc = shost_priv(shost);
2521
2522 return snprintf(buf, PAGE_SIZE, "%02d\n", ioc->io_missing_delay);
2523 }
2524 static DEVICE_ATTR(io_delay, S_IRUGO,
2525 _ctl_io_delay_show, NULL);
2526
2527 /**
2528 * _ctl_device_delay_show - device missing delay
2529 * @cdev - pointer to embedded class device
2530 * @buf - the buffer returned
2531 *
2532 * This is for firmware implemention for deboucing device
2533 * removal events.
2534 *
2535 * A sysfs 'read-only' shost attribute.
2536 */
2537 static ssize_t
2538 _ctl_device_delay_show(struct device *cdev, struct device_attribute *attr,
2539 char *buf)
2540 {
2541 struct Scsi_Host *shost = class_to_shost(cdev);
2542 struct MPT2SAS_ADAPTER *ioc = shost_priv(shost);
2543
2544 return snprintf(buf, PAGE_SIZE, "%02d\n", ioc->device_missing_delay);
2545 }
2546 static DEVICE_ATTR(device_delay, S_IRUGO,
2547 _ctl_device_delay_show, NULL);
2548
2549 /**
2550 * _ctl_fw_queue_depth_show - global credits
2551 * @cdev - pointer to embedded class device
2552 * @buf - the buffer returned
2553 *
2554 * This is firmware queue depth limit
2555 *
2556 * A sysfs 'read-only' shost attribute.
2557 */
2558 static ssize_t
2559 _ctl_fw_queue_depth_show(struct device *cdev, struct device_attribute *attr,
2560 char *buf)
2561 {
2562 struct Scsi_Host *shost = class_to_shost(cdev);
2563 struct MPT2SAS_ADAPTER *ioc = shost_priv(shost);
2564
2565 return snprintf(buf, PAGE_SIZE, "%02d\n", ioc->facts.RequestCredit);
2566 }
2567 static DEVICE_ATTR(fw_queue_depth, S_IRUGO,
2568 _ctl_fw_queue_depth_show, NULL);
2569
2570 /**
2571 * _ctl_sas_address_show - sas address
2572 * @cdev - pointer to embedded class device
2573 * @buf - the buffer returned
2574 *
2575 * This is the controller sas address
2576 *
2577 * A sysfs 'read-only' shost attribute.
2578 */
2579 static ssize_t
2580 _ctl_host_sas_address_show(struct device *cdev, struct device_attribute *attr,
2581 char *buf)
2582 {
2583 struct Scsi_Host *shost = class_to_shost(cdev);
2584 struct MPT2SAS_ADAPTER *ioc = shost_priv(shost);
2585
2586 return snprintf(buf, PAGE_SIZE, "0x%016llx\n",
2587 (unsigned long long)ioc->sas_hba.sas_address);
2588 }
2589 static DEVICE_ATTR(host_sas_address, S_IRUGO,
2590 _ctl_host_sas_address_show, NULL);
2591
2592 /**
2593 * _ctl_logging_level_show - logging level
2594 * @cdev - pointer to embedded class device
2595 * @buf - the buffer returned
2596 *
2597 * A sysfs 'read/write' shost attribute.
2598 */
2599 static ssize_t
2600 _ctl_logging_level_show(struct device *cdev, struct device_attribute *attr,
2601 char *buf)
2602 {
2603 struct Scsi_Host *shost = class_to_shost(cdev);
2604 struct MPT2SAS_ADAPTER *ioc = shost_priv(shost);
2605
2606 return snprintf(buf, PAGE_SIZE, "%08xh\n", ioc->logging_level);
2607 }
2608 static ssize_t
2609 _ctl_logging_level_store(struct device *cdev, struct device_attribute *attr,
2610 const char *buf, size_t count)
2611 {
2612 struct Scsi_Host *shost = class_to_shost(cdev);
2613 struct MPT2SAS_ADAPTER *ioc = shost_priv(shost);
2614 int val = 0;
2615
2616 if (sscanf(buf, "%x", &val) != 1)
2617 return -EINVAL;
2618
2619 ioc->logging_level = val;
2620 printk(MPT2SAS_INFO_FMT "logging_level=%08xh\n", ioc->name,
2621 ioc->logging_level);
2622 return strlen(buf);
2623 }
2624 static DEVICE_ATTR(logging_level, S_IRUGO | S_IWUSR,
2625 _ctl_logging_level_show, _ctl_logging_level_store);
2626
2627 /* device attributes */
2628 /*
2629 * _ctl_fwfault_debug_show - show/store fwfault_debug
2630 * @cdev - pointer to embedded class device
2631 * @buf - the buffer returned
2632 *
2633 * mpt2sas_fwfault_debug is command line option
2634 * A sysfs 'read/write' shost attribute.
2635 */
2636 static ssize_t
2637 _ctl_fwfault_debug_show(struct device *cdev,
2638 struct device_attribute *attr, char *buf)
2639 {
2640 struct Scsi_Host *shost = class_to_shost(cdev);
2641 struct MPT2SAS_ADAPTER *ioc = shost_priv(shost);
2642
2643 return snprintf(buf, PAGE_SIZE, "%d\n", ioc->fwfault_debug);
2644 }
2645 static ssize_t
2646 _ctl_fwfault_debug_store(struct device *cdev,
2647 struct device_attribute *attr, const char *buf, size_t count)
2648 {
2649 struct Scsi_Host *shost = class_to_shost(cdev);
2650 struct MPT2SAS_ADAPTER *ioc = shost_priv(shost);
2651 int val = 0;
2652
2653 if (sscanf(buf, "%d", &val) != 1)
2654 return -EINVAL;
2655
2656 ioc->fwfault_debug = val;
2657 printk(MPT2SAS_INFO_FMT "fwfault_debug=%d\n", ioc->name,
2658 ioc->fwfault_debug);
2659 return strlen(buf);
2660 }
2661 static DEVICE_ATTR(fwfault_debug, S_IRUGO | S_IWUSR,
2662 _ctl_fwfault_debug_show, _ctl_fwfault_debug_store);
2663
2664
2665 /**
2666 * _ctl_ioc_reset_count_show - ioc reset count
2667 * @cdev - pointer to embedded class device
2668 * @buf - the buffer returned
2669 *
2670 * This is firmware queue depth limit
2671 *
2672 * A sysfs 'read-only' shost attribute.
2673 */
2674 static ssize_t
2675 _ctl_ioc_reset_count_show(struct device *cdev, struct device_attribute *attr,
2676 char *buf)
2677 {
2678 struct Scsi_Host *shost = class_to_shost(cdev);
2679 struct MPT2SAS_ADAPTER *ioc = shost_priv(shost);
2680
2681 return snprintf(buf, PAGE_SIZE, "%08d\n", ioc->ioc_reset_count);
2682 }
2683 static DEVICE_ATTR(ioc_reset_count, S_IRUGO,
2684 _ctl_ioc_reset_count_show, NULL);
2685
2686 struct DIAG_BUFFER_START {
2687 u32 Size;
2688 u32 DiagVersion;
2689 u8 BufferType;
2690 u8 Reserved[3];
2691 u32 Reserved1;
2692 u32 Reserved2;
2693 u32 Reserved3;
2694 };
2695 /**
2696 * _ctl_host_trace_buffer_size_show - host buffer size (trace only)
2697 * @cdev - pointer to embedded class device
2698 * @buf - the buffer returned
2699 *
2700 * A sysfs 'read-only' shost attribute.
2701 */
2702 static ssize_t
2703 _ctl_host_trace_buffer_size_show(struct device *cdev,
2704 struct device_attribute *attr, char *buf)
2705 {
2706 struct Scsi_Host *shost = class_to_shost(cdev);
2707 struct MPT2SAS_ADAPTER *ioc = shost_priv(shost);
2708 u32 size = 0;
2709 struct DIAG_BUFFER_START *request_data;
2710
2711 if (!ioc->diag_buffer[MPI2_DIAG_BUF_TYPE_TRACE]) {
2712 printk(MPT2SAS_ERR_FMT "%s: host_trace_buffer is not "
2713 "registered\n", ioc->name, __func__);
2714 return 0;
2715 }
2716
2717 if ((ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
2718 MPT2_DIAG_BUFFER_IS_REGISTERED) == 0) {
2719 printk(MPT2SAS_ERR_FMT "%s: host_trace_buffer is not "
2720 "registered\n", ioc->name, __func__);
2721 return 0;
2722 }
2723
2724 request_data = (struct DIAG_BUFFER_START *)
2725 ioc->diag_buffer[MPI2_DIAG_BUF_TYPE_TRACE];
2726 if ((le32_to_cpu(request_data->DiagVersion) == 0x00000000 ||
2727 le32_to_cpu(request_data->DiagVersion) == 0x01000000) &&
2728 le32_to_cpu(request_data->Reserved3) == 0x4742444c)
2729 size = le32_to_cpu(request_data->Size);
2730
2731 ioc->ring_buffer_sz = size;
2732 return snprintf(buf, PAGE_SIZE, "%d\n", size);
2733 }
2734 static DEVICE_ATTR(host_trace_buffer_size, S_IRUGO,
2735 _ctl_host_trace_buffer_size_show, NULL);
2736
2737 /**
2738 * _ctl_host_trace_buffer_show - firmware ring buffer (trace only)
2739 * @cdev - pointer to embedded class device
2740 * @buf - the buffer returned
2741 *
2742 * A sysfs 'read/write' shost attribute.
2743 *
2744 * You will only be able to read 4k bytes of ring buffer at a time.
2745 * In order to read beyond 4k bytes, you will have to write out the
2746 * offset to the same attribute, it will move the pointer.
2747 */
2748 static ssize_t
2749 _ctl_host_trace_buffer_show(struct device *cdev, struct device_attribute *attr,
2750 char *buf)
2751 {
2752 struct Scsi_Host *shost = class_to_shost(cdev);
2753 struct MPT2SAS_ADAPTER *ioc = shost_priv(shost);
2754 void *request_data;
2755 u32 size;
2756
2757 if (!ioc->diag_buffer[MPI2_DIAG_BUF_TYPE_TRACE]) {
2758 printk(MPT2SAS_ERR_FMT "%s: host_trace_buffer is not "
2759 "registered\n", ioc->name, __func__);
2760 return 0;
2761 }
2762
2763 if ((ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
2764 MPT2_DIAG_BUFFER_IS_REGISTERED) == 0) {
2765 printk(MPT2SAS_ERR_FMT "%s: host_trace_buffer is not "
2766 "registered\n", ioc->name, __func__);
2767 return 0;
2768 }
2769
2770 if (ioc->ring_buffer_offset > ioc->ring_buffer_sz)
2771 return 0;
2772
2773 size = ioc->ring_buffer_sz - ioc->ring_buffer_offset;
2774 size = (size > PAGE_SIZE) ? PAGE_SIZE : size;
2775 request_data = ioc->diag_buffer[0] + ioc->ring_buffer_offset;
2776 memcpy(buf, request_data, size);
2777 return size;
2778 }
2779
2780 static ssize_t
2781 _ctl_host_trace_buffer_store(struct device *cdev, struct device_attribute *attr,
2782 const char *buf, size_t count)
2783 {
2784 struct Scsi_Host *shost = class_to_shost(cdev);
2785 struct MPT2SAS_ADAPTER *ioc = shost_priv(shost);
2786 int val = 0;
2787
2788 if (sscanf(buf, "%d", &val) != 1)
2789 return -EINVAL;
2790
2791 ioc->ring_buffer_offset = val;
2792 return strlen(buf);
2793 }
2794 static DEVICE_ATTR(host_trace_buffer, S_IRUGO | S_IWUSR,
2795 _ctl_host_trace_buffer_show, _ctl_host_trace_buffer_store);
2796
2797 /*****************************************/
2798
2799 /**
2800 * _ctl_host_trace_buffer_enable_show - firmware ring buffer (trace only)
2801 * @cdev - pointer to embedded class device
2802 * @buf - the buffer returned
2803 *
2804 * A sysfs 'read/write' shost attribute.
2805 *
2806 * This is a mechnism to post/release host_trace_buffers
2807 */
2808 static ssize_t
2809 _ctl_host_trace_buffer_enable_show(struct device *cdev,
2810 struct device_attribute *attr, char *buf)
2811 {
2812 struct Scsi_Host *shost = class_to_shost(cdev);
2813 struct MPT2SAS_ADAPTER *ioc = shost_priv(shost);
2814
2815 if ((!ioc->diag_buffer[MPI2_DIAG_BUF_TYPE_TRACE]) ||
2816 ((ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
2817 MPT2_DIAG_BUFFER_IS_REGISTERED) == 0))
2818 return snprintf(buf, PAGE_SIZE, "off\n");
2819 else if ((ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
2820 MPT2_DIAG_BUFFER_IS_RELEASED))
2821 return snprintf(buf, PAGE_SIZE, "release\n");
2822 else
2823 return snprintf(buf, PAGE_SIZE, "post\n");
2824 }
2825
2826 static ssize_t
2827 _ctl_host_trace_buffer_enable_store(struct device *cdev,
2828 struct device_attribute *attr, const char *buf, size_t count)
2829 {
2830 struct Scsi_Host *shost = class_to_shost(cdev);
2831 struct MPT2SAS_ADAPTER *ioc = shost_priv(shost);
2832 char str[10] = "";
2833 struct mpt2_diag_register diag_register;
2834 u8 issue_reset = 0;
2835
2836 if (sscanf(buf, "%s", str) != 1)
2837 return -EINVAL;
2838
2839 if (!strcmp(str, "post")) {
2840 /* exit out if host buffers are already posted */
2841 if ((ioc->diag_buffer[MPI2_DIAG_BUF_TYPE_TRACE]) &&
2842 (ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
2843 MPT2_DIAG_BUFFER_IS_REGISTERED) &&
2844 ((ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
2845 MPT2_DIAG_BUFFER_IS_RELEASED) == 0))
2846 goto out;
2847 memset(&diag_register, 0, sizeof(struct mpt2_diag_register));
2848 printk(MPT2SAS_INFO_FMT "posting host trace buffers\n",
2849 ioc->name);
2850 diag_register.buffer_type = MPI2_DIAG_BUF_TYPE_TRACE;
2851 diag_register.requested_buffer_size = (1024 * 1024);
2852 diag_register.unique_id = 0x7075900;
2853 ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] = 0;
2854 _ctl_diag_register_2(ioc, &diag_register);
2855 } else if (!strcmp(str, "release")) {
2856 /* exit out if host buffers are already released */
2857 if (!ioc->diag_buffer[MPI2_DIAG_BUF_TYPE_TRACE])
2858 goto out;
2859 if ((ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
2860 MPT2_DIAG_BUFFER_IS_REGISTERED) == 0)
2861 goto out;
2862 if ((ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
2863 MPT2_DIAG_BUFFER_IS_RELEASED))
2864 goto out;
2865 printk(MPT2SAS_INFO_FMT "releasing host trace buffer\n",
2866 ioc->name);
2867 _ctl_send_release(ioc, MPI2_DIAG_BUF_TYPE_TRACE, &issue_reset);
2868 }
2869
2870 out:
2871 return strlen(buf);
2872 }
2873 static DEVICE_ATTR(host_trace_buffer_enable, S_IRUGO | S_IWUSR,
2874 _ctl_host_trace_buffer_enable_show, _ctl_host_trace_buffer_enable_store);
2875
2876 struct device_attribute *mpt2sas_host_attrs[] = {
2877 &dev_attr_version_fw,
2878 &dev_attr_version_bios,
2879 &dev_attr_version_mpi,
2880 &dev_attr_version_product,
2881 &dev_attr_version_nvdata_persistent,
2882 &dev_attr_version_nvdata_default,
2883 &dev_attr_board_name,
2884 &dev_attr_board_assembly,
2885 &dev_attr_board_tracer,
2886 &dev_attr_io_delay,
2887 &dev_attr_device_delay,
2888 &dev_attr_logging_level,
2889 &dev_attr_fwfault_debug,
2890 &dev_attr_fw_queue_depth,
2891 &dev_attr_host_sas_address,
2892 &dev_attr_ioc_reset_count,
2893 &dev_attr_host_trace_buffer_size,
2894 &dev_attr_host_trace_buffer,
2895 &dev_attr_host_trace_buffer_enable,
2896 NULL,
2897 };
2898
2899 /**
2900 * _ctl_device_sas_address_show - sas address
2901 * @cdev - pointer to embedded class device
2902 * @buf - the buffer returned
2903 *
2904 * This is the sas address for the target
2905 *
2906 * A sysfs 'read-only' shost attribute.
2907 */
2908 static ssize_t
2909 _ctl_device_sas_address_show(struct device *dev, struct device_attribute *attr,
2910 char *buf)
2911 {
2912 struct scsi_device *sdev = to_scsi_device(dev);
2913 struct MPT2SAS_DEVICE *sas_device_priv_data = sdev->hostdata;
2914
2915 return snprintf(buf, PAGE_SIZE, "0x%016llx\n",
2916 (unsigned long long)sas_device_priv_data->sas_target->sas_address);
2917 }
2918 static DEVICE_ATTR(sas_address, S_IRUGO, _ctl_device_sas_address_show, NULL);
2919
2920 /**
2921 * _ctl_device_handle_show - device handle
2922 * @cdev - pointer to embedded class device
2923 * @buf - the buffer returned
2924 *
2925 * This is the firmware assigned device handle
2926 *
2927 * A sysfs 'read-only' shost attribute.
2928 */
2929 static ssize_t
2930 _ctl_device_handle_show(struct device *dev, struct device_attribute *attr,
2931 char *buf)
2932 {
2933 struct scsi_device *sdev = to_scsi_device(dev);
2934 struct MPT2SAS_DEVICE *sas_device_priv_data = sdev->hostdata;
2935
2936 return snprintf(buf, PAGE_SIZE, "0x%04x\n",
2937 sas_device_priv_data->sas_target->handle);
2938 }
2939 static DEVICE_ATTR(sas_device_handle, S_IRUGO, _ctl_device_handle_show, NULL);
2940
2941 struct device_attribute *mpt2sas_dev_attrs[] = {
2942 &dev_attr_sas_address,
2943 &dev_attr_sas_device_handle,
2944 NULL,
2945 };
2946
2947 static const struct file_operations ctl_fops = {
2948 .owner = THIS_MODULE,
2949 .unlocked_ioctl = _ctl_ioctl,
2950 .release = _ctl_release,
2951 .poll = _ctl_poll,
2952 .fasync = _ctl_fasync,
2953 #ifdef CONFIG_COMPAT
2954 .compat_ioctl = _ctl_ioctl_compat,
2955 #endif
2956 .llseek = noop_llseek,
2957 };
2958
2959 static struct miscdevice ctl_dev = {
2960 .minor = MPT2SAS_MINOR,
2961 .name = MPT2SAS_DEV_NAME,
2962 .fops = &ctl_fops,
2963 };
2964
2965 /**
2966 * mpt2sas_ctl_init - main entry point for ctl.
2967 *
2968 */
2969 void
2970 mpt2sas_ctl_init(void)
2971 {
2972 async_queue = NULL;
2973 if (misc_register(&ctl_dev) < 0)
2974 printk(KERN_ERR "%s can't register misc device [minor=%d]\n",
2975 MPT2SAS_DRIVER_NAME, MPT2SAS_MINOR);
2976
2977 init_waitqueue_head(&ctl_poll_wait);
2978 }
2979
2980 /**
2981 * mpt2sas_ctl_exit - exit point for ctl
2982 *
2983 */
2984 void
2985 mpt2sas_ctl_exit(void)
2986 {
2987 struct MPT2SAS_ADAPTER *ioc;
2988 int i;
2989
2990 list_for_each_entry(ioc, &mpt2sas_ioc_list, list) {
2991
2992 /* free memory associated to diag buffers */
2993 for (i = 0; i < MPI2_DIAG_BUF_TYPE_COUNT; i++) {
2994 if (!ioc->diag_buffer[i])
2995 continue;
2996 pci_free_consistent(ioc->pdev, ioc->diag_buffer_sz[i],
2997 ioc->diag_buffer[i], ioc->diag_buffer_dma[i]);
2998 ioc->diag_buffer[i] = NULL;
2999 ioc->diag_buffer_status[i] = 0;
3000 }
3001
3002 kfree(ioc->event_log);
3003 }
3004 misc_deregister(&ctl_dev);
3005 }
3006