Merge branch 'x86-cleanups-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / scsi / isci / host.c
1 /*
2 * This file is provided under a dual BSD/GPLv2 license. When using or
3 * redistributing this file, you may do so under either license.
4 *
5 * GPL LICENSE SUMMARY
6 *
7 * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of version 2 of the GNU General Public License as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
21 * The full GNU General Public License is included in this distribution
22 * in the file called LICENSE.GPL.
23 *
24 * BSD LICENSE
25 *
26 * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
27 * All rights reserved.
28 *
29 * Redistribution and use in source and binary forms, with or without
30 * modification, are permitted provided that the following conditions
31 * are met:
32 *
33 * * Redistributions of source code must retain the above copyright
34 * notice, this list of conditions and the following disclaimer.
35 * * Redistributions in binary form must reproduce the above copyright
36 * notice, this list of conditions and the following disclaimer in
37 * the documentation and/or other materials provided with the
38 * distribution.
39 * * Neither the name of Intel Corporation nor the names of its
40 * contributors may be used to endorse or promote products derived
41 * from this software without specific prior written permission.
42 *
43 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
44 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
45 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
46 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
47 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
48 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
49 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
50 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
51 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
52 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
53 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
54 */
55 #include <linux/circ_buf.h>
56 #include <linux/device.h>
57 #include <scsi/sas.h>
58 #include "host.h"
59 #include "isci.h"
60 #include "port.h"
61 #include "probe_roms.h"
62 #include "remote_device.h"
63 #include "request.h"
64 #include "scu_completion_codes.h"
65 #include "scu_event_codes.h"
66 #include "registers.h"
67 #include "scu_remote_node_context.h"
68 #include "scu_task_context.h"
69
70 #define SCU_CONTEXT_RAM_INIT_STALL_TIME 200
71
72 #define smu_max_ports(dcc_value) \
73 (\
74 (((dcc_value) & SMU_DEVICE_CONTEXT_CAPACITY_MAX_LP_MASK) \
75 >> SMU_DEVICE_CONTEXT_CAPACITY_MAX_LP_SHIFT) + 1 \
76 )
77
78 #define smu_max_task_contexts(dcc_value) \
79 (\
80 (((dcc_value) & SMU_DEVICE_CONTEXT_CAPACITY_MAX_TC_MASK) \
81 >> SMU_DEVICE_CONTEXT_CAPACITY_MAX_TC_SHIFT) + 1 \
82 )
83
84 #define smu_max_rncs(dcc_value) \
85 (\
86 (((dcc_value) & SMU_DEVICE_CONTEXT_CAPACITY_MAX_RNC_MASK) \
87 >> SMU_DEVICE_CONTEXT_CAPACITY_MAX_RNC_SHIFT) + 1 \
88 )
89
90 #define SCIC_SDS_CONTROLLER_PHY_START_TIMEOUT 100
91
92 /**
93 *
94 *
95 * The number of milliseconds to wait while a given phy is consuming power
96 * before allowing another set of phys to consume power. Ultimately, this will
97 * be specified by OEM parameter.
98 */
99 #define SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL 500
100
101 /**
102 * NORMALIZE_PUT_POINTER() -
103 *
104 * This macro will normalize the completion queue put pointer so its value can
105 * be used as an array inde
106 */
107 #define NORMALIZE_PUT_POINTER(x) \
108 ((x) & SMU_COMPLETION_QUEUE_PUT_POINTER_MASK)
109
110
111 /**
112 * NORMALIZE_EVENT_POINTER() -
113 *
114 * This macro will normalize the completion queue event entry so its value can
115 * be used as an index.
116 */
117 #define NORMALIZE_EVENT_POINTER(x) \
118 (\
119 ((x) & SMU_COMPLETION_QUEUE_GET_EVENT_POINTER_MASK) \
120 >> SMU_COMPLETION_QUEUE_GET_EVENT_POINTER_SHIFT \
121 )
122
123 /**
124 * NORMALIZE_GET_POINTER() -
125 *
126 * This macro will normalize the completion queue get pointer so its value can
127 * be used as an index into an array
128 */
129 #define NORMALIZE_GET_POINTER(x) \
130 ((x) & SMU_COMPLETION_QUEUE_GET_POINTER_MASK)
131
132 /**
133 * NORMALIZE_GET_POINTER_CYCLE_BIT() -
134 *
135 * This macro will normalize the completion queue cycle pointer so it matches
136 * the completion queue cycle bit
137 */
138 #define NORMALIZE_GET_POINTER_CYCLE_BIT(x) \
139 ((SMU_CQGR_CYCLE_BIT & (x)) << (31 - SMU_COMPLETION_QUEUE_GET_CYCLE_BIT_SHIFT))
140
141 /**
142 * COMPLETION_QUEUE_CYCLE_BIT() -
143 *
144 * This macro will return the cycle bit of the completion queue entry
145 */
146 #define COMPLETION_QUEUE_CYCLE_BIT(x) ((x) & 0x80000000)
147
148 /* Init the state machine and call the state entry function (if any) */
149 void sci_init_sm(struct sci_base_state_machine *sm,
150 const struct sci_base_state *state_table, u32 initial_state)
151 {
152 sci_state_transition_t handler;
153
154 sm->initial_state_id = initial_state;
155 sm->previous_state_id = initial_state;
156 sm->current_state_id = initial_state;
157 sm->state_table = state_table;
158
159 handler = sm->state_table[initial_state].enter_state;
160 if (handler)
161 handler(sm);
162 }
163
164 /* Call the state exit fn, update the current state, call the state entry fn */
165 void sci_change_state(struct sci_base_state_machine *sm, u32 next_state)
166 {
167 sci_state_transition_t handler;
168
169 handler = sm->state_table[sm->current_state_id].exit_state;
170 if (handler)
171 handler(sm);
172
173 sm->previous_state_id = sm->current_state_id;
174 sm->current_state_id = next_state;
175
176 handler = sm->state_table[sm->current_state_id].enter_state;
177 if (handler)
178 handler(sm);
179 }
180
181 static bool sci_controller_completion_queue_has_entries(struct isci_host *ihost)
182 {
183 u32 get_value = ihost->completion_queue_get;
184 u32 get_index = get_value & SMU_COMPLETION_QUEUE_GET_POINTER_MASK;
185
186 if (NORMALIZE_GET_POINTER_CYCLE_BIT(get_value) ==
187 COMPLETION_QUEUE_CYCLE_BIT(ihost->completion_queue[get_index]))
188 return true;
189
190 return false;
191 }
192
193 static bool sci_controller_isr(struct isci_host *ihost)
194 {
195 if (sci_controller_completion_queue_has_entries(ihost)) {
196 return true;
197 } else {
198 /*
199 * we have a spurious interrupt it could be that we have already
200 * emptied the completion queue from a previous interrupt */
201 writel(SMU_ISR_COMPLETION, &ihost->smu_registers->interrupt_status);
202
203 /*
204 * There is a race in the hardware that could cause us not to be notified
205 * of an interrupt completion if we do not take this step. We will mask
206 * then unmask the interrupts so if there is another interrupt pending
207 * the clearing of the interrupt source we get the next interrupt message. */
208 writel(0xFF000000, &ihost->smu_registers->interrupt_mask);
209 writel(0, &ihost->smu_registers->interrupt_mask);
210 }
211
212 return false;
213 }
214
215 irqreturn_t isci_msix_isr(int vec, void *data)
216 {
217 struct isci_host *ihost = data;
218
219 if (sci_controller_isr(ihost))
220 tasklet_schedule(&ihost->completion_tasklet);
221
222 return IRQ_HANDLED;
223 }
224
225 static bool sci_controller_error_isr(struct isci_host *ihost)
226 {
227 u32 interrupt_status;
228
229 interrupt_status =
230 readl(&ihost->smu_registers->interrupt_status);
231 interrupt_status &= (SMU_ISR_QUEUE_ERROR | SMU_ISR_QUEUE_SUSPEND);
232
233 if (interrupt_status != 0) {
234 /*
235 * There is an error interrupt pending so let it through and handle
236 * in the callback */
237 return true;
238 }
239
240 /*
241 * There is a race in the hardware that could cause us not to be notified
242 * of an interrupt completion if we do not take this step. We will mask
243 * then unmask the error interrupts so if there was another interrupt
244 * pending we will be notified.
245 * Could we write the value of (SMU_ISR_QUEUE_ERROR | SMU_ISR_QUEUE_SUSPEND)? */
246 writel(0xff, &ihost->smu_registers->interrupt_mask);
247 writel(0, &ihost->smu_registers->interrupt_mask);
248
249 return false;
250 }
251
252 static void sci_controller_task_completion(struct isci_host *ihost, u32 ent)
253 {
254 u32 index = SCU_GET_COMPLETION_INDEX(ent);
255 struct isci_request *ireq = ihost->reqs[index];
256
257 /* Make sure that we really want to process this IO request */
258 if (test_bit(IREQ_ACTIVE, &ireq->flags) &&
259 ireq->io_tag != SCI_CONTROLLER_INVALID_IO_TAG &&
260 ISCI_TAG_SEQ(ireq->io_tag) == ihost->io_request_sequence[index])
261 /* Yep this is a valid io request pass it along to the
262 * io request handler
263 */
264 sci_io_request_tc_completion(ireq, ent);
265 }
266
267 static void sci_controller_sdma_completion(struct isci_host *ihost, u32 ent)
268 {
269 u32 index;
270 struct isci_request *ireq;
271 struct isci_remote_device *idev;
272
273 index = SCU_GET_COMPLETION_INDEX(ent);
274
275 switch (scu_get_command_request_type(ent)) {
276 case SCU_CONTEXT_COMMAND_REQUEST_TYPE_POST_TC:
277 case SCU_CONTEXT_COMMAND_REQUEST_TYPE_DUMP_TC:
278 ireq = ihost->reqs[index];
279 dev_warn(&ihost->pdev->dev, "%s: %x for io request %p\n",
280 __func__, ent, ireq);
281 /* @todo For a post TC operation we need to fail the IO
282 * request
283 */
284 break;
285 case SCU_CONTEXT_COMMAND_REQUEST_TYPE_DUMP_RNC:
286 case SCU_CONTEXT_COMMAND_REQUEST_TYPE_OTHER_RNC:
287 case SCU_CONTEXT_COMMAND_REQUEST_TYPE_POST_RNC:
288 idev = ihost->device_table[index];
289 dev_warn(&ihost->pdev->dev, "%s: %x for device %p\n",
290 __func__, ent, idev);
291 /* @todo For a port RNC operation we need to fail the
292 * device
293 */
294 break;
295 default:
296 dev_warn(&ihost->pdev->dev, "%s: unknown completion type %x\n",
297 __func__, ent);
298 break;
299 }
300 }
301
302 static void sci_controller_unsolicited_frame(struct isci_host *ihost, u32 ent)
303 {
304 u32 index;
305 u32 frame_index;
306
307 struct scu_unsolicited_frame_header *frame_header;
308 struct isci_phy *iphy;
309 struct isci_remote_device *idev;
310
311 enum sci_status result = SCI_FAILURE;
312
313 frame_index = SCU_GET_FRAME_INDEX(ent);
314
315 frame_header = ihost->uf_control.buffers.array[frame_index].header;
316 ihost->uf_control.buffers.array[frame_index].state = UNSOLICITED_FRAME_IN_USE;
317
318 if (SCU_GET_FRAME_ERROR(ent)) {
319 /*
320 * / @todo If the IAF frame or SIGNATURE FIS frame has an error will
321 * / this cause a problem? We expect the phy initialization will
322 * / fail if there is an error in the frame. */
323 sci_controller_release_frame(ihost, frame_index);
324 return;
325 }
326
327 if (frame_header->is_address_frame) {
328 index = SCU_GET_PROTOCOL_ENGINE_INDEX(ent);
329 iphy = &ihost->phys[index];
330 result = sci_phy_frame_handler(iphy, frame_index);
331 } else {
332
333 index = SCU_GET_COMPLETION_INDEX(ent);
334
335 if (index == SCIC_SDS_REMOTE_NODE_CONTEXT_INVALID_INDEX) {
336 /*
337 * This is a signature fis or a frame from a direct attached SATA
338 * device that has not yet been created. In either case forwared
339 * the frame to the PE and let it take care of the frame data. */
340 index = SCU_GET_PROTOCOL_ENGINE_INDEX(ent);
341 iphy = &ihost->phys[index];
342 result = sci_phy_frame_handler(iphy, frame_index);
343 } else {
344 if (index < ihost->remote_node_entries)
345 idev = ihost->device_table[index];
346 else
347 idev = NULL;
348
349 if (idev != NULL)
350 result = sci_remote_device_frame_handler(idev, frame_index);
351 else
352 sci_controller_release_frame(ihost, frame_index);
353 }
354 }
355
356 if (result != SCI_SUCCESS) {
357 /*
358 * / @todo Is there any reason to report some additional error message
359 * / when we get this failure notifiction? */
360 }
361 }
362
363 static void sci_controller_event_completion(struct isci_host *ihost, u32 ent)
364 {
365 struct isci_remote_device *idev;
366 struct isci_request *ireq;
367 struct isci_phy *iphy;
368 u32 index;
369
370 index = SCU_GET_COMPLETION_INDEX(ent);
371
372 switch (scu_get_event_type(ent)) {
373 case SCU_EVENT_TYPE_SMU_COMMAND_ERROR:
374 /* / @todo The driver did something wrong and we need to fix the condtion. */
375 dev_err(&ihost->pdev->dev,
376 "%s: SCIC Controller 0x%p received SMU command error "
377 "0x%x\n",
378 __func__,
379 ihost,
380 ent);
381 break;
382
383 case SCU_EVENT_TYPE_SMU_PCQ_ERROR:
384 case SCU_EVENT_TYPE_SMU_ERROR:
385 case SCU_EVENT_TYPE_FATAL_MEMORY_ERROR:
386 /*
387 * / @todo This is a hardware failure and its likely that we want to
388 * / reset the controller. */
389 dev_err(&ihost->pdev->dev,
390 "%s: SCIC Controller 0x%p received fatal controller "
391 "event 0x%x\n",
392 __func__,
393 ihost,
394 ent);
395 break;
396
397 case SCU_EVENT_TYPE_TRANSPORT_ERROR:
398 ireq = ihost->reqs[index];
399 sci_io_request_event_handler(ireq, ent);
400 break;
401
402 case SCU_EVENT_TYPE_PTX_SCHEDULE_EVENT:
403 switch (scu_get_event_specifier(ent)) {
404 case SCU_EVENT_SPECIFIC_SMP_RESPONSE_NO_PE:
405 case SCU_EVENT_SPECIFIC_TASK_TIMEOUT:
406 ireq = ihost->reqs[index];
407 if (ireq != NULL)
408 sci_io_request_event_handler(ireq, ent);
409 else
410 dev_warn(&ihost->pdev->dev,
411 "%s: SCIC Controller 0x%p received "
412 "event 0x%x for io request object "
413 "that doesnt exist.\n",
414 __func__,
415 ihost,
416 ent);
417
418 break;
419
420 case SCU_EVENT_SPECIFIC_IT_NEXUS_TIMEOUT:
421 idev = ihost->device_table[index];
422 if (idev != NULL)
423 sci_remote_device_event_handler(idev, ent);
424 else
425 dev_warn(&ihost->pdev->dev,
426 "%s: SCIC Controller 0x%p received "
427 "event 0x%x for remote device object "
428 "that doesnt exist.\n",
429 __func__,
430 ihost,
431 ent);
432
433 break;
434 }
435 break;
436
437 case SCU_EVENT_TYPE_BROADCAST_CHANGE:
438 /*
439 * direct the broadcast change event to the phy first and then let
440 * the phy redirect the broadcast change to the port object */
441 case SCU_EVENT_TYPE_ERR_CNT_EVENT:
442 /*
443 * direct error counter event to the phy object since that is where
444 * we get the event notification. This is a type 4 event. */
445 case SCU_EVENT_TYPE_OSSP_EVENT:
446 index = SCU_GET_PROTOCOL_ENGINE_INDEX(ent);
447 iphy = &ihost->phys[index];
448 sci_phy_event_handler(iphy, ent);
449 break;
450
451 case SCU_EVENT_TYPE_RNC_SUSPEND_TX:
452 case SCU_EVENT_TYPE_RNC_SUSPEND_TX_RX:
453 case SCU_EVENT_TYPE_RNC_OPS_MISC:
454 if (index < ihost->remote_node_entries) {
455 idev = ihost->device_table[index];
456
457 if (idev != NULL)
458 sci_remote_device_event_handler(idev, ent);
459 } else
460 dev_err(&ihost->pdev->dev,
461 "%s: SCIC Controller 0x%p received event 0x%x "
462 "for remote device object 0x%0x that doesnt "
463 "exist.\n",
464 __func__,
465 ihost,
466 ent,
467 index);
468
469 break;
470
471 default:
472 dev_warn(&ihost->pdev->dev,
473 "%s: SCIC Controller received unknown event code %x\n",
474 __func__,
475 ent);
476 break;
477 }
478 }
479
480 static void sci_controller_process_completions(struct isci_host *ihost)
481 {
482 u32 completion_count = 0;
483 u32 ent;
484 u32 get_index;
485 u32 get_cycle;
486 u32 event_get;
487 u32 event_cycle;
488
489 dev_dbg(&ihost->pdev->dev,
490 "%s: completion queue begining get:0x%08x\n",
491 __func__,
492 ihost->completion_queue_get);
493
494 /* Get the component parts of the completion queue */
495 get_index = NORMALIZE_GET_POINTER(ihost->completion_queue_get);
496 get_cycle = SMU_CQGR_CYCLE_BIT & ihost->completion_queue_get;
497
498 event_get = NORMALIZE_EVENT_POINTER(ihost->completion_queue_get);
499 event_cycle = SMU_CQGR_EVENT_CYCLE_BIT & ihost->completion_queue_get;
500
501 while (
502 NORMALIZE_GET_POINTER_CYCLE_BIT(get_cycle)
503 == COMPLETION_QUEUE_CYCLE_BIT(ihost->completion_queue[get_index])
504 ) {
505 completion_count++;
506
507 ent = ihost->completion_queue[get_index];
508
509 /* increment the get pointer and check for rollover to toggle the cycle bit */
510 get_cycle ^= ((get_index+1) & SCU_MAX_COMPLETION_QUEUE_ENTRIES) <<
511 (SMU_COMPLETION_QUEUE_GET_CYCLE_BIT_SHIFT - SCU_MAX_COMPLETION_QUEUE_SHIFT);
512 get_index = (get_index+1) & (SCU_MAX_COMPLETION_QUEUE_ENTRIES-1);
513
514 dev_dbg(&ihost->pdev->dev,
515 "%s: completion queue entry:0x%08x\n",
516 __func__,
517 ent);
518
519 switch (SCU_GET_COMPLETION_TYPE(ent)) {
520 case SCU_COMPLETION_TYPE_TASK:
521 sci_controller_task_completion(ihost, ent);
522 break;
523
524 case SCU_COMPLETION_TYPE_SDMA:
525 sci_controller_sdma_completion(ihost, ent);
526 break;
527
528 case SCU_COMPLETION_TYPE_UFI:
529 sci_controller_unsolicited_frame(ihost, ent);
530 break;
531
532 case SCU_COMPLETION_TYPE_EVENT:
533 sci_controller_event_completion(ihost, ent);
534 break;
535
536 case SCU_COMPLETION_TYPE_NOTIFY: {
537 event_cycle ^= ((event_get+1) & SCU_MAX_EVENTS) <<
538 (SMU_COMPLETION_QUEUE_GET_EVENT_CYCLE_BIT_SHIFT - SCU_MAX_EVENTS_SHIFT);
539 event_get = (event_get+1) & (SCU_MAX_EVENTS-1);
540
541 sci_controller_event_completion(ihost, ent);
542 break;
543 }
544 default:
545 dev_warn(&ihost->pdev->dev,
546 "%s: SCIC Controller received unknown "
547 "completion type %x\n",
548 __func__,
549 ent);
550 break;
551 }
552 }
553
554 /* Update the get register if we completed one or more entries */
555 if (completion_count > 0) {
556 ihost->completion_queue_get =
557 SMU_CQGR_GEN_BIT(ENABLE) |
558 SMU_CQGR_GEN_BIT(EVENT_ENABLE) |
559 event_cycle |
560 SMU_CQGR_GEN_VAL(EVENT_POINTER, event_get) |
561 get_cycle |
562 SMU_CQGR_GEN_VAL(POINTER, get_index);
563
564 writel(ihost->completion_queue_get,
565 &ihost->smu_registers->completion_queue_get);
566
567 }
568
569 dev_dbg(&ihost->pdev->dev,
570 "%s: completion queue ending get:0x%08x\n",
571 __func__,
572 ihost->completion_queue_get);
573
574 }
575
576 static void sci_controller_error_handler(struct isci_host *ihost)
577 {
578 u32 interrupt_status;
579
580 interrupt_status =
581 readl(&ihost->smu_registers->interrupt_status);
582
583 if ((interrupt_status & SMU_ISR_QUEUE_SUSPEND) &&
584 sci_controller_completion_queue_has_entries(ihost)) {
585
586 sci_controller_process_completions(ihost);
587 writel(SMU_ISR_QUEUE_SUSPEND, &ihost->smu_registers->interrupt_status);
588 } else {
589 dev_err(&ihost->pdev->dev, "%s: status: %#x\n", __func__,
590 interrupt_status);
591
592 sci_change_state(&ihost->sm, SCIC_FAILED);
593
594 return;
595 }
596
597 /* If we dont process any completions I am not sure that we want to do this.
598 * We are in the middle of a hardware fault and should probably be reset.
599 */
600 writel(0, &ihost->smu_registers->interrupt_mask);
601 }
602
603 irqreturn_t isci_intx_isr(int vec, void *data)
604 {
605 irqreturn_t ret = IRQ_NONE;
606 struct isci_host *ihost = data;
607
608 if (sci_controller_isr(ihost)) {
609 writel(SMU_ISR_COMPLETION, &ihost->smu_registers->interrupt_status);
610 tasklet_schedule(&ihost->completion_tasklet);
611 ret = IRQ_HANDLED;
612 } else if (sci_controller_error_isr(ihost)) {
613 spin_lock(&ihost->scic_lock);
614 sci_controller_error_handler(ihost);
615 spin_unlock(&ihost->scic_lock);
616 ret = IRQ_HANDLED;
617 }
618
619 return ret;
620 }
621
622 irqreturn_t isci_error_isr(int vec, void *data)
623 {
624 struct isci_host *ihost = data;
625
626 if (sci_controller_error_isr(ihost))
627 sci_controller_error_handler(ihost);
628
629 return IRQ_HANDLED;
630 }
631
632 /**
633 * isci_host_start_complete() - This function is called by the core library,
634 * through the ISCI Module, to indicate controller start status.
635 * @isci_host: This parameter specifies the ISCI host object
636 * @completion_status: This parameter specifies the completion status from the
637 * core library.
638 *
639 */
640 static void isci_host_start_complete(struct isci_host *ihost, enum sci_status completion_status)
641 {
642 if (completion_status != SCI_SUCCESS)
643 dev_info(&ihost->pdev->dev,
644 "controller start timed out, continuing...\n");
645 isci_host_change_state(ihost, isci_ready);
646 clear_bit(IHOST_START_PENDING, &ihost->flags);
647 wake_up(&ihost->eventq);
648 }
649
650 int isci_host_scan_finished(struct Scsi_Host *shost, unsigned long time)
651 {
652 struct sas_ha_struct *ha = SHOST_TO_SAS_HA(shost);
653 struct isci_host *ihost = ha->lldd_ha;
654
655 if (test_bit(IHOST_START_PENDING, &ihost->flags))
656 return 0;
657
658 sas_drain_work(ha);
659
660 dev_dbg(&ihost->pdev->dev,
661 "%s: ihost->status = %d, time = %ld\n",
662 __func__, isci_host_get_state(ihost), time);
663
664 return 1;
665
666 }
667
668 /**
669 * sci_controller_get_suggested_start_timeout() - This method returns the
670 * suggested sci_controller_start() timeout amount. The user is free to
671 * use any timeout value, but this method provides the suggested minimum
672 * start timeout value. The returned value is based upon empirical
673 * information determined as a result of interoperability testing.
674 * @controller: the handle to the controller object for which to return the
675 * suggested start timeout.
676 *
677 * This method returns the number of milliseconds for the suggested start
678 * operation timeout.
679 */
680 static u32 sci_controller_get_suggested_start_timeout(struct isci_host *ihost)
681 {
682 /* Validate the user supplied parameters. */
683 if (!ihost)
684 return 0;
685
686 /*
687 * The suggested minimum timeout value for a controller start operation:
688 *
689 * Signature FIS Timeout
690 * + Phy Start Timeout
691 * + Number of Phy Spin Up Intervals
692 * ---------------------------------
693 * Number of milliseconds for the controller start operation.
694 *
695 * NOTE: The number of phy spin up intervals will be equivalent
696 * to the number of phys divided by the number phys allowed
697 * per interval - 1 (once OEM parameters are supported).
698 * Currently we assume only 1 phy per interval. */
699
700 return SCIC_SDS_SIGNATURE_FIS_TIMEOUT
701 + SCIC_SDS_CONTROLLER_PHY_START_TIMEOUT
702 + ((SCI_MAX_PHYS - 1) * SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL);
703 }
704
705 static void sci_controller_enable_interrupts(struct isci_host *ihost)
706 {
707 BUG_ON(ihost->smu_registers == NULL);
708 writel(0, &ihost->smu_registers->interrupt_mask);
709 }
710
711 void sci_controller_disable_interrupts(struct isci_host *ihost)
712 {
713 BUG_ON(ihost->smu_registers == NULL);
714 writel(0xffffffff, &ihost->smu_registers->interrupt_mask);
715 }
716
717 static void sci_controller_enable_port_task_scheduler(struct isci_host *ihost)
718 {
719 u32 port_task_scheduler_value;
720
721 port_task_scheduler_value =
722 readl(&ihost->scu_registers->peg0.ptsg.control);
723 port_task_scheduler_value |=
724 (SCU_PTSGCR_GEN_BIT(ETM_ENABLE) |
725 SCU_PTSGCR_GEN_BIT(PTSG_ENABLE));
726 writel(port_task_scheduler_value,
727 &ihost->scu_registers->peg0.ptsg.control);
728 }
729
730 static void sci_controller_assign_task_entries(struct isci_host *ihost)
731 {
732 u32 task_assignment;
733
734 /*
735 * Assign all the TCs to function 0
736 * TODO: Do we actually need to read this register to write it back?
737 */
738
739 task_assignment =
740 readl(&ihost->smu_registers->task_context_assignment[0]);
741
742 task_assignment |= (SMU_TCA_GEN_VAL(STARTING, 0)) |
743 (SMU_TCA_GEN_VAL(ENDING, ihost->task_context_entries - 1)) |
744 (SMU_TCA_GEN_BIT(RANGE_CHECK_ENABLE));
745
746 writel(task_assignment,
747 &ihost->smu_registers->task_context_assignment[0]);
748
749 }
750
751 static void sci_controller_initialize_completion_queue(struct isci_host *ihost)
752 {
753 u32 index;
754 u32 completion_queue_control_value;
755 u32 completion_queue_get_value;
756 u32 completion_queue_put_value;
757
758 ihost->completion_queue_get = 0;
759
760 completion_queue_control_value =
761 (SMU_CQC_QUEUE_LIMIT_SET(SCU_MAX_COMPLETION_QUEUE_ENTRIES - 1) |
762 SMU_CQC_EVENT_LIMIT_SET(SCU_MAX_EVENTS - 1));
763
764 writel(completion_queue_control_value,
765 &ihost->smu_registers->completion_queue_control);
766
767
768 /* Set the completion queue get pointer and enable the queue */
769 completion_queue_get_value = (
770 (SMU_CQGR_GEN_VAL(POINTER, 0))
771 | (SMU_CQGR_GEN_VAL(EVENT_POINTER, 0))
772 | (SMU_CQGR_GEN_BIT(ENABLE))
773 | (SMU_CQGR_GEN_BIT(EVENT_ENABLE))
774 );
775
776 writel(completion_queue_get_value,
777 &ihost->smu_registers->completion_queue_get);
778
779 /* Set the completion queue put pointer */
780 completion_queue_put_value = (
781 (SMU_CQPR_GEN_VAL(POINTER, 0))
782 | (SMU_CQPR_GEN_VAL(EVENT_POINTER, 0))
783 );
784
785 writel(completion_queue_put_value,
786 &ihost->smu_registers->completion_queue_put);
787
788 /* Initialize the cycle bit of the completion queue entries */
789 for (index = 0; index < SCU_MAX_COMPLETION_QUEUE_ENTRIES; index++) {
790 /*
791 * If get.cycle_bit != completion_queue.cycle_bit
792 * its not a valid completion queue entry
793 * so at system start all entries are invalid */
794 ihost->completion_queue[index] = 0x80000000;
795 }
796 }
797
798 static void sci_controller_initialize_unsolicited_frame_queue(struct isci_host *ihost)
799 {
800 u32 frame_queue_control_value;
801 u32 frame_queue_get_value;
802 u32 frame_queue_put_value;
803
804 /* Write the queue size */
805 frame_queue_control_value =
806 SCU_UFQC_GEN_VAL(QUEUE_SIZE, SCU_MAX_UNSOLICITED_FRAMES);
807
808 writel(frame_queue_control_value,
809 &ihost->scu_registers->sdma.unsolicited_frame_queue_control);
810
811 /* Setup the get pointer for the unsolicited frame queue */
812 frame_queue_get_value = (
813 SCU_UFQGP_GEN_VAL(POINTER, 0)
814 | SCU_UFQGP_GEN_BIT(ENABLE_BIT)
815 );
816
817 writel(frame_queue_get_value,
818 &ihost->scu_registers->sdma.unsolicited_frame_get_pointer);
819 /* Setup the put pointer for the unsolicited frame queue */
820 frame_queue_put_value = SCU_UFQPP_GEN_VAL(POINTER, 0);
821 writel(frame_queue_put_value,
822 &ihost->scu_registers->sdma.unsolicited_frame_put_pointer);
823 }
824
825 static void sci_controller_transition_to_ready(struct isci_host *ihost, enum sci_status status)
826 {
827 if (ihost->sm.current_state_id == SCIC_STARTING) {
828 /*
829 * We move into the ready state, because some of the phys/ports
830 * may be up and operational.
831 */
832 sci_change_state(&ihost->sm, SCIC_READY);
833
834 isci_host_start_complete(ihost, status);
835 }
836 }
837
838 static bool is_phy_starting(struct isci_phy *iphy)
839 {
840 enum sci_phy_states state;
841
842 state = iphy->sm.current_state_id;
843 switch (state) {
844 case SCI_PHY_STARTING:
845 case SCI_PHY_SUB_INITIAL:
846 case SCI_PHY_SUB_AWAIT_SAS_SPEED_EN:
847 case SCI_PHY_SUB_AWAIT_IAF_UF:
848 case SCI_PHY_SUB_AWAIT_SAS_POWER:
849 case SCI_PHY_SUB_AWAIT_SATA_POWER:
850 case SCI_PHY_SUB_AWAIT_SATA_PHY_EN:
851 case SCI_PHY_SUB_AWAIT_SATA_SPEED_EN:
852 case SCI_PHY_SUB_AWAIT_SIG_FIS_UF:
853 case SCI_PHY_SUB_FINAL:
854 return true;
855 default:
856 return false;
857 }
858 }
859
860 /**
861 * sci_controller_start_next_phy - start phy
862 * @scic: controller
863 *
864 * If all the phys have been started, then attempt to transition the
865 * controller to the READY state and inform the user
866 * (sci_cb_controller_start_complete()).
867 */
868 static enum sci_status sci_controller_start_next_phy(struct isci_host *ihost)
869 {
870 struct sci_oem_params *oem = &ihost->oem_parameters;
871 struct isci_phy *iphy;
872 enum sci_status status;
873
874 status = SCI_SUCCESS;
875
876 if (ihost->phy_startup_timer_pending)
877 return status;
878
879 if (ihost->next_phy_to_start >= SCI_MAX_PHYS) {
880 bool is_controller_start_complete = true;
881 u32 state;
882 u8 index;
883
884 for (index = 0; index < SCI_MAX_PHYS; index++) {
885 iphy = &ihost->phys[index];
886 state = iphy->sm.current_state_id;
887
888 if (!phy_get_non_dummy_port(iphy))
889 continue;
890
891 /* The controller start operation is complete iff:
892 * - all links have been given an opportunity to start
893 * - have no indication of a connected device
894 * - have an indication of a connected device and it has
895 * finished the link training process.
896 */
897 if ((iphy->is_in_link_training == false && state == SCI_PHY_INITIAL) ||
898 (iphy->is_in_link_training == false && state == SCI_PHY_STOPPED) ||
899 (iphy->is_in_link_training == true && is_phy_starting(iphy)) ||
900 (ihost->port_agent.phy_ready_mask != ihost->port_agent.phy_configured_mask)) {
901 is_controller_start_complete = false;
902 break;
903 }
904 }
905
906 /*
907 * The controller has successfully finished the start process.
908 * Inform the SCI Core user and transition to the READY state. */
909 if (is_controller_start_complete == true) {
910 sci_controller_transition_to_ready(ihost, SCI_SUCCESS);
911 sci_del_timer(&ihost->phy_timer);
912 ihost->phy_startup_timer_pending = false;
913 }
914 } else {
915 iphy = &ihost->phys[ihost->next_phy_to_start];
916
917 if (oem->controller.mode_type == SCIC_PORT_MANUAL_CONFIGURATION_MODE) {
918 if (phy_get_non_dummy_port(iphy) == NULL) {
919 ihost->next_phy_to_start++;
920
921 /* Caution recursion ahead be forwarned
922 *
923 * The PHY was never added to a PORT in MPC mode
924 * so start the next phy in sequence This phy
925 * will never go link up and will not draw power
926 * the OEM parameters either configured the phy
927 * incorrectly for the PORT or it was never
928 * assigned to a PORT
929 */
930 return sci_controller_start_next_phy(ihost);
931 }
932 }
933
934 status = sci_phy_start(iphy);
935
936 if (status == SCI_SUCCESS) {
937 sci_mod_timer(&ihost->phy_timer,
938 SCIC_SDS_CONTROLLER_PHY_START_TIMEOUT);
939 ihost->phy_startup_timer_pending = true;
940 } else {
941 dev_warn(&ihost->pdev->dev,
942 "%s: Controller stop operation failed "
943 "to stop phy %d because of status "
944 "%d.\n",
945 __func__,
946 ihost->phys[ihost->next_phy_to_start].phy_index,
947 status);
948 }
949
950 ihost->next_phy_to_start++;
951 }
952
953 return status;
954 }
955
956 static void phy_startup_timeout(unsigned long data)
957 {
958 struct sci_timer *tmr = (struct sci_timer *)data;
959 struct isci_host *ihost = container_of(tmr, typeof(*ihost), phy_timer);
960 unsigned long flags;
961 enum sci_status status;
962
963 spin_lock_irqsave(&ihost->scic_lock, flags);
964
965 if (tmr->cancel)
966 goto done;
967
968 ihost->phy_startup_timer_pending = false;
969
970 do {
971 status = sci_controller_start_next_phy(ihost);
972 } while (status != SCI_SUCCESS);
973
974 done:
975 spin_unlock_irqrestore(&ihost->scic_lock, flags);
976 }
977
978 static u16 isci_tci_active(struct isci_host *ihost)
979 {
980 return CIRC_CNT(ihost->tci_head, ihost->tci_tail, SCI_MAX_IO_REQUESTS);
981 }
982
983 static enum sci_status sci_controller_start(struct isci_host *ihost,
984 u32 timeout)
985 {
986 enum sci_status result;
987 u16 index;
988
989 if (ihost->sm.current_state_id != SCIC_INITIALIZED) {
990 dev_warn(&ihost->pdev->dev,
991 "SCIC Controller start operation requested in "
992 "invalid state\n");
993 return SCI_FAILURE_INVALID_STATE;
994 }
995
996 /* Build the TCi free pool */
997 BUILD_BUG_ON(SCI_MAX_IO_REQUESTS > 1 << sizeof(ihost->tci_pool[0]) * 8);
998 ihost->tci_head = 0;
999 ihost->tci_tail = 0;
1000 for (index = 0; index < ihost->task_context_entries; index++)
1001 isci_tci_free(ihost, index);
1002
1003 /* Build the RNi free pool */
1004 sci_remote_node_table_initialize(&ihost->available_remote_nodes,
1005 ihost->remote_node_entries);
1006
1007 /*
1008 * Before anything else lets make sure we will not be
1009 * interrupted by the hardware.
1010 */
1011 sci_controller_disable_interrupts(ihost);
1012
1013 /* Enable the port task scheduler */
1014 sci_controller_enable_port_task_scheduler(ihost);
1015
1016 /* Assign all the task entries to ihost physical function */
1017 sci_controller_assign_task_entries(ihost);
1018
1019 /* Now initialize the completion queue */
1020 sci_controller_initialize_completion_queue(ihost);
1021
1022 /* Initialize the unsolicited frame queue for use */
1023 sci_controller_initialize_unsolicited_frame_queue(ihost);
1024
1025 /* Start all of the ports on this controller */
1026 for (index = 0; index < ihost->logical_port_entries; index++) {
1027 struct isci_port *iport = &ihost->ports[index];
1028
1029 result = sci_port_start(iport);
1030 if (result)
1031 return result;
1032 }
1033
1034 sci_controller_start_next_phy(ihost);
1035
1036 sci_mod_timer(&ihost->timer, timeout);
1037
1038 sci_change_state(&ihost->sm, SCIC_STARTING);
1039
1040 return SCI_SUCCESS;
1041 }
1042
1043 void isci_host_scan_start(struct Scsi_Host *shost)
1044 {
1045 struct isci_host *ihost = SHOST_TO_SAS_HA(shost)->lldd_ha;
1046 unsigned long tmo = sci_controller_get_suggested_start_timeout(ihost);
1047
1048 set_bit(IHOST_START_PENDING, &ihost->flags);
1049
1050 spin_lock_irq(&ihost->scic_lock);
1051 sci_controller_start(ihost, tmo);
1052 sci_controller_enable_interrupts(ihost);
1053 spin_unlock_irq(&ihost->scic_lock);
1054 }
1055
1056 static void isci_host_stop_complete(struct isci_host *ihost, enum sci_status completion_status)
1057 {
1058 isci_host_change_state(ihost, isci_stopped);
1059 sci_controller_disable_interrupts(ihost);
1060 clear_bit(IHOST_STOP_PENDING, &ihost->flags);
1061 wake_up(&ihost->eventq);
1062 }
1063
1064 static void sci_controller_completion_handler(struct isci_host *ihost)
1065 {
1066 /* Empty out the completion queue */
1067 if (sci_controller_completion_queue_has_entries(ihost))
1068 sci_controller_process_completions(ihost);
1069
1070 /* Clear the interrupt and enable all interrupts again */
1071 writel(SMU_ISR_COMPLETION, &ihost->smu_registers->interrupt_status);
1072 /* Could we write the value of SMU_ISR_COMPLETION? */
1073 writel(0xFF000000, &ihost->smu_registers->interrupt_mask);
1074 writel(0, &ihost->smu_registers->interrupt_mask);
1075 }
1076
1077 /**
1078 * isci_host_completion_routine() - This function is the delayed service
1079 * routine that calls the sci core library's completion handler. It's
1080 * scheduled as a tasklet from the interrupt service routine when interrupts
1081 * in use, or set as the timeout function in polled mode.
1082 * @data: This parameter specifies the ISCI host object
1083 *
1084 */
1085 static void isci_host_completion_routine(unsigned long data)
1086 {
1087 struct isci_host *ihost = (struct isci_host *)data;
1088 struct list_head completed_request_list;
1089 struct list_head errored_request_list;
1090 struct list_head *current_position;
1091 struct list_head *next_position;
1092 struct isci_request *request;
1093 struct isci_request *next_request;
1094 struct sas_task *task;
1095 u16 active;
1096
1097 INIT_LIST_HEAD(&completed_request_list);
1098 INIT_LIST_HEAD(&errored_request_list);
1099
1100 spin_lock_irq(&ihost->scic_lock);
1101
1102 sci_controller_completion_handler(ihost);
1103
1104 /* Take the lists of completed I/Os from the host. */
1105
1106 list_splice_init(&ihost->requests_to_complete,
1107 &completed_request_list);
1108
1109 /* Take the list of errored I/Os from the host. */
1110 list_splice_init(&ihost->requests_to_errorback,
1111 &errored_request_list);
1112
1113 spin_unlock_irq(&ihost->scic_lock);
1114
1115 /* Process any completions in the lists. */
1116 list_for_each_safe(current_position, next_position,
1117 &completed_request_list) {
1118
1119 request = list_entry(current_position, struct isci_request,
1120 completed_node);
1121 task = isci_request_access_task(request);
1122
1123 /* Normal notification (task_done) */
1124 dev_dbg(&ihost->pdev->dev,
1125 "%s: Normal - request/task = %p/%p\n",
1126 __func__,
1127 request,
1128 task);
1129
1130 /* Return the task to libsas */
1131 if (task != NULL) {
1132
1133 task->lldd_task = NULL;
1134 if (!(task->task_state_flags & SAS_TASK_STATE_ABORTED)) {
1135
1136 /* If the task is already in the abort path,
1137 * the task_done callback cannot be called.
1138 */
1139 task->task_done(task);
1140 }
1141 }
1142
1143 spin_lock_irq(&ihost->scic_lock);
1144 isci_free_tag(ihost, request->io_tag);
1145 spin_unlock_irq(&ihost->scic_lock);
1146 }
1147 list_for_each_entry_safe(request, next_request, &errored_request_list,
1148 completed_node) {
1149
1150 task = isci_request_access_task(request);
1151
1152 /* Use sas_task_abort */
1153 dev_warn(&ihost->pdev->dev,
1154 "%s: Error - request/task = %p/%p\n",
1155 __func__,
1156 request,
1157 task);
1158
1159 if (task != NULL) {
1160
1161 /* Put the task into the abort path if it's not there
1162 * already.
1163 */
1164 if (!(task->task_state_flags & SAS_TASK_STATE_ABORTED))
1165 sas_task_abort(task);
1166
1167 } else {
1168 /* This is a case where the request has completed with a
1169 * status such that it needed further target servicing,
1170 * but the sas_task reference has already been removed
1171 * from the request. Since it was errored, it was not
1172 * being aborted, so there is nothing to do except free
1173 * it.
1174 */
1175
1176 spin_lock_irq(&ihost->scic_lock);
1177 /* Remove the request from the remote device's list
1178 * of pending requests.
1179 */
1180 list_del_init(&request->dev_node);
1181 isci_free_tag(ihost, request->io_tag);
1182 spin_unlock_irq(&ihost->scic_lock);
1183 }
1184 }
1185
1186 /* the coalesence timeout doubles at each encoding step, so
1187 * update it based on the ilog2 value of the outstanding requests
1188 */
1189 active = isci_tci_active(ihost);
1190 writel(SMU_ICC_GEN_VAL(NUMBER, active) |
1191 SMU_ICC_GEN_VAL(TIMER, ISCI_COALESCE_BASE + ilog2(active)),
1192 &ihost->smu_registers->interrupt_coalesce_control);
1193 }
1194
1195 /**
1196 * sci_controller_stop() - This method will stop an individual controller
1197 * object.This method will invoke the associated user callback upon
1198 * completion. The completion callback is called when the following
1199 * conditions are met: -# the method return status is SCI_SUCCESS. -# the
1200 * controller has been quiesced. This method will ensure that all IO
1201 * requests are quiesced, phys are stopped, and all additional operation by
1202 * the hardware is halted.
1203 * @controller: the handle to the controller object to stop.
1204 * @timeout: This parameter specifies the number of milliseconds in which the
1205 * stop operation should complete.
1206 *
1207 * The controller must be in the STARTED or STOPPED state. Indicate if the
1208 * controller stop method succeeded or failed in some way. SCI_SUCCESS if the
1209 * stop operation successfully began. SCI_WARNING_ALREADY_IN_STATE if the
1210 * controller is already in the STOPPED state. SCI_FAILURE_INVALID_STATE if the
1211 * controller is not either in the STARTED or STOPPED states.
1212 */
1213 static enum sci_status sci_controller_stop(struct isci_host *ihost, u32 timeout)
1214 {
1215 if (ihost->sm.current_state_id != SCIC_READY) {
1216 dev_warn(&ihost->pdev->dev,
1217 "SCIC Controller stop operation requested in "
1218 "invalid state\n");
1219 return SCI_FAILURE_INVALID_STATE;
1220 }
1221
1222 sci_mod_timer(&ihost->timer, timeout);
1223 sci_change_state(&ihost->sm, SCIC_STOPPING);
1224 return SCI_SUCCESS;
1225 }
1226
1227 /**
1228 * sci_controller_reset() - This method will reset the supplied core
1229 * controller regardless of the state of said controller. This operation is
1230 * considered destructive. In other words, all current operations are wiped
1231 * out. No IO completions for outstanding devices occur. Outstanding IO
1232 * requests are not aborted or completed at the actual remote device.
1233 * @controller: the handle to the controller object to reset.
1234 *
1235 * Indicate if the controller reset method succeeded or failed in some way.
1236 * SCI_SUCCESS if the reset operation successfully started. SCI_FATAL_ERROR if
1237 * the controller reset operation is unable to complete.
1238 */
1239 static enum sci_status sci_controller_reset(struct isci_host *ihost)
1240 {
1241 switch (ihost->sm.current_state_id) {
1242 case SCIC_RESET:
1243 case SCIC_READY:
1244 case SCIC_STOPPED:
1245 case SCIC_FAILED:
1246 /*
1247 * The reset operation is not a graceful cleanup, just
1248 * perform the state transition.
1249 */
1250 sci_change_state(&ihost->sm, SCIC_RESETTING);
1251 return SCI_SUCCESS;
1252 default:
1253 dev_warn(&ihost->pdev->dev,
1254 "SCIC Controller reset operation requested in "
1255 "invalid state\n");
1256 return SCI_FAILURE_INVALID_STATE;
1257 }
1258 }
1259
1260 void isci_host_deinit(struct isci_host *ihost)
1261 {
1262 int i;
1263
1264 /* disable output data selects */
1265 for (i = 0; i < isci_gpio_count(ihost); i++)
1266 writel(SGPIO_HW_CONTROL, &ihost->scu_registers->peg0.sgpio.output_data_select[i]);
1267
1268 isci_host_change_state(ihost, isci_stopping);
1269 for (i = 0; i < SCI_MAX_PORTS; i++) {
1270 struct isci_port *iport = &ihost->ports[i];
1271 struct isci_remote_device *idev, *d;
1272
1273 list_for_each_entry_safe(idev, d, &iport->remote_dev_list, node) {
1274 if (test_bit(IDEV_ALLOCATED, &idev->flags))
1275 isci_remote_device_stop(ihost, idev);
1276 }
1277 }
1278
1279 set_bit(IHOST_STOP_PENDING, &ihost->flags);
1280
1281 spin_lock_irq(&ihost->scic_lock);
1282 sci_controller_stop(ihost, SCIC_CONTROLLER_STOP_TIMEOUT);
1283 spin_unlock_irq(&ihost->scic_lock);
1284
1285 wait_for_stop(ihost);
1286
1287 /* disable sgpio: where the above wait should give time for the
1288 * enclosure to sample the gpios going inactive
1289 */
1290 writel(0, &ihost->scu_registers->peg0.sgpio.interface_control);
1291
1292 sci_controller_reset(ihost);
1293
1294 /* Cancel any/all outstanding port timers */
1295 for (i = 0; i < ihost->logical_port_entries; i++) {
1296 struct isci_port *iport = &ihost->ports[i];
1297 del_timer_sync(&iport->timer.timer);
1298 }
1299
1300 /* Cancel any/all outstanding phy timers */
1301 for (i = 0; i < SCI_MAX_PHYS; i++) {
1302 struct isci_phy *iphy = &ihost->phys[i];
1303 del_timer_sync(&iphy->sata_timer.timer);
1304 }
1305
1306 del_timer_sync(&ihost->port_agent.timer.timer);
1307
1308 del_timer_sync(&ihost->power_control.timer.timer);
1309
1310 del_timer_sync(&ihost->timer.timer);
1311
1312 del_timer_sync(&ihost->phy_timer.timer);
1313 }
1314
1315 static void __iomem *scu_base(struct isci_host *isci_host)
1316 {
1317 struct pci_dev *pdev = isci_host->pdev;
1318 int id = isci_host->id;
1319
1320 return pcim_iomap_table(pdev)[SCI_SCU_BAR * 2] + SCI_SCU_BAR_SIZE * id;
1321 }
1322
1323 static void __iomem *smu_base(struct isci_host *isci_host)
1324 {
1325 struct pci_dev *pdev = isci_host->pdev;
1326 int id = isci_host->id;
1327
1328 return pcim_iomap_table(pdev)[SCI_SMU_BAR * 2] + SCI_SMU_BAR_SIZE * id;
1329 }
1330
1331 static void isci_user_parameters_get(struct sci_user_parameters *u)
1332 {
1333 int i;
1334
1335 for (i = 0; i < SCI_MAX_PHYS; i++) {
1336 struct sci_phy_user_params *u_phy = &u->phys[i];
1337
1338 u_phy->max_speed_generation = phy_gen;
1339
1340 /* we are not exporting these for now */
1341 u_phy->align_insertion_frequency = 0x7f;
1342 u_phy->in_connection_align_insertion_frequency = 0xff;
1343 u_phy->notify_enable_spin_up_insertion_frequency = 0x33;
1344 }
1345
1346 u->stp_inactivity_timeout = stp_inactive_to;
1347 u->ssp_inactivity_timeout = ssp_inactive_to;
1348 u->stp_max_occupancy_timeout = stp_max_occ_to;
1349 u->ssp_max_occupancy_timeout = ssp_max_occ_to;
1350 u->no_outbound_task_timeout = no_outbound_task_to;
1351 u->max_concurr_spinup = max_concurr_spinup;
1352 }
1353
1354 static void sci_controller_initial_state_enter(struct sci_base_state_machine *sm)
1355 {
1356 struct isci_host *ihost = container_of(sm, typeof(*ihost), sm);
1357
1358 sci_change_state(&ihost->sm, SCIC_RESET);
1359 }
1360
1361 static inline void sci_controller_starting_state_exit(struct sci_base_state_machine *sm)
1362 {
1363 struct isci_host *ihost = container_of(sm, typeof(*ihost), sm);
1364
1365 sci_del_timer(&ihost->timer);
1366 }
1367
1368 #define INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_LOWER_BOUND_NS 853
1369 #define INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_UPPER_BOUND_NS 1280
1370 #define INTERRUPT_COALESCE_TIMEOUT_MAX_US 2700000
1371 #define INTERRUPT_COALESCE_NUMBER_MAX 256
1372 #define INTERRUPT_COALESCE_TIMEOUT_ENCODE_MIN 7
1373 #define INTERRUPT_COALESCE_TIMEOUT_ENCODE_MAX 28
1374
1375 /**
1376 * sci_controller_set_interrupt_coalescence() - This method allows the user to
1377 * configure the interrupt coalescence.
1378 * @controller: This parameter represents the handle to the controller object
1379 * for which its interrupt coalesce register is overridden.
1380 * @coalesce_number: Used to control the number of entries in the Completion
1381 * Queue before an interrupt is generated. If the number of entries exceed
1382 * this number, an interrupt will be generated. The valid range of the input
1383 * is [0, 256]. A setting of 0 results in coalescing being disabled.
1384 * @coalesce_timeout: Timeout value in microseconds. The valid range of the
1385 * input is [0, 2700000] . A setting of 0 is allowed and results in no
1386 * interrupt coalescing timeout.
1387 *
1388 * Indicate if the user successfully set the interrupt coalesce parameters.
1389 * SCI_SUCCESS The user successfully updated the interrutp coalescence.
1390 * SCI_FAILURE_INVALID_PARAMETER_VALUE The user input value is out of range.
1391 */
1392 static enum sci_status
1393 sci_controller_set_interrupt_coalescence(struct isci_host *ihost,
1394 u32 coalesce_number,
1395 u32 coalesce_timeout)
1396 {
1397 u8 timeout_encode = 0;
1398 u32 min = 0;
1399 u32 max = 0;
1400
1401 /* Check if the input parameters fall in the range. */
1402 if (coalesce_number > INTERRUPT_COALESCE_NUMBER_MAX)
1403 return SCI_FAILURE_INVALID_PARAMETER_VALUE;
1404
1405 /*
1406 * Defined encoding for interrupt coalescing timeout:
1407 * Value Min Max Units
1408 * ----- --- --- -----
1409 * 0 - - Disabled
1410 * 1 13.3 20.0 ns
1411 * 2 26.7 40.0
1412 * 3 53.3 80.0
1413 * 4 106.7 160.0
1414 * 5 213.3 320.0
1415 * 6 426.7 640.0
1416 * 7 853.3 1280.0
1417 * 8 1.7 2.6 us
1418 * 9 3.4 5.1
1419 * 10 6.8 10.2
1420 * 11 13.7 20.5
1421 * 12 27.3 41.0
1422 * 13 54.6 81.9
1423 * 14 109.2 163.8
1424 * 15 218.5 327.7
1425 * 16 436.9 655.4
1426 * 17 873.8 1310.7
1427 * 18 1.7 2.6 ms
1428 * 19 3.5 5.2
1429 * 20 7.0 10.5
1430 * 21 14.0 21.0
1431 * 22 28.0 41.9
1432 * 23 55.9 83.9
1433 * 24 111.8 167.8
1434 * 25 223.7 335.5
1435 * 26 447.4 671.1
1436 * 27 894.8 1342.2
1437 * 28 1.8 2.7 s
1438 * Others Undefined */
1439
1440 /*
1441 * Use the table above to decide the encode of interrupt coalescing timeout
1442 * value for register writing. */
1443 if (coalesce_timeout == 0)
1444 timeout_encode = 0;
1445 else{
1446 /* make the timeout value in unit of (10 ns). */
1447 coalesce_timeout = coalesce_timeout * 100;
1448 min = INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_LOWER_BOUND_NS / 10;
1449 max = INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_UPPER_BOUND_NS / 10;
1450
1451 /* get the encode of timeout for register writing. */
1452 for (timeout_encode = INTERRUPT_COALESCE_TIMEOUT_ENCODE_MIN;
1453 timeout_encode <= INTERRUPT_COALESCE_TIMEOUT_ENCODE_MAX;
1454 timeout_encode++) {
1455 if (min <= coalesce_timeout && max > coalesce_timeout)
1456 break;
1457 else if (coalesce_timeout >= max && coalesce_timeout < min * 2
1458 && coalesce_timeout <= INTERRUPT_COALESCE_TIMEOUT_MAX_US * 100) {
1459 if ((coalesce_timeout - max) < (2 * min - coalesce_timeout))
1460 break;
1461 else{
1462 timeout_encode++;
1463 break;
1464 }
1465 } else {
1466 max = max * 2;
1467 min = min * 2;
1468 }
1469 }
1470
1471 if (timeout_encode == INTERRUPT_COALESCE_TIMEOUT_ENCODE_MAX + 1)
1472 /* the value is out of range. */
1473 return SCI_FAILURE_INVALID_PARAMETER_VALUE;
1474 }
1475
1476 writel(SMU_ICC_GEN_VAL(NUMBER, coalesce_number) |
1477 SMU_ICC_GEN_VAL(TIMER, timeout_encode),
1478 &ihost->smu_registers->interrupt_coalesce_control);
1479
1480
1481 ihost->interrupt_coalesce_number = (u16)coalesce_number;
1482 ihost->interrupt_coalesce_timeout = coalesce_timeout / 100;
1483
1484 return SCI_SUCCESS;
1485 }
1486
1487
1488 static void sci_controller_ready_state_enter(struct sci_base_state_machine *sm)
1489 {
1490 struct isci_host *ihost = container_of(sm, typeof(*ihost), sm);
1491 u32 val;
1492
1493 /* enable clock gating for power control of the scu unit */
1494 val = readl(&ihost->smu_registers->clock_gating_control);
1495 val &= ~(SMU_CGUCR_GEN_BIT(REGCLK_ENABLE) |
1496 SMU_CGUCR_GEN_BIT(TXCLK_ENABLE) |
1497 SMU_CGUCR_GEN_BIT(XCLK_ENABLE));
1498 val |= SMU_CGUCR_GEN_BIT(IDLE_ENABLE);
1499 writel(val, &ihost->smu_registers->clock_gating_control);
1500
1501 /* set the default interrupt coalescence number and timeout value. */
1502 sci_controller_set_interrupt_coalescence(ihost, 0, 0);
1503 }
1504
1505 static void sci_controller_ready_state_exit(struct sci_base_state_machine *sm)
1506 {
1507 struct isci_host *ihost = container_of(sm, typeof(*ihost), sm);
1508
1509 /* disable interrupt coalescence. */
1510 sci_controller_set_interrupt_coalescence(ihost, 0, 0);
1511 }
1512
1513 static enum sci_status sci_controller_stop_phys(struct isci_host *ihost)
1514 {
1515 u32 index;
1516 enum sci_status status;
1517 enum sci_status phy_status;
1518
1519 status = SCI_SUCCESS;
1520
1521 for (index = 0; index < SCI_MAX_PHYS; index++) {
1522 phy_status = sci_phy_stop(&ihost->phys[index]);
1523
1524 if (phy_status != SCI_SUCCESS &&
1525 phy_status != SCI_FAILURE_INVALID_STATE) {
1526 status = SCI_FAILURE;
1527
1528 dev_warn(&ihost->pdev->dev,
1529 "%s: Controller stop operation failed to stop "
1530 "phy %d because of status %d.\n",
1531 __func__,
1532 ihost->phys[index].phy_index, phy_status);
1533 }
1534 }
1535
1536 return status;
1537 }
1538
1539 static enum sci_status sci_controller_stop_ports(struct isci_host *ihost)
1540 {
1541 u32 index;
1542 enum sci_status port_status;
1543 enum sci_status status = SCI_SUCCESS;
1544
1545 for (index = 0; index < ihost->logical_port_entries; index++) {
1546 struct isci_port *iport = &ihost->ports[index];
1547
1548 port_status = sci_port_stop(iport);
1549
1550 if ((port_status != SCI_SUCCESS) &&
1551 (port_status != SCI_FAILURE_INVALID_STATE)) {
1552 status = SCI_FAILURE;
1553
1554 dev_warn(&ihost->pdev->dev,
1555 "%s: Controller stop operation failed to "
1556 "stop port %d because of status %d.\n",
1557 __func__,
1558 iport->logical_port_index,
1559 port_status);
1560 }
1561 }
1562
1563 return status;
1564 }
1565
1566 static enum sci_status sci_controller_stop_devices(struct isci_host *ihost)
1567 {
1568 u32 index;
1569 enum sci_status status;
1570 enum sci_status device_status;
1571
1572 status = SCI_SUCCESS;
1573
1574 for (index = 0; index < ihost->remote_node_entries; index++) {
1575 if (ihost->device_table[index] != NULL) {
1576 /* / @todo What timeout value do we want to provide to this request? */
1577 device_status = sci_remote_device_stop(ihost->device_table[index], 0);
1578
1579 if ((device_status != SCI_SUCCESS) &&
1580 (device_status != SCI_FAILURE_INVALID_STATE)) {
1581 dev_warn(&ihost->pdev->dev,
1582 "%s: Controller stop operation failed "
1583 "to stop device 0x%p because of "
1584 "status %d.\n",
1585 __func__,
1586 ihost->device_table[index], device_status);
1587 }
1588 }
1589 }
1590
1591 return status;
1592 }
1593
1594 static void sci_controller_stopping_state_enter(struct sci_base_state_machine *sm)
1595 {
1596 struct isci_host *ihost = container_of(sm, typeof(*ihost), sm);
1597
1598 /* Stop all of the components for this controller */
1599 sci_controller_stop_phys(ihost);
1600 sci_controller_stop_ports(ihost);
1601 sci_controller_stop_devices(ihost);
1602 }
1603
1604 static void sci_controller_stopping_state_exit(struct sci_base_state_machine *sm)
1605 {
1606 struct isci_host *ihost = container_of(sm, typeof(*ihost), sm);
1607
1608 sci_del_timer(&ihost->timer);
1609 }
1610
1611 static void sci_controller_reset_hardware(struct isci_host *ihost)
1612 {
1613 /* Disable interrupts so we dont take any spurious interrupts */
1614 sci_controller_disable_interrupts(ihost);
1615
1616 /* Reset the SCU */
1617 writel(0xFFFFFFFF, &ihost->smu_registers->soft_reset_control);
1618
1619 /* Delay for 1ms to before clearing the CQP and UFQPR. */
1620 udelay(1000);
1621
1622 /* The write to the CQGR clears the CQP */
1623 writel(0x00000000, &ihost->smu_registers->completion_queue_get);
1624
1625 /* The write to the UFQGP clears the UFQPR */
1626 writel(0, &ihost->scu_registers->sdma.unsolicited_frame_get_pointer);
1627 }
1628
1629 static void sci_controller_resetting_state_enter(struct sci_base_state_machine *sm)
1630 {
1631 struct isci_host *ihost = container_of(sm, typeof(*ihost), sm);
1632
1633 sci_controller_reset_hardware(ihost);
1634 sci_change_state(&ihost->sm, SCIC_RESET);
1635 }
1636
1637 static const struct sci_base_state sci_controller_state_table[] = {
1638 [SCIC_INITIAL] = {
1639 .enter_state = sci_controller_initial_state_enter,
1640 },
1641 [SCIC_RESET] = {},
1642 [SCIC_INITIALIZING] = {},
1643 [SCIC_INITIALIZED] = {},
1644 [SCIC_STARTING] = {
1645 .exit_state = sci_controller_starting_state_exit,
1646 },
1647 [SCIC_READY] = {
1648 .enter_state = sci_controller_ready_state_enter,
1649 .exit_state = sci_controller_ready_state_exit,
1650 },
1651 [SCIC_RESETTING] = {
1652 .enter_state = sci_controller_resetting_state_enter,
1653 },
1654 [SCIC_STOPPING] = {
1655 .enter_state = sci_controller_stopping_state_enter,
1656 .exit_state = sci_controller_stopping_state_exit,
1657 },
1658 [SCIC_STOPPED] = {},
1659 [SCIC_FAILED] = {}
1660 };
1661
1662 static void sci_controller_set_default_config_parameters(struct isci_host *ihost)
1663 {
1664 /* these defaults are overridden by the platform / firmware */
1665 u16 index;
1666
1667 /* Default to APC mode. */
1668 ihost->oem_parameters.controller.mode_type = SCIC_PORT_AUTOMATIC_CONFIGURATION_MODE;
1669
1670 /* Default to APC mode. */
1671 ihost->oem_parameters.controller.max_concurr_spin_up = 1;
1672
1673 /* Default to no SSC operation. */
1674 ihost->oem_parameters.controller.do_enable_ssc = false;
1675
1676 /* Default to short cables on all phys. */
1677 ihost->oem_parameters.controller.cable_selection_mask = 0;
1678
1679 /* Initialize all of the port parameter information to narrow ports. */
1680 for (index = 0; index < SCI_MAX_PORTS; index++) {
1681 ihost->oem_parameters.ports[index].phy_mask = 0;
1682 }
1683
1684 /* Initialize all of the phy parameter information. */
1685 for (index = 0; index < SCI_MAX_PHYS; index++) {
1686 /* Default to 3G (i.e. Gen 2). */
1687 ihost->user_parameters.phys[index].max_speed_generation =
1688 SCIC_SDS_PARM_GEN2_SPEED;
1689
1690 /* the frequencies cannot be 0 */
1691 ihost->user_parameters.phys[index].align_insertion_frequency = 0x7f;
1692 ihost->user_parameters.phys[index].in_connection_align_insertion_frequency = 0xff;
1693 ihost->user_parameters.phys[index].notify_enable_spin_up_insertion_frequency = 0x33;
1694
1695 /*
1696 * Previous Vitesse based expanders had a arbitration issue that
1697 * is worked around by having the upper 32-bits of SAS address
1698 * with a value greater then the Vitesse company identifier.
1699 * Hence, usage of 0x5FCFFFFF. */
1700 ihost->oem_parameters.phys[index].sas_address.low = 0x1 + ihost->id;
1701 ihost->oem_parameters.phys[index].sas_address.high = 0x5FCFFFFF;
1702 }
1703
1704 ihost->user_parameters.stp_inactivity_timeout = 5;
1705 ihost->user_parameters.ssp_inactivity_timeout = 5;
1706 ihost->user_parameters.stp_max_occupancy_timeout = 5;
1707 ihost->user_parameters.ssp_max_occupancy_timeout = 20;
1708 ihost->user_parameters.no_outbound_task_timeout = 2;
1709 }
1710
1711 static void controller_timeout(unsigned long data)
1712 {
1713 struct sci_timer *tmr = (struct sci_timer *)data;
1714 struct isci_host *ihost = container_of(tmr, typeof(*ihost), timer);
1715 struct sci_base_state_machine *sm = &ihost->sm;
1716 unsigned long flags;
1717
1718 spin_lock_irqsave(&ihost->scic_lock, flags);
1719
1720 if (tmr->cancel)
1721 goto done;
1722
1723 if (sm->current_state_id == SCIC_STARTING)
1724 sci_controller_transition_to_ready(ihost, SCI_FAILURE_TIMEOUT);
1725 else if (sm->current_state_id == SCIC_STOPPING) {
1726 sci_change_state(sm, SCIC_FAILED);
1727 isci_host_stop_complete(ihost, SCI_FAILURE_TIMEOUT);
1728 } else /* / @todo Now what do we want to do in this case? */
1729 dev_err(&ihost->pdev->dev,
1730 "%s: Controller timer fired when controller was not "
1731 "in a state being timed.\n",
1732 __func__);
1733
1734 done:
1735 spin_unlock_irqrestore(&ihost->scic_lock, flags);
1736 }
1737
1738 static enum sci_status sci_controller_construct(struct isci_host *ihost,
1739 void __iomem *scu_base,
1740 void __iomem *smu_base)
1741 {
1742 u8 i;
1743
1744 sci_init_sm(&ihost->sm, sci_controller_state_table, SCIC_INITIAL);
1745
1746 ihost->scu_registers = scu_base;
1747 ihost->smu_registers = smu_base;
1748
1749 sci_port_configuration_agent_construct(&ihost->port_agent);
1750
1751 /* Construct the ports for this controller */
1752 for (i = 0; i < SCI_MAX_PORTS; i++)
1753 sci_port_construct(&ihost->ports[i], i, ihost);
1754 sci_port_construct(&ihost->ports[i], SCIC_SDS_DUMMY_PORT, ihost);
1755
1756 /* Construct the phys for this controller */
1757 for (i = 0; i < SCI_MAX_PHYS; i++) {
1758 /* Add all the PHYs to the dummy port */
1759 sci_phy_construct(&ihost->phys[i],
1760 &ihost->ports[SCI_MAX_PORTS], i);
1761 }
1762
1763 ihost->invalid_phy_mask = 0;
1764
1765 sci_init_timer(&ihost->timer, controller_timeout);
1766
1767 /* Initialize the User and OEM parameters to default values. */
1768 sci_controller_set_default_config_parameters(ihost);
1769
1770 return sci_controller_reset(ihost);
1771 }
1772
1773 int sci_oem_parameters_validate(struct sci_oem_params *oem, u8 version)
1774 {
1775 int i;
1776
1777 for (i = 0; i < SCI_MAX_PORTS; i++)
1778 if (oem->ports[i].phy_mask > SCIC_SDS_PARM_PHY_MASK_MAX)
1779 return -EINVAL;
1780
1781 for (i = 0; i < SCI_MAX_PHYS; i++)
1782 if (oem->phys[i].sas_address.high == 0 &&
1783 oem->phys[i].sas_address.low == 0)
1784 return -EINVAL;
1785
1786 if (oem->controller.mode_type == SCIC_PORT_AUTOMATIC_CONFIGURATION_MODE) {
1787 for (i = 0; i < SCI_MAX_PHYS; i++)
1788 if (oem->ports[i].phy_mask != 0)
1789 return -EINVAL;
1790 } else if (oem->controller.mode_type == SCIC_PORT_MANUAL_CONFIGURATION_MODE) {
1791 u8 phy_mask = 0;
1792
1793 for (i = 0; i < SCI_MAX_PHYS; i++)
1794 phy_mask |= oem->ports[i].phy_mask;
1795
1796 if (phy_mask == 0)
1797 return -EINVAL;
1798 } else
1799 return -EINVAL;
1800
1801 if (oem->controller.max_concurr_spin_up > MAX_CONCURRENT_DEVICE_SPIN_UP_COUNT ||
1802 oem->controller.max_concurr_spin_up < 1)
1803 return -EINVAL;
1804
1805 if (oem->controller.do_enable_ssc) {
1806 if (version < ISCI_ROM_VER_1_1 && oem->controller.do_enable_ssc != 1)
1807 return -EINVAL;
1808
1809 if (version >= ISCI_ROM_VER_1_1) {
1810 u8 test = oem->controller.ssc_sata_tx_spread_level;
1811
1812 switch (test) {
1813 case 0:
1814 case 2:
1815 case 3:
1816 case 6:
1817 case 7:
1818 break;
1819 default:
1820 return -EINVAL;
1821 }
1822
1823 test = oem->controller.ssc_sas_tx_spread_level;
1824 if (oem->controller.ssc_sas_tx_type == 0) {
1825 switch (test) {
1826 case 0:
1827 case 2:
1828 case 3:
1829 break;
1830 default:
1831 return -EINVAL;
1832 }
1833 } else if (oem->controller.ssc_sas_tx_type == 1) {
1834 switch (test) {
1835 case 0:
1836 case 3:
1837 case 6:
1838 break;
1839 default:
1840 return -EINVAL;
1841 }
1842 }
1843 }
1844 }
1845
1846 return 0;
1847 }
1848
1849 static enum sci_status sci_oem_parameters_set(struct isci_host *ihost)
1850 {
1851 u32 state = ihost->sm.current_state_id;
1852 struct isci_pci_info *pci_info = to_pci_info(ihost->pdev);
1853
1854 if (state == SCIC_RESET ||
1855 state == SCIC_INITIALIZING ||
1856 state == SCIC_INITIALIZED) {
1857 u8 oem_version = pci_info->orom ? pci_info->orom->hdr.version :
1858 ISCI_ROM_VER_1_0;
1859
1860 if (sci_oem_parameters_validate(&ihost->oem_parameters,
1861 oem_version))
1862 return SCI_FAILURE_INVALID_PARAMETER_VALUE;
1863
1864 return SCI_SUCCESS;
1865 }
1866
1867 return SCI_FAILURE_INVALID_STATE;
1868 }
1869
1870 static u8 max_spin_up(struct isci_host *ihost)
1871 {
1872 if (ihost->user_parameters.max_concurr_spinup)
1873 return min_t(u8, ihost->user_parameters.max_concurr_spinup,
1874 MAX_CONCURRENT_DEVICE_SPIN_UP_COUNT);
1875 else
1876 return min_t(u8, ihost->oem_parameters.controller.max_concurr_spin_up,
1877 MAX_CONCURRENT_DEVICE_SPIN_UP_COUNT);
1878 }
1879
1880 static void power_control_timeout(unsigned long data)
1881 {
1882 struct sci_timer *tmr = (struct sci_timer *)data;
1883 struct isci_host *ihost = container_of(tmr, typeof(*ihost), power_control.timer);
1884 struct isci_phy *iphy;
1885 unsigned long flags;
1886 u8 i;
1887
1888 spin_lock_irqsave(&ihost->scic_lock, flags);
1889
1890 if (tmr->cancel)
1891 goto done;
1892
1893 ihost->power_control.phys_granted_power = 0;
1894
1895 if (ihost->power_control.phys_waiting == 0) {
1896 ihost->power_control.timer_started = false;
1897 goto done;
1898 }
1899
1900 for (i = 0; i < SCI_MAX_PHYS; i++) {
1901
1902 if (ihost->power_control.phys_waiting == 0)
1903 break;
1904
1905 iphy = ihost->power_control.requesters[i];
1906 if (iphy == NULL)
1907 continue;
1908
1909 if (ihost->power_control.phys_granted_power >= max_spin_up(ihost))
1910 break;
1911
1912 ihost->power_control.requesters[i] = NULL;
1913 ihost->power_control.phys_waiting--;
1914 ihost->power_control.phys_granted_power++;
1915 sci_phy_consume_power_handler(iphy);
1916
1917 if (iphy->protocol == SCIC_SDS_PHY_PROTOCOL_SAS) {
1918 u8 j;
1919
1920 for (j = 0; j < SCI_MAX_PHYS; j++) {
1921 struct isci_phy *requester = ihost->power_control.requesters[j];
1922
1923 /*
1924 * Search the power_control queue to see if there are other phys
1925 * attached to the same remote device. If found, take all of
1926 * them out of await_sas_power state.
1927 */
1928 if (requester != NULL && requester != iphy) {
1929 u8 other = memcmp(requester->frame_rcvd.iaf.sas_addr,
1930 iphy->frame_rcvd.iaf.sas_addr,
1931 sizeof(requester->frame_rcvd.iaf.sas_addr));
1932
1933 if (other == 0) {
1934 ihost->power_control.requesters[j] = NULL;
1935 ihost->power_control.phys_waiting--;
1936 sci_phy_consume_power_handler(requester);
1937 }
1938 }
1939 }
1940 }
1941 }
1942
1943 /*
1944 * It doesn't matter if the power list is empty, we need to start the
1945 * timer in case another phy becomes ready.
1946 */
1947 sci_mod_timer(tmr, SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL);
1948 ihost->power_control.timer_started = true;
1949
1950 done:
1951 spin_unlock_irqrestore(&ihost->scic_lock, flags);
1952 }
1953
1954 void sci_controller_power_control_queue_insert(struct isci_host *ihost,
1955 struct isci_phy *iphy)
1956 {
1957 BUG_ON(iphy == NULL);
1958
1959 if (ihost->power_control.phys_granted_power < max_spin_up(ihost)) {
1960 ihost->power_control.phys_granted_power++;
1961 sci_phy_consume_power_handler(iphy);
1962
1963 /*
1964 * stop and start the power_control timer. When the timer fires, the
1965 * no_of_phys_granted_power will be set to 0
1966 */
1967 if (ihost->power_control.timer_started)
1968 sci_del_timer(&ihost->power_control.timer);
1969
1970 sci_mod_timer(&ihost->power_control.timer,
1971 SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL);
1972 ihost->power_control.timer_started = true;
1973
1974 } else {
1975 /*
1976 * There are phys, attached to the same sas address as this phy, are
1977 * already in READY state, this phy don't need wait.
1978 */
1979 u8 i;
1980 struct isci_phy *current_phy;
1981
1982 for (i = 0; i < SCI_MAX_PHYS; i++) {
1983 u8 other;
1984 current_phy = &ihost->phys[i];
1985
1986 other = memcmp(current_phy->frame_rcvd.iaf.sas_addr,
1987 iphy->frame_rcvd.iaf.sas_addr,
1988 sizeof(current_phy->frame_rcvd.iaf.sas_addr));
1989
1990 if (current_phy->sm.current_state_id == SCI_PHY_READY &&
1991 current_phy->protocol == SCIC_SDS_PHY_PROTOCOL_SAS &&
1992 other == 0) {
1993 sci_phy_consume_power_handler(iphy);
1994 break;
1995 }
1996 }
1997
1998 if (i == SCI_MAX_PHYS) {
1999 /* Add the phy in the waiting list */
2000 ihost->power_control.requesters[iphy->phy_index] = iphy;
2001 ihost->power_control.phys_waiting++;
2002 }
2003 }
2004 }
2005
2006 void sci_controller_power_control_queue_remove(struct isci_host *ihost,
2007 struct isci_phy *iphy)
2008 {
2009 BUG_ON(iphy == NULL);
2010
2011 if (ihost->power_control.requesters[iphy->phy_index])
2012 ihost->power_control.phys_waiting--;
2013
2014 ihost->power_control.requesters[iphy->phy_index] = NULL;
2015 }
2016
2017 static int is_long_cable(int phy, unsigned char selection_byte)
2018 {
2019 return !!(selection_byte & (1 << phy));
2020 }
2021
2022 static int is_medium_cable(int phy, unsigned char selection_byte)
2023 {
2024 return !!(selection_byte & (1 << (phy + 4)));
2025 }
2026
2027 static enum cable_selections decode_selection_byte(
2028 int phy,
2029 unsigned char selection_byte)
2030 {
2031 return ((selection_byte & (1 << phy)) ? 1 : 0)
2032 + (selection_byte & (1 << (phy + 4)) ? 2 : 0);
2033 }
2034
2035 static unsigned char *to_cable_select(struct isci_host *ihost)
2036 {
2037 if (is_cable_select_overridden())
2038 return ((unsigned char *)&cable_selection_override)
2039 + ihost->id;
2040 else
2041 return &ihost->oem_parameters.controller.cable_selection_mask;
2042 }
2043
2044 enum cable_selections decode_cable_selection(struct isci_host *ihost, int phy)
2045 {
2046 return decode_selection_byte(phy, *to_cable_select(ihost));
2047 }
2048
2049 char *lookup_cable_names(enum cable_selections selection)
2050 {
2051 static char *cable_names[] = {
2052 [short_cable] = "short",
2053 [long_cable] = "long",
2054 [medium_cable] = "medium",
2055 [undefined_cable] = "<undefined, assumed long>" /* bit 0==1 */
2056 };
2057 return (selection <= undefined_cable) ? cable_names[selection]
2058 : cable_names[undefined_cable];
2059 }
2060
2061 #define AFE_REGISTER_WRITE_DELAY 10
2062
2063 static void sci_controller_afe_initialization(struct isci_host *ihost)
2064 {
2065 struct scu_afe_registers __iomem *afe = &ihost->scu_registers->afe;
2066 const struct sci_oem_params *oem = &ihost->oem_parameters;
2067 struct pci_dev *pdev = ihost->pdev;
2068 u32 afe_status;
2069 u32 phy_id;
2070 unsigned char cable_selection_mask = *to_cable_select(ihost);
2071
2072 /* Clear DFX Status registers */
2073 writel(0x0081000f, &afe->afe_dfx_master_control0);
2074 udelay(AFE_REGISTER_WRITE_DELAY);
2075
2076 if (is_b0(pdev) || is_c0(pdev) || is_c1(pdev)) {
2077 /* PM Rx Equalization Save, PM SPhy Rx Acknowledgement
2078 * Timer, PM Stagger Timer
2079 */
2080 writel(0x0007FFFF, &afe->afe_pmsn_master_control2);
2081 udelay(AFE_REGISTER_WRITE_DELAY);
2082 }
2083
2084 /* Configure bias currents to normal */
2085 if (is_a2(pdev))
2086 writel(0x00005A00, &afe->afe_bias_control);
2087 else if (is_b0(pdev) || is_c0(pdev))
2088 writel(0x00005F00, &afe->afe_bias_control);
2089 else if (is_c1(pdev))
2090 writel(0x00005500, &afe->afe_bias_control);
2091
2092 udelay(AFE_REGISTER_WRITE_DELAY);
2093
2094 /* Enable PLL */
2095 if (is_a2(pdev))
2096 writel(0x80040908, &afe->afe_pll_control0);
2097 else if (is_b0(pdev) || is_c0(pdev))
2098 writel(0x80040A08, &afe->afe_pll_control0);
2099 else if (is_c1(pdev)) {
2100 writel(0x80000B08, &afe->afe_pll_control0);
2101 udelay(AFE_REGISTER_WRITE_DELAY);
2102 writel(0x00000B08, &afe->afe_pll_control0);
2103 udelay(AFE_REGISTER_WRITE_DELAY);
2104 writel(0x80000B08, &afe->afe_pll_control0);
2105 }
2106
2107 udelay(AFE_REGISTER_WRITE_DELAY);
2108
2109 /* Wait for the PLL to lock */
2110 do {
2111 afe_status = readl(&afe->afe_common_block_status);
2112 udelay(AFE_REGISTER_WRITE_DELAY);
2113 } while ((afe_status & 0x00001000) == 0);
2114
2115 if (is_a2(pdev)) {
2116 /* Shorten SAS SNW lock time (RxLock timer value from 76
2117 * us to 50 us)
2118 */
2119 writel(0x7bcc96ad, &afe->afe_pmsn_master_control0);
2120 udelay(AFE_REGISTER_WRITE_DELAY);
2121 }
2122
2123 for (phy_id = 0; phy_id < SCI_MAX_PHYS; phy_id++) {
2124 struct scu_afe_transceiver *xcvr = &afe->scu_afe_xcvr[phy_id];
2125 const struct sci_phy_oem_params *oem_phy = &oem->phys[phy_id];
2126 int cable_length_long =
2127 is_long_cable(phy_id, cable_selection_mask);
2128 int cable_length_medium =
2129 is_medium_cable(phy_id, cable_selection_mask);
2130
2131 if (is_a2(pdev)) {
2132 /* All defaults, except the Receive Word
2133 * Alignament/Comma Detect Enable....(0xe800)
2134 */
2135 writel(0x00004512, &xcvr->afe_xcvr_control0);
2136 udelay(AFE_REGISTER_WRITE_DELAY);
2137
2138 writel(0x0050100F, &xcvr->afe_xcvr_control1);
2139 udelay(AFE_REGISTER_WRITE_DELAY);
2140 } else if (is_b0(pdev)) {
2141 /* Configure transmitter SSC parameters */
2142 writel(0x00030000, &xcvr->afe_tx_ssc_control);
2143 udelay(AFE_REGISTER_WRITE_DELAY);
2144 } else if (is_c0(pdev)) {
2145 /* Configure transmitter SSC parameters */
2146 writel(0x00010202, &xcvr->afe_tx_ssc_control);
2147 udelay(AFE_REGISTER_WRITE_DELAY);
2148
2149 /* All defaults, except the Receive Word
2150 * Alignament/Comma Detect Enable....(0xe800)
2151 */
2152 writel(0x00014500, &xcvr->afe_xcvr_control0);
2153 udelay(AFE_REGISTER_WRITE_DELAY);
2154 } else if (is_c1(pdev)) {
2155 /* Configure transmitter SSC parameters */
2156 writel(0x00010202, &xcvr->afe_tx_ssc_control);
2157 udelay(AFE_REGISTER_WRITE_DELAY);
2158
2159 /* All defaults, except the Receive Word
2160 * Alignament/Comma Detect Enable....(0xe800)
2161 */
2162 writel(0x0001C500, &xcvr->afe_xcvr_control0);
2163 udelay(AFE_REGISTER_WRITE_DELAY);
2164 }
2165
2166 /* Power up TX and RX out from power down (PWRDNTX and
2167 * PWRDNRX) & increase TX int & ext bias 20%....(0xe85c)
2168 */
2169 if (is_a2(pdev))
2170 writel(0x000003F0, &xcvr->afe_channel_control);
2171 else if (is_b0(pdev)) {
2172 writel(0x000003D7, &xcvr->afe_channel_control);
2173 udelay(AFE_REGISTER_WRITE_DELAY);
2174
2175 writel(0x000003D4, &xcvr->afe_channel_control);
2176 } else if (is_c0(pdev)) {
2177 writel(0x000001E7, &xcvr->afe_channel_control);
2178 udelay(AFE_REGISTER_WRITE_DELAY);
2179
2180 writel(0x000001E4, &xcvr->afe_channel_control);
2181 } else if (is_c1(pdev)) {
2182 writel(cable_length_long ? 0x000002F7 : 0x000001F7,
2183 &xcvr->afe_channel_control);
2184 udelay(AFE_REGISTER_WRITE_DELAY);
2185
2186 writel(cable_length_long ? 0x000002F4 : 0x000001F4,
2187 &xcvr->afe_channel_control);
2188 }
2189 udelay(AFE_REGISTER_WRITE_DELAY);
2190
2191 if (is_a2(pdev)) {
2192 /* Enable TX equalization (0xe824) */
2193 writel(0x00040000, &xcvr->afe_tx_control);
2194 udelay(AFE_REGISTER_WRITE_DELAY);
2195 }
2196
2197 if (is_a2(pdev) || is_b0(pdev))
2198 /* RDPI=0x0(RX Power On), RXOOBDETPDNC=0x0,
2199 * TPD=0x0(TX Power On), RDD=0x0(RX Detect
2200 * Enabled) ....(0xe800)
2201 */
2202 writel(0x00004100, &xcvr->afe_xcvr_control0);
2203 else if (is_c0(pdev))
2204 writel(0x00014100, &xcvr->afe_xcvr_control0);
2205 else if (is_c1(pdev))
2206 writel(0x0001C100, &xcvr->afe_xcvr_control0);
2207 udelay(AFE_REGISTER_WRITE_DELAY);
2208
2209 /* Leave DFE/FFE on */
2210 if (is_a2(pdev))
2211 writel(0x3F11103F, &xcvr->afe_rx_ssc_control0);
2212 else if (is_b0(pdev)) {
2213 writel(0x3F11103F, &xcvr->afe_rx_ssc_control0);
2214 udelay(AFE_REGISTER_WRITE_DELAY);
2215 /* Enable TX equalization (0xe824) */
2216 writel(0x00040000, &xcvr->afe_tx_control);
2217 } else if (is_c0(pdev)) {
2218 writel(0x01400C0F, &xcvr->afe_rx_ssc_control1);
2219 udelay(AFE_REGISTER_WRITE_DELAY);
2220
2221 writel(0x3F6F103F, &xcvr->afe_rx_ssc_control0);
2222 udelay(AFE_REGISTER_WRITE_DELAY);
2223
2224 /* Enable TX equalization (0xe824) */
2225 writel(0x00040000, &xcvr->afe_tx_control);
2226 } else if (is_c1(pdev)) {
2227 writel(cable_length_long ? 0x01500C0C :
2228 cable_length_medium ? 0x01400C0D : 0x02400C0D,
2229 &xcvr->afe_xcvr_control1);
2230 udelay(AFE_REGISTER_WRITE_DELAY);
2231
2232 writel(0x000003E0, &xcvr->afe_dfx_rx_control1);
2233 udelay(AFE_REGISTER_WRITE_DELAY);
2234
2235 writel(cable_length_long ? 0x33091C1F :
2236 cable_length_medium ? 0x3315181F : 0x2B17161F,
2237 &xcvr->afe_rx_ssc_control0);
2238 udelay(AFE_REGISTER_WRITE_DELAY);
2239
2240 /* Enable TX equalization (0xe824) */
2241 writel(0x00040000, &xcvr->afe_tx_control);
2242 }
2243
2244 udelay(AFE_REGISTER_WRITE_DELAY);
2245
2246 writel(oem_phy->afe_tx_amp_control0, &xcvr->afe_tx_amp_control0);
2247 udelay(AFE_REGISTER_WRITE_DELAY);
2248
2249 writel(oem_phy->afe_tx_amp_control1, &xcvr->afe_tx_amp_control1);
2250 udelay(AFE_REGISTER_WRITE_DELAY);
2251
2252 writel(oem_phy->afe_tx_amp_control2, &xcvr->afe_tx_amp_control2);
2253 udelay(AFE_REGISTER_WRITE_DELAY);
2254
2255 writel(oem_phy->afe_tx_amp_control3, &xcvr->afe_tx_amp_control3);
2256 udelay(AFE_REGISTER_WRITE_DELAY);
2257 }
2258
2259 /* Transfer control to the PEs */
2260 writel(0x00010f00, &afe->afe_dfx_master_control0);
2261 udelay(AFE_REGISTER_WRITE_DELAY);
2262 }
2263
2264 static void sci_controller_initialize_power_control(struct isci_host *ihost)
2265 {
2266 sci_init_timer(&ihost->power_control.timer, power_control_timeout);
2267
2268 memset(ihost->power_control.requesters, 0,
2269 sizeof(ihost->power_control.requesters));
2270
2271 ihost->power_control.phys_waiting = 0;
2272 ihost->power_control.phys_granted_power = 0;
2273 }
2274
2275 static enum sci_status sci_controller_initialize(struct isci_host *ihost)
2276 {
2277 struct sci_base_state_machine *sm = &ihost->sm;
2278 enum sci_status result = SCI_FAILURE;
2279 unsigned long i, state, val;
2280
2281 if (ihost->sm.current_state_id != SCIC_RESET) {
2282 dev_warn(&ihost->pdev->dev,
2283 "SCIC Controller initialize operation requested "
2284 "in invalid state\n");
2285 return SCI_FAILURE_INVALID_STATE;
2286 }
2287
2288 sci_change_state(sm, SCIC_INITIALIZING);
2289
2290 sci_init_timer(&ihost->phy_timer, phy_startup_timeout);
2291
2292 ihost->next_phy_to_start = 0;
2293 ihost->phy_startup_timer_pending = false;
2294
2295 sci_controller_initialize_power_control(ihost);
2296
2297 /*
2298 * There is nothing to do here for B0 since we do not have to
2299 * program the AFE registers.
2300 * / @todo The AFE settings are supposed to be correct for the B0 but
2301 * / presently they seem to be wrong. */
2302 sci_controller_afe_initialization(ihost);
2303
2304
2305 /* Take the hardware out of reset */
2306 writel(0, &ihost->smu_registers->soft_reset_control);
2307
2308 /*
2309 * / @todo Provide meaningfull error code for hardware failure
2310 * result = SCI_FAILURE_CONTROLLER_HARDWARE; */
2311 for (i = 100; i >= 1; i--) {
2312 u32 status;
2313
2314 /* Loop until the hardware reports success */
2315 udelay(SCU_CONTEXT_RAM_INIT_STALL_TIME);
2316 status = readl(&ihost->smu_registers->control_status);
2317
2318 if ((status & SCU_RAM_INIT_COMPLETED) == SCU_RAM_INIT_COMPLETED)
2319 break;
2320 }
2321 if (i == 0)
2322 goto out;
2323
2324 /*
2325 * Determine what are the actaul device capacities that the
2326 * hardware will support */
2327 val = readl(&ihost->smu_registers->device_context_capacity);
2328
2329 /* Record the smaller of the two capacity values */
2330 ihost->logical_port_entries = min(smu_max_ports(val), SCI_MAX_PORTS);
2331 ihost->task_context_entries = min(smu_max_task_contexts(val), SCI_MAX_IO_REQUESTS);
2332 ihost->remote_node_entries = min(smu_max_rncs(val), SCI_MAX_REMOTE_DEVICES);
2333
2334 /*
2335 * Make all PEs that are unassigned match up with the
2336 * logical ports
2337 */
2338 for (i = 0; i < ihost->logical_port_entries; i++) {
2339 struct scu_port_task_scheduler_group_registers __iomem
2340 *ptsg = &ihost->scu_registers->peg0.ptsg;
2341
2342 writel(i, &ptsg->protocol_engine[i]);
2343 }
2344
2345 /* Initialize hardware PCI Relaxed ordering in DMA engines */
2346 val = readl(&ihost->scu_registers->sdma.pdma_configuration);
2347 val |= SCU_PDMACR_GEN_BIT(PCI_RELAXED_ORDERING_ENABLE);
2348 writel(val, &ihost->scu_registers->sdma.pdma_configuration);
2349
2350 val = readl(&ihost->scu_registers->sdma.cdma_configuration);
2351 val |= SCU_CDMACR_GEN_BIT(PCI_RELAXED_ORDERING_ENABLE);
2352 writel(val, &ihost->scu_registers->sdma.cdma_configuration);
2353
2354 /*
2355 * Initialize the PHYs before the PORTs because the PHY registers
2356 * are accessed during the port initialization.
2357 */
2358 for (i = 0; i < SCI_MAX_PHYS; i++) {
2359 result = sci_phy_initialize(&ihost->phys[i],
2360 &ihost->scu_registers->peg0.pe[i].tl,
2361 &ihost->scu_registers->peg0.pe[i].ll);
2362 if (result != SCI_SUCCESS)
2363 goto out;
2364 }
2365
2366 for (i = 0; i < ihost->logical_port_entries; i++) {
2367 struct isci_port *iport = &ihost->ports[i];
2368
2369 iport->port_task_scheduler_registers = &ihost->scu_registers->peg0.ptsg.port[i];
2370 iport->port_pe_configuration_register = &ihost->scu_registers->peg0.ptsg.protocol_engine[0];
2371 iport->viit_registers = &ihost->scu_registers->peg0.viit[i];
2372 }
2373
2374 result = sci_port_configuration_agent_initialize(ihost, &ihost->port_agent);
2375
2376 out:
2377 /* Advance the controller state machine */
2378 if (result == SCI_SUCCESS)
2379 state = SCIC_INITIALIZED;
2380 else
2381 state = SCIC_FAILED;
2382 sci_change_state(sm, state);
2383
2384 return result;
2385 }
2386
2387 static enum sci_status sci_user_parameters_set(struct isci_host *ihost,
2388 struct sci_user_parameters *sci_parms)
2389 {
2390 u32 state = ihost->sm.current_state_id;
2391
2392 if (state == SCIC_RESET ||
2393 state == SCIC_INITIALIZING ||
2394 state == SCIC_INITIALIZED) {
2395 u16 index;
2396
2397 /*
2398 * Validate the user parameters. If they are not legal, then
2399 * return a failure.
2400 */
2401 for (index = 0; index < SCI_MAX_PHYS; index++) {
2402 struct sci_phy_user_params *user_phy;
2403
2404 user_phy = &sci_parms->phys[index];
2405
2406 if (!((user_phy->max_speed_generation <=
2407 SCIC_SDS_PARM_MAX_SPEED) &&
2408 (user_phy->max_speed_generation >
2409 SCIC_SDS_PARM_NO_SPEED)))
2410 return SCI_FAILURE_INVALID_PARAMETER_VALUE;
2411
2412 if (user_phy->in_connection_align_insertion_frequency <
2413 3)
2414 return SCI_FAILURE_INVALID_PARAMETER_VALUE;
2415
2416 if ((user_phy->in_connection_align_insertion_frequency <
2417 3) ||
2418 (user_phy->align_insertion_frequency == 0) ||
2419 (user_phy->
2420 notify_enable_spin_up_insertion_frequency ==
2421 0))
2422 return SCI_FAILURE_INVALID_PARAMETER_VALUE;
2423 }
2424
2425 if ((sci_parms->stp_inactivity_timeout == 0) ||
2426 (sci_parms->ssp_inactivity_timeout == 0) ||
2427 (sci_parms->stp_max_occupancy_timeout == 0) ||
2428 (sci_parms->ssp_max_occupancy_timeout == 0) ||
2429 (sci_parms->no_outbound_task_timeout == 0))
2430 return SCI_FAILURE_INVALID_PARAMETER_VALUE;
2431
2432 memcpy(&ihost->user_parameters, sci_parms, sizeof(*sci_parms));
2433
2434 return SCI_SUCCESS;
2435 }
2436
2437 return SCI_FAILURE_INVALID_STATE;
2438 }
2439
2440 static int sci_controller_mem_init(struct isci_host *ihost)
2441 {
2442 struct device *dev = &ihost->pdev->dev;
2443 dma_addr_t dma;
2444 size_t size;
2445 int err;
2446
2447 size = SCU_MAX_COMPLETION_QUEUE_ENTRIES * sizeof(u32);
2448 ihost->completion_queue = dmam_alloc_coherent(dev, size, &dma, GFP_KERNEL);
2449 if (!ihost->completion_queue)
2450 return -ENOMEM;
2451
2452 writel(lower_32_bits(dma), &ihost->smu_registers->completion_queue_lower);
2453 writel(upper_32_bits(dma), &ihost->smu_registers->completion_queue_upper);
2454
2455 size = ihost->remote_node_entries * sizeof(union scu_remote_node_context);
2456 ihost->remote_node_context_table = dmam_alloc_coherent(dev, size, &dma,
2457 GFP_KERNEL);
2458 if (!ihost->remote_node_context_table)
2459 return -ENOMEM;
2460
2461 writel(lower_32_bits(dma), &ihost->smu_registers->remote_node_context_lower);
2462 writel(upper_32_bits(dma), &ihost->smu_registers->remote_node_context_upper);
2463
2464 size = ihost->task_context_entries * sizeof(struct scu_task_context),
2465 ihost->task_context_table = dmam_alloc_coherent(dev, size, &dma, GFP_KERNEL);
2466 if (!ihost->task_context_table)
2467 return -ENOMEM;
2468
2469 ihost->task_context_dma = dma;
2470 writel(lower_32_bits(dma), &ihost->smu_registers->host_task_table_lower);
2471 writel(upper_32_bits(dma), &ihost->smu_registers->host_task_table_upper);
2472
2473 err = sci_unsolicited_frame_control_construct(ihost);
2474 if (err)
2475 return err;
2476
2477 /*
2478 * Inform the silicon as to the location of the UF headers and
2479 * address table.
2480 */
2481 writel(lower_32_bits(ihost->uf_control.headers.physical_address),
2482 &ihost->scu_registers->sdma.uf_header_base_address_lower);
2483 writel(upper_32_bits(ihost->uf_control.headers.physical_address),
2484 &ihost->scu_registers->sdma.uf_header_base_address_upper);
2485
2486 writel(lower_32_bits(ihost->uf_control.address_table.physical_address),
2487 &ihost->scu_registers->sdma.uf_address_table_lower);
2488 writel(upper_32_bits(ihost->uf_control.address_table.physical_address),
2489 &ihost->scu_registers->sdma.uf_address_table_upper);
2490
2491 return 0;
2492 }
2493
2494 int isci_host_init(struct isci_host *ihost)
2495 {
2496 int err = 0, i;
2497 enum sci_status status;
2498 struct sci_user_parameters sci_user_params;
2499 struct isci_pci_info *pci_info = to_pci_info(ihost->pdev);
2500
2501 spin_lock_init(&ihost->state_lock);
2502 spin_lock_init(&ihost->scic_lock);
2503 init_waitqueue_head(&ihost->eventq);
2504
2505 isci_host_change_state(ihost, isci_starting);
2506
2507 status = sci_controller_construct(ihost, scu_base(ihost),
2508 smu_base(ihost));
2509
2510 if (status != SCI_SUCCESS) {
2511 dev_err(&ihost->pdev->dev,
2512 "%s: sci_controller_construct failed - status = %x\n",
2513 __func__,
2514 status);
2515 return -ENODEV;
2516 }
2517
2518 ihost->sas_ha.dev = &ihost->pdev->dev;
2519 ihost->sas_ha.lldd_ha = ihost;
2520
2521 /*
2522 * grab initial values stored in the controller object for OEM and USER
2523 * parameters
2524 */
2525 isci_user_parameters_get(&sci_user_params);
2526 status = sci_user_parameters_set(ihost, &sci_user_params);
2527 if (status != SCI_SUCCESS) {
2528 dev_warn(&ihost->pdev->dev,
2529 "%s: sci_user_parameters_set failed\n",
2530 __func__);
2531 return -ENODEV;
2532 }
2533
2534 /* grab any OEM parameters specified in orom */
2535 if (pci_info->orom) {
2536 status = isci_parse_oem_parameters(&ihost->oem_parameters,
2537 pci_info->orom,
2538 ihost->id);
2539 if (status != SCI_SUCCESS) {
2540 dev_warn(&ihost->pdev->dev,
2541 "parsing firmware oem parameters failed\n");
2542 return -EINVAL;
2543 }
2544 }
2545
2546 status = sci_oem_parameters_set(ihost);
2547 if (status != SCI_SUCCESS) {
2548 dev_warn(&ihost->pdev->dev,
2549 "%s: sci_oem_parameters_set failed\n",
2550 __func__);
2551 return -ENODEV;
2552 }
2553
2554 tasklet_init(&ihost->completion_tasklet,
2555 isci_host_completion_routine, (unsigned long)ihost);
2556
2557 INIT_LIST_HEAD(&ihost->requests_to_complete);
2558 INIT_LIST_HEAD(&ihost->requests_to_errorback);
2559
2560 spin_lock_irq(&ihost->scic_lock);
2561 status = sci_controller_initialize(ihost);
2562 spin_unlock_irq(&ihost->scic_lock);
2563 if (status != SCI_SUCCESS) {
2564 dev_warn(&ihost->pdev->dev,
2565 "%s: sci_controller_initialize failed -"
2566 " status = 0x%x\n",
2567 __func__, status);
2568 return -ENODEV;
2569 }
2570
2571 err = sci_controller_mem_init(ihost);
2572 if (err)
2573 return err;
2574
2575 for (i = 0; i < SCI_MAX_PORTS; i++)
2576 isci_port_init(&ihost->ports[i], ihost, i);
2577
2578 for (i = 0; i < SCI_MAX_PHYS; i++)
2579 isci_phy_init(&ihost->phys[i], ihost, i);
2580
2581 /* enable sgpio */
2582 writel(1, &ihost->scu_registers->peg0.sgpio.interface_control);
2583 for (i = 0; i < isci_gpio_count(ihost); i++)
2584 writel(SGPIO_HW_CONTROL, &ihost->scu_registers->peg0.sgpio.output_data_select[i]);
2585 writel(0, &ihost->scu_registers->peg0.sgpio.vendor_specific_code);
2586
2587 for (i = 0; i < SCI_MAX_REMOTE_DEVICES; i++) {
2588 struct isci_remote_device *idev = &ihost->devices[i];
2589
2590 INIT_LIST_HEAD(&idev->reqs_in_process);
2591 INIT_LIST_HEAD(&idev->node);
2592 }
2593
2594 for (i = 0; i < SCI_MAX_IO_REQUESTS; i++) {
2595 struct isci_request *ireq;
2596 dma_addr_t dma;
2597
2598 ireq = dmam_alloc_coherent(&ihost->pdev->dev,
2599 sizeof(struct isci_request), &dma,
2600 GFP_KERNEL);
2601 if (!ireq)
2602 return -ENOMEM;
2603
2604 ireq->tc = &ihost->task_context_table[i];
2605 ireq->owning_controller = ihost;
2606 spin_lock_init(&ireq->state_lock);
2607 ireq->request_daddr = dma;
2608 ireq->isci_host = ihost;
2609 ihost->reqs[i] = ireq;
2610 }
2611
2612 return 0;
2613 }
2614
2615 void sci_controller_link_up(struct isci_host *ihost, struct isci_port *iport,
2616 struct isci_phy *iphy)
2617 {
2618 switch (ihost->sm.current_state_id) {
2619 case SCIC_STARTING:
2620 sci_del_timer(&ihost->phy_timer);
2621 ihost->phy_startup_timer_pending = false;
2622 ihost->port_agent.link_up_handler(ihost, &ihost->port_agent,
2623 iport, iphy);
2624 sci_controller_start_next_phy(ihost);
2625 break;
2626 case SCIC_READY:
2627 ihost->port_agent.link_up_handler(ihost, &ihost->port_agent,
2628 iport, iphy);
2629 break;
2630 default:
2631 dev_dbg(&ihost->pdev->dev,
2632 "%s: SCIC Controller linkup event from phy %d in "
2633 "unexpected state %d\n", __func__, iphy->phy_index,
2634 ihost->sm.current_state_id);
2635 }
2636 }
2637
2638 void sci_controller_link_down(struct isci_host *ihost, struct isci_port *iport,
2639 struct isci_phy *iphy)
2640 {
2641 switch (ihost->sm.current_state_id) {
2642 case SCIC_STARTING:
2643 case SCIC_READY:
2644 ihost->port_agent.link_down_handler(ihost, &ihost->port_agent,
2645 iport, iphy);
2646 break;
2647 default:
2648 dev_dbg(&ihost->pdev->dev,
2649 "%s: SCIC Controller linkdown event from phy %d in "
2650 "unexpected state %d\n",
2651 __func__,
2652 iphy->phy_index,
2653 ihost->sm.current_state_id);
2654 }
2655 }
2656
2657 static bool sci_controller_has_remote_devices_stopping(struct isci_host *ihost)
2658 {
2659 u32 index;
2660
2661 for (index = 0; index < ihost->remote_node_entries; index++) {
2662 if ((ihost->device_table[index] != NULL) &&
2663 (ihost->device_table[index]->sm.current_state_id == SCI_DEV_STOPPING))
2664 return true;
2665 }
2666
2667 return false;
2668 }
2669
2670 void sci_controller_remote_device_stopped(struct isci_host *ihost,
2671 struct isci_remote_device *idev)
2672 {
2673 if (ihost->sm.current_state_id != SCIC_STOPPING) {
2674 dev_dbg(&ihost->pdev->dev,
2675 "SCIC Controller 0x%p remote device stopped event "
2676 "from device 0x%p in unexpected state %d\n",
2677 ihost, idev,
2678 ihost->sm.current_state_id);
2679 return;
2680 }
2681
2682 if (!sci_controller_has_remote_devices_stopping(ihost))
2683 sci_change_state(&ihost->sm, SCIC_STOPPED);
2684 }
2685
2686 void sci_controller_post_request(struct isci_host *ihost, u32 request)
2687 {
2688 dev_dbg(&ihost->pdev->dev, "%s[%d]: %#x\n",
2689 __func__, ihost->id, request);
2690
2691 writel(request, &ihost->smu_registers->post_context_port);
2692 }
2693
2694 struct isci_request *sci_request_by_tag(struct isci_host *ihost, u16 io_tag)
2695 {
2696 u16 task_index;
2697 u16 task_sequence;
2698
2699 task_index = ISCI_TAG_TCI(io_tag);
2700
2701 if (task_index < ihost->task_context_entries) {
2702 struct isci_request *ireq = ihost->reqs[task_index];
2703
2704 if (test_bit(IREQ_ACTIVE, &ireq->flags)) {
2705 task_sequence = ISCI_TAG_SEQ(io_tag);
2706
2707 if (task_sequence == ihost->io_request_sequence[task_index])
2708 return ireq;
2709 }
2710 }
2711
2712 return NULL;
2713 }
2714
2715 /**
2716 * This method allocates remote node index and the reserves the remote node
2717 * context space for use. This method can fail if there are no more remote
2718 * node index available.
2719 * @scic: This is the controller object which contains the set of
2720 * free remote node ids
2721 * @sci_dev: This is the device object which is requesting the a remote node
2722 * id
2723 * @node_id: This is the remote node id that is assinged to the device if one
2724 * is available
2725 *
2726 * enum sci_status SCI_FAILURE_OUT_OF_RESOURCES if there are no available remote
2727 * node index available.
2728 */
2729 enum sci_status sci_controller_allocate_remote_node_context(struct isci_host *ihost,
2730 struct isci_remote_device *idev,
2731 u16 *node_id)
2732 {
2733 u16 node_index;
2734 u32 remote_node_count = sci_remote_device_node_count(idev);
2735
2736 node_index = sci_remote_node_table_allocate_remote_node(
2737 &ihost->available_remote_nodes, remote_node_count
2738 );
2739
2740 if (node_index != SCIC_SDS_REMOTE_NODE_CONTEXT_INVALID_INDEX) {
2741 ihost->device_table[node_index] = idev;
2742
2743 *node_id = node_index;
2744
2745 return SCI_SUCCESS;
2746 }
2747
2748 return SCI_FAILURE_INSUFFICIENT_RESOURCES;
2749 }
2750
2751 void sci_controller_free_remote_node_context(struct isci_host *ihost,
2752 struct isci_remote_device *idev,
2753 u16 node_id)
2754 {
2755 u32 remote_node_count = sci_remote_device_node_count(idev);
2756
2757 if (ihost->device_table[node_id] == idev) {
2758 ihost->device_table[node_id] = NULL;
2759
2760 sci_remote_node_table_release_remote_node_index(
2761 &ihost->available_remote_nodes, remote_node_count, node_id
2762 );
2763 }
2764 }
2765
2766 void sci_controller_copy_sata_response(void *response_buffer,
2767 void *frame_header,
2768 void *frame_buffer)
2769 {
2770 /* XXX type safety? */
2771 memcpy(response_buffer, frame_header, sizeof(u32));
2772
2773 memcpy(response_buffer + sizeof(u32),
2774 frame_buffer,
2775 sizeof(struct dev_to_host_fis) - sizeof(u32));
2776 }
2777
2778 void sci_controller_release_frame(struct isci_host *ihost, u32 frame_index)
2779 {
2780 if (sci_unsolicited_frame_control_release_frame(&ihost->uf_control, frame_index))
2781 writel(ihost->uf_control.get,
2782 &ihost->scu_registers->sdma.unsolicited_frame_get_pointer);
2783 }
2784
2785 void isci_tci_free(struct isci_host *ihost, u16 tci)
2786 {
2787 u16 tail = ihost->tci_tail & (SCI_MAX_IO_REQUESTS-1);
2788
2789 ihost->tci_pool[tail] = tci;
2790 ihost->tci_tail = tail + 1;
2791 }
2792
2793 static u16 isci_tci_alloc(struct isci_host *ihost)
2794 {
2795 u16 head = ihost->tci_head & (SCI_MAX_IO_REQUESTS-1);
2796 u16 tci = ihost->tci_pool[head];
2797
2798 ihost->tci_head = head + 1;
2799 return tci;
2800 }
2801
2802 static u16 isci_tci_space(struct isci_host *ihost)
2803 {
2804 return CIRC_SPACE(ihost->tci_head, ihost->tci_tail, SCI_MAX_IO_REQUESTS);
2805 }
2806
2807 u16 isci_alloc_tag(struct isci_host *ihost)
2808 {
2809 if (isci_tci_space(ihost)) {
2810 u16 tci = isci_tci_alloc(ihost);
2811 u8 seq = ihost->io_request_sequence[tci];
2812
2813 return ISCI_TAG(seq, tci);
2814 }
2815
2816 return SCI_CONTROLLER_INVALID_IO_TAG;
2817 }
2818
2819 enum sci_status isci_free_tag(struct isci_host *ihost, u16 io_tag)
2820 {
2821 u16 tci = ISCI_TAG_TCI(io_tag);
2822 u16 seq = ISCI_TAG_SEQ(io_tag);
2823
2824 /* prevent tail from passing head */
2825 if (isci_tci_active(ihost) == 0)
2826 return SCI_FAILURE_INVALID_IO_TAG;
2827
2828 if (seq == ihost->io_request_sequence[tci]) {
2829 ihost->io_request_sequence[tci] = (seq+1) & (SCI_MAX_SEQ-1);
2830
2831 isci_tci_free(ihost, tci);
2832
2833 return SCI_SUCCESS;
2834 }
2835 return SCI_FAILURE_INVALID_IO_TAG;
2836 }
2837
2838 enum sci_status sci_controller_start_io(struct isci_host *ihost,
2839 struct isci_remote_device *idev,
2840 struct isci_request *ireq)
2841 {
2842 enum sci_status status;
2843
2844 if (ihost->sm.current_state_id != SCIC_READY) {
2845 dev_warn(&ihost->pdev->dev, "invalid state to start I/O");
2846 return SCI_FAILURE_INVALID_STATE;
2847 }
2848
2849 status = sci_remote_device_start_io(ihost, idev, ireq);
2850 if (status != SCI_SUCCESS)
2851 return status;
2852
2853 set_bit(IREQ_ACTIVE, &ireq->flags);
2854 sci_controller_post_request(ihost, ireq->post_context);
2855 return SCI_SUCCESS;
2856 }
2857
2858 enum sci_status sci_controller_terminate_request(struct isci_host *ihost,
2859 struct isci_remote_device *idev,
2860 struct isci_request *ireq)
2861 {
2862 /* terminate an ongoing (i.e. started) core IO request. This does not
2863 * abort the IO request at the target, but rather removes the IO
2864 * request from the host controller.
2865 */
2866 enum sci_status status;
2867
2868 if (ihost->sm.current_state_id != SCIC_READY) {
2869 dev_warn(&ihost->pdev->dev,
2870 "invalid state to terminate request\n");
2871 return SCI_FAILURE_INVALID_STATE;
2872 }
2873
2874 status = sci_io_request_terminate(ireq);
2875 if (status != SCI_SUCCESS)
2876 return status;
2877
2878 /*
2879 * Utilize the original post context command and or in the POST_TC_ABORT
2880 * request sub-type.
2881 */
2882 sci_controller_post_request(ihost,
2883 ireq->post_context | SCU_CONTEXT_COMMAND_REQUEST_POST_TC_ABORT);
2884 return SCI_SUCCESS;
2885 }
2886
2887 /**
2888 * sci_controller_complete_io() - This method will perform core specific
2889 * completion operations for an IO request. After this method is invoked,
2890 * the user should consider the IO request as invalid until it is properly
2891 * reused (i.e. re-constructed).
2892 * @ihost: The handle to the controller object for which to complete the
2893 * IO request.
2894 * @idev: The handle to the remote device object for which to complete
2895 * the IO request.
2896 * @ireq: the handle to the io request object to complete.
2897 */
2898 enum sci_status sci_controller_complete_io(struct isci_host *ihost,
2899 struct isci_remote_device *idev,
2900 struct isci_request *ireq)
2901 {
2902 enum sci_status status;
2903 u16 index;
2904
2905 switch (ihost->sm.current_state_id) {
2906 case SCIC_STOPPING:
2907 /* XXX: Implement this function */
2908 return SCI_FAILURE;
2909 case SCIC_READY:
2910 status = sci_remote_device_complete_io(ihost, idev, ireq);
2911 if (status != SCI_SUCCESS)
2912 return status;
2913
2914 index = ISCI_TAG_TCI(ireq->io_tag);
2915 clear_bit(IREQ_ACTIVE, &ireq->flags);
2916 return SCI_SUCCESS;
2917 default:
2918 dev_warn(&ihost->pdev->dev, "invalid state to complete I/O");
2919 return SCI_FAILURE_INVALID_STATE;
2920 }
2921
2922 }
2923
2924 enum sci_status sci_controller_continue_io(struct isci_request *ireq)
2925 {
2926 struct isci_host *ihost = ireq->owning_controller;
2927
2928 if (ihost->sm.current_state_id != SCIC_READY) {
2929 dev_warn(&ihost->pdev->dev, "invalid state to continue I/O");
2930 return SCI_FAILURE_INVALID_STATE;
2931 }
2932
2933 set_bit(IREQ_ACTIVE, &ireq->flags);
2934 sci_controller_post_request(ihost, ireq->post_context);
2935 return SCI_SUCCESS;
2936 }
2937
2938 /**
2939 * sci_controller_start_task() - This method is called by the SCIC user to
2940 * send/start a framework task management request.
2941 * @controller: the handle to the controller object for which to start the task
2942 * management request.
2943 * @remote_device: the handle to the remote device object for which to start
2944 * the task management request.
2945 * @task_request: the handle to the task request object to start.
2946 */
2947 enum sci_task_status sci_controller_start_task(struct isci_host *ihost,
2948 struct isci_remote_device *idev,
2949 struct isci_request *ireq)
2950 {
2951 enum sci_status status;
2952
2953 if (ihost->sm.current_state_id != SCIC_READY) {
2954 dev_warn(&ihost->pdev->dev,
2955 "%s: SCIC Controller starting task from invalid "
2956 "state\n",
2957 __func__);
2958 return SCI_TASK_FAILURE_INVALID_STATE;
2959 }
2960
2961 status = sci_remote_device_start_task(ihost, idev, ireq);
2962 switch (status) {
2963 case SCI_FAILURE_RESET_DEVICE_PARTIAL_SUCCESS:
2964 set_bit(IREQ_ACTIVE, &ireq->flags);
2965
2966 /*
2967 * We will let framework know this task request started successfully,
2968 * although core is still woring on starting the request (to post tc when
2969 * RNC is resumed.)
2970 */
2971 return SCI_SUCCESS;
2972 case SCI_SUCCESS:
2973 set_bit(IREQ_ACTIVE, &ireq->flags);
2974 sci_controller_post_request(ihost, ireq->post_context);
2975 break;
2976 default:
2977 break;
2978 }
2979
2980 return status;
2981 }
2982
2983 static int sci_write_gpio_tx_gp(struct isci_host *ihost, u8 reg_index, u8 reg_count, u8 *write_data)
2984 {
2985 int d;
2986
2987 /* no support for TX_GP_CFG */
2988 if (reg_index == 0)
2989 return -EINVAL;
2990
2991 for (d = 0; d < isci_gpio_count(ihost); d++) {
2992 u32 val = 0x444; /* all ODx.n clear */
2993 int i;
2994
2995 for (i = 0; i < 3; i++) {
2996 int bit = (i << 2) + 2;
2997
2998 bit = try_test_sas_gpio_gp_bit(to_sas_gpio_od(d, i),
2999 write_data, reg_index,
3000 reg_count);
3001 if (bit < 0)
3002 break;
3003
3004 /* if od is set, clear the 'invert' bit */
3005 val &= ~(bit << ((i << 2) + 2));
3006 }
3007
3008 if (i < 3)
3009 break;
3010 writel(val, &ihost->scu_registers->peg0.sgpio.output_data_select[d]);
3011 }
3012
3013 /* unless reg_index is > 1, we should always be able to write at
3014 * least one register
3015 */
3016 return d > 0;
3017 }
3018
3019 int isci_gpio_write(struct sas_ha_struct *sas_ha, u8 reg_type, u8 reg_index,
3020 u8 reg_count, u8 *write_data)
3021 {
3022 struct isci_host *ihost = sas_ha->lldd_ha;
3023 int written;
3024
3025 switch (reg_type) {
3026 case SAS_GPIO_REG_TX_GP:
3027 written = sci_write_gpio_tx_gp(ihost, reg_index, reg_count, write_data);
3028 break;
3029 default:
3030 written = -EINVAL;
3031 }
3032
3033 return written;
3034 }