Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jikos/trivial
[GitHub/moto-9609/android_kernel_motorola_exynos9610.git] / drivers / scsi / hpsa.c
1 /*
2 * Disk Array driver for HP Smart Array SAS controllers
3 * Copyright 2000, 2009 Hewlett-Packard Development Company, L.P.
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; version 2 of the License.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
12 * NON INFRINGEMENT. See the GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
17 *
18 * Questions/Comments/Bugfixes to iss_storagedev@hp.com
19 *
20 */
21
22 #include <linux/module.h>
23 #include <linux/interrupt.h>
24 #include <linux/types.h>
25 #include <linux/pci.h>
26 #include <linux/pci-aspm.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/delay.h>
30 #include <linux/fs.h>
31 #include <linux/timer.h>
32 #include <linux/seq_file.h>
33 #include <linux/init.h>
34 #include <linux/spinlock.h>
35 #include <linux/compat.h>
36 #include <linux/blktrace_api.h>
37 #include <linux/uaccess.h>
38 #include <linux/io.h>
39 #include <linux/dma-mapping.h>
40 #include <linux/completion.h>
41 #include <linux/moduleparam.h>
42 #include <scsi/scsi.h>
43 #include <scsi/scsi_cmnd.h>
44 #include <scsi/scsi_device.h>
45 #include <scsi/scsi_host.h>
46 #include <scsi/scsi_tcq.h>
47 #include <linux/cciss_ioctl.h>
48 #include <linux/string.h>
49 #include <linux/bitmap.h>
50 #include <linux/atomic.h>
51 #include <linux/kthread.h>
52 #include <linux/jiffies.h>
53 #include "hpsa_cmd.h"
54 #include "hpsa.h"
55
56 /* HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.' */
57 #define HPSA_DRIVER_VERSION "3.4.0-1"
58 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
59 #define HPSA "hpsa"
60
61 /* How long to wait (in milliseconds) for board to go into simple mode */
62 #define MAX_CONFIG_WAIT 30000
63 #define MAX_IOCTL_CONFIG_WAIT 1000
64
65 /*define how many times we will try a command because of bus resets */
66 #define MAX_CMD_RETRIES 3
67
68 /* Embedded module documentation macros - see modules.h */
69 MODULE_AUTHOR("Hewlett-Packard Company");
70 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
71 HPSA_DRIVER_VERSION);
72 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
73 MODULE_VERSION(HPSA_DRIVER_VERSION);
74 MODULE_LICENSE("GPL");
75
76 static int hpsa_allow_any;
77 module_param(hpsa_allow_any, int, S_IRUGO|S_IWUSR);
78 MODULE_PARM_DESC(hpsa_allow_any,
79 "Allow hpsa driver to access unknown HP Smart Array hardware");
80 static int hpsa_simple_mode;
81 module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
82 MODULE_PARM_DESC(hpsa_simple_mode,
83 "Use 'simple mode' rather than 'performant mode'");
84
85 /* define the PCI info for the cards we can control */
86 static const struct pci_device_id hpsa_pci_device_id[] = {
87 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3241},
88 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3243},
89 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3245},
90 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3247},
91 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3249},
92 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324A},
93 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324B},
94 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3233},
95 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3350},
96 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3351},
97 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3352},
98 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3353},
99 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x334D},
100 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3354},
101 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3355},
102 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3356},
103 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1921},
104 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1922},
105 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1923},
106 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1924},
107 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1925},
108 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1926},
109 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1928},
110 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1929},
111 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21BD},
112 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21BE},
113 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21BF},
114 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C0},
115 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C1},
116 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C2},
117 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C3},
118 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C4},
119 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C5},
120 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C7},
121 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C8},
122 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C9},
123 {PCI_VENDOR_ID_HP, PCI_ANY_ID, PCI_ANY_ID, PCI_ANY_ID,
124 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
125 {0,}
126 };
127
128 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
129
130 /* board_id = Subsystem Device ID & Vendor ID
131 * product = Marketing Name for the board
132 * access = Address of the struct of function pointers
133 */
134 static struct board_type products[] = {
135 {0x3241103C, "Smart Array P212", &SA5_access},
136 {0x3243103C, "Smart Array P410", &SA5_access},
137 {0x3245103C, "Smart Array P410i", &SA5_access},
138 {0x3247103C, "Smart Array P411", &SA5_access},
139 {0x3249103C, "Smart Array P812", &SA5_access},
140 {0x324A103C, "Smart Array P712m", &SA5_access},
141 {0x324B103C, "Smart Array P711m", &SA5_access},
142 {0x3350103C, "Smart Array P222", &SA5_access},
143 {0x3351103C, "Smart Array P420", &SA5_access},
144 {0x3352103C, "Smart Array P421", &SA5_access},
145 {0x3353103C, "Smart Array P822", &SA5_access},
146 {0x334D103C, "Smart Array P822se", &SA5_access},
147 {0x3354103C, "Smart Array P420i", &SA5_access},
148 {0x3355103C, "Smart Array P220i", &SA5_access},
149 {0x3356103C, "Smart Array P721m", &SA5_access},
150 {0x1921103C, "Smart Array P830i", &SA5_access},
151 {0x1922103C, "Smart Array P430", &SA5_access},
152 {0x1923103C, "Smart Array P431", &SA5_access},
153 {0x1924103C, "Smart Array P830", &SA5_access},
154 {0x1926103C, "Smart Array P731m", &SA5_access},
155 {0x1928103C, "Smart Array P230i", &SA5_access},
156 {0x1929103C, "Smart Array P530", &SA5_access},
157 {0x21BD103C, "Smart Array", &SA5_access},
158 {0x21BE103C, "Smart Array", &SA5_access},
159 {0x21BF103C, "Smart Array", &SA5_access},
160 {0x21C0103C, "Smart Array", &SA5_access},
161 {0x21C1103C, "Smart Array", &SA5_access},
162 {0x21C2103C, "Smart Array", &SA5_access},
163 {0x21C3103C, "Smart Array", &SA5_access},
164 {0x21C4103C, "Smart Array", &SA5_access},
165 {0x21C5103C, "Smart Array", &SA5_access},
166 {0x21C7103C, "Smart Array", &SA5_access},
167 {0x21C8103C, "Smart Array", &SA5_access},
168 {0x21C9103C, "Smart Array", &SA5_access},
169 {0xFFFF103C, "Unknown Smart Array", &SA5_access},
170 };
171
172 static int number_of_controllers;
173
174 static struct list_head hpsa_ctlr_list = LIST_HEAD_INIT(hpsa_ctlr_list);
175 static spinlock_t lockup_detector_lock;
176 static struct task_struct *hpsa_lockup_detector;
177
178 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
179 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
180 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg);
181 static void start_io(struct ctlr_info *h);
182
183 #ifdef CONFIG_COMPAT
184 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg);
185 #endif
186
187 static void cmd_free(struct ctlr_info *h, struct CommandList *c);
188 static void cmd_special_free(struct ctlr_info *h, struct CommandList *c);
189 static struct CommandList *cmd_alloc(struct ctlr_info *h);
190 static struct CommandList *cmd_special_alloc(struct ctlr_info *h);
191 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
192 void *buff, size_t size, u8 page_code, unsigned char *scsi3addr,
193 int cmd_type);
194
195 static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
196 static void hpsa_scan_start(struct Scsi_Host *);
197 static int hpsa_scan_finished(struct Scsi_Host *sh,
198 unsigned long elapsed_time);
199 static int hpsa_change_queue_depth(struct scsi_device *sdev,
200 int qdepth, int reason);
201
202 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
203 static int hpsa_eh_abort_handler(struct scsi_cmnd *scsicmd);
204 static int hpsa_slave_alloc(struct scsi_device *sdev);
205 static void hpsa_slave_destroy(struct scsi_device *sdev);
206
207 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno);
208 static int check_for_unit_attention(struct ctlr_info *h,
209 struct CommandList *c);
210 static void check_ioctl_unit_attention(struct ctlr_info *h,
211 struct CommandList *c);
212 /* performant mode helper functions */
213 static void calc_bucket_map(int *bucket, int num_buckets,
214 int nsgs, int *bucket_map);
215 static void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
216 static inline u32 next_command(struct ctlr_info *h, u8 q);
217 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
218 u32 *cfg_base_addr, u64 *cfg_base_addr_index,
219 u64 *cfg_offset);
220 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
221 unsigned long *memory_bar);
222 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id);
223 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
224 int wait_for_ready);
225 static inline void finish_cmd(struct CommandList *c);
226 #define BOARD_NOT_READY 0
227 #define BOARD_READY 1
228
229 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
230 {
231 unsigned long *priv = shost_priv(sdev->host);
232 return (struct ctlr_info *) *priv;
233 }
234
235 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
236 {
237 unsigned long *priv = shost_priv(sh);
238 return (struct ctlr_info *) *priv;
239 }
240
241 static int check_for_unit_attention(struct ctlr_info *h,
242 struct CommandList *c)
243 {
244 if (c->err_info->SenseInfo[2] != UNIT_ATTENTION)
245 return 0;
246
247 switch (c->err_info->SenseInfo[12]) {
248 case STATE_CHANGED:
249 dev_warn(&h->pdev->dev, HPSA "%d: a state change "
250 "detected, command retried\n", h->ctlr);
251 break;
252 case LUN_FAILED:
253 dev_warn(&h->pdev->dev, HPSA "%d: LUN failure "
254 "detected, action required\n", h->ctlr);
255 break;
256 case REPORT_LUNS_CHANGED:
257 dev_warn(&h->pdev->dev, HPSA "%d: report LUN data "
258 "changed, action required\n", h->ctlr);
259 /*
260 * Note: this REPORT_LUNS_CHANGED condition only occurs on the external
261 * target (array) devices.
262 */
263 break;
264 case POWER_OR_RESET:
265 dev_warn(&h->pdev->dev, HPSA "%d: a power on "
266 "or device reset detected\n", h->ctlr);
267 break;
268 case UNIT_ATTENTION_CLEARED:
269 dev_warn(&h->pdev->dev, HPSA "%d: unit attention "
270 "cleared by another initiator\n", h->ctlr);
271 break;
272 default:
273 dev_warn(&h->pdev->dev, HPSA "%d: unknown "
274 "unit attention detected\n", h->ctlr);
275 break;
276 }
277 return 1;
278 }
279
280 static int check_for_busy(struct ctlr_info *h, struct CommandList *c)
281 {
282 if (c->err_info->CommandStatus != CMD_TARGET_STATUS ||
283 (c->err_info->ScsiStatus != SAM_STAT_BUSY &&
284 c->err_info->ScsiStatus != SAM_STAT_TASK_SET_FULL))
285 return 0;
286 dev_warn(&h->pdev->dev, HPSA "device busy");
287 return 1;
288 }
289
290 static ssize_t host_store_rescan(struct device *dev,
291 struct device_attribute *attr,
292 const char *buf, size_t count)
293 {
294 struct ctlr_info *h;
295 struct Scsi_Host *shost = class_to_shost(dev);
296 h = shost_to_hba(shost);
297 hpsa_scan_start(h->scsi_host);
298 return count;
299 }
300
301 static ssize_t host_show_firmware_revision(struct device *dev,
302 struct device_attribute *attr, char *buf)
303 {
304 struct ctlr_info *h;
305 struct Scsi_Host *shost = class_to_shost(dev);
306 unsigned char *fwrev;
307
308 h = shost_to_hba(shost);
309 if (!h->hba_inquiry_data)
310 return 0;
311 fwrev = &h->hba_inquiry_data[32];
312 return snprintf(buf, 20, "%c%c%c%c\n",
313 fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
314 }
315
316 static ssize_t host_show_commands_outstanding(struct device *dev,
317 struct device_attribute *attr, char *buf)
318 {
319 struct Scsi_Host *shost = class_to_shost(dev);
320 struct ctlr_info *h = shost_to_hba(shost);
321
322 return snprintf(buf, 20, "%d\n", h->commands_outstanding);
323 }
324
325 static ssize_t host_show_transport_mode(struct device *dev,
326 struct device_attribute *attr, char *buf)
327 {
328 struct ctlr_info *h;
329 struct Scsi_Host *shost = class_to_shost(dev);
330
331 h = shost_to_hba(shost);
332 return snprintf(buf, 20, "%s\n",
333 h->transMethod & CFGTBL_Trans_Performant ?
334 "performant" : "simple");
335 }
336
337 /* List of controllers which cannot be hard reset on kexec with reset_devices */
338 static u32 unresettable_controller[] = {
339 0x324a103C, /* Smart Array P712m */
340 0x324b103C, /* SmartArray P711m */
341 0x3223103C, /* Smart Array P800 */
342 0x3234103C, /* Smart Array P400 */
343 0x3235103C, /* Smart Array P400i */
344 0x3211103C, /* Smart Array E200i */
345 0x3212103C, /* Smart Array E200 */
346 0x3213103C, /* Smart Array E200i */
347 0x3214103C, /* Smart Array E200i */
348 0x3215103C, /* Smart Array E200i */
349 0x3237103C, /* Smart Array E500 */
350 0x323D103C, /* Smart Array P700m */
351 0x40800E11, /* Smart Array 5i */
352 0x409C0E11, /* Smart Array 6400 */
353 0x409D0E11, /* Smart Array 6400 EM */
354 0x40700E11, /* Smart Array 5300 */
355 0x40820E11, /* Smart Array 532 */
356 0x40830E11, /* Smart Array 5312 */
357 0x409A0E11, /* Smart Array 641 */
358 0x409B0E11, /* Smart Array 642 */
359 0x40910E11, /* Smart Array 6i */
360 };
361
362 /* List of controllers which cannot even be soft reset */
363 static u32 soft_unresettable_controller[] = {
364 0x40800E11, /* Smart Array 5i */
365 0x40700E11, /* Smart Array 5300 */
366 0x40820E11, /* Smart Array 532 */
367 0x40830E11, /* Smart Array 5312 */
368 0x409A0E11, /* Smart Array 641 */
369 0x409B0E11, /* Smart Array 642 */
370 0x40910E11, /* Smart Array 6i */
371 /* Exclude 640x boards. These are two pci devices in one slot
372 * which share a battery backed cache module. One controls the
373 * cache, the other accesses the cache through the one that controls
374 * it. If we reset the one controlling the cache, the other will
375 * likely not be happy. Just forbid resetting this conjoined mess.
376 * The 640x isn't really supported by hpsa anyway.
377 */
378 0x409C0E11, /* Smart Array 6400 */
379 0x409D0E11, /* Smart Array 6400 EM */
380 };
381
382 static int ctlr_is_hard_resettable(u32 board_id)
383 {
384 int i;
385
386 for (i = 0; i < ARRAY_SIZE(unresettable_controller); i++)
387 if (unresettable_controller[i] == board_id)
388 return 0;
389 return 1;
390 }
391
392 static int ctlr_is_soft_resettable(u32 board_id)
393 {
394 int i;
395
396 for (i = 0; i < ARRAY_SIZE(soft_unresettable_controller); i++)
397 if (soft_unresettable_controller[i] == board_id)
398 return 0;
399 return 1;
400 }
401
402 static int ctlr_is_resettable(u32 board_id)
403 {
404 return ctlr_is_hard_resettable(board_id) ||
405 ctlr_is_soft_resettable(board_id);
406 }
407
408 static ssize_t host_show_resettable(struct device *dev,
409 struct device_attribute *attr, char *buf)
410 {
411 struct ctlr_info *h;
412 struct Scsi_Host *shost = class_to_shost(dev);
413
414 h = shost_to_hba(shost);
415 return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
416 }
417
418 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
419 {
420 return (scsi3addr[3] & 0xC0) == 0x40;
421 }
422
423 static const char *raid_label[] = { "0", "4", "1(1+0)", "5", "5+1", "ADG",
424 "1(ADM)", "UNKNOWN"
425 };
426 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 1)
427
428 static ssize_t raid_level_show(struct device *dev,
429 struct device_attribute *attr, char *buf)
430 {
431 ssize_t l = 0;
432 unsigned char rlevel;
433 struct ctlr_info *h;
434 struct scsi_device *sdev;
435 struct hpsa_scsi_dev_t *hdev;
436 unsigned long flags;
437
438 sdev = to_scsi_device(dev);
439 h = sdev_to_hba(sdev);
440 spin_lock_irqsave(&h->lock, flags);
441 hdev = sdev->hostdata;
442 if (!hdev) {
443 spin_unlock_irqrestore(&h->lock, flags);
444 return -ENODEV;
445 }
446
447 /* Is this even a logical drive? */
448 if (!is_logical_dev_addr_mode(hdev->scsi3addr)) {
449 spin_unlock_irqrestore(&h->lock, flags);
450 l = snprintf(buf, PAGE_SIZE, "N/A\n");
451 return l;
452 }
453
454 rlevel = hdev->raid_level;
455 spin_unlock_irqrestore(&h->lock, flags);
456 if (rlevel > RAID_UNKNOWN)
457 rlevel = RAID_UNKNOWN;
458 l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
459 return l;
460 }
461
462 static ssize_t lunid_show(struct device *dev,
463 struct device_attribute *attr, char *buf)
464 {
465 struct ctlr_info *h;
466 struct scsi_device *sdev;
467 struct hpsa_scsi_dev_t *hdev;
468 unsigned long flags;
469 unsigned char lunid[8];
470
471 sdev = to_scsi_device(dev);
472 h = sdev_to_hba(sdev);
473 spin_lock_irqsave(&h->lock, flags);
474 hdev = sdev->hostdata;
475 if (!hdev) {
476 spin_unlock_irqrestore(&h->lock, flags);
477 return -ENODEV;
478 }
479 memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
480 spin_unlock_irqrestore(&h->lock, flags);
481 return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
482 lunid[0], lunid[1], lunid[2], lunid[3],
483 lunid[4], lunid[5], lunid[6], lunid[7]);
484 }
485
486 static ssize_t unique_id_show(struct device *dev,
487 struct device_attribute *attr, char *buf)
488 {
489 struct ctlr_info *h;
490 struct scsi_device *sdev;
491 struct hpsa_scsi_dev_t *hdev;
492 unsigned long flags;
493 unsigned char sn[16];
494
495 sdev = to_scsi_device(dev);
496 h = sdev_to_hba(sdev);
497 spin_lock_irqsave(&h->lock, flags);
498 hdev = sdev->hostdata;
499 if (!hdev) {
500 spin_unlock_irqrestore(&h->lock, flags);
501 return -ENODEV;
502 }
503 memcpy(sn, hdev->device_id, sizeof(sn));
504 spin_unlock_irqrestore(&h->lock, flags);
505 return snprintf(buf, 16 * 2 + 2,
506 "%02X%02X%02X%02X%02X%02X%02X%02X"
507 "%02X%02X%02X%02X%02X%02X%02X%02X\n",
508 sn[0], sn[1], sn[2], sn[3],
509 sn[4], sn[5], sn[6], sn[7],
510 sn[8], sn[9], sn[10], sn[11],
511 sn[12], sn[13], sn[14], sn[15]);
512 }
513
514 static DEVICE_ATTR(raid_level, S_IRUGO, raid_level_show, NULL);
515 static DEVICE_ATTR(lunid, S_IRUGO, lunid_show, NULL);
516 static DEVICE_ATTR(unique_id, S_IRUGO, unique_id_show, NULL);
517 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
518 static DEVICE_ATTR(firmware_revision, S_IRUGO,
519 host_show_firmware_revision, NULL);
520 static DEVICE_ATTR(commands_outstanding, S_IRUGO,
521 host_show_commands_outstanding, NULL);
522 static DEVICE_ATTR(transport_mode, S_IRUGO,
523 host_show_transport_mode, NULL);
524 static DEVICE_ATTR(resettable, S_IRUGO,
525 host_show_resettable, NULL);
526
527 static struct device_attribute *hpsa_sdev_attrs[] = {
528 &dev_attr_raid_level,
529 &dev_attr_lunid,
530 &dev_attr_unique_id,
531 NULL,
532 };
533
534 static struct device_attribute *hpsa_shost_attrs[] = {
535 &dev_attr_rescan,
536 &dev_attr_firmware_revision,
537 &dev_attr_commands_outstanding,
538 &dev_attr_transport_mode,
539 &dev_attr_resettable,
540 NULL,
541 };
542
543 static struct scsi_host_template hpsa_driver_template = {
544 .module = THIS_MODULE,
545 .name = HPSA,
546 .proc_name = HPSA,
547 .queuecommand = hpsa_scsi_queue_command,
548 .scan_start = hpsa_scan_start,
549 .scan_finished = hpsa_scan_finished,
550 .change_queue_depth = hpsa_change_queue_depth,
551 .this_id = -1,
552 .use_clustering = ENABLE_CLUSTERING,
553 .eh_abort_handler = hpsa_eh_abort_handler,
554 .eh_device_reset_handler = hpsa_eh_device_reset_handler,
555 .ioctl = hpsa_ioctl,
556 .slave_alloc = hpsa_slave_alloc,
557 .slave_destroy = hpsa_slave_destroy,
558 #ifdef CONFIG_COMPAT
559 .compat_ioctl = hpsa_compat_ioctl,
560 #endif
561 .sdev_attrs = hpsa_sdev_attrs,
562 .shost_attrs = hpsa_shost_attrs,
563 .max_sectors = 8192,
564 };
565
566
567 /* Enqueuing and dequeuing functions for cmdlists. */
568 static inline void addQ(struct list_head *list, struct CommandList *c)
569 {
570 list_add_tail(&c->list, list);
571 }
572
573 static inline u32 next_command(struct ctlr_info *h, u8 q)
574 {
575 u32 a;
576 struct reply_pool *rq = &h->reply_queue[q];
577 unsigned long flags;
578
579 if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
580 return h->access.command_completed(h, q);
581
582 if ((rq->head[rq->current_entry] & 1) == rq->wraparound) {
583 a = rq->head[rq->current_entry];
584 rq->current_entry++;
585 spin_lock_irqsave(&h->lock, flags);
586 h->commands_outstanding--;
587 spin_unlock_irqrestore(&h->lock, flags);
588 } else {
589 a = FIFO_EMPTY;
590 }
591 /* Check for wraparound */
592 if (rq->current_entry == h->max_commands) {
593 rq->current_entry = 0;
594 rq->wraparound ^= 1;
595 }
596 return a;
597 }
598
599 /* set_performant_mode: Modify the tag for cciss performant
600 * set bit 0 for pull model, bits 3-1 for block fetch
601 * register number
602 */
603 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c)
604 {
605 if (likely(h->transMethod & CFGTBL_Trans_Performant)) {
606 c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
607 if (likely(h->msix_vector))
608 c->Header.ReplyQueue =
609 raw_smp_processor_id() % h->nreply_queues;
610 }
611 }
612
613 static int is_firmware_flash_cmd(u8 *cdb)
614 {
615 return cdb[0] == BMIC_WRITE && cdb[6] == BMIC_FLASH_FIRMWARE;
616 }
617
618 /*
619 * During firmware flash, the heartbeat register may not update as frequently
620 * as it should. So we dial down lockup detection during firmware flash. and
621 * dial it back up when firmware flash completes.
622 */
623 #define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ)
624 #define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ)
625 static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info *h,
626 struct CommandList *c)
627 {
628 if (!is_firmware_flash_cmd(c->Request.CDB))
629 return;
630 atomic_inc(&h->firmware_flash_in_progress);
631 h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH;
632 }
633
634 static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info *h,
635 struct CommandList *c)
636 {
637 if (is_firmware_flash_cmd(c->Request.CDB) &&
638 atomic_dec_and_test(&h->firmware_flash_in_progress))
639 h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
640 }
641
642 static void enqueue_cmd_and_start_io(struct ctlr_info *h,
643 struct CommandList *c)
644 {
645 unsigned long flags;
646
647 set_performant_mode(h, c);
648 dial_down_lockup_detection_during_fw_flash(h, c);
649 spin_lock_irqsave(&h->lock, flags);
650 addQ(&h->reqQ, c);
651 h->Qdepth++;
652 spin_unlock_irqrestore(&h->lock, flags);
653 start_io(h);
654 }
655
656 static inline void removeQ(struct CommandList *c)
657 {
658 if (WARN_ON(list_empty(&c->list)))
659 return;
660 list_del_init(&c->list);
661 }
662
663 static inline int is_hba_lunid(unsigned char scsi3addr[])
664 {
665 return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
666 }
667
668 static inline int is_scsi_rev_5(struct ctlr_info *h)
669 {
670 if (!h->hba_inquiry_data)
671 return 0;
672 if ((h->hba_inquiry_data[2] & 0x07) == 5)
673 return 1;
674 return 0;
675 }
676
677 static int hpsa_find_target_lun(struct ctlr_info *h,
678 unsigned char scsi3addr[], int bus, int *target, int *lun)
679 {
680 /* finds an unused bus, target, lun for a new physical device
681 * assumes h->devlock is held
682 */
683 int i, found = 0;
684 DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES);
685
686 bitmap_zero(lun_taken, HPSA_MAX_DEVICES);
687
688 for (i = 0; i < h->ndevices; i++) {
689 if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
690 __set_bit(h->dev[i]->target, lun_taken);
691 }
692
693 i = find_first_zero_bit(lun_taken, HPSA_MAX_DEVICES);
694 if (i < HPSA_MAX_DEVICES) {
695 /* *bus = 1; */
696 *target = i;
697 *lun = 0;
698 found = 1;
699 }
700 return !found;
701 }
702
703 /* Add an entry into h->dev[] array. */
704 static int hpsa_scsi_add_entry(struct ctlr_info *h, int hostno,
705 struct hpsa_scsi_dev_t *device,
706 struct hpsa_scsi_dev_t *added[], int *nadded)
707 {
708 /* assumes h->devlock is held */
709 int n = h->ndevices;
710 int i;
711 unsigned char addr1[8], addr2[8];
712 struct hpsa_scsi_dev_t *sd;
713
714 if (n >= HPSA_MAX_DEVICES) {
715 dev_err(&h->pdev->dev, "too many devices, some will be "
716 "inaccessible.\n");
717 return -1;
718 }
719
720 /* physical devices do not have lun or target assigned until now. */
721 if (device->lun != -1)
722 /* Logical device, lun is already assigned. */
723 goto lun_assigned;
724
725 /* If this device a non-zero lun of a multi-lun device
726 * byte 4 of the 8-byte LUN addr will contain the logical
727 * unit no, zero otherise.
728 */
729 if (device->scsi3addr[4] == 0) {
730 /* This is not a non-zero lun of a multi-lun device */
731 if (hpsa_find_target_lun(h, device->scsi3addr,
732 device->bus, &device->target, &device->lun) != 0)
733 return -1;
734 goto lun_assigned;
735 }
736
737 /* This is a non-zero lun of a multi-lun device.
738 * Search through our list and find the device which
739 * has the same 8 byte LUN address, excepting byte 4.
740 * Assign the same bus and target for this new LUN.
741 * Use the logical unit number from the firmware.
742 */
743 memcpy(addr1, device->scsi3addr, 8);
744 addr1[4] = 0;
745 for (i = 0; i < n; i++) {
746 sd = h->dev[i];
747 memcpy(addr2, sd->scsi3addr, 8);
748 addr2[4] = 0;
749 /* differ only in byte 4? */
750 if (memcmp(addr1, addr2, 8) == 0) {
751 device->bus = sd->bus;
752 device->target = sd->target;
753 device->lun = device->scsi3addr[4];
754 break;
755 }
756 }
757 if (device->lun == -1) {
758 dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
759 " suspect firmware bug or unsupported hardware "
760 "configuration.\n");
761 return -1;
762 }
763
764 lun_assigned:
765
766 h->dev[n] = device;
767 h->ndevices++;
768 added[*nadded] = device;
769 (*nadded)++;
770
771 /* initially, (before registering with scsi layer) we don't
772 * know our hostno and we don't want to print anything first
773 * time anyway (the scsi layer's inquiries will show that info)
774 */
775 /* if (hostno != -1) */
776 dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d added.\n",
777 scsi_device_type(device->devtype), hostno,
778 device->bus, device->target, device->lun);
779 return 0;
780 }
781
782 /* Update an entry in h->dev[] array. */
783 static void hpsa_scsi_update_entry(struct ctlr_info *h, int hostno,
784 int entry, struct hpsa_scsi_dev_t *new_entry)
785 {
786 /* assumes h->devlock is held */
787 BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
788
789 /* Raid level changed. */
790 h->dev[entry]->raid_level = new_entry->raid_level;
791 dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d updated.\n",
792 scsi_device_type(new_entry->devtype), hostno, new_entry->bus,
793 new_entry->target, new_entry->lun);
794 }
795
796 /* Replace an entry from h->dev[] array. */
797 static void hpsa_scsi_replace_entry(struct ctlr_info *h, int hostno,
798 int entry, struct hpsa_scsi_dev_t *new_entry,
799 struct hpsa_scsi_dev_t *added[], int *nadded,
800 struct hpsa_scsi_dev_t *removed[], int *nremoved)
801 {
802 /* assumes h->devlock is held */
803 BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
804 removed[*nremoved] = h->dev[entry];
805 (*nremoved)++;
806
807 /*
808 * New physical devices won't have target/lun assigned yet
809 * so we need to preserve the values in the slot we are replacing.
810 */
811 if (new_entry->target == -1) {
812 new_entry->target = h->dev[entry]->target;
813 new_entry->lun = h->dev[entry]->lun;
814 }
815
816 h->dev[entry] = new_entry;
817 added[*nadded] = new_entry;
818 (*nadded)++;
819 dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d changed.\n",
820 scsi_device_type(new_entry->devtype), hostno, new_entry->bus,
821 new_entry->target, new_entry->lun);
822 }
823
824 /* Remove an entry from h->dev[] array. */
825 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int hostno, int entry,
826 struct hpsa_scsi_dev_t *removed[], int *nremoved)
827 {
828 /* assumes h->devlock is held */
829 int i;
830 struct hpsa_scsi_dev_t *sd;
831
832 BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
833
834 sd = h->dev[entry];
835 removed[*nremoved] = h->dev[entry];
836 (*nremoved)++;
837
838 for (i = entry; i < h->ndevices-1; i++)
839 h->dev[i] = h->dev[i+1];
840 h->ndevices--;
841 dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d removed.\n",
842 scsi_device_type(sd->devtype), hostno, sd->bus, sd->target,
843 sd->lun);
844 }
845
846 #define SCSI3ADDR_EQ(a, b) ( \
847 (a)[7] == (b)[7] && \
848 (a)[6] == (b)[6] && \
849 (a)[5] == (b)[5] && \
850 (a)[4] == (b)[4] && \
851 (a)[3] == (b)[3] && \
852 (a)[2] == (b)[2] && \
853 (a)[1] == (b)[1] && \
854 (a)[0] == (b)[0])
855
856 static void fixup_botched_add(struct ctlr_info *h,
857 struct hpsa_scsi_dev_t *added)
858 {
859 /* called when scsi_add_device fails in order to re-adjust
860 * h->dev[] to match the mid layer's view.
861 */
862 unsigned long flags;
863 int i, j;
864
865 spin_lock_irqsave(&h->lock, flags);
866 for (i = 0; i < h->ndevices; i++) {
867 if (h->dev[i] == added) {
868 for (j = i; j < h->ndevices-1; j++)
869 h->dev[j] = h->dev[j+1];
870 h->ndevices--;
871 break;
872 }
873 }
874 spin_unlock_irqrestore(&h->lock, flags);
875 kfree(added);
876 }
877
878 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
879 struct hpsa_scsi_dev_t *dev2)
880 {
881 /* we compare everything except lun and target as these
882 * are not yet assigned. Compare parts likely
883 * to differ first
884 */
885 if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
886 sizeof(dev1->scsi3addr)) != 0)
887 return 0;
888 if (memcmp(dev1->device_id, dev2->device_id,
889 sizeof(dev1->device_id)) != 0)
890 return 0;
891 if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
892 return 0;
893 if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
894 return 0;
895 if (dev1->devtype != dev2->devtype)
896 return 0;
897 if (dev1->bus != dev2->bus)
898 return 0;
899 return 1;
900 }
901
902 static inline int device_updated(struct hpsa_scsi_dev_t *dev1,
903 struct hpsa_scsi_dev_t *dev2)
904 {
905 /* Device attributes that can change, but don't mean
906 * that the device is a different device, nor that the OS
907 * needs to be told anything about the change.
908 */
909 if (dev1->raid_level != dev2->raid_level)
910 return 1;
911 return 0;
912 }
913
914 /* Find needle in haystack. If exact match found, return DEVICE_SAME,
915 * and return needle location in *index. If scsi3addr matches, but not
916 * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
917 * location in *index.
918 * In the case of a minor device attribute change, such as RAID level, just
919 * return DEVICE_UPDATED, along with the updated device's location in index.
920 * If needle not found, return DEVICE_NOT_FOUND.
921 */
922 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
923 struct hpsa_scsi_dev_t *haystack[], int haystack_size,
924 int *index)
925 {
926 int i;
927 #define DEVICE_NOT_FOUND 0
928 #define DEVICE_CHANGED 1
929 #define DEVICE_SAME 2
930 #define DEVICE_UPDATED 3
931 for (i = 0; i < haystack_size; i++) {
932 if (haystack[i] == NULL) /* previously removed. */
933 continue;
934 if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
935 *index = i;
936 if (device_is_the_same(needle, haystack[i])) {
937 if (device_updated(needle, haystack[i]))
938 return DEVICE_UPDATED;
939 return DEVICE_SAME;
940 } else {
941 return DEVICE_CHANGED;
942 }
943 }
944 }
945 *index = -1;
946 return DEVICE_NOT_FOUND;
947 }
948
949 static void adjust_hpsa_scsi_table(struct ctlr_info *h, int hostno,
950 struct hpsa_scsi_dev_t *sd[], int nsds)
951 {
952 /* sd contains scsi3 addresses and devtypes, and inquiry
953 * data. This function takes what's in sd to be the current
954 * reality and updates h->dev[] to reflect that reality.
955 */
956 int i, entry, device_change, changes = 0;
957 struct hpsa_scsi_dev_t *csd;
958 unsigned long flags;
959 struct hpsa_scsi_dev_t **added, **removed;
960 int nadded, nremoved;
961 struct Scsi_Host *sh = NULL;
962
963 added = kzalloc(sizeof(*added) * HPSA_MAX_DEVICES, GFP_KERNEL);
964 removed = kzalloc(sizeof(*removed) * HPSA_MAX_DEVICES, GFP_KERNEL);
965
966 if (!added || !removed) {
967 dev_warn(&h->pdev->dev, "out of memory in "
968 "adjust_hpsa_scsi_table\n");
969 goto free_and_out;
970 }
971
972 spin_lock_irqsave(&h->devlock, flags);
973
974 /* find any devices in h->dev[] that are not in
975 * sd[] and remove them from h->dev[], and for any
976 * devices which have changed, remove the old device
977 * info and add the new device info.
978 * If minor device attributes change, just update
979 * the existing device structure.
980 */
981 i = 0;
982 nremoved = 0;
983 nadded = 0;
984 while (i < h->ndevices) {
985 csd = h->dev[i];
986 device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
987 if (device_change == DEVICE_NOT_FOUND) {
988 changes++;
989 hpsa_scsi_remove_entry(h, hostno, i,
990 removed, &nremoved);
991 continue; /* remove ^^^, hence i not incremented */
992 } else if (device_change == DEVICE_CHANGED) {
993 changes++;
994 hpsa_scsi_replace_entry(h, hostno, i, sd[entry],
995 added, &nadded, removed, &nremoved);
996 /* Set it to NULL to prevent it from being freed
997 * at the bottom of hpsa_update_scsi_devices()
998 */
999 sd[entry] = NULL;
1000 } else if (device_change == DEVICE_UPDATED) {
1001 hpsa_scsi_update_entry(h, hostno, i, sd[entry]);
1002 }
1003 i++;
1004 }
1005
1006 /* Now, make sure every device listed in sd[] is also
1007 * listed in h->dev[], adding them if they aren't found
1008 */
1009
1010 for (i = 0; i < nsds; i++) {
1011 if (!sd[i]) /* if already added above. */
1012 continue;
1013 device_change = hpsa_scsi_find_entry(sd[i], h->dev,
1014 h->ndevices, &entry);
1015 if (device_change == DEVICE_NOT_FOUND) {
1016 changes++;
1017 if (hpsa_scsi_add_entry(h, hostno, sd[i],
1018 added, &nadded) != 0)
1019 break;
1020 sd[i] = NULL; /* prevent from being freed later. */
1021 } else if (device_change == DEVICE_CHANGED) {
1022 /* should never happen... */
1023 changes++;
1024 dev_warn(&h->pdev->dev,
1025 "device unexpectedly changed.\n");
1026 /* but if it does happen, we just ignore that device */
1027 }
1028 }
1029 spin_unlock_irqrestore(&h->devlock, flags);
1030
1031 /* Don't notify scsi mid layer of any changes the first time through
1032 * (or if there are no changes) scsi_scan_host will do it later the
1033 * first time through.
1034 */
1035 if (hostno == -1 || !changes)
1036 goto free_and_out;
1037
1038 sh = h->scsi_host;
1039 /* Notify scsi mid layer of any removed devices */
1040 for (i = 0; i < nremoved; i++) {
1041 struct scsi_device *sdev =
1042 scsi_device_lookup(sh, removed[i]->bus,
1043 removed[i]->target, removed[i]->lun);
1044 if (sdev != NULL) {
1045 scsi_remove_device(sdev);
1046 scsi_device_put(sdev);
1047 } else {
1048 /* We don't expect to get here.
1049 * future cmds to this device will get selection
1050 * timeout as if the device was gone.
1051 */
1052 dev_warn(&h->pdev->dev, "didn't find c%db%dt%dl%d "
1053 " for removal.", hostno, removed[i]->bus,
1054 removed[i]->target, removed[i]->lun);
1055 }
1056 kfree(removed[i]);
1057 removed[i] = NULL;
1058 }
1059
1060 /* Notify scsi mid layer of any added devices */
1061 for (i = 0; i < nadded; i++) {
1062 if (scsi_add_device(sh, added[i]->bus,
1063 added[i]->target, added[i]->lun) == 0)
1064 continue;
1065 dev_warn(&h->pdev->dev, "scsi_add_device c%db%dt%dl%d failed, "
1066 "device not added.\n", hostno, added[i]->bus,
1067 added[i]->target, added[i]->lun);
1068 /* now we have to remove it from h->dev,
1069 * since it didn't get added to scsi mid layer
1070 */
1071 fixup_botched_add(h, added[i]);
1072 }
1073
1074 free_and_out:
1075 kfree(added);
1076 kfree(removed);
1077 }
1078
1079 /*
1080 * Lookup bus/target/lun and return corresponding struct hpsa_scsi_dev_t *
1081 * Assume's h->devlock is held.
1082 */
1083 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
1084 int bus, int target, int lun)
1085 {
1086 int i;
1087 struct hpsa_scsi_dev_t *sd;
1088
1089 for (i = 0; i < h->ndevices; i++) {
1090 sd = h->dev[i];
1091 if (sd->bus == bus && sd->target == target && sd->lun == lun)
1092 return sd;
1093 }
1094 return NULL;
1095 }
1096
1097 /* link sdev->hostdata to our per-device structure. */
1098 static int hpsa_slave_alloc(struct scsi_device *sdev)
1099 {
1100 struct hpsa_scsi_dev_t *sd;
1101 unsigned long flags;
1102 struct ctlr_info *h;
1103
1104 h = sdev_to_hba(sdev);
1105 spin_lock_irqsave(&h->devlock, flags);
1106 sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
1107 sdev_id(sdev), sdev->lun);
1108 if (sd != NULL)
1109 sdev->hostdata = sd;
1110 spin_unlock_irqrestore(&h->devlock, flags);
1111 return 0;
1112 }
1113
1114 static void hpsa_slave_destroy(struct scsi_device *sdev)
1115 {
1116 /* nothing to do. */
1117 }
1118
1119 static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
1120 {
1121 int i;
1122
1123 if (!h->cmd_sg_list)
1124 return;
1125 for (i = 0; i < h->nr_cmds; i++) {
1126 kfree(h->cmd_sg_list[i]);
1127 h->cmd_sg_list[i] = NULL;
1128 }
1129 kfree(h->cmd_sg_list);
1130 h->cmd_sg_list = NULL;
1131 }
1132
1133 static int hpsa_allocate_sg_chain_blocks(struct ctlr_info *h)
1134 {
1135 int i;
1136
1137 if (h->chainsize <= 0)
1138 return 0;
1139
1140 h->cmd_sg_list = kzalloc(sizeof(*h->cmd_sg_list) * h->nr_cmds,
1141 GFP_KERNEL);
1142 if (!h->cmd_sg_list)
1143 return -ENOMEM;
1144 for (i = 0; i < h->nr_cmds; i++) {
1145 h->cmd_sg_list[i] = kmalloc(sizeof(*h->cmd_sg_list[i]) *
1146 h->chainsize, GFP_KERNEL);
1147 if (!h->cmd_sg_list[i])
1148 goto clean;
1149 }
1150 return 0;
1151
1152 clean:
1153 hpsa_free_sg_chain_blocks(h);
1154 return -ENOMEM;
1155 }
1156
1157 static int hpsa_map_sg_chain_block(struct ctlr_info *h,
1158 struct CommandList *c)
1159 {
1160 struct SGDescriptor *chain_sg, *chain_block;
1161 u64 temp64;
1162
1163 chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
1164 chain_block = h->cmd_sg_list[c->cmdindex];
1165 chain_sg->Ext = HPSA_SG_CHAIN;
1166 chain_sg->Len = sizeof(*chain_sg) *
1167 (c->Header.SGTotal - h->max_cmd_sg_entries);
1168 temp64 = pci_map_single(h->pdev, chain_block, chain_sg->Len,
1169 PCI_DMA_TODEVICE);
1170 if (dma_mapping_error(&h->pdev->dev, temp64)) {
1171 /* prevent subsequent unmapping */
1172 chain_sg->Addr.lower = 0;
1173 chain_sg->Addr.upper = 0;
1174 return -1;
1175 }
1176 chain_sg->Addr.lower = (u32) (temp64 & 0x0FFFFFFFFULL);
1177 chain_sg->Addr.upper = (u32) ((temp64 >> 32) & 0x0FFFFFFFFULL);
1178 return 0;
1179 }
1180
1181 static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
1182 struct CommandList *c)
1183 {
1184 struct SGDescriptor *chain_sg;
1185 union u64bit temp64;
1186
1187 if (c->Header.SGTotal <= h->max_cmd_sg_entries)
1188 return;
1189
1190 chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
1191 temp64.val32.lower = chain_sg->Addr.lower;
1192 temp64.val32.upper = chain_sg->Addr.upper;
1193 pci_unmap_single(h->pdev, temp64.val, chain_sg->Len, PCI_DMA_TODEVICE);
1194 }
1195
1196 static void complete_scsi_command(struct CommandList *cp)
1197 {
1198 struct scsi_cmnd *cmd;
1199 struct ctlr_info *h;
1200 struct ErrorInfo *ei;
1201
1202 unsigned char sense_key;
1203 unsigned char asc; /* additional sense code */
1204 unsigned char ascq; /* additional sense code qualifier */
1205 unsigned long sense_data_size;
1206
1207 ei = cp->err_info;
1208 cmd = (struct scsi_cmnd *) cp->scsi_cmd;
1209 h = cp->h;
1210
1211 scsi_dma_unmap(cmd); /* undo the DMA mappings */
1212 if (cp->Header.SGTotal > h->max_cmd_sg_entries)
1213 hpsa_unmap_sg_chain_block(h, cp);
1214
1215 cmd->result = (DID_OK << 16); /* host byte */
1216 cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
1217 cmd->result |= ei->ScsiStatus;
1218
1219 /* copy the sense data whether we need to or not. */
1220 if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo))
1221 sense_data_size = SCSI_SENSE_BUFFERSIZE;
1222 else
1223 sense_data_size = sizeof(ei->SenseInfo);
1224 if (ei->SenseLen < sense_data_size)
1225 sense_data_size = ei->SenseLen;
1226
1227 memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size);
1228 scsi_set_resid(cmd, ei->ResidualCnt);
1229
1230 if (ei->CommandStatus == 0) {
1231 cmd_free(h, cp);
1232 cmd->scsi_done(cmd);
1233 return;
1234 }
1235
1236 /* an error has occurred */
1237 switch (ei->CommandStatus) {
1238
1239 case CMD_TARGET_STATUS:
1240 if (ei->ScsiStatus) {
1241 /* Get sense key */
1242 sense_key = 0xf & ei->SenseInfo[2];
1243 /* Get additional sense code */
1244 asc = ei->SenseInfo[12];
1245 /* Get addition sense code qualifier */
1246 ascq = ei->SenseInfo[13];
1247 }
1248
1249 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
1250 if (check_for_unit_attention(h, cp)) {
1251 cmd->result = DID_SOFT_ERROR << 16;
1252 break;
1253 }
1254 if (sense_key == ILLEGAL_REQUEST) {
1255 /*
1256 * SCSI REPORT_LUNS is commonly unsupported on
1257 * Smart Array. Suppress noisy complaint.
1258 */
1259 if (cp->Request.CDB[0] == REPORT_LUNS)
1260 break;
1261
1262 /* If ASC/ASCQ indicate Logical Unit
1263 * Not Supported condition,
1264 */
1265 if ((asc == 0x25) && (ascq == 0x0)) {
1266 dev_warn(&h->pdev->dev, "cp %p "
1267 "has check condition\n", cp);
1268 break;
1269 }
1270 }
1271
1272 if (sense_key == NOT_READY) {
1273 /* If Sense is Not Ready, Logical Unit
1274 * Not ready, Manual Intervention
1275 * required
1276 */
1277 if ((asc == 0x04) && (ascq == 0x03)) {
1278 dev_warn(&h->pdev->dev, "cp %p "
1279 "has check condition: unit "
1280 "not ready, manual "
1281 "intervention required\n", cp);
1282 break;
1283 }
1284 }
1285 if (sense_key == ABORTED_COMMAND) {
1286 /* Aborted command is retryable */
1287 dev_warn(&h->pdev->dev, "cp %p "
1288 "has check condition: aborted command: "
1289 "ASC: 0x%x, ASCQ: 0x%x\n",
1290 cp, asc, ascq);
1291 cmd->result = DID_SOFT_ERROR << 16;
1292 break;
1293 }
1294 /* Must be some other type of check condition */
1295 dev_dbg(&h->pdev->dev, "cp %p has check condition: "
1296 "unknown type: "
1297 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
1298 "Returning result: 0x%x, "
1299 "cmd=[%02x %02x %02x %02x %02x "
1300 "%02x %02x %02x %02x %02x %02x "
1301 "%02x %02x %02x %02x %02x]\n",
1302 cp, sense_key, asc, ascq,
1303 cmd->result,
1304 cmd->cmnd[0], cmd->cmnd[1],
1305 cmd->cmnd[2], cmd->cmnd[3],
1306 cmd->cmnd[4], cmd->cmnd[5],
1307 cmd->cmnd[6], cmd->cmnd[7],
1308 cmd->cmnd[8], cmd->cmnd[9],
1309 cmd->cmnd[10], cmd->cmnd[11],
1310 cmd->cmnd[12], cmd->cmnd[13],
1311 cmd->cmnd[14], cmd->cmnd[15]);
1312 break;
1313 }
1314
1315
1316 /* Problem was not a check condition
1317 * Pass it up to the upper layers...
1318 */
1319 if (ei->ScsiStatus) {
1320 dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
1321 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
1322 "Returning result: 0x%x\n",
1323 cp, ei->ScsiStatus,
1324 sense_key, asc, ascq,
1325 cmd->result);
1326 } else { /* scsi status is zero??? How??? */
1327 dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
1328 "Returning no connection.\n", cp),
1329
1330 /* Ordinarily, this case should never happen,
1331 * but there is a bug in some released firmware
1332 * revisions that allows it to happen if, for
1333 * example, a 4100 backplane loses power and
1334 * the tape drive is in it. We assume that
1335 * it's a fatal error of some kind because we
1336 * can't show that it wasn't. We will make it
1337 * look like selection timeout since that is
1338 * the most common reason for this to occur,
1339 * and it's severe enough.
1340 */
1341
1342 cmd->result = DID_NO_CONNECT << 16;
1343 }
1344 break;
1345
1346 case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
1347 break;
1348 case CMD_DATA_OVERRUN:
1349 dev_warn(&h->pdev->dev, "cp %p has"
1350 " completed with data overrun "
1351 "reported\n", cp);
1352 break;
1353 case CMD_INVALID: {
1354 /* print_bytes(cp, sizeof(*cp), 1, 0);
1355 print_cmd(cp); */
1356 /* We get CMD_INVALID if you address a non-existent device
1357 * instead of a selection timeout (no response). You will
1358 * see this if you yank out a drive, then try to access it.
1359 * This is kind of a shame because it means that any other
1360 * CMD_INVALID (e.g. driver bug) will get interpreted as a
1361 * missing target. */
1362 cmd->result = DID_NO_CONNECT << 16;
1363 }
1364 break;
1365 case CMD_PROTOCOL_ERR:
1366 cmd->result = DID_ERROR << 16;
1367 dev_warn(&h->pdev->dev, "cp %p has "
1368 "protocol error\n", cp);
1369 break;
1370 case CMD_HARDWARE_ERR:
1371 cmd->result = DID_ERROR << 16;
1372 dev_warn(&h->pdev->dev, "cp %p had hardware error\n", cp);
1373 break;
1374 case CMD_CONNECTION_LOST:
1375 cmd->result = DID_ERROR << 16;
1376 dev_warn(&h->pdev->dev, "cp %p had connection lost\n", cp);
1377 break;
1378 case CMD_ABORTED:
1379 cmd->result = DID_ABORT << 16;
1380 dev_warn(&h->pdev->dev, "cp %p was aborted with status 0x%x\n",
1381 cp, ei->ScsiStatus);
1382 break;
1383 case CMD_ABORT_FAILED:
1384 cmd->result = DID_ERROR << 16;
1385 dev_warn(&h->pdev->dev, "cp %p reports abort failed\n", cp);
1386 break;
1387 case CMD_UNSOLICITED_ABORT:
1388 cmd->result = DID_SOFT_ERROR << 16; /* retry the command */
1389 dev_warn(&h->pdev->dev, "cp %p aborted due to an unsolicited "
1390 "abort\n", cp);
1391 break;
1392 case CMD_TIMEOUT:
1393 cmd->result = DID_TIME_OUT << 16;
1394 dev_warn(&h->pdev->dev, "cp %p timedout\n", cp);
1395 break;
1396 case CMD_UNABORTABLE:
1397 cmd->result = DID_ERROR << 16;
1398 dev_warn(&h->pdev->dev, "Command unabortable\n");
1399 break;
1400 default:
1401 cmd->result = DID_ERROR << 16;
1402 dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
1403 cp, ei->CommandStatus);
1404 }
1405 cmd_free(h, cp);
1406 cmd->scsi_done(cmd);
1407 }
1408
1409 static void hpsa_pci_unmap(struct pci_dev *pdev,
1410 struct CommandList *c, int sg_used, int data_direction)
1411 {
1412 int i;
1413 union u64bit addr64;
1414
1415 for (i = 0; i < sg_used; i++) {
1416 addr64.val32.lower = c->SG[i].Addr.lower;
1417 addr64.val32.upper = c->SG[i].Addr.upper;
1418 pci_unmap_single(pdev, (dma_addr_t) addr64.val, c->SG[i].Len,
1419 data_direction);
1420 }
1421 }
1422
1423 static int hpsa_map_one(struct pci_dev *pdev,
1424 struct CommandList *cp,
1425 unsigned char *buf,
1426 size_t buflen,
1427 int data_direction)
1428 {
1429 u64 addr64;
1430
1431 if (buflen == 0 || data_direction == PCI_DMA_NONE) {
1432 cp->Header.SGList = 0;
1433 cp->Header.SGTotal = 0;
1434 return 0;
1435 }
1436
1437 addr64 = (u64) pci_map_single(pdev, buf, buflen, data_direction);
1438 if (dma_mapping_error(&pdev->dev, addr64)) {
1439 /* Prevent subsequent unmap of something never mapped */
1440 cp->Header.SGList = 0;
1441 cp->Header.SGTotal = 0;
1442 return -1;
1443 }
1444 cp->SG[0].Addr.lower =
1445 (u32) (addr64 & (u64) 0x00000000FFFFFFFF);
1446 cp->SG[0].Addr.upper =
1447 (u32) ((addr64 >> 32) & (u64) 0x00000000FFFFFFFF);
1448 cp->SG[0].Len = buflen;
1449 cp->Header.SGList = (u8) 1; /* no. SGs contig in this cmd */
1450 cp->Header.SGTotal = (u16) 1; /* total sgs in this cmd list */
1451 return 0;
1452 }
1453
1454 static inline void hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
1455 struct CommandList *c)
1456 {
1457 DECLARE_COMPLETION_ONSTACK(wait);
1458
1459 c->waiting = &wait;
1460 enqueue_cmd_and_start_io(h, c);
1461 wait_for_completion(&wait);
1462 }
1463
1464 static void hpsa_scsi_do_simple_cmd_core_if_no_lockup(struct ctlr_info *h,
1465 struct CommandList *c)
1466 {
1467 unsigned long flags;
1468
1469 /* If controller lockup detected, fake a hardware error. */
1470 spin_lock_irqsave(&h->lock, flags);
1471 if (unlikely(h->lockup_detected)) {
1472 spin_unlock_irqrestore(&h->lock, flags);
1473 c->err_info->CommandStatus = CMD_HARDWARE_ERR;
1474 } else {
1475 spin_unlock_irqrestore(&h->lock, flags);
1476 hpsa_scsi_do_simple_cmd_core(h, c);
1477 }
1478 }
1479
1480 #define MAX_DRIVER_CMD_RETRIES 25
1481 static void hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
1482 struct CommandList *c, int data_direction)
1483 {
1484 int backoff_time = 10, retry_count = 0;
1485
1486 do {
1487 memset(c->err_info, 0, sizeof(*c->err_info));
1488 hpsa_scsi_do_simple_cmd_core(h, c);
1489 retry_count++;
1490 if (retry_count > 3) {
1491 msleep(backoff_time);
1492 if (backoff_time < 1000)
1493 backoff_time *= 2;
1494 }
1495 } while ((check_for_unit_attention(h, c) ||
1496 check_for_busy(h, c)) &&
1497 retry_count <= MAX_DRIVER_CMD_RETRIES);
1498 hpsa_pci_unmap(h->pdev, c, 1, data_direction);
1499 }
1500
1501 static void hpsa_scsi_interpret_error(struct CommandList *cp)
1502 {
1503 struct ErrorInfo *ei;
1504 struct device *d = &cp->h->pdev->dev;
1505
1506 ei = cp->err_info;
1507 switch (ei->CommandStatus) {
1508 case CMD_TARGET_STATUS:
1509 dev_warn(d, "cmd %p has completed with errors\n", cp);
1510 dev_warn(d, "cmd %p has SCSI Status = %x\n", cp,
1511 ei->ScsiStatus);
1512 if (ei->ScsiStatus == 0)
1513 dev_warn(d, "SCSI status is abnormally zero. "
1514 "(probably indicates selection timeout "
1515 "reported incorrectly due to a known "
1516 "firmware bug, circa July, 2001.)\n");
1517 break;
1518 case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
1519 dev_info(d, "UNDERRUN\n");
1520 break;
1521 case CMD_DATA_OVERRUN:
1522 dev_warn(d, "cp %p has completed with data overrun\n", cp);
1523 break;
1524 case CMD_INVALID: {
1525 /* controller unfortunately reports SCSI passthru's
1526 * to non-existent targets as invalid commands.
1527 */
1528 dev_warn(d, "cp %p is reported invalid (probably means "
1529 "target device no longer present)\n", cp);
1530 /* print_bytes((unsigned char *) cp, sizeof(*cp), 1, 0);
1531 print_cmd(cp); */
1532 }
1533 break;
1534 case CMD_PROTOCOL_ERR:
1535 dev_warn(d, "cp %p has protocol error \n", cp);
1536 break;
1537 case CMD_HARDWARE_ERR:
1538 /* cmd->result = DID_ERROR << 16; */
1539 dev_warn(d, "cp %p had hardware error\n", cp);
1540 break;
1541 case CMD_CONNECTION_LOST:
1542 dev_warn(d, "cp %p had connection lost\n", cp);
1543 break;
1544 case CMD_ABORTED:
1545 dev_warn(d, "cp %p was aborted\n", cp);
1546 break;
1547 case CMD_ABORT_FAILED:
1548 dev_warn(d, "cp %p reports abort failed\n", cp);
1549 break;
1550 case CMD_UNSOLICITED_ABORT:
1551 dev_warn(d, "cp %p aborted due to an unsolicited abort\n", cp);
1552 break;
1553 case CMD_TIMEOUT:
1554 dev_warn(d, "cp %p timed out\n", cp);
1555 break;
1556 case CMD_UNABORTABLE:
1557 dev_warn(d, "Command unabortable\n");
1558 break;
1559 default:
1560 dev_warn(d, "cp %p returned unknown status %x\n", cp,
1561 ei->CommandStatus);
1562 }
1563 }
1564
1565 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
1566 unsigned char page, unsigned char *buf,
1567 unsigned char bufsize)
1568 {
1569 int rc = IO_OK;
1570 struct CommandList *c;
1571 struct ErrorInfo *ei;
1572
1573 c = cmd_special_alloc(h);
1574
1575 if (c == NULL) { /* trouble... */
1576 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1577 return -ENOMEM;
1578 }
1579
1580 if (fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize,
1581 page, scsi3addr, TYPE_CMD)) {
1582 rc = -1;
1583 goto out;
1584 }
1585 hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
1586 ei = c->err_info;
1587 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
1588 hpsa_scsi_interpret_error(c);
1589 rc = -1;
1590 }
1591 out:
1592 cmd_special_free(h, c);
1593 return rc;
1594 }
1595
1596 static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr)
1597 {
1598 int rc = IO_OK;
1599 struct CommandList *c;
1600 struct ErrorInfo *ei;
1601
1602 c = cmd_special_alloc(h);
1603
1604 if (c == NULL) { /* trouble... */
1605 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1606 return -ENOMEM;
1607 }
1608
1609 /* fill_cmd can't fail here, no data buffer to map. */
1610 (void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h,
1611 NULL, 0, 0, scsi3addr, TYPE_MSG);
1612 hpsa_scsi_do_simple_cmd_core(h, c);
1613 /* no unmap needed here because no data xfer. */
1614
1615 ei = c->err_info;
1616 if (ei->CommandStatus != 0) {
1617 hpsa_scsi_interpret_error(c);
1618 rc = -1;
1619 }
1620 cmd_special_free(h, c);
1621 return rc;
1622 }
1623
1624 static void hpsa_get_raid_level(struct ctlr_info *h,
1625 unsigned char *scsi3addr, unsigned char *raid_level)
1626 {
1627 int rc;
1628 unsigned char *buf;
1629
1630 *raid_level = RAID_UNKNOWN;
1631 buf = kzalloc(64, GFP_KERNEL);
1632 if (!buf)
1633 return;
1634 rc = hpsa_scsi_do_inquiry(h, scsi3addr, 0xC1, buf, 64);
1635 if (rc == 0)
1636 *raid_level = buf[8];
1637 if (*raid_level > RAID_UNKNOWN)
1638 *raid_level = RAID_UNKNOWN;
1639 kfree(buf);
1640 return;
1641 }
1642
1643 /* Get the device id from inquiry page 0x83 */
1644 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
1645 unsigned char *device_id, int buflen)
1646 {
1647 int rc;
1648 unsigned char *buf;
1649
1650 if (buflen > 16)
1651 buflen = 16;
1652 buf = kzalloc(64, GFP_KERNEL);
1653 if (!buf)
1654 return -1;
1655 rc = hpsa_scsi_do_inquiry(h, scsi3addr, 0x83, buf, 64);
1656 if (rc == 0)
1657 memcpy(device_id, &buf[8], buflen);
1658 kfree(buf);
1659 return rc != 0;
1660 }
1661
1662 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
1663 struct ReportLUNdata *buf, int bufsize,
1664 int extended_response)
1665 {
1666 int rc = IO_OK;
1667 struct CommandList *c;
1668 unsigned char scsi3addr[8];
1669 struct ErrorInfo *ei;
1670
1671 c = cmd_special_alloc(h);
1672 if (c == NULL) { /* trouble... */
1673 dev_err(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1674 return -1;
1675 }
1676 /* address the controller */
1677 memset(scsi3addr, 0, sizeof(scsi3addr));
1678 if (fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
1679 buf, bufsize, 0, scsi3addr, TYPE_CMD)) {
1680 rc = -1;
1681 goto out;
1682 }
1683 if (extended_response)
1684 c->Request.CDB[1] = extended_response;
1685 hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
1686 ei = c->err_info;
1687 if (ei->CommandStatus != 0 &&
1688 ei->CommandStatus != CMD_DATA_UNDERRUN) {
1689 hpsa_scsi_interpret_error(c);
1690 rc = -1;
1691 }
1692 out:
1693 cmd_special_free(h, c);
1694 return rc;
1695 }
1696
1697 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
1698 struct ReportLUNdata *buf,
1699 int bufsize, int extended_response)
1700 {
1701 return hpsa_scsi_do_report_luns(h, 0, buf, bufsize, extended_response);
1702 }
1703
1704 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
1705 struct ReportLUNdata *buf, int bufsize)
1706 {
1707 return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
1708 }
1709
1710 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
1711 int bus, int target, int lun)
1712 {
1713 device->bus = bus;
1714 device->target = target;
1715 device->lun = lun;
1716 }
1717
1718 static int hpsa_update_device_info(struct ctlr_info *h,
1719 unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device,
1720 unsigned char *is_OBDR_device)
1721 {
1722
1723 #define OBDR_SIG_OFFSET 43
1724 #define OBDR_TAPE_SIG "$DR-10"
1725 #define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
1726 #define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
1727
1728 unsigned char *inq_buff;
1729 unsigned char *obdr_sig;
1730
1731 inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
1732 if (!inq_buff)
1733 goto bail_out;
1734
1735 /* Do an inquiry to the device to see what it is. */
1736 if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
1737 (unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
1738 /* Inquiry failed (msg printed already) */
1739 dev_err(&h->pdev->dev,
1740 "hpsa_update_device_info: inquiry failed\n");
1741 goto bail_out;
1742 }
1743
1744 this_device->devtype = (inq_buff[0] & 0x1f);
1745 memcpy(this_device->scsi3addr, scsi3addr, 8);
1746 memcpy(this_device->vendor, &inq_buff[8],
1747 sizeof(this_device->vendor));
1748 memcpy(this_device->model, &inq_buff[16],
1749 sizeof(this_device->model));
1750 memset(this_device->device_id, 0,
1751 sizeof(this_device->device_id));
1752 hpsa_get_device_id(h, scsi3addr, this_device->device_id,
1753 sizeof(this_device->device_id));
1754
1755 if (this_device->devtype == TYPE_DISK &&
1756 is_logical_dev_addr_mode(scsi3addr))
1757 hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
1758 else
1759 this_device->raid_level = RAID_UNKNOWN;
1760
1761 if (is_OBDR_device) {
1762 /* See if this is a One-Button-Disaster-Recovery device
1763 * by looking for "$DR-10" at offset 43 in inquiry data.
1764 */
1765 obdr_sig = &inq_buff[OBDR_SIG_OFFSET];
1766 *is_OBDR_device = (this_device->devtype == TYPE_ROM &&
1767 strncmp(obdr_sig, OBDR_TAPE_SIG,
1768 OBDR_SIG_LEN) == 0);
1769 }
1770
1771 kfree(inq_buff);
1772 return 0;
1773
1774 bail_out:
1775 kfree(inq_buff);
1776 return 1;
1777 }
1778
1779 static unsigned char *ext_target_model[] = {
1780 "MSA2012",
1781 "MSA2024",
1782 "MSA2312",
1783 "MSA2324",
1784 "P2000 G3 SAS",
1785 NULL,
1786 };
1787
1788 static int is_ext_target(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
1789 {
1790 int i;
1791
1792 for (i = 0; ext_target_model[i]; i++)
1793 if (strncmp(device->model, ext_target_model[i],
1794 strlen(ext_target_model[i])) == 0)
1795 return 1;
1796 return 0;
1797 }
1798
1799 /* Helper function to assign bus, target, lun mapping of devices.
1800 * Puts non-external target logical volumes on bus 0, external target logical
1801 * volumes on bus 1, physical devices on bus 2. and the hba on bus 3.
1802 * Logical drive target and lun are assigned at this time, but
1803 * physical device lun and target assignment are deferred (assigned
1804 * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
1805 */
1806 static void figure_bus_target_lun(struct ctlr_info *h,
1807 u8 *lunaddrbytes, struct hpsa_scsi_dev_t *device)
1808 {
1809 u32 lunid = le32_to_cpu(*((__le32 *) lunaddrbytes));
1810
1811 if (!is_logical_dev_addr_mode(lunaddrbytes)) {
1812 /* physical device, target and lun filled in later */
1813 if (is_hba_lunid(lunaddrbytes))
1814 hpsa_set_bus_target_lun(device, 3, 0, lunid & 0x3fff);
1815 else
1816 /* defer target, lun assignment for physical devices */
1817 hpsa_set_bus_target_lun(device, 2, -1, -1);
1818 return;
1819 }
1820 /* It's a logical device */
1821 if (is_ext_target(h, device)) {
1822 /* external target way, put logicals on bus 1
1823 * and match target/lun numbers box
1824 * reports, other smart array, bus 0, target 0, match lunid
1825 */
1826 hpsa_set_bus_target_lun(device,
1827 1, (lunid >> 16) & 0x3fff, lunid & 0x00ff);
1828 return;
1829 }
1830 hpsa_set_bus_target_lun(device, 0, 0, lunid & 0x3fff);
1831 }
1832
1833 /*
1834 * If there is no lun 0 on a target, linux won't find any devices.
1835 * For the external targets (arrays), we have to manually detect the enclosure
1836 * which is at lun zero, as CCISS_REPORT_PHYSICAL_LUNS doesn't report
1837 * it for some reason. *tmpdevice is the target we're adding,
1838 * this_device is a pointer into the current element of currentsd[]
1839 * that we're building up in update_scsi_devices(), below.
1840 * lunzerobits is a bitmap that tracks which targets already have a
1841 * lun 0 assigned.
1842 * Returns 1 if an enclosure was added, 0 if not.
1843 */
1844 static int add_ext_target_dev(struct ctlr_info *h,
1845 struct hpsa_scsi_dev_t *tmpdevice,
1846 struct hpsa_scsi_dev_t *this_device, u8 *lunaddrbytes,
1847 unsigned long lunzerobits[], int *n_ext_target_devs)
1848 {
1849 unsigned char scsi3addr[8];
1850
1851 if (test_bit(tmpdevice->target, lunzerobits))
1852 return 0; /* There is already a lun 0 on this target. */
1853
1854 if (!is_logical_dev_addr_mode(lunaddrbytes))
1855 return 0; /* It's the logical targets that may lack lun 0. */
1856
1857 if (!is_ext_target(h, tmpdevice))
1858 return 0; /* Only external target devices have this problem. */
1859
1860 if (tmpdevice->lun == 0) /* if lun is 0, then we have a lun 0. */
1861 return 0;
1862
1863 memset(scsi3addr, 0, 8);
1864 scsi3addr[3] = tmpdevice->target;
1865 if (is_hba_lunid(scsi3addr))
1866 return 0; /* Don't add the RAID controller here. */
1867
1868 if (is_scsi_rev_5(h))
1869 return 0; /* p1210m doesn't need to do this. */
1870
1871 if (*n_ext_target_devs >= MAX_EXT_TARGETS) {
1872 dev_warn(&h->pdev->dev, "Maximum number of external "
1873 "target devices exceeded. Check your hardware "
1874 "configuration.");
1875 return 0;
1876 }
1877
1878 if (hpsa_update_device_info(h, scsi3addr, this_device, NULL))
1879 return 0;
1880 (*n_ext_target_devs)++;
1881 hpsa_set_bus_target_lun(this_device,
1882 tmpdevice->bus, tmpdevice->target, 0);
1883 set_bit(tmpdevice->target, lunzerobits);
1884 return 1;
1885 }
1886
1887 /*
1888 * Do CISS_REPORT_PHYS and CISS_REPORT_LOG. Data is returned in physdev,
1889 * logdev. The number of luns in physdev and logdev are returned in
1890 * *nphysicals and *nlogicals, respectively.
1891 * Returns 0 on success, -1 otherwise.
1892 */
1893 static int hpsa_gather_lun_info(struct ctlr_info *h,
1894 int reportlunsize,
1895 struct ReportLUNdata *physdev, u32 *nphysicals,
1896 struct ReportLUNdata *logdev, u32 *nlogicals)
1897 {
1898 if (hpsa_scsi_do_report_phys_luns(h, physdev, reportlunsize, 0)) {
1899 dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
1900 return -1;
1901 }
1902 *nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 8;
1903 if (*nphysicals > HPSA_MAX_PHYS_LUN) {
1904 dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded."
1905 " %d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
1906 *nphysicals - HPSA_MAX_PHYS_LUN);
1907 *nphysicals = HPSA_MAX_PHYS_LUN;
1908 }
1909 if (hpsa_scsi_do_report_log_luns(h, logdev, reportlunsize)) {
1910 dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
1911 return -1;
1912 }
1913 *nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
1914 /* Reject Logicals in excess of our max capability. */
1915 if (*nlogicals > HPSA_MAX_LUN) {
1916 dev_warn(&h->pdev->dev,
1917 "maximum logical LUNs (%d) exceeded. "
1918 "%d LUNs ignored.\n", HPSA_MAX_LUN,
1919 *nlogicals - HPSA_MAX_LUN);
1920 *nlogicals = HPSA_MAX_LUN;
1921 }
1922 if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
1923 dev_warn(&h->pdev->dev,
1924 "maximum logical + physical LUNs (%d) exceeded. "
1925 "%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
1926 *nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
1927 *nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
1928 }
1929 return 0;
1930 }
1931
1932 u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position, int i,
1933 int nphysicals, int nlogicals, struct ReportLUNdata *physdev_list,
1934 struct ReportLUNdata *logdev_list)
1935 {
1936 /* Helper function, figure out where the LUN ID info is coming from
1937 * given index i, lists of physical and logical devices, where in
1938 * the list the raid controller is supposed to appear (first or last)
1939 */
1940
1941 int logicals_start = nphysicals + (raid_ctlr_position == 0);
1942 int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
1943
1944 if (i == raid_ctlr_position)
1945 return RAID_CTLR_LUNID;
1946
1947 if (i < logicals_start)
1948 return &physdev_list->LUN[i - (raid_ctlr_position == 0)][0];
1949
1950 if (i < last_device)
1951 return &logdev_list->LUN[i - nphysicals -
1952 (raid_ctlr_position == 0)][0];
1953 BUG();
1954 return NULL;
1955 }
1956
1957 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno)
1958 {
1959 /* the idea here is we could get notified
1960 * that some devices have changed, so we do a report
1961 * physical luns and report logical luns cmd, and adjust
1962 * our list of devices accordingly.
1963 *
1964 * The scsi3addr's of devices won't change so long as the
1965 * adapter is not reset. That means we can rescan and
1966 * tell which devices we already know about, vs. new
1967 * devices, vs. disappearing devices.
1968 */
1969 struct ReportLUNdata *physdev_list = NULL;
1970 struct ReportLUNdata *logdev_list = NULL;
1971 u32 nphysicals = 0;
1972 u32 nlogicals = 0;
1973 u32 ndev_allocated = 0;
1974 struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
1975 int ncurrent = 0;
1976 int reportlunsize = sizeof(*physdev_list) + HPSA_MAX_PHYS_LUN * 8;
1977 int i, n_ext_target_devs, ndevs_to_allocate;
1978 int raid_ctlr_position;
1979 DECLARE_BITMAP(lunzerobits, MAX_EXT_TARGETS);
1980
1981 currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_DEVICES, GFP_KERNEL);
1982 physdev_list = kzalloc(reportlunsize, GFP_KERNEL);
1983 logdev_list = kzalloc(reportlunsize, GFP_KERNEL);
1984 tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
1985
1986 if (!currentsd || !physdev_list || !logdev_list || !tmpdevice) {
1987 dev_err(&h->pdev->dev, "out of memory\n");
1988 goto out;
1989 }
1990 memset(lunzerobits, 0, sizeof(lunzerobits));
1991
1992 if (hpsa_gather_lun_info(h, reportlunsize, physdev_list, &nphysicals,
1993 logdev_list, &nlogicals))
1994 goto out;
1995
1996 /* We might see up to the maximum number of logical and physical disks
1997 * plus external target devices, and a device for the local RAID
1998 * controller.
1999 */
2000 ndevs_to_allocate = nphysicals + nlogicals + MAX_EXT_TARGETS + 1;
2001
2002 /* Allocate the per device structures */
2003 for (i = 0; i < ndevs_to_allocate; i++) {
2004 if (i >= HPSA_MAX_DEVICES) {
2005 dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded."
2006 " %d devices ignored.\n", HPSA_MAX_DEVICES,
2007 ndevs_to_allocate - HPSA_MAX_DEVICES);
2008 break;
2009 }
2010
2011 currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
2012 if (!currentsd[i]) {
2013 dev_warn(&h->pdev->dev, "out of memory at %s:%d\n",
2014 __FILE__, __LINE__);
2015 goto out;
2016 }
2017 ndev_allocated++;
2018 }
2019
2020 if (unlikely(is_scsi_rev_5(h)))
2021 raid_ctlr_position = 0;
2022 else
2023 raid_ctlr_position = nphysicals + nlogicals;
2024
2025 /* adjust our table of devices */
2026 n_ext_target_devs = 0;
2027 for (i = 0; i < nphysicals + nlogicals + 1; i++) {
2028 u8 *lunaddrbytes, is_OBDR = 0;
2029
2030 /* Figure out where the LUN ID info is coming from */
2031 lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
2032 i, nphysicals, nlogicals, physdev_list, logdev_list);
2033 /* skip masked physical devices. */
2034 if (lunaddrbytes[3] & 0xC0 &&
2035 i < nphysicals + (raid_ctlr_position == 0))
2036 continue;
2037
2038 /* Get device type, vendor, model, device id */
2039 if (hpsa_update_device_info(h, lunaddrbytes, tmpdevice,
2040 &is_OBDR))
2041 continue; /* skip it if we can't talk to it. */
2042 figure_bus_target_lun(h, lunaddrbytes, tmpdevice);
2043 this_device = currentsd[ncurrent];
2044
2045 /*
2046 * For external target devices, we have to insert a LUN 0 which
2047 * doesn't show up in CCISS_REPORT_PHYSICAL data, but there
2048 * is nonetheless an enclosure device there. We have to
2049 * present that otherwise linux won't find anything if
2050 * there is no lun 0.
2051 */
2052 if (add_ext_target_dev(h, tmpdevice, this_device,
2053 lunaddrbytes, lunzerobits,
2054 &n_ext_target_devs)) {
2055 ncurrent++;
2056 this_device = currentsd[ncurrent];
2057 }
2058
2059 *this_device = *tmpdevice;
2060
2061 switch (this_device->devtype) {
2062 case TYPE_ROM:
2063 /* We don't *really* support actual CD-ROM devices,
2064 * just "One Button Disaster Recovery" tape drive
2065 * which temporarily pretends to be a CD-ROM drive.
2066 * So we check that the device is really an OBDR tape
2067 * device by checking for "$DR-10" in bytes 43-48 of
2068 * the inquiry data.
2069 */
2070 if (is_OBDR)
2071 ncurrent++;
2072 break;
2073 case TYPE_DISK:
2074 if (i < nphysicals)
2075 break;
2076 ncurrent++;
2077 break;
2078 case TYPE_TAPE:
2079 case TYPE_MEDIUM_CHANGER:
2080 ncurrent++;
2081 break;
2082 case TYPE_RAID:
2083 /* Only present the Smartarray HBA as a RAID controller.
2084 * If it's a RAID controller other than the HBA itself
2085 * (an external RAID controller, MSA500 or similar)
2086 * don't present it.
2087 */
2088 if (!is_hba_lunid(lunaddrbytes))
2089 break;
2090 ncurrent++;
2091 break;
2092 default:
2093 break;
2094 }
2095 if (ncurrent >= HPSA_MAX_DEVICES)
2096 break;
2097 }
2098 adjust_hpsa_scsi_table(h, hostno, currentsd, ncurrent);
2099 out:
2100 kfree(tmpdevice);
2101 for (i = 0; i < ndev_allocated; i++)
2102 kfree(currentsd[i]);
2103 kfree(currentsd);
2104 kfree(physdev_list);
2105 kfree(logdev_list);
2106 }
2107
2108 /* hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
2109 * dma mapping and fills in the scatter gather entries of the
2110 * hpsa command, cp.
2111 */
2112 static int hpsa_scatter_gather(struct ctlr_info *h,
2113 struct CommandList *cp,
2114 struct scsi_cmnd *cmd)
2115 {
2116 unsigned int len;
2117 struct scatterlist *sg;
2118 u64 addr64;
2119 int use_sg, i, sg_index, chained;
2120 struct SGDescriptor *curr_sg;
2121
2122 BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
2123
2124 use_sg = scsi_dma_map(cmd);
2125 if (use_sg < 0)
2126 return use_sg;
2127
2128 if (!use_sg)
2129 goto sglist_finished;
2130
2131 curr_sg = cp->SG;
2132 chained = 0;
2133 sg_index = 0;
2134 scsi_for_each_sg(cmd, sg, use_sg, i) {
2135 if (i == h->max_cmd_sg_entries - 1 &&
2136 use_sg > h->max_cmd_sg_entries) {
2137 chained = 1;
2138 curr_sg = h->cmd_sg_list[cp->cmdindex];
2139 sg_index = 0;
2140 }
2141 addr64 = (u64) sg_dma_address(sg);
2142 len = sg_dma_len(sg);
2143 curr_sg->Addr.lower = (u32) (addr64 & 0x0FFFFFFFFULL);
2144 curr_sg->Addr.upper = (u32) ((addr64 >> 32) & 0x0FFFFFFFFULL);
2145 curr_sg->Len = len;
2146 curr_sg->Ext = 0; /* we are not chaining */
2147 curr_sg++;
2148 }
2149
2150 if (use_sg + chained > h->maxSG)
2151 h->maxSG = use_sg + chained;
2152
2153 if (chained) {
2154 cp->Header.SGList = h->max_cmd_sg_entries;
2155 cp->Header.SGTotal = (u16) (use_sg + 1);
2156 if (hpsa_map_sg_chain_block(h, cp)) {
2157 scsi_dma_unmap(cmd);
2158 return -1;
2159 }
2160 return 0;
2161 }
2162
2163 sglist_finished:
2164
2165 cp->Header.SGList = (u8) use_sg; /* no. SGs contig in this cmd */
2166 cp->Header.SGTotal = (u16) use_sg; /* total sgs in this cmd list */
2167 return 0;
2168 }
2169
2170
2171 static int hpsa_scsi_queue_command_lck(struct scsi_cmnd *cmd,
2172 void (*done)(struct scsi_cmnd *))
2173 {
2174 struct ctlr_info *h;
2175 struct hpsa_scsi_dev_t *dev;
2176 unsigned char scsi3addr[8];
2177 struct CommandList *c;
2178 unsigned long flags;
2179
2180 /* Get the ptr to our adapter structure out of cmd->host. */
2181 h = sdev_to_hba(cmd->device);
2182 dev = cmd->device->hostdata;
2183 if (!dev) {
2184 cmd->result = DID_NO_CONNECT << 16;
2185 done(cmd);
2186 return 0;
2187 }
2188 memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr));
2189
2190 spin_lock_irqsave(&h->lock, flags);
2191 if (unlikely(h->lockup_detected)) {
2192 spin_unlock_irqrestore(&h->lock, flags);
2193 cmd->result = DID_ERROR << 16;
2194 done(cmd);
2195 return 0;
2196 }
2197 spin_unlock_irqrestore(&h->lock, flags);
2198 c = cmd_alloc(h);
2199 if (c == NULL) { /* trouble... */
2200 dev_err(&h->pdev->dev, "cmd_alloc returned NULL!\n");
2201 return SCSI_MLQUEUE_HOST_BUSY;
2202 }
2203
2204 /* Fill in the command list header */
2205
2206 cmd->scsi_done = done; /* save this for use by completion code */
2207
2208 /* save c in case we have to abort it */
2209 cmd->host_scribble = (unsigned char *) c;
2210
2211 c->cmd_type = CMD_SCSI;
2212 c->scsi_cmd = cmd;
2213 c->Header.ReplyQueue = 0; /* unused in simple mode */
2214 memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8);
2215 c->Header.Tag.lower = (c->cmdindex << DIRECT_LOOKUP_SHIFT);
2216 c->Header.Tag.lower |= DIRECT_LOOKUP_BIT;
2217
2218 /* Fill in the request block... */
2219
2220 c->Request.Timeout = 0;
2221 memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
2222 BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
2223 c->Request.CDBLen = cmd->cmd_len;
2224 memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
2225 c->Request.Type.Type = TYPE_CMD;
2226 c->Request.Type.Attribute = ATTR_SIMPLE;
2227 switch (cmd->sc_data_direction) {
2228 case DMA_TO_DEVICE:
2229 c->Request.Type.Direction = XFER_WRITE;
2230 break;
2231 case DMA_FROM_DEVICE:
2232 c->Request.Type.Direction = XFER_READ;
2233 break;
2234 case DMA_NONE:
2235 c->Request.Type.Direction = XFER_NONE;
2236 break;
2237 case DMA_BIDIRECTIONAL:
2238 /* This can happen if a buggy application does a scsi passthru
2239 * and sets both inlen and outlen to non-zero. ( see
2240 * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
2241 */
2242
2243 c->Request.Type.Direction = XFER_RSVD;
2244 /* This is technically wrong, and hpsa controllers should
2245 * reject it with CMD_INVALID, which is the most correct
2246 * response, but non-fibre backends appear to let it
2247 * slide by, and give the same results as if this field
2248 * were set correctly. Either way is acceptable for
2249 * our purposes here.
2250 */
2251
2252 break;
2253
2254 default:
2255 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
2256 cmd->sc_data_direction);
2257 BUG();
2258 break;
2259 }
2260
2261 if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
2262 cmd_free(h, c);
2263 return SCSI_MLQUEUE_HOST_BUSY;
2264 }
2265 enqueue_cmd_and_start_io(h, c);
2266 /* the cmd'll come back via intr handler in complete_scsi_command() */
2267 return 0;
2268 }
2269
2270 static DEF_SCSI_QCMD(hpsa_scsi_queue_command)
2271
2272 static void hpsa_scan_start(struct Scsi_Host *sh)
2273 {
2274 struct ctlr_info *h = shost_to_hba(sh);
2275 unsigned long flags;
2276
2277 /* wait until any scan already in progress is finished. */
2278 while (1) {
2279 spin_lock_irqsave(&h->scan_lock, flags);
2280 if (h->scan_finished)
2281 break;
2282 spin_unlock_irqrestore(&h->scan_lock, flags);
2283 wait_event(h->scan_wait_queue, h->scan_finished);
2284 /* Note: We don't need to worry about a race between this
2285 * thread and driver unload because the midlayer will
2286 * have incremented the reference count, so unload won't
2287 * happen if we're in here.
2288 */
2289 }
2290 h->scan_finished = 0; /* mark scan as in progress */
2291 spin_unlock_irqrestore(&h->scan_lock, flags);
2292
2293 hpsa_update_scsi_devices(h, h->scsi_host->host_no);
2294
2295 spin_lock_irqsave(&h->scan_lock, flags);
2296 h->scan_finished = 1; /* mark scan as finished. */
2297 wake_up_all(&h->scan_wait_queue);
2298 spin_unlock_irqrestore(&h->scan_lock, flags);
2299 }
2300
2301 static int hpsa_scan_finished(struct Scsi_Host *sh,
2302 unsigned long elapsed_time)
2303 {
2304 struct ctlr_info *h = shost_to_hba(sh);
2305 unsigned long flags;
2306 int finished;
2307
2308 spin_lock_irqsave(&h->scan_lock, flags);
2309 finished = h->scan_finished;
2310 spin_unlock_irqrestore(&h->scan_lock, flags);
2311 return finished;
2312 }
2313
2314 static int hpsa_change_queue_depth(struct scsi_device *sdev,
2315 int qdepth, int reason)
2316 {
2317 struct ctlr_info *h = sdev_to_hba(sdev);
2318
2319 if (reason != SCSI_QDEPTH_DEFAULT)
2320 return -ENOTSUPP;
2321
2322 if (qdepth < 1)
2323 qdepth = 1;
2324 else
2325 if (qdepth > h->nr_cmds)
2326 qdepth = h->nr_cmds;
2327 scsi_adjust_queue_depth(sdev, scsi_get_tag_type(sdev), qdepth);
2328 return sdev->queue_depth;
2329 }
2330
2331 static void hpsa_unregister_scsi(struct ctlr_info *h)
2332 {
2333 /* we are being forcibly unloaded, and may not refuse. */
2334 scsi_remove_host(h->scsi_host);
2335 scsi_host_put(h->scsi_host);
2336 h->scsi_host = NULL;
2337 }
2338
2339 static int hpsa_register_scsi(struct ctlr_info *h)
2340 {
2341 struct Scsi_Host *sh;
2342 int error;
2343
2344 sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
2345 if (sh == NULL)
2346 goto fail;
2347
2348 sh->io_port = 0;
2349 sh->n_io_port = 0;
2350 sh->this_id = -1;
2351 sh->max_channel = 3;
2352 sh->max_cmd_len = MAX_COMMAND_SIZE;
2353 sh->max_lun = HPSA_MAX_LUN;
2354 sh->max_id = HPSA_MAX_LUN;
2355 sh->can_queue = h->nr_cmds;
2356 sh->cmd_per_lun = h->nr_cmds;
2357 sh->sg_tablesize = h->maxsgentries;
2358 h->scsi_host = sh;
2359 sh->hostdata[0] = (unsigned long) h;
2360 sh->irq = h->intr[h->intr_mode];
2361 sh->unique_id = sh->irq;
2362 error = scsi_add_host(sh, &h->pdev->dev);
2363 if (error)
2364 goto fail_host_put;
2365 scsi_scan_host(sh);
2366 return 0;
2367
2368 fail_host_put:
2369 dev_err(&h->pdev->dev, "%s: scsi_add_host"
2370 " failed for controller %d\n", __func__, h->ctlr);
2371 scsi_host_put(sh);
2372 return error;
2373 fail:
2374 dev_err(&h->pdev->dev, "%s: scsi_host_alloc"
2375 " failed for controller %d\n", __func__, h->ctlr);
2376 return -ENOMEM;
2377 }
2378
2379 static int wait_for_device_to_become_ready(struct ctlr_info *h,
2380 unsigned char lunaddr[])
2381 {
2382 int rc = 0;
2383 int count = 0;
2384 int waittime = 1; /* seconds */
2385 struct CommandList *c;
2386
2387 c = cmd_special_alloc(h);
2388 if (!c) {
2389 dev_warn(&h->pdev->dev, "out of memory in "
2390 "wait_for_device_to_become_ready.\n");
2391 return IO_ERROR;
2392 }
2393
2394 /* Send test unit ready until device ready, or give up. */
2395 while (count < HPSA_TUR_RETRY_LIMIT) {
2396
2397 /* Wait for a bit. do this first, because if we send
2398 * the TUR right away, the reset will just abort it.
2399 */
2400 msleep(1000 * waittime);
2401 count++;
2402
2403 /* Increase wait time with each try, up to a point. */
2404 if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
2405 waittime = waittime * 2;
2406
2407 /* Send the Test Unit Ready, fill_cmd can't fail, no mapping */
2408 (void) fill_cmd(c, TEST_UNIT_READY, h,
2409 NULL, 0, 0, lunaddr, TYPE_CMD);
2410 hpsa_scsi_do_simple_cmd_core(h, c);
2411 /* no unmap needed here because no data xfer. */
2412
2413 if (c->err_info->CommandStatus == CMD_SUCCESS)
2414 break;
2415
2416 if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
2417 c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
2418 (c->err_info->SenseInfo[2] == NO_SENSE ||
2419 c->err_info->SenseInfo[2] == UNIT_ATTENTION))
2420 break;
2421
2422 dev_warn(&h->pdev->dev, "waiting %d secs "
2423 "for device to become ready.\n", waittime);
2424 rc = 1; /* device not ready. */
2425 }
2426
2427 if (rc)
2428 dev_warn(&h->pdev->dev, "giving up on device.\n");
2429 else
2430 dev_warn(&h->pdev->dev, "device is ready.\n");
2431
2432 cmd_special_free(h, c);
2433 return rc;
2434 }
2435
2436 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
2437 * complaining. Doing a host- or bus-reset can't do anything good here.
2438 */
2439 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
2440 {
2441 int rc;
2442 struct ctlr_info *h;
2443 struct hpsa_scsi_dev_t *dev;
2444
2445 /* find the controller to which the command to be aborted was sent */
2446 h = sdev_to_hba(scsicmd->device);
2447 if (h == NULL) /* paranoia */
2448 return FAILED;
2449 dev = scsicmd->device->hostdata;
2450 if (!dev) {
2451 dev_err(&h->pdev->dev, "hpsa_eh_device_reset_handler: "
2452 "device lookup failed.\n");
2453 return FAILED;
2454 }
2455 dev_warn(&h->pdev->dev, "resetting device %d:%d:%d:%d\n",
2456 h->scsi_host->host_no, dev->bus, dev->target, dev->lun);
2457 /* send a reset to the SCSI LUN which the command was sent to */
2458 rc = hpsa_send_reset(h, dev->scsi3addr);
2459 if (rc == 0 && wait_for_device_to_become_ready(h, dev->scsi3addr) == 0)
2460 return SUCCESS;
2461
2462 dev_warn(&h->pdev->dev, "resetting device failed.\n");
2463 return FAILED;
2464 }
2465
2466 static void swizzle_abort_tag(u8 *tag)
2467 {
2468 u8 original_tag[8];
2469
2470 memcpy(original_tag, tag, 8);
2471 tag[0] = original_tag[3];
2472 tag[1] = original_tag[2];
2473 tag[2] = original_tag[1];
2474 tag[3] = original_tag[0];
2475 tag[4] = original_tag[7];
2476 tag[5] = original_tag[6];
2477 tag[6] = original_tag[5];
2478 tag[7] = original_tag[4];
2479 }
2480
2481 static int hpsa_send_abort(struct ctlr_info *h, unsigned char *scsi3addr,
2482 struct CommandList *abort, int swizzle)
2483 {
2484 int rc = IO_OK;
2485 struct CommandList *c;
2486 struct ErrorInfo *ei;
2487
2488 c = cmd_special_alloc(h);
2489 if (c == NULL) { /* trouble... */
2490 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
2491 return -ENOMEM;
2492 }
2493
2494 /* fill_cmd can't fail here, no buffer to map */
2495 (void) fill_cmd(c, HPSA_ABORT_MSG, h, abort,
2496 0, 0, scsi3addr, TYPE_MSG);
2497 if (swizzle)
2498 swizzle_abort_tag(&c->Request.CDB[4]);
2499 hpsa_scsi_do_simple_cmd_core(h, c);
2500 dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: do_simple_cmd_core completed.\n",
2501 __func__, abort->Header.Tag.upper, abort->Header.Tag.lower);
2502 /* no unmap needed here because no data xfer. */
2503
2504 ei = c->err_info;
2505 switch (ei->CommandStatus) {
2506 case CMD_SUCCESS:
2507 break;
2508 case CMD_UNABORTABLE: /* Very common, don't make noise. */
2509 rc = -1;
2510 break;
2511 default:
2512 dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: interpreting error.\n",
2513 __func__, abort->Header.Tag.upper,
2514 abort->Header.Tag.lower);
2515 hpsa_scsi_interpret_error(c);
2516 rc = -1;
2517 break;
2518 }
2519 cmd_special_free(h, c);
2520 dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: Finished.\n", __func__,
2521 abort->Header.Tag.upper, abort->Header.Tag.lower);
2522 return rc;
2523 }
2524
2525 /*
2526 * hpsa_find_cmd_in_queue
2527 *
2528 * Used to determine whether a command (find) is still present
2529 * in queue_head. Optionally excludes the last element of queue_head.
2530 *
2531 * This is used to avoid unnecessary aborts. Commands in h->reqQ have
2532 * not yet been submitted, and so can be aborted by the driver without
2533 * sending an abort to the hardware.
2534 *
2535 * Returns pointer to command if found in queue, NULL otherwise.
2536 */
2537 static struct CommandList *hpsa_find_cmd_in_queue(struct ctlr_info *h,
2538 struct scsi_cmnd *find, struct list_head *queue_head)
2539 {
2540 unsigned long flags;
2541 struct CommandList *c = NULL; /* ptr into cmpQ */
2542
2543 if (!find)
2544 return 0;
2545 spin_lock_irqsave(&h->lock, flags);
2546 list_for_each_entry(c, queue_head, list) {
2547 if (c->scsi_cmd == NULL) /* e.g.: passthru ioctl */
2548 continue;
2549 if (c->scsi_cmd == find) {
2550 spin_unlock_irqrestore(&h->lock, flags);
2551 return c;
2552 }
2553 }
2554 spin_unlock_irqrestore(&h->lock, flags);
2555 return NULL;
2556 }
2557
2558 static struct CommandList *hpsa_find_cmd_in_queue_by_tag(struct ctlr_info *h,
2559 u8 *tag, struct list_head *queue_head)
2560 {
2561 unsigned long flags;
2562 struct CommandList *c;
2563
2564 spin_lock_irqsave(&h->lock, flags);
2565 list_for_each_entry(c, queue_head, list) {
2566 if (memcmp(&c->Header.Tag, tag, 8) != 0)
2567 continue;
2568 spin_unlock_irqrestore(&h->lock, flags);
2569 return c;
2570 }
2571 spin_unlock_irqrestore(&h->lock, flags);
2572 return NULL;
2573 }
2574
2575 /* Some Smart Arrays need the abort tag swizzled, and some don't. It's hard to
2576 * tell which kind we're dealing with, so we send the abort both ways. There
2577 * shouldn't be any collisions between swizzled and unswizzled tags due to the
2578 * way we construct our tags but we check anyway in case the assumptions which
2579 * make this true someday become false.
2580 */
2581 static int hpsa_send_abort_both_ways(struct ctlr_info *h,
2582 unsigned char *scsi3addr, struct CommandList *abort)
2583 {
2584 u8 swizzled_tag[8];
2585 struct CommandList *c;
2586 int rc = 0, rc2 = 0;
2587
2588 /* we do not expect to find the swizzled tag in our queue, but
2589 * check anyway just to be sure the assumptions which make this
2590 * the case haven't become wrong.
2591 */
2592 memcpy(swizzled_tag, &abort->Request.CDB[4], 8);
2593 swizzle_abort_tag(swizzled_tag);
2594 c = hpsa_find_cmd_in_queue_by_tag(h, swizzled_tag, &h->cmpQ);
2595 if (c != NULL) {
2596 dev_warn(&h->pdev->dev, "Unexpectedly found byte-swapped tag in completion queue.\n");
2597 return hpsa_send_abort(h, scsi3addr, abort, 0);
2598 }
2599 rc = hpsa_send_abort(h, scsi3addr, abort, 0);
2600
2601 /* if the command is still in our queue, we can't conclude that it was
2602 * aborted (it might have just completed normally) but in any case
2603 * we don't need to try to abort it another way.
2604 */
2605 c = hpsa_find_cmd_in_queue(h, abort->scsi_cmd, &h->cmpQ);
2606 if (c)
2607 rc2 = hpsa_send_abort(h, scsi3addr, abort, 1);
2608 return rc && rc2;
2609 }
2610
2611 /* Send an abort for the specified command.
2612 * If the device and controller support it,
2613 * send a task abort request.
2614 */
2615 static int hpsa_eh_abort_handler(struct scsi_cmnd *sc)
2616 {
2617
2618 int i, rc;
2619 struct ctlr_info *h;
2620 struct hpsa_scsi_dev_t *dev;
2621 struct CommandList *abort; /* pointer to command to be aborted */
2622 struct CommandList *found;
2623 struct scsi_cmnd *as; /* ptr to scsi cmd inside aborted command. */
2624 char msg[256]; /* For debug messaging. */
2625 int ml = 0;
2626
2627 /* Find the controller of the command to be aborted */
2628 h = sdev_to_hba(sc->device);
2629 if (WARN(h == NULL,
2630 "ABORT REQUEST FAILED, Controller lookup failed.\n"))
2631 return FAILED;
2632
2633 /* Check that controller supports some kind of task abort */
2634 if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags) &&
2635 !(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
2636 return FAILED;
2637
2638 memset(msg, 0, sizeof(msg));
2639 ml += sprintf(msg+ml, "ABORT REQUEST on C%d:B%d:T%d:L%d ",
2640 h->scsi_host->host_no, sc->device->channel,
2641 sc->device->id, sc->device->lun);
2642
2643 /* Find the device of the command to be aborted */
2644 dev = sc->device->hostdata;
2645 if (!dev) {
2646 dev_err(&h->pdev->dev, "%s FAILED, Device lookup failed.\n",
2647 msg);
2648 return FAILED;
2649 }
2650
2651 /* Get SCSI command to be aborted */
2652 abort = (struct CommandList *) sc->host_scribble;
2653 if (abort == NULL) {
2654 dev_err(&h->pdev->dev, "%s FAILED, Command to abort is NULL.\n",
2655 msg);
2656 return FAILED;
2657 }
2658
2659 ml += sprintf(msg+ml, "Tag:0x%08x:%08x ",
2660 abort->Header.Tag.upper, abort->Header.Tag.lower);
2661 as = (struct scsi_cmnd *) abort->scsi_cmd;
2662 if (as != NULL)
2663 ml += sprintf(msg+ml, "Command:0x%x SN:0x%lx ",
2664 as->cmnd[0], as->serial_number);
2665 dev_dbg(&h->pdev->dev, "%s\n", msg);
2666 dev_warn(&h->pdev->dev, "Abort request on C%d:B%d:T%d:L%d\n",
2667 h->scsi_host->host_no, dev->bus, dev->target, dev->lun);
2668
2669 /* Search reqQ to See if command is queued but not submitted,
2670 * if so, complete the command with aborted status and remove
2671 * it from the reqQ.
2672 */
2673 found = hpsa_find_cmd_in_queue(h, sc, &h->reqQ);
2674 if (found) {
2675 found->err_info->CommandStatus = CMD_ABORTED;
2676 finish_cmd(found);
2677 dev_info(&h->pdev->dev, "%s Request SUCCEEDED (driver queue).\n",
2678 msg);
2679 return SUCCESS;
2680 }
2681
2682 /* not in reqQ, if also not in cmpQ, must have already completed */
2683 found = hpsa_find_cmd_in_queue(h, sc, &h->cmpQ);
2684 if (!found) {
2685 dev_dbg(&h->pdev->dev, "%s Request SUCCEEDED (not known to driver).\n",
2686 msg);
2687 return SUCCESS;
2688 }
2689
2690 /*
2691 * Command is in flight, or possibly already completed
2692 * by the firmware (but not to the scsi mid layer) but we can't
2693 * distinguish which. Send the abort down.
2694 */
2695 rc = hpsa_send_abort_both_ways(h, dev->scsi3addr, abort);
2696 if (rc != 0) {
2697 dev_dbg(&h->pdev->dev, "%s Request FAILED.\n", msg);
2698 dev_warn(&h->pdev->dev, "FAILED abort on device C%d:B%d:T%d:L%d\n",
2699 h->scsi_host->host_no,
2700 dev->bus, dev->target, dev->lun);
2701 return FAILED;
2702 }
2703 dev_info(&h->pdev->dev, "%s REQUEST SUCCEEDED.\n", msg);
2704
2705 /* If the abort(s) above completed and actually aborted the
2706 * command, then the command to be aborted should already be
2707 * completed. If not, wait around a bit more to see if they
2708 * manage to complete normally.
2709 */
2710 #define ABORT_COMPLETE_WAIT_SECS 30
2711 for (i = 0; i < ABORT_COMPLETE_WAIT_SECS * 10; i++) {
2712 found = hpsa_find_cmd_in_queue(h, sc, &h->cmpQ);
2713 if (!found)
2714 return SUCCESS;
2715 msleep(100);
2716 }
2717 dev_warn(&h->pdev->dev, "%s FAILED. Aborted command has not completed after %d seconds.\n",
2718 msg, ABORT_COMPLETE_WAIT_SECS);
2719 return FAILED;
2720 }
2721
2722
2723 /*
2724 * For operations that cannot sleep, a command block is allocated at init,
2725 * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
2726 * which ones are free or in use. Lock must be held when calling this.
2727 * cmd_free() is the complement.
2728 */
2729 static struct CommandList *cmd_alloc(struct ctlr_info *h)
2730 {
2731 struct CommandList *c;
2732 int i;
2733 union u64bit temp64;
2734 dma_addr_t cmd_dma_handle, err_dma_handle;
2735 unsigned long flags;
2736
2737 spin_lock_irqsave(&h->lock, flags);
2738 do {
2739 i = find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds);
2740 if (i == h->nr_cmds) {
2741 spin_unlock_irqrestore(&h->lock, flags);
2742 return NULL;
2743 }
2744 } while (test_and_set_bit
2745 (i & (BITS_PER_LONG - 1),
2746 h->cmd_pool_bits + (i / BITS_PER_LONG)) != 0);
2747 spin_unlock_irqrestore(&h->lock, flags);
2748
2749 c = h->cmd_pool + i;
2750 memset(c, 0, sizeof(*c));
2751 cmd_dma_handle = h->cmd_pool_dhandle
2752 + i * sizeof(*c);
2753 c->err_info = h->errinfo_pool + i;
2754 memset(c->err_info, 0, sizeof(*c->err_info));
2755 err_dma_handle = h->errinfo_pool_dhandle
2756 + i * sizeof(*c->err_info);
2757
2758 c->cmdindex = i;
2759
2760 INIT_LIST_HEAD(&c->list);
2761 c->busaddr = (u32) cmd_dma_handle;
2762 temp64.val = (u64) err_dma_handle;
2763 c->ErrDesc.Addr.lower = temp64.val32.lower;
2764 c->ErrDesc.Addr.upper = temp64.val32.upper;
2765 c->ErrDesc.Len = sizeof(*c->err_info);
2766
2767 c->h = h;
2768 return c;
2769 }
2770
2771 /* For operations that can wait for kmalloc to possibly sleep,
2772 * this routine can be called. Lock need not be held to call
2773 * cmd_special_alloc. cmd_special_free() is the complement.
2774 */
2775 static struct CommandList *cmd_special_alloc(struct ctlr_info *h)
2776 {
2777 struct CommandList *c;
2778 union u64bit temp64;
2779 dma_addr_t cmd_dma_handle, err_dma_handle;
2780
2781 c = pci_alloc_consistent(h->pdev, sizeof(*c), &cmd_dma_handle);
2782 if (c == NULL)
2783 return NULL;
2784 memset(c, 0, sizeof(*c));
2785
2786 c->cmdindex = -1;
2787
2788 c->err_info = pci_alloc_consistent(h->pdev, sizeof(*c->err_info),
2789 &err_dma_handle);
2790
2791 if (c->err_info == NULL) {
2792 pci_free_consistent(h->pdev,
2793 sizeof(*c), c, cmd_dma_handle);
2794 return NULL;
2795 }
2796 memset(c->err_info, 0, sizeof(*c->err_info));
2797
2798 INIT_LIST_HEAD(&c->list);
2799 c->busaddr = (u32) cmd_dma_handle;
2800 temp64.val = (u64) err_dma_handle;
2801 c->ErrDesc.Addr.lower = temp64.val32.lower;
2802 c->ErrDesc.Addr.upper = temp64.val32.upper;
2803 c->ErrDesc.Len = sizeof(*c->err_info);
2804
2805 c->h = h;
2806 return c;
2807 }
2808
2809 static void cmd_free(struct ctlr_info *h, struct CommandList *c)
2810 {
2811 int i;
2812 unsigned long flags;
2813
2814 i = c - h->cmd_pool;
2815 spin_lock_irqsave(&h->lock, flags);
2816 clear_bit(i & (BITS_PER_LONG - 1),
2817 h->cmd_pool_bits + (i / BITS_PER_LONG));
2818 spin_unlock_irqrestore(&h->lock, flags);
2819 }
2820
2821 static void cmd_special_free(struct ctlr_info *h, struct CommandList *c)
2822 {
2823 union u64bit temp64;
2824
2825 temp64.val32.lower = c->ErrDesc.Addr.lower;
2826 temp64.val32.upper = c->ErrDesc.Addr.upper;
2827 pci_free_consistent(h->pdev, sizeof(*c->err_info),
2828 c->err_info, (dma_addr_t) temp64.val);
2829 pci_free_consistent(h->pdev, sizeof(*c),
2830 c, (dma_addr_t) (c->busaddr & DIRECT_LOOKUP_MASK));
2831 }
2832
2833 #ifdef CONFIG_COMPAT
2834
2835 static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd, void *arg)
2836 {
2837 IOCTL32_Command_struct __user *arg32 =
2838 (IOCTL32_Command_struct __user *) arg;
2839 IOCTL_Command_struct arg64;
2840 IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
2841 int err;
2842 u32 cp;
2843
2844 memset(&arg64, 0, sizeof(arg64));
2845 err = 0;
2846 err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
2847 sizeof(arg64.LUN_info));
2848 err |= copy_from_user(&arg64.Request, &arg32->Request,
2849 sizeof(arg64.Request));
2850 err |= copy_from_user(&arg64.error_info, &arg32->error_info,
2851 sizeof(arg64.error_info));
2852 err |= get_user(arg64.buf_size, &arg32->buf_size);
2853 err |= get_user(cp, &arg32->buf);
2854 arg64.buf = compat_ptr(cp);
2855 err |= copy_to_user(p, &arg64, sizeof(arg64));
2856
2857 if (err)
2858 return -EFAULT;
2859
2860 err = hpsa_ioctl(dev, CCISS_PASSTHRU, (void *)p);
2861 if (err)
2862 return err;
2863 err |= copy_in_user(&arg32->error_info, &p->error_info,
2864 sizeof(arg32->error_info));
2865 if (err)
2866 return -EFAULT;
2867 return err;
2868 }
2869
2870 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
2871 int cmd, void *arg)
2872 {
2873 BIG_IOCTL32_Command_struct __user *arg32 =
2874 (BIG_IOCTL32_Command_struct __user *) arg;
2875 BIG_IOCTL_Command_struct arg64;
2876 BIG_IOCTL_Command_struct __user *p =
2877 compat_alloc_user_space(sizeof(arg64));
2878 int err;
2879 u32 cp;
2880
2881 memset(&arg64, 0, sizeof(arg64));
2882 err = 0;
2883 err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
2884 sizeof(arg64.LUN_info));
2885 err |= copy_from_user(&arg64.Request, &arg32->Request,
2886 sizeof(arg64.Request));
2887 err |= copy_from_user(&arg64.error_info, &arg32->error_info,
2888 sizeof(arg64.error_info));
2889 err |= get_user(arg64.buf_size, &arg32->buf_size);
2890 err |= get_user(arg64.malloc_size, &arg32->malloc_size);
2891 err |= get_user(cp, &arg32->buf);
2892 arg64.buf = compat_ptr(cp);
2893 err |= copy_to_user(p, &arg64, sizeof(arg64));
2894
2895 if (err)
2896 return -EFAULT;
2897
2898 err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, (void *)p);
2899 if (err)
2900 return err;
2901 err |= copy_in_user(&arg32->error_info, &p->error_info,
2902 sizeof(arg32->error_info));
2903 if (err)
2904 return -EFAULT;
2905 return err;
2906 }
2907
2908 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg)
2909 {
2910 switch (cmd) {
2911 case CCISS_GETPCIINFO:
2912 case CCISS_GETINTINFO:
2913 case CCISS_SETINTINFO:
2914 case CCISS_GETNODENAME:
2915 case CCISS_SETNODENAME:
2916 case CCISS_GETHEARTBEAT:
2917 case CCISS_GETBUSTYPES:
2918 case CCISS_GETFIRMVER:
2919 case CCISS_GETDRIVVER:
2920 case CCISS_REVALIDVOLS:
2921 case CCISS_DEREGDISK:
2922 case CCISS_REGNEWDISK:
2923 case CCISS_REGNEWD:
2924 case CCISS_RESCANDISK:
2925 case CCISS_GETLUNINFO:
2926 return hpsa_ioctl(dev, cmd, arg);
2927
2928 case CCISS_PASSTHRU32:
2929 return hpsa_ioctl32_passthru(dev, cmd, arg);
2930 case CCISS_BIG_PASSTHRU32:
2931 return hpsa_ioctl32_big_passthru(dev, cmd, arg);
2932
2933 default:
2934 return -ENOIOCTLCMD;
2935 }
2936 }
2937 #endif
2938
2939 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
2940 {
2941 struct hpsa_pci_info pciinfo;
2942
2943 if (!argp)
2944 return -EINVAL;
2945 pciinfo.domain = pci_domain_nr(h->pdev->bus);
2946 pciinfo.bus = h->pdev->bus->number;
2947 pciinfo.dev_fn = h->pdev->devfn;
2948 pciinfo.board_id = h->board_id;
2949 if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
2950 return -EFAULT;
2951 return 0;
2952 }
2953
2954 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
2955 {
2956 DriverVer_type DriverVer;
2957 unsigned char vmaj, vmin, vsubmin;
2958 int rc;
2959
2960 rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
2961 &vmaj, &vmin, &vsubmin);
2962 if (rc != 3) {
2963 dev_info(&h->pdev->dev, "driver version string '%s' "
2964 "unrecognized.", HPSA_DRIVER_VERSION);
2965 vmaj = 0;
2966 vmin = 0;
2967 vsubmin = 0;
2968 }
2969 DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
2970 if (!argp)
2971 return -EINVAL;
2972 if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
2973 return -EFAULT;
2974 return 0;
2975 }
2976
2977 static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
2978 {
2979 IOCTL_Command_struct iocommand;
2980 struct CommandList *c;
2981 char *buff = NULL;
2982 union u64bit temp64;
2983 int rc = 0;
2984
2985 if (!argp)
2986 return -EINVAL;
2987 if (!capable(CAP_SYS_RAWIO))
2988 return -EPERM;
2989 if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
2990 return -EFAULT;
2991 if ((iocommand.buf_size < 1) &&
2992 (iocommand.Request.Type.Direction != XFER_NONE)) {
2993 return -EINVAL;
2994 }
2995 if (iocommand.buf_size > 0) {
2996 buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
2997 if (buff == NULL)
2998 return -EFAULT;
2999 if (iocommand.Request.Type.Direction == XFER_WRITE) {
3000 /* Copy the data into the buffer we created */
3001 if (copy_from_user(buff, iocommand.buf,
3002 iocommand.buf_size)) {
3003 rc = -EFAULT;
3004 goto out_kfree;
3005 }
3006 } else {
3007 memset(buff, 0, iocommand.buf_size);
3008 }
3009 }
3010 c = cmd_special_alloc(h);
3011 if (c == NULL) {
3012 rc = -ENOMEM;
3013 goto out_kfree;
3014 }
3015 /* Fill in the command type */
3016 c->cmd_type = CMD_IOCTL_PEND;
3017 /* Fill in Command Header */
3018 c->Header.ReplyQueue = 0; /* unused in simple mode */
3019 if (iocommand.buf_size > 0) { /* buffer to fill */
3020 c->Header.SGList = 1;
3021 c->Header.SGTotal = 1;
3022 } else { /* no buffers to fill */
3023 c->Header.SGList = 0;
3024 c->Header.SGTotal = 0;
3025 }
3026 memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
3027 /* use the kernel address the cmd block for tag */
3028 c->Header.Tag.lower = c->busaddr;
3029
3030 /* Fill in Request block */
3031 memcpy(&c->Request, &iocommand.Request,
3032 sizeof(c->Request));
3033
3034 /* Fill in the scatter gather information */
3035 if (iocommand.buf_size > 0) {
3036 temp64.val = pci_map_single(h->pdev, buff,
3037 iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
3038 if (dma_mapping_error(&h->pdev->dev, temp64.val)) {
3039 c->SG[0].Addr.lower = 0;
3040 c->SG[0].Addr.upper = 0;
3041 c->SG[0].Len = 0;
3042 rc = -ENOMEM;
3043 goto out;
3044 }
3045 c->SG[0].Addr.lower = temp64.val32.lower;
3046 c->SG[0].Addr.upper = temp64.val32.upper;
3047 c->SG[0].Len = iocommand.buf_size;
3048 c->SG[0].Ext = 0; /* we are not chaining*/
3049 }
3050 hpsa_scsi_do_simple_cmd_core_if_no_lockup(h, c);
3051 if (iocommand.buf_size > 0)
3052 hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL);
3053 check_ioctl_unit_attention(h, c);
3054
3055 /* Copy the error information out */
3056 memcpy(&iocommand.error_info, c->err_info,
3057 sizeof(iocommand.error_info));
3058 if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
3059 rc = -EFAULT;
3060 goto out;
3061 }
3062 if (iocommand.Request.Type.Direction == XFER_READ &&
3063 iocommand.buf_size > 0) {
3064 /* Copy the data out of the buffer we created */
3065 if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
3066 rc = -EFAULT;
3067 goto out;
3068 }
3069 }
3070 out:
3071 cmd_special_free(h, c);
3072 out_kfree:
3073 kfree(buff);
3074 return rc;
3075 }
3076
3077 static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
3078 {
3079 BIG_IOCTL_Command_struct *ioc;
3080 struct CommandList *c;
3081 unsigned char **buff = NULL;
3082 int *buff_size = NULL;
3083 union u64bit temp64;
3084 BYTE sg_used = 0;
3085 int status = 0;
3086 int i;
3087 u32 left;
3088 u32 sz;
3089 BYTE __user *data_ptr;
3090
3091 if (!argp)
3092 return -EINVAL;
3093 if (!capable(CAP_SYS_RAWIO))
3094 return -EPERM;
3095 ioc = (BIG_IOCTL_Command_struct *)
3096 kmalloc(sizeof(*ioc), GFP_KERNEL);
3097 if (!ioc) {
3098 status = -ENOMEM;
3099 goto cleanup1;
3100 }
3101 if (copy_from_user(ioc, argp, sizeof(*ioc))) {
3102 status = -EFAULT;
3103 goto cleanup1;
3104 }
3105 if ((ioc->buf_size < 1) &&
3106 (ioc->Request.Type.Direction != XFER_NONE)) {
3107 status = -EINVAL;
3108 goto cleanup1;
3109 }
3110 /* Check kmalloc limits using all SGs */
3111 if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
3112 status = -EINVAL;
3113 goto cleanup1;
3114 }
3115 if (ioc->buf_size > ioc->malloc_size * SG_ENTRIES_IN_CMD) {
3116 status = -EINVAL;
3117 goto cleanup1;
3118 }
3119 buff = kzalloc(SG_ENTRIES_IN_CMD * sizeof(char *), GFP_KERNEL);
3120 if (!buff) {
3121 status = -ENOMEM;
3122 goto cleanup1;
3123 }
3124 buff_size = kmalloc(SG_ENTRIES_IN_CMD * sizeof(int), GFP_KERNEL);
3125 if (!buff_size) {
3126 status = -ENOMEM;
3127 goto cleanup1;
3128 }
3129 left = ioc->buf_size;
3130 data_ptr = ioc->buf;
3131 while (left) {
3132 sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
3133 buff_size[sg_used] = sz;
3134 buff[sg_used] = kmalloc(sz, GFP_KERNEL);
3135 if (buff[sg_used] == NULL) {
3136 status = -ENOMEM;
3137 goto cleanup1;
3138 }
3139 if (ioc->Request.Type.Direction == XFER_WRITE) {
3140 if (copy_from_user(buff[sg_used], data_ptr, sz)) {
3141 status = -ENOMEM;
3142 goto cleanup1;
3143 }
3144 } else
3145 memset(buff[sg_used], 0, sz);
3146 left -= sz;
3147 data_ptr += sz;
3148 sg_used++;
3149 }
3150 c = cmd_special_alloc(h);
3151 if (c == NULL) {
3152 status = -ENOMEM;
3153 goto cleanup1;
3154 }
3155 c->cmd_type = CMD_IOCTL_PEND;
3156 c->Header.ReplyQueue = 0;
3157 c->Header.SGList = c->Header.SGTotal = sg_used;
3158 memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
3159 c->Header.Tag.lower = c->busaddr;
3160 memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
3161 if (ioc->buf_size > 0) {
3162 int i;
3163 for (i = 0; i < sg_used; i++) {
3164 temp64.val = pci_map_single(h->pdev, buff[i],
3165 buff_size[i], PCI_DMA_BIDIRECTIONAL);
3166 if (dma_mapping_error(&h->pdev->dev, temp64.val)) {
3167 c->SG[i].Addr.lower = 0;
3168 c->SG[i].Addr.upper = 0;
3169 c->SG[i].Len = 0;
3170 hpsa_pci_unmap(h->pdev, c, i,
3171 PCI_DMA_BIDIRECTIONAL);
3172 status = -ENOMEM;
3173 goto cleanup1;
3174 }
3175 c->SG[i].Addr.lower = temp64.val32.lower;
3176 c->SG[i].Addr.upper = temp64.val32.upper;
3177 c->SG[i].Len = buff_size[i];
3178 /* we are not chaining */
3179 c->SG[i].Ext = 0;
3180 }
3181 }
3182 hpsa_scsi_do_simple_cmd_core_if_no_lockup(h, c);
3183 if (sg_used)
3184 hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL);
3185 check_ioctl_unit_attention(h, c);
3186 /* Copy the error information out */
3187 memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
3188 if (copy_to_user(argp, ioc, sizeof(*ioc))) {
3189 cmd_special_free(h, c);
3190 status = -EFAULT;
3191 goto cleanup1;
3192 }
3193 if (ioc->Request.Type.Direction == XFER_READ && ioc->buf_size > 0) {
3194 /* Copy the data out of the buffer we created */
3195 BYTE __user *ptr = ioc->buf;
3196 for (i = 0; i < sg_used; i++) {
3197 if (copy_to_user(ptr, buff[i], buff_size[i])) {
3198 cmd_special_free(h, c);
3199 status = -EFAULT;
3200 goto cleanup1;
3201 }
3202 ptr += buff_size[i];
3203 }
3204 }
3205 cmd_special_free(h, c);
3206 status = 0;
3207 cleanup1:
3208 if (buff) {
3209 for (i = 0; i < sg_used; i++)
3210 kfree(buff[i]);
3211 kfree(buff);
3212 }
3213 kfree(buff_size);
3214 kfree(ioc);
3215 return status;
3216 }
3217
3218 static void check_ioctl_unit_attention(struct ctlr_info *h,
3219 struct CommandList *c)
3220 {
3221 if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
3222 c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
3223 (void) check_for_unit_attention(h, c);
3224 }
3225 /*
3226 * ioctl
3227 */
3228 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg)
3229 {
3230 struct ctlr_info *h;
3231 void __user *argp = (void __user *)arg;
3232
3233 h = sdev_to_hba(dev);
3234
3235 switch (cmd) {
3236 case CCISS_DEREGDISK:
3237 case CCISS_REGNEWDISK:
3238 case CCISS_REGNEWD:
3239 hpsa_scan_start(h->scsi_host);
3240 return 0;
3241 case CCISS_GETPCIINFO:
3242 return hpsa_getpciinfo_ioctl(h, argp);
3243 case CCISS_GETDRIVVER:
3244 return hpsa_getdrivver_ioctl(h, argp);
3245 case CCISS_PASSTHRU:
3246 return hpsa_passthru_ioctl(h, argp);
3247 case CCISS_BIG_PASSTHRU:
3248 return hpsa_big_passthru_ioctl(h, argp);
3249 default:
3250 return -ENOTTY;
3251 }
3252 }
3253
3254 static int hpsa_send_host_reset(struct ctlr_info *h, unsigned char *scsi3addr,
3255 u8 reset_type)
3256 {
3257 struct CommandList *c;
3258
3259 c = cmd_alloc(h);
3260 if (!c)
3261 return -ENOMEM;
3262 /* fill_cmd can't fail here, no data buffer to map */
3263 (void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
3264 RAID_CTLR_LUNID, TYPE_MSG);
3265 c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
3266 c->waiting = NULL;
3267 enqueue_cmd_and_start_io(h, c);
3268 /* Don't wait for completion, the reset won't complete. Don't free
3269 * the command either. This is the last command we will send before
3270 * re-initializing everything, so it doesn't matter and won't leak.
3271 */
3272 return 0;
3273 }
3274
3275 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
3276 void *buff, size_t size, u8 page_code, unsigned char *scsi3addr,
3277 int cmd_type)
3278 {
3279 int pci_dir = XFER_NONE;
3280 struct CommandList *a; /* for commands to be aborted */
3281
3282 c->cmd_type = CMD_IOCTL_PEND;
3283 c->Header.ReplyQueue = 0;
3284 if (buff != NULL && size > 0) {
3285 c->Header.SGList = 1;
3286 c->Header.SGTotal = 1;
3287 } else {
3288 c->Header.SGList = 0;
3289 c->Header.SGTotal = 0;
3290 }
3291 c->Header.Tag.lower = c->busaddr;
3292 memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
3293
3294 c->Request.Type.Type = cmd_type;
3295 if (cmd_type == TYPE_CMD) {
3296 switch (cmd) {
3297 case HPSA_INQUIRY:
3298 /* are we trying to read a vital product page */
3299 if (page_code != 0) {
3300 c->Request.CDB[1] = 0x01;
3301 c->Request.CDB[2] = page_code;
3302 }
3303 c->Request.CDBLen = 6;
3304 c->Request.Type.Attribute = ATTR_SIMPLE;
3305 c->Request.Type.Direction = XFER_READ;
3306 c->Request.Timeout = 0;
3307 c->Request.CDB[0] = HPSA_INQUIRY;
3308 c->Request.CDB[4] = size & 0xFF;
3309 break;
3310 case HPSA_REPORT_LOG:
3311 case HPSA_REPORT_PHYS:
3312 /* Talking to controller so It's a physical command
3313 mode = 00 target = 0. Nothing to write.
3314 */
3315 c->Request.CDBLen = 12;
3316 c->Request.Type.Attribute = ATTR_SIMPLE;
3317 c->Request.Type.Direction = XFER_READ;
3318 c->Request.Timeout = 0;
3319 c->Request.CDB[0] = cmd;
3320 c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
3321 c->Request.CDB[7] = (size >> 16) & 0xFF;
3322 c->Request.CDB[8] = (size >> 8) & 0xFF;
3323 c->Request.CDB[9] = size & 0xFF;
3324 break;
3325 case HPSA_CACHE_FLUSH:
3326 c->Request.CDBLen = 12;
3327 c->Request.Type.Attribute = ATTR_SIMPLE;
3328 c->Request.Type.Direction = XFER_WRITE;
3329 c->Request.Timeout = 0;
3330 c->Request.CDB[0] = BMIC_WRITE;
3331 c->Request.CDB[6] = BMIC_CACHE_FLUSH;
3332 c->Request.CDB[7] = (size >> 8) & 0xFF;
3333 c->Request.CDB[8] = size & 0xFF;
3334 break;
3335 case TEST_UNIT_READY:
3336 c->Request.CDBLen = 6;
3337 c->Request.Type.Attribute = ATTR_SIMPLE;
3338 c->Request.Type.Direction = XFER_NONE;
3339 c->Request.Timeout = 0;
3340 break;
3341 default:
3342 dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
3343 BUG();
3344 return -1;
3345 }
3346 } else if (cmd_type == TYPE_MSG) {
3347 switch (cmd) {
3348
3349 case HPSA_DEVICE_RESET_MSG:
3350 c->Request.CDBLen = 16;
3351 c->Request.Type.Type = 1; /* It is a MSG not a CMD */
3352 c->Request.Type.Attribute = ATTR_SIMPLE;
3353 c->Request.Type.Direction = XFER_NONE;
3354 c->Request.Timeout = 0; /* Don't time out */
3355 memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
3356 c->Request.CDB[0] = cmd;
3357 c->Request.CDB[1] = HPSA_RESET_TYPE_LUN;
3358 /* If bytes 4-7 are zero, it means reset the */
3359 /* LunID device */
3360 c->Request.CDB[4] = 0x00;
3361 c->Request.CDB[5] = 0x00;
3362 c->Request.CDB[6] = 0x00;
3363 c->Request.CDB[7] = 0x00;
3364 break;
3365 case HPSA_ABORT_MSG:
3366 a = buff; /* point to command to be aborted */
3367 dev_dbg(&h->pdev->dev, "Abort Tag:0x%08x:%08x using request Tag:0x%08x:%08x\n",
3368 a->Header.Tag.upper, a->Header.Tag.lower,
3369 c->Header.Tag.upper, c->Header.Tag.lower);
3370 c->Request.CDBLen = 16;
3371 c->Request.Type.Type = TYPE_MSG;
3372 c->Request.Type.Attribute = ATTR_SIMPLE;
3373 c->Request.Type.Direction = XFER_WRITE;
3374 c->Request.Timeout = 0; /* Don't time out */
3375 c->Request.CDB[0] = HPSA_TASK_MANAGEMENT;
3376 c->Request.CDB[1] = HPSA_TMF_ABORT_TASK;
3377 c->Request.CDB[2] = 0x00; /* reserved */
3378 c->Request.CDB[3] = 0x00; /* reserved */
3379 /* Tag to abort goes in CDB[4]-CDB[11] */
3380 c->Request.CDB[4] = a->Header.Tag.lower & 0xFF;
3381 c->Request.CDB[5] = (a->Header.Tag.lower >> 8) & 0xFF;
3382 c->Request.CDB[6] = (a->Header.Tag.lower >> 16) & 0xFF;
3383 c->Request.CDB[7] = (a->Header.Tag.lower >> 24) & 0xFF;
3384 c->Request.CDB[8] = a->Header.Tag.upper & 0xFF;
3385 c->Request.CDB[9] = (a->Header.Tag.upper >> 8) & 0xFF;
3386 c->Request.CDB[10] = (a->Header.Tag.upper >> 16) & 0xFF;
3387 c->Request.CDB[11] = (a->Header.Tag.upper >> 24) & 0xFF;
3388 c->Request.CDB[12] = 0x00; /* reserved */
3389 c->Request.CDB[13] = 0x00; /* reserved */
3390 c->Request.CDB[14] = 0x00; /* reserved */
3391 c->Request.CDB[15] = 0x00; /* reserved */
3392 break;
3393 default:
3394 dev_warn(&h->pdev->dev, "unknown message type %d\n",
3395 cmd);
3396 BUG();
3397 }
3398 } else {
3399 dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
3400 BUG();
3401 }
3402
3403 switch (c->Request.Type.Direction) {
3404 case XFER_READ:
3405 pci_dir = PCI_DMA_FROMDEVICE;
3406 break;
3407 case XFER_WRITE:
3408 pci_dir = PCI_DMA_TODEVICE;
3409 break;
3410 case XFER_NONE:
3411 pci_dir = PCI_DMA_NONE;
3412 break;
3413 default:
3414 pci_dir = PCI_DMA_BIDIRECTIONAL;
3415 }
3416 if (hpsa_map_one(h->pdev, c, buff, size, pci_dir))
3417 return -1;
3418 return 0;
3419 }
3420
3421 /*
3422 * Map (physical) PCI mem into (virtual) kernel space
3423 */
3424 static void __iomem *remap_pci_mem(ulong base, ulong size)
3425 {
3426 ulong page_base = ((ulong) base) & PAGE_MASK;
3427 ulong page_offs = ((ulong) base) - page_base;
3428 void __iomem *page_remapped = ioremap_nocache(page_base,
3429 page_offs + size);
3430
3431 return page_remapped ? (page_remapped + page_offs) : NULL;
3432 }
3433
3434 /* Takes cmds off the submission queue and sends them to the hardware,
3435 * then puts them on the queue of cmds waiting for completion.
3436 */
3437 static void start_io(struct ctlr_info *h)
3438 {
3439 struct CommandList *c;
3440 unsigned long flags;
3441
3442 spin_lock_irqsave(&h->lock, flags);
3443 while (!list_empty(&h->reqQ)) {
3444 c = list_entry(h->reqQ.next, struct CommandList, list);
3445 /* can't do anything if fifo is full */
3446 if ((h->access.fifo_full(h))) {
3447 dev_warn(&h->pdev->dev, "fifo full\n");
3448 break;
3449 }
3450
3451 /* Get the first entry from the Request Q */
3452 removeQ(c);
3453 h->Qdepth--;
3454
3455 /* Put job onto the completed Q */
3456 addQ(&h->cmpQ, c);
3457
3458 /* Must increment commands_outstanding before unlocking
3459 * and submitting to avoid race checking for fifo full
3460 * condition.
3461 */
3462 h->commands_outstanding++;
3463 if (h->commands_outstanding > h->max_outstanding)
3464 h->max_outstanding = h->commands_outstanding;
3465
3466 /* Tell the controller execute command */
3467 spin_unlock_irqrestore(&h->lock, flags);
3468 h->access.submit_command(h, c);
3469 spin_lock_irqsave(&h->lock, flags);
3470 }
3471 spin_unlock_irqrestore(&h->lock, flags);
3472 }
3473
3474 static inline unsigned long get_next_completion(struct ctlr_info *h, u8 q)
3475 {
3476 return h->access.command_completed(h, q);
3477 }
3478
3479 static inline bool interrupt_pending(struct ctlr_info *h)
3480 {
3481 return h->access.intr_pending(h);
3482 }
3483
3484 static inline long interrupt_not_for_us(struct ctlr_info *h)
3485 {
3486 return (h->access.intr_pending(h) == 0) ||
3487 (h->interrupts_enabled == 0);
3488 }
3489
3490 static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
3491 u32 raw_tag)
3492 {
3493 if (unlikely(tag_index >= h->nr_cmds)) {
3494 dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
3495 return 1;
3496 }
3497 return 0;
3498 }
3499
3500 static inline void finish_cmd(struct CommandList *c)
3501 {
3502 unsigned long flags;
3503
3504 spin_lock_irqsave(&c->h->lock, flags);
3505 removeQ(c);
3506 spin_unlock_irqrestore(&c->h->lock, flags);
3507 dial_up_lockup_detection_on_fw_flash_complete(c->h, c);
3508 if (likely(c->cmd_type == CMD_SCSI))
3509 complete_scsi_command(c);
3510 else if (c->cmd_type == CMD_IOCTL_PEND)
3511 complete(c->waiting);
3512 }
3513
3514 static inline u32 hpsa_tag_contains_index(u32 tag)
3515 {
3516 return tag & DIRECT_LOOKUP_BIT;
3517 }
3518
3519 static inline u32 hpsa_tag_to_index(u32 tag)
3520 {
3521 return tag >> DIRECT_LOOKUP_SHIFT;
3522 }
3523
3524
3525 static inline u32 hpsa_tag_discard_error_bits(struct ctlr_info *h, u32 tag)
3526 {
3527 #define HPSA_PERF_ERROR_BITS ((1 << DIRECT_LOOKUP_SHIFT) - 1)
3528 #define HPSA_SIMPLE_ERROR_BITS 0x03
3529 if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
3530 return tag & ~HPSA_SIMPLE_ERROR_BITS;
3531 return tag & ~HPSA_PERF_ERROR_BITS;
3532 }
3533
3534 /* process completion of an indexed ("direct lookup") command */
3535 static inline void process_indexed_cmd(struct ctlr_info *h,
3536 u32 raw_tag)
3537 {
3538 u32 tag_index;
3539 struct CommandList *c;
3540
3541 tag_index = hpsa_tag_to_index(raw_tag);
3542 if (!bad_tag(h, tag_index, raw_tag)) {
3543 c = h->cmd_pool + tag_index;
3544 finish_cmd(c);
3545 }
3546 }
3547
3548 /* process completion of a non-indexed command */
3549 static inline void process_nonindexed_cmd(struct ctlr_info *h,
3550 u32 raw_tag)
3551 {
3552 u32 tag;
3553 struct CommandList *c = NULL;
3554 unsigned long flags;
3555
3556 tag = hpsa_tag_discard_error_bits(h, raw_tag);
3557 spin_lock_irqsave(&h->lock, flags);
3558 list_for_each_entry(c, &h->cmpQ, list) {
3559 if ((c->busaddr & 0xFFFFFFE0) == (tag & 0xFFFFFFE0)) {
3560 spin_unlock_irqrestore(&h->lock, flags);
3561 finish_cmd(c);
3562 return;
3563 }
3564 }
3565 spin_unlock_irqrestore(&h->lock, flags);
3566 bad_tag(h, h->nr_cmds + 1, raw_tag);
3567 }
3568
3569 /* Some controllers, like p400, will give us one interrupt
3570 * after a soft reset, even if we turned interrupts off.
3571 * Only need to check for this in the hpsa_xxx_discard_completions
3572 * functions.
3573 */
3574 static int ignore_bogus_interrupt(struct ctlr_info *h)
3575 {
3576 if (likely(!reset_devices))
3577 return 0;
3578
3579 if (likely(h->interrupts_enabled))
3580 return 0;
3581
3582 dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
3583 "(known firmware bug.) Ignoring.\n");
3584
3585 return 1;
3586 }
3587
3588 /*
3589 * Convert &h->q[x] (passed to interrupt handlers) back to h.
3590 * Relies on (h-q[x] == x) being true for x such that
3591 * 0 <= x < MAX_REPLY_QUEUES.
3592 */
3593 static struct ctlr_info *queue_to_hba(u8 *queue)
3594 {
3595 return container_of((queue - *queue), struct ctlr_info, q[0]);
3596 }
3597
3598 static irqreturn_t hpsa_intx_discard_completions(int irq, void *queue)
3599 {
3600 struct ctlr_info *h = queue_to_hba(queue);
3601 u8 q = *(u8 *) queue;
3602 u32 raw_tag;
3603
3604 if (ignore_bogus_interrupt(h))
3605 return IRQ_NONE;
3606
3607 if (interrupt_not_for_us(h))
3608 return IRQ_NONE;
3609 h->last_intr_timestamp = get_jiffies_64();
3610 while (interrupt_pending(h)) {
3611 raw_tag = get_next_completion(h, q);
3612 while (raw_tag != FIFO_EMPTY)
3613 raw_tag = next_command(h, q);
3614 }
3615 return IRQ_HANDLED;
3616 }
3617
3618 static irqreturn_t hpsa_msix_discard_completions(int irq, void *queue)
3619 {
3620 struct ctlr_info *h = queue_to_hba(queue);
3621 u32 raw_tag;
3622 u8 q = *(u8 *) queue;
3623
3624 if (ignore_bogus_interrupt(h))
3625 return IRQ_NONE;
3626
3627 h->last_intr_timestamp = get_jiffies_64();
3628 raw_tag = get_next_completion(h, q);
3629 while (raw_tag != FIFO_EMPTY)
3630 raw_tag = next_command(h, q);
3631 return IRQ_HANDLED;
3632 }
3633
3634 static irqreturn_t do_hpsa_intr_intx(int irq, void *queue)
3635 {
3636 struct ctlr_info *h = queue_to_hba((u8 *) queue);
3637 u32 raw_tag;
3638 u8 q = *(u8 *) queue;
3639
3640 if (interrupt_not_for_us(h))
3641 return IRQ_NONE;
3642 h->last_intr_timestamp = get_jiffies_64();
3643 while (interrupt_pending(h)) {
3644 raw_tag = get_next_completion(h, q);
3645 while (raw_tag != FIFO_EMPTY) {
3646 if (likely(hpsa_tag_contains_index(raw_tag)))
3647 process_indexed_cmd(h, raw_tag);
3648 else
3649 process_nonindexed_cmd(h, raw_tag);
3650 raw_tag = next_command(h, q);
3651 }
3652 }
3653 return IRQ_HANDLED;
3654 }
3655
3656 static irqreturn_t do_hpsa_intr_msi(int irq, void *queue)
3657 {
3658 struct ctlr_info *h = queue_to_hba(queue);
3659 u32 raw_tag;
3660 u8 q = *(u8 *) queue;
3661
3662 h->last_intr_timestamp = get_jiffies_64();
3663 raw_tag = get_next_completion(h, q);
3664 while (raw_tag != FIFO_EMPTY) {
3665 if (likely(hpsa_tag_contains_index(raw_tag)))
3666 process_indexed_cmd(h, raw_tag);
3667 else
3668 process_nonindexed_cmd(h, raw_tag);
3669 raw_tag = next_command(h, q);
3670 }
3671 return IRQ_HANDLED;
3672 }
3673
3674 /* Send a message CDB to the firmware. Careful, this only works
3675 * in simple mode, not performant mode due to the tag lookup.
3676 * We only ever use this immediately after a controller reset.
3677 */
3678 static int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
3679 unsigned char type)
3680 {
3681 struct Command {
3682 struct CommandListHeader CommandHeader;
3683 struct RequestBlock Request;
3684 struct ErrDescriptor ErrorDescriptor;
3685 };
3686 struct Command *cmd;
3687 static const size_t cmd_sz = sizeof(*cmd) +
3688 sizeof(cmd->ErrorDescriptor);
3689 dma_addr_t paddr64;
3690 uint32_t paddr32, tag;
3691 void __iomem *vaddr;
3692 int i, err;
3693
3694 vaddr = pci_ioremap_bar(pdev, 0);
3695 if (vaddr == NULL)
3696 return -ENOMEM;
3697
3698 /* The Inbound Post Queue only accepts 32-bit physical addresses for the
3699 * CCISS commands, so they must be allocated from the lower 4GiB of
3700 * memory.
3701 */
3702 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
3703 if (err) {
3704 iounmap(vaddr);
3705 return -ENOMEM;
3706 }
3707
3708 cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
3709 if (cmd == NULL) {
3710 iounmap(vaddr);
3711 return -ENOMEM;
3712 }
3713
3714 /* This must fit, because of the 32-bit consistent DMA mask. Also,
3715 * although there's no guarantee, we assume that the address is at
3716 * least 4-byte aligned (most likely, it's page-aligned).
3717 */
3718 paddr32 = paddr64;
3719
3720 cmd->CommandHeader.ReplyQueue = 0;
3721 cmd->CommandHeader.SGList = 0;
3722 cmd->CommandHeader.SGTotal = 0;
3723 cmd->CommandHeader.Tag.lower = paddr32;
3724 cmd->CommandHeader.Tag.upper = 0;
3725 memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
3726
3727 cmd->Request.CDBLen = 16;
3728 cmd->Request.Type.Type = TYPE_MSG;
3729 cmd->Request.Type.Attribute = ATTR_HEADOFQUEUE;
3730 cmd->Request.Type.Direction = XFER_NONE;
3731 cmd->Request.Timeout = 0; /* Don't time out */
3732 cmd->Request.CDB[0] = opcode;
3733 cmd->Request.CDB[1] = type;
3734 memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
3735 cmd->ErrorDescriptor.Addr.lower = paddr32 + sizeof(*cmd);
3736 cmd->ErrorDescriptor.Addr.upper = 0;
3737 cmd->ErrorDescriptor.Len = sizeof(struct ErrorInfo);
3738
3739 writel(paddr32, vaddr + SA5_REQUEST_PORT_OFFSET);
3740
3741 for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
3742 tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
3743 if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr32)
3744 break;
3745 msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
3746 }
3747
3748 iounmap(vaddr);
3749
3750 /* we leak the DMA buffer here ... no choice since the controller could
3751 * still complete the command.
3752 */
3753 if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
3754 dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
3755 opcode, type);
3756 return -ETIMEDOUT;
3757 }
3758
3759 pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
3760
3761 if (tag & HPSA_ERROR_BIT) {
3762 dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
3763 opcode, type);
3764 return -EIO;
3765 }
3766
3767 dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
3768 opcode, type);
3769 return 0;
3770 }
3771
3772 #define hpsa_noop(p) hpsa_message(p, 3, 0)
3773
3774 static int hpsa_controller_hard_reset(struct pci_dev *pdev,
3775 void * __iomem vaddr, u32 use_doorbell)
3776 {
3777 u16 pmcsr;
3778 int pos;
3779
3780 if (use_doorbell) {
3781 /* For everything after the P600, the PCI power state method
3782 * of resetting the controller doesn't work, so we have this
3783 * other way using the doorbell register.
3784 */
3785 dev_info(&pdev->dev, "using doorbell to reset controller\n");
3786 writel(use_doorbell, vaddr + SA5_DOORBELL);
3787 } else { /* Try to do it the PCI power state way */
3788
3789 /* Quoting from the Open CISS Specification: "The Power
3790 * Management Control/Status Register (CSR) controls the power
3791 * state of the device. The normal operating state is D0,
3792 * CSR=00h. The software off state is D3, CSR=03h. To reset
3793 * the controller, place the interface device in D3 then to D0,
3794 * this causes a secondary PCI reset which will reset the
3795 * controller." */
3796
3797 pos = pci_find_capability(pdev, PCI_CAP_ID_PM);
3798 if (pos == 0) {
3799 dev_err(&pdev->dev,
3800 "hpsa_reset_controller: "
3801 "PCI PM not supported\n");
3802 return -ENODEV;
3803 }
3804 dev_info(&pdev->dev, "using PCI PM to reset controller\n");
3805 /* enter the D3hot power management state */
3806 pci_read_config_word(pdev, pos + PCI_PM_CTRL, &pmcsr);
3807 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3808 pmcsr |= PCI_D3hot;
3809 pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
3810
3811 msleep(500);
3812
3813 /* enter the D0 power management state */
3814 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3815 pmcsr |= PCI_D0;
3816 pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
3817
3818 /*
3819 * The P600 requires a small delay when changing states.
3820 * Otherwise we may think the board did not reset and we bail.
3821 * This for kdump only and is particular to the P600.
3822 */
3823 msleep(500);
3824 }
3825 return 0;
3826 }
3827
3828 static void init_driver_version(char *driver_version, int len)
3829 {
3830 memset(driver_version, 0, len);
3831 strncpy(driver_version, HPSA " " HPSA_DRIVER_VERSION, len - 1);
3832 }
3833
3834 static int write_driver_ver_to_cfgtable(struct CfgTable __iomem *cfgtable)
3835 {
3836 char *driver_version;
3837 int i, size = sizeof(cfgtable->driver_version);
3838
3839 driver_version = kmalloc(size, GFP_KERNEL);
3840 if (!driver_version)
3841 return -ENOMEM;
3842
3843 init_driver_version(driver_version, size);
3844 for (i = 0; i < size; i++)
3845 writeb(driver_version[i], &cfgtable->driver_version[i]);
3846 kfree(driver_version);
3847 return 0;
3848 }
3849
3850 static void read_driver_ver_from_cfgtable(struct CfgTable __iomem *cfgtable,
3851 unsigned char *driver_ver)
3852 {
3853 int i;
3854
3855 for (i = 0; i < sizeof(cfgtable->driver_version); i++)
3856 driver_ver[i] = readb(&cfgtable->driver_version[i]);
3857 }
3858
3859 static int controller_reset_failed(struct CfgTable __iomem *cfgtable)
3860 {
3861
3862 char *driver_ver, *old_driver_ver;
3863 int rc, size = sizeof(cfgtable->driver_version);
3864
3865 old_driver_ver = kmalloc(2 * size, GFP_KERNEL);
3866 if (!old_driver_ver)
3867 return -ENOMEM;
3868 driver_ver = old_driver_ver + size;
3869
3870 /* After a reset, the 32 bytes of "driver version" in the cfgtable
3871 * should have been changed, otherwise we know the reset failed.
3872 */
3873 init_driver_version(old_driver_ver, size);
3874 read_driver_ver_from_cfgtable(cfgtable, driver_ver);
3875 rc = !memcmp(driver_ver, old_driver_ver, size);
3876 kfree(old_driver_ver);
3877 return rc;
3878 }
3879 /* This does a hard reset of the controller using PCI power management
3880 * states or the using the doorbell register.
3881 */
3882 static int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev)
3883 {
3884 u64 cfg_offset;
3885 u32 cfg_base_addr;
3886 u64 cfg_base_addr_index;
3887 void __iomem *vaddr;
3888 unsigned long paddr;
3889 u32 misc_fw_support;
3890 int rc;
3891 struct CfgTable __iomem *cfgtable;
3892 u32 use_doorbell;
3893 u32 board_id;
3894 u16 command_register;
3895
3896 /* For controllers as old as the P600, this is very nearly
3897 * the same thing as
3898 *
3899 * pci_save_state(pci_dev);
3900 * pci_set_power_state(pci_dev, PCI_D3hot);
3901 * pci_set_power_state(pci_dev, PCI_D0);
3902 * pci_restore_state(pci_dev);
3903 *
3904 * For controllers newer than the P600, the pci power state
3905 * method of resetting doesn't work so we have another way
3906 * using the doorbell register.
3907 */
3908
3909 rc = hpsa_lookup_board_id(pdev, &board_id);
3910 if (rc < 0 || !ctlr_is_resettable(board_id)) {
3911 dev_warn(&pdev->dev, "Not resetting device.\n");
3912 return -ENODEV;
3913 }
3914
3915 /* if controller is soft- but not hard resettable... */
3916 if (!ctlr_is_hard_resettable(board_id))
3917 return -ENOTSUPP; /* try soft reset later. */
3918
3919 /* Save the PCI command register */
3920 pci_read_config_word(pdev, 4, &command_register);
3921 /* Turn the board off. This is so that later pci_restore_state()
3922 * won't turn the board on before the rest of config space is ready.
3923 */
3924 pci_disable_device(pdev);
3925 pci_save_state(pdev);
3926
3927 /* find the first memory BAR, so we can find the cfg table */
3928 rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
3929 if (rc)
3930 return rc;
3931 vaddr = remap_pci_mem(paddr, 0x250);
3932 if (!vaddr)
3933 return -ENOMEM;
3934
3935 /* find cfgtable in order to check if reset via doorbell is supported */
3936 rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
3937 &cfg_base_addr_index, &cfg_offset);
3938 if (rc)
3939 goto unmap_vaddr;
3940 cfgtable = remap_pci_mem(pci_resource_start(pdev,
3941 cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
3942 if (!cfgtable) {
3943 rc = -ENOMEM;
3944 goto unmap_vaddr;
3945 }
3946 rc = write_driver_ver_to_cfgtable(cfgtable);
3947 if (rc)
3948 goto unmap_vaddr;
3949
3950 /* If reset via doorbell register is supported, use that.
3951 * There are two such methods. Favor the newest method.
3952 */
3953 misc_fw_support = readl(&cfgtable->misc_fw_support);
3954 use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
3955 if (use_doorbell) {
3956 use_doorbell = DOORBELL_CTLR_RESET2;
3957 } else {
3958 use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
3959 if (use_doorbell) {
3960 dev_warn(&pdev->dev, "Soft reset not supported. "
3961 "Firmware update is required.\n");
3962 rc = -ENOTSUPP; /* try soft reset */
3963 goto unmap_cfgtable;
3964 }
3965 }
3966
3967 rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
3968 if (rc)
3969 goto unmap_cfgtable;
3970
3971 pci_restore_state(pdev);
3972 rc = pci_enable_device(pdev);
3973 if (rc) {
3974 dev_warn(&pdev->dev, "failed to enable device.\n");
3975 goto unmap_cfgtable;
3976 }
3977 pci_write_config_word(pdev, 4, command_register);
3978
3979 /* Some devices (notably the HP Smart Array 5i Controller)
3980 need a little pause here */
3981 msleep(HPSA_POST_RESET_PAUSE_MSECS);
3982
3983 /* Wait for board to become not ready, then ready. */
3984 dev_info(&pdev->dev, "Waiting for board to reset.\n");
3985 rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_NOT_READY);
3986 if (rc) {
3987 dev_warn(&pdev->dev,
3988 "failed waiting for board to reset."
3989 " Will try soft reset.\n");
3990 rc = -ENOTSUPP; /* Not expected, but try soft reset later */
3991 goto unmap_cfgtable;
3992 }
3993 rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
3994 if (rc) {
3995 dev_warn(&pdev->dev,
3996 "failed waiting for board to become ready "
3997 "after hard reset\n");
3998 goto unmap_cfgtable;
3999 }
4000
4001 rc = controller_reset_failed(vaddr);
4002 if (rc < 0)
4003 goto unmap_cfgtable;
4004 if (rc) {
4005 dev_warn(&pdev->dev, "Unable to successfully reset "
4006 "controller. Will try soft reset.\n");
4007 rc = -ENOTSUPP;
4008 } else {
4009 dev_info(&pdev->dev, "board ready after hard reset.\n");
4010 }
4011
4012 unmap_cfgtable:
4013 iounmap(cfgtable);
4014
4015 unmap_vaddr:
4016 iounmap(vaddr);
4017 return rc;
4018 }
4019
4020 /*
4021 * We cannot read the structure directly, for portability we must use
4022 * the io functions.
4023 * This is for debug only.
4024 */
4025 static void print_cfg_table(struct device *dev, struct CfgTable *tb)
4026 {
4027 #ifdef HPSA_DEBUG
4028 int i;
4029 char temp_name[17];
4030
4031 dev_info(dev, "Controller Configuration information\n");
4032 dev_info(dev, "------------------------------------\n");
4033 for (i = 0; i < 4; i++)
4034 temp_name[i] = readb(&(tb->Signature[i]));
4035 temp_name[4] = '\0';
4036 dev_info(dev, " Signature = %s\n", temp_name);
4037 dev_info(dev, " Spec Number = %d\n", readl(&(tb->SpecValence)));
4038 dev_info(dev, " Transport methods supported = 0x%x\n",
4039 readl(&(tb->TransportSupport)));
4040 dev_info(dev, " Transport methods active = 0x%x\n",
4041 readl(&(tb->TransportActive)));
4042 dev_info(dev, " Requested transport Method = 0x%x\n",
4043 readl(&(tb->HostWrite.TransportRequest)));
4044 dev_info(dev, " Coalesce Interrupt Delay = 0x%x\n",
4045 readl(&(tb->HostWrite.CoalIntDelay)));
4046 dev_info(dev, " Coalesce Interrupt Count = 0x%x\n",
4047 readl(&(tb->HostWrite.CoalIntCount)));
4048 dev_info(dev, " Max outstanding commands = 0x%d\n",
4049 readl(&(tb->CmdsOutMax)));
4050 dev_info(dev, " Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
4051 for (i = 0; i < 16; i++)
4052 temp_name[i] = readb(&(tb->ServerName[i]));
4053 temp_name[16] = '\0';
4054 dev_info(dev, " Server Name = %s\n", temp_name);
4055 dev_info(dev, " Heartbeat Counter = 0x%x\n\n\n",
4056 readl(&(tb->HeartBeat)));
4057 #endif /* HPSA_DEBUG */
4058 }
4059
4060 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
4061 {
4062 int i, offset, mem_type, bar_type;
4063
4064 if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
4065 return 0;
4066 offset = 0;
4067 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
4068 bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
4069 if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
4070 offset += 4;
4071 else {
4072 mem_type = pci_resource_flags(pdev, i) &
4073 PCI_BASE_ADDRESS_MEM_TYPE_MASK;
4074 switch (mem_type) {
4075 case PCI_BASE_ADDRESS_MEM_TYPE_32:
4076 case PCI_BASE_ADDRESS_MEM_TYPE_1M:
4077 offset += 4; /* 32 bit */
4078 break;
4079 case PCI_BASE_ADDRESS_MEM_TYPE_64:
4080 offset += 8;
4081 break;
4082 default: /* reserved in PCI 2.2 */
4083 dev_warn(&pdev->dev,
4084 "base address is invalid\n");
4085 return -1;
4086 break;
4087 }
4088 }
4089 if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
4090 return i + 1;
4091 }
4092 return -1;
4093 }
4094
4095 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
4096 * controllers that are capable. If not, we use IO-APIC mode.
4097 */
4098
4099 static void hpsa_interrupt_mode(struct ctlr_info *h)
4100 {
4101 #ifdef CONFIG_PCI_MSI
4102 int err, i;
4103 struct msix_entry hpsa_msix_entries[MAX_REPLY_QUEUES];
4104
4105 for (i = 0; i < MAX_REPLY_QUEUES; i++) {
4106 hpsa_msix_entries[i].vector = 0;
4107 hpsa_msix_entries[i].entry = i;
4108 }
4109
4110 /* Some boards advertise MSI but don't really support it */
4111 if ((h->board_id == 0x40700E11) || (h->board_id == 0x40800E11) ||
4112 (h->board_id == 0x40820E11) || (h->board_id == 0x40830E11))
4113 goto default_int_mode;
4114 if (pci_find_capability(h->pdev, PCI_CAP_ID_MSIX)) {
4115 dev_info(&h->pdev->dev, "MSIX\n");
4116 err = pci_enable_msix(h->pdev, hpsa_msix_entries,
4117 MAX_REPLY_QUEUES);
4118 if (!err) {
4119 for (i = 0; i < MAX_REPLY_QUEUES; i++)
4120 h->intr[i] = hpsa_msix_entries[i].vector;
4121 h->msix_vector = 1;
4122 return;
4123 }
4124 if (err > 0) {
4125 dev_warn(&h->pdev->dev, "only %d MSI-X vectors "
4126 "available\n", err);
4127 goto default_int_mode;
4128 } else {
4129 dev_warn(&h->pdev->dev, "MSI-X init failed %d\n",
4130 err);
4131 goto default_int_mode;
4132 }
4133 }
4134 if (pci_find_capability(h->pdev, PCI_CAP_ID_MSI)) {
4135 dev_info(&h->pdev->dev, "MSI\n");
4136 if (!pci_enable_msi(h->pdev))
4137 h->msi_vector = 1;
4138 else
4139 dev_warn(&h->pdev->dev, "MSI init failed\n");
4140 }
4141 default_int_mode:
4142 #endif /* CONFIG_PCI_MSI */
4143 /* if we get here we're going to use the default interrupt mode */
4144 h->intr[h->intr_mode] = h->pdev->irq;
4145 }
4146
4147 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id)
4148 {
4149 int i;
4150 u32 subsystem_vendor_id, subsystem_device_id;
4151
4152 subsystem_vendor_id = pdev->subsystem_vendor;
4153 subsystem_device_id = pdev->subsystem_device;
4154 *board_id = ((subsystem_device_id << 16) & 0xffff0000) |
4155 subsystem_vendor_id;
4156
4157 for (i = 0; i < ARRAY_SIZE(products); i++)
4158 if (*board_id == products[i].board_id)
4159 return i;
4160
4161 if ((subsystem_vendor_id != PCI_VENDOR_ID_HP &&
4162 subsystem_vendor_id != PCI_VENDOR_ID_COMPAQ) ||
4163 !hpsa_allow_any) {
4164 dev_warn(&pdev->dev, "unrecognized board ID: "
4165 "0x%08x, ignoring.\n", *board_id);
4166 return -ENODEV;
4167 }
4168 return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
4169 }
4170
4171 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
4172 unsigned long *memory_bar)
4173 {
4174 int i;
4175
4176 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
4177 if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
4178 /* addressing mode bits already removed */
4179 *memory_bar = pci_resource_start(pdev, i);
4180 dev_dbg(&pdev->dev, "memory BAR = %lx\n",
4181 *memory_bar);
4182 return 0;
4183 }
4184 dev_warn(&pdev->dev, "no memory BAR found\n");
4185 return -ENODEV;
4186 }
4187
4188 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
4189 int wait_for_ready)
4190 {
4191 int i, iterations;
4192 u32 scratchpad;
4193 if (wait_for_ready)
4194 iterations = HPSA_BOARD_READY_ITERATIONS;
4195 else
4196 iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
4197
4198 for (i = 0; i < iterations; i++) {
4199 scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
4200 if (wait_for_ready) {
4201 if (scratchpad == HPSA_FIRMWARE_READY)
4202 return 0;
4203 } else {
4204 if (scratchpad != HPSA_FIRMWARE_READY)
4205 return 0;
4206 }
4207 msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
4208 }
4209 dev_warn(&pdev->dev, "board not ready, timed out.\n");
4210 return -ENODEV;
4211 }
4212
4213 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
4214 u32 *cfg_base_addr, u64 *cfg_base_addr_index,
4215 u64 *cfg_offset)
4216 {
4217 *cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
4218 *cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
4219 *cfg_base_addr &= (u32) 0x0000ffff;
4220 *cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
4221 if (*cfg_base_addr_index == -1) {
4222 dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
4223 return -ENODEV;
4224 }
4225 return 0;
4226 }
4227
4228 static int hpsa_find_cfgtables(struct ctlr_info *h)
4229 {
4230 u64 cfg_offset;
4231 u32 cfg_base_addr;
4232 u64 cfg_base_addr_index;
4233 u32 trans_offset;
4234 int rc;
4235
4236 rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
4237 &cfg_base_addr_index, &cfg_offset);
4238 if (rc)
4239 return rc;
4240 h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
4241 cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
4242 if (!h->cfgtable)
4243 return -ENOMEM;
4244 rc = write_driver_ver_to_cfgtable(h->cfgtable);
4245 if (rc)
4246 return rc;
4247 /* Find performant mode table. */
4248 trans_offset = readl(&h->cfgtable->TransMethodOffset);
4249 h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
4250 cfg_base_addr_index)+cfg_offset+trans_offset,
4251 sizeof(*h->transtable));
4252 if (!h->transtable)
4253 return -ENOMEM;
4254 return 0;
4255 }
4256
4257 static void hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
4258 {
4259 h->max_commands = readl(&(h->cfgtable->MaxPerformantModeCommands));
4260
4261 /* Limit commands in memory limited kdump scenario. */
4262 if (reset_devices && h->max_commands > 32)
4263 h->max_commands = 32;
4264
4265 if (h->max_commands < 16) {
4266 dev_warn(&h->pdev->dev, "Controller reports "
4267 "max supported commands of %d, an obvious lie. "
4268 "Using 16. Ensure that firmware is up to date.\n",
4269 h->max_commands);
4270 h->max_commands = 16;
4271 }
4272 }
4273
4274 /* Interrogate the hardware for some limits:
4275 * max commands, max SG elements without chaining, and with chaining,
4276 * SG chain block size, etc.
4277 */
4278 static void hpsa_find_board_params(struct ctlr_info *h)
4279 {
4280 hpsa_get_max_perf_mode_cmds(h);
4281 h->nr_cmds = h->max_commands - 4; /* Allow room for some ioctls */
4282 h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
4283 /*
4284 * Limit in-command s/g elements to 32 save dma'able memory.
4285 * Howvever spec says if 0, use 31
4286 */
4287 h->max_cmd_sg_entries = 31;
4288 if (h->maxsgentries > 512) {
4289 h->max_cmd_sg_entries = 32;
4290 h->chainsize = h->maxsgentries - h->max_cmd_sg_entries + 1;
4291 h->maxsgentries--; /* save one for chain pointer */
4292 } else {
4293 h->maxsgentries = 31; /* default to traditional values */
4294 h->chainsize = 0;
4295 }
4296
4297 /* Find out what task management functions are supported and cache */
4298 h->TMFSupportFlags = readl(&(h->cfgtable->TMFSupportFlags));
4299 }
4300
4301 static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
4302 {
4303 if (!check_signature(h->cfgtable->Signature, "CISS", 4)) {
4304 dev_warn(&h->pdev->dev, "not a valid CISS config table\n");
4305 return false;
4306 }
4307 return true;
4308 }
4309
4310 /* Need to enable prefetch in the SCSI core for 6400 in x86 */
4311 static inline void hpsa_enable_scsi_prefetch(struct ctlr_info *h)
4312 {
4313 #ifdef CONFIG_X86
4314 u32 prefetch;
4315
4316 prefetch = readl(&(h->cfgtable->SCSI_Prefetch));
4317 prefetch |= 0x100;
4318 writel(prefetch, &(h->cfgtable->SCSI_Prefetch));
4319 #endif
4320 }
4321
4322 /* Disable DMA prefetch for the P600. Otherwise an ASIC bug may result
4323 * in a prefetch beyond physical memory.
4324 */
4325 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
4326 {
4327 u32 dma_prefetch;
4328
4329 if (h->board_id != 0x3225103C)
4330 return;
4331 dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
4332 dma_prefetch |= 0x8000;
4333 writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
4334 }
4335
4336 static void hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
4337 {
4338 int i;
4339 u32 doorbell_value;
4340 unsigned long flags;
4341
4342 /* under certain very rare conditions, this can take awhile.
4343 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
4344 * as we enter this code.)
4345 */
4346 for (i = 0; i < MAX_CONFIG_WAIT; i++) {
4347 spin_lock_irqsave(&h->lock, flags);
4348 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
4349 spin_unlock_irqrestore(&h->lock, flags);
4350 if (!(doorbell_value & CFGTBL_ChangeReq))
4351 break;
4352 /* delay and try again */
4353 usleep_range(10000, 20000);
4354 }
4355 }
4356
4357 static int hpsa_enter_simple_mode(struct ctlr_info *h)
4358 {
4359 u32 trans_support;
4360
4361 trans_support = readl(&(h->cfgtable->TransportSupport));
4362 if (!(trans_support & SIMPLE_MODE))
4363 return -ENOTSUPP;
4364
4365 h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
4366 /* Update the field, and then ring the doorbell */
4367 writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
4368 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
4369 hpsa_wait_for_mode_change_ack(h);
4370 print_cfg_table(&h->pdev->dev, h->cfgtable);
4371 if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple)) {
4372 dev_warn(&h->pdev->dev,
4373 "unable to get board into simple mode\n");
4374 return -ENODEV;
4375 }
4376 h->transMethod = CFGTBL_Trans_Simple;
4377 return 0;
4378 }
4379
4380 static int hpsa_pci_init(struct ctlr_info *h)
4381 {
4382 int prod_index, err;
4383
4384 prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id);
4385 if (prod_index < 0)
4386 return -ENODEV;
4387 h->product_name = products[prod_index].product_name;
4388 h->access = *(products[prod_index].access);
4389
4390 pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
4391 PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);
4392
4393 err = pci_enable_device(h->pdev);
4394 if (err) {
4395 dev_warn(&h->pdev->dev, "unable to enable PCI device\n");
4396 return err;
4397 }
4398
4399 /* Enable bus mastering (pci_disable_device may disable this) */
4400 pci_set_master(h->pdev);
4401
4402 err = pci_request_regions(h->pdev, HPSA);
4403 if (err) {
4404 dev_err(&h->pdev->dev,
4405 "cannot obtain PCI resources, aborting\n");
4406 return err;
4407 }
4408 hpsa_interrupt_mode(h);
4409 err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
4410 if (err)
4411 goto err_out_free_res;
4412 h->vaddr = remap_pci_mem(h->paddr, 0x250);
4413 if (!h->vaddr) {
4414 err = -ENOMEM;
4415 goto err_out_free_res;
4416 }
4417 err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
4418 if (err)
4419 goto err_out_free_res;
4420 err = hpsa_find_cfgtables(h);
4421 if (err)
4422 goto err_out_free_res;
4423 hpsa_find_board_params(h);
4424
4425 if (!hpsa_CISS_signature_present(h)) {
4426 err = -ENODEV;
4427 goto err_out_free_res;
4428 }
4429 hpsa_enable_scsi_prefetch(h);
4430 hpsa_p600_dma_prefetch_quirk(h);
4431 err = hpsa_enter_simple_mode(h);
4432 if (err)
4433 goto err_out_free_res;
4434 return 0;
4435
4436 err_out_free_res:
4437 if (h->transtable)
4438 iounmap(h->transtable);
4439 if (h->cfgtable)
4440 iounmap(h->cfgtable);
4441 if (h->vaddr)
4442 iounmap(h->vaddr);
4443 pci_disable_device(h->pdev);
4444 pci_release_regions(h->pdev);
4445 return err;
4446 }
4447
4448 static void hpsa_hba_inquiry(struct ctlr_info *h)
4449 {
4450 int rc;
4451
4452 #define HBA_INQUIRY_BYTE_COUNT 64
4453 h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
4454 if (!h->hba_inquiry_data)
4455 return;
4456 rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
4457 h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
4458 if (rc != 0) {
4459 kfree(h->hba_inquiry_data);
4460 h->hba_inquiry_data = NULL;
4461 }
4462 }
4463
4464 static int hpsa_init_reset_devices(struct pci_dev *pdev)
4465 {
4466 int rc, i;
4467
4468 if (!reset_devices)
4469 return 0;
4470
4471 /* Reset the controller with a PCI power-cycle or via doorbell */
4472 rc = hpsa_kdump_hard_reset_controller(pdev);
4473
4474 /* -ENOTSUPP here means we cannot reset the controller
4475 * but it's already (and still) up and running in
4476 * "performant mode". Or, it might be 640x, which can't reset
4477 * due to concerns about shared bbwc between 6402/6404 pair.
4478 */
4479 if (rc == -ENOTSUPP)
4480 return rc; /* just try to do the kdump anyhow. */
4481 if (rc)
4482 return -ENODEV;
4483
4484 /* Now try to get the controller to respond to a no-op */
4485 dev_warn(&pdev->dev, "Waiting for controller to respond to no-op\n");
4486 for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
4487 if (hpsa_noop(pdev) == 0)
4488 break;
4489 else
4490 dev_warn(&pdev->dev, "no-op failed%s\n",
4491 (i < 11 ? "; re-trying" : ""));
4492 }
4493 return 0;
4494 }
4495
4496 static int hpsa_allocate_cmd_pool(struct ctlr_info *h)
4497 {
4498 h->cmd_pool_bits = kzalloc(
4499 DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG) *
4500 sizeof(unsigned long), GFP_KERNEL);
4501 h->cmd_pool = pci_alloc_consistent(h->pdev,
4502 h->nr_cmds * sizeof(*h->cmd_pool),
4503 &(h->cmd_pool_dhandle));
4504 h->errinfo_pool = pci_alloc_consistent(h->pdev,
4505 h->nr_cmds * sizeof(*h->errinfo_pool),
4506 &(h->errinfo_pool_dhandle));
4507 if ((h->cmd_pool_bits == NULL)
4508 || (h->cmd_pool == NULL)
4509 || (h->errinfo_pool == NULL)) {
4510 dev_err(&h->pdev->dev, "out of memory in %s", __func__);
4511 return -ENOMEM;
4512 }
4513 return 0;
4514 }
4515
4516 static void hpsa_free_cmd_pool(struct ctlr_info *h)
4517 {
4518 kfree(h->cmd_pool_bits);
4519 if (h->cmd_pool)
4520 pci_free_consistent(h->pdev,
4521 h->nr_cmds * sizeof(struct CommandList),
4522 h->cmd_pool, h->cmd_pool_dhandle);
4523 if (h->errinfo_pool)
4524 pci_free_consistent(h->pdev,
4525 h->nr_cmds * sizeof(struct ErrorInfo),
4526 h->errinfo_pool,
4527 h->errinfo_pool_dhandle);
4528 }
4529
4530 static int hpsa_request_irq(struct ctlr_info *h,
4531 irqreturn_t (*msixhandler)(int, void *),
4532 irqreturn_t (*intxhandler)(int, void *))
4533 {
4534 int rc, i;
4535
4536 /*
4537 * initialize h->q[x] = x so that interrupt handlers know which
4538 * queue to process.
4539 */
4540 for (i = 0; i < MAX_REPLY_QUEUES; i++)
4541 h->q[i] = (u8) i;
4542
4543 if (h->intr_mode == PERF_MODE_INT && h->msix_vector) {
4544 /* If performant mode and MSI-X, use multiple reply queues */
4545 for (i = 0; i < MAX_REPLY_QUEUES; i++)
4546 rc = request_irq(h->intr[i], msixhandler,
4547 0, h->devname,
4548 &h->q[i]);
4549 } else {
4550 /* Use single reply pool */
4551 if (h->msix_vector || h->msi_vector) {
4552 rc = request_irq(h->intr[h->intr_mode],
4553 msixhandler, 0, h->devname,
4554 &h->q[h->intr_mode]);
4555 } else {
4556 rc = request_irq(h->intr[h->intr_mode],
4557 intxhandler, IRQF_SHARED, h->devname,
4558 &h->q[h->intr_mode]);
4559 }
4560 }
4561 if (rc) {
4562 dev_err(&h->pdev->dev, "unable to get irq %d for %s\n",
4563 h->intr[h->intr_mode], h->devname);
4564 return -ENODEV;
4565 }
4566 return 0;
4567 }
4568
4569 static int hpsa_kdump_soft_reset(struct ctlr_info *h)
4570 {
4571 if (hpsa_send_host_reset(h, RAID_CTLR_LUNID,
4572 HPSA_RESET_TYPE_CONTROLLER)) {
4573 dev_warn(&h->pdev->dev, "Resetting array controller failed.\n");
4574 return -EIO;
4575 }
4576
4577 dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
4578 if (hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY)) {
4579 dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
4580 return -1;
4581 }
4582
4583 dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
4584 if (hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY)) {
4585 dev_warn(&h->pdev->dev, "Board failed to become ready "
4586 "after soft reset.\n");
4587 return -1;
4588 }
4589
4590 return 0;
4591 }
4592
4593 static void free_irqs(struct ctlr_info *h)
4594 {
4595 int i;
4596
4597 if (!h->msix_vector || h->intr_mode != PERF_MODE_INT) {
4598 /* Single reply queue, only one irq to free */
4599 i = h->intr_mode;
4600 free_irq(h->intr[i], &h->q[i]);
4601 return;
4602 }
4603
4604 for (i = 0; i < MAX_REPLY_QUEUES; i++)
4605 free_irq(h->intr[i], &h->q[i]);
4606 }
4607
4608 static void hpsa_free_irqs_and_disable_msix(struct ctlr_info *h)
4609 {
4610 free_irqs(h);
4611 #ifdef CONFIG_PCI_MSI
4612 if (h->msix_vector) {
4613 if (h->pdev->msix_enabled)
4614 pci_disable_msix(h->pdev);
4615 } else if (h->msi_vector) {
4616 if (h->pdev->msi_enabled)
4617 pci_disable_msi(h->pdev);
4618 }
4619 #endif /* CONFIG_PCI_MSI */
4620 }
4621
4622 static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
4623 {
4624 hpsa_free_irqs_and_disable_msix(h);
4625 hpsa_free_sg_chain_blocks(h);
4626 hpsa_free_cmd_pool(h);
4627 kfree(h->blockFetchTable);
4628 pci_free_consistent(h->pdev, h->reply_pool_size,
4629 h->reply_pool, h->reply_pool_dhandle);
4630 if (h->vaddr)
4631 iounmap(h->vaddr);
4632 if (h->transtable)
4633 iounmap(h->transtable);
4634 if (h->cfgtable)
4635 iounmap(h->cfgtable);
4636 pci_release_regions(h->pdev);
4637 kfree(h);
4638 }
4639
4640 static void remove_ctlr_from_lockup_detector_list(struct ctlr_info *h)
4641 {
4642 assert_spin_locked(&lockup_detector_lock);
4643 if (!hpsa_lockup_detector)
4644 return;
4645 if (h->lockup_detected)
4646 return; /* already stopped the lockup detector */
4647 list_del(&h->lockup_list);
4648 }
4649
4650 /* Called when controller lockup detected. */
4651 static void fail_all_cmds_on_list(struct ctlr_info *h, struct list_head *list)
4652 {
4653 struct CommandList *c = NULL;
4654
4655 assert_spin_locked(&h->lock);
4656 /* Mark all outstanding commands as failed and complete them. */
4657 while (!list_empty(list)) {
4658 c = list_entry(list->next, struct CommandList, list);
4659 c->err_info->CommandStatus = CMD_HARDWARE_ERR;
4660 finish_cmd(c);
4661 }
4662 }
4663
4664 static void controller_lockup_detected(struct ctlr_info *h)
4665 {
4666 unsigned long flags;
4667
4668 assert_spin_locked(&lockup_detector_lock);
4669 remove_ctlr_from_lockup_detector_list(h);
4670 h->access.set_intr_mask(h, HPSA_INTR_OFF);
4671 spin_lock_irqsave(&h->lock, flags);
4672 h->lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
4673 spin_unlock_irqrestore(&h->lock, flags);
4674 dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x\n",
4675 h->lockup_detected);
4676 pci_disable_device(h->pdev);
4677 spin_lock_irqsave(&h->lock, flags);
4678 fail_all_cmds_on_list(h, &h->cmpQ);
4679 fail_all_cmds_on_list(h, &h->reqQ);
4680 spin_unlock_irqrestore(&h->lock, flags);
4681 }
4682
4683 static void detect_controller_lockup(struct ctlr_info *h)
4684 {
4685 u64 now;
4686 u32 heartbeat;
4687 unsigned long flags;
4688
4689 assert_spin_locked(&lockup_detector_lock);
4690 now = get_jiffies_64();
4691 /* If we've received an interrupt recently, we're ok. */
4692 if (time_after64(h->last_intr_timestamp +
4693 (h->heartbeat_sample_interval), now))
4694 return;
4695
4696 /*
4697 * If we've already checked the heartbeat recently, we're ok.
4698 * This could happen if someone sends us a signal. We
4699 * otherwise don't care about signals in this thread.
4700 */
4701 if (time_after64(h->last_heartbeat_timestamp +
4702 (h->heartbeat_sample_interval), now))
4703 return;
4704
4705 /* If heartbeat has not changed since we last looked, we're not ok. */
4706 spin_lock_irqsave(&h->lock, flags);
4707 heartbeat = readl(&h->cfgtable->HeartBeat);
4708 spin_unlock_irqrestore(&h->lock, flags);
4709 if (h->last_heartbeat == heartbeat) {
4710 controller_lockup_detected(h);
4711 return;
4712 }
4713
4714 /* We're ok. */
4715 h->last_heartbeat = heartbeat;
4716 h->last_heartbeat_timestamp = now;
4717 }
4718
4719 static int detect_controller_lockup_thread(void *notused)
4720 {
4721 struct ctlr_info *h;
4722 unsigned long flags;
4723
4724 while (1) {
4725 struct list_head *this, *tmp;
4726
4727 schedule_timeout_interruptible(HEARTBEAT_SAMPLE_INTERVAL);
4728 if (kthread_should_stop())
4729 break;
4730 spin_lock_irqsave(&lockup_detector_lock, flags);
4731 list_for_each_safe(this, tmp, &hpsa_ctlr_list) {
4732 h = list_entry(this, struct ctlr_info, lockup_list);
4733 detect_controller_lockup(h);
4734 }
4735 spin_unlock_irqrestore(&lockup_detector_lock, flags);
4736 }
4737 return 0;
4738 }
4739
4740 static void add_ctlr_to_lockup_detector_list(struct ctlr_info *h)
4741 {
4742 unsigned long flags;
4743
4744 h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
4745 spin_lock_irqsave(&lockup_detector_lock, flags);
4746 list_add_tail(&h->lockup_list, &hpsa_ctlr_list);
4747 spin_unlock_irqrestore(&lockup_detector_lock, flags);
4748 }
4749
4750 static void start_controller_lockup_detector(struct ctlr_info *h)
4751 {
4752 /* Start the lockup detector thread if not already started */
4753 if (!hpsa_lockup_detector) {
4754 spin_lock_init(&lockup_detector_lock);
4755 hpsa_lockup_detector =
4756 kthread_run(detect_controller_lockup_thread,
4757 NULL, HPSA);
4758 }
4759 if (!hpsa_lockup_detector) {
4760 dev_warn(&h->pdev->dev,
4761 "Could not start lockup detector thread\n");
4762 return;
4763 }
4764 add_ctlr_to_lockup_detector_list(h);
4765 }
4766
4767 static void stop_controller_lockup_detector(struct ctlr_info *h)
4768 {
4769 unsigned long flags;
4770
4771 spin_lock_irqsave(&lockup_detector_lock, flags);
4772 remove_ctlr_from_lockup_detector_list(h);
4773 /* If the list of ctlr's to monitor is empty, stop the thread */
4774 if (list_empty(&hpsa_ctlr_list)) {
4775 spin_unlock_irqrestore(&lockup_detector_lock, flags);
4776 kthread_stop(hpsa_lockup_detector);
4777 spin_lock_irqsave(&lockup_detector_lock, flags);
4778 hpsa_lockup_detector = NULL;
4779 }
4780 spin_unlock_irqrestore(&lockup_detector_lock, flags);
4781 }
4782
4783 static int hpsa_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
4784 {
4785 int dac, rc;
4786 struct ctlr_info *h;
4787 int try_soft_reset = 0;
4788 unsigned long flags;
4789
4790 if (number_of_controllers == 0)
4791 printk(KERN_INFO DRIVER_NAME "\n");
4792
4793 rc = hpsa_init_reset_devices(pdev);
4794 if (rc) {
4795 if (rc != -ENOTSUPP)
4796 return rc;
4797 /* If the reset fails in a particular way (it has no way to do
4798 * a proper hard reset, so returns -ENOTSUPP) we can try to do
4799 * a soft reset once we get the controller configured up to the
4800 * point that it can accept a command.
4801 */
4802 try_soft_reset = 1;
4803 rc = 0;
4804 }
4805
4806 reinit_after_soft_reset:
4807
4808 /* Command structures must be aligned on a 32-byte boundary because
4809 * the 5 lower bits of the address are used by the hardware. and by
4810 * the driver. See comments in hpsa.h for more info.
4811 */
4812 #define COMMANDLIST_ALIGNMENT 32
4813 BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
4814 h = kzalloc(sizeof(*h), GFP_KERNEL);
4815 if (!h)
4816 return -ENOMEM;
4817
4818 h->pdev = pdev;
4819 h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
4820 INIT_LIST_HEAD(&h->cmpQ);
4821 INIT_LIST_HEAD(&h->reqQ);
4822 spin_lock_init(&h->lock);
4823 spin_lock_init(&h->scan_lock);
4824 rc = hpsa_pci_init(h);
4825 if (rc != 0)
4826 goto clean1;
4827
4828 sprintf(h->devname, HPSA "%d", number_of_controllers);
4829 h->ctlr = number_of_controllers;
4830 number_of_controllers++;
4831
4832 /* configure PCI DMA stuff */
4833 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
4834 if (rc == 0) {
4835 dac = 1;
4836 } else {
4837 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
4838 if (rc == 0) {
4839 dac = 0;
4840 } else {
4841 dev_err(&pdev->dev, "no suitable DMA available\n");
4842 goto clean1;
4843 }
4844 }
4845
4846 /* make sure the board interrupts are off */
4847 h->access.set_intr_mask(h, HPSA_INTR_OFF);
4848
4849 if (hpsa_request_irq(h, do_hpsa_intr_msi, do_hpsa_intr_intx))
4850 goto clean2;
4851 dev_info(&pdev->dev, "%s: <0x%x> at IRQ %d%s using DAC\n",
4852 h->devname, pdev->device,
4853 h->intr[h->intr_mode], dac ? "" : " not");
4854 if (hpsa_allocate_cmd_pool(h))
4855 goto clean4;
4856 if (hpsa_allocate_sg_chain_blocks(h))
4857 goto clean4;
4858 init_waitqueue_head(&h->scan_wait_queue);
4859 h->scan_finished = 1; /* no scan currently in progress */
4860
4861 pci_set_drvdata(pdev, h);
4862 h->ndevices = 0;
4863 h->scsi_host = NULL;
4864 spin_lock_init(&h->devlock);
4865 hpsa_put_ctlr_into_performant_mode(h);
4866
4867 /* At this point, the controller is ready to take commands.
4868 * Now, if reset_devices and the hard reset didn't work, try
4869 * the soft reset and see if that works.
4870 */
4871 if (try_soft_reset) {
4872
4873 /* This is kind of gross. We may or may not get a completion
4874 * from the soft reset command, and if we do, then the value
4875 * from the fifo may or may not be valid. So, we wait 10 secs
4876 * after the reset throwing away any completions we get during
4877 * that time. Unregister the interrupt handler and register
4878 * fake ones to scoop up any residual completions.
4879 */
4880 spin_lock_irqsave(&h->lock, flags);
4881 h->access.set_intr_mask(h, HPSA_INTR_OFF);
4882 spin_unlock_irqrestore(&h->lock, flags);
4883 free_irqs(h);
4884 rc = hpsa_request_irq(h, hpsa_msix_discard_completions,
4885 hpsa_intx_discard_completions);
4886 if (rc) {
4887 dev_warn(&h->pdev->dev, "Failed to request_irq after "
4888 "soft reset.\n");
4889 goto clean4;
4890 }
4891
4892 rc = hpsa_kdump_soft_reset(h);
4893 if (rc)
4894 /* Neither hard nor soft reset worked, we're hosed. */
4895 goto clean4;
4896
4897 dev_info(&h->pdev->dev, "Board READY.\n");
4898 dev_info(&h->pdev->dev,
4899 "Waiting for stale completions to drain.\n");
4900 h->access.set_intr_mask(h, HPSA_INTR_ON);
4901 msleep(10000);
4902 h->access.set_intr_mask(h, HPSA_INTR_OFF);
4903
4904 rc = controller_reset_failed(h->cfgtable);
4905 if (rc)
4906 dev_info(&h->pdev->dev,
4907 "Soft reset appears to have failed.\n");
4908
4909 /* since the controller's reset, we have to go back and re-init
4910 * everything. Easiest to just forget what we've done and do it
4911 * all over again.
4912 */
4913 hpsa_undo_allocations_after_kdump_soft_reset(h);
4914 try_soft_reset = 0;
4915 if (rc)
4916 /* don't go to clean4, we already unallocated */
4917 return -ENODEV;
4918
4919 goto reinit_after_soft_reset;
4920 }
4921
4922 /* Turn the interrupts on so we can service requests */
4923 h->access.set_intr_mask(h, HPSA_INTR_ON);
4924
4925 hpsa_hba_inquiry(h);
4926 hpsa_register_scsi(h); /* hook ourselves into SCSI subsystem */
4927 start_controller_lockup_detector(h);
4928 return 1;
4929
4930 clean4:
4931 hpsa_free_sg_chain_blocks(h);
4932 hpsa_free_cmd_pool(h);
4933 free_irqs(h);
4934 clean2:
4935 clean1:
4936 kfree(h);
4937 return rc;
4938 }
4939
4940 static void hpsa_flush_cache(struct ctlr_info *h)
4941 {
4942 char *flush_buf;
4943 struct CommandList *c;
4944
4945 flush_buf = kzalloc(4, GFP_KERNEL);
4946 if (!flush_buf)
4947 return;
4948
4949 c = cmd_special_alloc(h);
4950 if (!c) {
4951 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
4952 goto out_of_memory;
4953 }
4954 if (fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
4955 RAID_CTLR_LUNID, TYPE_CMD)) {
4956 goto out;
4957 }
4958 hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_TODEVICE);
4959 if (c->err_info->CommandStatus != 0)
4960 out:
4961 dev_warn(&h->pdev->dev,
4962 "error flushing cache on controller\n");
4963 cmd_special_free(h, c);
4964 out_of_memory:
4965 kfree(flush_buf);
4966 }
4967
4968 static void hpsa_shutdown(struct pci_dev *pdev)
4969 {
4970 struct ctlr_info *h;
4971
4972 h = pci_get_drvdata(pdev);
4973 /* Turn board interrupts off and send the flush cache command
4974 * sendcmd will turn off interrupt, and send the flush...
4975 * To write all data in the battery backed cache to disks
4976 */
4977 hpsa_flush_cache(h);
4978 h->access.set_intr_mask(h, HPSA_INTR_OFF);
4979 hpsa_free_irqs_and_disable_msix(h);
4980 }
4981
4982 static void hpsa_free_device_info(struct ctlr_info *h)
4983 {
4984 int i;
4985
4986 for (i = 0; i < h->ndevices; i++)
4987 kfree(h->dev[i]);
4988 }
4989
4990 static void hpsa_remove_one(struct pci_dev *pdev)
4991 {
4992 struct ctlr_info *h;
4993
4994 if (pci_get_drvdata(pdev) == NULL) {
4995 dev_err(&pdev->dev, "unable to remove device\n");
4996 return;
4997 }
4998 h = pci_get_drvdata(pdev);
4999 stop_controller_lockup_detector(h);
5000 hpsa_unregister_scsi(h); /* unhook from SCSI subsystem */
5001 hpsa_shutdown(pdev);
5002 iounmap(h->vaddr);
5003 iounmap(h->transtable);
5004 iounmap(h->cfgtable);
5005 hpsa_free_device_info(h);
5006 hpsa_free_sg_chain_blocks(h);
5007 pci_free_consistent(h->pdev,
5008 h->nr_cmds * sizeof(struct CommandList),
5009 h->cmd_pool, h->cmd_pool_dhandle);
5010 pci_free_consistent(h->pdev,
5011 h->nr_cmds * sizeof(struct ErrorInfo),
5012 h->errinfo_pool, h->errinfo_pool_dhandle);
5013 pci_free_consistent(h->pdev, h->reply_pool_size,
5014 h->reply_pool, h->reply_pool_dhandle);
5015 kfree(h->cmd_pool_bits);
5016 kfree(h->blockFetchTable);
5017 kfree(h->hba_inquiry_data);
5018 pci_disable_device(pdev);
5019 pci_release_regions(pdev);
5020 kfree(h);
5021 }
5022
5023 static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
5024 __attribute__((unused)) pm_message_t state)
5025 {
5026 return -ENOSYS;
5027 }
5028
5029 static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
5030 {
5031 return -ENOSYS;
5032 }
5033
5034 static struct pci_driver hpsa_pci_driver = {
5035 .name = HPSA,
5036 .probe = hpsa_init_one,
5037 .remove = hpsa_remove_one,
5038 .id_table = hpsa_pci_device_id, /* id_table */
5039 .shutdown = hpsa_shutdown,
5040 .suspend = hpsa_suspend,
5041 .resume = hpsa_resume,
5042 };
5043
5044 /* Fill in bucket_map[], given nsgs (the max number of
5045 * scatter gather elements supported) and bucket[],
5046 * which is an array of 8 integers. The bucket[] array
5047 * contains 8 different DMA transfer sizes (in 16
5048 * byte increments) which the controller uses to fetch
5049 * commands. This function fills in bucket_map[], which
5050 * maps a given number of scatter gather elements to one of
5051 * the 8 DMA transfer sizes. The point of it is to allow the
5052 * controller to only do as much DMA as needed to fetch the
5053 * command, with the DMA transfer size encoded in the lower
5054 * bits of the command address.
5055 */
5056 static void calc_bucket_map(int bucket[], int num_buckets,
5057 int nsgs, int *bucket_map)
5058 {
5059 int i, j, b, size;
5060
5061 /* even a command with 0 SGs requires 4 blocks */
5062 #define MINIMUM_TRANSFER_BLOCKS 4
5063 #define NUM_BUCKETS 8
5064 /* Note, bucket_map must have nsgs+1 entries. */
5065 for (i = 0; i <= nsgs; i++) {
5066 /* Compute size of a command with i SG entries */
5067 size = i + MINIMUM_TRANSFER_BLOCKS;
5068 b = num_buckets; /* Assume the biggest bucket */
5069 /* Find the bucket that is just big enough */
5070 for (j = 0; j < 8; j++) {
5071 if (bucket[j] >= size) {
5072 b = j;
5073 break;
5074 }
5075 }
5076 /* for a command with i SG entries, use bucket b. */
5077 bucket_map[i] = b;
5078 }
5079 }
5080
5081 static void hpsa_enter_performant_mode(struct ctlr_info *h, u32 use_short_tags)
5082 {
5083 int i;
5084 unsigned long register_value;
5085
5086 /* This is a bit complicated. There are 8 registers on
5087 * the controller which we write to to tell it 8 different
5088 * sizes of commands which there may be. It's a way of
5089 * reducing the DMA done to fetch each command. Encoded into
5090 * each command's tag are 3 bits which communicate to the controller
5091 * which of the eight sizes that command fits within. The size of
5092 * each command depends on how many scatter gather entries there are.
5093 * Each SG entry requires 16 bytes. The eight registers are programmed
5094 * with the number of 16-byte blocks a command of that size requires.
5095 * The smallest command possible requires 5 such 16 byte blocks.
5096 * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
5097 * blocks. Note, this only extends to the SG entries contained
5098 * within the command block, and does not extend to chained blocks
5099 * of SG elements. bft[] contains the eight values we write to
5100 * the registers. They are not evenly distributed, but have more
5101 * sizes for small commands, and fewer sizes for larger commands.
5102 */
5103 int bft[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD + 4};
5104 BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD + 4);
5105 /* 5 = 1 s/g entry or 4k
5106 * 6 = 2 s/g entry or 8k
5107 * 8 = 4 s/g entry or 16k
5108 * 10 = 6 s/g entry or 24k
5109 */
5110
5111 /* Controller spec: zero out this buffer. */
5112 memset(h->reply_pool, 0, h->reply_pool_size);
5113
5114 bft[7] = SG_ENTRIES_IN_CMD + 4;
5115 calc_bucket_map(bft, ARRAY_SIZE(bft),
5116 SG_ENTRIES_IN_CMD, h->blockFetchTable);
5117 for (i = 0; i < 8; i++)
5118 writel(bft[i], &h->transtable->BlockFetch[i]);
5119
5120 /* size of controller ring buffer */
5121 writel(h->max_commands, &h->transtable->RepQSize);
5122 writel(h->nreply_queues, &h->transtable->RepQCount);
5123 writel(0, &h->transtable->RepQCtrAddrLow32);
5124 writel(0, &h->transtable->RepQCtrAddrHigh32);
5125
5126 for (i = 0; i < h->nreply_queues; i++) {
5127 writel(0, &h->transtable->RepQAddr[i].upper);
5128 writel(h->reply_pool_dhandle +
5129 (h->max_commands * sizeof(u64) * i),
5130 &h->transtable->RepQAddr[i].lower);
5131 }
5132
5133 writel(CFGTBL_Trans_Performant | use_short_tags |
5134 CFGTBL_Trans_enable_directed_msix,
5135 &(h->cfgtable->HostWrite.TransportRequest));
5136 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
5137 hpsa_wait_for_mode_change_ack(h);
5138 register_value = readl(&(h->cfgtable->TransportActive));
5139 if (!(register_value & CFGTBL_Trans_Performant)) {
5140 dev_warn(&h->pdev->dev, "unable to get board into"
5141 " performant mode\n");
5142 return;
5143 }
5144 /* Change the access methods to the performant access methods */
5145 h->access = SA5_performant_access;
5146 h->transMethod = CFGTBL_Trans_Performant;
5147 }
5148
5149 static void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
5150 {
5151 u32 trans_support;
5152 int i;
5153
5154 if (hpsa_simple_mode)
5155 return;
5156
5157 trans_support = readl(&(h->cfgtable->TransportSupport));
5158 if (!(trans_support & PERFORMANT_MODE))
5159 return;
5160
5161 h->nreply_queues = h->msix_vector ? MAX_REPLY_QUEUES : 1;
5162 hpsa_get_max_perf_mode_cmds(h);
5163 /* Performant mode ring buffer and supporting data structures */
5164 h->reply_pool_size = h->max_commands * sizeof(u64) * h->nreply_queues;
5165 h->reply_pool = pci_alloc_consistent(h->pdev, h->reply_pool_size,
5166 &(h->reply_pool_dhandle));
5167
5168 for (i = 0; i < h->nreply_queues; i++) {
5169 h->reply_queue[i].head = &h->reply_pool[h->max_commands * i];
5170 h->reply_queue[i].size = h->max_commands;
5171 h->reply_queue[i].wraparound = 1; /* spec: init to 1 */
5172 h->reply_queue[i].current_entry = 0;
5173 }
5174
5175 /* Need a block fetch table for performant mode */
5176 h->blockFetchTable = kmalloc(((SG_ENTRIES_IN_CMD + 1) *
5177 sizeof(u32)), GFP_KERNEL);
5178
5179 if ((h->reply_pool == NULL)
5180 || (h->blockFetchTable == NULL))
5181 goto clean_up;
5182
5183 hpsa_enter_performant_mode(h,
5184 trans_support & CFGTBL_Trans_use_short_tags);
5185
5186 return;
5187
5188 clean_up:
5189 if (h->reply_pool)
5190 pci_free_consistent(h->pdev, h->reply_pool_size,
5191 h->reply_pool, h->reply_pool_dhandle);
5192 kfree(h->blockFetchTable);
5193 }
5194
5195 /*
5196 * This is it. Register the PCI driver information for the cards we control
5197 * the OS will call our registered routines when it finds one of our cards.
5198 */
5199 static int __init hpsa_init(void)
5200 {
5201 return pci_register_driver(&hpsa_pci_driver);
5202 }
5203
5204 static void __exit hpsa_cleanup(void)
5205 {
5206 pci_unregister_driver(&hpsa_pci_driver);
5207 }
5208
5209 module_init(hpsa_init);
5210 module_exit(hpsa_cleanup);