Merge branch 'fix/asoc' into for-linus
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / scsi / aic7xxx_old.c
1 /*+M*************************************************************************
2 * Adaptec AIC7xxx device driver for Linux.
3 *
4 * Copyright (c) 1994 John Aycock
5 * The University of Calgary Department of Computer Science.
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2, or (at your option)
10 * any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; see the file COPYING. If not, write to
19 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
20 *
21 * Sources include the Adaptec 1740 driver (aha1740.c), the Ultrastor 24F
22 * driver (ultrastor.c), various Linux kernel source, the Adaptec EISA
23 * config file (!adp7771.cfg), the Adaptec AHA-2740A Series User's Guide,
24 * the Linux Kernel Hacker's Guide, Writing a SCSI Device Driver for Linux,
25 * the Adaptec 1542 driver (aha1542.c), the Adaptec EISA overlay file
26 * (adp7770.ovl), the Adaptec AHA-2740 Series Technical Reference Manual,
27 * the Adaptec AIC-7770 Data Book, the ANSI SCSI specification, the
28 * ANSI SCSI-2 specification (draft 10c), ...
29 *
30 * --------------------------------------------------------------------------
31 *
32 * Modifications by Daniel M. Eischen (deischen@iworks.InterWorks.org):
33 *
34 * Substantially modified to include support for wide and twin bus
35 * adapters, DMAing of SCBs, tagged queueing, IRQ sharing, bug fixes,
36 * SCB paging, and other rework of the code.
37 *
38 * Parts of this driver were also based on the FreeBSD driver by
39 * Justin T. Gibbs. His copyright follows:
40 *
41 * --------------------------------------------------------------------------
42 * Copyright (c) 1994-1997 Justin Gibbs.
43 * All rights reserved.
44 *
45 * Redistribution and use in source and binary forms, with or without
46 * modification, are permitted provided that the following conditions
47 * are met:
48 * 1. Redistributions of source code must retain the above copyright
49 * notice, this list of conditions, and the following disclaimer,
50 * without modification, immediately at the beginning of the file.
51 * 2. Redistributions in binary form must reproduce the above copyright
52 * notice, this list of conditions and the following disclaimer in the
53 * documentation and/or other materials provided with the distribution.
54 * 3. The name of the author may not be used to endorse or promote products
55 * derived from this software without specific prior written permission.
56 *
57 * Where this Software is combined with software released under the terms of
58 * the GNU General Public License ("GPL") and the terms of the GPL would require the
59 * combined work to also be released under the terms of the GPL, the terms
60 * and conditions of this License will apply in addition to those of the
61 * GPL with the exception of any terms or conditions of this License that
62 * conflict with, or are expressly prohibited by, the GPL.
63 *
64 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
65 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
66 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
67 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
68 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
69 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
70 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
71 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
72 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
73 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
74 * SUCH DAMAGE.
75 *
76 * $Id: aic7xxx.c,v 1.119 1997/06/27 19:39:18 gibbs Exp $
77 *---------------------------------------------------------------------------
78 *
79 * Thanks also go to (in alphabetical order) the following:
80 *
81 * Rory Bolt - Sequencer bug fixes
82 * Jay Estabrook - Initial DEC Alpha support
83 * Doug Ledford - Much needed abort/reset bug fixes
84 * Kai Makisara - DMAing of SCBs
85 *
86 * A Boot time option was also added for not resetting the scsi bus.
87 *
88 * Form: aic7xxx=extended
89 * aic7xxx=no_reset
90 * aic7xxx=ultra
91 * aic7xxx=irq_trigger:[0,1] # 0 edge, 1 level
92 * aic7xxx=verbose
93 *
94 * Daniel M. Eischen, deischen@iworks.InterWorks.org, 1/23/97
95 *
96 * $Id: aic7xxx.c,v 4.1 1997/06/12 08:23:42 deang Exp $
97 *-M*************************************************************************/
98
99 /*+M**************************************************************************
100 *
101 * Further driver modifications made by Doug Ledford <dledford@redhat.com>
102 *
103 * Copyright (c) 1997-1999 Doug Ledford
104 *
105 * These changes are released under the same licensing terms as the FreeBSD
106 * driver written by Justin Gibbs. Please see his Copyright notice above
107 * for the exact terms and conditions covering my changes as well as the
108 * warranty statement.
109 *
110 * Modifications made to the aic7xxx.c,v 4.1 driver from Dan Eischen include
111 * but are not limited to:
112 *
113 * 1: Import of the latest FreeBSD sequencer code for this driver
114 * 2: Modification of kernel code to accommodate different sequencer semantics
115 * 3: Extensive changes throughout kernel portion of driver to improve
116 * abort/reset processing and error hanndling
117 * 4: Other work contributed by various people on the Internet
118 * 5: Changes to printk information and verbosity selection code
119 * 6: General reliability related changes, especially in IRQ management
120 * 7: Modifications to the default probe/attach order for supported cards
121 * 8: SMP friendliness has been improved
122 *
123 * Overall, this driver represents a significant departure from the official
124 * aic7xxx driver released by Dan Eischen in two ways. First, in the code
125 * itself. A diff between the two version of the driver is now a several
126 * thousand line diff. Second, in approach to solving the same problem. The
127 * problem is importing the FreeBSD aic7xxx driver code to linux can be a
128 * difficult and time consuming process, that also can be error prone. Dan
129 * Eischen's official driver uses the approach that the linux and FreeBSD
130 * drivers should be as identical as possible. To that end, his next version
131 * of this driver will be using a mid-layer code library that he is developing
132 * to moderate communications between the linux mid-level SCSI code and the
133 * low level FreeBSD driver. He intends to be able to essentially drop the
134 * FreeBSD driver into the linux kernel with only a few minor tweaks to some
135 * include files and the like and get things working, making for fast easy
136 * imports of the FreeBSD code into linux.
137 *
138 * I disagree with Dan's approach. Not that I don't think his way of doing
139 * things would be nice, easy to maintain, and create a more uniform driver
140 * between FreeBSD and Linux. I have no objection to those issues. My
141 * disagreement is on the needed functionality. There simply are certain
142 * things that are done differently in FreeBSD than linux that will cause
143 * problems for this driver regardless of any middle ware Dan implements.
144 * The biggest example of this at the moment is interrupt semantics. Linux
145 * doesn't provide the same protection techniques as FreeBSD does, nor can
146 * they be easily implemented in any middle ware code since they would truly
147 * belong in the kernel proper and would effect all drivers. For the time
148 * being, I see issues such as these as major stumbling blocks to the
149 * reliability of code based upon such middle ware. Therefore, I choose to
150 * use a different approach to importing the FreeBSD code that doesn't
151 * involve any middle ware type code. My approach is to import the sequencer
152 * code from FreeBSD wholesale. Then, to only make changes in the kernel
153 * portion of the driver as they are needed for the new sequencer semantics.
154 * In this way, the portion of the driver that speaks to the rest of the
155 * linux kernel is fairly static and can be changed/modified to solve
156 * any problems one might encounter without concern for the FreeBSD driver.
157 *
158 * Note: If time and experience should prove me wrong that the middle ware
159 * code Dan writes is reliable in its operation, then I'll retract my above
160 * statements. But, for those that don't know, I'm from Missouri (in the US)
161 * and our state motto is "The Show-Me State". Well, before I will put
162 * faith into it, you'll have to show me that it works :)
163 *
164 *_M*************************************************************************/
165
166 /*
167 * The next three defines are user configurable. These should be the only
168 * defines a user might need to get in here and change. There are other
169 * defines buried deeper in the code, but those really shouldn't need touched
170 * under normal conditions.
171 */
172
173 /*
174 * AIC7XXX_STRICT_PCI_SETUP
175 * Should we assume the PCI config options on our controllers are set with
176 * sane and proper values, or should we be anal about our PCI config
177 * registers and force them to what we want? The main advantage to
178 * defining this option is on non-Intel hardware where the BIOS may not
179 * have been run to set things up, or if you have one of the BIOSless
180 * Adaptec controllers, such as a 2910, that don't get set up by the
181 * BIOS. However, keep in mind that we really do set the most important
182 * items in the driver regardless of this setting, this only controls some
183 * of the more esoteric PCI options on these cards. In that sense, I
184 * would default to leaving this off. However, if people wish to try
185 * things both ways, that would also help me to know if there are some
186 * machines where it works one way but not another.
187 *
188 * -- July 7, 17:09
189 * OK...I need this on my machine for testing, so the default is to
190 * leave it defined.
191 *
192 * -- July 7, 18:49
193 * I needed it for testing, but it didn't make any difference, so back
194 * off she goes.
195 *
196 * -- July 16, 23:04
197 * I turned it back on to try and compensate for the 2.1.x PCI code
198 * which no longer relies solely on the BIOS and now tries to set
199 * things itself.
200 */
201
202 #define AIC7XXX_STRICT_PCI_SETUP
203
204 /*
205 * AIC7XXX_VERBOSE_DEBUGGING
206 * This option enables a lot of extra printk();s in the code, surrounded
207 * by if (aic7xxx_verbose ...) statements. Executing all of those if
208 * statements and the extra checks can get to where it actually does have
209 * an impact on CPU usage and such, as well as code size. Disabling this
210 * define will keep some of those from becoming part of the code.
211 *
212 * NOTE: Currently, this option has no real effect, I will be adding the
213 * various #ifdef's in the code later when I've decided a section is
214 * complete and no longer needs debugging. OK...a lot of things are now
215 * surrounded by this define, so turning this off does have an impact.
216 */
217
218 /*
219 * #define AIC7XXX_VERBOSE_DEBUGGING
220 */
221
222 #include <linux/module.h>
223 #include <stdarg.h>
224 #include <asm/io.h>
225 #include <asm/irq.h>
226 #include <asm/byteorder.h>
227 #include <linux/string.h>
228 #include <linux/errno.h>
229 #include <linux/kernel.h>
230 #include <linux/ioport.h>
231 #include <linux/delay.h>
232 #include <linux/pci.h>
233 #include <linux/proc_fs.h>
234 #include <linux/blkdev.h>
235 #include <linux/init.h>
236 #include <linux/spinlock.h>
237 #include <linux/smp.h>
238 #include <linux/interrupt.h>
239 #include "scsi.h"
240 #include <scsi/scsi_host.h>
241 #include "aic7xxx_old/aic7xxx.h"
242
243 #include "aic7xxx_old/sequencer.h"
244 #include "aic7xxx_old/scsi_message.h"
245 #include "aic7xxx_old/aic7xxx_reg.h"
246 #include <scsi/scsicam.h>
247
248 #include <linux/stat.h>
249 #include <linux/slab.h> /* for kmalloc() */
250
251 #define AIC7XXX_C_VERSION "5.2.6"
252
253 #define ALL_TARGETS -1
254 #define ALL_CHANNELS -1
255 #define ALL_LUNS -1
256 #define MAX_TARGETS 16
257 #define MAX_LUNS 8
258 #ifndef TRUE
259 # define TRUE 1
260 #endif
261 #ifndef FALSE
262 # define FALSE 0
263 #endif
264
265 #if defined(__powerpc__) || defined(__i386__) || defined(__x86_64__)
266 # define MMAPIO
267 #endif
268
269 /*
270 * You can try raising me for better performance or lowering me if you have
271 * flaky devices that go off the scsi bus when hit with too many tagged
272 * commands (like some IBM SCSI-3 LVD drives).
273 */
274 #define AIC7XXX_CMDS_PER_DEVICE 32
275
276 typedef struct
277 {
278 unsigned char tag_commands[16]; /* Allow for wide/twin adapters. */
279 } adapter_tag_info_t;
280
281 /*
282 * Make a define that will tell the driver not to the default tag depth
283 * everywhere.
284 */
285 #define DEFAULT_TAG_COMMANDS {0, 0, 0, 0, 0, 0, 0, 0,\
286 0, 0, 0, 0, 0, 0, 0, 0}
287
288 /*
289 * Modify this as you see fit for your system. By setting tag_commands
290 * to 0, the driver will use it's own algorithm for determining the
291 * number of commands to use (see above). When 255, the driver will
292 * not enable tagged queueing for that particular device. When positive
293 * (> 0) and (< 255) the values in the array are used for the queue_depth.
294 * Note that the maximum value for an entry is 254, but you're insane if
295 * you try to use that many commands on one device.
296 *
297 * In this example, the first line will disable tagged queueing for all
298 * the devices on the first probed aic7xxx adapter.
299 *
300 * The second line enables tagged queueing with 4 commands/LUN for IDs
301 * (1, 2-11, 13-15), disables tagged queueing for ID 12, and tells the
302 * driver to use its own algorithm for ID 1.
303 *
304 * The third line is the same as the first line.
305 *
306 * The fourth line disables tagged queueing for devices 0 and 3. It
307 * enables tagged queueing for the other IDs, with 16 commands/LUN
308 * for IDs 1 and 4, 127 commands/LUN for ID 8, and 4 commands/LUN for
309 * IDs 2, 5-7, and 9-15.
310 */
311
312 /*
313 * NOTE: The below structure is for reference only, the actual structure
314 * to modify in order to change things is found after this fake one.
315 *
316 adapter_tag_info_t aic7xxx_tag_info[] =
317 {
318 {DEFAULT_TAG_COMMANDS},
319 {{4, 0, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 255, 4, 4, 4}},
320 {DEFAULT_TAG_COMMANDS},
321 {{255, 16, 4, 255, 16, 4, 4, 4, 127, 4, 4, 4, 4, 4, 4, 4}}
322 };
323 */
324
325 static adapter_tag_info_t aic7xxx_tag_info[] =
326 {
327 {DEFAULT_TAG_COMMANDS},
328 {DEFAULT_TAG_COMMANDS},
329 {DEFAULT_TAG_COMMANDS},
330 {DEFAULT_TAG_COMMANDS},
331 {DEFAULT_TAG_COMMANDS},
332 {DEFAULT_TAG_COMMANDS},
333 {DEFAULT_TAG_COMMANDS},
334 {DEFAULT_TAG_COMMANDS},
335 {DEFAULT_TAG_COMMANDS},
336 {DEFAULT_TAG_COMMANDS},
337 {DEFAULT_TAG_COMMANDS},
338 {DEFAULT_TAG_COMMANDS},
339 {DEFAULT_TAG_COMMANDS},
340 {DEFAULT_TAG_COMMANDS},
341 {DEFAULT_TAG_COMMANDS},
342 {DEFAULT_TAG_COMMANDS}
343 };
344
345
346 /*
347 * Define an array of board names that can be indexed by aha_type.
348 * Don't forget to change this when changing the types!
349 */
350 static const char *board_names[] = {
351 "AIC-7xxx Unknown", /* AIC_NONE */
352 "Adaptec AIC-7810 Hardware RAID Controller", /* AIC_7810 */
353 "Adaptec AIC-7770 SCSI host adapter", /* AIC_7770 */
354 "Adaptec AHA-274X SCSI host adapter", /* AIC_7771 */
355 "Adaptec AHA-284X SCSI host adapter", /* AIC_284x */
356 "Adaptec AIC-7850 SCSI host adapter", /* AIC_7850 */
357 "Adaptec AIC-7855 SCSI host adapter", /* AIC_7855 */
358 "Adaptec AIC-7860 Ultra SCSI host adapter", /* AIC_7860 */
359 "Adaptec AHA-2940A Ultra SCSI host adapter", /* AIC_7861 */
360 "Adaptec AIC-7870 SCSI host adapter", /* AIC_7870 */
361 "Adaptec AHA-294X SCSI host adapter", /* AIC_7871 */
362 "Adaptec AHA-394X SCSI host adapter", /* AIC_7872 */
363 "Adaptec AHA-398X SCSI host adapter", /* AIC_7873 */
364 "Adaptec AHA-2944 SCSI host adapter", /* AIC_7874 */
365 "Adaptec AIC-7880 Ultra SCSI host adapter", /* AIC_7880 */
366 "Adaptec AHA-294X Ultra SCSI host adapter", /* AIC_7881 */
367 "Adaptec AHA-394X Ultra SCSI host adapter", /* AIC_7882 */
368 "Adaptec AHA-398X Ultra SCSI host adapter", /* AIC_7883 */
369 "Adaptec AHA-2944 Ultra SCSI host adapter", /* AIC_7884 */
370 "Adaptec AHA-2940UW Pro Ultra SCSI host adapter", /* AIC_7887 */
371 "Adaptec AIC-7895 Ultra SCSI host adapter", /* AIC_7895 */
372 "Adaptec AIC-7890/1 Ultra2 SCSI host adapter", /* AIC_7890 */
373 "Adaptec AHA-293X Ultra2 SCSI host adapter", /* AIC_7890 */
374 "Adaptec AHA-294X Ultra2 SCSI host adapter", /* AIC_7890 */
375 "Adaptec AIC-7896/7 Ultra2 SCSI host adapter", /* AIC_7896 */
376 "Adaptec AHA-394X Ultra2 SCSI host adapter", /* AIC_7897 */
377 "Adaptec AHA-395X Ultra2 SCSI host adapter", /* AIC_7897 */
378 "Adaptec PCMCIA SCSI controller", /* card bus stuff */
379 "Adaptec AIC-7892 Ultra 160/m SCSI host adapter", /* AIC_7892 */
380 "Adaptec AIC-7899 Ultra 160/m SCSI host adapter", /* AIC_7899 */
381 };
382
383 /*
384 * There should be a specific return value for this in scsi.h, but
385 * it seems that most drivers ignore it.
386 */
387 #define DID_UNDERFLOW DID_ERROR
388
389 /*
390 * What we want to do is have the higher level scsi driver requeue
391 * the command to us. There is no specific driver status for this
392 * condition, but the higher level scsi driver will requeue the
393 * command on a DID_BUS_BUSY error.
394 *
395 * Upon further inspection and testing, it seems that DID_BUS_BUSY
396 * will *always* retry the command. We can get into an infinite loop
397 * if this happens when we really want some sort of counter that
398 * will automatically abort/reset the command after so many retries.
399 * Using DID_ERROR will do just that. (Made by a suggestion by
400 * Doug Ledford 8/1/96)
401 */
402 #define DID_RETRY_COMMAND DID_ERROR
403
404 #define HSCSIID 0x07
405 #define SCSI_RESET 0x040
406
407 /*
408 * EISA/VL-bus stuff
409 */
410 #define MINSLOT 1
411 #define MAXSLOT 15
412 #define SLOTBASE(x) ((x) << 12)
413 #define BASE_TO_SLOT(x) ((x) >> 12)
414
415 /*
416 * Standard EISA Host ID regs (Offset from slot base)
417 */
418 #define AHC_HID0 0x80 /* 0,1: msb of ID2, 2-7: ID1 */
419 #define AHC_HID1 0x81 /* 0-4: ID3, 5-7: LSB ID2 */
420 #define AHC_HID2 0x82 /* product */
421 #define AHC_HID3 0x83 /* firmware revision */
422
423 /*
424 * AIC-7770 I/O range to reserve for a card
425 */
426 #define MINREG 0xC00
427 #define MAXREG 0xCFF
428
429 #define INTDEF 0x5C /* Interrupt Definition Register */
430
431 /*
432 * AIC-78X0 PCI registers
433 */
434 #define CLASS_PROGIF_REVID 0x08
435 #define DEVREVID 0x000000FFul
436 #define PROGINFC 0x0000FF00ul
437 #define SUBCLASS 0x00FF0000ul
438 #define BASECLASS 0xFF000000ul
439
440 #define CSIZE_LATTIME 0x0C
441 #define CACHESIZE 0x0000003Ful /* only 5 bits */
442 #define LATTIME 0x0000FF00ul
443
444 #define DEVCONFIG 0x40
445 #define SCBSIZE32 0x00010000ul /* aic789X only */
446 #define MPORTMODE 0x00000400ul /* aic7870 only */
447 #define RAMPSM 0x00000200ul /* aic7870 only */
448 #define RAMPSM_ULTRA2 0x00000004
449 #define VOLSENSE 0x00000100ul
450 #define SCBRAMSEL 0x00000080ul
451 #define SCBRAMSEL_ULTRA2 0x00000008
452 #define MRDCEN 0x00000040ul
453 #define EXTSCBTIME 0x00000020ul /* aic7870 only */
454 #define EXTSCBPEN 0x00000010ul /* aic7870 only */
455 #define BERREN 0x00000008ul
456 #define DACEN 0x00000004ul
457 #define STPWLEVEL 0x00000002ul
458 #define DIFACTNEGEN 0x00000001ul /* aic7870 only */
459
460 #define SCAMCTL 0x1a /* Ultra2 only */
461 #define CCSCBBADDR 0xf0 /* aic7895/6/7 */
462
463 /*
464 * Define the different types of SEEPROMs on aic7xxx adapters
465 * and make it also represent the address size used in accessing
466 * its registers. The 93C46 chips have 1024 bits organized into
467 * 64 16-bit words, while the 93C56 chips have 2048 bits organized
468 * into 128 16-bit words. The C46 chips use 6 bits to address
469 * each word, while the C56 and C66 (4096 bits) use 8 bits to
470 * address each word.
471 */
472 typedef enum {C46 = 6, C56_66 = 8} seeprom_chip_type;
473
474 /*
475 *
476 * Define the format of the SEEPROM registers (16 bits).
477 *
478 */
479 struct seeprom_config {
480
481 /*
482 * SCSI ID Configuration Flags
483 */
484 #define CFXFER 0x0007 /* synchronous transfer rate */
485 #define CFSYNCH 0x0008 /* enable synchronous transfer */
486 #define CFDISC 0x0010 /* enable disconnection */
487 #define CFWIDEB 0x0020 /* wide bus device (wide card) */
488 #define CFSYNCHISULTRA 0x0040 /* CFSYNC is an ultra offset */
489 #define CFNEWULTRAFORMAT 0x0080 /* Use the Ultra2 SEEPROM format */
490 #define CFSTART 0x0100 /* send start unit SCSI command */
491 #define CFINCBIOS 0x0200 /* include in BIOS scan */
492 #define CFRNFOUND 0x0400 /* report even if not found */
493 #define CFMULTILUN 0x0800 /* probe mult luns in BIOS scan */
494 #define CFWBCACHEYES 0x4000 /* Enable W-Behind Cache on drive */
495 #define CFWBCACHENC 0xc000 /* Don't change W-Behind Cache */
496 /* UNUSED 0x3000 */
497 unsigned short device_flags[16]; /* words 0-15 */
498
499 /*
500 * BIOS Control Bits
501 */
502 #define CFSUPREM 0x0001 /* support all removable drives */
503 #define CFSUPREMB 0x0002 /* support removable drives for boot only */
504 #define CFBIOSEN 0x0004 /* BIOS enabled */
505 /* UNUSED 0x0008 */
506 #define CFSM2DRV 0x0010 /* support more than two drives */
507 #define CF284XEXTEND 0x0020 /* extended translation (284x cards) */
508 /* UNUSED 0x0040 */
509 #define CFEXTEND 0x0080 /* extended translation enabled */
510 /* UNUSED 0xFF00 */
511 unsigned short bios_control; /* word 16 */
512
513 /*
514 * Host Adapter Control Bits
515 */
516 #define CFAUTOTERM 0x0001 /* Perform Auto termination */
517 #define CFULTRAEN 0x0002 /* Ultra SCSI speed enable (Ultra cards) */
518 #define CF284XSELTO 0x0003 /* Selection timeout (284x cards) */
519 #define CF284XFIFO 0x000C /* FIFO Threshold (284x cards) */
520 #define CFSTERM 0x0004 /* SCSI low byte termination */
521 #define CFWSTERM 0x0008 /* SCSI high byte termination (wide card) */
522 #define CFSPARITY 0x0010 /* SCSI parity */
523 #define CF284XSTERM 0x0020 /* SCSI low byte termination (284x cards) */
524 #define CFRESETB 0x0040 /* reset SCSI bus at boot */
525 #define CFBPRIMARY 0x0100 /* Channel B primary on 7895 chipsets */
526 #define CFSEAUTOTERM 0x0400 /* aic7890 Perform SE Auto Term */
527 #define CFLVDSTERM 0x0800 /* aic7890 LVD Termination */
528 /* UNUSED 0xF280 */
529 unsigned short adapter_control; /* word 17 */
530
531 /*
532 * Bus Release, Host Adapter ID
533 */
534 #define CFSCSIID 0x000F /* host adapter SCSI ID */
535 /* UNUSED 0x00F0 */
536 #define CFBRTIME 0xFF00 /* bus release time */
537 unsigned short brtime_id; /* word 18 */
538
539 /*
540 * Maximum targets
541 */
542 #define CFMAXTARG 0x00FF /* maximum targets */
543 /* UNUSED 0xFF00 */
544 unsigned short max_targets; /* word 19 */
545
546 unsigned short res_1[11]; /* words 20-30 */
547 unsigned short checksum; /* word 31 */
548 };
549
550 #define SELBUS_MASK 0x0a
551 #define SELNARROW 0x00
552 #define SELBUSB 0x08
553 #define SINGLE_BUS 0x00
554
555 #define SCB_TARGET(scb) \
556 (((scb)->hscb->target_channel_lun & TID) >> 4)
557 #define SCB_LUN(scb) \
558 ((scb)->hscb->target_channel_lun & LID)
559 #define SCB_IS_SCSIBUS_B(scb) \
560 (((scb)->hscb->target_channel_lun & SELBUSB) != 0)
561
562 /*
563 * If an error occurs during a data transfer phase, run the command
564 * to completion - it's easier that way - making a note of the error
565 * condition in this location. This then will modify a DID_OK status
566 * into an appropriate error for the higher-level SCSI code.
567 */
568 #define aic7xxx_error(cmd) ((cmd)->SCp.Status)
569
570 /*
571 * Keep track of the targets returned status.
572 */
573 #define aic7xxx_status(cmd) ((cmd)->SCp.sent_command)
574
575 /*
576 * The position of the SCSI commands scb within the scb array.
577 */
578 #define aic7xxx_position(cmd) ((cmd)->SCp.have_data_in)
579
580 /*
581 * The stored DMA mapping for single-buffer data transfers.
582 */
583 #define aic7xxx_mapping(cmd) ((cmd)->SCp.phase)
584
585 /*
586 * Get out private data area from a scsi cmd pointer
587 */
588 #define AIC_DEV(cmd) ((struct aic_dev_data *)(cmd)->device->hostdata)
589
590 /*
591 * So we can keep track of our host structs
592 */
593 static struct aic7xxx_host *first_aic7xxx = NULL;
594
595 /*
596 * As of Linux 2.1, the mid-level SCSI code uses virtual addresses
597 * in the scatter-gather lists. We need to convert the virtual
598 * addresses to physical addresses.
599 */
600 struct hw_scatterlist {
601 unsigned int address;
602 unsigned int length;
603 };
604
605 /*
606 * Maximum number of SG segments these cards can support.
607 */
608 #define AIC7XXX_MAX_SG 128
609
610 /*
611 * The maximum number of SCBs we could have for ANY type
612 * of card. DON'T FORGET TO CHANGE THE SCB MASK IN THE
613 * SEQUENCER CODE IF THIS IS MODIFIED!
614 */
615 #define AIC7XXX_MAXSCB 255
616
617
618 struct aic7xxx_hwscb {
619 /* ------------ Begin hardware supported fields ---------------- */
620 /* 0*/ unsigned char control;
621 /* 1*/ unsigned char target_channel_lun; /* 4/1/3 bits */
622 /* 2*/ unsigned char target_status;
623 /* 3*/ unsigned char SG_segment_count;
624 /* 4*/ unsigned int SG_list_pointer;
625 /* 8*/ unsigned char residual_SG_segment_count;
626 /* 9*/ unsigned char residual_data_count[3];
627 /*12*/ unsigned int data_pointer;
628 /*16*/ unsigned int data_count;
629 /*20*/ unsigned int SCSI_cmd_pointer;
630 /*24*/ unsigned char SCSI_cmd_length;
631 /*25*/ unsigned char tag; /* Index into our kernel SCB array.
632 * Also used as the tag for tagged I/O
633 */
634 #define SCB_PIO_TRANSFER_SIZE 26 /* amount we need to upload/download
635 * via PIO to initialize a transaction.
636 */
637 /*26*/ unsigned char next; /* Used to thread SCBs awaiting selection
638 * or disconnected down in the sequencer.
639 */
640 /*27*/ unsigned char prev;
641 /*28*/ unsigned int pad; /*
642 * Unused by the kernel, but we require
643 * the padding so that the array of
644 * hardware SCBs is aligned on 32 byte
645 * boundaries so the sequencer can index
646 */
647 };
648
649 typedef enum {
650 SCB_FREE = 0x0000,
651 SCB_DTR_SCB = 0x0001,
652 SCB_WAITINGQ = 0x0002,
653 SCB_ACTIVE = 0x0004,
654 SCB_SENSE = 0x0008,
655 SCB_ABORT = 0x0010,
656 SCB_DEVICE_RESET = 0x0020,
657 SCB_RESET = 0x0040,
658 SCB_RECOVERY_SCB = 0x0080,
659 SCB_MSGOUT_PPR = 0x0100,
660 SCB_MSGOUT_SENT = 0x0200,
661 SCB_MSGOUT_SDTR = 0x0400,
662 SCB_MSGOUT_WDTR = 0x0800,
663 SCB_MSGOUT_BITS = SCB_MSGOUT_PPR |
664 SCB_MSGOUT_SENT |
665 SCB_MSGOUT_SDTR |
666 SCB_MSGOUT_WDTR,
667 SCB_QUEUED_ABORT = 0x1000,
668 SCB_QUEUED_FOR_DONE = 0x2000,
669 SCB_WAS_BUSY = 0x4000,
670 SCB_QUEUE_FULL = 0x8000
671 } scb_flag_type;
672
673 typedef enum {
674 AHC_FNONE = 0x00000000,
675 AHC_PAGESCBS = 0x00000001,
676 AHC_CHANNEL_B_PRIMARY = 0x00000002,
677 AHC_USEDEFAULTS = 0x00000004,
678 AHC_INDIRECT_PAGING = 0x00000008,
679 AHC_CHNLB = 0x00000020,
680 AHC_CHNLC = 0x00000040,
681 AHC_EXTEND_TRANS_A = 0x00000100,
682 AHC_EXTEND_TRANS_B = 0x00000200,
683 AHC_TERM_ENB_A = 0x00000400,
684 AHC_TERM_ENB_SE_LOW = 0x00000400,
685 AHC_TERM_ENB_B = 0x00000800,
686 AHC_TERM_ENB_SE_HIGH = 0x00000800,
687 AHC_HANDLING_REQINITS = 0x00001000,
688 AHC_TARGETMODE = 0x00002000,
689 AHC_NEWEEPROM_FMT = 0x00004000,
690 /*
691 * Here ends the FreeBSD defined flags and here begins the linux defined
692 * flags. NOTE: I did not preserve the old flag name during this change
693 * specifically to force me to evaluate what flags were being used properly
694 * and what flags weren't. This way, I could clean up the flag usage on
695 * a use by use basis. Doug Ledford
696 */
697 AHC_MOTHERBOARD = 0x00020000,
698 AHC_NO_STPWEN = 0x00040000,
699 AHC_RESET_DELAY = 0x00080000,
700 AHC_A_SCANNED = 0x00100000,
701 AHC_B_SCANNED = 0x00200000,
702 AHC_MULTI_CHANNEL = 0x00400000,
703 AHC_BIOS_ENABLED = 0x00800000,
704 AHC_SEEPROM_FOUND = 0x01000000,
705 AHC_TERM_ENB_LVD = 0x02000000,
706 AHC_ABORT_PENDING = 0x04000000,
707 AHC_RESET_PENDING = 0x08000000,
708 #define AHC_IN_ISR_BIT 28
709 AHC_IN_ISR = 0x10000000,
710 AHC_IN_ABORT = 0x20000000,
711 AHC_IN_RESET = 0x40000000,
712 AHC_EXTERNAL_SRAM = 0x80000000
713 } ahc_flag_type;
714
715 typedef enum {
716 AHC_NONE = 0x0000,
717 AHC_CHIPID_MASK = 0x00ff,
718 AHC_AIC7770 = 0x0001,
719 AHC_AIC7850 = 0x0002,
720 AHC_AIC7860 = 0x0003,
721 AHC_AIC7870 = 0x0004,
722 AHC_AIC7880 = 0x0005,
723 AHC_AIC7890 = 0x0006,
724 AHC_AIC7895 = 0x0007,
725 AHC_AIC7896 = 0x0008,
726 AHC_AIC7892 = 0x0009,
727 AHC_AIC7899 = 0x000a,
728 AHC_VL = 0x0100,
729 AHC_EISA = 0x0200,
730 AHC_PCI = 0x0400,
731 } ahc_chip;
732
733 typedef enum {
734 AHC_FENONE = 0x0000,
735 AHC_ULTRA = 0x0001,
736 AHC_ULTRA2 = 0x0002,
737 AHC_WIDE = 0x0004,
738 AHC_TWIN = 0x0008,
739 AHC_MORE_SRAM = 0x0010,
740 AHC_CMD_CHAN = 0x0020,
741 AHC_QUEUE_REGS = 0x0040,
742 AHC_SG_PRELOAD = 0x0080,
743 AHC_SPIOCAP = 0x0100,
744 AHC_ULTRA3 = 0x0200,
745 AHC_NEW_AUTOTERM = 0x0400,
746 AHC_AIC7770_FE = AHC_FENONE,
747 AHC_AIC7850_FE = AHC_SPIOCAP,
748 AHC_AIC7860_FE = AHC_ULTRA|AHC_SPIOCAP,
749 AHC_AIC7870_FE = AHC_FENONE,
750 AHC_AIC7880_FE = AHC_ULTRA,
751 AHC_AIC7890_FE = AHC_MORE_SRAM|AHC_CMD_CHAN|AHC_ULTRA2|
752 AHC_QUEUE_REGS|AHC_SG_PRELOAD|AHC_NEW_AUTOTERM,
753 AHC_AIC7895_FE = AHC_MORE_SRAM|AHC_CMD_CHAN|AHC_ULTRA,
754 AHC_AIC7896_FE = AHC_AIC7890_FE,
755 AHC_AIC7892_FE = AHC_AIC7890_FE|AHC_ULTRA3,
756 AHC_AIC7899_FE = AHC_AIC7890_FE|AHC_ULTRA3,
757 } ahc_feature;
758
759 #define SCB_DMA_ADDR(scb, addr) ((unsigned long)(addr) + (scb)->scb_dma->dma_offset)
760
761 struct aic7xxx_scb_dma {
762 unsigned long dma_offset; /* Correction you have to add
763 * to virtual address to get
764 * dma handle in this region */
765 dma_addr_t dma_address; /* DMA handle of the start,
766 * for unmap */
767 unsigned int dma_len; /* DMA length */
768 };
769
770 typedef enum {
771 AHC_BUG_NONE = 0x0000,
772 AHC_BUG_TMODE_WIDEODD = 0x0001,
773 AHC_BUG_AUTOFLUSH = 0x0002,
774 AHC_BUG_CACHETHEN = 0x0004,
775 AHC_BUG_CACHETHEN_DIS = 0x0008,
776 AHC_BUG_PCI_2_1_RETRY = 0x0010,
777 AHC_BUG_PCI_MWI = 0x0020,
778 AHC_BUG_SCBCHAN_UPLOAD = 0x0040,
779 } ahc_bugs;
780
781 struct aic7xxx_scb {
782 struct aic7xxx_hwscb *hscb; /* corresponding hardware scb */
783 struct scsi_cmnd *cmd; /* scsi_cmnd for this scb */
784 struct aic7xxx_scb *q_next; /* next scb in queue */
785 volatile scb_flag_type flags; /* current state of scb */
786 struct hw_scatterlist *sg_list; /* SG list in adapter format */
787 unsigned char tag_action;
788 unsigned char sg_count;
789 unsigned char *sense_cmd; /*
790 * Allocate 6 characters for
791 * sense command.
792 */
793 unsigned char *cmnd;
794 unsigned int sg_length; /*
795 * We init this during
796 * buildscb so we don't have
797 * to calculate anything during
798 * underflow/overflow/stat code
799 */
800 void *kmalloc_ptr;
801 struct aic7xxx_scb_dma *scb_dma;
802 };
803
804 /*
805 * Define a linked list of SCBs.
806 */
807 typedef struct {
808 struct aic7xxx_scb *head;
809 struct aic7xxx_scb *tail;
810 } scb_queue_type;
811
812 static struct {
813 unsigned char errno;
814 const char *errmesg;
815 } hard_error[] = {
816 { ILLHADDR, "Illegal Host Access" },
817 { ILLSADDR, "Illegal Sequencer Address referenced" },
818 { ILLOPCODE, "Illegal Opcode in sequencer program" },
819 { SQPARERR, "Sequencer Ram Parity Error" },
820 { DPARERR, "Data-Path Ram Parity Error" },
821 { MPARERR, "Scratch Ram/SCB Array Ram Parity Error" },
822 { PCIERRSTAT,"PCI Error detected" },
823 { CIOPARERR, "CIOBUS Parity Error" }
824 };
825
826 static unsigned char
827 generic_sense[] = { REQUEST_SENSE, 0, 0, 0, 255, 0 };
828
829 typedef struct {
830 scb_queue_type free_scbs; /*
831 * SCBs assigned to free slot on
832 * card (no paging required)
833 */
834 struct aic7xxx_scb *scb_array[AIC7XXX_MAXSCB];
835 struct aic7xxx_hwscb *hscbs;
836 unsigned char numscbs; /* current number of scbs */
837 unsigned char maxhscbs; /* hardware scbs */
838 unsigned char maxscbs; /* max scbs including pageable scbs */
839 dma_addr_t hscbs_dma; /* DMA handle to hscbs */
840 unsigned int hscbs_dma_len; /* length of the above DMA area */
841 void *hscb_kmalloc_ptr;
842 } scb_data_type;
843
844 struct target_cmd {
845 unsigned char mesg_bytes[4];
846 unsigned char command[28];
847 };
848
849 #define AHC_TRANS_CUR 0x0001
850 #define AHC_TRANS_ACTIVE 0x0002
851 #define AHC_TRANS_GOAL 0x0004
852 #define AHC_TRANS_USER 0x0008
853 #define AHC_TRANS_QUITE 0x0010
854 typedef struct {
855 unsigned char width;
856 unsigned char period;
857 unsigned char offset;
858 unsigned char options;
859 } transinfo_type;
860
861 struct aic_dev_data {
862 volatile scb_queue_type delayed_scbs;
863 volatile unsigned short temp_q_depth;
864 unsigned short max_q_depth;
865 volatile unsigned char active_cmds;
866 /*
867 * Statistics Kept:
868 *
869 * Total Xfers (count for each command that has a data xfer),
870 * broken down by reads && writes.
871 *
872 * Further sorted into a few bins for keeping tabs on how many commands
873 * we get of various sizes.
874 *
875 */
876 long w_total; /* total writes */
877 long r_total; /* total reads */
878 long barrier_total; /* total num of REQ_BARRIER commands */
879 long ordered_total; /* How many REQ_BARRIER commands we
880 used ordered tags to satisfy */
881 long w_bins[6]; /* binned write */
882 long r_bins[6]; /* binned reads */
883 transinfo_type cur;
884 transinfo_type goal;
885 #define BUS_DEVICE_RESET_PENDING 0x01
886 #define DEVICE_RESET_DELAY 0x02
887 #define DEVICE_PRINT_DTR 0x04
888 #define DEVICE_WAS_BUSY 0x08
889 #define DEVICE_DTR_SCANNED 0x10
890 #define DEVICE_SCSI_3 0x20
891 volatile unsigned char flags;
892 unsigned needppr:1;
893 unsigned needppr_copy:1;
894 unsigned needsdtr:1;
895 unsigned needsdtr_copy:1;
896 unsigned needwdtr:1;
897 unsigned needwdtr_copy:1;
898 unsigned dtr_pending:1;
899 struct scsi_device *SDptr;
900 struct list_head list;
901 };
902
903 /*
904 * Define a structure used for each host adapter. Note, in order to avoid
905 * problems with architectures I can't test on (because I don't have one,
906 * such as the Alpha based systems) which happen to give faults for
907 * non-aligned memory accesses, care was taken to align this structure
908 * in a way that gauranteed all accesses larger than 8 bits were aligned
909 * on the appropriate boundary. It's also organized to try and be more
910 * cache line efficient. Be careful when changing this lest you might hurt
911 * overall performance and bring down the wrath of the masses.
912 */
913 struct aic7xxx_host {
914 /*
915 * This is the first 64 bytes in the host struct
916 */
917
918 /*
919 * We are grouping things here....first, items that get either read or
920 * written with nearly every interrupt
921 */
922 volatile long flags;
923 ahc_feature features; /* chip features */
924 unsigned long base; /* card base address */
925 volatile unsigned char __iomem *maddr; /* memory mapped address */
926 unsigned long isr_count; /* Interrupt count */
927 unsigned long spurious_int;
928 scb_data_type *scb_data;
929 struct aic7xxx_cmd_queue {
930 struct scsi_cmnd *head;
931 struct scsi_cmnd *tail;
932 } completeq;
933
934 /*
935 * Things read/written on nearly every entry into aic7xxx_queue()
936 */
937 volatile scb_queue_type waiting_scbs;
938 unsigned char unpause; /* unpause value for HCNTRL */
939 unsigned char pause; /* pause value for HCNTRL */
940 volatile unsigned char qoutfifonext;
941 volatile unsigned char activescbs; /* active scbs */
942 volatile unsigned char max_activescbs;
943 volatile unsigned char qinfifonext;
944 volatile unsigned char *untagged_scbs;
945 volatile unsigned char *qoutfifo;
946 volatile unsigned char *qinfifo;
947
948 unsigned char dev_last_queue_full[MAX_TARGETS];
949 unsigned char dev_last_queue_full_count[MAX_TARGETS];
950 unsigned short ultraenb; /* Gets downloaded to card as a bitmap */
951 unsigned short discenable; /* Gets downloaded to card as a bitmap */
952 transinfo_type user[MAX_TARGETS];
953
954 unsigned char msg_buf[13]; /* The message for the target */
955 unsigned char msg_type;
956 #define MSG_TYPE_NONE 0x00
957 #define MSG_TYPE_INITIATOR_MSGOUT 0x01
958 #define MSG_TYPE_INITIATOR_MSGIN 0x02
959 unsigned char msg_len; /* Length of message */
960 unsigned char msg_index; /* Index into msg_buf array */
961
962
963 /*
964 * We put the less frequently used host structure items
965 * after the more frequently used items to try and ease
966 * the burden on the cache subsystem.
967 * These entries are not *commonly* accessed, whereas
968 * the preceding entries are accessed very often.
969 */
970
971 unsigned int irq; /* IRQ for this adapter */
972 int instance; /* aic7xxx instance number */
973 int scsi_id; /* host adapter SCSI ID */
974 int scsi_id_b; /* channel B for twin adapters */
975 unsigned int bios_address;
976 int board_name_index;
977 unsigned short bios_control; /* bios control - SEEPROM */
978 unsigned short adapter_control; /* adapter control - SEEPROM */
979 struct pci_dev *pdev;
980 unsigned char pci_bus;
981 unsigned char pci_device_fn;
982 struct seeprom_config sc;
983 unsigned short sc_type;
984 unsigned short sc_size;
985 struct aic7xxx_host *next; /* allow for multiple IRQs */
986 struct Scsi_Host *host; /* pointer to scsi host */
987 struct list_head aic_devs; /* all aic_dev structs on host */
988 int host_no; /* SCSI host number */
989 unsigned long mbase; /* I/O memory address */
990 ahc_chip chip; /* chip type */
991 ahc_bugs bugs;
992 dma_addr_t fifo_dma; /* DMA handle for fifo arrays */
993 };
994
995 /*
996 * Valid SCSIRATE values. (p. 3-17)
997 * Provides a mapping of transfer periods in ns/4 to the proper value to
998 * stick in the SCSIRATE reg to use that transfer rate.
999 */
1000 #define AHC_SYNCRATE_ULTRA3 0
1001 #define AHC_SYNCRATE_ULTRA2 1
1002 #define AHC_SYNCRATE_ULTRA 3
1003 #define AHC_SYNCRATE_FAST 6
1004 #define AHC_SYNCRATE_CRC 0x40
1005 #define AHC_SYNCRATE_SE 0x10
1006 static struct aic7xxx_syncrate {
1007 /* Rates in Ultra mode have bit 8 of sxfr set */
1008 #define ULTRA_SXFR 0x100
1009 int sxfr_ultra2;
1010 int sxfr;
1011 unsigned char period;
1012 const char *rate[2];
1013 } aic7xxx_syncrates[] = {
1014 { 0x42, 0x000, 9, {"80.0", "160.0"} },
1015 { 0x13, 0x000, 10, {"40.0", "80.0"} },
1016 { 0x14, 0x000, 11, {"33.0", "66.6"} },
1017 { 0x15, 0x100, 12, {"20.0", "40.0"} },
1018 { 0x16, 0x110, 15, {"16.0", "32.0"} },
1019 { 0x17, 0x120, 18, {"13.4", "26.8"} },
1020 { 0x18, 0x000, 25, {"10.0", "20.0"} },
1021 { 0x19, 0x010, 31, {"8.0", "16.0"} },
1022 { 0x1a, 0x020, 37, {"6.67", "13.3"} },
1023 { 0x1b, 0x030, 43, {"5.7", "11.4"} },
1024 { 0x10, 0x040, 50, {"5.0", "10.0"} },
1025 { 0x00, 0x050, 56, {"4.4", "8.8" } },
1026 { 0x00, 0x060, 62, {"4.0", "8.0" } },
1027 { 0x00, 0x070, 68, {"3.6", "7.2" } },
1028 { 0x00, 0x000, 0, {NULL, NULL} },
1029 };
1030
1031 #define CTL_OF_SCB(scb) (((scb->hscb)->target_channel_lun >> 3) & 0x1), \
1032 (((scb->hscb)->target_channel_lun >> 4) & 0xf), \
1033 ((scb->hscb)->target_channel_lun & 0x07)
1034
1035 #define CTL_OF_CMD(cmd) ((cmd->device->channel) & 0x01), \
1036 ((cmd->device->id) & 0x0f), \
1037 ((cmd->device->lun) & 0x07)
1038
1039 #define TARGET_INDEX(cmd) ((cmd)->device->id | ((cmd)->device->channel << 3))
1040
1041 /*
1042 * A nice little define to make doing our printks a little easier
1043 */
1044
1045 #define WARN_LEAD KERN_WARNING "(scsi%d:%d:%d:%d) "
1046 #define INFO_LEAD KERN_INFO "(scsi%d:%d:%d:%d) "
1047
1048 /*
1049 * XXX - these options apply unilaterally to _all_ 274x/284x/294x
1050 * cards in the system. This should be fixed. Exceptions to this
1051 * rule are noted in the comments.
1052 */
1053
1054 /*
1055 * Use this as the default queue depth when setting tagged queueing on.
1056 */
1057 static unsigned int aic7xxx_default_queue_depth = AIC7XXX_CMDS_PER_DEVICE;
1058
1059 /*
1060 * Skip the scsi bus reset. Non 0 make us skip the reset at startup. This
1061 * has no effect on any later resets that might occur due to things like
1062 * SCSI bus timeouts.
1063 */
1064 static unsigned int aic7xxx_no_reset = 0;
1065 /*
1066 * Certain PCI motherboards will scan PCI devices from highest to lowest,
1067 * others scan from lowest to highest, and they tend to do all kinds of
1068 * strange things when they come into contact with PCI bridge chips. The
1069 * net result of all this is that the PCI card that is actually used to boot
1070 * the machine is very hard to detect. Most motherboards go from lowest
1071 * PCI slot number to highest, and the first SCSI controller found is the
1072 * one you boot from. The only exceptions to this are when a controller
1073 * has its BIOS disabled. So, we by default sort all of our SCSI controllers
1074 * from lowest PCI slot number to highest PCI slot number. We also force
1075 * all controllers with their BIOS disabled to the end of the list. This
1076 * works on *almost* all computers. Where it doesn't work, we have this
1077 * option. Setting this option to non-0 will reverse the order of the sort
1078 * to highest first, then lowest, but will still leave cards with their BIOS
1079 * disabled at the very end. That should fix everyone up unless there are
1080 * really strange cirumstances.
1081 */
1082 static int aic7xxx_reverse_scan = 0;
1083 /*
1084 * Should we force EXTENDED translation on a controller.
1085 * 0 == Use whatever is in the SEEPROM or default to off
1086 * 1 == Use whatever is in the SEEPROM or default to on
1087 */
1088 static unsigned int aic7xxx_extended = 0;
1089 /*
1090 * The IRQ trigger method used on EISA controllers. Does not effect PCI cards.
1091 * -1 = Use detected settings.
1092 * 0 = Force Edge triggered mode.
1093 * 1 = Force Level triggered mode.
1094 */
1095 static int aic7xxx_irq_trigger = -1;
1096 /*
1097 * This variable is used to override the termination settings on a controller.
1098 * This should not be used under normal conditions. However, in the case
1099 * that a controller does not have a readable SEEPROM (so that we can't
1100 * read the SEEPROM settings directly) and that a controller has a buggered
1101 * version of the cable detection logic, this can be used to force the
1102 * correct termination. It is preferable to use the manual termination
1103 * settings in the BIOS if possible, but some motherboard controllers store
1104 * those settings in a format we can't read. In other cases, auto term
1105 * should also work, but the chipset was put together with no auto term
1106 * logic (common on motherboard controllers). In those cases, we have
1107 * 32 bits here to work with. That's good for 8 controllers/channels. The
1108 * bits are organized as 4 bits per channel, with scsi0 getting the lowest
1109 * 4 bits in the int. A 1 in a bit position indicates the termination setting
1110 * that corresponds to that bit should be enabled, a 0 is disabled.
1111 * It looks something like this:
1112 *
1113 * 0x0f = 1111-Single Ended Low Byte Termination on/off
1114 * ||\-Single Ended High Byte Termination on/off
1115 * |\-LVD Low Byte Termination on/off
1116 * \-LVD High Byte Termination on/off
1117 *
1118 * For non-Ultra2 controllers, the upper 2 bits are not important. So, to
1119 * enable both high byte and low byte termination on scsi0, I would need to
1120 * make sure that the override_term variable was set to 0x03 (bits 0011).
1121 * To make sure that all termination is enabled on an Ultra2 controller at
1122 * scsi2 and only high byte termination on scsi1 and high and low byte
1123 * termination on scsi0, I would set override_term=0xf23 (bits 1111 0010 0011)
1124 *
1125 * For the most part, users should never have to use this, that's why I
1126 * left it fairly cryptic instead of easy to understand. If you need it,
1127 * most likely someone will be telling you what your's needs to be set to.
1128 */
1129 static int aic7xxx_override_term = -1;
1130 /*
1131 * Certain motherboard chipset controllers tend to screw
1132 * up the polarity of the term enable output pin. Use this variable
1133 * to force the correct polarity for your system. This is a bitfield variable
1134 * similar to the previous one, but this one has one bit per channel instead
1135 * of four.
1136 * 0 = Force the setting to active low.
1137 * 1 = Force setting to active high.
1138 * Most Adaptec cards are active high, several motherboards are active low.
1139 * To force a 2940 card at SCSI 0 to active high and a motherboard 7895
1140 * controller at scsi1 and scsi2 to active low, and a 2910 card at scsi3
1141 * to active high, you would need to set stpwlev=0x9 (bits 1001).
1142 *
1143 * People shouldn't need to use this, but if you are experiencing lots of
1144 * SCSI timeout problems, this may help. There is one sure way to test what
1145 * this option needs to be. Using a boot floppy to boot the system, configure
1146 * your system to enable all SCSI termination (in the Adaptec SCSI BIOS) and
1147 * if needed then also pass a value to override_term to make sure that the
1148 * driver is enabling SCSI termination, then set this variable to either 0
1149 * or 1. When the driver boots, make sure there are *NO* SCSI cables
1150 * connected to your controller. If it finds and inits the controller
1151 * without problem, then the setting you passed to stpwlev was correct. If
1152 * the driver goes into a reset loop and hangs the system, then you need the
1153 * other setting for this variable. If neither setting lets the machine
1154 * boot then you have definite termination problems that may not be fixable.
1155 */
1156 static int aic7xxx_stpwlev = -1;
1157 /*
1158 * Set this to non-0 in order to force the driver to panic the kernel
1159 * and print out debugging info on a SCSI abort or reset cycle.
1160 */
1161 static int aic7xxx_panic_on_abort = 0;
1162 /*
1163 * PCI bus parity checking of the Adaptec controllers. This is somewhat
1164 * dubious at best. To my knowledge, this option has never actually
1165 * solved a PCI parity problem, but on certain machines with broken PCI
1166 * chipset configurations, it can generate tons of false error messages.
1167 * It's included in the driver for completeness.
1168 * 0 = Shut off PCI parity check
1169 * -1 = Normal polarity pci parity checking
1170 * 1 = reverse polarity pci parity checking
1171 *
1172 * NOTE: you can't actually pass -1 on the lilo prompt. So, to set this
1173 * variable to -1 you would actually want to simply pass the variable
1174 * name without a number. That will invert the 0 which will result in
1175 * -1.
1176 */
1177 static int aic7xxx_pci_parity = 0;
1178 /*
1179 * Set this to any non-0 value to cause us to dump the contents of all
1180 * the card's registers in a hex dump format tailored to each model of
1181 * controller.
1182 *
1183 * NOTE: THE CONTROLLER IS LEFT IN AN UNUSEABLE STATE BY THIS OPTION.
1184 * YOU CANNOT BOOT UP WITH THIS OPTION, IT IS FOR DEBUGGING PURPOSES
1185 * ONLY
1186 */
1187 static int aic7xxx_dump_card = 0;
1188 /*
1189 * Set this to a non-0 value to make us dump out the 32 bit instruction
1190 * registers on the card after completing the sequencer download. This
1191 * allows the actual sequencer download to be verified. It is possible
1192 * to use this option and still boot up and run your system. This is
1193 * only intended for debugging purposes.
1194 */
1195 static int aic7xxx_dump_sequencer = 0;
1196 /*
1197 * Certain newer motherboards have put new PCI based devices into the
1198 * IO spaces that used to typically be occupied by VLB or EISA cards.
1199 * This overlap can cause these newer motherboards to lock up when scanned
1200 * for older EISA and VLB devices. Setting this option to non-0 will
1201 * cause the driver to skip scanning for any VLB or EISA controllers and
1202 * only support the PCI controllers. NOTE: this means that if the kernel
1203 * os compiled with PCI support disabled, then setting this to non-0
1204 * would result in never finding any devices :)
1205 */
1206 static int aic7xxx_no_probe = 0;
1207 /*
1208 * On some machines, enabling the external SCB RAM isn't reliable yet. I
1209 * haven't had time to make test patches for things like changing the
1210 * timing mode on that external RAM either. Some of those changes may
1211 * fix the problem. Until then though, we default to external SCB RAM
1212 * off and give a command line option to enable it.
1213 */
1214 static int aic7xxx_scbram = 0;
1215 /*
1216 * So that we can set how long each device is given as a selection timeout.
1217 * The table of values goes like this:
1218 * 0 - 256ms
1219 * 1 - 128ms
1220 * 2 - 64ms
1221 * 3 - 32ms
1222 * We default to 64ms because it's fast. Some old SCSI-I devices need a
1223 * longer time. The final value has to be left shifted by 3, hence 0x10
1224 * is the final value.
1225 */
1226 static int aic7xxx_seltime = 0x10;
1227 /*
1228 * So that insmod can find the variable and make it point to something
1229 */
1230 #ifdef MODULE
1231 static char * aic7xxx = NULL;
1232 module_param(aic7xxx, charp, 0);
1233 #endif
1234
1235 #define VERBOSE_NORMAL 0x0000
1236 #define VERBOSE_NEGOTIATION 0x0001
1237 #define VERBOSE_SEQINT 0x0002
1238 #define VERBOSE_SCSIINT 0x0004
1239 #define VERBOSE_PROBE 0x0008
1240 #define VERBOSE_PROBE2 0x0010
1241 #define VERBOSE_NEGOTIATION2 0x0020
1242 #define VERBOSE_MINOR_ERROR 0x0040
1243 #define VERBOSE_TRACING 0x0080
1244 #define VERBOSE_ABORT 0x0f00
1245 #define VERBOSE_ABORT_MID 0x0100
1246 #define VERBOSE_ABORT_FIND 0x0200
1247 #define VERBOSE_ABORT_PROCESS 0x0400
1248 #define VERBOSE_ABORT_RETURN 0x0800
1249 #define VERBOSE_RESET 0xf000
1250 #define VERBOSE_RESET_MID 0x1000
1251 #define VERBOSE_RESET_FIND 0x2000
1252 #define VERBOSE_RESET_PROCESS 0x4000
1253 #define VERBOSE_RESET_RETURN 0x8000
1254 static int aic7xxx_verbose = VERBOSE_NORMAL | VERBOSE_NEGOTIATION |
1255 VERBOSE_PROBE; /* verbose messages */
1256
1257
1258 /****************************************************************************
1259 *
1260 * We're going to start putting in function declarations so that order of
1261 * functions is no longer important. As needed, they are added here.
1262 *
1263 ***************************************************************************/
1264
1265 static int aic7xxx_release(struct Scsi_Host *host);
1266 static void aic7xxx_set_syncrate(struct aic7xxx_host *p,
1267 struct aic7xxx_syncrate *syncrate, int target, int channel,
1268 unsigned int period, unsigned int offset, unsigned char options,
1269 unsigned int type, struct aic_dev_data *aic_dev);
1270 static void aic7xxx_set_width(struct aic7xxx_host *p, int target, int channel,
1271 int lun, unsigned int width, unsigned int type,
1272 struct aic_dev_data *aic_dev);
1273 static void aic7xxx_panic_abort(struct aic7xxx_host *p, struct scsi_cmnd *cmd);
1274 static void aic7xxx_print_card(struct aic7xxx_host *p);
1275 static void aic7xxx_print_scratch_ram(struct aic7xxx_host *p);
1276 static void aic7xxx_print_sequencer(struct aic7xxx_host *p, int downloaded);
1277 #ifdef AIC7XXX_VERBOSE_DEBUGGING
1278 static void aic7xxx_check_scbs(struct aic7xxx_host *p, char *buffer);
1279 #endif
1280
1281 /****************************************************************************
1282 *
1283 * These functions are now used. They happen to be wrapped in useless
1284 * inb/outb port read/writes around the real reads and writes because it
1285 * seems that certain very fast CPUs have a problem dealing with us when
1286 * going at full speed.
1287 *
1288 ***************************************************************************/
1289
1290 static unsigned char
1291 aic_inb(struct aic7xxx_host *p, long port)
1292 {
1293 #ifdef MMAPIO
1294 unsigned char x;
1295 if(p->maddr)
1296 {
1297 x = readb(p->maddr + port);
1298 }
1299 else
1300 {
1301 x = inb(p->base + port);
1302 }
1303 return(x);
1304 #else
1305 return(inb(p->base + port));
1306 #endif
1307 }
1308
1309 static void
1310 aic_outb(struct aic7xxx_host *p, unsigned char val, long port)
1311 {
1312 #ifdef MMAPIO
1313 if(p->maddr)
1314 {
1315 writeb(val, p->maddr + port);
1316 mb(); /* locked operation in order to force CPU ordering */
1317 readb(p->maddr + HCNTRL); /* dummy read to flush the PCI write */
1318 }
1319 else
1320 {
1321 outb(val, p->base + port);
1322 mb(); /* locked operation in order to force CPU ordering */
1323 }
1324 #else
1325 outb(val, p->base + port);
1326 mb(); /* locked operation in order to force CPU ordering */
1327 #endif
1328 }
1329
1330 /*+F*************************************************************************
1331 * Function:
1332 * aic7xxx_setup
1333 *
1334 * Description:
1335 * Handle Linux boot parameters. This routine allows for assigning a value
1336 * to a parameter with a ':' between the parameter and the value.
1337 * ie. aic7xxx=unpause:0x0A,extended
1338 *-F*************************************************************************/
1339 static int
1340 aic7xxx_setup(char *s)
1341 {
1342 int i, n;
1343 char *p;
1344 char *end;
1345
1346 static struct {
1347 const char *name;
1348 unsigned int *flag;
1349 } options[] = {
1350 { "extended", &aic7xxx_extended },
1351 { "no_reset", &aic7xxx_no_reset },
1352 { "irq_trigger", &aic7xxx_irq_trigger },
1353 { "verbose", &aic7xxx_verbose },
1354 { "reverse_scan",&aic7xxx_reverse_scan },
1355 { "override_term", &aic7xxx_override_term },
1356 { "stpwlev", &aic7xxx_stpwlev },
1357 { "no_probe", &aic7xxx_no_probe },
1358 { "panic_on_abort", &aic7xxx_panic_on_abort },
1359 { "pci_parity", &aic7xxx_pci_parity },
1360 { "dump_card", &aic7xxx_dump_card },
1361 { "dump_sequencer", &aic7xxx_dump_sequencer },
1362 { "default_queue_depth", &aic7xxx_default_queue_depth },
1363 { "scbram", &aic7xxx_scbram },
1364 { "seltime", &aic7xxx_seltime },
1365 { "tag_info", NULL }
1366 };
1367
1368 end = strchr(s, '\0');
1369
1370 while ((p = strsep(&s, ",.")) != NULL)
1371 {
1372 for (i = 0; i < ARRAY_SIZE(options); i++)
1373 {
1374 n = strlen(options[i].name);
1375 if (!strncmp(options[i].name, p, n))
1376 {
1377 if (!strncmp(p, "tag_info", n))
1378 {
1379 if (p[n] == ':')
1380 {
1381 char *base;
1382 char *tok, *tok_end, *tok_end2;
1383 char tok_list[] = { '.', ',', '{', '}', '\0' };
1384 int i, instance = -1, device = -1;
1385 unsigned char done = FALSE;
1386
1387 base = p;
1388 tok = base + n + 1; /* Forward us just past the ':' */
1389 tok_end = strchr(tok, '\0');
1390 if (tok_end < end)
1391 *tok_end = ',';
1392 while(!done)
1393 {
1394 switch(*tok)
1395 {
1396 case '{':
1397 if (instance == -1)
1398 instance = 0;
1399 else if (device == -1)
1400 device = 0;
1401 tok++;
1402 break;
1403 case '}':
1404 if (device != -1)
1405 device = -1;
1406 else if (instance != -1)
1407 instance = -1;
1408 tok++;
1409 break;
1410 case ',':
1411 case '.':
1412 if (instance == -1)
1413 done = TRUE;
1414 else if (device >= 0)
1415 device++;
1416 else if (instance >= 0)
1417 instance++;
1418 if ( (device >= MAX_TARGETS) ||
1419 (instance >= ARRAY_SIZE(aic7xxx_tag_info)) )
1420 done = TRUE;
1421 tok++;
1422 if (!done)
1423 {
1424 base = tok;
1425 }
1426 break;
1427 case '\0':
1428 done = TRUE;
1429 break;
1430 default:
1431 done = TRUE;
1432 tok_end = strchr(tok, '\0');
1433 for(i=0; tok_list[i]; i++)
1434 {
1435 tok_end2 = strchr(tok, tok_list[i]);
1436 if ( (tok_end2) && (tok_end2 < tok_end) )
1437 {
1438 tok_end = tok_end2;
1439 done = FALSE;
1440 }
1441 }
1442 if ( (instance >= 0) && (device >= 0) &&
1443 (instance < ARRAY_SIZE(aic7xxx_tag_info)) &&
1444 (device < MAX_TARGETS) )
1445 aic7xxx_tag_info[instance].tag_commands[device] =
1446 simple_strtoul(tok, NULL, 0) & 0xff;
1447 tok = tok_end;
1448 break;
1449 }
1450 }
1451 while((p != base) && (p != NULL))
1452 p = strsep(&s, ",.");
1453 }
1454 }
1455 else if (p[n] == ':')
1456 {
1457 *(options[i].flag) = simple_strtoul(p + n + 1, NULL, 0);
1458 if(!strncmp(p, "seltime", n))
1459 {
1460 *(options[i].flag) = (*(options[i].flag) % 4) << 3;
1461 }
1462 }
1463 else if (!strncmp(p, "verbose", n))
1464 {
1465 *(options[i].flag) = 0xff29;
1466 }
1467 else
1468 {
1469 *(options[i].flag) = ~(*(options[i].flag));
1470 if(!strncmp(p, "seltime", n))
1471 {
1472 *(options[i].flag) = (*(options[i].flag) % 4) << 3;
1473 }
1474 }
1475 }
1476 }
1477 }
1478 return 1;
1479 }
1480
1481 __setup("aic7xxx=", aic7xxx_setup);
1482
1483 /*+F*************************************************************************
1484 * Function:
1485 * pause_sequencer
1486 *
1487 * Description:
1488 * Pause the sequencer and wait for it to actually stop - this
1489 * is important since the sequencer can disable pausing for critical
1490 * sections.
1491 *-F*************************************************************************/
1492 static void
1493 pause_sequencer(struct aic7xxx_host *p)
1494 {
1495 aic_outb(p, p->pause, HCNTRL);
1496 while ((aic_inb(p, HCNTRL) & PAUSE) == 0)
1497 {
1498 ;
1499 }
1500 if(p->features & AHC_ULTRA2)
1501 {
1502 aic_inb(p, CCSCBCTL);
1503 }
1504 }
1505
1506 /*+F*************************************************************************
1507 * Function:
1508 * unpause_sequencer
1509 *
1510 * Description:
1511 * Unpause the sequencer. Unremarkable, yet done often enough to
1512 * warrant an easy way to do it.
1513 *-F*************************************************************************/
1514 static void
1515 unpause_sequencer(struct aic7xxx_host *p, int unpause_always)
1516 {
1517 if (unpause_always ||
1518 ( !(aic_inb(p, INTSTAT) & (SCSIINT | SEQINT | BRKADRINT)) &&
1519 !(p->flags & AHC_HANDLING_REQINITS) ) )
1520 {
1521 aic_outb(p, p->unpause, HCNTRL);
1522 }
1523 }
1524
1525 /*+F*************************************************************************
1526 * Function:
1527 * restart_sequencer
1528 *
1529 * Description:
1530 * Restart the sequencer program from address zero. This assumes
1531 * that the sequencer is already paused.
1532 *-F*************************************************************************/
1533 static void
1534 restart_sequencer(struct aic7xxx_host *p)
1535 {
1536 aic_outb(p, 0, SEQADDR0);
1537 aic_outb(p, 0, SEQADDR1);
1538 aic_outb(p, FASTMODE, SEQCTL);
1539 }
1540
1541 /*
1542 * We include the aic7xxx_seq.c file here so that the other defines have
1543 * already been made, and so that it comes before the code that actually
1544 * downloads the instructions (since we don't typically use function
1545 * prototype, our code has to be ordered that way, it's a left-over from
1546 * the original driver days.....I should fix it some time DL).
1547 */
1548 #include "aic7xxx_old/aic7xxx_seq.c"
1549
1550 /*+F*************************************************************************
1551 * Function:
1552 * aic7xxx_check_patch
1553 *
1554 * Description:
1555 * See if the next patch to download should be downloaded.
1556 *-F*************************************************************************/
1557 static int
1558 aic7xxx_check_patch(struct aic7xxx_host *p,
1559 struct sequencer_patch **start_patch, int start_instr, int *skip_addr)
1560 {
1561 struct sequencer_patch *cur_patch;
1562 struct sequencer_patch *last_patch;
1563 int num_patches;
1564
1565 num_patches = ARRAY_SIZE(sequencer_patches);
1566 last_patch = &sequencer_patches[num_patches];
1567 cur_patch = *start_patch;
1568
1569 while ((cur_patch < last_patch) && (start_instr == cur_patch->begin))
1570 {
1571 if (cur_patch->patch_func(p) == 0)
1572 {
1573 /*
1574 * Start rejecting code.
1575 */
1576 *skip_addr = start_instr + cur_patch->skip_instr;
1577 cur_patch += cur_patch->skip_patch;
1578 }
1579 else
1580 {
1581 /*
1582 * Found an OK patch. Advance the patch pointer to the next patch
1583 * and wait for our instruction pointer to get here.
1584 */
1585 cur_patch++;
1586 }
1587 }
1588
1589 *start_patch = cur_patch;
1590 if (start_instr < *skip_addr)
1591 /*
1592 * Still skipping
1593 */
1594 return (0);
1595 return(1);
1596 }
1597
1598
1599 /*+F*************************************************************************
1600 * Function:
1601 * aic7xxx_download_instr
1602 *
1603 * Description:
1604 * Find the next patch to download.
1605 *-F*************************************************************************/
1606 static void
1607 aic7xxx_download_instr(struct aic7xxx_host *p, int instrptr,
1608 unsigned char *dconsts)
1609 {
1610 union ins_formats instr;
1611 struct ins_format1 *fmt1_ins;
1612 struct ins_format3 *fmt3_ins;
1613 unsigned char opcode;
1614
1615 instr = *(union ins_formats*) &seqprog[instrptr * 4];
1616
1617 instr.integer = le32_to_cpu(instr.integer);
1618
1619 fmt1_ins = &instr.format1;
1620 fmt3_ins = NULL;
1621
1622 /* Pull the opcode */
1623 opcode = instr.format1.opcode;
1624 switch (opcode)
1625 {
1626 case AIC_OP_JMP:
1627 case AIC_OP_JC:
1628 case AIC_OP_JNC:
1629 case AIC_OP_CALL:
1630 case AIC_OP_JNE:
1631 case AIC_OP_JNZ:
1632 case AIC_OP_JE:
1633 case AIC_OP_JZ:
1634 {
1635 struct sequencer_patch *cur_patch;
1636 int address_offset;
1637 unsigned int address;
1638 int skip_addr;
1639 int i;
1640
1641 fmt3_ins = &instr.format3;
1642 address_offset = 0;
1643 address = fmt3_ins->address;
1644 cur_patch = sequencer_patches;
1645 skip_addr = 0;
1646
1647 for (i = 0; i < address;)
1648 {
1649 aic7xxx_check_patch(p, &cur_patch, i, &skip_addr);
1650 if (skip_addr > i)
1651 {
1652 int end_addr;
1653
1654 end_addr = min_t(int, address, skip_addr);
1655 address_offset += end_addr - i;
1656 i = skip_addr;
1657 }
1658 else
1659 {
1660 i++;
1661 }
1662 }
1663 address -= address_offset;
1664 fmt3_ins->address = address;
1665 /* Fall Through to the next code section */
1666 }
1667 case AIC_OP_OR:
1668 case AIC_OP_AND:
1669 case AIC_OP_XOR:
1670 case AIC_OP_ADD:
1671 case AIC_OP_ADC:
1672 case AIC_OP_BMOV:
1673 if (fmt1_ins->parity != 0)
1674 {
1675 fmt1_ins->immediate = dconsts[fmt1_ins->immediate];
1676 }
1677 fmt1_ins->parity = 0;
1678 /* Fall Through to the next code section */
1679 case AIC_OP_ROL:
1680 if ((p->features & AHC_ULTRA2) != 0)
1681 {
1682 int i, count;
1683
1684 /* Calculate odd parity for the instruction */
1685 for ( i=0, count=0; i < 31; i++)
1686 {
1687 unsigned int mask;
1688
1689 mask = 0x01 << i;
1690 if ((instr.integer & mask) != 0)
1691 count++;
1692 }
1693 if (!(count & 0x01))
1694 instr.format1.parity = 1;
1695 }
1696 else
1697 {
1698 if (fmt3_ins != NULL)
1699 {
1700 instr.integer = fmt3_ins->immediate |
1701 (fmt3_ins->source << 8) |
1702 (fmt3_ins->address << 16) |
1703 (fmt3_ins->opcode << 25);
1704 }
1705 else
1706 {
1707 instr.integer = fmt1_ins->immediate |
1708 (fmt1_ins->source << 8) |
1709 (fmt1_ins->destination << 16) |
1710 (fmt1_ins->ret << 24) |
1711 (fmt1_ins->opcode << 25);
1712 }
1713 }
1714 aic_outb(p, (instr.integer & 0xff), SEQRAM);
1715 aic_outb(p, ((instr.integer >> 8) & 0xff), SEQRAM);
1716 aic_outb(p, ((instr.integer >> 16) & 0xff), SEQRAM);
1717 aic_outb(p, ((instr.integer >> 24) & 0xff), SEQRAM);
1718 udelay(10);
1719 break;
1720
1721 default:
1722 panic("aic7xxx: Unknown opcode encountered in sequencer program.");
1723 break;
1724 }
1725 }
1726
1727
1728 /*+F*************************************************************************
1729 * Function:
1730 * aic7xxx_loadseq
1731 *
1732 * Description:
1733 * Load the sequencer code into the controller memory.
1734 *-F*************************************************************************/
1735 static void
1736 aic7xxx_loadseq(struct aic7xxx_host *p)
1737 {
1738 struct sequencer_patch *cur_patch;
1739 int i;
1740 int downloaded;
1741 int skip_addr;
1742 unsigned char download_consts[4] = {0, 0, 0, 0};
1743
1744 if (aic7xxx_verbose & VERBOSE_PROBE)
1745 {
1746 printk(KERN_INFO "(scsi%d) Downloading sequencer code...", p->host_no);
1747 }
1748 #if 0
1749 download_consts[TMODE_NUMCMDS] = p->num_targetcmds;
1750 #endif
1751 download_consts[TMODE_NUMCMDS] = 0;
1752 cur_patch = &sequencer_patches[0];
1753 downloaded = 0;
1754 skip_addr = 0;
1755
1756 aic_outb(p, PERRORDIS|LOADRAM|FAILDIS|FASTMODE, SEQCTL);
1757 aic_outb(p, 0, SEQADDR0);
1758 aic_outb(p, 0, SEQADDR1);
1759
1760 for (i = 0; i < sizeof(seqprog) / 4; i++)
1761 {
1762 if (aic7xxx_check_patch(p, &cur_patch, i, &skip_addr) == 0)
1763 {
1764 /* Skip this instruction for this configuration. */
1765 continue;
1766 }
1767 aic7xxx_download_instr(p, i, &download_consts[0]);
1768 downloaded++;
1769 }
1770
1771 aic_outb(p, 0, SEQADDR0);
1772 aic_outb(p, 0, SEQADDR1);
1773 aic_outb(p, FASTMODE | FAILDIS, SEQCTL);
1774 unpause_sequencer(p, TRUE);
1775 mdelay(1);
1776 pause_sequencer(p);
1777 aic_outb(p, FASTMODE, SEQCTL);
1778 if (aic7xxx_verbose & VERBOSE_PROBE)
1779 {
1780 printk(" %d instructions downloaded\n", downloaded);
1781 }
1782 if (aic7xxx_dump_sequencer)
1783 aic7xxx_print_sequencer(p, downloaded);
1784 }
1785
1786 /*+F*************************************************************************
1787 * Function:
1788 * aic7xxx_print_sequencer
1789 *
1790 * Description:
1791 * Print the contents of the sequencer memory to the screen.
1792 *-F*************************************************************************/
1793 static void
1794 aic7xxx_print_sequencer(struct aic7xxx_host *p, int downloaded)
1795 {
1796 int i, k, temp;
1797
1798 aic_outb(p, PERRORDIS|LOADRAM|FAILDIS|FASTMODE, SEQCTL);
1799 aic_outb(p, 0, SEQADDR0);
1800 aic_outb(p, 0, SEQADDR1);
1801
1802 k = 0;
1803 for (i=0; i < downloaded; i++)
1804 {
1805 if ( k == 0 )
1806 printk("%03x: ", i);
1807 temp = aic_inb(p, SEQRAM);
1808 temp |= (aic_inb(p, SEQRAM) << 8);
1809 temp |= (aic_inb(p, SEQRAM) << 16);
1810 temp |= (aic_inb(p, SEQRAM) << 24);
1811 printk("%08x", temp);
1812 if ( ++k == 8 )
1813 {
1814 printk("\n");
1815 k = 0;
1816 }
1817 else
1818 printk(" ");
1819 }
1820 aic_outb(p, 0, SEQADDR0);
1821 aic_outb(p, 0, SEQADDR1);
1822 aic_outb(p, FASTMODE | FAILDIS, SEQCTL);
1823 unpause_sequencer(p, TRUE);
1824 mdelay(1);
1825 pause_sequencer(p);
1826 aic_outb(p, FASTMODE, SEQCTL);
1827 printk("\n");
1828 }
1829
1830 /*+F*************************************************************************
1831 * Function:
1832 * aic7xxx_info
1833 *
1834 * Description:
1835 * Return a string describing the driver.
1836 *-F*************************************************************************/
1837 static const char *
1838 aic7xxx_info(struct Scsi_Host *dooh)
1839 {
1840 static char buffer[256];
1841 char *bp;
1842 struct aic7xxx_host *p;
1843
1844 bp = &buffer[0];
1845 p = (struct aic7xxx_host *)dooh->hostdata;
1846 memset(bp, 0, sizeof(buffer));
1847 strcpy(bp, "Adaptec AHA274x/284x/294x (EISA/VLB/PCI-Fast SCSI) ");
1848 strcat(bp, AIC7XXX_C_VERSION);
1849 strcat(bp, "/");
1850 strcat(bp, AIC7XXX_H_VERSION);
1851 strcat(bp, "\n");
1852 strcat(bp, " <");
1853 strcat(bp, board_names[p->board_name_index]);
1854 strcat(bp, ">");
1855
1856 return(bp);
1857 }
1858
1859 /*+F*************************************************************************
1860 * Function:
1861 * aic7xxx_find_syncrate
1862 *
1863 * Description:
1864 * Look up the valid period to SCSIRATE conversion in our table
1865 *-F*************************************************************************/
1866 static struct aic7xxx_syncrate *
1867 aic7xxx_find_syncrate(struct aic7xxx_host *p, unsigned int *period,
1868 unsigned int maxsync, unsigned char *options)
1869 {
1870 struct aic7xxx_syncrate *syncrate;
1871 int done = FALSE;
1872
1873 switch(*options)
1874 {
1875 case MSG_EXT_PPR_OPTION_DT_CRC:
1876 case MSG_EXT_PPR_OPTION_DT_UNITS:
1877 if(!(p->features & AHC_ULTRA3))
1878 {
1879 *options = 0;
1880 maxsync = max_t(unsigned int, maxsync, AHC_SYNCRATE_ULTRA2);
1881 }
1882 break;
1883 case MSG_EXT_PPR_OPTION_DT_CRC_QUICK:
1884 case MSG_EXT_PPR_OPTION_DT_UNITS_QUICK:
1885 if(!(p->features & AHC_ULTRA3))
1886 {
1887 *options = 0;
1888 maxsync = max_t(unsigned int, maxsync, AHC_SYNCRATE_ULTRA2);
1889 }
1890 else
1891 {
1892 /*
1893 * we don't support the Quick Arbitration variants of dual edge
1894 * clocking. As it turns out, we want to send back the
1895 * same basic option, but without the QA attribute.
1896 * We know that we are responding because we would never set
1897 * these options ourself, we would only respond to them.
1898 */
1899 switch(*options)
1900 {
1901 case MSG_EXT_PPR_OPTION_DT_CRC_QUICK:
1902 *options = MSG_EXT_PPR_OPTION_DT_CRC;
1903 break;
1904 case MSG_EXT_PPR_OPTION_DT_UNITS_QUICK:
1905 *options = MSG_EXT_PPR_OPTION_DT_UNITS;
1906 break;
1907 }
1908 }
1909 break;
1910 default:
1911 *options = 0;
1912 maxsync = max_t(unsigned int, maxsync, AHC_SYNCRATE_ULTRA2);
1913 break;
1914 }
1915 syncrate = &aic7xxx_syncrates[maxsync];
1916 while ( (syncrate->rate[0] != NULL) &&
1917 (!(p->features & AHC_ULTRA2) || syncrate->sxfr_ultra2) )
1918 {
1919 if (*period <= syncrate->period)
1920 {
1921 switch(*options)
1922 {
1923 case MSG_EXT_PPR_OPTION_DT_CRC:
1924 case MSG_EXT_PPR_OPTION_DT_UNITS:
1925 if(!(syncrate->sxfr_ultra2 & AHC_SYNCRATE_CRC))
1926 {
1927 done = TRUE;
1928 /*
1929 * oops, we went too low for the CRC/DualEdge signalling, so
1930 * clear the options byte
1931 */
1932 *options = 0;
1933 /*
1934 * We'll be sending a reply to this packet to set the options
1935 * properly, so unilaterally set the period as well.
1936 */
1937 *period = syncrate->period;
1938 }
1939 else
1940 {
1941 done = TRUE;
1942 if(syncrate == &aic7xxx_syncrates[maxsync])
1943 {
1944 *period = syncrate->period;
1945 }
1946 }
1947 break;
1948 default:
1949 if(!(syncrate->sxfr_ultra2 & AHC_SYNCRATE_CRC))
1950 {
1951 done = TRUE;
1952 if(syncrate == &aic7xxx_syncrates[maxsync])
1953 {
1954 *period = syncrate->period;
1955 }
1956 }
1957 break;
1958 }
1959 if(done)
1960 {
1961 break;
1962 }
1963 }
1964 syncrate++;
1965 }
1966 if ( (*period == 0) || (syncrate->rate[0] == NULL) ||
1967 ((p->features & AHC_ULTRA2) && (syncrate->sxfr_ultra2 == 0)) )
1968 {
1969 /*
1970 * Use async transfers for this target
1971 */
1972 *options = 0;
1973 *period = 255;
1974 syncrate = NULL;
1975 }
1976 return (syncrate);
1977 }
1978
1979
1980 /*+F*************************************************************************
1981 * Function:
1982 * aic7xxx_find_period
1983 *
1984 * Description:
1985 * Look up the valid SCSIRATE to period conversion in our table
1986 *-F*************************************************************************/
1987 static unsigned int
1988 aic7xxx_find_period(struct aic7xxx_host *p, unsigned int scsirate,
1989 unsigned int maxsync)
1990 {
1991 struct aic7xxx_syncrate *syncrate;
1992
1993 if (p->features & AHC_ULTRA2)
1994 {
1995 scsirate &= SXFR_ULTRA2;
1996 }
1997 else
1998 {
1999 scsirate &= SXFR;
2000 }
2001
2002 syncrate = &aic7xxx_syncrates[maxsync];
2003 while (syncrate->rate[0] != NULL)
2004 {
2005 if (p->features & AHC_ULTRA2)
2006 {
2007 if (syncrate->sxfr_ultra2 == 0)
2008 break;
2009 else if (scsirate == syncrate->sxfr_ultra2)
2010 return (syncrate->period);
2011 else if (scsirate == (syncrate->sxfr_ultra2 & ~AHC_SYNCRATE_CRC))
2012 return (syncrate->period);
2013 }
2014 else if (scsirate == (syncrate->sxfr & ~ULTRA_SXFR))
2015 {
2016 return (syncrate->period);
2017 }
2018 syncrate++;
2019 }
2020 return (0); /* async */
2021 }
2022
2023 /*+F*************************************************************************
2024 * Function:
2025 * aic7xxx_validate_offset
2026 *
2027 * Description:
2028 * Set a valid offset value for a particular card in use and transfer
2029 * settings in use.
2030 *-F*************************************************************************/
2031 static void
2032 aic7xxx_validate_offset(struct aic7xxx_host *p,
2033 struct aic7xxx_syncrate *syncrate, unsigned int *offset, int wide)
2034 {
2035 unsigned int maxoffset;
2036
2037 /* Limit offset to what the card (and device) can do */
2038 if (syncrate == NULL)
2039 {
2040 maxoffset = 0;
2041 }
2042 else if (p->features & AHC_ULTRA2)
2043 {
2044 maxoffset = MAX_OFFSET_ULTRA2;
2045 }
2046 else
2047 {
2048 if (wide)
2049 maxoffset = MAX_OFFSET_16BIT;
2050 else
2051 maxoffset = MAX_OFFSET_8BIT;
2052 }
2053 *offset = min(*offset, maxoffset);
2054 }
2055
2056 /*+F*************************************************************************
2057 * Function:
2058 * aic7xxx_set_syncrate
2059 *
2060 * Description:
2061 * Set the actual syncrate down in the card and in our host structs
2062 *-F*************************************************************************/
2063 static void
2064 aic7xxx_set_syncrate(struct aic7xxx_host *p, struct aic7xxx_syncrate *syncrate,
2065 int target, int channel, unsigned int period, unsigned int offset,
2066 unsigned char options, unsigned int type, struct aic_dev_data *aic_dev)
2067 {
2068 unsigned char tindex;
2069 unsigned short target_mask;
2070 unsigned char lun, old_options;
2071 unsigned int old_period, old_offset;
2072
2073 tindex = target | (channel << 3);
2074 target_mask = 0x01 << tindex;
2075 lun = aic_inb(p, SCB_TCL) & 0x07;
2076
2077 if (syncrate == NULL)
2078 {
2079 period = 0;
2080 offset = 0;
2081 }
2082
2083 old_period = aic_dev->cur.period;
2084 old_offset = aic_dev->cur.offset;
2085 old_options = aic_dev->cur.options;
2086
2087
2088 if (type & AHC_TRANS_CUR)
2089 {
2090 unsigned int scsirate;
2091
2092 scsirate = aic_inb(p, TARG_SCSIRATE + tindex);
2093 if (p->features & AHC_ULTRA2)
2094 {
2095 scsirate &= ~SXFR_ULTRA2;
2096 if (syncrate != NULL)
2097 {
2098 switch(options)
2099 {
2100 case MSG_EXT_PPR_OPTION_DT_UNITS:
2101 /*
2102 * mask off the CRC bit in the xfer settings
2103 */
2104 scsirate |= (syncrate->sxfr_ultra2 & ~AHC_SYNCRATE_CRC);
2105 break;
2106 default:
2107 scsirate |= syncrate->sxfr_ultra2;
2108 break;
2109 }
2110 }
2111 if (type & AHC_TRANS_ACTIVE)
2112 {
2113 aic_outb(p, offset, SCSIOFFSET);
2114 }
2115 aic_outb(p, offset, TARG_OFFSET + tindex);
2116 }
2117 else /* Not an Ultra2 controller */
2118 {
2119 scsirate &= ~(SXFR|SOFS);
2120 p->ultraenb &= ~target_mask;
2121 if (syncrate != NULL)
2122 {
2123 if (syncrate->sxfr & ULTRA_SXFR)
2124 {
2125 p->ultraenb |= target_mask;
2126 }
2127 scsirate |= (syncrate->sxfr & SXFR);
2128 scsirate |= (offset & SOFS);
2129 }
2130 if (type & AHC_TRANS_ACTIVE)
2131 {
2132 unsigned char sxfrctl0;
2133
2134 sxfrctl0 = aic_inb(p, SXFRCTL0);
2135 sxfrctl0 &= ~FAST20;
2136 if (p->ultraenb & target_mask)
2137 sxfrctl0 |= FAST20;
2138 aic_outb(p, sxfrctl0, SXFRCTL0);
2139 }
2140 aic_outb(p, p->ultraenb & 0xff, ULTRA_ENB);
2141 aic_outb(p, (p->ultraenb >> 8) & 0xff, ULTRA_ENB + 1 );
2142 }
2143 if (type & AHC_TRANS_ACTIVE)
2144 {
2145 aic_outb(p, scsirate, SCSIRATE);
2146 }
2147 aic_outb(p, scsirate, TARG_SCSIRATE + tindex);
2148 aic_dev->cur.period = period;
2149 aic_dev->cur.offset = offset;
2150 aic_dev->cur.options = options;
2151 if ( !(type & AHC_TRANS_QUITE) &&
2152 (aic7xxx_verbose & VERBOSE_NEGOTIATION) &&
2153 (aic_dev->flags & DEVICE_PRINT_DTR) )
2154 {
2155 if (offset)
2156 {
2157 int rate_mod = (scsirate & WIDEXFER) ? 1 : 0;
2158
2159 printk(INFO_LEAD "Synchronous at %s Mbyte/sec, "
2160 "offset %d.\n", p->host_no, channel, target, lun,
2161 syncrate->rate[rate_mod], offset);
2162 }
2163 else
2164 {
2165 printk(INFO_LEAD "Using asynchronous transfers.\n",
2166 p->host_no, channel, target, lun);
2167 }
2168 aic_dev->flags &= ~DEVICE_PRINT_DTR;
2169 }
2170 }
2171
2172 if (type & AHC_TRANS_GOAL)
2173 {
2174 aic_dev->goal.period = period;
2175 aic_dev->goal.offset = offset;
2176 aic_dev->goal.options = options;
2177 }
2178
2179 if (type & AHC_TRANS_USER)
2180 {
2181 p->user[tindex].period = period;
2182 p->user[tindex].offset = offset;
2183 p->user[tindex].options = options;
2184 }
2185 }
2186
2187 /*+F*************************************************************************
2188 * Function:
2189 * aic7xxx_set_width
2190 *
2191 * Description:
2192 * Set the actual width down in the card and in our host structs
2193 *-F*************************************************************************/
2194 static void
2195 aic7xxx_set_width(struct aic7xxx_host *p, int target, int channel, int lun,
2196 unsigned int width, unsigned int type, struct aic_dev_data *aic_dev)
2197 {
2198 unsigned char tindex;
2199 unsigned short target_mask;
2200 unsigned int old_width;
2201
2202 tindex = target | (channel << 3);
2203 target_mask = 1 << tindex;
2204
2205 old_width = aic_dev->cur.width;
2206
2207 if (type & AHC_TRANS_CUR)
2208 {
2209 unsigned char scsirate;
2210
2211 scsirate = aic_inb(p, TARG_SCSIRATE + tindex);
2212
2213 scsirate &= ~WIDEXFER;
2214 if (width == MSG_EXT_WDTR_BUS_16_BIT)
2215 scsirate |= WIDEXFER;
2216
2217 aic_outb(p, scsirate, TARG_SCSIRATE + tindex);
2218
2219 if (type & AHC_TRANS_ACTIVE)
2220 aic_outb(p, scsirate, SCSIRATE);
2221
2222 aic_dev->cur.width = width;
2223
2224 if ( !(type & AHC_TRANS_QUITE) &&
2225 (aic7xxx_verbose & VERBOSE_NEGOTIATION2) &&
2226 (aic_dev->flags & DEVICE_PRINT_DTR) )
2227 {
2228 printk(INFO_LEAD "Using %s transfers\n", p->host_no, channel, target,
2229 lun, (scsirate & WIDEXFER) ? "Wide(16bit)" : "Narrow(8bit)" );
2230 }
2231 }
2232
2233 if (type & AHC_TRANS_GOAL)
2234 aic_dev->goal.width = width;
2235 if (type & AHC_TRANS_USER)
2236 p->user[tindex].width = width;
2237
2238 if (aic_dev->goal.offset)
2239 {
2240 if (p->features & AHC_ULTRA2)
2241 {
2242 aic_dev->goal.offset = MAX_OFFSET_ULTRA2;
2243 }
2244 else if (width == MSG_EXT_WDTR_BUS_16_BIT)
2245 {
2246 aic_dev->goal.offset = MAX_OFFSET_16BIT;
2247 }
2248 else
2249 {
2250 aic_dev->goal.offset = MAX_OFFSET_8BIT;
2251 }
2252 }
2253 }
2254
2255 /*+F*************************************************************************
2256 * Function:
2257 * scbq_init
2258 *
2259 * Description:
2260 * SCB queue initialization.
2261 *
2262 *-F*************************************************************************/
2263 static void
2264 scbq_init(volatile scb_queue_type *queue)
2265 {
2266 queue->head = NULL;
2267 queue->tail = NULL;
2268 }
2269
2270 /*+F*************************************************************************
2271 * Function:
2272 * scbq_insert_head
2273 *
2274 * Description:
2275 * Add an SCB to the head of the list.
2276 *
2277 *-F*************************************************************************/
2278 static inline void
2279 scbq_insert_head(volatile scb_queue_type *queue, struct aic7xxx_scb *scb)
2280 {
2281 scb->q_next = queue->head;
2282 queue->head = scb;
2283 if (queue->tail == NULL) /* If list was empty, update tail. */
2284 queue->tail = queue->head;
2285 }
2286
2287 /*+F*************************************************************************
2288 * Function:
2289 * scbq_remove_head
2290 *
2291 * Description:
2292 * Remove an SCB from the head of the list.
2293 *
2294 *-F*************************************************************************/
2295 static inline struct aic7xxx_scb *
2296 scbq_remove_head(volatile scb_queue_type *queue)
2297 {
2298 struct aic7xxx_scb * scbp;
2299
2300 scbp = queue->head;
2301 if (queue->head != NULL)
2302 queue->head = queue->head->q_next;
2303 if (queue->head == NULL) /* If list is now empty, update tail. */
2304 queue->tail = NULL;
2305 return(scbp);
2306 }
2307
2308 /*+F*************************************************************************
2309 * Function:
2310 * scbq_remove
2311 *
2312 * Description:
2313 * Removes an SCB from the list.
2314 *
2315 *-F*************************************************************************/
2316 static inline void
2317 scbq_remove(volatile scb_queue_type *queue, struct aic7xxx_scb *scb)
2318 {
2319 if (queue->head == scb)
2320 {
2321 /* At beginning of queue, remove from head. */
2322 scbq_remove_head(queue);
2323 }
2324 else
2325 {
2326 struct aic7xxx_scb *curscb = queue->head;
2327
2328 /*
2329 * Search until the next scb is the one we're looking for, or
2330 * we run out of queue.
2331 */
2332 while ((curscb != NULL) && (curscb->q_next != scb))
2333 {
2334 curscb = curscb->q_next;
2335 }
2336 if (curscb != NULL)
2337 {
2338 /* Found it. */
2339 curscb->q_next = scb->q_next;
2340 if (scb->q_next == NULL)
2341 {
2342 /* Update the tail when removing the tail. */
2343 queue->tail = curscb;
2344 }
2345 }
2346 }
2347 }
2348
2349 /*+F*************************************************************************
2350 * Function:
2351 * scbq_insert_tail
2352 *
2353 * Description:
2354 * Add an SCB at the tail of the list.
2355 *
2356 *-F*************************************************************************/
2357 static inline void
2358 scbq_insert_tail(volatile scb_queue_type *queue, struct aic7xxx_scb *scb)
2359 {
2360 scb->q_next = NULL;
2361 if (queue->tail != NULL) /* Add the scb at the end of the list. */
2362 queue->tail->q_next = scb;
2363 queue->tail = scb; /* Update the tail. */
2364 if (queue->head == NULL) /* If list was empty, update head. */
2365 queue->head = queue->tail;
2366 }
2367
2368 /*+F*************************************************************************
2369 * Function:
2370 * aic7xxx_match_scb
2371 *
2372 * Description:
2373 * Checks to see if an scb matches the target/channel as specified.
2374 * If target is ALL_TARGETS (-1), then we're looking for any device
2375 * on the specified channel; this happens when a channel is going
2376 * to be reset and all devices on that channel must be aborted.
2377 *-F*************************************************************************/
2378 static int
2379 aic7xxx_match_scb(struct aic7xxx_host *p, struct aic7xxx_scb *scb,
2380 int target, int channel, int lun, unsigned char tag)
2381 {
2382 int targ = (scb->hscb->target_channel_lun >> 4) & 0x0F;
2383 int chan = (scb->hscb->target_channel_lun >> 3) & 0x01;
2384 int slun = scb->hscb->target_channel_lun & 0x07;
2385 int match;
2386
2387 match = ((chan == channel) || (channel == ALL_CHANNELS));
2388 if (match != 0)
2389 match = ((targ == target) || (target == ALL_TARGETS));
2390 if (match != 0)
2391 match = ((lun == slun) || (lun == ALL_LUNS));
2392 if (match != 0)
2393 match = ((tag == scb->hscb->tag) || (tag == SCB_LIST_NULL));
2394
2395 return (match);
2396 }
2397
2398 /*+F*************************************************************************
2399 * Function:
2400 * aic7xxx_add_curscb_to_free_list
2401 *
2402 * Description:
2403 * Adds the current scb (in SCBPTR) to the list of free SCBs.
2404 *-F*************************************************************************/
2405 static void
2406 aic7xxx_add_curscb_to_free_list(struct aic7xxx_host *p)
2407 {
2408 /*
2409 * Invalidate the tag so that aic7xxx_find_scb doesn't think
2410 * it's active
2411 */
2412 aic_outb(p, SCB_LIST_NULL, SCB_TAG);
2413 aic_outb(p, 0, SCB_CONTROL);
2414
2415 aic_outb(p, aic_inb(p, FREE_SCBH), SCB_NEXT);
2416 aic_outb(p, aic_inb(p, SCBPTR), FREE_SCBH);
2417 }
2418
2419 /*+F*************************************************************************
2420 * Function:
2421 * aic7xxx_rem_scb_from_disc_list
2422 *
2423 * Description:
2424 * Removes the current SCB from the disconnected list and adds it
2425 * to the free list.
2426 *-F*************************************************************************/
2427 static unsigned char
2428 aic7xxx_rem_scb_from_disc_list(struct aic7xxx_host *p, unsigned char scbptr,
2429 unsigned char prev)
2430 {
2431 unsigned char next;
2432
2433 aic_outb(p, scbptr, SCBPTR);
2434 next = aic_inb(p, SCB_NEXT);
2435 aic7xxx_add_curscb_to_free_list(p);
2436
2437 if (prev != SCB_LIST_NULL)
2438 {
2439 aic_outb(p, prev, SCBPTR);
2440 aic_outb(p, next, SCB_NEXT);
2441 }
2442 else
2443 {
2444 aic_outb(p, next, DISCONNECTED_SCBH);
2445 }
2446
2447 return next;
2448 }
2449
2450 /*+F*************************************************************************
2451 * Function:
2452 * aic7xxx_busy_target
2453 *
2454 * Description:
2455 * Set the specified target busy.
2456 *-F*************************************************************************/
2457 static inline void
2458 aic7xxx_busy_target(struct aic7xxx_host *p, struct aic7xxx_scb *scb)
2459 {
2460 p->untagged_scbs[scb->hscb->target_channel_lun] = scb->hscb->tag;
2461 }
2462
2463 /*+F*************************************************************************
2464 * Function:
2465 * aic7xxx_index_busy_target
2466 *
2467 * Description:
2468 * Returns the index of the busy target, and optionally sets the
2469 * target inactive.
2470 *-F*************************************************************************/
2471 static inline unsigned char
2472 aic7xxx_index_busy_target(struct aic7xxx_host *p, unsigned char tcl,
2473 int unbusy)
2474 {
2475 unsigned char busy_scbid;
2476
2477 busy_scbid = p->untagged_scbs[tcl];
2478 if (unbusy)
2479 {
2480 p->untagged_scbs[tcl] = SCB_LIST_NULL;
2481 }
2482 return (busy_scbid);
2483 }
2484
2485 /*+F*************************************************************************
2486 * Function:
2487 * aic7xxx_find_scb
2488 *
2489 * Description:
2490 * Look through the SCB array of the card and attempt to find the
2491 * hardware SCB that corresponds to the passed in SCB. Return
2492 * SCB_LIST_NULL if unsuccessful. This routine assumes that the
2493 * card is already paused.
2494 *-F*************************************************************************/
2495 static unsigned char
2496 aic7xxx_find_scb(struct aic7xxx_host *p, struct aic7xxx_scb *scb)
2497 {
2498 unsigned char saved_scbptr;
2499 unsigned char curindex;
2500
2501 saved_scbptr = aic_inb(p, SCBPTR);
2502 curindex = 0;
2503 for (curindex = 0; curindex < p->scb_data->maxhscbs; curindex++)
2504 {
2505 aic_outb(p, curindex, SCBPTR);
2506 if (aic_inb(p, SCB_TAG) == scb->hscb->tag)
2507 {
2508 break;
2509 }
2510 }
2511 aic_outb(p, saved_scbptr, SCBPTR);
2512 if (curindex >= p->scb_data->maxhscbs)
2513 {
2514 curindex = SCB_LIST_NULL;
2515 }
2516
2517 return (curindex);
2518 }
2519
2520 /*+F*************************************************************************
2521 * Function:
2522 * aic7xxx_allocate_scb
2523 *
2524 * Description:
2525 * Get an SCB from the free list or by allocating a new one.
2526 *-F*************************************************************************/
2527 static int
2528 aic7xxx_allocate_scb(struct aic7xxx_host *p)
2529 {
2530 struct aic7xxx_scb *scbp = NULL;
2531 int scb_size = (sizeof (struct hw_scatterlist) * AIC7XXX_MAX_SG) + 12 + 6;
2532 int i;
2533 int step = PAGE_SIZE / 1024;
2534 unsigned long scb_count = 0;
2535 struct hw_scatterlist *hsgp;
2536 struct aic7xxx_scb *scb_ap;
2537 struct aic7xxx_scb_dma *scb_dma;
2538 unsigned char *bufs;
2539
2540 if (p->scb_data->numscbs < p->scb_data->maxscbs)
2541 {
2542 /*
2543 * Calculate the optimal number of SCBs to allocate.
2544 *
2545 * NOTE: This formula works because the sizeof(sg_array) is always
2546 * 1024. Therefore, scb_size * i would always be > PAGE_SIZE *
2547 * (i/step). The (i-1) allows the left hand side of the equation
2548 * to grow into the right hand side to a point of near perfect
2549 * efficiency since scb_size * (i -1) is growing slightly faster
2550 * than the right hand side. If the number of SG array elements
2551 * is changed, this function may not be near so efficient any more.
2552 *
2553 * Since the DMA'able buffers are now allocated in a separate
2554 * chunk this algorithm has been modified to match. The '12'
2555 * and '6' factors in scb_size are for the DMA'able command byte
2556 * and sensebuffers respectively. -DaveM
2557 */
2558 for ( i=step;; i *= 2 )
2559 {
2560 if ( (scb_size * (i-1)) >= ( (PAGE_SIZE * (i/step)) - 64 ) )
2561 {
2562 i /= 2;
2563 break;
2564 }
2565 }
2566 scb_count = min( (i-1), p->scb_data->maxscbs - p->scb_data->numscbs);
2567 scb_ap = kmalloc(sizeof (struct aic7xxx_scb) * scb_count
2568 + sizeof(struct aic7xxx_scb_dma), GFP_ATOMIC);
2569 if (scb_ap == NULL)
2570 return(0);
2571 scb_dma = (struct aic7xxx_scb_dma *)&scb_ap[scb_count];
2572 hsgp = (struct hw_scatterlist *)
2573 pci_alloc_consistent(p->pdev, scb_size * scb_count,
2574 &scb_dma->dma_address);
2575 if (hsgp == NULL)
2576 {
2577 kfree(scb_ap);
2578 return(0);
2579 }
2580 bufs = (unsigned char *)&hsgp[scb_count * AIC7XXX_MAX_SG];
2581 #ifdef AIC7XXX_VERBOSE_DEBUGGING
2582 if (aic7xxx_verbose > 0xffff)
2583 {
2584 if (p->scb_data->numscbs == 0)
2585 printk(INFO_LEAD "Allocating initial %ld SCB structures.\n",
2586 p->host_no, -1, -1, -1, scb_count);
2587 else
2588 printk(INFO_LEAD "Allocating %ld additional SCB structures.\n",
2589 p->host_no, -1, -1, -1, scb_count);
2590 }
2591 #endif
2592 memset(scb_ap, 0, sizeof (struct aic7xxx_scb) * scb_count);
2593 scb_dma->dma_offset = (unsigned long)scb_dma->dma_address
2594 - (unsigned long)hsgp;
2595 scb_dma->dma_len = scb_size * scb_count;
2596 for (i=0; i < scb_count; i++)
2597 {
2598 scbp = &scb_ap[i];
2599 scbp->hscb = &p->scb_data->hscbs[p->scb_data->numscbs];
2600 scbp->sg_list = &hsgp[i * AIC7XXX_MAX_SG];
2601 scbp->sense_cmd = bufs;
2602 scbp->cmnd = bufs + 6;
2603 bufs += 12 + 6;
2604 scbp->scb_dma = scb_dma;
2605 memset(scbp->hscb, 0, sizeof(struct aic7xxx_hwscb));
2606 scbp->hscb->tag = p->scb_data->numscbs;
2607 /*
2608 * Place in the scb array; never is removed
2609 */
2610 p->scb_data->scb_array[p->scb_data->numscbs++] = scbp;
2611 scbq_insert_tail(&p->scb_data->free_scbs, scbp);
2612 }
2613 scbp->kmalloc_ptr = scb_ap;
2614 }
2615 return(scb_count);
2616 }
2617
2618 /*+F*************************************************************************
2619 * Function:
2620 * aic7xxx_queue_cmd_complete
2621 *
2622 * Description:
2623 * Due to race conditions present in the SCSI subsystem, it is easier
2624 * to queue completed commands, then call scsi_done() on them when
2625 * we're finished. This function queues the completed commands.
2626 *-F*************************************************************************/
2627 static void
2628 aic7xxx_queue_cmd_complete(struct aic7xxx_host *p, struct scsi_cmnd *cmd)
2629 {
2630 aic7xxx_position(cmd) = SCB_LIST_NULL;
2631 cmd->host_scribble = (char *)p->completeq.head;
2632 p->completeq.head = cmd;
2633 }
2634
2635 /*+F*************************************************************************
2636 * Function:
2637 * aic7xxx_done_cmds_complete
2638 *
2639 * Description:
2640 * Process the completed command queue.
2641 *-F*************************************************************************/
2642 static void aic7xxx_done_cmds_complete(struct aic7xxx_host *p)
2643 {
2644 struct scsi_cmnd *cmd;
2645
2646 while (p->completeq.head != NULL) {
2647 cmd = p->completeq.head;
2648 p->completeq.head = (struct scsi_cmnd *) cmd->host_scribble;
2649 cmd->host_scribble = NULL;
2650 cmd->scsi_done(cmd);
2651 }
2652 }
2653
2654 /*+F*************************************************************************
2655 * Function:
2656 * aic7xxx_free_scb
2657 *
2658 * Description:
2659 * Free the scb and insert into the free scb list.
2660 *-F*************************************************************************/
2661 static void
2662 aic7xxx_free_scb(struct aic7xxx_host *p, struct aic7xxx_scb *scb)
2663 {
2664
2665 scb->flags = SCB_FREE;
2666 scb->cmd = NULL;
2667 scb->sg_count = 0;
2668 scb->sg_length = 0;
2669 scb->tag_action = 0;
2670 scb->hscb->control = 0;
2671 scb->hscb->target_status = 0;
2672 scb->hscb->target_channel_lun = SCB_LIST_NULL;
2673
2674 scbq_insert_head(&p->scb_data->free_scbs, scb);
2675 }
2676
2677 /*+F*************************************************************************
2678 * Function:
2679 * aic7xxx_done
2680 *
2681 * Description:
2682 * Calls the higher level scsi done function and frees the scb.
2683 *-F*************************************************************************/
2684 static void
2685 aic7xxx_done(struct aic7xxx_host *p, struct aic7xxx_scb *scb)
2686 {
2687 struct scsi_cmnd *cmd = scb->cmd;
2688 struct aic_dev_data *aic_dev = cmd->device->hostdata;
2689 int tindex = TARGET_INDEX(cmd);
2690 struct aic7xxx_scb *scbp;
2691 unsigned char queue_depth;
2692
2693 scsi_dma_unmap(cmd);
2694
2695 if (scb->flags & SCB_SENSE)
2696 {
2697 pci_unmap_single(p->pdev,
2698 le32_to_cpu(scb->sg_list[0].address),
2699 SCSI_SENSE_BUFFERSIZE,
2700 PCI_DMA_FROMDEVICE);
2701 }
2702 if (scb->flags & SCB_RECOVERY_SCB)
2703 {
2704 p->flags &= ~AHC_ABORT_PENDING;
2705 }
2706 if (scb->flags & (SCB_RESET|SCB_ABORT))
2707 {
2708 cmd->result |= (DID_RESET << 16);
2709 }
2710
2711 if ((scb->flags & SCB_MSGOUT_BITS) != 0)
2712 {
2713 unsigned short mask;
2714 int message_error = FALSE;
2715
2716 mask = 0x01 << tindex;
2717
2718 /*
2719 * Check to see if we get an invalid message or a message error
2720 * after failing to negotiate a wide or sync transfer message.
2721 */
2722 if ((scb->flags & SCB_SENSE) &&
2723 ((scb->cmd->sense_buffer[12] == 0x43) || /* INVALID_MESSAGE */
2724 (scb->cmd->sense_buffer[12] == 0x49))) /* MESSAGE_ERROR */
2725 {
2726 message_error = TRUE;
2727 }
2728
2729 if (scb->flags & SCB_MSGOUT_WDTR)
2730 {
2731 if (message_error)
2732 {
2733 if ( (aic7xxx_verbose & VERBOSE_NEGOTIATION2) &&
2734 (aic_dev->flags & DEVICE_PRINT_DTR) )
2735 {
2736 printk(INFO_LEAD "Device failed to complete Wide Negotiation "
2737 "processing and\n", p->host_no, CTL_OF_SCB(scb));
2738 printk(INFO_LEAD "returned a sense error code for invalid message, "
2739 "disabling future\n", p->host_no, CTL_OF_SCB(scb));
2740 printk(INFO_LEAD "Wide negotiation to this device.\n", p->host_no,
2741 CTL_OF_SCB(scb));
2742 }
2743 aic_dev->needwdtr = aic_dev->needwdtr_copy = 0;
2744 }
2745 }
2746 if (scb->flags & SCB_MSGOUT_SDTR)
2747 {
2748 if (message_error)
2749 {
2750 if ( (aic7xxx_verbose & VERBOSE_NEGOTIATION2) &&
2751 (aic_dev->flags & DEVICE_PRINT_DTR) )
2752 {
2753 printk(INFO_LEAD "Device failed to complete Sync Negotiation "
2754 "processing and\n", p->host_no, CTL_OF_SCB(scb));
2755 printk(INFO_LEAD "returned a sense error code for invalid message, "
2756 "disabling future\n", p->host_no, CTL_OF_SCB(scb));
2757 printk(INFO_LEAD "Sync negotiation to this device.\n", p->host_no,
2758 CTL_OF_SCB(scb));
2759 aic_dev->flags &= ~DEVICE_PRINT_DTR;
2760 }
2761 aic_dev->needsdtr = aic_dev->needsdtr_copy = 0;
2762 }
2763 }
2764 if (scb->flags & SCB_MSGOUT_PPR)
2765 {
2766 if(message_error)
2767 {
2768 if ( (aic7xxx_verbose & VERBOSE_NEGOTIATION2) &&
2769 (aic_dev->flags & DEVICE_PRINT_DTR) )
2770 {
2771 printk(INFO_LEAD "Device failed to complete Parallel Protocol "
2772 "Request processing and\n", p->host_no, CTL_OF_SCB(scb));
2773 printk(INFO_LEAD "returned a sense error code for invalid message, "
2774 "disabling future\n", p->host_no, CTL_OF_SCB(scb));
2775 printk(INFO_LEAD "Parallel Protocol Request negotiation to this "
2776 "device.\n", p->host_no, CTL_OF_SCB(scb));
2777 }
2778 /*
2779 * Disable PPR negotiation and revert back to WDTR and SDTR setup
2780 */
2781 aic_dev->needppr = aic_dev->needppr_copy = 0;
2782 aic_dev->needsdtr = aic_dev->needsdtr_copy = 1;
2783 aic_dev->needwdtr = aic_dev->needwdtr_copy = 1;
2784 }
2785 }
2786 }
2787
2788 queue_depth = aic_dev->temp_q_depth;
2789 if (queue_depth >= aic_dev->active_cmds)
2790 {
2791 scbp = scbq_remove_head(&aic_dev->delayed_scbs);
2792 if (scbp)
2793 {
2794 if (queue_depth == 1)
2795 {
2796 /*
2797 * Give extra preference to untagged devices, such as CD-R devices
2798 * This makes it more likely that a drive *won't* stuff up while
2799 * waiting on data at a critical time, such as CD-R writing and
2800 * audio CD ripping operations. Should also benefit tape drives.
2801 */
2802 scbq_insert_head(&p->waiting_scbs, scbp);
2803 }
2804 else
2805 {
2806 scbq_insert_tail(&p->waiting_scbs, scbp);
2807 }
2808 #ifdef AIC7XXX_VERBOSE_DEBUGGING
2809 if (aic7xxx_verbose > 0xffff)
2810 printk(INFO_LEAD "Moving SCB from delayed to waiting queue.\n",
2811 p->host_no, CTL_OF_SCB(scbp));
2812 #endif
2813 if (queue_depth > aic_dev->active_cmds)
2814 {
2815 scbp = scbq_remove_head(&aic_dev->delayed_scbs);
2816 if (scbp)
2817 scbq_insert_tail(&p->waiting_scbs, scbp);
2818 }
2819 }
2820 }
2821 if (!(scb->tag_action))
2822 {
2823 aic7xxx_index_busy_target(p, scb->hscb->target_channel_lun,
2824 /* unbusy */ TRUE);
2825 if (cmd->device->simple_tags)
2826 {
2827 aic_dev->temp_q_depth = aic_dev->max_q_depth;
2828 }
2829 }
2830 if(scb->flags & SCB_DTR_SCB)
2831 {
2832 aic_dev->dtr_pending = 0;
2833 }
2834 aic_dev->active_cmds--;
2835 p->activescbs--;
2836
2837 if ((scb->sg_length >= 512) && (((cmd->result >> 16) & 0xf) == DID_OK))
2838 {
2839 long *ptr;
2840 int x, i;
2841
2842
2843 if (rq_data_dir(cmd->request) == WRITE)
2844 {
2845 aic_dev->w_total++;
2846 ptr = aic_dev->w_bins;
2847 }
2848 else
2849 {
2850 aic_dev->r_total++;
2851 ptr = aic_dev->r_bins;
2852 }
2853 x = scb->sg_length;
2854 x >>= 10;
2855 for(i=0; i<6; i++)
2856 {
2857 x >>= 2;
2858 if(!x) {
2859 ptr[i]++;
2860 break;
2861 }
2862 }
2863 if(i == 6 && x)
2864 ptr[5]++;
2865 }
2866 aic7xxx_free_scb(p, scb);
2867 aic7xxx_queue_cmd_complete(p, cmd);
2868
2869 }
2870
2871 /*+F*************************************************************************
2872 * Function:
2873 * aic7xxx_run_done_queue
2874 *
2875 * Description:
2876 * Calls the aic7xxx_done() for the scsi_cmnd of each scb in the
2877 * aborted list, and adds each scb to the free list. If complete
2878 * is TRUE, we also process the commands complete list.
2879 *-F*************************************************************************/
2880 static void
2881 aic7xxx_run_done_queue(struct aic7xxx_host *p, /*complete*/ int complete)
2882 {
2883 struct aic7xxx_scb *scb;
2884 int i, found = 0;
2885
2886 for (i = 0; i < p->scb_data->numscbs; i++)
2887 {
2888 scb = p->scb_data->scb_array[i];
2889 if (scb->flags & SCB_QUEUED_FOR_DONE)
2890 {
2891 if (scb->flags & SCB_QUEUE_FULL)
2892 {
2893 scb->cmd->result = QUEUE_FULL << 1;
2894 }
2895 else
2896 {
2897 if (aic7xxx_verbose & (VERBOSE_ABORT_PROCESS | VERBOSE_RESET_PROCESS))
2898 printk(INFO_LEAD "Aborting scb %d\n",
2899 p->host_no, CTL_OF_SCB(scb), scb->hscb->tag);
2900 /*
2901 * Clear any residual information since the normal aic7xxx_done() path
2902 * doesn't touch the residuals.
2903 */
2904 scb->hscb->residual_SG_segment_count = 0;
2905 scb->hscb->residual_data_count[0] = 0;
2906 scb->hscb->residual_data_count[1] = 0;
2907 scb->hscb->residual_data_count[2] = 0;
2908 }
2909 found++;
2910 aic7xxx_done(p, scb);
2911 }
2912 }
2913 if (aic7xxx_verbose & (VERBOSE_ABORT_RETURN | VERBOSE_RESET_RETURN))
2914 {
2915 printk(INFO_LEAD "%d commands found and queued for "
2916 "completion.\n", p->host_no, -1, -1, -1, found);
2917 }
2918 if (complete)
2919 {
2920 aic7xxx_done_cmds_complete(p);
2921 }
2922 }
2923
2924 /*+F*************************************************************************
2925 * Function:
2926 * aic7xxx_abort_waiting_scb
2927 *
2928 * Description:
2929 * Manipulate the waiting for selection list and return the
2930 * scb that follows the one that we remove.
2931 *-F*************************************************************************/
2932 static unsigned char
2933 aic7xxx_abort_waiting_scb(struct aic7xxx_host *p, struct aic7xxx_scb *scb,
2934 unsigned char scbpos, unsigned char prev)
2935 {
2936 unsigned char curscb, next;
2937
2938 /*
2939 * Select the SCB we want to abort and pull the next pointer out of it.
2940 */
2941 curscb = aic_inb(p, SCBPTR);
2942 aic_outb(p, scbpos, SCBPTR);
2943 next = aic_inb(p, SCB_NEXT);
2944
2945 aic7xxx_add_curscb_to_free_list(p);
2946
2947 /*
2948 * Update the waiting list
2949 */
2950 if (prev == SCB_LIST_NULL)
2951 {
2952 /*
2953 * First in the list
2954 */
2955 aic_outb(p, next, WAITING_SCBH);
2956 }
2957 else
2958 {
2959 /*
2960 * Select the scb that pointed to us and update its next pointer.
2961 */
2962 aic_outb(p, prev, SCBPTR);
2963 aic_outb(p, next, SCB_NEXT);
2964 }
2965 /*
2966 * Point us back at the original scb position and inform the SCSI
2967 * system that the command has been aborted.
2968 */
2969 aic_outb(p, curscb, SCBPTR);
2970 return (next);
2971 }
2972
2973 /*+F*************************************************************************
2974 * Function:
2975 * aic7xxx_search_qinfifo
2976 *
2977 * Description:
2978 * Search the queue-in FIFO for matching SCBs and conditionally
2979 * requeue. Returns the number of matching SCBs.
2980 *-F*************************************************************************/
2981 static int
2982 aic7xxx_search_qinfifo(struct aic7xxx_host *p, int target, int channel,
2983 int lun, unsigned char tag, int flags, int requeue,
2984 volatile scb_queue_type *queue)
2985 {
2986 int found;
2987 unsigned char qinpos, qintail;
2988 struct aic7xxx_scb *scbp;
2989
2990 found = 0;
2991 qinpos = aic_inb(p, QINPOS);
2992 qintail = p->qinfifonext;
2993
2994 p->qinfifonext = qinpos;
2995
2996 while (qinpos != qintail)
2997 {
2998 scbp = p->scb_data->scb_array[p->qinfifo[qinpos++]];
2999 if (aic7xxx_match_scb(p, scbp, target, channel, lun, tag))
3000 {
3001 /*
3002 * We found an scb that needs to be removed.
3003 */
3004 if (requeue && (queue != NULL))
3005 {
3006 if (scbp->flags & SCB_WAITINGQ)
3007 {
3008 scbq_remove(queue, scbp);
3009 scbq_remove(&p->waiting_scbs, scbp);
3010 scbq_remove(&AIC_DEV(scbp->cmd)->delayed_scbs, scbp);
3011 AIC_DEV(scbp->cmd)->active_cmds++;
3012 p->activescbs++;
3013 }
3014 scbq_insert_tail(queue, scbp);
3015 AIC_DEV(scbp->cmd)->active_cmds--;
3016 p->activescbs--;
3017 scbp->flags |= SCB_WAITINGQ;
3018 if ( !(scbp->tag_action & TAG_ENB) )
3019 {
3020 aic7xxx_index_busy_target(p, scbp->hscb->target_channel_lun,
3021 TRUE);
3022 }
3023 }
3024 else if (requeue)
3025 {
3026 p->qinfifo[p->qinfifonext++] = scbp->hscb->tag;
3027 }
3028 else
3029 {
3030 /*
3031 * Preserve any SCB_RECOVERY_SCB flags on this scb then set the
3032 * flags we were called with, presumeably so aic7xxx_run_done_queue
3033 * can find this scb
3034 */
3035 scbp->flags = flags | (scbp->flags & SCB_RECOVERY_SCB);
3036 if (aic7xxx_index_busy_target(p, scbp->hscb->target_channel_lun,
3037 FALSE) == scbp->hscb->tag)
3038 {
3039 aic7xxx_index_busy_target(p, scbp->hscb->target_channel_lun,
3040 TRUE);
3041 }
3042 }
3043 found++;
3044 }
3045 else
3046 {
3047 p->qinfifo[p->qinfifonext++] = scbp->hscb->tag;
3048 }
3049 }
3050 /*
3051 * Now that we've done the work, clear out any left over commands in the
3052 * qinfifo and update the KERNEL_QINPOS down on the card.
3053 *
3054 * NOTE: This routine expect the sequencer to already be paused when
3055 * it is run....make sure it's that way!
3056 */
3057 qinpos = p->qinfifonext;
3058 while(qinpos != qintail)
3059 {
3060 p->qinfifo[qinpos++] = SCB_LIST_NULL;
3061 }
3062 if (p->features & AHC_QUEUE_REGS)
3063 aic_outb(p, p->qinfifonext, HNSCB_QOFF);
3064 else
3065 aic_outb(p, p->qinfifonext, KERNEL_QINPOS);
3066
3067 return (found);
3068 }
3069
3070 /*+F*************************************************************************
3071 * Function:
3072 * aic7xxx_scb_on_qoutfifo
3073 *
3074 * Description:
3075 * Is the scb that was passed to us currently on the qoutfifo?
3076 *-F*************************************************************************/
3077 static int
3078 aic7xxx_scb_on_qoutfifo(struct aic7xxx_host *p, struct aic7xxx_scb *scb)
3079 {
3080 int i=0;
3081
3082 while(p->qoutfifo[(p->qoutfifonext + i) & 0xff ] != SCB_LIST_NULL)
3083 {
3084 if(p->qoutfifo[(p->qoutfifonext + i) & 0xff ] == scb->hscb->tag)
3085 return TRUE;
3086 else
3087 i++;
3088 }
3089 return FALSE;
3090 }
3091
3092
3093 /*+F*************************************************************************
3094 * Function:
3095 * aic7xxx_reset_device
3096 *
3097 * Description:
3098 * The device at the given target/channel has been reset. Abort
3099 * all active and queued scbs for that target/channel. This function
3100 * need not worry about linked next pointers because if was a MSG_ABORT_TAG
3101 * then we had a tagged command (no linked next), if it was MSG_ABORT or
3102 * MSG_BUS_DEV_RESET then the device won't know about any commands any more
3103 * and no busy commands will exist, and if it was a bus reset, then nothing
3104 * knows about any linked next commands any more. In all cases, we don't
3105 * need to worry about the linked next or busy scb, we just need to clear
3106 * them.
3107 *-F*************************************************************************/
3108 static void
3109 aic7xxx_reset_device(struct aic7xxx_host *p, int target, int channel,
3110 int lun, unsigned char tag)
3111 {
3112 struct aic7xxx_scb *scbp, *prev_scbp;
3113 struct scsi_device *sd;
3114 unsigned char active_scb, tcl, scb_tag;
3115 int i = 0, init_lists = FALSE;
3116 struct aic_dev_data *aic_dev;
3117
3118 /*
3119 * Restore this when we're done
3120 */
3121 active_scb = aic_inb(p, SCBPTR);
3122 scb_tag = aic_inb(p, SCB_TAG);
3123
3124 if (aic7xxx_verbose & (VERBOSE_RESET_PROCESS | VERBOSE_ABORT_PROCESS))
3125 {
3126 printk(INFO_LEAD "Reset device, hardware_scb %d,\n",
3127 p->host_no, channel, target, lun, active_scb);
3128 printk(INFO_LEAD "Current scb %d, SEQADDR 0x%x, LASTPHASE "
3129 "0x%x\n",
3130 p->host_no, channel, target, lun, scb_tag,
3131 aic_inb(p, SEQADDR0) | (aic_inb(p, SEQADDR1) << 8),
3132 aic_inb(p, LASTPHASE));
3133 printk(INFO_LEAD "SG_CACHEPTR 0x%x, SG_COUNT %d, SCSISIGI 0x%x\n",
3134 p->host_no, channel, target, lun,
3135 (p->features & AHC_ULTRA2) ? aic_inb(p, SG_CACHEPTR) : 0,
3136 aic_inb(p, SG_COUNT), aic_inb(p, SCSISIGI));
3137 printk(INFO_LEAD "SSTAT0 0x%x, SSTAT1 0x%x, SSTAT2 0x%x\n",
3138 p->host_no, channel, target, lun, aic_inb(p, SSTAT0),
3139 aic_inb(p, SSTAT1), aic_inb(p, SSTAT2));
3140 }
3141
3142 /*
3143 * Deal with the busy target and linked next issues.
3144 */
3145 list_for_each_entry(aic_dev, &p->aic_devs, list)
3146 {
3147 if (aic7xxx_verbose & (VERBOSE_RESET_PROCESS | VERBOSE_ABORT_PROCESS))
3148 printk(INFO_LEAD "processing aic_dev %p\n", p->host_no, channel, target,
3149 lun, aic_dev);
3150 sd = aic_dev->SDptr;
3151
3152 if((target != ALL_TARGETS && target != sd->id) ||
3153 (channel != ALL_CHANNELS && channel != sd->channel))
3154 continue;
3155 if (aic7xxx_verbose & (VERBOSE_ABORT_PROCESS | VERBOSE_RESET_PROCESS))
3156 printk(INFO_LEAD "Cleaning up status information "
3157 "and delayed_scbs.\n", p->host_no, sd->channel, sd->id, sd->lun);
3158 aic_dev->flags &= ~BUS_DEVICE_RESET_PENDING;
3159 if ( tag == SCB_LIST_NULL )
3160 {
3161 aic_dev->dtr_pending = 0;
3162 aic_dev->needppr = aic_dev->needppr_copy;
3163 aic_dev->needsdtr = aic_dev->needsdtr_copy;
3164 aic_dev->needwdtr = aic_dev->needwdtr_copy;
3165 aic_dev->flags = DEVICE_PRINT_DTR;
3166 aic_dev->temp_q_depth = aic_dev->max_q_depth;
3167 }
3168 tcl = (sd->id << 4) | (sd->channel << 3) | sd->lun;
3169 if ( (aic7xxx_index_busy_target(p, tcl, FALSE) == tag) ||
3170 (tag == SCB_LIST_NULL) )
3171 aic7xxx_index_busy_target(p, tcl, /* unbusy */ TRUE);
3172 prev_scbp = NULL;
3173 scbp = aic_dev->delayed_scbs.head;
3174 while (scbp != NULL)
3175 {
3176 prev_scbp = scbp;
3177 scbp = scbp->q_next;
3178 if (aic7xxx_match_scb(p, prev_scbp, target, channel, lun, tag))
3179 {
3180 scbq_remove(&aic_dev->delayed_scbs, prev_scbp);
3181 if (prev_scbp->flags & SCB_WAITINGQ)
3182 {
3183 aic_dev->active_cmds++;
3184 p->activescbs++;
3185 }
3186 prev_scbp->flags &= ~(SCB_ACTIVE | SCB_WAITINGQ);
3187 prev_scbp->flags |= SCB_RESET | SCB_QUEUED_FOR_DONE;
3188 }
3189 }
3190 }
3191
3192 if (aic7xxx_verbose & (VERBOSE_ABORT_PROCESS | VERBOSE_RESET_PROCESS))
3193 printk(INFO_LEAD "Cleaning QINFIFO.\n", p->host_no, channel, target, lun );
3194 aic7xxx_search_qinfifo(p, target, channel, lun, tag,
3195 SCB_RESET | SCB_QUEUED_FOR_DONE, /* requeue */ FALSE, NULL);
3196
3197 /*
3198 * Search the waiting_scbs queue for matches, this catches any SCB_QUEUED
3199 * ABORT/RESET commands.
3200 */
3201 if (aic7xxx_verbose & (VERBOSE_ABORT_PROCESS | VERBOSE_RESET_PROCESS))
3202 printk(INFO_LEAD "Cleaning waiting_scbs.\n", p->host_no, channel,
3203 target, lun );
3204 {
3205 struct aic7xxx_scb *scbp, *prev_scbp;
3206
3207 prev_scbp = NULL;
3208 scbp = p->waiting_scbs.head;
3209 while (scbp != NULL)
3210 {
3211 prev_scbp = scbp;
3212 scbp = scbp->q_next;
3213 if (aic7xxx_match_scb(p, prev_scbp, target, channel, lun, tag))
3214 {
3215 scbq_remove(&p->waiting_scbs, prev_scbp);
3216 if (prev_scbp->flags & SCB_WAITINGQ)
3217 {
3218 AIC_DEV(prev_scbp->cmd)->active_cmds++;
3219 p->activescbs++;
3220 }
3221 prev_scbp->flags &= ~(SCB_ACTIVE | SCB_WAITINGQ);
3222 prev_scbp->flags |= SCB_RESET | SCB_QUEUED_FOR_DONE;
3223 }
3224 }
3225 }
3226
3227
3228 /*
3229 * Search waiting for selection list.
3230 */
3231 if (aic7xxx_verbose & (VERBOSE_ABORT_PROCESS | VERBOSE_RESET_PROCESS))
3232 printk(INFO_LEAD "Cleaning waiting for selection "
3233 "list.\n", p->host_no, channel, target, lun);
3234 {
3235 unsigned char next, prev, scb_index;
3236
3237 next = aic_inb(p, WAITING_SCBH); /* Start at head of list. */
3238 prev = SCB_LIST_NULL;
3239 while (next != SCB_LIST_NULL)
3240 {
3241 aic_outb(p, next, SCBPTR);
3242 scb_index = aic_inb(p, SCB_TAG);
3243 if (scb_index >= p->scb_data->numscbs)
3244 {
3245 /*
3246 * No aic7xxx_verbose check here.....we want to see this since it
3247 * means either the kernel driver or the sequencer screwed things up
3248 */
3249 printk(WARN_LEAD "Waiting List inconsistency; SCB index=%d, "
3250 "numscbs=%d\n", p->host_no, channel, target, lun, scb_index,
3251 p->scb_data->numscbs);
3252 next = aic_inb(p, SCB_NEXT);
3253 aic7xxx_add_curscb_to_free_list(p);
3254 }
3255 else
3256 {
3257 scbp = p->scb_data->scb_array[scb_index];
3258 if (aic7xxx_match_scb(p, scbp, target, channel, lun, tag))
3259 {
3260 next = aic7xxx_abort_waiting_scb(p, scbp, next, prev);
3261 if (scbp->flags & SCB_WAITINGQ)
3262 {
3263 AIC_DEV(scbp->cmd)->active_cmds++;
3264 p->activescbs++;
3265 }
3266 scbp->flags &= ~(SCB_ACTIVE | SCB_WAITINGQ);
3267 scbp->flags |= SCB_RESET | SCB_QUEUED_FOR_DONE;
3268 if (prev == SCB_LIST_NULL)
3269 {
3270 /*
3271 * This is either the first scb on the waiting list, or we
3272 * have already yanked the first and haven't left any behind.
3273 * Either way, we need to turn off the selection hardware if
3274 * it isn't already off.
3275 */
3276 aic_outb(p, aic_inb(p, SCSISEQ) & ~ENSELO, SCSISEQ);
3277 aic_outb(p, CLRSELTIMEO, CLRSINT1);
3278 }
3279 }
3280 else
3281 {
3282 prev = next;
3283 next = aic_inb(p, SCB_NEXT);
3284 }
3285 }
3286 }
3287 }
3288
3289 /*
3290 * Go through disconnected list and remove any entries we have queued
3291 * for completion, zeroing their control byte too.
3292 */
3293 if (aic7xxx_verbose & (VERBOSE_ABORT_PROCESS | VERBOSE_RESET_PROCESS))
3294 printk(INFO_LEAD "Cleaning disconnected scbs "
3295 "list.\n", p->host_no, channel, target, lun);
3296 if (p->flags & AHC_PAGESCBS)
3297 {
3298 unsigned char next, prev, scb_index;
3299
3300 next = aic_inb(p, DISCONNECTED_SCBH);
3301 prev = SCB_LIST_NULL;
3302 while (next != SCB_LIST_NULL)
3303 {
3304 aic_outb(p, next, SCBPTR);
3305 scb_index = aic_inb(p, SCB_TAG);
3306 if (scb_index > p->scb_data->numscbs)
3307 {
3308 printk(WARN_LEAD "Disconnected List inconsistency; SCB index=%d, "
3309 "numscbs=%d\n", p->host_no, channel, target, lun, scb_index,
3310 p->scb_data->numscbs);
3311 next = aic7xxx_rem_scb_from_disc_list(p, next, prev);
3312 }
3313 else
3314 {
3315 scbp = p->scb_data->scb_array[scb_index];
3316 if (aic7xxx_match_scb(p, scbp, target, channel, lun, tag))
3317 {
3318 next = aic7xxx_rem_scb_from_disc_list(p, next, prev);
3319 if (scbp->flags & SCB_WAITINGQ)
3320 {
3321 AIC_DEV(scbp->cmd)->active_cmds++;
3322 p->activescbs++;
3323 }
3324 scbp->flags &= ~(SCB_ACTIVE | SCB_WAITINGQ);
3325 scbp->flags |= SCB_RESET | SCB_QUEUED_FOR_DONE;
3326 scbp->hscb->control = 0;
3327 }
3328 else
3329 {
3330 prev = next;
3331 next = aic_inb(p, SCB_NEXT);
3332 }
3333 }
3334 }
3335 }
3336
3337 /*
3338 * Walk the free list making sure no entries on the free list have
3339 * a valid SCB_TAG value or SCB_CONTROL byte.
3340 */
3341 if (p->flags & AHC_PAGESCBS)
3342 {
3343 unsigned char next;
3344
3345 next = aic_inb(p, FREE_SCBH);
3346 while (next != SCB_LIST_NULL)
3347 {
3348 aic_outb(p, next, SCBPTR);
3349 if (aic_inb(p, SCB_TAG) < p->scb_data->numscbs)
3350 {
3351 printk(WARN_LEAD "Free list inconsistency!.\n", p->host_no, channel,
3352 target, lun);
3353 init_lists = TRUE;
3354 next = SCB_LIST_NULL;
3355 }
3356 else
3357 {
3358 aic_outb(p, SCB_LIST_NULL, SCB_TAG);
3359 aic_outb(p, 0, SCB_CONTROL);
3360 next = aic_inb(p, SCB_NEXT);
3361 }
3362 }
3363 }
3364
3365 /*
3366 * Go through the hardware SCB array looking for commands that
3367 * were active but not on any list.
3368 */
3369 if (init_lists)
3370 {
3371 aic_outb(p, SCB_LIST_NULL, FREE_SCBH);
3372 aic_outb(p, SCB_LIST_NULL, WAITING_SCBH);
3373 aic_outb(p, SCB_LIST_NULL, DISCONNECTED_SCBH);
3374 }
3375 for (i = p->scb_data->maxhscbs - 1; i >= 0; i--)
3376 {
3377 unsigned char scbid;
3378
3379 aic_outb(p, i, SCBPTR);
3380 if (init_lists)
3381 {
3382 aic_outb(p, SCB_LIST_NULL, SCB_TAG);
3383 aic_outb(p, SCB_LIST_NULL, SCB_NEXT);
3384 aic_outb(p, 0, SCB_CONTROL);
3385 aic7xxx_add_curscb_to_free_list(p);
3386 }
3387 else
3388 {
3389 scbid = aic_inb(p, SCB_TAG);
3390 if (scbid < p->scb_data->numscbs)
3391 {
3392 scbp = p->scb_data->scb_array[scbid];
3393 if (aic7xxx_match_scb(p, scbp, target, channel, lun, tag))
3394 {
3395 aic_outb(p, 0, SCB_CONTROL);
3396 aic_outb(p, SCB_LIST_NULL, SCB_TAG);
3397 aic7xxx_add_curscb_to_free_list(p);
3398 }
3399 }
3400 }
3401 }
3402
3403 /*
3404 * Go through the entire SCB array now and look for commands for
3405 * for this target that are stillactive. These are other (most likely
3406 * tagged) commands that were disconnected when the reset occurred.
3407 * Any commands we find here we know this about, it wasn't on any queue,
3408 * it wasn't in the qinfifo, it wasn't in the disconnected or waiting
3409 * lists, so it really must have been a paged out SCB. In that case,
3410 * we shouldn't need to bother with updating any counters, just mark
3411 * the correct flags and go on.
3412 */
3413 for (i = 0; i < p->scb_data->numscbs; i++)
3414 {
3415 scbp = p->scb_data->scb_array[i];
3416 if ((scbp->flags & SCB_ACTIVE) &&
3417 aic7xxx_match_scb(p, scbp, target, channel, lun, tag) &&
3418 !aic7xxx_scb_on_qoutfifo(p, scbp))
3419 {
3420 if (scbp->flags & SCB_WAITINGQ)
3421 {
3422 scbq_remove(&p->waiting_scbs, scbp);
3423 scbq_remove(&AIC_DEV(scbp->cmd)->delayed_scbs, scbp);
3424 AIC_DEV(scbp->cmd)->active_cmds++;
3425 p->activescbs++;
3426 }
3427 scbp->flags |= SCB_RESET | SCB_QUEUED_FOR_DONE;
3428 scbp->flags &= ~(SCB_ACTIVE | SCB_WAITINGQ);
3429 }
3430 }
3431
3432 aic_outb(p, active_scb, SCBPTR);
3433 }
3434
3435
3436 /*+F*************************************************************************
3437 * Function:
3438 * aic7xxx_clear_intstat
3439 *
3440 * Description:
3441 * Clears the interrupt status.
3442 *-F*************************************************************************/
3443 static void
3444 aic7xxx_clear_intstat(struct aic7xxx_host *p)
3445 {
3446 /* Clear any interrupt conditions this may have caused. */
3447 aic_outb(p, CLRSELDO | CLRSELDI | CLRSELINGO, CLRSINT0);
3448 aic_outb(p, CLRSELTIMEO | CLRATNO | CLRSCSIRSTI | CLRBUSFREE | CLRSCSIPERR |
3449 CLRPHASECHG | CLRREQINIT, CLRSINT1);
3450 aic_outb(p, CLRSCSIINT | CLRSEQINT | CLRBRKADRINT | CLRPARERR, CLRINT);
3451 }
3452
3453 /*+F*************************************************************************
3454 * Function:
3455 * aic7xxx_reset_current_bus
3456 *
3457 * Description:
3458 * Reset the current SCSI bus.
3459 *-F*************************************************************************/
3460 static void
3461 aic7xxx_reset_current_bus(struct aic7xxx_host *p)
3462 {
3463
3464 /* Disable reset interrupts. */
3465 aic_outb(p, aic_inb(p, SIMODE1) & ~ENSCSIRST, SIMODE1);
3466
3467 /* Turn off the bus' current operations, after all, we shouldn't have any
3468 * valid commands left to cause a RSELI and SELO once we've tossed the
3469 * bus away with this reset, so we might as well shut down the sequencer
3470 * until the bus is restarted as oppossed to saving the current settings
3471 * and restoring them (which makes no sense to me). */
3472
3473 /* Turn on the bus reset. */
3474 aic_outb(p, aic_inb(p, SCSISEQ) | SCSIRSTO, SCSISEQ);
3475 while ( (aic_inb(p, SCSISEQ) & SCSIRSTO) == 0)
3476 mdelay(5);
3477
3478 /*
3479 * Some of the new Ultra2 chipsets need a longer delay after a chip
3480 * reset than just the init setup creates, so we have to delay here
3481 * before we go into a reset in order to make the chips happy.
3482 */
3483 if (p->features & AHC_ULTRA2)
3484 mdelay(250);
3485 else
3486 mdelay(50);
3487
3488 /* Turn off the bus reset. */
3489 aic_outb(p, 0, SCSISEQ);
3490 mdelay(10);
3491
3492 aic7xxx_clear_intstat(p);
3493 /* Re-enable reset interrupts. */
3494 aic_outb(p, aic_inb(p, SIMODE1) | ENSCSIRST, SIMODE1);
3495
3496 }
3497
3498 /*+F*************************************************************************
3499 * Function:
3500 * aic7xxx_reset_channel
3501 *
3502 * Description:
3503 * Reset the channel.
3504 *-F*************************************************************************/
3505 static void
3506 aic7xxx_reset_channel(struct aic7xxx_host *p, int channel, int initiate_reset)
3507 {
3508 unsigned long offset_min, offset_max;
3509 unsigned char sblkctl;
3510 int cur_channel;
3511
3512 if (aic7xxx_verbose & VERBOSE_RESET_PROCESS)
3513 printk(INFO_LEAD "Reset channel called, %s initiate reset.\n",
3514 p->host_no, channel, -1, -1, (initiate_reset==TRUE) ? "will" : "won't" );
3515
3516
3517 if (channel == 1)
3518 {
3519 offset_min = 8;
3520 offset_max = 16;
3521 }
3522 else
3523 {
3524 if (p->features & AHC_TWIN)
3525 {
3526 /* Channel A */
3527 offset_min = 0;
3528 offset_max = 8;
3529 }
3530 else
3531 {
3532 offset_min = 0;
3533 if (p->features & AHC_WIDE)
3534 {
3535 offset_max = 16;
3536 }
3537 else
3538 {
3539 offset_max = 8;
3540 }
3541 }
3542 }
3543
3544 while (offset_min < offset_max)
3545 {
3546 /*
3547 * Revert to async/narrow transfers until we renegotiate.
3548 */
3549 aic_outb(p, 0, TARG_SCSIRATE + offset_min);
3550 if (p->features & AHC_ULTRA2)
3551 {
3552 aic_outb(p, 0, TARG_OFFSET + offset_min);
3553 }
3554 offset_min++;
3555 }
3556
3557 /*
3558 * Reset the bus and unpause/restart the controller
3559 */
3560 sblkctl = aic_inb(p, SBLKCTL);
3561 if ( (p->chip & AHC_CHIPID_MASK) == AHC_AIC7770 )
3562 cur_channel = (sblkctl & SELBUSB) >> 3;
3563 else
3564 cur_channel = 0;
3565 if ( (cur_channel != channel) && (p->features & AHC_TWIN) )
3566 {
3567 /*
3568 * Case 1: Command for another bus is active
3569 */
3570 if (aic7xxx_verbose & VERBOSE_RESET_PROCESS)
3571 printk(INFO_LEAD "Stealthily resetting idle channel.\n", p->host_no,
3572 channel, -1, -1);
3573 /*
3574 * Stealthily reset the other bus without upsetting the current bus.
3575 */
3576 aic_outb(p, sblkctl ^ SELBUSB, SBLKCTL);
3577 aic_outb(p, aic_inb(p, SIMODE1) & ~ENBUSFREE, SIMODE1);
3578 if (initiate_reset)
3579 {
3580 aic7xxx_reset_current_bus(p);
3581 }
3582 aic_outb(p, aic_inb(p, SCSISEQ) & (ENSELI|ENRSELI|ENAUTOATNP), SCSISEQ);
3583 aic7xxx_clear_intstat(p);
3584 aic_outb(p, sblkctl, SBLKCTL);
3585 }
3586 else
3587 {
3588 /*
3589 * Case 2: A command from this bus is active or we're idle.
3590 */
3591 if (aic7xxx_verbose & VERBOSE_RESET_PROCESS)
3592 printk(INFO_LEAD "Resetting currently active channel.\n", p->host_no,
3593 channel, -1, -1);
3594 aic_outb(p, aic_inb(p, SIMODE1) & ~(ENBUSFREE|ENREQINIT),
3595 SIMODE1);
3596 p->flags &= ~AHC_HANDLING_REQINITS;
3597 p->msg_type = MSG_TYPE_NONE;
3598 p->msg_len = 0;
3599 if (initiate_reset)
3600 {
3601 aic7xxx_reset_current_bus(p);
3602 }
3603 aic_outb(p, aic_inb(p, SCSISEQ) & (ENSELI|ENRSELI|ENAUTOATNP), SCSISEQ);
3604 aic7xxx_clear_intstat(p);
3605 }
3606 if (aic7xxx_verbose & VERBOSE_RESET_RETURN)
3607 printk(INFO_LEAD "Channel reset\n", p->host_no, channel, -1, -1);
3608 /*
3609 * Clean up all the state information for the pending transactions
3610 * on this bus.
3611 */
3612 aic7xxx_reset_device(p, ALL_TARGETS, channel, ALL_LUNS, SCB_LIST_NULL);
3613
3614 if ( !(p->features & AHC_TWIN) )
3615 {
3616 restart_sequencer(p);
3617 }
3618
3619 return;
3620 }
3621
3622 /*+F*************************************************************************
3623 * Function:
3624 * aic7xxx_run_waiting_queues
3625 *
3626 * Description:
3627 * Scan the awaiting_scbs queue downloading and starting as many
3628 * scbs as we can.
3629 *-F*************************************************************************/
3630 static void
3631 aic7xxx_run_waiting_queues(struct aic7xxx_host *p)
3632 {
3633 struct aic7xxx_scb *scb;
3634 struct aic_dev_data *aic_dev;
3635 int sent;
3636
3637
3638 if (p->waiting_scbs.head == NULL)
3639 return;
3640
3641 sent = 0;
3642
3643 /*
3644 * First handle SCBs that are waiting but have been assigned a slot.
3645 */
3646 while ((scb = scbq_remove_head(&p->waiting_scbs)) != NULL)
3647 {
3648 aic_dev = scb->cmd->device->hostdata;
3649 if ( !scb->tag_action )
3650 {
3651 aic_dev->temp_q_depth = 1;
3652 }
3653 if ( aic_dev->active_cmds >= aic_dev->temp_q_depth)
3654 {
3655 scbq_insert_tail(&aic_dev->delayed_scbs, scb);
3656 }
3657 else
3658 {
3659 scb->flags &= ~SCB_WAITINGQ;
3660 aic_dev->active_cmds++;
3661 p->activescbs++;
3662 if ( !(scb->tag_action) )
3663 {
3664 aic7xxx_busy_target(p, scb);
3665 }
3666 p->qinfifo[p->qinfifonext++] = scb->hscb->tag;
3667 sent++;
3668 }
3669 }
3670 if (sent)
3671 {
3672 if (p->features & AHC_QUEUE_REGS)
3673 aic_outb(p, p->qinfifonext, HNSCB_QOFF);
3674 else
3675 {
3676 pause_sequencer(p);
3677 aic_outb(p, p->qinfifonext, KERNEL_QINPOS);
3678 unpause_sequencer(p, FALSE);
3679 }
3680 if (p->activescbs > p->max_activescbs)
3681 p->max_activescbs = p->activescbs;
3682 }
3683 }
3684
3685 #ifdef CONFIG_PCI
3686
3687 #define DPE 0x80
3688 #define SSE 0x40
3689 #define RMA 0x20
3690 #define RTA 0x10
3691 #define STA 0x08
3692 #define DPR 0x01
3693
3694 /*+F*************************************************************************
3695 * Function:
3696 * aic7xxx_pci_intr
3697 *
3698 * Description:
3699 * Check the scsi card for PCI errors and clear the interrupt
3700 *
3701 * NOTE: If you don't have this function and a 2940 card encounters
3702 * a PCI error condition, the machine will end up locked as the
3703 * interrupt handler gets slammed with non-stop PCI error interrupts
3704 *-F*************************************************************************/
3705 static void
3706 aic7xxx_pci_intr(struct aic7xxx_host *p)
3707 {
3708 unsigned char status1;
3709
3710 pci_read_config_byte(p->pdev, PCI_STATUS + 1, &status1);
3711
3712 if ( (status1 & DPE) && (aic7xxx_verbose & VERBOSE_MINOR_ERROR) )
3713 printk(WARN_LEAD "Data Parity Error during PCI address or PCI write"
3714 "phase.\n", p->host_no, -1, -1, -1);
3715 if ( (status1 & SSE) && (aic7xxx_verbose & VERBOSE_MINOR_ERROR) )
3716 printk(WARN_LEAD "Signal System Error Detected\n", p->host_no,
3717 -1, -1, -1);
3718 if ( (status1 & RMA) && (aic7xxx_verbose & VERBOSE_MINOR_ERROR) )
3719 printk(WARN_LEAD "Received a PCI Master Abort\n", p->host_no,
3720 -1, -1, -1);
3721 if ( (status1 & RTA) && (aic7xxx_verbose & VERBOSE_MINOR_ERROR) )
3722 printk(WARN_LEAD "Received a PCI Target Abort\n", p->host_no,
3723 -1, -1, -1);
3724 if ( (status1 & STA) && (aic7xxx_verbose & VERBOSE_MINOR_ERROR) )
3725 printk(WARN_LEAD "Signaled a PCI Target Abort\n", p->host_no,
3726 -1, -1, -1);
3727 if ( (status1 & DPR) && (aic7xxx_verbose & VERBOSE_MINOR_ERROR) )
3728 printk(WARN_LEAD "Data Parity Error has been reported via PCI pin "
3729 "PERR#\n", p->host_no, -1, -1, -1);
3730
3731 pci_write_config_byte(p->pdev, PCI_STATUS + 1, status1);
3732 if (status1 & (DPR|RMA|RTA))
3733 aic_outb(p, CLRPARERR, CLRINT);
3734
3735 if ( (aic7xxx_panic_on_abort) && (p->spurious_int > 500) )
3736 aic7xxx_panic_abort(p, NULL);
3737
3738 }
3739 #endif /* CONFIG_PCI */
3740
3741 /*+F*************************************************************************
3742 * Function:
3743 * aic7xxx_construct_ppr
3744 *
3745 * Description:
3746 * Build up a Parallel Protocol Request message for use with SCSI-3
3747 * devices.
3748 *-F*************************************************************************/
3749 static void
3750 aic7xxx_construct_ppr(struct aic7xxx_host *p, struct aic7xxx_scb *scb)
3751 {
3752 p->msg_buf[p->msg_index++] = MSG_EXTENDED;
3753 p->msg_buf[p->msg_index++] = MSG_EXT_PPR_LEN;
3754 p->msg_buf[p->msg_index++] = MSG_EXT_PPR;
3755 p->msg_buf[p->msg_index++] = AIC_DEV(scb->cmd)->goal.period;
3756 p->msg_buf[p->msg_index++] = 0;
3757 p->msg_buf[p->msg_index++] = AIC_DEV(scb->cmd)->goal.offset;
3758 p->msg_buf[p->msg_index++] = AIC_DEV(scb->cmd)->goal.width;
3759 p->msg_buf[p->msg_index++] = AIC_DEV(scb->cmd)->goal.options;
3760 p->msg_len += 8;
3761 }
3762
3763 /*+F*************************************************************************
3764 * Function:
3765 * aic7xxx_construct_sdtr
3766 *
3767 * Description:
3768 * Constucts a synchronous data transfer message in the message
3769 * buffer on the sequencer.
3770 *-F*************************************************************************/
3771 static void
3772 aic7xxx_construct_sdtr(struct aic7xxx_host *p, unsigned char period,
3773 unsigned char offset)
3774 {
3775 p->msg_buf[p->msg_index++] = MSG_EXTENDED;
3776 p->msg_buf[p->msg_index++] = MSG_EXT_SDTR_LEN;
3777 p->msg_buf[p->msg_index++] = MSG_EXT_SDTR;
3778 p->msg_buf[p->msg_index++] = period;
3779 p->msg_buf[p->msg_index++] = offset;
3780 p->msg_len += 5;
3781 }
3782
3783 /*+F*************************************************************************
3784 * Function:
3785 * aic7xxx_construct_wdtr
3786 *
3787 * Description:
3788 * Constucts a wide data transfer message in the message buffer
3789 * on the sequencer.
3790 *-F*************************************************************************/
3791 static void
3792 aic7xxx_construct_wdtr(struct aic7xxx_host *p, unsigned char bus_width)
3793 {
3794 p->msg_buf[p->msg_index++] = MSG_EXTENDED;
3795 p->msg_buf[p->msg_index++] = MSG_EXT_WDTR_LEN;
3796 p->msg_buf[p->msg_index++] = MSG_EXT_WDTR;
3797 p->msg_buf[p->msg_index++] = bus_width;
3798 p->msg_len += 4;
3799 }
3800
3801 /*+F*************************************************************************
3802 * Function:
3803 * aic7xxx_calc_residual
3804 *
3805 * Description:
3806 * Calculate the residual data not yet transferred.
3807 *-F*************************************************************************/
3808 static void
3809 aic7xxx_calculate_residual (struct aic7xxx_host *p, struct aic7xxx_scb *scb)
3810 {
3811 struct aic7xxx_hwscb *hscb;
3812 struct scsi_cmnd *cmd;
3813 int actual, i;
3814
3815 cmd = scb->cmd;
3816 hscb = scb->hscb;
3817
3818 /*
3819 * Don't destroy valid residual information with
3820 * residual coming from a check sense operation.
3821 */
3822 if (((scb->hscb->control & DISCONNECTED) == 0) &&
3823 (scb->flags & SCB_SENSE) == 0)
3824 {
3825 /*
3826 * We had an underflow. At this time, there's only
3827 * one other driver that bothers to check for this,
3828 * and cmd->underflow seems to be set rather half-
3829 * heartedly in the higher-level SCSI code.
3830 */
3831 actual = scb->sg_length;
3832 for (i=1; i < hscb->residual_SG_segment_count; i++)
3833 {
3834 actual -= scb->sg_list[scb->sg_count - i].length;
3835 }
3836 actual -= (hscb->residual_data_count[2] << 16) |
3837 (hscb->residual_data_count[1] << 8) |
3838 hscb->residual_data_count[0];
3839
3840 if (actual < cmd->underflow)
3841 {
3842 if (aic7xxx_verbose & VERBOSE_MINOR_ERROR)
3843 {
3844 printk(INFO_LEAD "Underflow - Wanted %u, %s %u, residual SG "
3845 "count %d.\n", p->host_no, CTL_OF_SCB(scb), cmd->underflow,
3846 (rq_data_dir(cmd->request) == WRITE) ? "wrote" : "read", actual,
3847 hscb->residual_SG_segment_count);
3848 printk(INFO_LEAD "status 0x%x.\n", p->host_no, CTL_OF_SCB(scb),
3849 hscb->target_status);
3850 }
3851 /*
3852 * In 2.4, only send back the residual information, don't flag this
3853 * as an error. Before 2.4 we had to flag this as an error because
3854 * the mid layer didn't check residual data counts to see if the
3855 * command needs retried.
3856 */
3857 scsi_set_resid(cmd, scb->sg_length - actual);
3858 aic7xxx_status(cmd) = hscb->target_status;
3859 }
3860 }
3861
3862 /*
3863 * Clean out the residual information in the SCB for the
3864 * next consumer.
3865 */
3866 hscb->residual_data_count[2] = 0;
3867 hscb->residual_data_count[1] = 0;
3868 hscb->residual_data_count[0] = 0;
3869 hscb->residual_SG_segment_count = 0;
3870 }
3871
3872 /*+F*************************************************************************
3873 * Function:
3874 * aic7xxx_handle_device_reset
3875 *
3876 * Description:
3877 * Interrupt handler for sequencer interrupts (SEQINT).
3878 *-F*************************************************************************/
3879 static void
3880 aic7xxx_handle_device_reset(struct aic7xxx_host *p, int target, int channel)
3881 {
3882 unsigned char tindex = target;
3883
3884 tindex |= ((channel & 0x01) << 3);
3885
3886 /*
3887 * Go back to async/narrow transfers and renegotiate.
3888 */
3889 aic_outb(p, 0, TARG_SCSIRATE + tindex);
3890 if (p->features & AHC_ULTRA2)
3891 aic_outb(p, 0, TARG_OFFSET + tindex);
3892 aic7xxx_reset_device(p, target, channel, ALL_LUNS, SCB_LIST_NULL);
3893 if (aic7xxx_verbose & VERBOSE_RESET_PROCESS)
3894 printk(INFO_LEAD "Bus Device Reset delivered.\n", p->host_no, channel,
3895 target, -1);
3896 aic7xxx_run_done_queue(p, /*complete*/ TRUE);
3897 }
3898
3899 /*+F*************************************************************************
3900 * Function:
3901 * aic7xxx_handle_seqint
3902 *
3903 * Description:
3904 * Interrupt handler for sequencer interrupts (SEQINT).
3905 *-F*************************************************************************/
3906 static void
3907 aic7xxx_handle_seqint(struct aic7xxx_host *p, unsigned char intstat)
3908 {
3909 struct aic7xxx_scb *scb;
3910 struct aic_dev_data *aic_dev;
3911 unsigned short target_mask;
3912 unsigned char target, lun, tindex;
3913 unsigned char queue_flag = FALSE;
3914 char channel;
3915 int result;
3916
3917 target = ((aic_inb(p, SAVED_TCL) >> 4) & 0x0f);
3918 if ( (p->chip & AHC_CHIPID_MASK) == AHC_AIC7770 )
3919 channel = (aic_inb(p, SBLKCTL) & SELBUSB) >> 3;
3920 else
3921 channel = 0;
3922 tindex = target + (channel << 3);
3923 lun = aic_inb(p, SAVED_TCL) & 0x07;
3924 target_mask = (0x01 << tindex);
3925
3926 /*
3927 * Go ahead and clear the SEQINT now, that avoids any interrupt race
3928 * conditions later on in case we enable some other interrupt.
3929 */
3930 aic_outb(p, CLRSEQINT, CLRINT);
3931 switch (intstat & SEQINT_MASK)
3932 {
3933 case NO_MATCH:
3934 {
3935 aic_outb(p, aic_inb(p, SCSISEQ) & (ENSELI|ENRSELI|ENAUTOATNP),
3936 SCSISEQ);
3937 printk(WARN_LEAD "No active SCB for reconnecting target - Issuing "
3938 "BUS DEVICE RESET.\n", p->host_no, channel, target, lun);
3939 printk(WARN_LEAD " SAVED_TCL=0x%x, ARG_1=0x%x, SEQADDR=0x%x\n",
3940 p->host_no, channel, target, lun,
3941 aic_inb(p, SAVED_TCL), aic_inb(p, ARG_1),
3942 (aic_inb(p, SEQADDR1) << 8) | aic_inb(p, SEQADDR0));
3943 if (aic7xxx_panic_on_abort)
3944 aic7xxx_panic_abort(p, NULL);
3945 }
3946 break;
3947
3948 case SEND_REJECT:
3949 {
3950 if (aic7xxx_verbose & VERBOSE_MINOR_ERROR)
3951 printk(INFO_LEAD "Rejecting unknown message (0x%x) received from "
3952 "target, SEQ_FLAGS=0x%x\n", p->host_no, channel, target, lun,
3953 aic_inb(p, ACCUM), aic_inb(p, SEQ_FLAGS));
3954 }
3955 break;
3956
3957 case NO_IDENT:
3958 {
3959 /*
3960 * The reconnecting target either did not send an identify
3961 * message, or did, but we didn't find an SCB to match and
3962 * before it could respond to our ATN/abort, it hit a dataphase.
3963 * The only safe thing to do is to blow it away with a bus
3964 * reset.
3965 */
3966 if (aic7xxx_verbose & (VERBOSE_SEQINT | VERBOSE_RESET_MID))
3967 printk(INFO_LEAD "Target did not send an IDENTIFY message; "
3968 "LASTPHASE 0x%x, SAVED_TCL 0x%x\n", p->host_no, channel, target,
3969 lun, aic_inb(p, LASTPHASE), aic_inb(p, SAVED_TCL));
3970
3971 aic7xxx_reset_channel(p, channel, /*initiate reset*/ TRUE);
3972 aic7xxx_run_done_queue(p, TRUE);
3973
3974 }
3975 break;
3976
3977 case BAD_PHASE:
3978 if (aic_inb(p, LASTPHASE) == P_BUSFREE)
3979 {
3980 if (aic7xxx_verbose & VERBOSE_SEQINT)
3981 printk(INFO_LEAD "Missed busfree.\n", p->host_no, channel,
3982 target, lun);
3983 restart_sequencer(p);
3984 }
3985 else
3986 {
3987 if (aic7xxx_verbose & VERBOSE_SEQINT)
3988 printk(INFO_LEAD "Unknown scsi bus phase, continuing\n", p->host_no,
3989 channel, target, lun);
3990 }
3991 break;
3992
3993 case EXTENDED_MSG:
3994 {
3995 p->msg_type = MSG_TYPE_INITIATOR_MSGIN;
3996 p->msg_len = 0;
3997 p->msg_index = 0;
3998
3999 #ifdef AIC7XXX_VERBOSE_DEBUGGING
4000 if (aic7xxx_verbose > 0xffff)
4001 printk(INFO_LEAD "Enabling REQINITs for MSG_IN\n", p->host_no,
4002 channel, target, lun);
4003 #endif
4004
4005 /*
4006 * To actually receive the message, simply turn on
4007 * REQINIT interrupts and let our interrupt handler
4008 * do the rest (REQINIT should already be true).
4009 */
4010 p->flags |= AHC_HANDLING_REQINITS;
4011 aic_outb(p, aic_inb(p, SIMODE1) | ENREQINIT, SIMODE1);
4012
4013 /*
4014 * We don't want the sequencer unpaused yet so we return early
4015 */
4016 return;
4017 }
4018
4019 case REJECT_MSG:
4020 {
4021 /*
4022 * What we care about here is if we had an outstanding SDTR
4023 * or WDTR message for this target. If we did, this is a
4024 * signal that the target is refusing negotiation.
4025 */
4026 unsigned char scb_index;
4027 unsigned char last_msg;
4028
4029 scb_index = aic_inb(p, SCB_TAG);
4030 scb = p->scb_data->scb_array[scb_index];
4031 aic_dev = AIC_DEV(scb->cmd);
4032 last_msg = aic_inb(p, LAST_MSG);
4033
4034 if ( (last_msg == MSG_IDENTIFYFLAG) &&
4035 (scb->tag_action) &&
4036 !(scb->flags & SCB_MSGOUT_BITS) )
4037 {
4038 if (scb->tag_action == MSG_ORDERED_Q_TAG)
4039 {
4040 /*
4041 * OK...the device seems able to accept tagged commands, but
4042 * not ordered tag commands, only simple tag commands. So, we
4043 * disable ordered tag commands and go on with life just like
4044 * normal.
4045 */
4046 scsi_adjust_queue_depth(scb->cmd->device, MSG_SIMPLE_TAG,
4047 scb->cmd->device->queue_depth);
4048 scb->tag_action = MSG_SIMPLE_Q_TAG;
4049 scb->hscb->control &= ~SCB_TAG_TYPE;
4050 scb->hscb->control |= MSG_SIMPLE_Q_TAG;
4051 aic_outb(p, scb->hscb->control, SCB_CONTROL);
4052 /*
4053 * OK..we set the tag type to simple tag command, now we re-assert
4054 * ATNO and hope this will take us into the identify phase again
4055 * so we can resend the tag type and info to the device.
4056 */
4057 aic_outb(p, MSG_IDENTIFYFLAG, MSG_OUT);
4058 aic_outb(p, aic_inb(p, SCSISIGI) | ATNO, SCSISIGO);
4059 }
4060 else if (scb->tag_action == MSG_SIMPLE_Q_TAG)
4061 {
4062 unsigned char i;
4063 struct aic7xxx_scb *scbp;
4064 int old_verbose;
4065 /*
4066 * Hmmmm....the device is flaking out on tagged commands.
4067 */
4068 scsi_adjust_queue_depth(scb->cmd->device, 0 /* untagged */,
4069 p->host->cmd_per_lun);
4070 aic_dev->max_q_depth = aic_dev->temp_q_depth = 1;
4071 /*
4072 * We set this command up as a bus device reset. However, we have
4073 * to clear the tag type as it's causing us problems. We shouldnt
4074 * have to worry about any other commands being active, since if
4075 * the device is refusing tagged commands, this should be the
4076 * first tagged command sent to the device, however, we do have
4077 * to worry about any other tagged commands that may already be
4078 * in the qinfifo. The easiest way to do this, is to issue a BDR,
4079 * send all the commands back to the mid level code, then let them
4080 * come back and get rebuilt as untagged commands.
4081 */
4082 scb->tag_action = 0;
4083 scb->hscb->control &= ~(TAG_ENB | SCB_TAG_TYPE);
4084 aic_outb(p, scb->hscb->control, SCB_CONTROL);
4085
4086 old_verbose = aic7xxx_verbose;
4087 aic7xxx_verbose &= ~(VERBOSE_RESET|VERBOSE_ABORT);
4088 for (i=0; i < p->scb_data->numscbs; i++)
4089 {
4090 scbp = p->scb_data->scb_array[i];
4091 if ((scbp->flags & SCB_ACTIVE) && (scbp != scb))
4092 {
4093 if (aic7xxx_match_scb(p, scbp, target, channel, lun, i))
4094 {
4095 aic7xxx_reset_device(p, target, channel, lun, i);
4096 }
4097 }
4098 }
4099 aic7xxx_run_done_queue(p, TRUE);
4100 aic7xxx_verbose = old_verbose;
4101 /*
4102 * Wait until after the for loop to set the busy index since
4103 * aic7xxx_reset_device will clear the busy index during its
4104 * operation.
4105 */
4106 aic7xxx_busy_target(p, scb);
4107 printk(INFO_LEAD "Device is refusing tagged commands, using "
4108 "untagged I/O.\n", p->host_no, channel, target, lun);
4109 aic_outb(p, MSG_IDENTIFYFLAG, MSG_OUT);
4110 aic_outb(p, aic_inb(p, SCSISIGI) | ATNO, SCSISIGO);
4111 }
4112 }
4113 else if (scb->flags & SCB_MSGOUT_PPR)
4114 {
4115 /*
4116 * As per the draft specs, any device capable of supporting any of
4117 * the option values other than 0 are not allowed to reject the
4118 * PPR message. Instead, they must negotiate out what they do
4119 * support instead of rejecting our offering or else they cause
4120 * a parity error during msg_out phase to signal that they don't
4121 * like our settings.
4122 */
4123 aic_dev->needppr = aic_dev->needppr_copy = 0;
4124 aic7xxx_set_width(p, target, channel, lun, MSG_EXT_WDTR_BUS_8_BIT,
4125 (AHC_TRANS_ACTIVE|AHC_TRANS_CUR|AHC_TRANS_QUITE), aic_dev);
4126 aic7xxx_set_syncrate(p, NULL, target, channel, 0, 0, 0,
4127 AHC_TRANS_ACTIVE|AHC_TRANS_CUR|AHC_TRANS_QUITE,
4128 aic_dev);
4129 aic_dev->goal.options = aic_dev->dtr_pending = 0;
4130 scb->flags &= ~SCB_MSGOUT_BITS;
4131 if(aic7xxx_verbose & VERBOSE_NEGOTIATION2)
4132 {
4133 printk(INFO_LEAD "Device is rejecting PPR messages, falling "
4134 "back.\n", p->host_no, channel, target, lun);
4135 }
4136 if ( aic_dev->goal.width )
4137 {
4138 aic_dev->needwdtr = aic_dev->needwdtr_copy = 1;
4139 aic_dev->dtr_pending = 1;
4140 scb->flags |= SCB_MSGOUT_WDTR;
4141 }
4142 if ( aic_dev->goal.offset )
4143 {
4144 aic_dev->needsdtr = aic_dev->needsdtr_copy = 1;
4145 if( !aic_dev->dtr_pending )
4146 {
4147 aic_dev->dtr_pending = 1;
4148 scb->flags |= SCB_MSGOUT_SDTR;
4149 }
4150 }
4151 if ( aic_dev->dtr_pending )
4152 {
4153 aic_outb(p, HOST_MSG, MSG_OUT);
4154 aic_outb(p, aic_inb(p, SCSISIGI) | ATNO, SCSISIGO);
4155 }
4156 }
4157 else if (scb->flags & SCB_MSGOUT_WDTR)
4158 {
4159 /*
4160 * note 8bit xfers and clear flag
4161 */
4162 aic_dev->needwdtr = aic_dev->needwdtr_copy = 0;
4163 scb->flags &= ~SCB_MSGOUT_BITS;
4164 aic7xxx_set_width(p, target, channel, lun, MSG_EXT_WDTR_BUS_8_BIT,
4165 (AHC_TRANS_ACTIVE|AHC_TRANS_GOAL|AHC_TRANS_CUR), aic_dev);
4166 aic7xxx_set_syncrate(p, NULL, target, channel, 0, 0, 0,
4167 AHC_TRANS_ACTIVE|AHC_TRANS_CUR|AHC_TRANS_QUITE,
4168 aic_dev);
4169 if(aic7xxx_verbose & VERBOSE_NEGOTIATION2)
4170 {
4171 printk(INFO_LEAD "Device is rejecting WDTR messages, using "
4172 "narrow transfers.\n", p->host_no, channel, target, lun);
4173 }
4174 aic_dev->needsdtr = aic_dev->needsdtr_copy;
4175 }
4176 else if (scb->flags & SCB_MSGOUT_SDTR)
4177 {
4178 /*
4179 * note asynch xfers and clear flag
4180 */
4181 aic_dev->needsdtr = aic_dev->needsdtr_copy = 0;
4182 scb->flags &= ~SCB_MSGOUT_BITS;
4183 aic7xxx_set_syncrate(p, NULL, target, channel, 0, 0, 0,
4184 (AHC_TRANS_CUR|AHC_TRANS_ACTIVE|AHC_TRANS_GOAL), aic_dev);
4185 if(aic7xxx_verbose & VERBOSE_NEGOTIATION2)
4186 {
4187 printk(INFO_LEAD "Device is rejecting SDTR messages, using "
4188 "async transfers.\n", p->host_no, channel, target, lun);
4189 }
4190 }
4191 else if (aic7xxx_verbose & VERBOSE_SEQINT)
4192 {
4193 /*
4194 * Otherwise, we ignore it.
4195 */
4196 printk(INFO_LEAD "Received MESSAGE_REJECT for unknown cause. "
4197 "Ignoring.\n", p->host_no, channel, target, lun);
4198 }
4199 }
4200 break;
4201
4202 case BAD_STATUS:
4203 {
4204 unsigned char scb_index;
4205 struct aic7xxx_hwscb *hscb;
4206 struct scsi_cmnd *cmd;
4207
4208 /* The sequencer will notify us when a command has an error that
4209 * would be of interest to the kernel. This allows us to leave
4210 * the sequencer running in the common case of command completes
4211 * without error. The sequencer will have DMA'd the SCB back
4212 * up to us, so we can reference the drivers SCB array.
4213 *
4214 * Set the default return value to 0 indicating not to send
4215 * sense. The sense code will change this if needed and this
4216 * reduces code duplication.
4217 */
4218 aic_outb(p, 0, RETURN_1);
4219 scb_index = aic_inb(p, SCB_TAG);
4220 if (scb_index > p->scb_data->numscbs)
4221 {
4222 printk(WARN_LEAD "Invalid SCB during SEQINT 0x%02x, SCB_TAG %d.\n",
4223 p->host_no, channel, target, lun, intstat, scb_index);
4224 break;
4225 }
4226 scb = p->scb_data->scb_array[scb_index];
4227 hscb = scb->hscb;
4228
4229 if (!(scb->flags & SCB_ACTIVE) || (scb->cmd == NULL))
4230 {
4231 printk(WARN_LEAD "Invalid SCB during SEQINT 0x%x, scb %d, flags 0x%x,"
4232 " cmd 0x%lx.\n", p->host_no, channel, target, lun, intstat,
4233 scb_index, scb->flags, (unsigned long) scb->cmd);
4234 }
4235 else
4236 {
4237 cmd = scb->cmd;
4238 aic_dev = AIC_DEV(scb->cmd);
4239 hscb->target_status = aic_inb(p, SCB_TARGET_STATUS);
4240 aic7xxx_status(cmd) = hscb->target_status;
4241
4242 cmd->result = hscb->target_status;
4243
4244 switch (status_byte(hscb->target_status))
4245 {
4246 case GOOD:
4247 if (aic7xxx_verbose & VERBOSE_SEQINT)
4248 printk(INFO_LEAD "Interrupted for status of GOOD???\n",
4249 p->host_no, CTL_OF_SCB(scb));
4250 break;
4251
4252 case COMMAND_TERMINATED:
4253 case CHECK_CONDITION:
4254 if ( !(scb->flags & SCB_SENSE) )
4255 {
4256 /*
4257 * Send a sense command to the requesting target.
4258 * XXX - revisit this and get rid of the memcopys.
4259 */
4260 memcpy(scb->sense_cmd, &generic_sense[0],
4261 sizeof(generic_sense));
4262
4263 scb->sense_cmd[1] = (cmd->device->lun << 5);
4264 scb->sense_cmd[4] = SCSI_SENSE_BUFFERSIZE;
4265
4266 scb->sg_list[0].length =
4267 cpu_to_le32(SCSI_SENSE_BUFFERSIZE);
4268 scb->sg_list[0].address =
4269 cpu_to_le32(pci_map_single(p->pdev, cmd->sense_buffer,
4270 SCSI_SENSE_BUFFERSIZE,
4271 PCI_DMA_FROMDEVICE));
4272
4273 /*
4274 * XXX - We should allow disconnection, but can't as it
4275 * might allow overlapped tagged commands.
4276 */
4277 /* hscb->control &= DISCENB; */
4278 hscb->control = 0;
4279 hscb->target_status = 0;
4280 hscb->SG_list_pointer =
4281 cpu_to_le32(SCB_DMA_ADDR(scb, scb->sg_list));
4282 hscb->SCSI_cmd_pointer =
4283 cpu_to_le32(SCB_DMA_ADDR(scb, scb->sense_cmd));
4284 hscb->data_count = scb->sg_list[0].length;
4285 hscb->data_pointer = scb->sg_list[0].address;
4286 hscb->SCSI_cmd_length = COMMAND_SIZE(scb->sense_cmd[0]);
4287 hscb->residual_SG_segment_count = 0;
4288 hscb->residual_data_count[0] = 0;
4289 hscb->residual_data_count[1] = 0;
4290 hscb->residual_data_count[2] = 0;
4291
4292 scb->sg_count = hscb->SG_segment_count = 1;
4293 scb->sg_length = SCSI_SENSE_BUFFERSIZE;
4294 scb->tag_action = 0;
4295 scb->flags |= SCB_SENSE;
4296 /*
4297 * Ensure the target is busy since this will be an
4298 * an untagged request.
4299 */
4300 #ifdef AIC7XXX_VERBOSE_DEBUGGING
4301 if (aic7xxx_verbose & VERBOSE_NEGOTIATION2)
4302 {
4303 if (scb->flags & SCB_MSGOUT_BITS)
4304 printk(INFO_LEAD "Requesting SENSE with %s\n", p->host_no,
4305 CTL_OF_SCB(scb), (scb->flags & SCB_MSGOUT_SDTR) ?
4306 "SDTR" : "WDTR");
4307 else
4308 printk(INFO_LEAD "Requesting SENSE, no MSG\n", p->host_no,
4309 CTL_OF_SCB(scb));
4310 }
4311 #endif
4312 aic7xxx_busy_target(p, scb);
4313 aic_outb(p, SEND_SENSE, RETURN_1);
4314 aic7xxx_error(cmd) = DID_OK;
4315 break;
4316 } /* first time sense, no errors */
4317 printk(INFO_LEAD "CHECK_CONDITION on REQUEST_SENSE, returning "
4318 "an error.\n", p->host_no, CTL_OF_SCB(scb));
4319 aic7xxx_error(cmd) = DID_ERROR;
4320 scb->flags &= ~SCB_SENSE;
4321 break;
4322
4323 case QUEUE_FULL:
4324 queue_flag = TRUE; /* Mark that this is a QUEUE_FULL and */
4325 case BUSY: /* drop through to here */
4326 {
4327 struct aic7xxx_scb *next_scbp, *prev_scbp;
4328 unsigned char active_hscb, next_hscb, prev_hscb, scb_index;
4329 /*
4330 * We have to look three places for queued commands:
4331 * 1: p->waiting_scbs queue
4332 * 2: QINFIFO
4333 * 3: WAITING_SCBS list on card (for commands that are started
4334 * but haven't yet made it to the device)
4335 *
4336 * Of special note here is that commands on 2 or 3 above will
4337 * have already been marked as active, while commands on 1 will
4338 * not. The aic7xxx_done() function will want to unmark them
4339 * from active, so any commands we pull off of 1 need to
4340 * up the active count.
4341 */
4342 next_scbp = p->waiting_scbs.head;
4343 while ( next_scbp != NULL )
4344 {
4345 prev_scbp = next_scbp;
4346 next_scbp = next_scbp->q_next;
4347 if ( aic7xxx_match_scb(p, prev_scbp, target, channel, lun,
4348 SCB_LIST_NULL) )
4349 {
4350 scbq_remove(&p->waiting_scbs, prev_scbp);
4351 scb->flags = SCB_QUEUED_FOR_DONE | SCB_QUEUE_FULL;
4352 p->activescbs++;
4353 aic_dev->active_cmds++;
4354 }
4355 }
4356 aic7xxx_search_qinfifo(p, target, channel, lun,
4357 SCB_LIST_NULL, SCB_QUEUED_FOR_DONE | SCB_QUEUE_FULL,
4358 FALSE, NULL);
4359 next_scbp = NULL;
4360 active_hscb = aic_inb(p, SCBPTR);
4361 prev_hscb = next_hscb = scb_index = SCB_LIST_NULL;
4362 next_hscb = aic_inb(p, WAITING_SCBH);
4363 while (next_hscb != SCB_LIST_NULL)
4364 {
4365 aic_outb(p, next_hscb, SCBPTR);
4366 scb_index = aic_inb(p, SCB_TAG);
4367 if (scb_index < p->scb_data->numscbs)
4368 {
4369 next_scbp = p->scb_data->scb_array[scb_index];
4370 if (aic7xxx_match_scb(p, next_scbp, target, channel, lun,
4371 SCB_LIST_NULL) )
4372 {
4373 next_scbp->flags = SCB_QUEUED_FOR_DONE | SCB_QUEUE_FULL;
4374 next_hscb = aic_inb(p, SCB_NEXT);
4375 aic_outb(p, 0, SCB_CONTROL);
4376 aic_outb(p, SCB_LIST_NULL, SCB_TAG);
4377 aic7xxx_add_curscb_to_free_list(p);
4378 if (prev_hscb == SCB_LIST_NULL)
4379 {
4380 /* We were first on the list,
4381 * so we kill the selection
4382 * hardware. Let the sequencer
4383 * re-init the hardware itself
4384 */
4385 aic_outb(p, aic_inb(p, SCSISEQ) & ~ENSELO, SCSISEQ);
4386 aic_outb(p, CLRSELTIMEO, CLRSINT1);
4387 aic_outb(p, next_hscb, WAITING_SCBH);
4388 }
4389 else
4390 {
4391 aic_outb(p, prev_hscb, SCBPTR);
4392 aic_outb(p, next_hscb, SCB_NEXT);
4393 }
4394 }
4395 else
4396 {
4397 prev_hscb = next_hscb;
4398 next_hscb = aic_inb(p, SCB_NEXT);
4399 }
4400 } /* scb_index >= p->scb_data->numscbs */
4401 }
4402 aic_outb(p, active_hscb, SCBPTR);
4403 aic7xxx_run_done_queue(p, FALSE);
4404
4405 #ifdef AIC7XXX_VERBOSE_DEBUGGING
4406 if( (aic7xxx_verbose & VERBOSE_MINOR_ERROR) ||
4407 (aic7xxx_verbose > 0xffff) )
4408 {
4409 if (queue_flag)
4410 printk(INFO_LEAD "Queue full received; queue depth %d, "
4411 "active %d\n", p->host_no, CTL_OF_SCB(scb),
4412 aic_dev->max_q_depth, aic_dev->active_cmds);
4413 else
4414 printk(INFO_LEAD "Target busy\n", p->host_no, CTL_OF_SCB(scb));
4415 }
4416 #endif
4417 if (queue_flag)
4418 {
4419 int diff;
4420 result = scsi_track_queue_full(cmd->device,
4421 aic_dev->active_cmds);
4422 if ( result < 0 )
4423 {
4424 if (aic7xxx_verbose & VERBOSE_NEGOTIATION2)
4425 printk(INFO_LEAD "Tagged Command Queueing disabled.\n",
4426 p->host_no, CTL_OF_SCB(scb));
4427 diff = aic_dev->max_q_depth - p->host->cmd_per_lun;
4428 aic_dev->temp_q_depth = 1;
4429 aic_dev->max_q_depth = 1;
4430 }
4431 else if ( result > 0 )
4432 {
4433 if (aic7xxx_verbose & VERBOSE_NEGOTIATION2)
4434 printk(INFO_LEAD "Queue depth reduced to %d\n", p->host_no,
4435 CTL_OF_SCB(scb), result);
4436 diff = aic_dev->max_q_depth - result;
4437 aic_dev->max_q_depth = result;
4438 /* temp_q_depth could have been dropped to 1 for an untagged
4439 * command that might be coming up */
4440 if(aic_dev->temp_q_depth > result)
4441 aic_dev->temp_q_depth = result;
4442 }
4443 /* We should free up the no unused SCB entries. But, that's
4444 * a difficult thing to do because we use a direct indexed
4445 * array, so we can't just take any entries and free them,
4446 * we *have* to free the ones at the end of the array, and
4447 * they very well could be in use right now, which means
4448 * in order to do this right, we have to add a delayed
4449 * freeing mechanism tied into the scb_free() code area.
4450 * We'll add that later.
4451 */
4452 }
4453 break;
4454 }
4455
4456 default:
4457 if (aic7xxx_verbose & VERBOSE_SEQINT)
4458 printk(INFO_LEAD "Unexpected target status 0x%x.\n", p->host_no,
4459 CTL_OF_SCB(scb), scb->hscb->target_status);
4460 if (!aic7xxx_error(cmd))
4461 {
4462 aic7xxx_error(cmd) = DID_RETRY_COMMAND;
4463 }
4464 break;
4465 } /* end switch */
4466 } /* end else of */
4467 }
4468 break;
4469
4470 case AWAITING_MSG:
4471 {
4472 unsigned char scb_index, msg_out;
4473
4474 scb_index = aic_inb(p, SCB_TAG);
4475 msg_out = aic_inb(p, MSG_OUT);
4476 scb = p->scb_data->scb_array[scb_index];
4477 aic_dev = AIC_DEV(scb->cmd);
4478 p->msg_index = p->msg_len = 0;
4479 /*
4480 * This SCB had a MK_MESSAGE set in its control byte informing
4481 * the sequencer that we wanted to send a special message to
4482 * this target.
4483 */
4484
4485 if ( !(scb->flags & SCB_DEVICE_RESET) &&
4486 (msg_out == MSG_IDENTIFYFLAG) &&
4487 (scb->hscb->control & TAG_ENB) )
4488 {
4489 p->msg_buf[p->msg_index++] = scb->tag_action;
4490 p->msg_buf[p->msg_index++] = scb->hscb->tag;
4491 p->msg_len += 2;
4492 }
4493
4494 if (scb->flags & SCB_DEVICE_RESET)
4495 {
4496 p->msg_buf[p->msg_index++] = MSG_BUS_DEV_RESET;
4497 p->msg_len++;
4498 if (aic7xxx_verbose & VERBOSE_RESET_PROCESS)
4499 printk(INFO_LEAD "Bus device reset mailed.\n",
4500 p->host_no, CTL_OF_SCB(scb));
4501 }
4502 else if (scb->flags & SCB_ABORT)
4503 {
4504 if (scb->tag_action)
4505 {
4506 p->msg_buf[p->msg_index++] = MSG_ABORT_TAG;
4507 }
4508 else
4509 {
4510 p->msg_buf[p->msg_index++] = MSG_ABORT;
4511 }
4512 p->msg_len++;
4513 if (aic7xxx_verbose & VERBOSE_ABORT_PROCESS)
4514 printk(INFO_LEAD "Abort message mailed.\n", p->host_no,
4515 CTL_OF_SCB(scb));
4516 }
4517 else if (scb->flags & SCB_MSGOUT_PPR)
4518 {
4519 if (aic7xxx_verbose & VERBOSE_NEGOTIATION2)
4520 {
4521 printk(INFO_LEAD "Sending PPR (%d/%d/%d/%d) message.\n",
4522 p->host_no, CTL_OF_SCB(scb),
4523 aic_dev->goal.period,
4524 aic_dev->goal.offset,
4525 aic_dev->goal.width,
4526 aic_dev->goal.options);
4527 }
4528 aic7xxx_construct_ppr(p, scb);
4529 }
4530 else if (scb->flags & SCB_MSGOUT_WDTR)
4531 {
4532 if (aic7xxx_verbose & VERBOSE_NEGOTIATION2)
4533 {
4534 printk(INFO_LEAD "Sending WDTR message.\n", p->host_no,
4535 CTL_OF_SCB(scb));
4536 }
4537 aic7xxx_construct_wdtr(p, aic_dev->goal.width);
4538 }
4539 else if (scb->flags & SCB_MSGOUT_SDTR)
4540 {
4541 unsigned int max_sync, period;
4542 unsigned char options = 0;
4543 /*
4544 * Now that the device is selected, use the bits in SBLKCTL and
4545 * SSTAT2 to determine the max sync rate for this device.
4546 */
4547 if (p->features & AHC_ULTRA2)
4548 {
4549 if ( (aic_inb(p, SBLKCTL) & ENAB40) &&
4550 !(aic_inb(p, SSTAT2) & EXP_ACTIVE) )
4551 {
4552 max_sync = AHC_SYNCRATE_ULTRA2;
4553 }
4554 else
4555 {
4556 max_sync = AHC_SYNCRATE_ULTRA;
4557 }
4558 }
4559 else if (p->features & AHC_ULTRA)
4560 {
4561 max_sync = AHC_SYNCRATE_ULTRA;
4562 }
4563 else
4564 {
4565 max_sync = AHC_SYNCRATE_FAST;
4566 }
4567 period = aic_dev->goal.period;
4568 aic7xxx_find_syncrate(p, &period, max_sync, &options);
4569 if (aic7xxx_verbose & VERBOSE_NEGOTIATION2)
4570 {
4571 printk(INFO_LEAD "Sending SDTR %d/%d message.\n", p->host_no,
4572 CTL_OF_SCB(scb), period,
4573 aic_dev->goal.offset);
4574 }
4575 aic7xxx_construct_sdtr(p, period, aic_dev->goal.offset);
4576 }
4577 else
4578 {
4579 panic("aic7xxx: AWAITING_MSG for an SCB that does "
4580 "not have a waiting message.\n");
4581 }
4582 /*
4583 * We've set everything up to send our message, now to actually do
4584 * so we need to enable reqinit interrupts and let the interrupt
4585 * handler do the rest. We don't want to unpause the sequencer yet
4586 * though so we'll return early. We also have to make sure that
4587 * we clear the SEQINT *BEFORE* we set the REQINIT handler active
4588 * or else it's possible on VLB cards to lose the first REQINIT
4589 * interrupt. Edge triggered EISA cards could also lose this
4590 * interrupt, although PCI and level triggered cards should not
4591 * have this problem since they continually interrupt the kernel
4592 * until we take care of the situation.
4593 */
4594 scb->flags |= SCB_MSGOUT_SENT;
4595 p->msg_index = 0;
4596 p->msg_type = MSG_TYPE_INITIATOR_MSGOUT;
4597 p->flags |= AHC_HANDLING_REQINITS;
4598 aic_outb(p, aic_inb(p, SIMODE1) | ENREQINIT, SIMODE1);
4599 return;
4600 }
4601 break;
4602
4603 case DATA_OVERRUN:
4604 {
4605 unsigned char scb_index = aic_inb(p, SCB_TAG);
4606 unsigned char lastphase = aic_inb(p, LASTPHASE);
4607 unsigned int i;
4608
4609 scb = (p->scb_data->scb_array[scb_index]);
4610 /*
4611 * XXX - What do we really want to do on an overrun? The
4612 * mid-level SCSI code should handle this, but for now,
4613 * we'll just indicate that the command should retried.
4614 * If we retrieved sense info on this target, then the
4615 * base SENSE info should have been saved prior to the
4616 * overrun error. In that case, we return DID_OK and let
4617 * the mid level code pick up on the sense info. Otherwise
4618 * we return DID_ERROR so the command will get retried.
4619 */
4620 if ( !(scb->flags & SCB_SENSE) )
4621 {
4622 printk(WARN_LEAD "Data overrun detected in %s phase, tag %d;\n",
4623 p->host_no, CTL_OF_SCB(scb),
4624 (lastphase == P_DATAIN) ? "Data-In" : "Data-Out", scb->hscb->tag);
4625 printk(KERN_WARNING " %s seen Data Phase. Length=%d, NumSGs=%d.\n",
4626 (aic_inb(p, SEQ_FLAGS) & DPHASE) ? "Have" : "Haven't",
4627 scb->sg_length, scb->sg_count);
4628 printk(KERN_WARNING " Raw SCSI Command: 0x");
4629 for (i = 0; i < scb->hscb->SCSI_cmd_length; i++)
4630 {
4631 printk("%02x ", scb->cmd->cmnd[i]);
4632 }
4633 printk("\n");
4634 if(aic7xxx_verbose > 0xffff)
4635 {
4636 for (i = 0; i < scb->sg_count; i++)
4637 {
4638 printk(KERN_WARNING " sg[%d] - Addr 0x%x : Length %d\n",
4639 i,
4640 le32_to_cpu(scb->sg_list[i].address),
4641 le32_to_cpu(scb->sg_list[i].length) );
4642 }
4643 }
4644 aic7xxx_error(scb->cmd) = DID_ERROR;
4645 }
4646 else
4647 printk(INFO_LEAD "Data Overrun during SEND_SENSE operation.\n",
4648 p->host_no, CTL_OF_SCB(scb));
4649 }
4650 break;
4651
4652 case WIDE_RESIDUE:
4653 {
4654 unsigned char resid_sgcnt, index;
4655 unsigned char scb_index = aic_inb(p, SCB_TAG);
4656 unsigned int cur_addr, resid_dcnt;
4657 unsigned int native_addr, native_length, sg_addr;
4658 int i;
4659
4660 if(scb_index > p->scb_data->numscbs)
4661 {
4662 printk(WARN_LEAD "invalid scb_index during WIDE_RESIDUE.\n",
4663 p->host_no, -1, -1, -1);
4664 /*
4665 * XXX: Add error handling here
4666 */
4667 break;
4668 }
4669 scb = p->scb_data->scb_array[scb_index];
4670 if(!(scb->flags & SCB_ACTIVE) || (scb->cmd == NULL))
4671 {
4672 printk(WARN_LEAD "invalid scb during WIDE_RESIDUE flags:0x%x "
4673 "scb->cmd:0x%lx\n", p->host_no, CTL_OF_SCB(scb),
4674 scb->flags, (unsigned long)scb->cmd);
4675 break;
4676 }
4677 if(aic7xxx_verbose & VERBOSE_MINOR_ERROR)
4678 printk(INFO_LEAD "Got WIDE_RESIDUE message, patching up data "
4679 "pointer.\n", p->host_no, CTL_OF_SCB(scb));
4680
4681 /*
4682 * We have a valid scb to use on this WIDE_RESIDUE message, so
4683 * we need to walk the sg list looking for this particular sg
4684 * segment, then see if we happen to be at the very beginning of
4685 * the segment. If we are, then we have to back things up to
4686 * the previous segment. If not, then we simply need to remove
4687 * one byte from this segments address and add one to the byte
4688 * count.
4689 */
4690 cur_addr = aic_inb(p, SHADDR) | (aic_inb(p, SHADDR + 1) << 8) |
4691 (aic_inb(p, SHADDR + 2) << 16) | (aic_inb(p, SHADDR + 3) << 24);
4692 sg_addr = aic_inb(p, SG_COUNT + 1) | (aic_inb(p, SG_COUNT + 2) << 8) |
4693 (aic_inb(p, SG_COUNT + 3) << 16) | (aic_inb(p, SG_COUNT + 4) << 24);
4694 resid_sgcnt = aic_inb(p, SCB_RESID_SGCNT);
4695 resid_dcnt = aic_inb(p, SCB_RESID_DCNT) |
4696 (aic_inb(p, SCB_RESID_DCNT + 1) << 8) |
4697 (aic_inb(p, SCB_RESID_DCNT + 2) << 16);
4698 index = scb->sg_count - ((resid_sgcnt) ? resid_sgcnt : 1);
4699 native_addr = le32_to_cpu(scb->sg_list[index].address);
4700 native_length = le32_to_cpu(scb->sg_list[index].length);
4701 /*
4702 * If resid_dcnt == native_length, then we just loaded this SG
4703 * segment and we need to back it up one...
4704 */
4705 if(resid_dcnt == native_length)
4706 {
4707 if(index == 0)
4708 {
4709 /*
4710 * Oops, this isn't right, we can't back up to before the
4711 * beginning. This must be a bogus message, ignore it.
4712 */
4713 break;
4714 }
4715 resid_dcnt = 1;
4716 resid_sgcnt += 1;
4717 native_addr = le32_to_cpu(scb->sg_list[index - 1].address);
4718 native_length = le32_to_cpu(scb->sg_list[index - 1].length);
4719 cur_addr = native_addr + (native_length - 1);
4720 sg_addr -= sizeof(struct hw_scatterlist);
4721 }
4722 else
4723 {
4724 /*
4725 * resid_dcnt != native_length, so we are in the middle of a SG
4726 * element. Back it up one byte and leave the rest alone.
4727 */
4728 resid_dcnt += 1;
4729 cur_addr -= 1;
4730 }
4731
4732 /*
4733 * Output the new addresses and counts to the right places on the
4734 * card.
4735 */
4736 aic_outb(p, resid_sgcnt, SG_COUNT);
4737 aic_outb(p, resid_sgcnt, SCB_RESID_SGCNT);
4738 aic_outb(p, sg_addr & 0xff, SG_COUNT + 1);
4739 aic_outb(p, (sg_addr >> 8) & 0xff, SG_COUNT + 2);
4740 aic_outb(p, (sg_addr >> 16) & 0xff, SG_COUNT + 3);
4741 aic_outb(p, (sg_addr >> 24) & 0xff, SG_COUNT + 4);
4742 aic_outb(p, resid_dcnt & 0xff, SCB_RESID_DCNT);
4743 aic_outb(p, (resid_dcnt >> 8) & 0xff, SCB_RESID_DCNT + 1);
4744 aic_outb(p, (resid_dcnt >> 16) & 0xff, SCB_RESID_DCNT + 2);
4745
4746 /*
4747 * The sequencer actually wants to find the new address
4748 * in the SHADDR register set. On the Ultra2 and later controllers
4749 * this register set is readonly. In order to get the right number
4750 * into the register, you actually have to enter it in HADDR and then
4751 * use the PRELOADEN bit of DFCNTRL to drop it through from the
4752 * HADDR register to the SHADDR register. On non-Ultra2 controllers,
4753 * we simply write it direct.
4754 */
4755 if(p->features & AHC_ULTRA2)
4756 {
4757 /*
4758 * We might as well be accurate and drop both the resid_dcnt and
4759 * cur_addr into HCNT and HADDR and have both of them drop
4760 * through to the shadow layer together.
4761 */
4762 aic_outb(p, resid_dcnt & 0xff, HCNT);
4763 aic_outb(p, (resid_dcnt >> 8) & 0xff, HCNT + 1);
4764 aic_outb(p, (resid_dcnt >> 16) & 0xff, HCNT + 2);
4765 aic_outb(p, cur_addr & 0xff, HADDR);
4766 aic_outb(p, (cur_addr >> 8) & 0xff, HADDR + 1);
4767 aic_outb(p, (cur_addr >> 16) & 0xff, HADDR + 2);
4768 aic_outb(p, (cur_addr >> 24) & 0xff, HADDR + 3);
4769 aic_outb(p, aic_inb(p, DMAPARAMS) | PRELOADEN, DFCNTRL);
4770 udelay(1);
4771 aic_outb(p, aic_inb(p, DMAPARAMS) & ~(SCSIEN|HDMAEN), DFCNTRL);
4772 i=0;
4773 while(((aic_inb(p, DFCNTRL) & (SCSIEN|HDMAEN)) != 0) && (i++ < 1000))
4774 {
4775 udelay(1);
4776 }
4777 }
4778 else
4779 {
4780 aic_outb(p, cur_addr & 0xff, SHADDR);
4781 aic_outb(p, (cur_addr >> 8) & 0xff, SHADDR + 1);
4782 aic_outb(p, (cur_addr >> 16) & 0xff, SHADDR + 2);
4783 aic_outb(p, (cur_addr >> 24) & 0xff, SHADDR + 3);
4784 }
4785 }
4786 break;
4787
4788 case SEQ_SG_FIXUP:
4789 {
4790 unsigned char scb_index, tmp;
4791 int sg_addr, sg_length;
4792
4793 scb_index = aic_inb(p, SCB_TAG);
4794
4795 if(scb_index > p->scb_data->numscbs)
4796 {
4797 printk(WARN_LEAD "invalid scb_index during SEQ_SG_FIXUP.\n",
4798 p->host_no, -1, -1, -1);
4799 printk(INFO_LEAD "SCSISIGI 0x%x, SEQADDR 0x%x, SSTAT0 0x%x, SSTAT1 "
4800 "0x%x\n", p->host_no, -1, -1, -1,
4801 aic_inb(p, SCSISIGI),
4802 aic_inb(p, SEQADDR0) | (aic_inb(p, SEQADDR1) << 8),
4803 aic_inb(p, SSTAT0), aic_inb(p, SSTAT1));
4804 printk(INFO_LEAD "SG_CACHEPTR 0x%x, SSTAT2 0x%x, STCNT 0x%x\n",
4805 p->host_no, -1, -1, -1, aic_inb(p, SG_CACHEPTR),
4806 aic_inb(p, SSTAT2), aic_inb(p, STCNT + 2) << 16 |
4807 aic_inb(p, STCNT + 1) << 8 | aic_inb(p, STCNT));
4808 /*
4809 * XXX: Add error handling here
4810 */
4811 break;
4812 }
4813 scb = p->scb_data->scb_array[scb_index];
4814 if(!(scb->flags & SCB_ACTIVE) || (scb->cmd == NULL))
4815 {
4816 printk(WARN_LEAD "invalid scb during SEQ_SG_FIXUP flags:0x%x "
4817 "scb->cmd:0x%p\n", p->host_no, CTL_OF_SCB(scb),
4818 scb->flags, scb->cmd);
4819 printk(INFO_LEAD "SCSISIGI 0x%x, SEQADDR 0x%x, SSTAT0 0x%x, SSTAT1 "
4820 "0x%x\n", p->host_no, CTL_OF_SCB(scb),
4821 aic_inb(p, SCSISIGI),
4822 aic_inb(p, SEQADDR0) | (aic_inb(p, SEQADDR1) << 8),
4823 aic_inb(p, SSTAT0), aic_inb(p, SSTAT1));
4824 printk(INFO_LEAD "SG_CACHEPTR 0x%x, SSTAT2 0x%x, STCNT 0x%x\n",
4825 p->host_no, CTL_OF_SCB(scb), aic_inb(p, SG_CACHEPTR),
4826 aic_inb(p, SSTAT2), aic_inb(p, STCNT + 2) << 16 |
4827 aic_inb(p, STCNT + 1) << 8 | aic_inb(p, STCNT));
4828 break;
4829 }
4830 if(aic7xxx_verbose & VERBOSE_MINOR_ERROR)
4831 printk(INFO_LEAD "Fixing up SG address for sequencer.\n", p->host_no,
4832 CTL_OF_SCB(scb));
4833 /*
4834 * Advance the SG pointer to the next element in the list
4835 */
4836 tmp = aic_inb(p, SG_NEXT);
4837 tmp += SG_SIZEOF;
4838 aic_outb(p, tmp, SG_NEXT);
4839 if( tmp < SG_SIZEOF )
4840 aic_outb(p, aic_inb(p, SG_NEXT + 1) + 1, SG_NEXT + 1);
4841 tmp = aic_inb(p, SG_COUNT) - 1;
4842 aic_outb(p, tmp, SG_COUNT);
4843 sg_addr = le32_to_cpu(scb->sg_list[scb->sg_count - tmp].address);
4844 sg_length = le32_to_cpu(scb->sg_list[scb->sg_count - tmp].length);
4845 /*
4846 * Now stuff the element we just advanced past down onto the
4847 * card so it can be stored in the residual area.
4848 */
4849 aic_outb(p, sg_addr & 0xff, HADDR);
4850 aic_outb(p, (sg_addr >> 8) & 0xff, HADDR + 1);
4851 aic_outb(p, (sg_addr >> 16) & 0xff, HADDR + 2);
4852 aic_outb(p, (sg_addr >> 24) & 0xff, HADDR + 3);
4853 aic_outb(p, sg_length & 0xff, HCNT);
4854 aic_outb(p, (sg_length >> 8) & 0xff, HCNT + 1);
4855 aic_outb(p, (sg_length >> 16) & 0xff, HCNT + 2);
4856 aic_outb(p, (tmp << 2) | ((tmp == 1) ? LAST_SEG : 0), SG_CACHEPTR);
4857 aic_outb(p, aic_inb(p, DMAPARAMS), DFCNTRL);
4858 while(aic_inb(p, SSTAT0) & SDONE) udelay(1);
4859 while(aic_inb(p, DFCNTRL) & (HDMAEN|SCSIEN)) aic_outb(p, 0, DFCNTRL);
4860 }
4861 break;
4862
4863 #ifdef AIC7XXX_NOT_YET
4864 case TRACEPOINT2:
4865 {
4866 printk(INFO_LEAD "Tracepoint #2 reached.\n", p->host_no,
4867 channel, target, lun);
4868 }
4869 break;
4870
4871 /* XXX Fill these in later */
4872 case MSG_BUFFER_BUSY:
4873 printk("aic7xxx: Message buffer busy.\n");
4874 break;
4875 case MSGIN_PHASEMIS:
4876 printk("aic7xxx: Message-in phasemis.\n");
4877 break;
4878 #endif
4879
4880 default: /* unknown */
4881 printk(WARN_LEAD "Unknown SEQINT, INTSTAT 0x%x, SCSISIGI 0x%x.\n",
4882 p->host_no, channel, target, lun, intstat,
4883 aic_inb(p, SCSISIGI));
4884 break;
4885 }
4886
4887 /*
4888 * Clear the sequencer interrupt and unpause the sequencer.
4889 */
4890 unpause_sequencer(p, /* unpause always */ TRUE);
4891 }
4892
4893 /*+F*************************************************************************
4894 * Function:
4895 * aic7xxx_parse_msg
4896 *
4897 * Description:
4898 * Parses incoming messages into actions on behalf of
4899 * aic7xxx_handle_reqinit
4900 *_F*************************************************************************/
4901 static int
4902 aic7xxx_parse_msg(struct aic7xxx_host *p, struct aic7xxx_scb *scb)
4903 {
4904 int reject, reply, done;
4905 unsigned char target_scsirate, tindex;
4906 unsigned short target_mask;
4907 unsigned char target, channel, lun;
4908 unsigned char bus_width, new_bus_width;
4909 unsigned char trans_options, new_trans_options;
4910 unsigned int period, new_period, offset, new_offset, maxsync;
4911 struct aic7xxx_syncrate *syncrate;
4912 struct aic_dev_data *aic_dev;
4913
4914 target = scb->cmd->device->id;
4915 channel = scb->cmd->device->channel;
4916 lun = scb->cmd->device->lun;
4917 reply = reject = done = FALSE;
4918 tindex = TARGET_INDEX(scb->cmd);
4919 aic_dev = AIC_DEV(scb->cmd);
4920 target_scsirate = aic_inb(p, TARG_SCSIRATE + tindex);
4921 target_mask = (0x01 << tindex);
4922
4923 /*
4924 * Parse as much of the message as is available,
4925 * rejecting it if we don't support it. When
4926 * the entire message is available and has been
4927 * handled, return TRUE indicating that we have
4928 * parsed an entire message.
4929 */
4930
4931 if (p->msg_buf[0] != MSG_EXTENDED)
4932 {
4933 reject = TRUE;
4934 }
4935
4936 /*
4937 * Even if we are an Ultra3 card, don't allow Ultra3 sync rates when
4938 * using the SDTR messages. We need the PPR messages to enable the
4939 * higher speeds that include things like Dual Edge clocking.
4940 */
4941 if (p->features & AHC_ULTRA2)
4942 {
4943 if ( (aic_inb(p, SBLKCTL) & ENAB40) &&
4944 !(aic_inb(p, SSTAT2) & EXP_ACTIVE) )
4945 {
4946 if (p->features & AHC_ULTRA3)
4947 maxsync = AHC_SYNCRATE_ULTRA3;
4948 else
4949 maxsync = AHC_SYNCRATE_ULTRA2;
4950 }
4951 else
4952 {
4953 maxsync = AHC_SYNCRATE_ULTRA;
4954 }
4955 }
4956 else if (p->features & AHC_ULTRA)
4957 {
4958 maxsync = AHC_SYNCRATE_ULTRA;
4959 }
4960 else
4961 {
4962 maxsync = AHC_SYNCRATE_FAST;
4963 }
4964
4965 /*
4966 * Just accept the length byte outright and perform
4967 * more checking once we know the message type.
4968 */
4969
4970 if ( !reject && (p->msg_len > 2) )
4971 {
4972 switch(p->msg_buf[2])
4973 {
4974 case MSG_EXT_SDTR:
4975 {
4976
4977 if (p->msg_buf[1] != MSG_EXT_SDTR_LEN)
4978 {
4979 reject = TRUE;
4980 break;
4981 }
4982
4983 if (p->msg_len < (MSG_EXT_SDTR_LEN + 2))
4984 {
4985 break;
4986 }
4987
4988 period = new_period = p->msg_buf[3];
4989 offset = new_offset = p->msg_buf[4];
4990 trans_options = new_trans_options = 0;
4991 bus_width = new_bus_width = target_scsirate & WIDEXFER;
4992
4993 /*
4994 * If our current max syncrate is in the Ultra3 range, bump it back
4995 * down to Ultra2 since we can't negotiate DT transfers using SDTR
4996 */
4997 if(maxsync == AHC_SYNCRATE_ULTRA3)
4998 maxsync = AHC_SYNCRATE_ULTRA2;
4999
5000 /*
5001 * We might have a device that is starting negotiation with us
5002 * before we can start up negotiation with it....be prepared to
5003 * have a device ask for a higher speed then we want to give it
5004 * in that case
5005 */
5006 if ( (scb->flags & (SCB_MSGOUT_SENT|SCB_MSGOUT_SDTR)) !=
5007 (SCB_MSGOUT_SENT|SCB_MSGOUT_SDTR) )
5008 {
5009 if (!(aic_dev->flags & DEVICE_DTR_SCANNED))
5010 {
5011 /*
5012 * We shouldn't get here unless this is a narrow drive, wide
5013 * devices should trigger this same section of code in the WDTR
5014 * handler first instead.
5015 */
5016 aic_dev->goal.width = MSG_EXT_WDTR_BUS_8_BIT;
5017 aic_dev->goal.options = 0;
5018 if(p->user[tindex].offset)
5019 {
5020 aic_dev->needsdtr_copy = 1;
5021 aic_dev->goal.period = max_t(unsigned char, 10,p->user[tindex].period);
5022 if(p->features & AHC_ULTRA2)
5023 {
5024 aic_dev->goal.offset = MAX_OFFSET_ULTRA2;
5025 }
5026 else
5027 {
5028 aic_dev->goal.offset = MAX_OFFSET_8BIT;
5029 }
5030 }
5031 else
5032 {
5033 aic_dev->needsdtr_copy = 0;
5034 aic_dev->goal.period = 255;
5035 aic_dev->goal.offset = 0;
5036 }
5037 aic_dev->flags |= DEVICE_DTR_SCANNED | DEVICE_PRINT_DTR;
5038 }
5039 else if (aic_dev->needsdtr_copy == 0)
5040 {
5041 /*
5042 * This is a preemptive message from the target, we've already
5043 * scanned this target and set our options for it, and we
5044 * don't need a SDTR with this target (for whatever reason),
5045 * so reject this incoming SDTR
5046 */
5047 reject = TRUE;
5048 break;
5049 }
5050
5051 /* The device is sending this message first and we have to reply */
5052 reply = TRUE;
5053
5054 if (aic7xxx_verbose & VERBOSE_NEGOTIATION2)
5055 {
5056 printk(INFO_LEAD "Received pre-emptive SDTR message from "
5057 "target.\n", p->host_no, CTL_OF_SCB(scb));
5058 }
5059 /*
5060 * Validate the values the device passed to us against our SEEPROM
5061 * settings. We don't have to do this if we aren't replying since
5062 * the device isn't allowed to send values greater than the ones
5063 * we first sent to it.
5064 */
5065 new_period = max_t(unsigned int, period, aic_dev->goal.period);
5066 new_offset = min_t(unsigned int, offset, aic_dev->goal.offset);
5067 }
5068
5069 /*
5070 * Use our new_period, new_offset, bus_width, and card options
5071 * to determine the actual syncrate settings
5072 */
5073 syncrate = aic7xxx_find_syncrate(p, &new_period, maxsync,
5074 &trans_options);
5075 aic7xxx_validate_offset(p, syncrate, &new_offset, bus_width);
5076
5077 /*
5078 * Did we drop to async? If so, send a reply regardless of whether
5079 * or not we initiated this negotiation.
5080 */
5081 if ((new_offset == 0) && (new_offset != offset))
5082 {
5083 aic_dev->needsdtr_copy = 0;
5084 reply = TRUE;
5085 }
5086
5087 /*
5088 * Did we start this, if not, or if we went too low and had to
5089 * go async, then send an SDTR back to the target
5090 */
5091 if(reply)
5092 {
5093 /* when sending a reply, make sure that the goal settings are
5094 * updated along with current and active since the code that
5095 * will actually build the message for the sequencer uses the
5096 * goal settings as its guidelines.
5097 */
5098 aic7xxx_set_syncrate(p, syncrate, target, channel, new_period,
5099 new_offset, trans_options,
5100 AHC_TRANS_GOAL|AHC_TRANS_ACTIVE|AHC_TRANS_CUR,
5101 aic_dev);
5102 scb->flags &= ~SCB_MSGOUT_BITS;
5103 scb->flags |= SCB_MSGOUT_SDTR;
5104 aic_outb(p, HOST_MSG, MSG_OUT);
5105 aic_outb(p, aic_inb(p, SCSISIGO) | ATNO, SCSISIGO);
5106 }
5107 else
5108 {
5109 aic7xxx_set_syncrate(p, syncrate, target, channel, new_period,
5110 new_offset, trans_options,
5111 AHC_TRANS_ACTIVE|AHC_TRANS_CUR, aic_dev);
5112 aic_dev->needsdtr = 0;
5113 }
5114 done = TRUE;
5115 break;
5116 }
5117 case MSG_EXT_WDTR:
5118 {
5119
5120 if (p->msg_buf[1] != MSG_EXT_WDTR_LEN)
5121 {
5122 reject = TRUE;
5123 break;
5124 }
5125
5126 if (p->msg_len < (MSG_EXT_WDTR_LEN + 2))
5127 {
5128 break;
5129 }
5130
5131 bus_width = new_bus_width = p->msg_buf[3];
5132
5133 if ( (scb->flags & (SCB_MSGOUT_SENT|SCB_MSGOUT_WDTR)) ==
5134 (SCB_MSGOUT_SENT|SCB_MSGOUT_WDTR) )
5135 {
5136 switch(bus_width)
5137 {
5138 default:
5139 {
5140 reject = TRUE;
5141 if ( (aic7xxx_verbose & VERBOSE_NEGOTIATION2) &&
5142 ((aic_dev->flags & DEVICE_PRINT_DTR) ||
5143 (aic7xxx_verbose > 0xffff)) )
5144 {
5145 printk(INFO_LEAD "Requesting %d bit transfers, rejecting.\n",
5146 p->host_no, CTL_OF_SCB(scb), 8 * (0x01 << bus_width));
5147 }
5148 } /* We fall through on purpose */
5149 case MSG_EXT_WDTR_BUS_8_BIT:
5150 {
5151 aic_dev->goal.width = MSG_EXT_WDTR_BUS_8_BIT;
5152 aic_dev->needwdtr_copy &= ~target_mask;
5153 break;
5154 }
5155 case MSG_EXT_WDTR_BUS_16_BIT:
5156 {
5157 break;
5158 }
5159 }
5160 aic_dev->needwdtr = 0;
5161 aic7xxx_set_width(p, target, channel, lun, new_bus_width,
5162 AHC_TRANS_ACTIVE|AHC_TRANS_CUR, aic_dev);
5163 }
5164 else
5165 {
5166 if ( !(aic_dev->flags & DEVICE_DTR_SCANNED) )
5167 {
5168 /*
5169 * Well, we now know the WDTR and SYNC caps of this device since
5170 * it contacted us first, mark it as such and copy the user stuff
5171 * over to the goal stuff.
5172 */
5173 if( (p->features & AHC_WIDE) && p->user[tindex].width )
5174 {
5175 aic_dev->goal.width = MSG_EXT_WDTR_BUS_16_BIT;
5176 aic_dev->needwdtr_copy = 1;
5177 }
5178
5179 /*
5180 * Devices that support DT transfers don't start WDTR requests
5181 */
5182 aic_dev->goal.options = 0;
5183
5184 if(p->user[tindex].offset)
5185 {
5186 aic_dev->needsdtr_copy = 1;
5187 aic_dev->goal.period = max_t(unsigned char, 10, p->user[tindex].period);
5188 if(p->features & AHC_ULTRA2)
5189 {
5190 aic_dev->goal.offset = MAX_OFFSET_ULTRA2;
5191 }
5192 else if( aic_dev->goal.width )
5193 {
5194 aic_dev->goal.offset = MAX_OFFSET_16BIT;
5195 }
5196 else
5197 {
5198 aic_dev->goal.offset = MAX_OFFSET_8BIT;
5199 }
5200 } else {
5201 aic_dev->needsdtr_copy = 0;
5202 aic_dev->goal.period = 255;
5203 aic_dev->goal.offset = 0;
5204 }
5205
5206 aic_dev->flags |= DEVICE_DTR_SCANNED | DEVICE_PRINT_DTR;
5207 }
5208 else if (aic_dev->needwdtr_copy == 0)
5209 {
5210 /*
5211 * This is a preemptive message from the target, we've already
5212 * scanned this target and set our options for it, and we
5213 * don't need a WDTR with this target (for whatever reason),
5214 * so reject this incoming WDTR
5215 */
5216 reject = TRUE;
5217 break;
5218 }
5219
5220 /* The device is sending this message first and we have to reply */
5221 reply = TRUE;
5222
5223 if (aic7xxx_verbose & VERBOSE_NEGOTIATION2)
5224 {
5225 printk(INFO_LEAD "Received pre-emptive WDTR message from "
5226 "target.\n", p->host_no, CTL_OF_SCB(scb));
5227 }
5228 switch(bus_width)
5229 {
5230 case MSG_EXT_WDTR_BUS_16_BIT:
5231 {
5232 if ( (p->features & AHC_WIDE) &&
5233 (aic_dev->goal.width == MSG_EXT_WDTR_BUS_16_BIT) )
5234 {
5235 new_bus_width = MSG_EXT_WDTR_BUS_16_BIT;
5236 break;
5237 }
5238 } /* Fall through if we aren't a wide card */
5239 default:
5240 case MSG_EXT_WDTR_BUS_8_BIT:
5241 {
5242 aic_dev->needwdtr_copy = 0;
5243 new_bus_width = MSG_EXT_WDTR_BUS_8_BIT;
5244 break;
5245 }
5246 }
5247 scb->flags &= ~SCB_MSGOUT_BITS;
5248 scb->flags |= SCB_MSGOUT_WDTR;
5249 aic_dev->needwdtr = 0;
5250 if(aic_dev->dtr_pending == 0)
5251 {
5252 /* there is no other command with SCB_DTR_SCB already set that will
5253 * trigger the release of the dtr_pending bit. Both set the bit
5254 * and set scb->flags |= SCB_DTR_SCB
5255 */
5256 aic_dev->dtr_pending = 1;
5257 scb->flags |= SCB_DTR_SCB;
5258 }
5259 aic_outb(p, HOST_MSG, MSG_OUT);
5260 aic_outb(p, aic_inb(p, SCSISIGO) | ATNO, SCSISIGO);
5261 /* when sending a reply, make sure that the goal settings are
5262 * updated along with current and active since the code that
5263 * will actually build the message for the sequencer uses the
5264 * goal settings as its guidelines.
5265 */
5266 aic7xxx_set_width(p, target, channel, lun, new_bus_width,
5267 AHC_TRANS_GOAL|AHC_TRANS_ACTIVE|AHC_TRANS_CUR,
5268 aic_dev);
5269 }
5270
5271 /*
5272 * By virtue of the SCSI spec, a WDTR message negates any existing
5273 * SDTR negotiations. So, even if needsdtr isn't marked for this
5274 * device, we still have to do a new SDTR message if the device
5275 * supports SDTR at all. Therefore, we check needsdtr_copy instead
5276 * of needstr.
5277 */
5278 aic7xxx_set_syncrate(p, NULL, target, channel, 0, 0, 0,
5279 AHC_TRANS_ACTIVE|AHC_TRANS_CUR|AHC_TRANS_QUITE,
5280 aic_dev);
5281 aic_dev->needsdtr = aic_dev->needsdtr_copy;
5282 done = TRUE;
5283 break;
5284 }
5285 case MSG_EXT_PPR:
5286 {
5287
5288 if (p->msg_buf[1] != MSG_EXT_PPR_LEN)
5289 {
5290 reject = TRUE;
5291 break;
5292 }
5293
5294 if (p->msg_len < (MSG_EXT_PPR_LEN + 2))
5295 {
5296 break;
5297 }
5298
5299 period = new_period = p->msg_buf[3];
5300 offset = new_offset = p->msg_buf[5];
5301 bus_width = new_bus_width = p->msg_buf[6];
5302 trans_options = new_trans_options = p->msg_buf[7] & 0xf;
5303
5304 if(aic7xxx_verbose & VERBOSE_NEGOTIATION2)
5305 {
5306 printk(INFO_LEAD "Parsing PPR message (%d/%d/%d/%d)\n",
5307 p->host_no, CTL_OF_SCB(scb), period, offset, bus_width,
5308 trans_options);
5309 }
5310
5311 /*
5312 * We might have a device that is starting negotiation with us
5313 * before we can start up negotiation with it....be prepared to
5314 * have a device ask for a higher speed then we want to give it
5315 * in that case
5316 */
5317 if ( (scb->flags & (SCB_MSGOUT_SENT|SCB_MSGOUT_PPR)) !=
5318 (SCB_MSGOUT_SENT|SCB_MSGOUT_PPR) )
5319 {
5320 /* Have we scanned the device yet? */
5321 if (!(aic_dev->flags & DEVICE_DTR_SCANNED))
5322 {
5323 /* The device is electing to use PPR messages, so we will too until
5324 * we know better */
5325 aic_dev->needppr = aic_dev->needppr_copy = 1;
5326 aic_dev->needsdtr = aic_dev->needsdtr_copy = 0;
5327 aic_dev->needwdtr = aic_dev->needwdtr_copy = 0;
5328
5329 /* We know the device is SCSI-3 compliant due to PPR */
5330 aic_dev->flags |= DEVICE_SCSI_3;
5331
5332 /*
5333 * Not only is the device starting this up, but it also hasn't
5334 * been scanned yet, so this would likely be our TUR or our
5335 * INQUIRY command at scan time, so we need to use the
5336 * settings from the SEEPROM if they existed. Of course, even
5337 * if we didn't find a SEEPROM, we stuffed default values into
5338 * the user settings anyway, so use those in all cases.
5339 */
5340 aic_dev->goal.width = p->user[tindex].width;
5341 if(p->user[tindex].offset)
5342 {
5343 aic_dev->goal.period = p->user[tindex].period;
5344 aic_dev->goal.options = p->user[tindex].options;
5345 if(p->features & AHC_ULTRA2)
5346 {
5347 aic_dev->goal.offset = MAX_OFFSET_ULTRA2;
5348 }
5349 else if( aic_dev->goal.width &&
5350 (bus_width == MSG_EXT_WDTR_BUS_16_BIT) &&
5351 p->features & AHC_WIDE )
5352 {
5353 aic_dev->goal.offset = MAX_OFFSET_16BIT;
5354 }
5355 else
5356 {
5357 aic_dev->goal.offset = MAX_OFFSET_8BIT;
5358 }
5359 }
5360 else
5361 {
5362 aic_dev->goal.period = 255;
5363 aic_dev->goal.offset = 0;
5364 aic_dev->goal.options = 0;
5365 }
5366 aic_dev->flags |= DEVICE_DTR_SCANNED | DEVICE_PRINT_DTR;
5367 }
5368 else if (aic_dev->needppr_copy == 0)
5369 {
5370 /*
5371 * This is a preemptive message from the target, we've already
5372 * scanned this target and set our options for it, and we
5373 * don't need a PPR with this target (for whatever reason),
5374 * so reject this incoming PPR
5375 */
5376 reject = TRUE;
5377 break;
5378 }
5379
5380 /* The device is sending this message first and we have to reply */
5381 reply = TRUE;
5382
5383 if (aic7xxx_verbose & VERBOSE_NEGOTIATION2)
5384 {
5385 printk(INFO_LEAD "Received pre-emptive PPR message from "
5386 "target.\n", p->host_no, CTL_OF_SCB(scb));
5387 }
5388
5389 }
5390
5391 switch(bus_width)
5392 {
5393 case MSG_EXT_WDTR_BUS_16_BIT:
5394 {
5395 if ( (aic_dev->goal.width == MSG_EXT_WDTR_BUS_16_BIT) &&
5396 p->features & AHC_WIDE)
5397 {
5398 break;
5399 }
5400 }
5401 default:
5402 {
5403 if ( (aic7xxx_verbose & VERBOSE_NEGOTIATION2) &&
5404 ((aic_dev->flags & DEVICE_PRINT_DTR) ||
5405 (aic7xxx_verbose > 0xffff)) )
5406 {
5407 reply = TRUE;
5408 printk(INFO_LEAD "Requesting %d bit transfers, rejecting.\n",
5409 p->host_no, CTL_OF_SCB(scb), 8 * (0x01 << bus_width));
5410 }
5411 } /* We fall through on purpose */
5412 case MSG_EXT_WDTR_BUS_8_BIT:
5413 {
5414 /*
5415 * According to the spec, if we aren't wide, we also can't be
5416 * Dual Edge so clear the options byte
5417 */
5418 new_trans_options = 0;
5419 new_bus_width = MSG_EXT_WDTR_BUS_8_BIT;
5420 break;
5421 }
5422 }
5423
5424 if(reply)
5425 {
5426 /* when sending a reply, make sure that the goal settings are
5427 * updated along with current and active since the code that
5428 * will actually build the message for the sequencer uses the
5429 * goal settings as its guidelines.
5430 */
5431 aic7xxx_set_width(p, target, channel, lun, new_bus_width,
5432 AHC_TRANS_GOAL|AHC_TRANS_ACTIVE|AHC_TRANS_CUR,
5433 aic_dev);
5434 syncrate = aic7xxx_find_syncrate(p, &new_period, maxsync,
5435 &new_trans_options);
5436 aic7xxx_validate_offset(p, syncrate, &new_offset, new_bus_width);
5437 aic7xxx_set_syncrate(p, syncrate, target, channel, new_period,
5438 new_offset, new_trans_options,
5439 AHC_TRANS_GOAL|AHC_TRANS_ACTIVE|AHC_TRANS_CUR,
5440 aic_dev);
5441 }
5442 else
5443 {
5444 aic7xxx_set_width(p, target, channel, lun, new_bus_width,
5445 AHC_TRANS_ACTIVE|AHC_TRANS_CUR, aic_dev);
5446 syncrate = aic7xxx_find_syncrate(p, &new_period, maxsync,
5447 &new_trans_options);
5448 aic7xxx_validate_offset(p, syncrate, &new_offset, new_bus_width);
5449 aic7xxx_set_syncrate(p, syncrate, target, channel, new_period,
5450 new_offset, new_trans_options,
5451 AHC_TRANS_ACTIVE|AHC_TRANS_CUR, aic_dev);
5452 }
5453
5454 /*
5455 * As it turns out, if we don't *have* to have PPR messages, then
5456 * configure ourselves not to use them since that makes some
5457 * external drive chassis work (those chassis can't parse PPR
5458 * messages and they mangle the SCSI bus until you send a WDTR
5459 * and SDTR that they can understand).
5460 */
5461 if(new_trans_options == 0)
5462 {
5463 aic_dev->needppr = aic_dev->needppr_copy = 0;
5464 if(new_offset)
5465 {
5466 aic_dev->needsdtr = aic_dev->needsdtr_copy = 1;
5467 }
5468 if (new_bus_width)
5469 {
5470 aic_dev->needwdtr = aic_dev->needwdtr_copy = 1;
5471 }
5472 }
5473
5474 if((new_offset == 0) && (offset != 0))
5475 {
5476 /*
5477 * Oops, the syncrate went to low for this card and we fell off
5478 * to async (should never happen with a device that uses PPR
5479 * messages, but have to be complete)
5480 */
5481 reply = TRUE;
5482 }
5483
5484 if(reply)
5485 {
5486 scb->flags &= ~SCB_MSGOUT_BITS;
5487 scb->flags |= SCB_MSGOUT_PPR;
5488 aic_outb(p, HOST_MSG, MSG_OUT);
5489 aic_outb(p, aic_inb(p, SCSISIGO) | ATNO, SCSISIGO);
5490 }
5491 else
5492 {
5493 aic_dev->needppr = 0;
5494 }
5495 done = TRUE;
5496 break;
5497 }
5498 default:
5499 {
5500 reject = TRUE;
5501 break;
5502 }
5503 } /* end of switch(p->msg_type) */
5504 } /* end of if (!reject && (p->msg_len > 2)) */
5505
5506 if (!reply && reject)
5507 {
5508 aic_outb(p, MSG_MESSAGE_REJECT, MSG_OUT);
5509 aic_outb(p, aic_inb(p, SCSISIGO) | ATNO, SCSISIGO);
5510 done = TRUE;
5511 }
5512 return(done);
5513 }
5514
5515
5516 /*+F*************************************************************************
5517 * Function:
5518 * aic7xxx_handle_reqinit
5519 *
5520 * Description:
5521 * Interrupt handler for REQINIT interrupts (used to transfer messages to
5522 * and from devices).
5523 *_F*************************************************************************/
5524 static void
5525 aic7xxx_handle_reqinit(struct aic7xxx_host *p, struct aic7xxx_scb *scb)
5526 {
5527 unsigned char lastbyte;
5528 unsigned char phasemis;
5529 int done = FALSE;
5530
5531 switch(p->msg_type)
5532 {
5533 case MSG_TYPE_INITIATOR_MSGOUT:
5534 {
5535 if (p->msg_len == 0)
5536 panic("aic7xxx: REQINIT with no active message!\n");
5537
5538 lastbyte = (p->msg_index == (p->msg_len - 1));
5539 phasemis = ( aic_inb(p, SCSISIGI) & PHASE_MASK) != P_MESGOUT;
5540
5541 if (lastbyte || phasemis)
5542 {
5543 /* Time to end the message */
5544 p->msg_len = 0;
5545 p->msg_type = MSG_TYPE_NONE;
5546 /*
5547 * NOTE-TO-MYSELF: If you clear the REQINIT after you
5548 * disable REQINITs, then cases of REJECT_MSG stop working
5549 * and hang the bus
5550 */
5551 aic_outb(p, aic_inb(p, SIMODE1) & ~ENREQINIT, SIMODE1);
5552 aic_outb(p, CLRSCSIINT, CLRINT);
5553 p->flags &= ~AHC_HANDLING_REQINITS;
5554
5555 if (phasemis == 0)
5556 {
5557 aic_outb(p, p->msg_buf[p->msg_index], SINDEX);
5558 aic_outb(p, 0, RETURN_1);
5559 #ifdef AIC7XXX_VERBOSE_DEBUGGING
5560 if (aic7xxx_verbose > 0xffff)
5561 printk(INFO_LEAD "Completed sending of REQINIT message.\n",
5562 p->host_no, CTL_OF_SCB(scb));
5563 #endif
5564 }
5565 else
5566 {
5567 aic_outb(p, MSGOUT_PHASEMIS, RETURN_1);
5568 #ifdef AIC7XXX_VERBOSE_DEBUGGING
5569 if (aic7xxx_verbose > 0xffff)
5570 printk(INFO_LEAD "PHASEMIS while sending REQINIT message.\n",
5571 p->host_no, CTL_OF_SCB(scb));
5572 #endif
5573 }
5574 unpause_sequencer(p, TRUE);
5575 }
5576 else
5577 {
5578 /*
5579 * Present the byte on the bus (clearing REQINIT) but don't
5580 * unpause the sequencer.
5581 */
5582 aic_outb(p, CLRREQINIT, CLRSINT1);
5583 aic_outb(p, CLRSCSIINT, CLRINT);
5584 aic_outb(p, p->msg_buf[p->msg_index++], SCSIDATL);
5585 }
5586 break;
5587 }
5588 case MSG_TYPE_INITIATOR_MSGIN:
5589 {
5590 phasemis = ( aic_inb(p, SCSISIGI) & PHASE_MASK ) != P_MESGIN;
5591
5592 if (phasemis == 0)
5593 {
5594 p->msg_len++;
5595 /* Pull the byte in without acking it */
5596 p->msg_buf[p->msg_index] = aic_inb(p, SCSIBUSL);
5597 done = aic7xxx_parse_msg(p, scb);
5598 /* Ack the byte */
5599 aic_outb(p, CLRREQINIT, CLRSINT1);
5600 aic_outb(p, CLRSCSIINT, CLRINT);
5601 aic_inb(p, SCSIDATL);
5602 p->msg_index++;
5603 }
5604 if (phasemis || done)
5605 {
5606 #ifdef AIC7XXX_VERBOSE_DEBUGGING
5607 if (aic7xxx_verbose > 0xffff)
5608 {
5609 if (phasemis)
5610 printk(INFO_LEAD "PHASEMIS while receiving REQINIT message.\n",
5611 p->host_no, CTL_OF_SCB(scb));
5612 else
5613 printk(INFO_LEAD "Completed receipt of REQINIT message.\n",
5614 p->host_no, CTL_OF_SCB(scb));
5615 }
5616 #endif
5617 /* Time to end our message session */
5618 p->msg_len = 0;
5619 p->msg_type = MSG_TYPE_NONE;
5620 aic_outb(p, aic_inb(p, SIMODE1) & ~ENREQINIT, SIMODE1);
5621 aic_outb(p, CLRSCSIINT, CLRINT);
5622 p->flags &= ~AHC_HANDLING_REQINITS;
5623 unpause_sequencer(p, TRUE);
5624 }
5625 break;
5626 }
5627 default:
5628 {
5629 panic("aic7xxx: Unknown REQINIT message type.\n");
5630 break;
5631 }
5632 } /* End of switch(p->msg_type) */
5633 }
5634
5635 /*+F*************************************************************************
5636 * Function:
5637 * aic7xxx_handle_scsiint
5638 *
5639 * Description:
5640 * Interrupt handler for SCSI interrupts (SCSIINT).
5641 *-F*************************************************************************/
5642 static void
5643 aic7xxx_handle_scsiint(struct aic7xxx_host *p, unsigned char intstat)
5644 {
5645 unsigned char scb_index;
5646 unsigned char status;
5647 struct aic7xxx_scb *scb;
5648 struct aic_dev_data *aic_dev;
5649
5650 scb_index = aic_inb(p, SCB_TAG);
5651 status = aic_inb(p, SSTAT1);
5652
5653 if (scb_index < p->scb_data->numscbs)
5654 {
5655 scb = p->scb_data->scb_array[scb_index];
5656 if ((scb->flags & SCB_ACTIVE) == 0)
5657 {
5658 scb = NULL;
5659 }
5660 }
5661 else
5662 {
5663 scb = NULL;
5664 }
5665
5666
5667 if ((status & SCSIRSTI) != 0)
5668 {
5669 int channel;
5670
5671 if ( (p->chip & AHC_CHIPID_MASK) == AHC_AIC7770 )
5672 channel = (aic_inb(p, SBLKCTL) & SELBUSB) >> 3;
5673 else
5674 channel = 0;
5675
5676 if (aic7xxx_verbose & VERBOSE_RESET)
5677 printk(WARN_LEAD "Someone else reset the channel!!\n",
5678 p->host_no, channel, -1, -1);
5679 if (aic7xxx_panic_on_abort)
5680 aic7xxx_panic_abort(p, NULL);
5681 /*
5682 * Go through and abort all commands for the channel, but do not
5683 * reset the channel again.
5684 */
5685 aic7xxx_reset_channel(p, channel, /* Initiate Reset */ FALSE);
5686 aic7xxx_run_done_queue(p, TRUE);
5687 scb = NULL;
5688 }
5689 else if ( ((status & BUSFREE) != 0) && ((status & SELTO) == 0) )
5690 {
5691 /*
5692 * First look at what phase we were last in. If it's message-out,
5693 * chances are pretty good that the bus free was in response to
5694 * one of our abort requests.
5695 */
5696 unsigned char lastphase = aic_inb(p, LASTPHASE);
5697 unsigned char saved_tcl = aic_inb(p, SAVED_TCL);
5698 unsigned char target = (saved_tcl >> 4) & 0x0F;
5699 int channel;
5700 int printerror = TRUE;
5701
5702 if ( (p->chip & AHC_CHIPID_MASK) == AHC_AIC7770 )
5703 channel = (aic_inb(p, SBLKCTL) & SELBUSB) >> 3;
5704 else
5705 channel = 0;
5706
5707 aic_outb(p, aic_inb(p, SCSISEQ) & (ENSELI|ENRSELI|ENAUTOATNP),
5708 SCSISEQ);
5709 if (lastphase == P_MESGOUT)
5710 {
5711 unsigned char message;
5712
5713 message = aic_inb(p, SINDEX);
5714
5715 if ((message == MSG_ABORT) || (message == MSG_ABORT_TAG))
5716 {
5717 if (aic7xxx_verbose & VERBOSE_ABORT_PROCESS)
5718 printk(INFO_LEAD "SCB %d abort delivered.\n", p->host_no,
5719 CTL_OF_SCB(scb), scb->hscb->tag);
5720 aic7xxx_reset_device(p, target, channel, ALL_LUNS,
5721 (message == MSG_ABORT) ? SCB_LIST_NULL : scb->hscb->tag );
5722 aic7xxx_run_done_queue(p, TRUE);
5723 scb = NULL;
5724 printerror = 0;
5725 }
5726 else if (message == MSG_BUS_DEV_RESET)
5727 {
5728 aic7xxx_handle_device_reset(p, target, channel);
5729 scb = NULL;
5730 printerror = 0;
5731 }
5732 }
5733 if ( (scb != NULL) && (scb->flags & SCB_DTR_SCB) )
5734 {
5735 /*
5736 * Hmmm...error during a negotiation command. Either we have a
5737 * borken bus, or the device doesn't like our negotiation message.
5738 * Since we check the INQUIRY data of a device before sending it
5739 * negotiation messages, assume the bus is borken for whatever
5740 * reason. Complete the command.
5741 */
5742 printerror = 0;
5743 aic7xxx_reset_device(p, target, channel, ALL_LUNS, scb->hscb->tag);
5744 aic7xxx_run_done_queue(p, TRUE);
5745 scb = NULL;
5746 }
5747 if (printerror != 0)
5748 {
5749 if (scb != NULL)
5750 {
5751 unsigned char tag;
5752
5753 if ((scb->hscb->control & TAG_ENB) != 0)
5754 {
5755 tag = scb->hscb->tag;
5756 }
5757 else
5758 {
5759 tag = SCB_LIST_NULL;
5760 }
5761 aic7xxx_reset_device(p, target, channel, ALL_LUNS, tag);
5762 aic7xxx_run_done_queue(p, TRUE);
5763 }
5764 else
5765 {
5766 aic7xxx_reset_device(p, target, channel, ALL_LUNS, SCB_LIST_NULL);
5767 aic7xxx_run_done_queue(p, TRUE);
5768 }
5769 printk(INFO_LEAD "Unexpected busfree, LASTPHASE = 0x%x, "
5770 "SEQADDR = 0x%x\n", p->host_no, channel, target, -1, lastphase,
5771 (aic_inb(p, SEQADDR1) << 8) | aic_inb(p, SEQADDR0));
5772 scb = NULL;
5773 }
5774 aic_outb(p, MSG_NOOP, MSG_OUT);
5775 aic_outb(p, aic_inb(p, SIMODE1) & ~(ENBUSFREE|ENREQINIT),
5776 SIMODE1);
5777 p->flags &= ~AHC_HANDLING_REQINITS;
5778 aic_outb(p, CLRBUSFREE, CLRSINT1);
5779 aic_outb(p, CLRSCSIINT, CLRINT);
5780 restart_sequencer(p);
5781 unpause_sequencer(p, TRUE);
5782 }
5783 else if ((status & SELTO) != 0)
5784 {
5785 unsigned char scbptr;
5786 unsigned char nextscb;
5787 struct scsi_cmnd *cmd;
5788
5789 scbptr = aic_inb(p, WAITING_SCBH);
5790 if (scbptr > p->scb_data->maxhscbs)
5791 {
5792 /*
5793 * I'm still trying to track down exactly how this happens, but until
5794 * I find it, this code will make sure we aren't passing bogus values
5795 * into the SCBPTR register, even if that register will just wrap
5796 * things around, we still don't like having out of range variables.
5797 *
5798 * NOTE: Don't check the aic7xxx_verbose variable, I want this message
5799 * to always be displayed.
5800 */
5801 printk(INFO_LEAD "Invalid WAITING_SCBH value %d, improvising.\n",
5802 p->host_no, -1, -1, -1, scbptr);
5803 if (p->scb_data->maxhscbs > 4)
5804 scbptr &= (p->scb_data->maxhscbs - 1);
5805 else
5806 scbptr &= 0x03;
5807 }
5808 aic_outb(p, scbptr, SCBPTR);
5809 scb_index = aic_inb(p, SCB_TAG);
5810
5811 scb = NULL;
5812 if (scb_index < p->scb_data->numscbs)
5813 {
5814 scb = p->scb_data->scb_array[scb_index];
5815 if ((scb->flags & SCB_ACTIVE) == 0)
5816 {
5817 scb = NULL;
5818 }
5819 }
5820 if (scb == NULL)
5821 {
5822 printk(WARN_LEAD "Referenced SCB %d not valid during SELTO.\n",
5823 p->host_no, -1, -1, -1, scb_index);
5824 printk(KERN_WARNING " SCSISEQ = 0x%x SEQADDR = 0x%x SSTAT0 = 0x%x "
5825 "SSTAT1 = 0x%x\n", aic_inb(p, SCSISEQ),
5826 aic_inb(p, SEQADDR0) | (aic_inb(p, SEQADDR1) << 8),
5827 aic_inb(p, SSTAT0), aic_inb(p, SSTAT1));
5828 if (aic7xxx_panic_on_abort)
5829 aic7xxx_panic_abort(p, NULL);
5830 }
5831 else
5832 {
5833 cmd = scb->cmd;
5834 cmd->result = (DID_TIME_OUT << 16);
5835
5836 /*
5837 * Clear out this hardware SCB
5838 */
5839 aic_outb(p, 0, SCB_CONTROL);
5840
5841 /*
5842 * Clear out a few values in the card that are in an undetermined
5843 * state.
5844 */
5845 aic_outb(p, MSG_NOOP, MSG_OUT);
5846
5847 /*
5848 * Shift the waiting for selection queue forward
5849 */
5850 nextscb = aic_inb(p, SCB_NEXT);
5851 aic_outb(p, nextscb, WAITING_SCBH);
5852
5853 /*
5854 * Put this SCB back on the free list.
5855 */
5856 aic7xxx_add_curscb_to_free_list(p);
5857 #ifdef AIC7XXX_VERBOSE_DEBUGGING
5858 if (aic7xxx_verbose > 0xffff)
5859 printk(INFO_LEAD "Selection Timeout.\n", p->host_no, CTL_OF_SCB(scb));
5860 #endif
5861 if (scb->flags & SCB_QUEUED_ABORT)
5862 {
5863 /*
5864 * We know that this particular SCB had to be the queued abort since
5865 * the disconnected SCB would have gotten a reconnect instead.
5866 * What we need to do then is to let the command timeout again so
5867 * we get a reset since this abort just failed.
5868 */
5869 cmd->result = 0;
5870 scb = NULL;
5871 }
5872 }
5873 /*
5874 * Keep the sequencer from trying to restart any selections
5875 */
5876 aic_outb(p, aic_inb(p, SCSISEQ) & ~ENSELO, SCSISEQ);
5877 /*
5878 * Make sure the data bits on the bus are released
5879 * Don't do this on 7770 chipsets, it makes them give us
5880 * a BRKADDRINT and kills the card.
5881 */
5882 if( (p->chip & ~AHC_CHIPID_MASK) == AHC_PCI )
5883 aic_outb(p, 0, SCSIBUSL);
5884
5885 /*
5886 * Delay for the selection timeout delay period then stop the selection
5887 */
5888 udelay(301);
5889 aic_outb(p, CLRSELINGO, CLRSINT0);
5890 /*
5891 * Clear out all the interrupt status bits
5892 */
5893 aic_outb(p, aic_inb(p, SIMODE1) & ~(ENREQINIT|ENBUSFREE), SIMODE1);
5894 p->flags &= ~AHC_HANDLING_REQINITS;
5895 aic_outb(p, CLRSELTIMEO | CLRBUSFREE, CLRSINT1);
5896 aic_outb(p, CLRSCSIINT, CLRINT);
5897 /*
5898 * Restarting the sequencer will stop the selection and make sure devices
5899 * are allowed to reselect in.
5900 */
5901 restart_sequencer(p);
5902 unpause_sequencer(p, TRUE);
5903 }
5904 else if (scb == NULL)
5905 {
5906 printk(WARN_LEAD "aic7xxx_isr - referenced scb not valid "
5907 "during scsiint 0x%x scb(%d)\n"
5908 " SIMODE0 0x%x, SIMODE1 0x%x, SSTAT0 0x%x, SEQADDR 0x%x\n",
5909 p->host_no, -1, -1, -1, status, scb_index, aic_inb(p, SIMODE0),
5910 aic_inb(p, SIMODE1), aic_inb(p, SSTAT0),
5911 (aic_inb(p, SEQADDR1) << 8) | aic_inb(p, SEQADDR0));
5912 /*
5913 * Turn off the interrupt and set status to zero, so that it
5914 * falls through the rest of the SCSIINT code.
5915 */
5916 aic_outb(p, status, CLRSINT1);
5917 aic_outb(p, CLRSCSIINT, CLRINT);
5918 unpause_sequencer(p, /* unpause always */ TRUE);
5919 scb = NULL;
5920 }
5921 else if (status & SCSIPERR)
5922 {
5923 /*
5924 * Determine the bus phase and queue an appropriate message.
5925 */
5926 char *phase;
5927 struct scsi_cmnd *cmd;
5928 unsigned char mesg_out = MSG_NOOP;
5929 unsigned char lastphase = aic_inb(p, LASTPHASE);
5930 unsigned char sstat2 = aic_inb(p, SSTAT2);
5931
5932 cmd = scb->cmd;
5933 switch (lastphase)
5934 {
5935 case P_DATAOUT:
5936 phase = "Data-Out";
5937 break;
5938 case P_DATAIN:
5939 phase = "Data-In";
5940 mesg_out = MSG_INITIATOR_DET_ERR;
5941 break;
5942 case P_COMMAND:
5943 phase = "Command";
5944 break;
5945 case P_MESGOUT:
5946 phase = "Message-Out";
5947 break;
5948 case P_STATUS:
5949 phase = "Status";
5950 mesg_out = MSG_INITIATOR_DET_ERR;
5951 break;
5952 case P_MESGIN:
5953 phase = "Message-In";
5954 mesg_out = MSG_PARITY_ERROR;
5955 break;
5956 default:
5957 phase = "unknown";
5958 break;
5959 }
5960
5961 /*
5962 * A parity error has occurred during a data
5963 * transfer phase. Flag it and continue.
5964 */
5965 if( (p->features & AHC_ULTRA3) &&
5966 (aic_inb(p, SCSIRATE) & AHC_SYNCRATE_CRC) &&
5967 (lastphase == P_DATAIN) )
5968 {
5969 printk(WARN_LEAD "CRC error during %s phase.\n",
5970 p->host_no, CTL_OF_SCB(scb), phase);
5971 if(sstat2 & CRCVALERR)
5972 {
5973 printk(WARN_LEAD " CRC error in intermediate CRC packet.\n",
5974 p->host_no, CTL_OF_SCB(scb));
5975 }
5976 if(sstat2 & CRCENDERR)
5977 {
5978 printk(WARN_LEAD " CRC error in ending CRC packet.\n",
5979 p->host_no, CTL_OF_SCB(scb));
5980 }
5981 if(sstat2 & CRCREQERR)
5982 {
5983 printk(WARN_LEAD " Target incorrectly requested a CRC packet.\n",
5984 p->host_no, CTL_OF_SCB(scb));
5985 }
5986 if(sstat2 & DUAL_EDGE_ERROR)
5987 {
5988 printk(WARN_LEAD " Dual Edge transmission error.\n",
5989 p->host_no, CTL_OF_SCB(scb));
5990 }
5991 }
5992 else if( (lastphase == P_MESGOUT) &&
5993 (scb->flags & SCB_MSGOUT_PPR) )
5994 {
5995 /*
5996 * As per the draft specs, any device capable of supporting any of
5997 * the option values other than 0 are not allowed to reject the
5998 * PPR message. Instead, they must negotiate out what they do
5999 * support instead of rejecting our offering or else they cause
6000 * a parity error during msg_out phase to signal that they don't
6001 * like our settings.
6002 */
6003 aic_dev = AIC_DEV(scb->cmd);
6004 aic_dev->needppr = aic_dev->needppr_copy = 0;
6005 aic7xxx_set_width(p, scb->cmd->device->id, scb->cmd->device->channel, scb->cmd->device->lun,
6006 MSG_EXT_WDTR_BUS_8_BIT,
6007 (AHC_TRANS_ACTIVE|AHC_TRANS_CUR|AHC_TRANS_QUITE),
6008 aic_dev);
6009 aic7xxx_set_syncrate(p, NULL, scb->cmd->device->id, scb->cmd->device->channel, 0, 0,
6010 0, AHC_TRANS_ACTIVE|AHC_TRANS_CUR|AHC_TRANS_QUITE,
6011 aic_dev);
6012 aic_dev->goal.options = 0;
6013 scb->flags &= ~SCB_MSGOUT_BITS;
6014 if(aic7xxx_verbose & VERBOSE_NEGOTIATION2)
6015 {
6016 printk(INFO_LEAD "parity error during PPR message, reverting "
6017 "to WDTR/SDTR\n", p->host_no, CTL_OF_SCB(scb));
6018 }
6019 if ( aic_dev->goal.width )
6020 {
6021 aic_dev->needwdtr = aic_dev->needwdtr_copy = 1;
6022 }
6023 if ( aic_dev->goal.offset )
6024 {
6025 if( aic_dev->goal.period <= 9 )
6026 {
6027 aic_dev->goal.period = 10;
6028 }
6029 aic_dev->needsdtr = aic_dev->needsdtr_copy = 1;
6030 }
6031 scb = NULL;
6032 }
6033
6034 /*
6035 * We've set the hardware to assert ATN if we get a parity
6036 * error on "in" phases, so all we need to do is stuff the
6037 * message buffer with the appropriate message. "In" phases
6038 * have set mesg_out to something other than MSG_NOP.
6039 */
6040 if (mesg_out != MSG_NOOP)
6041 {
6042 aic_outb(p, mesg_out, MSG_OUT);
6043 aic_outb(p, aic_inb(p, SCSISIGI) | ATNO, SCSISIGO);
6044 scb = NULL;
6045 }
6046 aic_outb(p, CLRSCSIPERR, CLRSINT1);
6047 aic_outb(p, CLRSCSIINT, CLRINT);
6048 unpause_sequencer(p, /* unpause_always */ TRUE);
6049 }
6050 else if ( (status & REQINIT) &&
6051 (p->flags & AHC_HANDLING_REQINITS) )
6052 {
6053 #ifdef AIC7XXX_VERBOSE_DEBUGGING
6054 if (aic7xxx_verbose > 0xffff)
6055 printk(INFO_LEAD "Handling REQINIT, SSTAT1=0x%x.\n", p->host_no,
6056 CTL_OF_SCB(scb), aic_inb(p, SSTAT1));
6057 #endif
6058 aic7xxx_handle_reqinit(p, scb);
6059 return;
6060 }
6061 else
6062 {
6063 /*
6064 * We don't know what's going on. Turn off the
6065 * interrupt source and try to continue.
6066 */
6067 if (aic7xxx_verbose & VERBOSE_SCSIINT)
6068 printk(INFO_LEAD "Unknown SCSIINT status, SSTAT1(0x%x).\n",
6069 p->host_no, -1, -1, -1, status);
6070 aic_outb(p, status, CLRSINT1);
6071 aic_outb(p, CLRSCSIINT, CLRINT);
6072 unpause_sequencer(p, /* unpause always */ TRUE);
6073 scb = NULL;
6074 }
6075 if (scb != NULL)
6076 {
6077 aic7xxx_done(p, scb);
6078 }
6079 }
6080
6081 #ifdef AIC7XXX_VERBOSE_DEBUGGING
6082 static void
6083 aic7xxx_check_scbs(struct aic7xxx_host *p, char *buffer)
6084 {
6085 unsigned char saved_scbptr, free_scbh, dis_scbh, wait_scbh, temp;
6086 int i, bogus, lost;
6087 static unsigned char scb_status[AIC7XXX_MAXSCB];
6088
6089 #define SCB_NO_LIST 0
6090 #define SCB_FREE_LIST 1
6091 #define SCB_WAITING_LIST 2
6092 #define SCB_DISCONNECTED_LIST 4
6093 #define SCB_CURRENTLY_ACTIVE 8
6094
6095 /*
6096 * Note, these checks will fail on a regular basis once the machine moves
6097 * beyond the bus scan phase. The problem is race conditions concerning
6098 * the scbs and where they are linked in. When you have 30 or so commands
6099 * outstanding on the bus, and run this twice with every interrupt, the
6100 * chances get pretty good that you'll catch the sequencer with an SCB
6101 * only partially linked in. Therefore, once we pass the scan phase
6102 * of the bus, we really should disable this function.
6103 */
6104 bogus = FALSE;
6105 memset(&scb_status[0], 0, sizeof(scb_status));
6106 pause_sequencer(p);
6107 saved_scbptr = aic_inb(p, SCBPTR);
6108 if (saved_scbptr >= p->scb_data->maxhscbs)
6109 {
6110 printk("Bogus SCBPTR %d\n", saved_scbptr);
6111 bogus = TRUE;
6112 }
6113 scb_status[saved_scbptr] = SCB_CURRENTLY_ACTIVE;
6114 free_scbh = aic_inb(p, FREE_SCBH);
6115 if ( (free_scbh != SCB_LIST_NULL) &&
6116 (free_scbh >= p->scb_data->maxhscbs) )
6117 {
6118 printk("Bogus FREE_SCBH %d\n", free_scbh);
6119 bogus = TRUE;
6120 }
6121 else
6122 {
6123 temp = free_scbh;
6124 while( (temp != SCB_LIST_NULL) && (temp < p->scb_data->maxhscbs) )
6125 {
6126 if(scb_status[temp] & 0x07)
6127 {
6128 printk("HSCB %d on multiple lists, status 0x%02x", temp,
6129 scb_status[temp] | SCB_FREE_LIST);
6130 bogus = TRUE;
6131 }
6132 scb_status[temp] |= SCB_FREE_LIST;
6133 aic_outb(p, temp, SCBPTR);
6134 temp = aic_inb(p, SCB_NEXT);
6135 }
6136 }
6137
6138 dis_scbh = aic_inb(p, DISCONNECTED_SCBH);
6139 if ( (dis_scbh != SCB_LIST_NULL) &&
6140 (dis_scbh >= p->scb_data->maxhscbs) )
6141 {
6142 printk("Bogus DISCONNECTED_SCBH %d\n", dis_scbh);
6143 bogus = TRUE;
6144 }
6145 else
6146 {
6147 temp = dis_scbh;
6148 while( (temp != SCB_LIST_NULL) && (temp < p->scb_data->maxhscbs) )
6149 {
6150 if(scb_status[temp] & 0x07)
6151 {
6152 printk("HSCB %d on multiple lists, status 0x%02x", temp,
6153 scb_status[temp] | SCB_DISCONNECTED_LIST);
6154 bogus = TRUE;
6155 }
6156 scb_status[temp] |= SCB_DISCONNECTED_LIST;
6157 aic_outb(p, temp, SCBPTR);
6158 temp = aic_inb(p, SCB_NEXT);
6159 }
6160 }
6161
6162 wait_scbh = aic_inb(p, WAITING_SCBH);
6163 if ( (wait_scbh != SCB_LIST_NULL) &&
6164 (wait_scbh >= p->scb_data->maxhscbs) )
6165 {
6166 printk("Bogus WAITING_SCBH %d\n", wait_scbh);
6167 bogus = TRUE;
6168 }
6169 else
6170 {
6171 temp = wait_scbh;
6172 while( (temp != SCB_LIST_NULL) && (temp < p->scb_data->maxhscbs) )
6173 {
6174 if(scb_status[temp] & 0x07)
6175 {
6176 printk("HSCB %d on multiple lists, status 0x%02x", temp,
6177 scb_status[temp] | SCB_WAITING_LIST);
6178 bogus = TRUE;
6179 }
6180 scb_status[temp] |= SCB_WAITING_LIST;
6181 aic_outb(p, temp, SCBPTR);
6182 temp = aic_inb(p, SCB_NEXT);
6183 }
6184 }
6185
6186 lost=0;
6187 for(i=0; i < p->scb_data->maxhscbs; i++)
6188 {
6189 aic_outb(p, i, SCBPTR);
6190 temp = aic_inb(p, SCB_NEXT);
6191 if ( ((temp != SCB_LIST_NULL) &&
6192 (temp >= p->scb_data->maxhscbs)) )
6193 {
6194 printk("HSCB %d bad, SCB_NEXT invalid(%d).\n", i, temp);
6195 bogus = TRUE;
6196 }
6197 if ( temp == i )
6198 {
6199 printk("HSCB %d bad, SCB_NEXT points to self.\n", i);
6200 bogus = TRUE;
6201 }
6202 if (scb_status[i] == 0)
6203 lost++;
6204 if (lost > 1)
6205 {
6206 printk("Too many lost scbs.\n");
6207 bogus=TRUE;
6208 }
6209 }
6210 aic_outb(p, saved_scbptr, SCBPTR);
6211 unpause_sequencer(p, FALSE);
6212 if (bogus)
6213 {
6214 printk("Bogus parameters found in card SCB array structures.\n");
6215 printk("%s\n", buffer);
6216 aic7xxx_panic_abort(p, NULL);
6217 }
6218 return;
6219 }
6220 #endif
6221
6222
6223 /*+F*************************************************************************
6224 * Function:
6225 * aic7xxx_handle_command_completion_intr
6226 *
6227 * Description:
6228 * SCSI command completion interrupt handler.
6229 *-F*************************************************************************/
6230 static void
6231 aic7xxx_handle_command_completion_intr(struct aic7xxx_host *p)
6232 {
6233 struct aic7xxx_scb *scb = NULL;
6234 struct aic_dev_data *aic_dev;
6235 struct scsi_cmnd *cmd;
6236 unsigned char scb_index, tindex;
6237
6238 #ifdef AIC7XXX_VERBOSE_DEBUGGING
6239 if( (p->isr_count < 16) && (aic7xxx_verbose > 0xffff) )
6240 printk(INFO_LEAD "Command Complete Int.\n", p->host_no, -1, -1, -1);
6241 #endif
6242
6243 /*
6244 * Read the INTSTAT location after clearing the CMDINT bit. This forces
6245 * any posted PCI writes to flush to memory. Gerard Roudier suggested
6246 * this fix to the possible race of clearing the CMDINT bit but not
6247 * having all command bytes flushed onto the qoutfifo.
6248 */
6249 aic_outb(p, CLRCMDINT, CLRINT);
6250 aic_inb(p, INTSTAT);
6251 /*
6252 * The sequencer will continue running when it
6253 * issues this interrupt. There may be >1 commands
6254 * finished, so loop until we've processed them all.
6255 */
6256
6257 while (p->qoutfifo[p->qoutfifonext] != SCB_LIST_NULL)
6258 {
6259 scb_index = p->qoutfifo[p->qoutfifonext];
6260 p->qoutfifo[p->qoutfifonext++] = SCB_LIST_NULL;
6261 if ( scb_index >= p->scb_data->numscbs )
6262 {
6263 printk(WARN_LEAD "CMDCMPLT with invalid SCB index %d\n", p->host_no,
6264 -1, -1, -1, scb_index);
6265 continue;
6266 }
6267 scb = p->scb_data->scb_array[scb_index];
6268 if (!(scb->flags & SCB_ACTIVE) || (scb->cmd == NULL))
6269 {
6270 printk(WARN_LEAD "CMDCMPLT without command for SCB %d, SCB flags "
6271 "0x%x, cmd 0x%lx\n", p->host_no, -1, -1, -1, scb_index, scb->flags,
6272 (unsigned long) scb->cmd);
6273 continue;
6274 }
6275 tindex = TARGET_INDEX(scb->cmd);
6276 aic_dev = AIC_DEV(scb->cmd);
6277 if (scb->flags & SCB_QUEUED_ABORT)
6278 {
6279 pause_sequencer(p);
6280 if ( ((aic_inb(p, LASTPHASE) & PHASE_MASK) != P_BUSFREE) &&
6281 (aic_inb(p, SCB_TAG) == scb->hscb->tag) )
6282 {
6283 unpause_sequencer(p, FALSE);
6284 continue;
6285 }
6286 aic7xxx_reset_device(p, scb->cmd->device->id, scb->cmd->device->channel,
6287 scb->cmd->device->lun, scb->hscb->tag);
6288 scb->flags &= ~(SCB_QUEUED_FOR_DONE | SCB_RESET | SCB_ABORT |
6289 SCB_QUEUED_ABORT);
6290 unpause_sequencer(p, FALSE);
6291 }
6292 else if (scb->flags & SCB_ABORT)
6293 {
6294 /*
6295 * We started to abort this, but it completed on us, let it
6296 * through as successful
6297 */
6298 scb->flags &= ~(SCB_ABORT|SCB_RESET);
6299 }
6300 else if (scb->flags & SCB_SENSE)
6301 {
6302 char *buffer = &scb->cmd->sense_buffer[0];
6303
6304 if (buffer[12] == 0x47 || buffer[12] == 0x54)
6305 {
6306 /*
6307 * Signal that we need to re-negotiate things.
6308 */
6309 aic_dev->needppr = aic_dev->needppr_copy;
6310 aic_dev->needsdtr = aic_dev->needsdtr_copy;
6311 aic_dev->needwdtr = aic_dev->needwdtr_copy;
6312 }
6313 }
6314 cmd = scb->cmd;
6315 if (scb->hscb->residual_SG_segment_count != 0)
6316 {
6317 aic7xxx_calculate_residual(p, scb);
6318 }
6319 cmd->result |= (aic7xxx_error(cmd) << 16);
6320 aic7xxx_done(p, scb);
6321 }
6322 }
6323
6324 /*+F*************************************************************************
6325 * Function:
6326 * aic7xxx_isr
6327 *
6328 * Description:
6329 * SCSI controller interrupt handler.
6330 *-F*************************************************************************/
6331 static void
6332 aic7xxx_isr(void *dev_id)
6333 {
6334 struct aic7xxx_host *p;
6335 unsigned char intstat;
6336
6337 p = dev_id;
6338
6339 /*
6340 * Just a few sanity checks. Make sure that we have an int pending.
6341 * Also, if PCI, then we are going to check for a PCI bus error status
6342 * should we get too many spurious interrupts.
6343 */
6344 if (!((intstat = aic_inb(p, INTSTAT)) & INT_PEND))
6345 {
6346 #ifdef CONFIG_PCI
6347 if ( (p->chip & AHC_PCI) && (p->spurious_int > 500) &&
6348 !(p->flags & AHC_HANDLING_REQINITS) )
6349 {
6350 if ( aic_inb(p, ERROR) & PCIERRSTAT )
6351 {
6352 aic7xxx_pci_intr(p);
6353 }
6354 p->spurious_int = 0;
6355 }
6356 else if ( !(p->flags & AHC_HANDLING_REQINITS) )
6357 {
6358 p->spurious_int++;
6359 }
6360 #endif
6361 return;
6362 }
6363
6364 p->spurious_int = 0;
6365
6366 /*
6367 * Keep track of interrupts for /proc/scsi
6368 */
6369 p->isr_count++;
6370
6371 #ifdef AIC7XXX_VERBOSE_DEBUGGING
6372 if ( (p->isr_count < 16) && (aic7xxx_verbose > 0xffff) &&
6373 (aic7xxx_panic_on_abort) && (p->flags & AHC_PAGESCBS) )
6374 aic7xxx_check_scbs(p, "Bogus settings at start of interrupt.");
6375 #endif
6376
6377 /*
6378 * Handle all the interrupt sources - especially for SCSI
6379 * interrupts, we won't get a second chance at them.
6380 */
6381 if (intstat & CMDCMPLT)
6382 {
6383 aic7xxx_handle_command_completion_intr(p);
6384 }
6385
6386 if (intstat & BRKADRINT)
6387 {
6388 int i;
6389 unsigned char errno = aic_inb(p, ERROR);
6390
6391 printk(KERN_ERR "(scsi%d) BRKADRINT error(0x%x):\n", p->host_no, errno);
6392 for (i = 0; i < ARRAY_SIZE(hard_error); i++)
6393 {
6394 if (errno & hard_error[i].errno)
6395 {
6396 printk(KERN_ERR " %s\n", hard_error[i].errmesg);
6397 }
6398 }
6399 printk(KERN_ERR "(scsi%d) SEQADDR=0x%x\n", p->host_no,
6400 (((aic_inb(p, SEQADDR1) << 8) & 0x100) | aic_inb(p, SEQADDR0)));
6401 if (aic7xxx_panic_on_abort)
6402 aic7xxx_panic_abort(p, NULL);
6403 #ifdef CONFIG_PCI
6404 if (errno & PCIERRSTAT)
6405 aic7xxx_pci_intr(p);
6406 #endif
6407 if (errno & (SQPARERR | ILLOPCODE | ILLSADDR))
6408 {
6409 panic("aic7xxx: unrecoverable BRKADRINT.\n");
6410 }
6411 if (errno & ILLHADDR)
6412 {
6413 printk(KERN_ERR "(scsi%d) BUG! Driver accessed chip without first "
6414 "pausing controller!\n", p->host_no);
6415 }
6416 #ifdef AIC7XXX_VERBOSE_DEBUGGING
6417 if (errno & DPARERR)
6418 {
6419 if (aic_inb(p, DMAPARAMS) & DIRECTION)
6420 printk("(scsi%d) while DMAing SCB from host to card.\n", p->host_no);
6421 else
6422 printk("(scsi%d) while DMAing SCB from card to host.\n", p->host_no);
6423 }
6424 #endif
6425 aic_outb(p, CLRPARERR | CLRBRKADRINT, CLRINT);
6426 unpause_sequencer(p, FALSE);
6427 }
6428
6429 if (intstat & SEQINT)
6430 {
6431 /*
6432 * Read the CCSCBCTL register to work around a bug in the Ultra2 cards
6433 */
6434 if(p->features & AHC_ULTRA2)
6435 {
6436 aic_inb(p, CCSCBCTL);
6437 }
6438 aic7xxx_handle_seqint(p, intstat);
6439 }
6440
6441 if (intstat & SCSIINT)
6442 {
6443 aic7xxx_handle_scsiint(p, intstat);
6444 }
6445
6446 #ifdef AIC7XXX_VERBOSE_DEBUGGING
6447 if ( (p->isr_count < 16) && (aic7xxx_verbose > 0xffff) &&
6448 (aic7xxx_panic_on_abort) && (p->flags & AHC_PAGESCBS) )
6449 aic7xxx_check_scbs(p, "Bogus settings at end of interrupt.");
6450 #endif
6451
6452 }
6453
6454 /*+F*************************************************************************
6455 * Function:
6456 * do_aic7xxx_isr
6457 *
6458 * Description:
6459 * This is a gross hack to solve a problem in linux kernels 2.1.85 and
6460 * above. Please, children, do not try this at home, and if you ever see
6461 * anything like it, please inform the Gross Hack Police immediately
6462 *-F*************************************************************************/
6463 static irqreturn_t
6464 do_aic7xxx_isr(int irq, void *dev_id)
6465 {
6466 unsigned long cpu_flags;
6467 struct aic7xxx_host *p;
6468
6469 p = dev_id;
6470 if(!p)
6471 return IRQ_NONE;
6472 spin_lock_irqsave(p->host->host_lock, cpu_flags);
6473 p->flags |= AHC_IN_ISR;
6474 do
6475 {
6476 aic7xxx_isr(dev_id);
6477 } while ( (aic_inb(p, INTSTAT) & INT_PEND) );
6478 aic7xxx_done_cmds_complete(p);
6479 aic7xxx_run_waiting_queues(p);
6480 p->flags &= ~AHC_IN_ISR;
6481 spin_unlock_irqrestore(p->host->host_lock, cpu_flags);
6482
6483 return IRQ_HANDLED;
6484 }
6485
6486 /*+F*************************************************************************
6487 * Function:
6488 * aic7xxx_init_transinfo
6489 *
6490 * Description:
6491 * Set up the initial aic_dev values from the BIOS settings and from
6492 * INQUIRY results
6493 *-F*************************************************************************/
6494 static void
6495 aic7xxx_init_transinfo(struct aic7xxx_host *p, struct aic_dev_data *aic_dev)
6496 {
6497 struct scsi_device *sdpnt = aic_dev->SDptr;
6498 unsigned char tindex;
6499
6500 tindex = sdpnt->id | (sdpnt->channel << 3);
6501 if (!(aic_dev->flags & DEVICE_DTR_SCANNED))
6502 {
6503 aic_dev->flags |= DEVICE_DTR_SCANNED;
6504
6505 if ( sdpnt->wdtr && (p->features & AHC_WIDE) )
6506 {
6507 aic_dev->needwdtr = aic_dev->needwdtr_copy = 1;
6508 aic_dev->goal.width = p->user[tindex].width;
6509 }
6510 else
6511 {
6512 aic_dev->needwdtr = aic_dev->needwdtr_copy = 0;
6513 pause_sequencer(p);
6514 aic7xxx_set_width(p, sdpnt->id, sdpnt->channel, sdpnt->lun,
6515 MSG_EXT_WDTR_BUS_8_BIT, (AHC_TRANS_ACTIVE |
6516 AHC_TRANS_GOAL |
6517 AHC_TRANS_CUR), aic_dev );
6518 unpause_sequencer(p, FALSE);
6519 }
6520 if ( sdpnt->sdtr && p->user[tindex].offset )
6521 {
6522 aic_dev->goal.period = p->user[tindex].period;
6523 aic_dev->goal.options = p->user[tindex].options;
6524 if (p->features & AHC_ULTRA2)
6525 aic_dev->goal.offset = MAX_OFFSET_ULTRA2;
6526 else if (aic_dev->goal.width == MSG_EXT_WDTR_BUS_16_BIT)
6527 aic_dev->goal.offset = MAX_OFFSET_16BIT;
6528 else
6529 aic_dev->goal.offset = MAX_OFFSET_8BIT;
6530 if ( sdpnt->ppr && p->user[tindex].period <= 9 &&
6531 p->user[tindex].options )
6532 {
6533 aic_dev->needppr = aic_dev->needppr_copy = 1;
6534 aic_dev->needsdtr = aic_dev->needsdtr_copy = 0;
6535 aic_dev->needwdtr = aic_dev->needwdtr_copy = 0;
6536 aic_dev->flags |= DEVICE_SCSI_3;
6537 }
6538 else
6539 {
6540 aic_dev->needsdtr = aic_dev->needsdtr_copy = 1;
6541 aic_dev->goal.period = max_t(unsigned char, 10, aic_dev->goal.period);
6542 aic_dev->goal.options = 0;
6543 }
6544 }
6545 else
6546 {
6547 aic_dev->needsdtr = aic_dev->needsdtr_copy = 0;
6548 aic_dev->goal.period = 255;
6549 aic_dev->goal.offset = 0;
6550 aic_dev->goal.options = 0;
6551 }
6552 aic_dev->flags |= DEVICE_PRINT_DTR;
6553 }
6554 }
6555
6556 /*+F*************************************************************************
6557 * Function:
6558 * aic7xxx_slave_alloc
6559 *
6560 * Description:
6561 * Set up the initial aic_dev struct pointers
6562 *-F*************************************************************************/
6563 static int
6564 aic7xxx_slave_alloc(struct scsi_device *SDptr)
6565 {
6566 struct aic7xxx_host *p = (struct aic7xxx_host *)SDptr->host->hostdata;
6567 struct aic_dev_data *aic_dev;
6568
6569 aic_dev = kmalloc(sizeof(struct aic_dev_data), GFP_KERNEL);
6570 if(!aic_dev)
6571 return 1;
6572 /*
6573 * Check to see if channel was scanned.
6574 */
6575
6576 if (!(p->flags & AHC_A_SCANNED) && (SDptr->channel == 0))
6577 {
6578 if (aic7xxx_verbose & VERBOSE_PROBE2)
6579 printk(INFO_LEAD "Scanning channel for devices.\n",
6580 p->host_no, 0, -1, -1);
6581 p->flags |= AHC_A_SCANNED;
6582 }
6583 else
6584 {
6585 if (!(p->flags & AHC_B_SCANNED) && (SDptr->channel == 1))
6586 {
6587 if (aic7xxx_verbose & VERBOSE_PROBE2)
6588 printk(INFO_LEAD "Scanning channel for devices.\n",
6589 p->host_no, 1, -1, -1);
6590 p->flags |= AHC_B_SCANNED;
6591 }
6592 }
6593
6594 memset(aic_dev, 0, sizeof(struct aic_dev_data));
6595 SDptr->hostdata = aic_dev;
6596 aic_dev->SDptr = SDptr;
6597 aic_dev->max_q_depth = 1;
6598 aic_dev->temp_q_depth = 1;
6599 scbq_init(&aic_dev->delayed_scbs);
6600 INIT_LIST_HEAD(&aic_dev->list);
6601 list_add_tail(&aic_dev->list, &p->aic_devs);
6602 return 0;
6603 }
6604
6605 /*+F*************************************************************************
6606 * Function:
6607 * aic7xxx_device_queue_depth
6608 *
6609 * Description:
6610 * Determines the queue depth for a given device. There are two ways
6611 * a queue depth can be obtained for a tagged queueing device. One
6612 * way is the default queue depth which is determined by whether
6613 * aic7xxx_default_queue_depth. The other is by the aic7xxx_tag_info
6614 * array.
6615 *
6616 * If tagged queueing isn't supported on the device, then we set the
6617 * depth to p->host->hostt->cmd_per_lun for internal driver queueing.
6618 * as the default queue depth. Otherwise, we use either 4 or 8 as the
6619 * default queue depth (dependent on the number of hardware SCBs).
6620 * The other way we determine queue depth is through the use of the
6621 * aic7xxx_tag_info array which is enabled by defining
6622 * AIC7XXX_TAGGED_QUEUEING_BY_DEVICE. This array can be initialized
6623 * with queue depths for individual devices. It also allows tagged
6624 * queueing to be [en|dis]abled for a specific adapter.
6625 *-F*************************************************************************/
6626 static void
6627 aic7xxx_device_queue_depth(struct aic7xxx_host *p, struct scsi_device *device)
6628 {
6629 int tag_enabled = FALSE;
6630 struct aic_dev_data *aic_dev = device->hostdata;
6631 unsigned char tindex;
6632
6633 tindex = device->id | (device->channel << 3);
6634
6635 if (device->simple_tags)
6636 return; // We've already enabled this device
6637
6638 if (device->tagged_supported)
6639 {
6640 tag_enabled = TRUE;
6641
6642 if (!(p->discenable & (1 << tindex)))
6643 {
6644 if (aic7xxx_verbose & VERBOSE_NEGOTIATION2)
6645 printk(INFO_LEAD "Disconnection disabled, unable to "
6646 "enable tagged queueing.\n",
6647 p->host_no, device->channel, device->id, device->lun);
6648 tag_enabled = FALSE;
6649 }
6650 else
6651 {
6652 if (p->instance >= ARRAY_SIZE(aic7xxx_tag_info))
6653 {
6654 static int print_warning = TRUE;
6655 if(print_warning)
6656 {
6657 printk(KERN_INFO "aic7xxx: WARNING, insufficient tag_info instances for"
6658 " installed controllers.\n");
6659 printk(KERN_INFO "aic7xxx: Please update the aic7xxx_tag_info array in"
6660 " the aic7xxx.c source file.\n");
6661 print_warning = FALSE;
6662 }
6663 aic_dev->max_q_depth = aic_dev->temp_q_depth =
6664 aic7xxx_default_queue_depth;
6665 }
6666 else
6667 {
6668
6669 if (aic7xxx_tag_info[p->instance].tag_commands[tindex] == 255)
6670 {
6671 tag_enabled = FALSE;
6672 }
6673 else if (aic7xxx_tag_info[p->instance].tag_commands[tindex] == 0)
6674 {
6675 aic_dev->max_q_depth = aic_dev->temp_q_depth =
6676 aic7xxx_default_queue_depth;
6677 }
6678 else
6679 {
6680 aic_dev->max_q_depth = aic_dev->temp_q_depth =
6681 aic7xxx_tag_info[p->instance].tag_commands[tindex];
6682 }
6683 }
6684 }
6685 }
6686 if (tag_enabled)
6687 {
6688 if (aic7xxx_verbose & VERBOSE_NEGOTIATION2)
6689 {
6690 printk(INFO_LEAD "Tagged queuing enabled, queue depth %d.\n",
6691 p->host_no, device->channel, device->id,
6692 device->lun, aic_dev->max_q_depth);
6693 }
6694 scsi_adjust_queue_depth(device, MSG_ORDERED_TAG, aic_dev->max_q_depth);
6695 }
6696 else
6697 {
6698 if (aic7xxx_verbose & VERBOSE_NEGOTIATION2)
6699 {
6700 printk(INFO_LEAD "Tagged queuing disabled, queue depth %d.\n",
6701 p->host_no, device->channel, device->id,
6702 device->lun, device->host->cmd_per_lun);
6703 }
6704 scsi_adjust_queue_depth(device, 0, device->host->cmd_per_lun);
6705 }
6706 return;
6707 }
6708
6709 /*+F*************************************************************************
6710 * Function:
6711 * aic7xxx_slave_destroy
6712 *
6713 * Description:
6714 * prepare for this device to go away
6715 *-F*************************************************************************/
6716 static void
6717 aic7xxx_slave_destroy(struct scsi_device *SDptr)
6718 {
6719 struct aic_dev_data *aic_dev = SDptr->hostdata;
6720
6721 list_del(&aic_dev->list);
6722 SDptr->hostdata = NULL;
6723 kfree(aic_dev);
6724 return;
6725 }
6726
6727 /*+F*************************************************************************
6728 * Function:
6729 * aic7xxx_slave_configure
6730 *
6731 * Description:
6732 * Configure the device we are attaching to the controller. This is
6733 * where we get to do things like scan the INQUIRY data, set queue
6734 * depths, allocate command structs, etc.
6735 *-F*************************************************************************/
6736 static int
6737 aic7xxx_slave_configure(struct scsi_device *SDptr)
6738 {
6739 struct aic7xxx_host *p = (struct aic7xxx_host *) SDptr->host->hostdata;
6740 struct aic_dev_data *aic_dev;
6741 int scbnum;
6742
6743 aic_dev = (struct aic_dev_data *)SDptr->hostdata;
6744
6745 aic7xxx_init_transinfo(p, aic_dev);
6746 aic7xxx_device_queue_depth(p, SDptr);
6747 if(list_empty(&aic_dev->list))
6748 list_add_tail(&aic_dev->list, &p->aic_devs);
6749
6750 scbnum = 0;
6751 list_for_each_entry(aic_dev, &p->aic_devs, list) {
6752 scbnum += aic_dev->max_q_depth;
6753 }
6754 while (scbnum > p->scb_data->numscbs)
6755 {
6756 /*
6757 * Pre-allocate the needed SCBs to get around the possibility of having
6758 * to allocate some when memory is more or less exhausted and we need
6759 * the SCB in order to perform a swap operation (possible deadlock)
6760 */
6761 if ( aic7xxx_allocate_scb(p) == 0 )
6762 break;
6763 }
6764
6765
6766 return(0);
6767 }
6768
6769 /*+F*************************************************************************
6770 * Function:
6771 * aic7xxx_probe
6772 *
6773 * Description:
6774 * Probing for EISA boards: it looks like the first two bytes
6775 * are a manufacturer code - three characters, five bits each:
6776 *
6777 * BYTE 0 BYTE 1 BYTE 2 BYTE 3
6778 * ?1111122 22233333 PPPPPPPP RRRRRRRR
6779 *
6780 * The characters are baselined off ASCII '@', so add that value
6781 * to each to get the real ASCII code for it. The next two bytes
6782 * appear to be a product and revision number, probably vendor-
6783 * specific. This is what is being searched for at each port,
6784 * and what should probably correspond to the ID= field in the
6785 * ECU's .cfg file for the card - if your card is not detected,
6786 * make sure your signature is listed in the array.
6787 *
6788 * The fourth byte's lowest bit seems to be an enabled/disabled
6789 * flag (rest of the bits are reserved?).
6790 *
6791 * NOTE: This function is only needed on Intel and Alpha platforms,
6792 * the other platforms we support don't have EISA/VLB busses. So,
6793 * we #ifdef this entire function to avoid compiler warnings about
6794 * an unused function.
6795 *-F*************************************************************************/
6796 #if defined(__i386__) || defined(__alpha__)
6797 static int
6798 aic7xxx_probe(int slot, int base, ahc_flag_type *flags)
6799 {
6800 int i;
6801 unsigned char buf[4];
6802
6803 static struct {
6804 int n;
6805 unsigned char signature[sizeof(buf)];
6806 ahc_chip type;
6807 int bios_disabled;
6808 } AIC7xxx[] = {
6809 { 4, { 0x04, 0x90, 0x77, 0x70 },
6810 AHC_AIC7770|AHC_EISA, FALSE }, /* mb 7770 */
6811 { 4, { 0x04, 0x90, 0x77, 0x71 },
6812 AHC_AIC7770|AHC_EISA, FALSE }, /* host adapter 274x */
6813 { 4, { 0x04, 0x90, 0x77, 0x56 },
6814 AHC_AIC7770|AHC_VL, FALSE }, /* 284x BIOS enabled */
6815 { 4, { 0x04, 0x90, 0x77, 0x57 },
6816 AHC_AIC7770|AHC_VL, TRUE } /* 284x BIOS disabled */
6817 };
6818
6819 /*
6820 * The VL-bus cards need to be primed by
6821 * writing before a signature check.
6822 */
6823 for (i = 0; i < sizeof(buf); i++)
6824 {
6825 outb(0x80 + i, base);
6826 buf[i] = inb(base + i);
6827 }
6828
6829 for (i = 0; i < ARRAY_SIZE(AIC7xxx); i++)
6830 {
6831 /*
6832 * Signature match on enabled card?
6833 */
6834 if (!memcmp(buf, AIC7xxx[i].signature, AIC7xxx[i].n))
6835 {
6836 if (inb(base + 4) & 1)
6837 {
6838 if (AIC7xxx[i].bios_disabled)
6839 {
6840 *flags |= AHC_USEDEFAULTS;
6841 }
6842 else
6843 {
6844 *flags |= AHC_BIOS_ENABLED;
6845 }
6846 return (i);
6847 }
6848
6849 printk("aic7xxx: <Adaptec 7770 SCSI Host Adapter> "
6850 "disabled at slot %d, ignored.\n", slot);
6851 }
6852 }
6853
6854 return (-1);
6855 }
6856 #endif /* (__i386__) || (__alpha__) */
6857
6858
6859 /*+F*************************************************************************
6860 * Function:
6861 * read_2840_seeprom
6862 *
6863 * Description:
6864 * Reads the 2840 serial EEPROM and returns 1 if successful and 0 if
6865 * not successful.
6866 *
6867 * See read_seeprom (for the 2940) for the instruction set of the 93C46
6868 * chip.
6869 *
6870 * The 2840 interface to the 93C46 serial EEPROM is through the
6871 * STATUS_2840 and SEECTL_2840 registers. The CS_2840, CK_2840, and
6872 * DO_2840 bits of the SEECTL_2840 register are connected to the chip
6873 * select, clock, and data out lines respectively of the serial EEPROM.
6874 * The DI_2840 bit of the STATUS_2840 is connected to the data in line
6875 * of the serial EEPROM. The EEPROM_TF bit of STATUS_2840 register is
6876 * useful in that it gives us an 800 nsec timer. After a read from the
6877 * SEECTL_2840 register the timing flag is cleared and goes high 800 nsec
6878 * later.
6879 *-F*************************************************************************/
6880 static int
6881 read_284x_seeprom(struct aic7xxx_host *p, struct seeprom_config *sc)
6882 {
6883 int i = 0, k = 0;
6884 unsigned char temp;
6885 unsigned short checksum = 0;
6886 unsigned short *seeprom = (unsigned short *) sc;
6887 struct seeprom_cmd {
6888 unsigned char len;
6889 unsigned char bits[3];
6890 };
6891 struct seeprom_cmd seeprom_read = {3, {1, 1, 0}};
6892
6893 #define CLOCK_PULSE(p) \
6894 while ((aic_inb(p, STATUS_2840) & EEPROM_TF) == 0) \
6895 { \
6896 ; /* Do nothing */ \
6897 } \
6898 (void) aic_inb(p, SEECTL_2840);
6899
6900 /*
6901 * Read the first 32 registers of the seeprom. For the 2840,
6902 * the 93C46 SEEPROM is a 1024-bit device with 64 16-bit registers
6903 * but only the first 32 are used by Adaptec BIOS. The loop
6904 * will range from 0 to 31.
6905 */
6906 for (k = 0; k < (sizeof(*sc) / 2); k++)
6907 {
6908 /*
6909 * Send chip select for one clock cycle.
6910 */
6911 aic_outb(p, CK_2840 | CS_2840, SEECTL_2840);
6912 CLOCK_PULSE(p);
6913
6914 /*
6915 * Now we're ready to send the read command followed by the
6916 * address of the 16-bit register we want to read.
6917 */
6918 for (i = 0; i < seeprom_read.len; i++)
6919 {
6920 temp = CS_2840 | seeprom_read.bits[i];
6921 aic_outb(p, temp, SEECTL_2840);
6922 CLOCK_PULSE(p);
6923 temp = temp ^ CK_2840;
6924 aic_outb(p, temp, SEECTL_2840);
6925 CLOCK_PULSE(p);
6926 }
6927 /*
6928 * Send the 6 bit address (MSB first, LSB last).
6929 */
6930 for (i = 5; i >= 0; i--)
6931 {
6932 temp = k;
6933 temp = (temp >> i) & 1; /* Mask out all but lower bit. */
6934 temp = CS_2840 | temp;
6935 aic_outb(p, temp, SEECTL_2840);
6936 CLOCK_PULSE(p);
6937 temp = temp ^ CK_2840;
6938 aic_outb(p, temp, SEECTL_2840);
6939 CLOCK_PULSE(p);
6940 }
6941
6942 /*
6943 * Now read the 16 bit register. An initial 0 precedes the
6944 * register contents which begins with bit 15 (MSB) and ends
6945 * with bit 0 (LSB). The initial 0 will be shifted off the
6946 * top of our word as we let the loop run from 0 to 16.
6947 */
6948 for (i = 0; i <= 16; i++)
6949 {
6950 temp = CS_2840;
6951 aic_outb(p, temp, SEECTL_2840);
6952 CLOCK_PULSE(p);
6953 temp = temp ^ CK_2840;
6954 seeprom[k] = (seeprom[k] << 1) | (aic_inb(p, STATUS_2840) & DI_2840);
6955 aic_outb(p, temp, SEECTL_2840);
6956 CLOCK_PULSE(p);
6957 }
6958 /*
6959 * The serial EEPROM has a checksum in the last word. Keep a
6960 * running checksum for all words read except for the last
6961 * word. We'll verify the checksum after all words have been
6962 * read.
6963 */
6964 if (k < (sizeof(*sc) / 2) - 1)
6965 {
6966 checksum = checksum + seeprom[k];
6967 }
6968
6969 /*
6970 * Reset the chip select for the next command cycle.
6971 */
6972 aic_outb(p, 0, SEECTL_2840);
6973 CLOCK_PULSE(p);
6974 aic_outb(p, CK_2840, SEECTL_2840);
6975 CLOCK_PULSE(p);
6976 aic_outb(p, 0, SEECTL_2840);
6977 CLOCK_PULSE(p);
6978 }
6979
6980 #if 0
6981 printk("Computed checksum 0x%x, checksum read 0x%x\n", checksum, sc->checksum);
6982 printk("Serial EEPROM:");
6983 for (k = 0; k < (sizeof(*sc) / 2); k++)
6984 {
6985 if (((k % 8) == 0) && (k != 0))
6986 {
6987 printk("\n ");
6988 }
6989 printk(" 0x%x", seeprom[k]);
6990 }
6991 printk("\n");
6992 #endif
6993
6994 if (checksum != sc->checksum)
6995 {
6996 printk("aic7xxx: SEEPROM checksum error, ignoring SEEPROM settings.\n");
6997 return (0);
6998 }
6999
7000 return (1);
7001 #undef CLOCK_PULSE
7002 }
7003
7004 #define CLOCK_PULSE(p) \
7005 do { \
7006 int limit = 0; \
7007 do { \
7008 mb(); \
7009 pause_sequencer(p); /* This is just to generate some PCI */ \
7010 /* traffic so the PCI read is flushed */ \
7011 /* it shouldn't be needed, but some */ \
7012 /* chipsets do indeed appear to need */ \
7013 /* something to force PCI reads to get */ \
7014 /* flushed */ \
7015 udelay(1); /* Do nothing */ \
7016 } while (((aic_inb(p, SEECTL) & SEERDY) == 0) && (++limit < 1000)); \
7017 } while(0)
7018
7019 /*+F*************************************************************************
7020 * Function:
7021 * acquire_seeprom
7022 *
7023 * Description:
7024 * Acquires access to the memory port on PCI controllers.
7025 *-F*************************************************************************/
7026 static int
7027 acquire_seeprom(struct aic7xxx_host *p)
7028 {
7029
7030 /*
7031 * Request access of the memory port. When access is
7032 * granted, SEERDY will go high. We use a 1 second
7033 * timeout which should be near 1 second more than
7034 * is needed. Reason: after the 7870 chip reset, there
7035 * should be no contention.
7036 */
7037 aic_outb(p, SEEMS, SEECTL);
7038 CLOCK_PULSE(p);
7039 if ((aic_inb(p, SEECTL) & SEERDY) == 0)
7040 {
7041 aic_outb(p, 0, SEECTL);
7042 return (0);
7043 }
7044 return (1);
7045 }
7046
7047 /*+F*************************************************************************
7048 * Function:
7049 * release_seeprom
7050 *
7051 * Description:
7052 * Releases access to the memory port on PCI controllers.
7053 *-F*************************************************************************/
7054 static void
7055 release_seeprom(struct aic7xxx_host *p)
7056 {
7057 /*
7058 * Make sure the SEEPROM is ready before we release it.
7059 */
7060 CLOCK_PULSE(p);
7061 aic_outb(p, 0, SEECTL);
7062 }
7063
7064 /*+F*************************************************************************
7065 * Function:
7066 * read_seeprom
7067 *
7068 * Description:
7069 * Reads the serial EEPROM and returns 1 if successful and 0 if
7070 * not successful.
7071 *
7072 * The instruction set of the 93C46/56/66 chips is as follows:
7073 *
7074 * Start OP
7075 * Function Bit Code Address Data Description
7076 * -------------------------------------------------------------------
7077 * READ 1 10 A5 - A0 Reads data stored in memory,
7078 * starting at specified address
7079 * EWEN 1 00 11XXXX Write enable must precede
7080 * all programming modes
7081 * ERASE 1 11 A5 - A0 Erase register A5A4A3A2A1A0
7082 * WRITE 1 01 A5 - A0 D15 - D0 Writes register
7083 * ERAL 1 00 10XXXX Erase all registers
7084 * WRAL 1 00 01XXXX D15 - D0 Writes to all registers
7085 * EWDS 1 00 00XXXX Disables all programming
7086 * instructions
7087 * *Note: A value of X for address is a don't care condition.
7088 * *Note: The 93C56 and 93C66 have 8 address bits.
7089 *
7090 *
7091 * The 93C46 has a four wire interface: clock, chip select, data in, and
7092 * data out. In order to perform one of the above functions, you need
7093 * to enable the chip select for a clock period (typically a minimum of
7094 * 1 usec, with the clock high and low a minimum of 750 and 250 nsec
7095 * respectively. While the chip select remains high, you can clock in
7096 * the instructions (above) starting with the start bit, followed by the
7097 * OP code, Address, and Data (if needed). For the READ instruction, the
7098 * requested 16-bit register contents is read from the data out line but
7099 * is preceded by an initial zero (leading 0, followed by 16-bits, MSB
7100 * first). The clock cycling from low to high initiates the next data
7101 * bit to be sent from the chip.
7102 *
7103 * The 78xx interface to the 93C46 serial EEPROM is through the SEECTL
7104 * register. After successful arbitration for the memory port, the
7105 * SEECS bit of the SEECTL register is connected to the chip select.
7106 * The SEECK, SEEDO, and SEEDI are connected to the clock, data out,
7107 * and data in lines respectively. The SEERDY bit of SEECTL is useful
7108 * in that it gives us an 800 nsec timer. After a write to the SEECTL
7109 * register, the SEERDY goes high 800 nsec later. The one exception
7110 * to this is when we first request access to the memory port. The
7111 * SEERDY goes high to signify that access has been granted and, for
7112 * this case, has no implied timing.
7113 *-F*************************************************************************/
7114 static int
7115 read_seeprom(struct aic7xxx_host *p, int offset,
7116 unsigned short *scarray, unsigned int len, seeprom_chip_type chip)
7117 {
7118 int i = 0, k;
7119 unsigned char temp;
7120 unsigned short checksum = 0;
7121 struct seeprom_cmd {
7122 unsigned char len;
7123 unsigned char bits[3];
7124 };
7125 struct seeprom_cmd seeprom_read = {3, {1, 1, 0}};
7126
7127 /*
7128 * Request access of the memory port.
7129 */
7130 if (acquire_seeprom(p) == 0)
7131 {
7132 return (0);
7133 }
7134
7135 /*
7136 * Read 'len' registers of the seeprom. For the 7870, the 93C46
7137 * SEEPROM is a 1024-bit device with 64 16-bit registers but only
7138 * the first 32 are used by Adaptec BIOS. Some adapters use the
7139 * 93C56 SEEPROM which is a 2048-bit device. The loop will range
7140 * from 0 to 'len' - 1.
7141 */
7142 for (k = 0; k < len; k++)
7143 {
7144 /*
7145 * Send chip select for one clock cycle.
7146 */
7147 aic_outb(p, SEEMS | SEECK | SEECS, SEECTL);
7148 CLOCK_PULSE(p);
7149
7150 /*
7151 * Now we're ready to send the read command followed by the
7152 * address of the 16-bit register we want to read.
7153 */
7154 for (i = 0; i < seeprom_read.len; i++)
7155 {
7156 temp = SEEMS | SEECS | (seeprom_read.bits[i] << 1);
7157 aic_outb(p, temp, SEECTL);
7158 CLOCK_PULSE(p);
7159 temp = temp ^ SEECK;
7160 aic_outb(p, temp, SEECTL);
7161 CLOCK_PULSE(p);
7162 }
7163 /*
7164 * Send the 6 or 8 bit address (MSB first, LSB last).
7165 */
7166 for (i = ((int) chip - 1); i >= 0; i--)
7167 {
7168 temp = k + offset;
7169 temp = (temp >> i) & 1; /* Mask out all but lower bit. */
7170 temp = SEEMS | SEECS | (temp << 1);
7171 aic_outb(p, temp, SEECTL);
7172 CLOCK_PULSE(p);
7173 temp = temp ^ SEECK;
7174 aic_outb(p, temp, SEECTL);
7175 CLOCK_PULSE(p);
7176 }
7177
7178 /*
7179 * Now read the 16 bit register. An initial 0 precedes the
7180 * register contents which begins with bit 15 (MSB) and ends
7181 * with bit 0 (LSB). The initial 0 will be shifted off the
7182 * top of our word as we let the loop run from 0 to 16.
7183 */
7184 for (i = 0; i <= 16; i++)
7185 {
7186 temp = SEEMS | SEECS;
7187 aic_outb(p, temp, SEECTL);
7188 CLOCK_PULSE(p);
7189 temp = temp ^ SEECK;
7190 scarray[k] = (scarray[k] << 1) | (aic_inb(p, SEECTL) & SEEDI);
7191 aic_outb(p, temp, SEECTL);
7192 CLOCK_PULSE(p);
7193 }
7194
7195 /*
7196 * The serial EEPROM should have a checksum in the last word.
7197 * Keep a running checksum for all words read except for the
7198 * last word. We'll verify the checksum after all words have
7199 * been read.
7200 */
7201 if (k < (len - 1))
7202 {
7203 checksum = checksum + scarray[k];
7204 }
7205
7206 /*
7207 * Reset the chip select for the next command cycle.
7208 */
7209 aic_outb(p, SEEMS, SEECTL);
7210 CLOCK_PULSE(p);
7211 aic_outb(p, SEEMS | SEECK, SEECTL);
7212 CLOCK_PULSE(p);
7213 aic_outb(p, SEEMS, SEECTL);
7214 CLOCK_PULSE(p);
7215 }
7216
7217 /*
7218 * Release access to the memory port and the serial EEPROM.
7219 */
7220 release_seeprom(p);
7221
7222 #if 0
7223 printk("Computed checksum 0x%x, checksum read 0x%x\n",
7224 checksum, scarray[len - 1]);
7225 printk("Serial EEPROM:");
7226 for (k = 0; k < len; k++)
7227 {
7228 if (((k % 8) == 0) && (k != 0))
7229 {
7230 printk("\n ");
7231 }
7232 printk(" 0x%x", scarray[k]);
7233 }
7234 printk("\n");
7235 #endif
7236 if ( (checksum != scarray[len - 1]) || (checksum == 0) )
7237 {
7238 return (0);
7239 }
7240
7241 return (1);
7242 }
7243
7244 /*+F*************************************************************************
7245 * Function:
7246 * read_brdctl
7247 *
7248 * Description:
7249 * Reads the BRDCTL register.
7250 *-F*************************************************************************/
7251 static unsigned char
7252 read_brdctl(struct aic7xxx_host *p)
7253 {
7254 unsigned char brdctl, value;
7255
7256 /*
7257 * Make sure the SEEPROM is ready before we access it
7258 */
7259 CLOCK_PULSE(p);
7260 if (p->features & AHC_ULTRA2)
7261 {
7262 brdctl = BRDRW_ULTRA2;
7263 aic_outb(p, brdctl, BRDCTL);
7264 CLOCK_PULSE(p);
7265 value = aic_inb(p, BRDCTL);
7266 CLOCK_PULSE(p);
7267 return(value);
7268 }
7269 brdctl = BRDRW;
7270 if ( !((p->chip & AHC_CHIPID_MASK) == AHC_AIC7895) ||
7271 (p->flags & AHC_CHNLB) )
7272 {
7273 brdctl |= BRDCS;
7274 }
7275 aic_outb(p, brdctl, BRDCTL);
7276 CLOCK_PULSE(p);
7277 value = aic_inb(p, BRDCTL);
7278 CLOCK_PULSE(p);
7279 aic_outb(p, 0, BRDCTL);
7280 CLOCK_PULSE(p);
7281 return (value);
7282 }
7283
7284 /*+F*************************************************************************
7285 * Function:
7286 * write_brdctl
7287 *
7288 * Description:
7289 * Writes a value to the BRDCTL register.
7290 *-F*************************************************************************/
7291 static void
7292 write_brdctl(struct aic7xxx_host *p, unsigned char value)
7293 {
7294 unsigned char brdctl;
7295
7296 /*
7297 * Make sure the SEEPROM is ready before we access it
7298 */
7299 CLOCK_PULSE(p);
7300 if (p->features & AHC_ULTRA2)
7301 {
7302 brdctl = value;
7303 aic_outb(p, brdctl, BRDCTL);
7304 CLOCK_PULSE(p);
7305 brdctl |= BRDSTB_ULTRA2;
7306 aic_outb(p, brdctl, BRDCTL);
7307 CLOCK_PULSE(p);
7308 brdctl &= ~BRDSTB_ULTRA2;
7309 aic_outb(p, brdctl, BRDCTL);
7310 CLOCK_PULSE(p);
7311 read_brdctl(p);
7312 CLOCK_PULSE(p);
7313 }
7314 else
7315 {
7316 brdctl = BRDSTB;
7317 if ( !((p->chip & AHC_CHIPID_MASK) == AHC_AIC7895) ||
7318 (p->flags & AHC_CHNLB) )
7319 {
7320 brdctl |= BRDCS;
7321 }
7322 brdctl = BRDSTB | BRDCS;
7323 aic_outb(p, brdctl, BRDCTL);
7324 CLOCK_PULSE(p);
7325 brdctl |= value;
7326 aic_outb(p, brdctl, BRDCTL);
7327 CLOCK_PULSE(p);
7328 brdctl &= ~BRDSTB;
7329 aic_outb(p, brdctl, BRDCTL);
7330 CLOCK_PULSE(p);
7331 brdctl &= ~BRDCS;
7332 aic_outb(p, brdctl, BRDCTL);
7333 CLOCK_PULSE(p);
7334 }
7335 }
7336
7337 /*+F*************************************************************************
7338 * Function:
7339 * aic785x_cable_detect
7340 *
7341 * Description:
7342 * Detect the cables that are present on aic785x class controller chips
7343 *-F*************************************************************************/
7344 static void
7345 aic785x_cable_detect(struct aic7xxx_host *p, int *int_50,
7346 int *ext_present, int *eeprom)
7347 {
7348 unsigned char brdctl;
7349
7350 aic_outb(p, BRDRW | BRDCS, BRDCTL);
7351 CLOCK_PULSE(p);
7352 aic_outb(p, 0, BRDCTL);
7353 CLOCK_PULSE(p);
7354 brdctl = aic_inb(p, BRDCTL);
7355 CLOCK_PULSE(p);
7356 *int_50 = !(brdctl & BRDDAT5);
7357 *ext_present = !(brdctl & BRDDAT6);
7358 *eeprom = (aic_inb(p, SPIOCAP) & EEPROM);
7359 }
7360
7361 #undef CLOCK_PULSE
7362
7363 /*+F*************************************************************************
7364 * Function:
7365 * aic2940_uwpro_cable_detect
7366 *
7367 * Description:
7368 * Detect the cables that are present on the 2940-UWPro cards
7369 *
7370 * NOTE: This function assumes the SEEPROM will have already been acquired
7371 * prior to invocation of this function.
7372 *-F*************************************************************************/
7373 static void
7374 aic2940_uwpro_wide_cable_detect(struct aic7xxx_host *p, int *int_68,
7375 int *ext_68, int *eeprom)
7376 {
7377 unsigned char brdctl;
7378
7379 /*
7380 * First read the status of our cables. Set the rom bank to
7381 * 0 since the bank setting serves as a multiplexor for the
7382 * cable detection logic. BRDDAT5 controls the bank switch.
7383 */
7384 write_brdctl(p, 0);
7385
7386 /*
7387 * Now we read the state of the internal 68 connector. BRDDAT6
7388 * is don't care, BRDDAT7 is internal 68. The cable is
7389 * present if the bit is 0
7390 */
7391 brdctl = read_brdctl(p);
7392 *int_68 = !(brdctl & BRDDAT7);
7393
7394 /*
7395 * Set the bank bit in brdctl and then read the external cable state
7396 * and the EEPROM status
7397 */
7398 write_brdctl(p, BRDDAT5);
7399 brdctl = read_brdctl(p);
7400
7401 *ext_68 = !(brdctl & BRDDAT6);
7402 *eeprom = !(brdctl & BRDDAT7);
7403
7404 /*
7405 * We're done, the calling function will release the SEEPROM for us
7406 */
7407 }
7408
7409 /*+F*************************************************************************
7410 * Function:
7411 * aic787x_cable_detect
7412 *
7413 * Description:
7414 * Detect the cables that are present on aic787x class controller chips
7415 *
7416 * NOTE: This function assumes the SEEPROM will have already been acquired
7417 * prior to invocation of this function.
7418 *-F*************************************************************************/
7419 static void
7420 aic787x_cable_detect(struct aic7xxx_host *p, int *int_50, int *int_68,
7421 int *ext_present, int *eeprom)
7422 {
7423 unsigned char brdctl;
7424
7425 /*
7426 * First read the status of our cables. Set the rom bank to
7427 * 0 since the bank setting serves as a multiplexor for the
7428 * cable detection logic. BRDDAT5 controls the bank switch.
7429 */
7430 write_brdctl(p, 0);
7431
7432 /*
7433 * Now we read the state of the two internal connectors. BRDDAT6
7434 * is internal 50, BRDDAT7 is internal 68. For each, the cable is
7435 * present if the bit is 0
7436 */
7437 brdctl = read_brdctl(p);
7438 *int_50 = !(brdctl & BRDDAT6);
7439 *int_68 = !(brdctl & BRDDAT7);
7440
7441 /*
7442 * Set the bank bit in brdctl and then read the external cable state
7443 * and the EEPROM status
7444 */
7445 write_brdctl(p, BRDDAT5);
7446 brdctl = read_brdctl(p);
7447
7448 *ext_present = !(brdctl & BRDDAT6);
7449 *eeprom = !(brdctl & BRDDAT7);
7450
7451 /*
7452 * We're done, the calling function will release the SEEPROM for us
7453 */
7454 }
7455
7456 /*+F*************************************************************************
7457 * Function:
7458 * aic787x_ultra2_term_detect
7459 *
7460 * Description:
7461 * Detect the termination settings present on ultra2 class controllers
7462 *
7463 * NOTE: This function assumes the SEEPROM will have already been acquired
7464 * prior to invocation of this function.
7465 *-F*************************************************************************/
7466 static void
7467 aic7xxx_ultra2_term_detect(struct aic7xxx_host *p, int *enableSE_low,
7468 int *enableSE_high, int *enableLVD_low,
7469 int *enableLVD_high, int *eprom_present)
7470 {
7471 unsigned char brdctl;
7472
7473 brdctl = read_brdctl(p);
7474
7475 *eprom_present = (brdctl & BRDDAT7);
7476 *enableSE_high = (brdctl & BRDDAT6);
7477 *enableSE_low = (brdctl & BRDDAT5);
7478 *enableLVD_high = (brdctl & BRDDAT4);
7479 *enableLVD_low = (brdctl & BRDDAT3);
7480 }
7481
7482 /*+F*************************************************************************
7483 * Function:
7484 * configure_termination
7485 *
7486 * Description:
7487 * Configures the termination settings on PCI adapters that have
7488 * SEEPROMs available.
7489 *-F*************************************************************************/
7490 static void
7491 configure_termination(struct aic7xxx_host *p)
7492 {
7493 int internal50_present = 0;
7494 int internal68_present = 0;
7495 int external_present = 0;
7496 int eprom_present = 0;
7497 int enableSE_low = 0;
7498 int enableSE_high = 0;
7499 int enableLVD_low = 0;
7500 int enableLVD_high = 0;
7501 unsigned char brddat = 0;
7502 unsigned char max_target = 0;
7503 unsigned char sxfrctl1 = aic_inb(p, SXFRCTL1);
7504
7505 if (acquire_seeprom(p))
7506 {
7507 if (p->features & (AHC_WIDE|AHC_TWIN))
7508 max_target = 16;
7509 else
7510 max_target = 8;
7511 aic_outb(p, SEEMS | SEECS, SEECTL);
7512 sxfrctl1 &= ~STPWEN;
7513 /*
7514 * The termination/cable detection logic is split into three distinct
7515 * groups. Ultra2 and later controllers, 2940UW-Pro controllers, and
7516 * older 7850, 7860, 7870, 7880, and 7895 controllers. Each has its
7517 * own unique way of detecting their cables and writing the results
7518 * back to the card.
7519 */
7520 if (p->features & AHC_ULTRA2)
7521 {
7522 /*
7523 * As long as user hasn't overridden term settings, always check the
7524 * cable detection logic
7525 */
7526 if (aic7xxx_override_term == -1)
7527 {
7528 aic7xxx_ultra2_term_detect(p, &enableSE_low, &enableSE_high,
7529 &enableLVD_low, &enableLVD_high,
7530 &eprom_present);
7531 }
7532
7533 /*
7534 * If the user is overriding settings, then they have been preserved
7535 * to here as fake adapter_control entries. Parse them and allow
7536 * them to override the detected settings (if we even did detection).
7537 */
7538 if (!(p->adapter_control & CFSEAUTOTERM))
7539 {
7540 enableSE_low = (p->adapter_control & CFSTERM);
7541 enableSE_high = (p->adapter_control & CFWSTERM);
7542 }
7543 if (!(p->adapter_control & CFAUTOTERM))
7544 {
7545 enableLVD_low = enableLVD_high = (p->adapter_control & CFLVDSTERM);
7546 }
7547
7548 /*
7549 * Now take those settings that we have and translate them into the
7550 * values that must be written into the registers.
7551 *
7552 * Flash Enable = BRDDAT7
7553 * Secondary High Term Enable = BRDDAT6
7554 * Secondary Low Term Enable = BRDDAT5
7555 * LVD/Primary High Term Enable = BRDDAT4
7556 * LVD/Primary Low Term Enable = STPWEN bit in SXFRCTL1
7557 */
7558 if (enableLVD_low != 0)
7559 {
7560 sxfrctl1 |= STPWEN;
7561 p->flags |= AHC_TERM_ENB_LVD;
7562 if (aic7xxx_verbose & VERBOSE_PROBE2)
7563 printk(KERN_INFO "(scsi%d) LVD/Primary Low byte termination "
7564 "Enabled\n", p->host_no);
7565 }
7566
7567 if (enableLVD_high != 0)
7568 {
7569 brddat |= BRDDAT4;
7570 if (aic7xxx_verbose & VERBOSE_PROBE2)
7571 printk(KERN_INFO "(scsi%d) LVD/Primary High byte termination "
7572 "Enabled\n", p->host_no);
7573 }
7574
7575 if (enableSE_low != 0)
7576 {
7577 brddat |= BRDDAT5;
7578 if (aic7xxx_verbose & VERBOSE_PROBE2)
7579 printk(KERN_INFO "(scsi%d) Secondary Low byte termination "
7580 "Enabled\n", p->host_no);
7581 }
7582
7583 if (enableSE_high != 0)
7584 {
7585 brddat |= BRDDAT6;
7586 if (aic7xxx_verbose & VERBOSE_PROBE2)
7587 printk(KERN_INFO "(scsi%d) Secondary High byte termination "
7588 "Enabled\n", p->host_no);
7589 }
7590 }
7591 else if (p->features & AHC_NEW_AUTOTERM)
7592 {
7593 /*
7594 * The 50 pin connector termination is controlled by STPWEN in the
7595 * SXFRCTL1 register. Since the Adaptec docs typically say the
7596 * controller is not allowed to be in the middle of a cable and
7597 * this is the only connection on that stub of the bus, there is
7598 * no need to even check for narrow termination, it's simply
7599 * always on.
7600 */
7601 sxfrctl1 |= STPWEN;
7602 if (aic7xxx_verbose & VERBOSE_PROBE2)
7603 printk(KERN_INFO "(scsi%d) Narrow channel termination Enabled\n",
7604 p->host_no);
7605
7606 if (p->adapter_control & CFAUTOTERM)
7607 {
7608 aic2940_uwpro_wide_cable_detect(p, &internal68_present,
7609 &external_present,
7610 &eprom_present);
7611 printk(KERN_INFO "(scsi%d) Cables present (Int-50 %s, Int-68 %s, "
7612 "Ext-68 %s)\n", p->host_no,
7613 "Don't Care",
7614 internal68_present ? "YES" : "NO",
7615 external_present ? "YES" : "NO");
7616 if (aic7xxx_verbose & VERBOSE_PROBE2)
7617 printk(KERN_INFO "(scsi%d) EEPROM %s present.\n", p->host_no,
7618 eprom_present ? "is" : "is not");
7619 if (internal68_present && external_present)
7620 {
7621 brddat = 0;
7622 p->flags &= ~AHC_TERM_ENB_SE_HIGH;
7623 if (aic7xxx_verbose & VERBOSE_PROBE2)
7624 printk(KERN_INFO "(scsi%d) Wide channel termination Disabled\n",
7625 p->host_no);
7626 }
7627 else
7628 {
7629 brddat = BRDDAT6;
7630 p->flags |= AHC_TERM_ENB_SE_HIGH;
7631 if (aic7xxx_verbose & VERBOSE_PROBE2)
7632 printk(KERN_INFO "(scsi%d) Wide channel termination Enabled\n",
7633 p->host_no);
7634 }
7635 }
7636 else
7637 {
7638 /*
7639 * The termination of the Wide channel is done more like normal
7640 * though, and the setting of this termination is done by writing
7641 * either a 0 or 1 to BRDDAT6 of the BRDDAT register
7642 */
7643 if (p->adapter_control & CFWSTERM)
7644 {
7645 brddat = BRDDAT6;
7646 p->flags |= AHC_TERM_ENB_SE_HIGH;
7647 if (aic7xxx_verbose & VERBOSE_PROBE2)
7648 printk(KERN_INFO "(scsi%d) Wide channel termination Enabled\n",
7649 p->host_no);
7650 }
7651 else
7652 {
7653 brddat = 0;
7654 }
7655 }
7656 }
7657 else
7658 {
7659 if (p->adapter_control & CFAUTOTERM)
7660 {
7661 if (p->flags & AHC_MOTHERBOARD)
7662 {
7663 printk(KERN_INFO "(scsi%d) Warning - detected auto-termination\n",
7664 p->host_no);
7665 printk(KERN_INFO "(scsi%d) Please verify driver detected settings "
7666 "are correct.\n", p->host_no);
7667 printk(KERN_INFO "(scsi%d) If not, then please properly set the "
7668 "device termination\n", p->host_no);
7669 printk(KERN_INFO "(scsi%d) in the Adaptec SCSI BIOS by hitting "
7670 "CTRL-A when prompted\n", p->host_no);
7671 printk(KERN_INFO "(scsi%d) during machine bootup.\n", p->host_no);
7672 }
7673 /* Configure auto termination. */
7674
7675 if ( (p->chip & AHC_CHIPID_MASK) >= AHC_AIC7870 )
7676 {
7677 aic787x_cable_detect(p, &internal50_present, &internal68_present,
7678 &external_present, &eprom_present);
7679 }
7680 else
7681 {
7682 aic785x_cable_detect(p, &internal50_present, &external_present,
7683 &eprom_present);
7684 }
7685
7686 if (max_target <= 8)
7687 internal68_present = 0;
7688
7689 if (max_target > 8)
7690 {
7691 printk(KERN_INFO "(scsi%d) Cables present (Int-50 %s, Int-68 %s, "
7692 "Ext-68 %s)\n", p->host_no,
7693 internal50_present ? "YES" : "NO",
7694 internal68_present ? "YES" : "NO",
7695 external_present ? "YES" : "NO");
7696 }
7697 else
7698 {
7699 printk(KERN_INFO "(scsi%d) Cables present (Int-50 %s, Ext-50 %s)\n",
7700 p->host_no,
7701 internal50_present ? "YES" : "NO",
7702 external_present ? "YES" : "NO");
7703 }
7704 if (aic7xxx_verbose & VERBOSE_PROBE2)
7705 printk(KERN_INFO "(scsi%d) EEPROM %s present.\n", p->host_no,
7706 eprom_present ? "is" : "is not");
7707
7708 /*
7709 * Now set the termination based on what we found. BRDDAT6
7710 * controls wide termination enable.
7711 * Flash Enable = BRDDAT7
7712 * SE High Term Enable = BRDDAT6
7713 */
7714 if (internal50_present && internal68_present && external_present)
7715 {
7716 printk(KERN_INFO "(scsi%d) Illegal cable configuration!! Only two\n",
7717 p->host_no);
7718 printk(KERN_INFO "(scsi%d) connectors on the SCSI controller may be "
7719 "in use at a time!\n", p->host_no);
7720 /*
7721 * Force termination (low and high byte) on. This is safer than
7722 * leaving it completely off, especially since this message comes
7723 * most often from motherboard controllers that don't even have 3
7724 * connectors, but instead are failing the cable detection.
7725 */
7726 internal50_present = external_present = 0;
7727 enableSE_high = enableSE_low = 1;
7728 }
7729
7730 if ((max_target > 8) &&
7731 ((external_present == 0) || (internal68_present == 0)) )
7732 {
7733 brddat |= BRDDAT6;
7734 p->flags |= AHC_TERM_ENB_SE_HIGH;
7735 if (aic7xxx_verbose & VERBOSE_PROBE2)
7736 printk(KERN_INFO "(scsi%d) SE High byte termination Enabled\n",
7737 p->host_no);
7738 }
7739
7740 if ( ((internal50_present ? 1 : 0) +
7741 (internal68_present ? 1 : 0) +
7742 (external_present ? 1 : 0)) <= 1 )
7743 {
7744 sxfrctl1 |= STPWEN;
7745 p->flags |= AHC_TERM_ENB_SE_LOW;
7746 if (aic7xxx_verbose & VERBOSE_PROBE2)
7747 printk(KERN_INFO "(scsi%d) SE Low byte termination Enabled\n",
7748 p->host_no);
7749 }
7750 }
7751 else /* p->adapter_control & CFAUTOTERM */
7752 {
7753 if (p->adapter_control & CFSTERM)
7754 {
7755 sxfrctl1 |= STPWEN;
7756 if (aic7xxx_verbose & VERBOSE_PROBE2)
7757 printk(KERN_INFO "(scsi%d) SE Low byte termination Enabled\n",
7758 p->host_no);
7759 }
7760
7761 if (p->adapter_control & CFWSTERM)
7762 {
7763 brddat |= BRDDAT6;
7764 if (aic7xxx_verbose & VERBOSE_PROBE2)
7765 printk(KERN_INFO "(scsi%d) SE High byte termination Enabled\n",
7766 p->host_no);
7767 }
7768 }
7769 }
7770
7771 aic_outb(p, sxfrctl1, SXFRCTL1);
7772 write_brdctl(p, brddat);
7773 release_seeprom(p);
7774 }
7775 }
7776
7777 /*+F*************************************************************************
7778 * Function:
7779 * detect_maxscb
7780 *
7781 * Description:
7782 * Detects the maximum number of SCBs for the controller and returns
7783 * the count and a mask in p (p->maxscbs, p->qcntmask).
7784 *-F*************************************************************************/
7785 static void
7786 detect_maxscb(struct aic7xxx_host *p)
7787 {
7788 int i;
7789
7790 /*
7791 * It's possible that we've already done this for multichannel
7792 * adapters.
7793 */
7794 if (p->scb_data->maxhscbs == 0)
7795 {
7796 /*
7797 * We haven't initialized the SCB settings yet. Walk the SCBs to
7798 * determince how many there are.
7799 */
7800 aic_outb(p, 0, FREE_SCBH);
7801
7802 for (i = 0; i < AIC7XXX_MAXSCB; i++)
7803 {
7804 aic_outb(p, i, SCBPTR);
7805 aic_outb(p, i, SCB_CONTROL);
7806 if (aic_inb(p, SCB_CONTROL) != i)
7807 break;
7808 aic_outb(p, 0, SCBPTR);
7809 if (aic_inb(p, SCB_CONTROL) != 0)
7810 break;
7811
7812 aic_outb(p, i, SCBPTR);
7813 aic_outb(p, 0, SCB_CONTROL); /* Clear the control byte. */
7814 aic_outb(p, i + 1, SCB_NEXT); /* Set the next pointer. */
7815 aic_outb(p, SCB_LIST_NULL, SCB_TAG); /* Make the tag invalid. */
7816 aic_outb(p, SCB_LIST_NULL, SCB_BUSYTARGETS); /* no busy untagged */
7817 aic_outb(p, SCB_LIST_NULL, SCB_BUSYTARGETS+1);/* targets active yet */
7818 aic_outb(p, SCB_LIST_NULL, SCB_BUSYTARGETS+2);
7819 aic_outb(p, SCB_LIST_NULL, SCB_BUSYTARGETS+3);
7820 }
7821
7822 /* Make sure the last SCB terminates the free list. */
7823 aic_outb(p, i - 1, SCBPTR);
7824 aic_outb(p, SCB_LIST_NULL, SCB_NEXT);
7825
7826 /* Ensure we clear the first (0) SCBs control byte. */
7827 aic_outb(p, 0, SCBPTR);
7828 aic_outb(p, 0, SCB_CONTROL);
7829
7830 p->scb_data->maxhscbs = i;
7831 /*
7832 * Use direct indexing instead for speed
7833 */
7834 if ( i == AIC7XXX_MAXSCB )
7835 p->flags &= ~AHC_PAGESCBS;
7836 }
7837
7838 }
7839
7840 /*+F*************************************************************************
7841 * Function:
7842 * aic7xxx_register
7843 *
7844 * Description:
7845 * Register a Adaptec aic7xxx chip SCSI controller with the kernel.
7846 *-F*************************************************************************/
7847 static int
7848 aic7xxx_register(struct scsi_host_template *template, struct aic7xxx_host *p,
7849 int reset_delay)
7850 {
7851 int i, result;
7852 int max_targets;
7853 int found = 1;
7854 unsigned char term, scsi_conf;
7855 struct Scsi_Host *host;
7856
7857 host = p->host;
7858
7859 p->scb_data->maxscbs = AIC7XXX_MAXSCB;
7860 host->can_queue = AIC7XXX_MAXSCB;
7861 host->cmd_per_lun = 3;
7862 host->sg_tablesize = AIC7XXX_MAX_SG;
7863 host->this_id = p->scsi_id;
7864 host->io_port = p->base;
7865 host->n_io_port = 0xFF;
7866 host->base = p->mbase;
7867 host->irq = p->irq;
7868 if (p->features & AHC_WIDE)
7869 {
7870 host->max_id = 16;
7871 }
7872 if (p->features & AHC_TWIN)
7873 {
7874 host->max_channel = 1;
7875 }
7876
7877 p->host = host;
7878 p->host_no = host->host_no;
7879 host->unique_id = p->instance;
7880 p->isr_count = 0;
7881 p->next = NULL;
7882 p->completeq.head = NULL;
7883 p->completeq.tail = NULL;
7884 scbq_init(&p->scb_data->free_scbs);
7885 scbq_init(&p->waiting_scbs);
7886 INIT_LIST_HEAD(&p->aic_devs);
7887
7888 /*
7889 * We currently have no commands of any type
7890 */
7891 p->qinfifonext = 0;
7892 p->qoutfifonext = 0;
7893
7894 printk(KERN_INFO "(scsi%d) <%s> found at ", p->host_no,
7895 board_names[p->board_name_index]);
7896 switch(p->chip)
7897 {
7898 case (AHC_AIC7770|AHC_EISA):
7899 printk("EISA slot %d\n", p->pci_device_fn);
7900 break;
7901 case (AHC_AIC7770|AHC_VL):
7902 printk("VLB slot %d\n", p->pci_device_fn);
7903 break;
7904 default:
7905 printk("PCI %d/%d/%d\n", p->pci_bus, PCI_SLOT(p->pci_device_fn),
7906 PCI_FUNC(p->pci_device_fn));
7907 break;
7908 }
7909 if (p->features & AHC_TWIN)
7910 {
7911 printk(KERN_INFO "(scsi%d) Twin Channel, A SCSI ID %d, B SCSI ID %d, ",
7912 p->host_no, p->scsi_id, p->scsi_id_b);
7913 }
7914 else
7915 {
7916 char *channel;
7917
7918 channel = "";
7919
7920 if ((p->flags & AHC_MULTI_CHANNEL) != 0)
7921 {
7922 channel = " A";
7923
7924 if ( (p->flags & (AHC_CHNLB|AHC_CHNLC)) != 0 )
7925 {
7926 channel = (p->flags & AHC_CHNLB) ? " B" : " C";
7927 }
7928 }
7929 if (p->features & AHC_WIDE)
7930 {
7931 printk(KERN_INFO "(scsi%d) Wide ", p->host_no);
7932 }
7933 else
7934 {
7935 printk(KERN_INFO "(scsi%d) Narrow ", p->host_no);
7936 }
7937 printk("Channel%s, SCSI ID=%d, ", channel, p->scsi_id);
7938 }
7939 aic_outb(p, 0, SEQ_FLAGS);
7940
7941 detect_maxscb(p);
7942
7943 printk("%d/%d SCBs\n", p->scb_data->maxhscbs, p->scb_data->maxscbs);
7944 if (aic7xxx_verbose & VERBOSE_PROBE2)
7945 {
7946 printk(KERN_INFO "(scsi%d) BIOS %sabled, IO Port 0x%lx, IRQ %d\n",
7947 p->host_no, (p->flags & AHC_BIOS_ENABLED) ? "en" : "dis",
7948 p->base, p->irq);
7949 printk(KERN_INFO "(scsi%d) IO Memory at 0x%lx, MMAP Memory at %p\n",
7950 p->host_no, p->mbase, p->maddr);
7951 }
7952
7953 #ifdef CONFIG_PCI
7954 /*
7955 * Now that we know our instance number, we can set the flags we need to
7956 * force termination if need be.
7957 */
7958 if (aic7xxx_stpwlev != -1)
7959 {
7960 /*
7961 * This option only applies to PCI controllers.
7962 */
7963 if ( (p->chip & ~AHC_CHIPID_MASK) == AHC_PCI)
7964 {
7965 unsigned char devconfig;
7966
7967 pci_read_config_byte(p->pdev, DEVCONFIG, &devconfig);
7968 if ( (aic7xxx_stpwlev >> p->instance) & 0x01 )
7969 {
7970 devconfig |= STPWLEVEL;
7971 if (aic7xxx_verbose & VERBOSE_PROBE2)
7972 printk("(scsi%d) Force setting STPWLEVEL bit\n", p->host_no);
7973 }
7974 else
7975 {
7976 devconfig &= ~STPWLEVEL;
7977 if (aic7xxx_verbose & VERBOSE_PROBE2)
7978 printk("(scsi%d) Force clearing STPWLEVEL bit\n", p->host_no);
7979 }
7980 pci_write_config_byte(p->pdev, DEVCONFIG, devconfig);
7981 }
7982 }
7983 #endif
7984
7985 /*
7986 * That took care of devconfig and stpwlev, now for the actual termination
7987 * settings.
7988 */
7989 if (aic7xxx_override_term != -1)
7990 {
7991 /*
7992 * Again, this only applies to PCI controllers. We don't have problems
7993 * with the termination on 274x controllers to the best of my knowledge.
7994 */
7995 if ( (p->chip & ~AHC_CHIPID_MASK) == AHC_PCI)
7996 {
7997 unsigned char term_override;
7998
7999 term_override = ( (aic7xxx_override_term >> (p->instance * 4)) & 0x0f);
8000 p->adapter_control &=
8001 ~(CFSTERM|CFWSTERM|CFLVDSTERM|CFAUTOTERM|CFSEAUTOTERM);
8002 if ( (p->features & AHC_ULTRA2) && (term_override & 0x0c) )
8003 {
8004 p->adapter_control |= CFLVDSTERM;
8005 }
8006 if (term_override & 0x02)
8007 {
8008 p->adapter_control |= CFWSTERM;
8009 }
8010 if (term_override & 0x01)
8011 {
8012 p->adapter_control |= CFSTERM;
8013 }
8014 }
8015 }
8016
8017 if ( (p->flags & AHC_SEEPROM_FOUND) || (aic7xxx_override_term != -1) )
8018 {
8019 if (p->features & AHC_SPIOCAP)
8020 {
8021 if ( aic_inb(p, SPIOCAP) & SSPIOCPS )
8022 /*
8023 * Update the settings in sxfrctl1 to match the termination
8024 * settings.
8025 */
8026 configure_termination(p);
8027 }
8028 else if ((p->chip & AHC_CHIPID_MASK) >= AHC_AIC7870)
8029 {
8030 configure_termination(p);
8031 }
8032 }
8033
8034 /*
8035 * Set the SCSI Id, SXFRCTL0, SXFRCTL1, and SIMODE1, for both channels
8036 */
8037 if (p->features & AHC_TWIN)
8038 {
8039 /* Select channel B */
8040 aic_outb(p, aic_inb(p, SBLKCTL) | SELBUSB, SBLKCTL);
8041
8042 if ((p->flags & AHC_SEEPROM_FOUND) || (aic7xxx_override_term != -1))
8043 term = (aic_inb(p, SXFRCTL1) & STPWEN);
8044 else
8045 term = ((p->flags & AHC_TERM_ENB_B) ? STPWEN : 0);
8046
8047 aic_outb(p, p->scsi_id_b, SCSIID);
8048 scsi_conf = aic_inb(p, SCSICONF + 1);
8049 aic_outb(p, DFON | SPIOEN, SXFRCTL0);
8050 aic_outb(p, (scsi_conf & ENSPCHK) | aic7xxx_seltime | term |
8051 ENSTIMER | ACTNEGEN, SXFRCTL1);
8052 aic_outb(p, 0, SIMODE0);
8053 aic_outb(p, ENSELTIMO | ENSCSIRST | ENSCSIPERR, SIMODE1);
8054 aic_outb(p, 0, SCSIRATE);
8055
8056 /* Select channel A */
8057 aic_outb(p, aic_inb(p, SBLKCTL) & ~SELBUSB, SBLKCTL);
8058 }
8059
8060 if (p->features & AHC_ULTRA2)
8061 {
8062 aic_outb(p, p->scsi_id, SCSIID_ULTRA2);
8063 }
8064 else
8065 {
8066 aic_outb(p, p->scsi_id, SCSIID);
8067 }
8068 if ((p->flags & AHC_SEEPROM_FOUND) || (aic7xxx_override_term != -1))
8069 term = (aic_inb(p, SXFRCTL1) & STPWEN);
8070 else
8071 term = ((p->flags & (AHC_TERM_ENB_A|AHC_TERM_ENB_LVD)) ? STPWEN : 0);
8072 scsi_conf = aic_inb(p, SCSICONF);
8073 aic_outb(p, DFON | SPIOEN, SXFRCTL0);
8074 aic_outb(p, (scsi_conf & ENSPCHK) | aic7xxx_seltime | term |
8075 ENSTIMER | ACTNEGEN, SXFRCTL1);
8076 aic_outb(p, 0, SIMODE0);
8077 /*
8078 * If we are a cardbus adapter then don't enable SCSI reset detection.
8079 * We shouldn't likely be sharing SCSI busses with someone else, and
8080 * if we don't have a cable currently plugged into the controller then
8081 * we won't have a power source for the SCSI termination, which means
8082 * we'll see infinite incoming bus resets.
8083 */
8084 if(p->flags & AHC_NO_STPWEN)
8085 aic_outb(p, ENSELTIMO | ENSCSIPERR, SIMODE1);
8086 else
8087 aic_outb(p, ENSELTIMO | ENSCSIRST | ENSCSIPERR, SIMODE1);
8088 aic_outb(p, 0, SCSIRATE);
8089 if ( p->features & AHC_ULTRA2)
8090 aic_outb(p, 0, SCSIOFFSET);
8091
8092 /*
8093 * Look at the information that board initialization or the board
8094 * BIOS has left us. In the lower four bits of each target's
8095 * scratch space any value other than 0 indicates that we should
8096 * initiate synchronous transfers. If it's zero, the user or the
8097 * BIOS has decided to disable synchronous negotiation to that
8098 * target so we don't activate the needsdtr flag.
8099 */
8100 if ((p->features & (AHC_TWIN|AHC_WIDE)) == 0)
8101 {
8102 max_targets = 8;
8103 }
8104 else
8105 {
8106 max_targets = 16;
8107 }
8108
8109 if (!(aic7xxx_no_reset))
8110 {
8111 /*
8112 * If we reset the bus, then clear the transfer settings, else leave
8113 * them be.
8114 */
8115 aic_outb(p, 0, ULTRA_ENB);
8116 aic_outb(p, 0, ULTRA_ENB + 1);
8117 p->ultraenb = 0;
8118 }
8119
8120 /*
8121 * Allocate enough hardware scbs to handle the maximum number of
8122 * concurrent transactions we can have. We have to make sure that
8123 * the allocated memory is contiguous memory. The Linux kmalloc
8124 * routine should only allocate contiguous memory, but note that
8125 * this could be a problem if kmalloc() is changed.
8126 */
8127 {
8128 size_t array_size;
8129 unsigned int hscb_physaddr;
8130
8131 array_size = p->scb_data->maxscbs * sizeof(struct aic7xxx_hwscb);
8132 if (p->scb_data->hscbs == NULL)
8133 {
8134 /* pci_alloc_consistent enforces the alignment already and
8135 * clears the area as well.
8136 */
8137 p->scb_data->hscbs = pci_alloc_consistent(p->pdev, array_size,
8138 &p->scb_data->hscbs_dma);
8139 /* We have to use pci_free_consistent, not kfree */
8140 p->scb_data->hscb_kmalloc_ptr = NULL;
8141 p->scb_data->hscbs_dma_len = array_size;
8142 }
8143 if (p->scb_data->hscbs == NULL)
8144 {
8145 printk("(scsi%d) Unable to allocate hardware SCB array; "
8146 "failing detection.\n", p->host_no);
8147 aic_outb(p, 0, SIMODE1);
8148 p->irq = 0;
8149 return(0);
8150 }
8151
8152 hscb_physaddr = p->scb_data->hscbs_dma;
8153 aic_outb(p, hscb_physaddr & 0xFF, HSCB_ADDR);
8154 aic_outb(p, (hscb_physaddr >> 8) & 0xFF, HSCB_ADDR + 1);
8155 aic_outb(p, (hscb_physaddr >> 16) & 0xFF, HSCB_ADDR + 2);
8156 aic_outb(p, (hscb_physaddr >> 24) & 0xFF, HSCB_ADDR + 3);
8157
8158 /* Set up the fifo areas at the same time */
8159 p->untagged_scbs = pci_alloc_consistent(p->pdev, 3*256, &p->fifo_dma);
8160 if (p->untagged_scbs == NULL)
8161 {
8162 printk("(scsi%d) Unable to allocate hardware FIFO arrays; "
8163 "failing detection.\n", p->host_no);
8164 p->irq = 0;
8165 return(0);
8166 }
8167
8168 p->qoutfifo = p->untagged_scbs + 256;
8169 p->qinfifo = p->qoutfifo + 256;
8170 for (i = 0; i < 256; i++)
8171 {
8172 p->untagged_scbs[i] = SCB_LIST_NULL;
8173 p->qinfifo[i] = SCB_LIST_NULL;
8174 p->qoutfifo[i] = SCB_LIST_NULL;
8175 }
8176
8177 hscb_physaddr = p->fifo_dma;
8178 aic_outb(p, hscb_physaddr & 0xFF, SCBID_ADDR);
8179 aic_outb(p, (hscb_physaddr >> 8) & 0xFF, SCBID_ADDR + 1);
8180 aic_outb(p, (hscb_physaddr >> 16) & 0xFF, SCBID_ADDR + 2);
8181 aic_outb(p, (hscb_physaddr >> 24) & 0xFF, SCBID_ADDR + 3);
8182 }
8183
8184 /* The Q-FIFOs we just set up are all empty */
8185 aic_outb(p, 0, QINPOS);
8186 aic_outb(p, 0, KERNEL_QINPOS);
8187 aic_outb(p, 0, QOUTPOS);
8188
8189 if(p->features & AHC_QUEUE_REGS)
8190 {
8191 aic_outb(p, SCB_QSIZE_256, QOFF_CTLSTA);
8192 aic_outb(p, 0, SDSCB_QOFF);
8193 aic_outb(p, 0, SNSCB_QOFF);
8194 aic_outb(p, 0, HNSCB_QOFF);
8195 }
8196
8197 /*
8198 * We don't have any waiting selections or disconnected SCBs.
8199 */
8200 aic_outb(p, SCB_LIST_NULL, WAITING_SCBH);
8201 aic_outb(p, SCB_LIST_NULL, DISCONNECTED_SCBH);
8202
8203 /*
8204 * Message out buffer starts empty
8205 */
8206 aic_outb(p, MSG_NOOP, MSG_OUT);
8207 aic_outb(p, MSG_NOOP, LAST_MSG);
8208
8209 /*
8210 * Set all the other asundry items that haven't been set yet.
8211 * This includes just dumping init values to a lot of registers simply
8212 * to make sure they've been touched and are ready for use parity wise
8213 * speaking.
8214 */
8215 aic_outb(p, 0, TMODE_CMDADDR);
8216 aic_outb(p, 0, TMODE_CMDADDR + 1);
8217 aic_outb(p, 0, TMODE_CMDADDR + 2);
8218 aic_outb(p, 0, TMODE_CMDADDR + 3);
8219 aic_outb(p, 0, TMODE_CMDADDR_NEXT);
8220
8221 /*
8222 * Link us into the list of valid hosts
8223 */
8224 p->next = first_aic7xxx;
8225 first_aic7xxx = p;
8226
8227 /*
8228 * Allocate the first set of scbs for this controller. This is to stream-
8229 * line code elsewhere in the driver. If we have to check for the existence
8230 * of scbs in certain code sections, it slows things down. However, as
8231 * soon as we register the IRQ for this card, we could get an interrupt that
8232 * includes possibly the SCSI_RSTI interrupt. If we catch that interrupt
8233 * then we are likely to segfault if we don't have at least one chunk of
8234 * SCBs allocated or add checks all through the reset code to make sure
8235 * that the SCBs have been allocated which is an invalid running condition
8236 * and therefore I think it's preferable to simply pre-allocate the first
8237 * chunk of SCBs.
8238 */
8239 aic7xxx_allocate_scb(p);
8240
8241 /*
8242 * Load the sequencer program, then re-enable the board -
8243 * resetting the AIC-7770 disables it, leaving the lights
8244 * on with nobody home.
8245 */
8246 aic7xxx_loadseq(p);
8247
8248 /*
8249 * Make sure the AUTOFLUSHDIS bit is *not* set in the SBLKCTL register
8250 */
8251 aic_outb(p, aic_inb(p, SBLKCTL) & ~AUTOFLUSHDIS, SBLKCTL);
8252
8253 if ( (p->chip & AHC_CHIPID_MASK) == AHC_AIC7770 )
8254 {
8255 aic_outb(p, ENABLE, BCTL); /* Enable the boards BUS drivers. */
8256 }
8257
8258 if ( !(aic7xxx_no_reset) )
8259 {
8260 if (p->features & AHC_TWIN)
8261 {
8262 if (aic7xxx_verbose & VERBOSE_PROBE2)
8263 printk(KERN_INFO "(scsi%d) Resetting channel B\n", p->host_no);
8264 aic_outb(p, aic_inb(p, SBLKCTL) | SELBUSB, SBLKCTL);
8265 aic7xxx_reset_current_bus(p);
8266 aic_outb(p, aic_inb(p, SBLKCTL) & ~SELBUSB, SBLKCTL);
8267 }
8268 /* Reset SCSI bus A. */
8269 if (aic7xxx_verbose & VERBOSE_PROBE2)
8270 { /* In case we are a 3940, 3985, or 7895, print the right channel */
8271 char *channel = "";
8272 if (p->flags & AHC_MULTI_CHANNEL)
8273 {
8274 channel = " A";
8275 if (p->flags & (AHC_CHNLB|AHC_CHNLC))
8276 channel = (p->flags & AHC_CHNLB) ? " B" : " C";
8277 }
8278 printk(KERN_INFO "(scsi%d) Resetting channel%s\n", p->host_no, channel);
8279 }
8280
8281 aic7xxx_reset_current_bus(p);
8282
8283 }
8284 else
8285 {
8286 if (!reset_delay)
8287 {
8288 printk(KERN_INFO "(scsi%d) Not resetting SCSI bus. Note: Don't use "
8289 "the no_reset\n", p->host_no);
8290 printk(KERN_INFO "(scsi%d) option unless you have a verifiable need "
8291 "for it.\n", p->host_no);
8292 }
8293 }
8294
8295 /*
8296 * Register IRQ with the kernel. Only allow sharing IRQs with
8297 * PCI devices.
8298 */
8299 if (!(p->chip & AHC_PCI))
8300 {
8301 result = (request_irq(p->irq, do_aic7xxx_isr, 0, "aic7xxx", p));
8302 }
8303 else
8304 {
8305 result = (request_irq(p->irq, do_aic7xxx_isr, IRQF_SHARED,
8306 "aic7xxx", p));
8307 if (result < 0)
8308 {
8309 result = (request_irq(p->irq, do_aic7xxx_isr, IRQF_DISABLED | IRQF_SHARED,
8310 "aic7xxx", p));
8311 }
8312 }
8313 if (result < 0)
8314 {
8315 printk(KERN_WARNING "(scsi%d) Couldn't register IRQ %d, ignoring "
8316 "controller.\n", p->host_no, p->irq);
8317 aic_outb(p, 0, SIMODE1);
8318 p->irq = 0;
8319 return (0);
8320 }
8321
8322 if(aic_inb(p, INTSTAT) & INT_PEND)
8323 printk(INFO_LEAD "spurious interrupt during configuration, cleared.\n",
8324 p->host_no, -1, -1 , -1);
8325 aic7xxx_clear_intstat(p);
8326
8327 unpause_sequencer(p, /* unpause_always */ TRUE);
8328
8329 return (found);
8330 }
8331
8332 /*+F*************************************************************************
8333 * Function:
8334 * aic7xxx_chip_reset
8335 *
8336 * Description:
8337 * Perform a chip reset on the aic7xxx SCSI controller. The controller
8338 * is paused upon return.
8339 *-F*************************************************************************/
8340 static int
8341 aic7xxx_chip_reset(struct aic7xxx_host *p)
8342 {
8343 unsigned char sblkctl;
8344 int wait;
8345
8346 /*
8347 * For some 274x boards, we must clear the CHIPRST bit and pause
8348 * the sequencer. For some reason, this makes the driver work.
8349 */
8350 aic_outb(p, PAUSE | CHIPRST, HCNTRL);
8351
8352 /*
8353 * In the future, we may call this function as a last resort for
8354 * error handling. Let's be nice and not do any unnecessary delays.
8355 */
8356 wait = 1000; /* 1 msec (1000 * 1 msec) */
8357 while (--wait && !(aic_inb(p, HCNTRL) & CHIPRSTACK))
8358 {
8359 udelay(1); /* 1 usec */
8360 }
8361
8362 pause_sequencer(p);
8363
8364 sblkctl = aic_inb(p, SBLKCTL) & (SELBUSB|SELWIDE);
8365 if (p->chip & AHC_PCI)
8366 sblkctl &= ~SELBUSB;
8367 switch( sblkctl )
8368 {
8369 case 0: /* normal narrow card */
8370 break;
8371 case 2: /* Wide card */
8372 p->features |= AHC_WIDE;
8373 break;
8374 case 8: /* Twin card */
8375 p->features |= AHC_TWIN;
8376 p->flags |= AHC_MULTI_CHANNEL;
8377 break;
8378 default: /* hmmm...we don't know what this is */
8379 printk(KERN_WARNING "aic7xxx: Unsupported adapter type %d, ignoring.\n",
8380 aic_inb(p, SBLKCTL) & 0x0a);
8381 return(-1);
8382 }
8383 return(0);
8384 }
8385
8386 /*+F*************************************************************************
8387 * Function:
8388 * aic7xxx_alloc
8389 *
8390 * Description:
8391 * Allocate and initialize a host structure. Returns NULL upon error
8392 * and a pointer to a aic7xxx_host struct upon success.
8393 *-F*************************************************************************/
8394 static struct aic7xxx_host *
8395 aic7xxx_alloc(struct scsi_host_template *sht, struct aic7xxx_host *temp)
8396 {
8397 struct aic7xxx_host *p = NULL;
8398 struct Scsi_Host *host;
8399
8400 /*
8401 * Allocate a storage area by registering us with the mid-level
8402 * SCSI layer.
8403 */
8404 host = scsi_register(sht, sizeof(struct aic7xxx_host));
8405
8406 if (host != NULL)
8407 {
8408 p = (struct aic7xxx_host *) host->hostdata;
8409 memset(p, 0, sizeof(struct aic7xxx_host));
8410 *p = *temp;
8411 p->host = host;
8412
8413 p->scb_data = kzalloc(sizeof(scb_data_type), GFP_ATOMIC);
8414 if (p->scb_data)
8415 {
8416 scbq_init (&p->scb_data->free_scbs);
8417 }
8418 else
8419 {
8420 /*
8421 * For some reason we don't have enough memory. Free the
8422 * allocated memory for the aic7xxx_host struct, and return NULL.
8423 */
8424 release_region(p->base, MAXREG - MINREG);
8425 scsi_unregister(host);
8426 return(NULL);
8427 }
8428 p->host_no = host->host_no;
8429 }
8430 return (p);
8431 }
8432
8433 /*+F*************************************************************************
8434 * Function:
8435 * aic7xxx_free
8436 *
8437 * Description:
8438 * Frees and releases all resources associated with an instance of
8439 * the driver (struct aic7xxx_host *).
8440 *-F*************************************************************************/
8441 static void
8442 aic7xxx_free(struct aic7xxx_host *p)
8443 {
8444 int i;
8445
8446 /*
8447 * Free the allocated hardware SCB space.
8448 */
8449 if (p->scb_data != NULL)
8450 {
8451 struct aic7xxx_scb_dma *scb_dma = NULL;
8452 if (p->scb_data->hscbs != NULL)
8453 {
8454 pci_free_consistent(p->pdev, p->scb_data->hscbs_dma_len,
8455 p->scb_data->hscbs, p->scb_data->hscbs_dma);
8456 p->scb_data->hscbs = p->scb_data->hscb_kmalloc_ptr = NULL;
8457 }
8458 /*
8459 * Free the driver SCBs. These were allocated on an as-need
8460 * basis. We allocated these in groups depending on how many
8461 * we could fit into a given amount of RAM. The tail SCB for
8462 * these allocations has a pointer to the alloced area.
8463 */
8464 for (i = 0; i < p->scb_data->numscbs; i++)
8465 {
8466 if (p->scb_data->scb_array[i]->scb_dma != scb_dma)
8467 {
8468 scb_dma = p->scb_data->scb_array[i]->scb_dma;
8469 pci_free_consistent(p->pdev, scb_dma->dma_len,
8470 (void *)((unsigned long)scb_dma->dma_address
8471 - scb_dma->dma_offset),
8472 scb_dma->dma_address);
8473 }
8474 kfree(p->scb_data->scb_array[i]->kmalloc_ptr);
8475 p->scb_data->scb_array[i] = NULL;
8476 }
8477
8478 /*
8479 * Free the SCB data area.
8480 */
8481 kfree(p->scb_data);
8482 }
8483
8484 pci_free_consistent(p->pdev, 3*256, (void *)p->untagged_scbs, p->fifo_dma);
8485 }
8486
8487 /*+F*************************************************************************
8488 * Function:
8489 * aic7xxx_load_seeprom
8490 *
8491 * Description:
8492 * Load the seeprom and configure adapter and target settings.
8493 * Returns 1 if the load was successful and 0 otherwise.
8494 *-F*************************************************************************/
8495 static void
8496 aic7xxx_load_seeprom(struct aic7xxx_host *p, unsigned char *sxfrctl1)
8497 {
8498 int have_seeprom = 0;
8499 int i, max_targets, mask;
8500 unsigned char scsirate, scsi_conf;
8501 unsigned short scarray[128];
8502 struct seeprom_config *sc = (struct seeprom_config *) scarray;
8503
8504 if (aic7xxx_verbose & VERBOSE_PROBE2)
8505 {
8506 printk(KERN_INFO "aic7xxx: Loading serial EEPROM...");
8507 }
8508 switch (p->chip)
8509 {
8510 case (AHC_AIC7770|AHC_EISA): /* None of these adapters have seeproms. */
8511 if (aic_inb(p, SCSICONF) & TERM_ENB)
8512 p->flags |= AHC_TERM_ENB_A;
8513 if ( (p->features & AHC_TWIN) && (aic_inb(p, SCSICONF + 1) & TERM_ENB) )
8514 p->flags |= AHC_TERM_ENB_B;
8515 break;
8516
8517 case (AHC_AIC7770|AHC_VL):
8518 have_seeprom = read_284x_seeprom(p, (struct seeprom_config *) scarray);
8519 break;
8520
8521 default:
8522 have_seeprom = read_seeprom(p, (p->flags & (AHC_CHNLB|AHC_CHNLC)),
8523 scarray, p->sc_size, p->sc_type);
8524 if (!have_seeprom)
8525 {
8526 if(p->sc_type == C46)
8527 have_seeprom = read_seeprom(p, (p->flags & (AHC_CHNLB|AHC_CHNLC)),
8528 scarray, p->sc_size, C56_66);
8529 else
8530 have_seeprom = read_seeprom(p, (p->flags & (AHC_CHNLB|AHC_CHNLC)),
8531 scarray, p->sc_size, C46);
8532 }
8533 if (!have_seeprom)
8534 {
8535 p->sc_size = 128;
8536 have_seeprom = read_seeprom(p, 4*(p->flags & (AHC_CHNLB|AHC_CHNLC)),
8537 scarray, p->sc_size, p->sc_type);
8538 if (!have_seeprom)
8539 {
8540 if(p->sc_type == C46)
8541 have_seeprom = read_seeprom(p, 4*(p->flags & (AHC_CHNLB|AHC_CHNLC)),
8542 scarray, p->sc_size, C56_66);
8543 else
8544 have_seeprom = read_seeprom(p, 4*(p->flags & (AHC_CHNLB|AHC_CHNLC)),
8545 scarray, p->sc_size, C46);
8546 }
8547 }
8548 break;
8549 }
8550
8551 if (!have_seeprom)
8552 {
8553 if (aic7xxx_verbose & VERBOSE_PROBE2)
8554 {
8555 printk("\naic7xxx: No SEEPROM available.\n");
8556 }
8557 p->flags |= AHC_NEWEEPROM_FMT;
8558 if (aic_inb(p, SCSISEQ) == 0)
8559 {
8560 p->flags |= AHC_USEDEFAULTS;
8561 p->flags &= ~AHC_BIOS_ENABLED;
8562 p->scsi_id = p->scsi_id_b = 7;
8563 *sxfrctl1 |= STPWEN;
8564 if (aic7xxx_verbose & VERBOSE_PROBE2)
8565 {
8566 printk("aic7xxx: Using default values.\n");
8567 }
8568 }
8569 else if (aic7xxx_verbose & VERBOSE_PROBE2)
8570 {
8571 printk("aic7xxx: Using leftover BIOS values.\n");
8572 }
8573 if ( ((p->chip & ~AHC_CHIPID_MASK) == AHC_PCI) && (*sxfrctl1 & STPWEN) )
8574 {
8575 p->flags |= AHC_TERM_ENB_SE_LOW | AHC_TERM_ENB_SE_HIGH;
8576 sc->adapter_control &= ~CFAUTOTERM;
8577 sc->adapter_control |= CFSTERM | CFWSTERM | CFLVDSTERM;
8578 }
8579 if (aic7xxx_extended)
8580 p->flags |= (AHC_EXTEND_TRANS_A | AHC_EXTEND_TRANS_B);
8581 else
8582 p->flags &= ~(AHC_EXTEND_TRANS_A | AHC_EXTEND_TRANS_B);
8583 }
8584 else
8585 {
8586 if (aic7xxx_verbose & VERBOSE_PROBE2)
8587 {
8588 printk("done\n");
8589 }
8590
8591 /*
8592 * Note things in our flags
8593 */
8594 p->flags |= AHC_SEEPROM_FOUND;
8595
8596 /*
8597 * Update the settings in sxfrctl1 to match the termination settings.
8598 */
8599 *sxfrctl1 = 0;
8600
8601 /*
8602 * Get our SCSI ID from the SEEPROM setting...
8603 */
8604 p->scsi_id = (sc->brtime_id & CFSCSIID);
8605
8606 /*
8607 * First process the settings that are different between the VLB
8608 * and PCI adapter seeproms.
8609 */
8610 if ((p->chip & AHC_CHIPID_MASK) == AHC_AIC7770)
8611 {
8612 /* VLB adapter seeproms */
8613 if (sc->bios_control & CF284XEXTEND)
8614 p->flags |= AHC_EXTEND_TRANS_A;
8615
8616 if (sc->adapter_control & CF284XSTERM)
8617 {
8618 *sxfrctl1 |= STPWEN;
8619 p->flags |= AHC_TERM_ENB_SE_LOW | AHC_TERM_ENB_SE_HIGH;
8620 }
8621 }
8622 else
8623 {
8624 /* PCI adapter seeproms */
8625 if (sc->bios_control & CFEXTEND)
8626 p->flags |= AHC_EXTEND_TRANS_A;
8627 if (sc->bios_control & CFBIOSEN)
8628 p->flags |= AHC_BIOS_ENABLED;
8629 else
8630 p->flags &= ~AHC_BIOS_ENABLED;
8631
8632 if (sc->adapter_control & CFSTERM)
8633 {
8634 *sxfrctl1 |= STPWEN;
8635 p->flags |= AHC_TERM_ENB_SE_LOW | AHC_TERM_ENB_SE_HIGH;
8636 }
8637 }
8638 memcpy(&p->sc, sc, sizeof(struct seeprom_config));
8639 }
8640
8641 p->discenable = 0;
8642
8643 /*
8644 * Limit to 16 targets just in case. The 2842 for one is known to
8645 * blow the max_targets setting, future cards might also.
8646 */
8647 max_targets = ((p->features & (AHC_TWIN | AHC_WIDE)) ? 16 : 8);
8648
8649 if (have_seeprom)
8650 {
8651 for (i = 0; i < max_targets; i++)
8652 {
8653 if( ((p->features & AHC_ULTRA) &&
8654 !(sc->adapter_control & CFULTRAEN) &&
8655 (sc->device_flags[i] & CFSYNCHISULTRA)) ||
8656 (sc->device_flags[i] & CFNEWULTRAFORMAT) )
8657 {
8658 p->flags |= AHC_NEWEEPROM_FMT;
8659 break;
8660 }
8661 }
8662 }
8663
8664 for (i = 0; i < max_targets; i++)
8665 {
8666 mask = (0x01 << i);
8667 if (!have_seeprom)
8668 {
8669 if (aic_inb(p, SCSISEQ) != 0)
8670 {
8671 /*
8672 * OK...the BIOS set things up and left behind the settings we need.
8673 * Just make our sc->device_flags[i] entry match what the card has
8674 * set for this device.
8675 */
8676 p->discenable =
8677 ~(aic_inb(p, DISC_DSB) | (aic_inb(p, DISC_DSB + 1) << 8) );
8678 p->ultraenb =
8679 (aic_inb(p, ULTRA_ENB) | (aic_inb(p, ULTRA_ENB + 1) << 8) );
8680 sc->device_flags[i] = (p->discenable & mask) ? CFDISC : 0;
8681 if (aic_inb(p, TARG_SCSIRATE + i) & WIDEXFER)
8682 sc->device_flags[i] |= CFWIDEB;
8683 if (p->features & AHC_ULTRA2)
8684 {
8685 if (aic_inb(p, TARG_OFFSET + i))
8686 {
8687 sc->device_flags[i] |= CFSYNCH;
8688 sc->device_flags[i] |= (aic_inb(p, TARG_SCSIRATE + i) & 0x07);
8689 if ( (aic_inb(p, TARG_SCSIRATE + i) & 0x18) == 0x18 )
8690 sc->device_flags[i] |= CFSYNCHISULTRA;
8691 }
8692 }
8693 else
8694 {
8695 if (aic_inb(p, TARG_SCSIRATE + i) & ~WIDEXFER)
8696 {
8697 sc->device_flags[i] |= CFSYNCH;
8698 if (p->features & AHC_ULTRA)
8699 sc->device_flags[i] |= ((p->ultraenb & mask) ?
8700 CFSYNCHISULTRA : 0);
8701 }
8702 }
8703 }
8704 else
8705 {
8706 /*
8707 * Assume the BIOS has NOT been run on this card and nothing between
8708 * the card and the devices is configured yet.
8709 */
8710 sc->device_flags[i] = CFDISC;
8711 if (p->features & AHC_WIDE)
8712 sc->device_flags[i] |= CFWIDEB;
8713 if (p->features & AHC_ULTRA3)
8714 sc->device_flags[i] |= 2;
8715 else if (p->features & AHC_ULTRA2)
8716 sc->device_flags[i] |= 3;
8717 else if (p->features & AHC_ULTRA)
8718 sc->device_flags[i] |= CFSYNCHISULTRA;
8719 sc->device_flags[i] |= CFSYNCH;
8720 aic_outb(p, 0, TARG_SCSIRATE + i);
8721 if (p->features & AHC_ULTRA2)
8722 aic_outb(p, 0, TARG_OFFSET + i);
8723 }
8724 }
8725 if (sc->device_flags[i] & CFDISC)
8726 {
8727 p->discenable |= mask;
8728 }
8729 if (p->flags & AHC_NEWEEPROM_FMT)
8730 {
8731 if ( !(p->features & AHC_ULTRA2) )
8732 {
8733 /*
8734 * I know of two different Ultra BIOSes that do this differently.
8735 * One on the Gigabyte 6BXU mb that wants flags[i] & CFXFER to
8736 * be == to 0x03 and SYNCHISULTRA to be true to mean 40MByte/s
8737 * while on the IBM Netfinity 5000 they want the same thing
8738 * to be something else, while flags[i] & CFXFER == 0x03 and
8739 * SYNCHISULTRA false should be 40MByte/s. So, we set both to
8740 * 40MByte/s and the lower speeds be damned. People will have
8741 * to select around the conversely mapped lower speeds in order
8742 * to select lower speeds on these boards.
8743 */
8744 if ( (sc->device_flags[i] & CFNEWULTRAFORMAT) &&
8745 ((sc->device_flags[i] & CFXFER) == 0x03) )
8746 {
8747 sc->device_flags[i] &= ~CFXFER;
8748 sc->device_flags[i] |= CFSYNCHISULTRA;
8749 }
8750 if (sc->device_flags[i] & CFSYNCHISULTRA)
8751 {
8752 p->ultraenb |= mask;
8753 }
8754 }
8755 else if ( !(sc->device_flags[i] & CFNEWULTRAFORMAT) &&
8756 (p->features & AHC_ULTRA2) &&
8757 (sc->device_flags[i] & CFSYNCHISULTRA) )
8758 {
8759 p->ultraenb |= mask;
8760 }
8761 }
8762 else if (sc->adapter_control & CFULTRAEN)
8763 {
8764 p->ultraenb |= mask;
8765 }
8766 if ( (sc->device_flags[i] & CFSYNCH) == 0)
8767 {
8768 sc->device_flags[i] &= ~CFXFER;
8769 p->ultraenb &= ~mask;
8770 p->user[i].offset = 0;
8771 p->user[i].period = 0;
8772 p->user[i].options = 0;
8773 }
8774 else
8775 {
8776 if (p->features & AHC_ULTRA3)
8777 {
8778 p->user[i].offset = MAX_OFFSET_ULTRA2;
8779 if( (sc->device_flags[i] & CFXFER) < 0x03 )
8780 {
8781 scsirate = (sc->device_flags[i] & CFXFER);
8782 p->user[i].options = MSG_EXT_PPR_OPTION_DT_CRC;
8783 }
8784 else
8785 {
8786 scsirate = (sc->device_flags[i] & CFXFER) |
8787 ((p->ultraenb & mask) ? 0x18 : 0x10);
8788 p->user[i].options = 0;
8789 }
8790 p->user[i].period = aic7xxx_find_period(p, scsirate,
8791 AHC_SYNCRATE_ULTRA3);
8792 }
8793 else if (p->features & AHC_ULTRA2)
8794 {
8795 p->user[i].offset = MAX_OFFSET_ULTRA2;
8796 scsirate = (sc->device_flags[i] & CFXFER) |
8797 ((p->ultraenb & mask) ? 0x18 : 0x10);
8798 p->user[i].options = 0;
8799 p->user[i].period = aic7xxx_find_period(p, scsirate,
8800 AHC_SYNCRATE_ULTRA2);
8801 }
8802 else
8803 {
8804 scsirate = (sc->device_flags[i] & CFXFER) << 4;
8805 p->user[i].options = 0;
8806 p->user[i].offset = MAX_OFFSET_8BIT;
8807 if (p->features & AHC_ULTRA)
8808 {
8809 short ultraenb;
8810 ultraenb = aic_inb(p, ULTRA_ENB) |
8811 (aic_inb(p, ULTRA_ENB + 1) << 8);
8812 p->user[i].period = aic7xxx_find_period(p, scsirate,
8813 (p->ultraenb & mask) ?
8814 AHC_SYNCRATE_ULTRA :
8815 AHC_SYNCRATE_FAST);
8816 }
8817 else
8818 p->user[i].period = aic7xxx_find_period(p, scsirate,
8819 AHC_SYNCRATE_FAST);
8820 }
8821 }
8822 if ( (sc->device_flags[i] & CFWIDEB) && (p->features & AHC_WIDE) )
8823 {
8824 p->user[i].width = MSG_EXT_WDTR_BUS_16_BIT;
8825 }
8826 else
8827 {
8828 p->user[i].width = MSG_EXT_WDTR_BUS_8_BIT;
8829 }
8830 }
8831 aic_outb(p, ~(p->discenable & 0xFF), DISC_DSB);
8832 aic_outb(p, ~((p->discenable >> 8) & 0xFF), DISC_DSB + 1);
8833
8834 /*
8835 * We set the p->ultraenb from the SEEPROM to begin with, but now we make
8836 * it match what is already down in the card. If we are doing a reset
8837 * on the card then this will get put back to a default state anyway.
8838 * This allows us to not have to pre-emptively negotiate when using the
8839 * no_reset option.
8840 */
8841 if (p->features & AHC_ULTRA)
8842 p->ultraenb = aic_inb(p, ULTRA_ENB) | (aic_inb(p, ULTRA_ENB + 1) << 8);
8843
8844
8845 scsi_conf = (p->scsi_id & HSCSIID);
8846
8847 if(have_seeprom)
8848 {
8849 p->adapter_control = sc->adapter_control;
8850 p->bios_control = sc->bios_control;
8851
8852 switch (p->chip & AHC_CHIPID_MASK)
8853 {
8854 case AHC_AIC7895:
8855 case AHC_AIC7896:
8856 case AHC_AIC7899:
8857 if (p->adapter_control & CFBPRIMARY)
8858 p->flags |= AHC_CHANNEL_B_PRIMARY;
8859 default:
8860 break;
8861 }
8862
8863 if (sc->adapter_control & CFSPARITY)
8864 scsi_conf |= ENSPCHK;
8865 }
8866 else
8867 {
8868 scsi_conf |= ENSPCHK | RESET_SCSI;
8869 }
8870
8871 /*
8872 * Only set the SCSICONF and SCSICONF + 1 registers if we are a PCI card.
8873 * The 2842 and 2742 cards already have these registers set and we don't
8874 * want to muck with them since we don't set all the bits they do.
8875 */
8876 if ( (p->chip & ~AHC_CHIPID_MASK) == AHC_PCI )
8877 {
8878 /* Set the host ID */
8879 aic_outb(p, scsi_conf, SCSICONF);
8880 /* In case we are a wide card */
8881 aic_outb(p, p->scsi_id, SCSICONF + 1);
8882 }
8883 }
8884
8885 /*+F*************************************************************************
8886 * Function:
8887 * aic7xxx_configure_bugs
8888 *
8889 * Description:
8890 * Take the card passed in and set the appropriate bug flags based upon
8891 * the card model. Also make any changes needed to device registers or
8892 * PCI registers while we are here.
8893 *-F*************************************************************************/
8894 static void
8895 aic7xxx_configure_bugs(struct aic7xxx_host *p)
8896 {
8897 unsigned short tmp_word;
8898
8899 switch(p->chip & AHC_CHIPID_MASK)
8900 {
8901 case AHC_AIC7860:
8902 p->bugs |= AHC_BUG_PCI_2_1_RETRY;
8903 /* fall through */
8904 case AHC_AIC7850:
8905 case AHC_AIC7870:
8906 p->bugs |= AHC_BUG_TMODE_WIDEODD | AHC_BUG_CACHETHEN | AHC_BUG_PCI_MWI;
8907 break;
8908 case AHC_AIC7880:
8909 p->bugs |= AHC_BUG_TMODE_WIDEODD | AHC_BUG_PCI_2_1_RETRY |
8910 AHC_BUG_CACHETHEN | AHC_BUG_PCI_MWI;
8911 break;
8912 case AHC_AIC7890:
8913 p->bugs |= AHC_BUG_AUTOFLUSH | AHC_BUG_CACHETHEN;
8914 break;
8915 case AHC_AIC7892:
8916 p->bugs |= AHC_BUG_SCBCHAN_UPLOAD;
8917 break;
8918 case AHC_AIC7895:
8919 p->bugs |= AHC_BUG_TMODE_WIDEODD | AHC_BUG_PCI_2_1_RETRY |
8920 AHC_BUG_CACHETHEN | AHC_BUG_PCI_MWI;
8921 break;
8922 case AHC_AIC7896:
8923 p->bugs |= AHC_BUG_CACHETHEN_DIS;
8924 break;
8925 case AHC_AIC7899:
8926 p->bugs |= AHC_BUG_SCBCHAN_UPLOAD;
8927 break;
8928 default:
8929 /* Nothing to do */
8930 break;
8931 }
8932
8933 /*
8934 * Now handle the bugs that require PCI register or card register tweaks
8935 */
8936 pci_read_config_word(p->pdev, PCI_COMMAND, &tmp_word);
8937 if(p->bugs & AHC_BUG_PCI_MWI)
8938 {
8939 tmp_word &= ~PCI_COMMAND_INVALIDATE;
8940 }
8941 else
8942 {
8943 tmp_word |= PCI_COMMAND_INVALIDATE;
8944 }
8945 pci_write_config_word(p->pdev, PCI_COMMAND, tmp_word);
8946
8947 if(p->bugs & AHC_BUG_CACHETHEN)
8948 {
8949 aic_outb(p, aic_inb(p, DSCOMMAND0) & ~CACHETHEN, DSCOMMAND0);
8950 }
8951 else if (p->bugs & AHC_BUG_CACHETHEN_DIS)
8952 {
8953 aic_outb(p, aic_inb(p, DSCOMMAND0) | CACHETHEN, DSCOMMAND0);
8954 }
8955
8956 return;
8957 }
8958
8959
8960 /*+F*************************************************************************
8961 * Function:
8962 * aic7xxx_detect
8963 *
8964 * Description:
8965 * Try to detect and register an Adaptec 7770 or 7870 SCSI controller.
8966 *
8967 * XXX - This should really be called aic7xxx_probe(). A sequence of
8968 * probe(), attach()/detach(), and init() makes more sense than
8969 * one do-it-all function. This may be useful when (and if) the
8970 * mid-level SCSI code is overhauled.
8971 *-F*************************************************************************/
8972 static int
8973 aic7xxx_detect(struct scsi_host_template *template)
8974 {
8975 struct aic7xxx_host *temp_p = NULL;
8976 struct aic7xxx_host *current_p = NULL;
8977 struct aic7xxx_host *list_p = NULL;
8978 int found = 0;
8979 #if defined(__i386__) || defined(__alpha__)
8980 ahc_flag_type flags = 0;
8981 int type;
8982 #endif
8983 unsigned char sxfrctl1;
8984 #if defined(__i386__) || defined(__alpha__)
8985 unsigned char hcntrl, hostconf;
8986 unsigned int slot, base;
8987 #endif
8988
8989 #ifdef MODULE
8990 /*
8991 * If we are called as a module, the aic7xxx pointer may not be null
8992 * and it would point to our bootup string, just like on the lilo
8993 * command line. IF not NULL, then process this config string with
8994 * aic7xxx_setup
8995 */
8996 if(aic7xxx)
8997 aic7xxx_setup(aic7xxx);
8998 #endif
8999
9000 template->proc_name = "aic7xxx";
9001 template->sg_tablesize = AIC7XXX_MAX_SG;
9002
9003
9004 #ifdef CONFIG_PCI
9005 /*
9006 * PCI-bus probe.
9007 */
9008 {
9009 static struct
9010 {
9011 unsigned short vendor_id;
9012 unsigned short device_id;
9013 ahc_chip chip;
9014 ahc_flag_type flags;
9015 ahc_feature features;
9016 int board_name_index;
9017 unsigned short seeprom_size;
9018 unsigned short seeprom_type;
9019 } const aic_pdevs[] = {
9020 {PCI_VENDOR_ID_ADAPTEC, PCI_DEVICE_ID_ADAPTEC_7810, AHC_NONE,
9021 AHC_FNONE, AHC_FENONE, 1,
9022 32, C46 },
9023 {PCI_VENDOR_ID_ADAPTEC, PCI_DEVICE_ID_ADAPTEC_7850, AHC_AIC7850,
9024 AHC_PAGESCBS, AHC_AIC7850_FE, 5,
9025 32, C46 },
9026 {PCI_VENDOR_ID_ADAPTEC, PCI_DEVICE_ID_ADAPTEC_7855, AHC_AIC7850,
9027 AHC_PAGESCBS, AHC_AIC7850_FE, 6,
9028 32, C46 },
9029 {PCI_VENDOR_ID_ADAPTEC, PCI_DEVICE_ID_ADAPTEC_7821, AHC_AIC7860,
9030 AHC_PAGESCBS | AHC_NEWEEPROM_FMT | AHC_BIOS_ENABLED,
9031 AHC_AIC7860_FE, 7,
9032 32, C46 },
9033 {PCI_VENDOR_ID_ADAPTEC, PCI_DEVICE_ID_ADAPTEC_3860, AHC_AIC7860,
9034 AHC_PAGESCBS | AHC_NEWEEPROM_FMT | AHC_BIOS_ENABLED,
9035 AHC_AIC7860_FE, 7,
9036 32, C46 },
9037 {PCI_VENDOR_ID_ADAPTEC, PCI_DEVICE_ID_ADAPTEC_38602, AHC_AIC7860,
9038 AHC_PAGESCBS | AHC_NEWEEPROM_FMT | AHC_BIOS_ENABLED,
9039 AHC_AIC7860_FE, 7,
9040 32, C46 },
9041 {PCI_VENDOR_ID_ADAPTEC, PCI_DEVICE_ID_ADAPTEC_38602, AHC_AIC7860,
9042 AHC_PAGESCBS | AHC_NEWEEPROM_FMT | AHC_BIOS_ENABLED,
9043 AHC_AIC7860_FE, 7,
9044 32, C46 },
9045 {PCI_VENDOR_ID_ADAPTEC, PCI_DEVICE_ID_ADAPTEC_7860, AHC_AIC7860,
9046 AHC_PAGESCBS | AHC_NEWEEPROM_FMT | AHC_BIOS_ENABLED | AHC_MOTHERBOARD,
9047 AHC_AIC7860_FE, 7,
9048 32, C46 },
9049 {PCI_VENDOR_ID_ADAPTEC, PCI_DEVICE_ID_ADAPTEC_7861, AHC_AIC7860,
9050 AHC_PAGESCBS | AHC_NEWEEPROM_FMT | AHC_BIOS_ENABLED,
9051 AHC_AIC7860_FE, 8,
9052 32, C46 },
9053 {PCI_VENDOR_ID_ADAPTEC, PCI_DEVICE_ID_ADAPTEC_7870, AHC_AIC7870,
9054 AHC_PAGESCBS | AHC_BIOS_ENABLED | AHC_MOTHERBOARD,
9055 AHC_AIC7870_FE, 9,
9056 32, C46 },
9057 {PCI_VENDOR_ID_ADAPTEC, PCI_DEVICE_ID_ADAPTEC_7871, AHC_AIC7870,
9058 AHC_PAGESCBS | AHC_BIOS_ENABLED, AHC_AIC7870_FE, 10,
9059 32, C46 },
9060 {PCI_VENDOR_ID_ADAPTEC, PCI_DEVICE_ID_ADAPTEC_7872, AHC_AIC7870,
9061 AHC_PAGESCBS | AHC_BIOS_ENABLED | AHC_MULTI_CHANNEL,
9062 AHC_AIC7870_FE, 11,
9063 32, C56_66 },
9064 {PCI_VENDOR_ID_ADAPTEC, PCI_DEVICE_ID_ADAPTEC_7873, AHC_AIC7870,
9065 AHC_PAGESCBS | AHC_BIOS_ENABLED | AHC_MULTI_CHANNEL,
9066 AHC_AIC7870_FE, 12,
9067 32, C56_66 },
9068 {PCI_VENDOR_ID_ADAPTEC, PCI_DEVICE_ID_ADAPTEC_7874, AHC_AIC7870,
9069 AHC_PAGESCBS | AHC_BIOS_ENABLED, AHC_AIC7870_FE, 13,
9070 32, C46 },
9071 {PCI_VENDOR_ID_ADAPTEC, PCI_DEVICE_ID_ADAPTEC_7880, AHC_AIC7880,
9072 AHC_PAGESCBS | AHC_BIOS_ENABLED | AHC_MOTHERBOARD,
9073 AHC_AIC7880_FE, 14,
9074 32, C46 },
9075 {PCI_VENDOR_ID_ADAPTEC, PCI_DEVICE_ID_ADAPTEC_7881, AHC_AIC7880,
9076 AHC_PAGESCBS | AHC_BIOS_ENABLED, AHC_AIC7880_FE, 15,
9077 32, C46 },
9078 {PCI_VENDOR_ID_ADAPTEC, PCI_DEVICE_ID_ADAPTEC_7882, AHC_AIC7880,
9079 AHC_PAGESCBS | AHC_BIOS_ENABLED | AHC_MULTI_CHANNEL,
9080 AHC_AIC7880_FE, 16,
9081 32, C56_66 },
9082 {PCI_VENDOR_ID_ADAPTEC, PCI_DEVICE_ID_ADAPTEC_7883, AHC_AIC7880,
9083 AHC_PAGESCBS | AHC_BIOS_ENABLED | AHC_MULTI_CHANNEL,
9084 AHC_AIC7880_FE, 17,
9085 32, C56_66 },
9086 {PCI_VENDOR_ID_ADAPTEC, PCI_DEVICE_ID_ADAPTEC_7884, AHC_AIC7880,
9087 AHC_PAGESCBS | AHC_BIOS_ENABLED, AHC_AIC7880_FE, 18,
9088 32, C46 },
9089 {PCI_VENDOR_ID_ADAPTEC, PCI_DEVICE_ID_ADAPTEC_7885, AHC_AIC7880,
9090 AHC_PAGESCBS | AHC_BIOS_ENABLED, AHC_AIC7880_FE, 18,
9091 32, C46 },
9092 {PCI_VENDOR_ID_ADAPTEC, PCI_DEVICE_ID_ADAPTEC_7886, AHC_AIC7880,
9093 AHC_PAGESCBS | AHC_BIOS_ENABLED, AHC_AIC7880_FE, 18,
9094 32, C46 },
9095 {PCI_VENDOR_ID_ADAPTEC, PCI_DEVICE_ID_ADAPTEC_7887, AHC_AIC7880,
9096 AHC_PAGESCBS | AHC_BIOS_ENABLED, AHC_AIC7880_FE | AHC_NEW_AUTOTERM, 19,
9097 32, C46 },
9098 {PCI_VENDOR_ID_ADAPTEC, PCI_DEVICE_ID_ADAPTEC_7888, AHC_AIC7880,
9099 AHC_PAGESCBS | AHC_BIOS_ENABLED, AHC_AIC7880_FE, 18,
9100 32, C46 },
9101 {PCI_VENDOR_ID_ADAPTEC, PCI_DEVICE_ID_ADAPTEC_7895, AHC_AIC7895,
9102 AHC_PAGESCBS | AHC_NEWEEPROM_FMT | AHC_BIOS_ENABLED | AHC_MULTI_CHANNEL,
9103 AHC_AIC7895_FE, 20,
9104 32, C56_66 },
9105 {PCI_VENDOR_ID_ADAPTEC2, PCI_DEVICE_ID_ADAPTEC2_7890, AHC_AIC7890,
9106 AHC_PAGESCBS | AHC_NEWEEPROM_FMT | AHC_BIOS_ENABLED,
9107 AHC_AIC7890_FE, 21,
9108 32, C46 },
9109 {PCI_VENDOR_ID_ADAPTEC2, PCI_DEVICE_ID_ADAPTEC2_7890B, AHC_AIC7890,
9110 AHC_PAGESCBS | AHC_NEWEEPROM_FMT | AHC_BIOS_ENABLED,
9111 AHC_AIC7890_FE, 21,
9112 32, C46 },
9113 {PCI_VENDOR_ID_ADAPTEC2, PCI_DEVICE_ID_ADAPTEC2_2930U2, AHC_AIC7890,
9114 AHC_PAGESCBS | AHC_NEWEEPROM_FMT | AHC_BIOS_ENABLED,
9115 AHC_AIC7890_FE, 22,
9116 32, C46 },
9117 {PCI_VENDOR_ID_ADAPTEC2, PCI_DEVICE_ID_ADAPTEC2_2940U2, AHC_AIC7890,
9118 AHC_PAGESCBS | AHC_NEWEEPROM_FMT | AHC_BIOS_ENABLED,
9119 AHC_AIC7890_FE, 23,
9120 32, C46 },
9121 {PCI_VENDOR_ID_ADAPTEC2, PCI_DEVICE_ID_ADAPTEC2_7896, AHC_AIC7896,
9122 AHC_PAGESCBS | AHC_NEWEEPROM_FMT | AHC_BIOS_ENABLED | AHC_MULTI_CHANNEL,
9123 AHC_AIC7896_FE, 24,
9124 32, C56_66 },
9125 {PCI_VENDOR_ID_ADAPTEC2, PCI_DEVICE_ID_ADAPTEC2_3940U2, AHC_AIC7896,
9126 AHC_PAGESCBS | AHC_NEWEEPROM_FMT | AHC_BIOS_ENABLED | AHC_MULTI_CHANNEL,
9127 AHC_AIC7896_FE, 25,
9128 32, C56_66 },
9129 {PCI_VENDOR_ID_ADAPTEC2, PCI_DEVICE_ID_ADAPTEC2_3950U2D, AHC_AIC7896,
9130 AHC_PAGESCBS | AHC_NEWEEPROM_FMT | AHC_BIOS_ENABLED | AHC_MULTI_CHANNEL,
9131 AHC_AIC7896_FE, 26,
9132 32, C56_66 },
9133 {PCI_VENDOR_ID_ADAPTEC, PCI_DEVICE_ID_ADAPTEC_1480A, AHC_AIC7860,
9134 AHC_PAGESCBS | AHC_NEWEEPROM_FMT | AHC_BIOS_ENABLED | AHC_NO_STPWEN,
9135 AHC_AIC7860_FE, 27,
9136 32, C46 },
9137 {PCI_VENDOR_ID_ADAPTEC2, PCI_DEVICE_ID_ADAPTEC2_7892A, AHC_AIC7892,
9138 AHC_PAGESCBS | AHC_NEWEEPROM_FMT | AHC_BIOS_ENABLED,
9139 AHC_AIC7892_FE, 28,
9140 32, C46 },
9141 {PCI_VENDOR_ID_ADAPTEC2, PCI_DEVICE_ID_ADAPTEC2_7892B, AHC_AIC7892,
9142 AHC_PAGESCBS | AHC_NEWEEPROM_FMT | AHC_BIOS_ENABLED,
9143 AHC_AIC7892_FE, 28,
9144 32, C46 },
9145 {PCI_VENDOR_ID_ADAPTEC2, PCI_DEVICE_ID_ADAPTEC2_7892D, AHC_AIC7892,
9146 AHC_PAGESCBS | AHC_NEWEEPROM_FMT | AHC_BIOS_ENABLED,
9147 AHC_AIC7892_FE, 28,
9148 32, C46 },
9149 {PCI_VENDOR_ID_ADAPTEC2, PCI_DEVICE_ID_ADAPTEC2_7892P, AHC_AIC7892,
9150 AHC_PAGESCBS | AHC_NEWEEPROM_FMT | AHC_BIOS_ENABLED,
9151 AHC_AIC7892_FE, 28,
9152 32, C46 },
9153 {PCI_VENDOR_ID_ADAPTEC2, PCI_DEVICE_ID_ADAPTEC2_7899A, AHC_AIC7899,
9154 AHC_PAGESCBS | AHC_NEWEEPROM_FMT | AHC_BIOS_ENABLED | AHC_MULTI_CHANNEL,
9155 AHC_AIC7899_FE, 29,
9156 32, C56_66 },
9157 {PCI_VENDOR_ID_ADAPTEC2, PCI_DEVICE_ID_ADAPTEC2_7899B, AHC_AIC7899,
9158 AHC_PAGESCBS | AHC_NEWEEPROM_FMT | AHC_BIOS_ENABLED | AHC_MULTI_CHANNEL,
9159 AHC_AIC7899_FE, 29,
9160 32, C56_66 },
9161 {PCI_VENDOR_ID_ADAPTEC2, PCI_DEVICE_ID_ADAPTEC2_7899D, AHC_AIC7899,
9162 AHC_PAGESCBS | AHC_NEWEEPROM_FMT | AHC_BIOS_ENABLED | AHC_MULTI_CHANNEL,
9163 AHC_AIC7899_FE, 29,
9164 32, C56_66 },
9165 {PCI_VENDOR_ID_ADAPTEC2, PCI_DEVICE_ID_ADAPTEC2_7899P, AHC_AIC7899,
9166 AHC_PAGESCBS | AHC_NEWEEPROM_FMT | AHC_BIOS_ENABLED | AHC_MULTI_CHANNEL,
9167 AHC_AIC7899_FE, 29,
9168 32, C56_66 },
9169 };
9170
9171 unsigned short command;
9172 unsigned int devconfig, i, oldverbose;
9173 struct pci_dev *pdev = NULL;
9174
9175 for (i = 0; i < ARRAY_SIZE(aic_pdevs); i++)
9176 {
9177 pdev = NULL;
9178 while ((pdev = pci_get_device(aic_pdevs[i].vendor_id,
9179 aic_pdevs[i].device_id,
9180 pdev))) {
9181 if (pci_enable_device(pdev))
9182 continue;
9183 if ( i == 0 ) /* We found one, but it's the 7810 RAID cont. */
9184 {
9185 if (aic7xxx_verbose & (VERBOSE_PROBE|VERBOSE_PROBE2))
9186 {
9187 printk(KERN_INFO "aic7xxx: The 7810 RAID controller is not "
9188 "supported by\n");
9189 printk(KERN_INFO " this driver, we are ignoring it.\n");
9190 }
9191 }
9192 else if ( (temp_p = kzalloc(sizeof(struct aic7xxx_host),
9193 GFP_ATOMIC)) != NULL )
9194 {
9195 temp_p->chip = aic_pdevs[i].chip | AHC_PCI;
9196 temp_p->flags = aic_pdevs[i].flags;
9197 temp_p->features = aic_pdevs[i].features;
9198 temp_p->board_name_index = aic_pdevs[i].board_name_index;
9199 temp_p->sc_size = aic_pdevs[i].seeprom_size;
9200 temp_p->sc_type = aic_pdevs[i].seeprom_type;
9201
9202 /*
9203 * Read sundry information from PCI BIOS.
9204 */
9205 temp_p->irq = pdev->irq;
9206 temp_p->pdev = pdev;
9207 temp_p->pci_bus = pdev->bus->number;
9208 temp_p->pci_device_fn = pdev->devfn;
9209 temp_p->base = pci_resource_start(pdev, 0);
9210 temp_p->mbase = pci_resource_start(pdev, 1);
9211 current_p = list_p;
9212 while(current_p && temp_p)
9213 {
9214 if ( ((current_p->pci_bus == temp_p->pci_bus) &&
9215 (current_p->pci_device_fn == temp_p->pci_device_fn)) ||
9216 (temp_p->base && (current_p->base == temp_p->base)) ||
9217 (temp_p->mbase && (current_p->mbase == temp_p->mbase)) )
9218 {
9219 /* duplicate PCI entry, skip it */
9220 kfree(temp_p);
9221 temp_p = NULL;
9222 continue;
9223 }
9224 current_p = current_p->next;
9225 }
9226 if(pci_request_regions(temp_p->pdev, "aic7xxx"))
9227 {
9228 printk("aic7xxx: <%s> at PCI %d/%d/%d\n",
9229 board_names[aic_pdevs[i].board_name_index],
9230 temp_p->pci_bus,
9231 PCI_SLOT(temp_p->pci_device_fn),
9232 PCI_FUNC(temp_p->pci_device_fn));
9233 printk("aic7xxx: I/O ports already in use, ignoring.\n");
9234 kfree(temp_p);
9235 continue;
9236 }
9237
9238 if (aic7xxx_verbose & VERBOSE_PROBE2)
9239 printk("aic7xxx: <%s> at PCI %d/%d\n",
9240 board_names[aic_pdevs[i].board_name_index],
9241 PCI_SLOT(pdev->devfn),
9242 PCI_FUNC(pdev->devfn));
9243 pci_read_config_word(pdev, PCI_COMMAND, &command);
9244 if (aic7xxx_verbose & VERBOSE_PROBE2)
9245 {
9246 printk("aic7xxx: Initial PCI_COMMAND value was 0x%x\n",
9247 (int)command);
9248 }
9249 #ifdef AIC7XXX_STRICT_PCI_SETUP
9250 command |= PCI_COMMAND_SERR | PCI_COMMAND_PARITY |
9251 PCI_COMMAND_MASTER | PCI_COMMAND_MEMORY | PCI_COMMAND_IO;
9252 #else
9253 command |= PCI_COMMAND_MASTER | PCI_COMMAND_MEMORY | PCI_COMMAND_IO;
9254 #endif
9255 command &= ~PCI_COMMAND_INVALIDATE;
9256 if (aic7xxx_pci_parity == 0)
9257 command &= ~(PCI_COMMAND_SERR | PCI_COMMAND_PARITY);
9258 pci_write_config_word(pdev, PCI_COMMAND, command);
9259 #ifdef AIC7XXX_STRICT_PCI_SETUP
9260 pci_read_config_dword(pdev, DEVCONFIG, &devconfig);
9261 if (aic7xxx_verbose & VERBOSE_PROBE2)
9262 {
9263 printk("aic7xxx: Initial DEVCONFIG value was 0x%x\n", devconfig);
9264 }
9265 devconfig |= 0x80000040;
9266 pci_write_config_dword(pdev, DEVCONFIG, devconfig);
9267 #endif /* AIC7XXX_STRICT_PCI_SETUP */
9268
9269 temp_p->unpause = INTEN;
9270 temp_p->pause = temp_p->unpause | PAUSE;
9271 if ( ((temp_p->base == 0) &&
9272 (temp_p->mbase == 0)) ||
9273 (temp_p->irq == 0) )
9274 {
9275 printk("aic7xxx: <%s> at PCI %d/%d/%d\n",
9276 board_names[aic_pdevs[i].board_name_index],
9277 temp_p->pci_bus,
9278 PCI_SLOT(temp_p->pci_device_fn),
9279 PCI_FUNC(temp_p->pci_device_fn));
9280 printk("aic7xxx: Controller disabled by BIOS, ignoring.\n");
9281 goto skip_pci_controller;
9282 }
9283
9284 #ifdef MMAPIO
9285 if ( !(temp_p->base) || !(temp_p->flags & AHC_MULTI_CHANNEL) ||
9286 ((temp_p->chip != (AHC_AIC7870 | AHC_PCI)) &&
9287 (temp_p->chip != (AHC_AIC7880 | AHC_PCI))) )
9288 {
9289 temp_p->maddr = ioremap_nocache(temp_p->mbase, 256);
9290 if(temp_p->maddr)
9291 {
9292 /*
9293 * We need to check the I/O with the MMAPed address. Some machines
9294 * simply fail to work with MMAPed I/O and certain controllers.
9295 */
9296 if(aic_inb(temp_p, HCNTRL) == 0xff)
9297 {
9298 /*
9299 * OK.....we failed our test....go back to programmed I/O
9300 */
9301 printk(KERN_INFO "aic7xxx: <%s> at PCI %d/%d/%d\n",
9302 board_names[aic_pdevs[i].board_name_index],
9303 temp_p->pci_bus,
9304 PCI_SLOT(temp_p->pci_device_fn),
9305 PCI_FUNC(temp_p->pci_device_fn));
9306 printk(KERN_INFO "aic7xxx: MMAPed I/O failed, reverting to "
9307 "Programmed I/O.\n");
9308 iounmap(temp_p->maddr);
9309 temp_p->maddr = NULL;
9310 if(temp_p->base == 0)
9311 {
9312 printk("aic7xxx: <%s> at PCI %d/%d/%d\n",
9313 board_names[aic_pdevs[i].board_name_index],
9314 temp_p->pci_bus,
9315 PCI_SLOT(temp_p->pci_device_fn),
9316 PCI_FUNC(temp_p->pci_device_fn));
9317 printk("aic7xxx: Controller disabled by BIOS, ignoring.\n");
9318 goto skip_pci_controller;
9319 }
9320 }
9321 }
9322 }
9323 #endif
9324
9325 /*
9326 * We HAVE to make sure the first pause_sequencer() and all other
9327 * subsequent I/O that isn't PCI config space I/O takes place
9328 * after the MMAPed I/O region is configured and tested. The
9329 * problem is the PowerPC architecture that doesn't support
9330 * programmed I/O at all, so we have to have the MMAP I/O set up
9331 * for this pause to even work on those machines.
9332 */
9333 pause_sequencer(temp_p);
9334
9335 /*
9336 * Clear out any pending PCI error status messages. Also set
9337 * verbose to 0 so that we don't emit strange PCI error messages
9338 * while cleaning out the current status bits.
9339 */
9340 oldverbose = aic7xxx_verbose;
9341 aic7xxx_verbose = 0;
9342 aic7xxx_pci_intr(temp_p);
9343 aic7xxx_verbose = oldverbose;
9344
9345 temp_p->bios_address = 0;
9346
9347 /*
9348 * Remember how the card was setup in case there is no seeprom.
9349 */
9350 if (temp_p->features & AHC_ULTRA2)
9351 temp_p->scsi_id = aic_inb(temp_p, SCSIID_ULTRA2) & OID;
9352 else
9353 temp_p->scsi_id = aic_inb(temp_p, SCSIID) & OID;
9354 /*
9355 * Get current termination setting
9356 */
9357 sxfrctl1 = aic_inb(temp_p, SXFRCTL1);
9358
9359 if (aic7xxx_chip_reset(temp_p) == -1)
9360 {
9361 goto skip_pci_controller;
9362 }
9363 /*
9364 * Very quickly put the term setting back into the register since
9365 * the chip reset may cause odd things to happen. This is to keep
9366 * LVD busses with lots of drives from draining the power out of
9367 * the diffsense line before we get around to running the
9368 * configure_termination() function. Also restore the STPWLEVEL
9369 * bit of DEVCONFIG
9370 */
9371 aic_outb(temp_p, sxfrctl1, SXFRCTL1);
9372 pci_write_config_dword(temp_p->pdev, DEVCONFIG, devconfig);
9373 sxfrctl1 &= STPWEN;
9374
9375 /*
9376 * We need to set the CHNL? assignments before loading the SEEPROM
9377 * The 3940 and 3985 cards (original stuff, not any of the later
9378 * stuff) are 7870 and 7880 class chips. The Ultra2 stuff falls
9379 * under 7896 and 7897. The 7895 is in a class by itself :)
9380 */
9381 switch (temp_p->chip & AHC_CHIPID_MASK)
9382 {
9383 case AHC_AIC7870: /* 3840 / 3985 */
9384 case AHC_AIC7880: /* 3840 UW / 3985 UW */
9385 if(temp_p->flags & AHC_MULTI_CHANNEL)
9386 {
9387 switch(PCI_SLOT(temp_p->pci_device_fn))
9388 {
9389 case 5:
9390 temp_p->flags |= AHC_CHNLB;
9391 break;
9392 case 8:
9393 temp_p->flags |= AHC_CHNLB;
9394 break;
9395 case 12:
9396 temp_p->flags |= AHC_CHNLC;
9397 break;
9398 default:
9399 break;
9400 }
9401 }
9402 break;
9403
9404 case AHC_AIC7895: /* 7895 */
9405 case AHC_AIC7896: /* 7896/7 */
9406 case AHC_AIC7899: /* 7899 */
9407 if (PCI_FUNC(pdev->devfn) != 0)
9408 {
9409 temp_p->flags |= AHC_CHNLB;
9410 }
9411 /*
9412 * The 7895 is the only chipset that sets the SCBSIZE32 param
9413 * in the DEVCONFIG register. The Ultra2 chipsets use
9414 * the DSCOMMAND0 register instead.
9415 */
9416 if ((temp_p->chip & AHC_CHIPID_MASK) == AHC_AIC7895)
9417 {
9418 pci_read_config_dword(pdev, DEVCONFIG, &devconfig);
9419 devconfig |= SCBSIZE32;
9420 pci_write_config_dword(pdev, DEVCONFIG, devconfig);
9421 }
9422 break;
9423 default:
9424 break;
9425 }
9426
9427 /*
9428 * Loading of the SEEPROM needs to come after we've set the flags
9429 * to indicate possible CHNLB and CHNLC assigments. Otherwise,
9430 * on 394x and 398x cards we'll end up reading the wrong settings
9431 * for channels B and C
9432 */
9433 switch (temp_p->chip & AHC_CHIPID_MASK)
9434 {
9435 case AHC_AIC7892:
9436 case AHC_AIC7899:
9437 aic_outb(temp_p, 0, SCAMCTL);
9438 /*
9439 * Switch to the alt mode of the chip...
9440 */
9441 aic_outb(temp_p, aic_inb(temp_p, SFUNCT) | ALT_MODE, SFUNCT);
9442 /*
9443 * Set our options...the last two items set our CRC after x byte
9444 * count in target mode...
9445 */
9446 aic_outb(temp_p, AUTO_MSGOUT_DE | DIS_MSGIN_DUALEDGE, OPTIONMODE);
9447 aic_outb(temp_p, 0x00, 0x0b);
9448 aic_outb(temp_p, 0x10, 0x0a);
9449 /*
9450 * switch back to normal mode...
9451 */
9452 aic_outb(temp_p, aic_inb(temp_p, SFUNCT) & ~ALT_MODE, SFUNCT);
9453 aic_outb(temp_p, CRCVALCHKEN | CRCENDCHKEN | CRCREQCHKEN |
9454 TARGCRCENDEN | TARGCRCCNTEN,
9455 CRCCONTROL1);
9456 aic_outb(temp_p, ((aic_inb(temp_p, DSCOMMAND0) | USCBSIZE32 |
9457 MPARCKEN | CIOPARCKEN | CACHETHEN) &
9458 ~DPARCKEN), DSCOMMAND0);
9459 aic7xxx_load_seeprom(temp_p, &sxfrctl1);
9460 break;
9461 case AHC_AIC7890:
9462 case AHC_AIC7896:
9463 aic_outb(temp_p, 0, SCAMCTL);
9464 aic_outb(temp_p, (aic_inb(temp_p, DSCOMMAND0) |
9465 CACHETHEN | MPARCKEN | USCBSIZE32 |
9466 CIOPARCKEN) & ~DPARCKEN, DSCOMMAND0);
9467 aic7xxx_load_seeprom(temp_p, &sxfrctl1);
9468 break;
9469 case AHC_AIC7850:
9470 case AHC_AIC7860:
9471 /*
9472 * Set the DSCOMMAND0 register on these cards different from
9473 * on the 789x cards. Also, read the SEEPROM as well.
9474 */
9475 aic_outb(temp_p, (aic_inb(temp_p, DSCOMMAND0) |
9476 CACHETHEN | MPARCKEN) & ~DPARCKEN,
9477 DSCOMMAND0);
9478 /* FALLTHROUGH */
9479 default:
9480 aic7xxx_load_seeprom(temp_p, &sxfrctl1);
9481 break;
9482 case AHC_AIC7880:
9483 /*
9484 * Check the rev of the chipset before we change DSCOMMAND0
9485 */
9486 pci_read_config_dword(pdev, DEVCONFIG, &devconfig);
9487 if ((devconfig & 0xff) >= 1)
9488 {
9489 aic_outb(temp_p, (aic_inb(temp_p, DSCOMMAND0) |
9490 CACHETHEN | MPARCKEN) & ~DPARCKEN,
9491 DSCOMMAND0);
9492 }
9493 aic7xxx_load_seeprom(temp_p, &sxfrctl1);
9494 break;
9495 }
9496
9497
9498 /*
9499 * and then we need another switch based on the type in order to
9500 * make sure the channel B primary flag is set properly on 7895
9501 * controllers....Arrrgggghhh!!! We also have to catch the fact
9502 * that when you disable the BIOS on the 7895 on the Intel DK440LX
9503 * motherboard, and possibly others, it only sets the BIOS disabled
9504 * bit on the A channel...I think I'm starting to lean towards
9505 * going postal....
9506 */
9507 switch(temp_p->chip & AHC_CHIPID_MASK)
9508 {
9509 case AHC_AIC7895:
9510 case AHC_AIC7896:
9511 case AHC_AIC7899:
9512 current_p = list_p;
9513 while(current_p != NULL)
9514 {
9515 if ( (current_p->pci_bus == temp_p->pci_bus) &&
9516 (PCI_SLOT(current_p->pci_device_fn) ==
9517 PCI_SLOT(temp_p->pci_device_fn)) )
9518 {
9519 if ( PCI_FUNC(current_p->pci_device_fn) == 0 )
9520 {
9521 temp_p->flags |=
9522 (current_p->flags & AHC_CHANNEL_B_PRIMARY);
9523 temp_p->flags &= ~(AHC_BIOS_ENABLED|AHC_USEDEFAULTS);
9524 temp_p->flags |=
9525 (current_p->flags & (AHC_BIOS_ENABLED|AHC_USEDEFAULTS));
9526 }
9527 else
9528 {
9529 current_p->flags |=
9530 (temp_p->flags & AHC_CHANNEL_B_PRIMARY);
9531 current_p->flags &= ~(AHC_BIOS_ENABLED|AHC_USEDEFAULTS);
9532 current_p->flags |=
9533 (temp_p->flags & (AHC_BIOS_ENABLED|AHC_USEDEFAULTS));
9534 }
9535 }
9536 current_p = current_p->next;
9537 }
9538 break;
9539 default:
9540 break;
9541 }
9542
9543 /*
9544 * We only support external SCB RAM on the 7895/6/7 chipsets.
9545 * We could support it on the 7890/1 easy enough, but I don't
9546 * know of any 7890/1 based cards that have it. I do know
9547 * of 7895/6/7 cards that have it and they work properly.
9548 */
9549 switch(temp_p->chip & AHC_CHIPID_MASK)
9550 {
9551 default:
9552 break;
9553 case AHC_AIC7895:
9554 case AHC_AIC7896:
9555 case AHC_AIC7899:
9556 pci_read_config_dword(pdev, DEVCONFIG, &devconfig);
9557 if (temp_p->features & AHC_ULTRA2)
9558 {
9559 if ( (aic_inb(temp_p, DSCOMMAND0) & RAMPSM_ULTRA2) &&
9560 (aic7xxx_scbram) )
9561 {
9562 aic_outb(temp_p,
9563 aic_inb(temp_p, DSCOMMAND0) & ~SCBRAMSEL_ULTRA2,
9564 DSCOMMAND0);
9565 temp_p->flags |= AHC_EXTERNAL_SRAM;
9566 devconfig |= EXTSCBPEN;
9567 }
9568 else if (aic_inb(temp_p, DSCOMMAND0) & RAMPSM_ULTRA2)
9569 {
9570 printk(KERN_INFO "aic7xxx: <%s> at PCI %d/%d/%d\n",
9571 board_names[aic_pdevs[i].board_name_index],
9572 temp_p->pci_bus,
9573 PCI_SLOT(temp_p->pci_device_fn),
9574 PCI_FUNC(temp_p->pci_device_fn));
9575 printk("aic7xxx: external SCB RAM detected, "
9576 "but not enabled\n");
9577 }
9578 }
9579 else
9580 {
9581 if ((devconfig & RAMPSM) && (aic7xxx_scbram))
9582 {
9583 devconfig &= ~SCBRAMSEL;
9584 devconfig |= EXTSCBPEN;
9585 temp_p->flags |= AHC_EXTERNAL_SRAM;
9586 }
9587 else if (devconfig & RAMPSM)
9588 {
9589 printk(KERN_INFO "aic7xxx: <%s> at PCI %d/%d/%d\n",
9590 board_names[aic_pdevs[i].board_name_index],
9591 temp_p->pci_bus,
9592 PCI_SLOT(temp_p->pci_device_fn),
9593 PCI_FUNC(temp_p->pci_device_fn));
9594 printk("aic7xxx: external SCB RAM detected, "
9595 "but not enabled\n");
9596 }
9597 }
9598 pci_write_config_dword(pdev, DEVCONFIG, devconfig);
9599 if ( (temp_p->flags & AHC_EXTERNAL_SRAM) &&
9600 (temp_p->flags & AHC_CHNLB) )
9601 aic_outb(temp_p, 1, CCSCBBADDR);
9602 break;
9603 }
9604
9605 /*
9606 * Take the LED out of diagnostic mode
9607 */
9608 aic_outb(temp_p,
9609 (aic_inb(temp_p, SBLKCTL) & ~(DIAGLEDEN | DIAGLEDON)),
9610 SBLKCTL);
9611
9612 /*
9613 * We don't know where this is set in the SEEPROM or by the
9614 * BIOS, so we default to 100%. On Ultra2 controllers, use 75%
9615 * instead.
9616 */
9617 if (temp_p->features & AHC_ULTRA2)
9618 {
9619 aic_outb(temp_p, RD_DFTHRSH_MAX | WR_DFTHRSH_MAX, DFF_THRSH);
9620 }
9621 else
9622 {
9623 aic_outb(temp_p, DFTHRSH_100, DSPCISTATUS);
9624 }
9625
9626 /*
9627 * Call our function to fixup any bugs that exist on this chipset.
9628 * This may muck with PCI settings and other device settings, so
9629 * make sure it's after all the other PCI and device register
9630 * tweaks so it can back out bad settings on specific broken cards.
9631 */
9632 aic7xxx_configure_bugs(temp_p);
9633
9634 /* Hold a pci device reference */
9635 pci_dev_get(temp_p->pdev);
9636
9637 if ( list_p == NULL )
9638 {
9639 list_p = current_p = temp_p;
9640 }
9641 else
9642 {
9643 current_p = list_p;
9644 while(current_p->next != NULL)
9645 current_p = current_p->next;
9646 current_p->next = temp_p;
9647 }
9648 temp_p->next = NULL;
9649 found++;
9650 continue;
9651 skip_pci_controller:
9652 #ifdef CONFIG_PCI
9653 pci_release_regions(temp_p->pdev);
9654 #endif
9655 kfree(temp_p);
9656 } /* Found an Adaptec PCI device. */
9657 else /* Well, we found one, but we couldn't get any memory */
9658 {
9659 printk("aic7xxx: Found <%s>\n",
9660 board_names[aic_pdevs[i].board_name_index]);
9661 printk(KERN_INFO "aic7xxx: Unable to allocate device memory, "
9662 "skipping.\n");
9663 }
9664 } /* while(pdev=....) */
9665 } /* for PCI_DEVICES */
9666 }
9667 #endif /* CONFIG_PCI */
9668
9669 #if defined(__i386__) || defined(__alpha__)
9670 /*
9671 * EISA/VL-bus card signature probe.
9672 */
9673 slot = MINSLOT;
9674 while ( (slot <= MAXSLOT) &&
9675 !(aic7xxx_no_probe) )
9676 {
9677 base = SLOTBASE(slot) + MINREG;
9678
9679 if (!request_region(base, MAXREG - MINREG, "aic7xxx"))
9680 {
9681 /*
9682 * Some other driver has staked a
9683 * claim to this i/o region already.
9684 */
9685 slot++;
9686 continue; /* back to the beginning of the for loop */
9687 }
9688 flags = 0;
9689 type = aic7xxx_probe(slot, base + AHC_HID0, &flags);
9690 if (type == -1)
9691 {
9692 release_region(base, MAXREG - MINREG);
9693 slot++;
9694 continue;
9695 }
9696 temp_p = kmalloc(sizeof(struct aic7xxx_host), GFP_ATOMIC);
9697 if (temp_p == NULL)
9698 {
9699 printk(KERN_WARNING "aic7xxx: Unable to allocate device space.\n");
9700 release_region(base, MAXREG - MINREG);
9701 slot++;
9702 continue; /* back to the beginning of the while loop */
9703 }
9704
9705 /*
9706 * Pause the card preserving the IRQ type. Allow the operator
9707 * to override the IRQ trigger.
9708 */
9709 if (aic7xxx_irq_trigger == 1)
9710 hcntrl = IRQMS; /* Level */
9711 else if (aic7xxx_irq_trigger == 0)
9712 hcntrl = 0; /* Edge */
9713 else
9714 hcntrl = inb(base + HCNTRL) & IRQMS; /* Default */
9715 memset(temp_p, 0, sizeof(struct aic7xxx_host));
9716 temp_p->unpause = hcntrl | INTEN;
9717 temp_p->pause = hcntrl | PAUSE | INTEN;
9718 temp_p->base = base;
9719 temp_p->mbase = 0;
9720 temp_p->maddr = NULL;
9721 temp_p->pci_bus = 0;
9722 temp_p->pci_device_fn = slot;
9723 aic_outb(temp_p, hcntrl | PAUSE, HCNTRL);
9724 while( (aic_inb(temp_p, HCNTRL) & PAUSE) == 0 ) ;
9725 if (aic7xxx_chip_reset(temp_p) == -1)
9726 temp_p->irq = 0;
9727 else
9728 temp_p->irq = aic_inb(temp_p, INTDEF) & 0x0F;
9729 temp_p->flags |= AHC_PAGESCBS;
9730
9731 switch (temp_p->irq)
9732 {
9733 case 9:
9734 case 10:
9735 case 11:
9736 case 12:
9737 case 14:
9738 case 15:
9739 break;
9740
9741 default:
9742 printk(KERN_WARNING "aic7xxx: Host adapter uses unsupported IRQ "
9743 "level %d, ignoring.\n", temp_p->irq);
9744 kfree(temp_p);
9745 release_region(base, MAXREG - MINREG);
9746 slot++;
9747 continue; /* back to the beginning of the while loop */
9748 }
9749
9750 /*
9751 * We are commited now, everything has been checked and this card
9752 * has been found, now we just set it up
9753 */
9754
9755 /*
9756 * Insert our new struct into the list at the end
9757 */
9758 if (list_p == NULL)
9759 {
9760 list_p = current_p = temp_p;
9761 }
9762 else
9763 {
9764 current_p = list_p;
9765 while (current_p->next != NULL)
9766 current_p = current_p->next;
9767 current_p->next = temp_p;
9768 }
9769
9770 switch (type)
9771 {
9772 case 0:
9773 temp_p->board_name_index = 2;
9774 if (aic7xxx_verbose & VERBOSE_PROBE2)
9775 printk("aic7xxx: <%s> at EISA %d\n",
9776 board_names[2], slot);
9777 /* FALLTHROUGH */
9778 case 1:
9779 {
9780 temp_p->chip = AHC_AIC7770 | AHC_EISA;
9781 temp_p->features |= AHC_AIC7770_FE;
9782 temp_p->bios_control = aic_inb(temp_p, HA_274_BIOSCTRL);
9783
9784 /*
9785 * Get the primary channel information. Right now we don't
9786 * do anything with this, but someday we will be able to inform
9787 * the mid-level SCSI code which channel is primary.
9788 */
9789 if (temp_p->board_name_index == 0)
9790 {
9791 temp_p->board_name_index = 3;
9792 if (aic7xxx_verbose & VERBOSE_PROBE2)
9793 printk("aic7xxx: <%s> at EISA %d\n",
9794 board_names[3], slot);
9795 }
9796 if (temp_p->bios_control & CHANNEL_B_PRIMARY)
9797 {
9798 temp_p->flags |= AHC_CHANNEL_B_PRIMARY;
9799 }
9800
9801 if ((temp_p->bios_control & BIOSMODE) == BIOSDISABLED)
9802 {
9803 temp_p->flags &= ~AHC_BIOS_ENABLED;
9804 }
9805 else
9806 {
9807 temp_p->flags &= ~AHC_USEDEFAULTS;
9808 temp_p->flags |= AHC_BIOS_ENABLED;
9809 if ( (temp_p->bios_control & 0x20) == 0 )
9810 {
9811 temp_p->bios_address = 0xcc000;
9812 temp_p->bios_address += (0x4000 * (temp_p->bios_control & 0x07));
9813 }
9814 else
9815 {
9816 temp_p->bios_address = 0xd0000;
9817 temp_p->bios_address += (0x8000 * (temp_p->bios_control & 0x06));
9818 }
9819 }
9820 temp_p->adapter_control = aic_inb(temp_p, SCSICONF) << 8;
9821 temp_p->adapter_control |= aic_inb(temp_p, SCSICONF + 1);
9822 if (temp_p->features & AHC_WIDE)
9823 {
9824 temp_p->scsi_id = temp_p->adapter_control & HWSCSIID;
9825 temp_p->scsi_id_b = temp_p->scsi_id;
9826 }
9827 else
9828 {
9829 temp_p->scsi_id = (temp_p->adapter_control >> 8) & HSCSIID;
9830 temp_p->scsi_id_b = temp_p->adapter_control & HSCSIID;
9831 }
9832 aic7xxx_load_seeprom(temp_p, &sxfrctl1);
9833 break;
9834 }
9835
9836 case 2:
9837 case 3:
9838 temp_p->chip = AHC_AIC7770 | AHC_VL;
9839 temp_p->features |= AHC_AIC7770_FE;
9840 if (type == 2)
9841 temp_p->flags |= AHC_BIOS_ENABLED;
9842 else
9843 temp_p->flags &= ~AHC_BIOS_ENABLED;
9844 if (aic_inb(temp_p, SCSICONF) & TERM_ENB)
9845 sxfrctl1 = STPWEN;
9846 aic7xxx_load_seeprom(temp_p, &sxfrctl1);
9847 temp_p->board_name_index = 4;
9848 if (aic7xxx_verbose & VERBOSE_PROBE2)
9849 printk("aic7xxx: <%s> at VLB %d\n",
9850 board_names[2], slot);
9851 switch( aic_inb(temp_p, STATUS_2840) & BIOS_SEL )
9852 {
9853 case 0x00:
9854 temp_p->bios_address = 0xe0000;
9855 break;
9856 case 0x20:
9857 temp_p->bios_address = 0xc8000;
9858 break;
9859 case 0x40:
9860 temp_p->bios_address = 0xd0000;
9861 break;
9862 case 0x60:
9863 temp_p->bios_address = 0xd8000;
9864 break;
9865 default:
9866 break; /* can't get here */
9867 }
9868 break;
9869
9870 default: /* Won't get here. */
9871 break;
9872 }
9873 if (aic7xxx_verbose & VERBOSE_PROBE2)
9874 {
9875 printk(KERN_INFO "aic7xxx: BIOS %sabled, IO Port 0x%lx, IRQ %d (%s)\n",
9876 (temp_p->flags & AHC_USEDEFAULTS) ? "dis" : "en", temp_p->base,
9877 temp_p->irq,
9878 (temp_p->pause & IRQMS) ? "level sensitive" : "edge triggered");
9879 printk(KERN_INFO "aic7xxx: Extended translation %sabled.\n",
9880 (temp_p->flags & AHC_EXTEND_TRANS_A) ? "en" : "dis");
9881 }
9882
9883 /*
9884 * All the 7770 based chipsets have this bug
9885 */
9886 temp_p->bugs |= AHC_BUG_TMODE_WIDEODD;
9887
9888 /*
9889 * Set the FIFO threshold and the bus off time.
9890 */
9891 hostconf = aic_inb(temp_p, HOSTCONF);
9892 aic_outb(temp_p, hostconf & DFTHRSH, BUSSPD);
9893 aic_outb(temp_p, (hostconf << 2) & BOFF, BUSTIME);
9894 slot++;
9895 found++;
9896 }
9897
9898 #endif /* defined(__i386__) || defined(__alpha__) */
9899
9900 /*
9901 * Now, we re-order the probed devices by BIOS address and BUS class.
9902 * In general, we follow this algorithm to make the adapters show up
9903 * in the same order under linux that the computer finds them.
9904 * 1: All VLB/EISA cards with BIOS_ENABLED first, according to BIOS
9905 * address, going from lowest to highest.
9906 * 2: All PCI controllers with BIOS_ENABLED next, according to BIOS
9907 * address, going from lowest to highest.
9908 * 3: Remaining VLB/EISA controllers going in slot order.
9909 * 4: Remaining PCI controllers, going in PCI device order (reversable)
9910 */
9911
9912 {
9913 struct aic7xxx_host *sort_list[4] = { NULL, NULL, NULL, NULL };
9914 struct aic7xxx_host *vlb, *pci;
9915 struct aic7xxx_host *prev_p;
9916 struct aic7xxx_host *p;
9917 unsigned char left;
9918
9919 prev_p = vlb = pci = NULL;
9920
9921 temp_p = list_p;
9922 while (temp_p != NULL)
9923 {
9924 switch(temp_p->chip & ~AHC_CHIPID_MASK)
9925 {
9926 case AHC_EISA:
9927 case AHC_VL:
9928 {
9929 p = temp_p;
9930 if (p->flags & AHC_BIOS_ENABLED)
9931 vlb = sort_list[0];
9932 else
9933 vlb = sort_list[2];
9934
9935 if (vlb == NULL)
9936 {
9937 vlb = temp_p;
9938 temp_p = temp_p->next;
9939 vlb->next = NULL;
9940 }
9941 else
9942 {
9943 current_p = vlb;
9944 prev_p = NULL;
9945 while ( (current_p != NULL) &&
9946 (current_p->bios_address < temp_p->bios_address))
9947 {
9948 prev_p = current_p;
9949 current_p = current_p->next;
9950 }
9951 if (prev_p != NULL)
9952 {
9953 prev_p->next = temp_p;
9954 temp_p = temp_p->next;
9955 prev_p->next->next = current_p;
9956 }
9957 else
9958 {
9959 vlb = temp_p;
9960 temp_p = temp_p->next;
9961 vlb->next = current_p;
9962 }
9963 }
9964
9965 if (p->flags & AHC_BIOS_ENABLED)
9966 sort_list[0] = vlb;
9967 else
9968 sort_list[2] = vlb;
9969
9970 break;
9971 }
9972 default: /* All PCI controllers fall through to default */
9973 {
9974
9975 p = temp_p;
9976 if (p->flags & AHC_BIOS_ENABLED)
9977 pci = sort_list[1];
9978 else
9979 pci = sort_list[3];
9980
9981 if (pci == NULL)
9982 {
9983 pci = temp_p;
9984 temp_p = temp_p->next;
9985 pci->next = NULL;
9986 }
9987 else
9988 {
9989 current_p = pci;
9990 prev_p = NULL;
9991 if (!aic7xxx_reverse_scan)
9992 {
9993 while ( (current_p != NULL) &&
9994 ( (PCI_SLOT(current_p->pci_device_fn) |
9995 (current_p->pci_bus << 8)) <
9996 (PCI_SLOT(temp_p->pci_device_fn) |
9997 (temp_p->pci_bus << 8)) ) )
9998 {
9999 prev_p = current_p;
10000 current_p = current_p->next;
10001 }
10002 }
10003 else
10004 {
10005 while ( (current_p != NULL) &&
10006 ( (PCI_SLOT(current_p->pci_device_fn) |
10007 (current_p->pci_bus << 8)) >
10008 (PCI_SLOT(temp_p->pci_device_fn) |
10009 (temp_p->pci_bus << 8)) ) )
10010 {
10011 prev_p = current_p;
10012 current_p = current_p->next;
10013 }
10014 }
10015 /*
10016 * Are we dealing with a 7895/6/7/9 where we need to sort the
10017 * channels as well, if so, the bios_address values should
10018 * be the same
10019 */
10020 if ( (current_p) && (temp_p->flags & AHC_MULTI_CHANNEL) &&
10021 (temp_p->pci_bus == current_p->pci_bus) &&
10022 (PCI_SLOT(temp_p->pci_device_fn) ==
10023 PCI_SLOT(current_p->pci_device_fn)) )
10024 {
10025 if (temp_p->flags & AHC_CHNLB)
10026 {
10027 if ( !(temp_p->flags & AHC_CHANNEL_B_PRIMARY) )
10028 {
10029 prev_p = current_p;
10030 current_p = current_p->next;
10031 }
10032 }
10033 else
10034 {
10035 if (temp_p->flags & AHC_CHANNEL_B_PRIMARY)
10036 {
10037 prev_p = current_p;
10038 current_p = current_p->next;
10039 }
10040 }
10041 }
10042 if (prev_p != NULL)
10043 {
10044 prev_p->next = temp_p;
10045 temp_p = temp_p->next;
10046 prev_p->next->next = current_p;
10047 }
10048 else
10049 {
10050 pci = temp_p;
10051 temp_p = temp_p->next;
10052 pci->next = current_p;
10053 }
10054 }
10055
10056 if (p->flags & AHC_BIOS_ENABLED)
10057 sort_list[1] = pci;
10058 else
10059 sort_list[3] = pci;
10060
10061 break;
10062 }
10063 } /* End of switch(temp_p->type) */
10064 } /* End of while (temp_p != NULL) */
10065 /*
10066 * At this point, the cards have been broken into 4 sorted lists, now
10067 * we run through the lists in order and register each controller
10068 */
10069 {
10070 int i;
10071
10072 left = found;
10073 for (i=0; i<ARRAY_SIZE(sort_list); i++)
10074 {
10075 temp_p = sort_list[i];
10076 while(temp_p != NULL)
10077 {
10078 template->name = board_names[temp_p->board_name_index];
10079 p = aic7xxx_alloc(template, temp_p);
10080 if (p != NULL)
10081 {
10082 p->instance = found - left;
10083 if (aic7xxx_register(template, p, (--left)) == 0)
10084 {
10085 found--;
10086 aic7xxx_release(p->host);
10087 scsi_unregister(p->host);
10088 }
10089 else if (aic7xxx_dump_card)
10090 {
10091 pause_sequencer(p);
10092 aic7xxx_print_card(p);
10093 aic7xxx_print_scratch_ram(p);
10094 unpause_sequencer(p, TRUE);
10095 }
10096 }
10097 current_p = temp_p;
10098 temp_p = (struct aic7xxx_host *)temp_p->next;
10099 kfree(current_p);
10100 }
10101 }
10102 }
10103 }
10104 return (found);
10105 }
10106
10107 /*+F*************************************************************************
10108 * Function:
10109 * aic7xxx_buildscb
10110 *
10111 * Description:
10112 * Build a SCB.
10113 *-F*************************************************************************/
10114 static void aic7xxx_buildscb(struct aic7xxx_host *p, struct scsi_cmnd *cmd,
10115 struct aic7xxx_scb *scb)
10116 {
10117 unsigned short mask;
10118 struct aic7xxx_hwscb *hscb;
10119 struct aic_dev_data *aic_dev = cmd->device->hostdata;
10120 struct scsi_device *sdptr = cmd->device;
10121 unsigned char tindex = TARGET_INDEX(cmd);
10122 int use_sg;
10123
10124 mask = (0x01 << tindex);
10125 hscb = scb->hscb;
10126
10127 /*
10128 * Setup the control byte if we need negotiation and have not
10129 * already requested it.
10130 */
10131 hscb->control = 0;
10132 scb->tag_action = 0;
10133
10134 if (p->discenable & mask)
10135 {
10136 hscb->control |= DISCENB;
10137 /* We always force TEST_UNIT_READY to untagged */
10138 if (cmd->cmnd[0] != TEST_UNIT_READY && sdptr->simple_tags)
10139 {
10140 hscb->control |= MSG_SIMPLE_Q_TAG;
10141 scb->tag_action = MSG_SIMPLE_Q_TAG;
10142 }
10143 }
10144 if ( !(aic_dev->dtr_pending) &&
10145 (aic_dev->needppr || aic_dev->needwdtr || aic_dev->needsdtr) &&
10146 (aic_dev->flags & DEVICE_DTR_SCANNED) )
10147 {
10148 aic_dev->dtr_pending = 1;
10149 scb->tag_action = 0;
10150 hscb->control &= DISCENB;
10151 hscb->control |= MK_MESSAGE;
10152 if(aic_dev->needppr)
10153 {
10154 scb->flags |= SCB_MSGOUT_PPR;
10155 }
10156 else if(aic_dev->needwdtr)
10157 {
10158 scb->flags |= SCB_MSGOUT_WDTR;
10159 }
10160 else if(aic_dev->needsdtr)
10161 {
10162 scb->flags |= SCB_MSGOUT_SDTR;
10163 }
10164 scb->flags |= SCB_DTR_SCB;
10165 }
10166 hscb->target_channel_lun = ((cmd->device->id << 4) & 0xF0) |
10167 ((cmd->device->channel & 0x01) << 3) | (cmd->device->lun & 0x07);
10168
10169 /*
10170 * The interpretation of request_buffer and request_bufflen
10171 * changes depending on whether or not use_sg is zero; a
10172 * non-zero use_sg indicates the number of elements in the
10173 * scatter-gather array.
10174 */
10175
10176 /*
10177 * XXX - this relies on the host data being stored in a
10178 * little-endian format.
10179 */
10180 hscb->SCSI_cmd_length = cmd->cmd_len;
10181 memcpy(scb->cmnd, cmd->cmnd, cmd->cmd_len);
10182 hscb->SCSI_cmd_pointer = cpu_to_le32(SCB_DMA_ADDR(scb, scb->cmnd));
10183
10184 use_sg = scsi_dma_map(cmd);
10185 BUG_ON(use_sg < 0);
10186
10187 if (use_sg) {
10188 struct scatterlist *sg; /* Must be mid-level SCSI code scatterlist */
10189
10190 /*
10191 * We must build an SG list in adapter format, as the kernel's SG list
10192 * cannot be used directly because of data field size (__alpha__)
10193 * differences and the kernel SG list uses virtual addresses where
10194 * we need physical addresses.
10195 */
10196 int i;
10197
10198 scb->sg_length = 0;
10199
10200
10201 /*
10202 * Copy the segments into the SG array. NOTE!!! - We used to
10203 * have the first entry both in the data_pointer area and the first
10204 * SG element. That has changed somewhat. We still have the first
10205 * entry in both places, but now we download the address of
10206 * scb->sg_list[1] instead of 0 to the sg pointer in the hscb.
10207 */
10208 scsi_for_each_sg(cmd, sg, use_sg, i) {
10209 unsigned int len = sg_dma_len(sg);
10210 scb->sg_list[i].address = cpu_to_le32(sg_dma_address(sg));
10211 scb->sg_list[i].length = cpu_to_le32(len);
10212 scb->sg_length += len;
10213 }
10214 /* Copy the first SG into the data pointer area. */
10215 hscb->data_pointer = scb->sg_list[0].address;
10216 hscb->data_count = scb->sg_list[0].length;
10217 scb->sg_count = i;
10218 hscb->SG_segment_count = i;
10219 hscb->SG_list_pointer = cpu_to_le32(SCB_DMA_ADDR(scb, &scb->sg_list[1]));
10220 } else {
10221 scb->sg_count = 0;
10222 scb->sg_length = 0;
10223 hscb->SG_segment_count = 0;
10224 hscb->SG_list_pointer = 0;
10225 hscb->data_count = 0;
10226 hscb->data_pointer = 0;
10227 }
10228 }
10229
10230 /*+F*************************************************************************
10231 * Function:
10232 * aic7xxx_queue
10233 *
10234 * Description:
10235 * Queue a SCB to the controller.
10236 *-F*************************************************************************/
10237 static int aic7xxx_queue(struct scsi_cmnd *cmd, void (*fn)(struct scsi_cmnd *))
10238 {
10239 struct aic7xxx_host *p;
10240 struct aic7xxx_scb *scb;
10241 struct aic_dev_data *aic_dev;
10242
10243 p = (struct aic7xxx_host *) cmd->device->host->hostdata;
10244
10245 aic_dev = cmd->device->hostdata;
10246 #ifdef AIC7XXX_VERBOSE_DEBUGGING
10247 if (aic_dev->active_cmds > aic_dev->max_q_depth)
10248 {
10249 printk(WARN_LEAD "Commands queued exceeds queue "
10250 "depth, active=%d\n",
10251 p->host_no, CTL_OF_CMD(cmd),
10252 aic_dev->active_cmds);
10253 }
10254 #endif
10255
10256 scb = scbq_remove_head(&p->scb_data->free_scbs);
10257 if (scb == NULL)
10258 {
10259 aic7xxx_allocate_scb(p);
10260 scb = scbq_remove_head(&p->scb_data->free_scbs);
10261 if(scb == NULL)
10262 {
10263 printk(WARN_LEAD "Couldn't get a free SCB.\n", p->host_no,
10264 CTL_OF_CMD(cmd));
10265 return 1;
10266 }
10267 }
10268 scb->cmd = cmd;
10269
10270 /*
10271 * Make sure the scsi_cmnd pointer is saved, the struct it points to
10272 * is set up properly, and the parity error flag is reset, then send
10273 * the SCB to the sequencer and watch the fun begin.
10274 */
10275 aic7xxx_position(cmd) = scb->hscb->tag;
10276 cmd->scsi_done = fn;
10277 cmd->result = DID_OK;
10278 aic7xxx_error(cmd) = DID_OK;
10279 aic7xxx_status(cmd) = 0;
10280 cmd->host_scribble = NULL;
10281
10282 /*
10283 * Construct the SCB beforehand, so the sequencer is
10284 * paused a minimal amount of time.
10285 */
10286 aic7xxx_buildscb(p, cmd, scb);
10287
10288 scb->flags |= SCB_ACTIVE | SCB_WAITINGQ;
10289
10290 scbq_insert_tail(&p->waiting_scbs, scb);
10291 aic7xxx_run_waiting_queues(p);
10292 return (0);
10293 }
10294
10295 /*+F*************************************************************************
10296 * Function:
10297 * aic7xxx_bus_device_reset
10298 *
10299 * Description:
10300 * Abort or reset the current SCSI command(s). If the scb has not
10301 * previously been aborted, then we attempt to send a BUS_DEVICE_RESET
10302 * message to the target. If the scb has previously been unsuccessfully
10303 * aborted, then we will reset the channel and have all devices renegotiate.
10304 * Returns an enumerated type that indicates the status of the operation.
10305 *-F*************************************************************************/
10306 static int __aic7xxx_bus_device_reset(struct scsi_cmnd *cmd)
10307 {
10308 struct aic7xxx_host *p;
10309 struct aic7xxx_scb *scb;
10310 struct aic7xxx_hwscb *hscb;
10311 int channel;
10312 unsigned char saved_scbptr, lastphase;
10313 unsigned char hscb_index;
10314 int disconnected;
10315 struct aic_dev_data *aic_dev;
10316
10317 if(cmd == NULL)
10318 {
10319 printk(KERN_ERR "aic7xxx_bus_device_reset: called with NULL cmd!\n");
10320 return FAILED;
10321 }
10322 p = (struct aic7xxx_host *)cmd->device->host->hostdata;
10323 aic_dev = AIC_DEV(cmd);
10324 if(aic7xxx_position(cmd) < p->scb_data->numscbs)
10325 scb = (p->scb_data->scb_array[aic7xxx_position(cmd)]);
10326 else
10327 return FAILED;
10328
10329 hscb = scb->hscb;
10330
10331 aic7xxx_isr(p);
10332 aic7xxx_done_cmds_complete(p);
10333 /* If the command was already complete or just completed, then we didn't
10334 * do a reset, return FAILED */
10335 if(!(scb->flags & SCB_ACTIVE))
10336 return FAILED;
10337
10338 pause_sequencer(p);
10339 lastphase = aic_inb(p, LASTPHASE);
10340 if (aic7xxx_verbose & VERBOSE_RESET_PROCESS)
10341 {
10342 printk(INFO_LEAD "Bus Device reset, scb flags 0x%x, ",
10343 p->host_no, CTL_OF_SCB(scb), scb->flags);
10344 switch (lastphase)
10345 {
10346 case P_DATAOUT:
10347 printk("Data-Out phase\n");
10348 break;
10349 case P_DATAIN:
10350 printk("Data-In phase\n");
10351 break;
10352 case P_COMMAND:
10353 printk("Command phase\n");
10354 break;
10355 case P_MESGOUT:
10356 printk("Message-Out phase\n");
10357 break;
10358 case P_STATUS:
10359 printk("Status phase\n");
10360 break;
10361 case P_MESGIN:
10362 printk("Message-In phase\n");
10363 break;
10364 default:
10365 /*
10366 * We're not in a valid phase, so assume we're idle.
10367 */
10368 printk("while idle, LASTPHASE = 0x%x\n", lastphase);
10369 break;
10370 }
10371 printk(INFO_LEAD "SCSISIGI 0x%x, SEQADDR 0x%x, SSTAT0 0x%x, SSTAT1 "
10372 "0x%x\n", p->host_no, CTL_OF_SCB(scb),
10373 aic_inb(p, SCSISIGI),
10374 aic_inb(p, SEQADDR0) | (aic_inb(p, SEQADDR1) << 8),
10375 aic_inb(p, SSTAT0), aic_inb(p, SSTAT1));
10376 printk(INFO_LEAD "SG_CACHEPTR 0x%x, SSTAT2 0x%x, STCNT 0x%x\n", p->host_no,
10377 CTL_OF_SCB(scb),
10378 (p->features & AHC_ULTRA2) ? aic_inb(p, SG_CACHEPTR) : 0,
10379 aic_inb(p, SSTAT2),
10380 aic_inb(p, STCNT + 2) << 16 | aic_inb(p, STCNT + 1) << 8 |
10381 aic_inb(p, STCNT));
10382 }
10383
10384 channel = cmd->device->channel;
10385
10386 /*
10387 * Send a Device Reset Message:
10388 * The target that is holding up the bus may not be the same as
10389 * the one that triggered this timeout (different commands have
10390 * different timeout lengths). Our strategy here is to queue an
10391 * abort message to the timed out target if it is disconnected.
10392 * Otherwise, if we have an active target we stuff the message buffer
10393 * with an abort message and assert ATN in the hopes that the target
10394 * will let go of the bus and go to the mesgout phase. If this
10395 * fails, we'll get another timeout a few seconds later which will
10396 * attempt a bus reset.
10397 */
10398 saved_scbptr = aic_inb(p, SCBPTR);
10399 disconnected = FALSE;
10400
10401 if (lastphase != P_BUSFREE)
10402 {
10403 if (aic_inb(p, SCB_TAG) >= p->scb_data->numscbs)
10404 {
10405 printk(WARN_LEAD "Invalid SCB ID %d is active, "
10406 "SCB flags = 0x%x.\n", p->host_no,
10407 CTL_OF_CMD(cmd), scb->hscb->tag, scb->flags);
10408 unpause_sequencer(p, FALSE);
10409 return FAILED;
10410 }
10411 if (scb->hscb->tag == aic_inb(p, SCB_TAG))
10412 {
10413 if ( (lastphase == P_MESGOUT) || (lastphase == P_MESGIN) )
10414 {
10415 printk(WARN_LEAD "Device reset, Message buffer "
10416 "in use\n", p->host_no, CTL_OF_SCB(scb));
10417 unpause_sequencer(p, FALSE);
10418 return FAILED;
10419 }
10420
10421 if (aic7xxx_verbose & VERBOSE_RESET_PROCESS)
10422 printk(INFO_LEAD "Device reset message in "
10423 "message buffer\n", p->host_no, CTL_OF_SCB(scb));
10424 scb->flags |= SCB_RESET | SCB_DEVICE_RESET;
10425 aic7xxx_error(cmd) = DID_RESET;
10426 aic_dev->flags |= BUS_DEVICE_RESET_PENDING;
10427 /* Send the abort message to the active SCB. */
10428 aic_outb(p, HOST_MSG, MSG_OUT);
10429 aic_outb(p, lastphase | ATNO, SCSISIGO);
10430 unpause_sequencer(p, FALSE);
10431 spin_unlock_irq(p->host->host_lock);
10432 ssleep(1);
10433 spin_lock_irq(p->host->host_lock);
10434 if(aic_dev->flags & BUS_DEVICE_RESET_PENDING)
10435 return FAILED;
10436 else
10437 return SUCCESS;
10438 }
10439 } /* if (last_phase != P_BUSFREE).....indicates we are idle and can work */
10440 /*
10441 * Simply set the MK_MESSAGE flag and the SEQINT handler will do
10442 * the rest on a reconnect/connect.
10443 */
10444 scb->hscb->control |= MK_MESSAGE;
10445 scb->flags |= SCB_RESET | SCB_DEVICE_RESET;
10446 aic_dev->flags |= BUS_DEVICE_RESET_PENDING;
10447 /*
10448 * Check to see if the command is on the qinfifo. If it is, then we will
10449 * not need to queue the command again since the card should start it soon
10450 */
10451 if (aic7xxx_search_qinfifo(p, cmd->device->channel, cmd->device->id, cmd->device->lun, hscb->tag,
10452 0, TRUE, NULL) == 0)
10453 {
10454 disconnected = TRUE;
10455 if ((hscb_index = aic7xxx_find_scb(p, scb)) != SCB_LIST_NULL)
10456 {
10457 unsigned char scb_control;
10458
10459 aic_outb(p, hscb_index, SCBPTR);
10460 scb_control = aic_inb(p, SCB_CONTROL);
10461 /*
10462 * If the DISCONNECTED bit is not set in SCB_CONTROL, then we are
10463 * actually on the waiting list, not disconnected, and we don't
10464 * need to requeue the command.
10465 */
10466 disconnected = (scb_control & DISCONNECTED);
10467 aic_outb(p, scb_control | MK_MESSAGE, SCB_CONTROL);
10468 }
10469 if (disconnected)
10470 {
10471 /*
10472 * Actually requeue this SCB in case we can select the
10473 * device before it reconnects. This can result in the command
10474 * being on the qinfifo twice, but we don't care because it will
10475 * all get cleaned up if/when the reset takes place.
10476 */
10477 if (aic7xxx_verbose & VERBOSE_RESET_PROCESS)
10478 printk(INFO_LEAD "Queueing device reset command.\n", p->host_no,
10479 CTL_OF_SCB(scb));
10480 p->qinfifo[p->qinfifonext++] = scb->hscb->tag;
10481 if (p->features & AHC_QUEUE_REGS)
10482 aic_outb(p, p->qinfifonext, HNSCB_QOFF);
10483 else
10484 aic_outb(p, p->qinfifonext, KERNEL_QINPOS);
10485 scb->flags |= SCB_QUEUED_ABORT;
10486 }
10487 }
10488 aic_outb(p, saved_scbptr, SCBPTR);
10489 unpause_sequencer(p, FALSE);
10490 spin_unlock_irq(p->host->host_lock);
10491 msleep(1000/4);
10492 spin_lock_irq(p->host->host_lock);
10493 if(aic_dev->flags & BUS_DEVICE_RESET_PENDING)
10494 return FAILED;
10495 else
10496 return SUCCESS;
10497 }
10498
10499 static int aic7xxx_bus_device_reset(struct scsi_cmnd *cmd)
10500 {
10501 int rc;
10502
10503 spin_lock_irq(cmd->device->host->host_lock);
10504 rc = __aic7xxx_bus_device_reset(cmd);
10505 spin_unlock_irq(cmd->device->host->host_lock);
10506
10507 return rc;
10508 }
10509
10510
10511 /*+F*************************************************************************
10512 * Function:
10513 * aic7xxx_panic_abort
10514 *
10515 * Description:
10516 * Abort the current SCSI command(s).
10517 *-F*************************************************************************/
10518 static void aic7xxx_panic_abort(struct aic7xxx_host *p, struct scsi_cmnd *cmd)
10519 {
10520
10521 printk("aic7xxx driver version %s\n", AIC7XXX_C_VERSION);
10522 printk("Controller type:\n %s\n", board_names[p->board_name_index]);
10523 printk("p->flags=0x%lx, p->chip=0x%x, p->features=0x%x, "
10524 "sequencer %s paused\n",
10525 p->flags, p->chip, p->features,
10526 (aic_inb(p, HCNTRL) & PAUSE) ? "is" : "isn't" );
10527 pause_sequencer(p);
10528 disable_irq(p->irq);
10529 aic7xxx_print_card(p);
10530 aic7xxx_print_scratch_ram(p);
10531 spin_unlock_irq(p->host->host_lock);
10532 for(;;) barrier();
10533 }
10534
10535 /*+F*************************************************************************
10536 * Function:
10537 * aic7xxx_abort
10538 *
10539 * Description:
10540 * Abort the current SCSI command(s).
10541 *-F*************************************************************************/
10542 static int __aic7xxx_abort(struct scsi_cmnd *cmd)
10543 {
10544 struct aic7xxx_scb *scb = NULL;
10545 struct aic7xxx_host *p;
10546 int found=0, disconnected;
10547 unsigned char saved_hscbptr, hscbptr, scb_control;
10548 struct aic_dev_data *aic_dev;
10549
10550 if(cmd == NULL)
10551 {
10552 printk(KERN_ERR "aic7xxx_abort: called with NULL cmd!\n");
10553 return FAILED;
10554 }
10555 p = (struct aic7xxx_host *)cmd->device->host->hostdata;
10556 aic_dev = AIC_DEV(cmd);
10557 if(aic7xxx_position(cmd) < p->scb_data->numscbs)
10558 scb = (p->scb_data->scb_array[aic7xxx_position(cmd)]);
10559 else
10560 return FAILED;
10561
10562 aic7xxx_isr(p);
10563 aic7xxx_done_cmds_complete(p);
10564 /* If the command was already complete or just completed, then we didn't
10565 * do a reset, return FAILED */
10566 if(!(scb->flags & SCB_ACTIVE))
10567 return FAILED;
10568
10569 pause_sequencer(p);
10570
10571 /*
10572 * I added a new config option to the driver: "panic_on_abort" that will
10573 * cause the driver to panic and the machine to stop on the first abort
10574 * or reset call into the driver. At that point, it prints out a lot of
10575 * useful information for me which I can then use to try and debug the
10576 * problem. Simply enable the boot time prompt in order to activate this
10577 * code.
10578 */
10579 if (aic7xxx_panic_on_abort)
10580 aic7xxx_panic_abort(p, cmd);
10581
10582 if (aic7xxx_verbose & VERBOSE_ABORT)
10583 {
10584 printk(INFO_LEAD "Aborting scb %d, flags 0x%x, SEQADDR 0x%x, LASTPHASE "
10585 "0x%x\n",
10586 p->host_no, CTL_OF_SCB(scb), scb->hscb->tag, scb->flags,
10587 aic_inb(p, SEQADDR0) | (aic_inb(p, SEQADDR1) << 8),
10588 aic_inb(p, LASTPHASE));
10589 printk(INFO_LEAD "SG_CACHEPTR 0x%x, SG_COUNT %d, SCSISIGI 0x%x\n",
10590 p->host_no, CTL_OF_SCB(scb), (p->features & AHC_ULTRA2) ?
10591 aic_inb(p, SG_CACHEPTR) : 0, aic_inb(p, SG_COUNT),
10592 aic_inb(p, SCSISIGI));
10593 printk(INFO_LEAD "SSTAT0 0x%x, SSTAT1 0x%x, SSTAT2 0x%x\n",
10594 p->host_no, CTL_OF_SCB(scb), aic_inb(p, SSTAT0),
10595 aic_inb(p, SSTAT1), aic_inb(p, SSTAT2));
10596 }
10597
10598 if (scb->flags & SCB_WAITINGQ)
10599 {
10600 if (aic7xxx_verbose & VERBOSE_ABORT_PROCESS)
10601 printk(INFO_LEAD "SCB found on waiting list and "
10602 "aborted.\n", p->host_no, CTL_OF_SCB(scb));
10603 scbq_remove(&p->waiting_scbs, scb);
10604 scbq_remove(&aic_dev->delayed_scbs, scb);
10605 aic_dev->active_cmds++;
10606 p->activescbs++;
10607 scb->flags &= ~(SCB_WAITINGQ | SCB_ACTIVE);
10608 scb->flags |= SCB_ABORT | SCB_QUEUED_FOR_DONE;
10609 goto success;
10610 }
10611
10612 /*
10613 * We just checked the waiting_q, now for the QINFIFO
10614 */
10615 if ( ((found = aic7xxx_search_qinfifo(p, cmd->device->id, cmd->device->channel,
10616 cmd->device->lun, scb->hscb->tag, SCB_ABORT | SCB_QUEUED_FOR_DONE,
10617 FALSE, NULL)) != 0) &&
10618 (aic7xxx_verbose & VERBOSE_ABORT_PROCESS))
10619 {
10620 printk(INFO_LEAD "SCB found in QINFIFO and aborted.\n", p->host_no,
10621 CTL_OF_SCB(scb));
10622 goto success;
10623 }
10624
10625 /*
10626 * QINFIFO, waitingq, completeq done. Next, check WAITING_SCB list in card
10627 */
10628
10629 saved_hscbptr = aic_inb(p, SCBPTR);
10630 if ((hscbptr = aic7xxx_find_scb(p, scb)) != SCB_LIST_NULL)
10631 {
10632 aic_outb(p, hscbptr, SCBPTR);
10633 scb_control = aic_inb(p, SCB_CONTROL);
10634 disconnected = scb_control & DISCONNECTED;
10635 /*
10636 * If the DISCONNECTED bit is not set in SCB_CONTROL, then we are
10637 * either currently active or on the waiting list.
10638 */
10639 if(!disconnected && aic_inb(p, LASTPHASE) == P_BUSFREE) {
10640 if (aic7xxx_verbose & VERBOSE_ABORT_PROCESS)
10641 printk(INFO_LEAD "SCB found on hardware waiting"
10642 " list and aborted.\n", p->host_no, CTL_OF_SCB(scb));
10643 /* If we are the only waiting command, stop the selection engine */
10644 if (aic_inb(p, WAITING_SCBH) == hscbptr && aic_inb(p, SCB_NEXT) ==
10645 SCB_LIST_NULL)
10646 {
10647 aic_outb(p, aic_inb(p, SCSISEQ) & ~ENSELO, SCSISEQ);
10648 aic_outb(p, CLRSELTIMEO, CLRSINT1);
10649 aic_outb(p, SCB_LIST_NULL, WAITING_SCBH);
10650 }
10651 else
10652 {
10653 unsigned char prev, next;
10654 prev = SCB_LIST_NULL;
10655 next = aic_inb(p, WAITING_SCBH);
10656 while(next != SCB_LIST_NULL)
10657 {
10658 aic_outb(p, next, SCBPTR);
10659 if (next == hscbptr)
10660 {
10661 next = aic_inb(p, SCB_NEXT);
10662 if (prev != SCB_LIST_NULL)
10663 {
10664 aic_outb(p, prev, SCBPTR);
10665 aic_outb(p, next, SCB_NEXT);
10666 }
10667 else
10668 aic_outb(p, next, WAITING_SCBH);
10669 aic_outb(p, hscbptr, SCBPTR);
10670 next = SCB_LIST_NULL;
10671 }
10672 else
10673 {
10674 prev = next;
10675 next = aic_inb(p, SCB_NEXT);
10676 }
10677 }
10678 }
10679 aic_outb(p, SCB_LIST_NULL, SCB_TAG);
10680 aic_outb(p, 0, SCB_CONTROL);
10681 aic7xxx_add_curscb_to_free_list(p);
10682 scb->flags = SCB_ABORT | SCB_QUEUED_FOR_DONE;
10683 goto success;
10684 }
10685 else if (!disconnected)
10686 {
10687 /*
10688 * We are the currently active command
10689 */
10690 if((aic_inb(p, LASTPHASE) == P_MESGIN) ||
10691 (aic_inb(p, LASTPHASE) == P_MESGOUT))
10692 {
10693 /*
10694 * Message buffer busy, unable to abort
10695 */
10696 printk(INFO_LEAD "message buffer busy, unable to abort.\n",
10697 p->host_no, CTL_OF_SCB(scb));
10698 unpause_sequencer(p, FALSE);
10699 return FAILED;
10700 }
10701 /* Fallthrough to below, set ATNO after we set SCB_CONTROL */
10702 }
10703 aic_outb(p, scb_control | MK_MESSAGE, SCB_CONTROL);
10704 if(!disconnected)
10705 {
10706 aic_outb(p, HOST_MSG, MSG_OUT);
10707 aic_outb(p, aic_inb(p, SCSISIGI) | ATNO, SCSISIGO);
10708 }
10709 aic_outb(p, saved_hscbptr, SCBPTR);
10710 }
10711 else
10712 {
10713 /*
10714 * The scb isn't in the card at all and it is active and it isn't in
10715 * any of the queues, so it must be disconnected and paged out. Fall
10716 * through to the code below.
10717 */
10718 disconnected = 1;
10719 }
10720
10721 p->flags |= AHC_ABORT_PENDING;
10722 scb->flags |= SCB_QUEUED_ABORT | SCB_ABORT | SCB_RECOVERY_SCB;
10723 scb->hscb->control |= MK_MESSAGE;
10724 if(disconnected)
10725 {
10726 if (aic7xxx_verbose & VERBOSE_ABORT_PROCESS)
10727 printk(INFO_LEAD "SCB disconnected. Queueing Abort"
10728 " SCB.\n", p->host_no, CTL_OF_SCB(scb));
10729 p->qinfifo[p->qinfifonext++] = scb->hscb->tag;
10730 if (p->features & AHC_QUEUE_REGS)
10731 aic_outb(p, p->qinfifonext, HNSCB_QOFF);
10732 else
10733 aic_outb(p, p->qinfifonext, KERNEL_QINPOS);
10734 }
10735 unpause_sequencer(p, FALSE);
10736 spin_unlock_irq(p->host->host_lock);
10737 msleep(1000/4);
10738 spin_lock_irq(p->host->host_lock);
10739 if (p->flags & AHC_ABORT_PENDING)
10740 {
10741 if (aic7xxx_verbose & VERBOSE_ABORT_RETURN)
10742 printk(INFO_LEAD "Abort never delivered, returning FAILED\n", p->host_no,
10743 CTL_OF_CMD(cmd));
10744 p->flags &= ~AHC_ABORT_PENDING;
10745 return FAILED;
10746 }
10747 if (aic7xxx_verbose & VERBOSE_ABORT_RETURN)
10748 printk(INFO_LEAD "Abort successful.\n", p->host_no, CTL_OF_CMD(cmd));
10749 return SUCCESS;
10750
10751 success:
10752 if (aic7xxx_verbose & VERBOSE_ABORT_RETURN)
10753 printk(INFO_LEAD "Abort successful.\n", p->host_no, CTL_OF_CMD(cmd));
10754 aic7xxx_run_done_queue(p, TRUE);
10755 unpause_sequencer(p, FALSE);
10756 return SUCCESS;
10757 }
10758
10759 static int aic7xxx_abort(struct scsi_cmnd *cmd)
10760 {
10761 int rc;
10762
10763 spin_lock_irq(cmd->device->host->host_lock);
10764 rc = __aic7xxx_abort(cmd);
10765 spin_unlock_irq(cmd->device->host->host_lock);
10766
10767 return rc;
10768 }
10769
10770
10771 /*+F*************************************************************************
10772 * Function:
10773 * aic7xxx_reset
10774 *
10775 * Description:
10776 * Resetting the bus always succeeds - is has to, otherwise the
10777 * kernel will panic! Try a surgical technique - sending a BUS
10778 * DEVICE RESET message - on the offending target before pulling
10779 * the SCSI bus reset line.
10780 *-F*************************************************************************/
10781 static int aic7xxx_reset(struct scsi_cmnd *cmd)
10782 {
10783 struct aic7xxx_scb *scb;
10784 struct aic7xxx_host *p;
10785 struct aic_dev_data *aic_dev;
10786
10787 p = (struct aic7xxx_host *) cmd->device->host->hostdata;
10788 spin_lock_irq(p->host->host_lock);
10789
10790 aic_dev = AIC_DEV(cmd);
10791 if(aic7xxx_position(cmd) < p->scb_data->numscbs)
10792 {
10793 scb = (p->scb_data->scb_array[aic7xxx_position(cmd)]);
10794 if (scb->cmd != cmd)
10795 scb = NULL;
10796 }
10797 else
10798 {
10799 scb = NULL;
10800 }
10801
10802 /*
10803 * I added a new config option to the driver: "panic_on_abort" that will
10804 * cause the driver to panic and the machine to stop on the first abort
10805 * or reset call into the driver. At that point, it prints out a lot of
10806 * useful information for me which I can then use to try and debug the
10807 * problem. Simply enable the boot time prompt in order to activate this
10808 * code.
10809 */
10810 if (aic7xxx_panic_on_abort)
10811 aic7xxx_panic_abort(p, cmd);
10812
10813 pause_sequencer(p);
10814
10815 while((aic_inb(p, INTSTAT) & INT_PEND) && !(p->flags & AHC_IN_ISR))
10816 {
10817 aic7xxx_isr(p);
10818 pause_sequencer(p);
10819 }
10820 aic7xxx_done_cmds_complete(p);
10821
10822 if(scb && (scb->cmd == NULL))
10823 {
10824 /*
10825 * We just completed the command when we ran the isr stuff, so we no
10826 * longer have it.
10827 */
10828 unpause_sequencer(p, FALSE);
10829 spin_unlock_irq(p->host->host_lock);
10830 return SUCCESS;
10831 }
10832
10833 /*
10834 * By this point, we want to already know what we are going to do and
10835 * only have the following code implement our course of action.
10836 */
10837 aic7xxx_reset_channel(p, cmd->device->channel, TRUE);
10838 if (p->features & AHC_TWIN)
10839 {
10840 aic7xxx_reset_channel(p, cmd->device->channel ^ 0x01, TRUE);
10841 restart_sequencer(p);
10842 }
10843 aic_outb(p, aic_inb(p, SIMODE1) & ~(ENREQINIT|ENBUSFREE), SIMODE1);
10844 aic7xxx_clear_intstat(p);
10845 p->flags &= ~AHC_HANDLING_REQINITS;
10846 p->msg_type = MSG_TYPE_NONE;
10847 p->msg_index = 0;
10848 p->msg_len = 0;
10849 aic7xxx_run_done_queue(p, TRUE);
10850 unpause_sequencer(p, FALSE);
10851 spin_unlock_irq(p->host->host_lock);
10852 ssleep(2);
10853 return SUCCESS;
10854 }
10855
10856 /*+F*************************************************************************
10857 * Function:
10858 * aic7xxx_biosparam
10859 *
10860 * Description:
10861 * Return the disk geometry for the given SCSI device.
10862 *
10863 * Note:
10864 * This function is broken for today's really large drives and needs
10865 * fixed.
10866 *-F*************************************************************************/
10867 static int
10868 aic7xxx_biosparam(struct scsi_device *sdev, struct block_device *bdev,
10869 sector_t capacity, int geom[])
10870 {
10871 sector_t heads, sectors, cylinders;
10872 int ret;
10873 struct aic7xxx_host *p;
10874 unsigned char *buf;
10875
10876 p = (struct aic7xxx_host *) sdev->host->hostdata;
10877 buf = scsi_bios_ptable(bdev);
10878
10879 if ( buf )
10880 {
10881 ret = scsi_partsize(buf, capacity, &geom[2], &geom[0], &geom[1]);
10882 kfree(buf);
10883 if ( ret != -1 )
10884 return(ret);
10885 }
10886
10887 heads = 64;
10888 sectors = 32;
10889 cylinders = capacity >> 11;
10890
10891 if ((p->flags & AHC_EXTEND_TRANS_A) && (cylinders > 1024))
10892 {
10893 heads = 255;
10894 sectors = 63;
10895 cylinders = capacity >> 14;
10896 if(capacity > (65535 * heads * sectors))
10897 cylinders = 65535;
10898 else
10899 cylinders = ((unsigned int)capacity) / (unsigned int)(heads * sectors);
10900 }
10901
10902 geom[0] = (int)heads;
10903 geom[1] = (int)sectors;
10904 geom[2] = (int)cylinders;
10905
10906 return (0);
10907 }
10908
10909 /*+F*************************************************************************
10910 * Function:
10911 * aic7xxx_release
10912 *
10913 * Description:
10914 * Free the passed in Scsi_Host memory structures prior to unloading the
10915 * module.
10916 *-F*************************************************************************/
10917 static int
10918 aic7xxx_release(struct Scsi_Host *host)
10919 {
10920 struct aic7xxx_host *p = (struct aic7xxx_host *) host->hostdata;
10921 struct aic7xxx_host *next, *prev;
10922
10923 if(p->irq)
10924 free_irq(p->irq, p);
10925 #ifdef MMAPIO
10926 if(p->maddr)
10927 {
10928 iounmap(p->maddr);
10929 }
10930 #endif /* MMAPIO */
10931 if(!p->pdev)
10932 release_region(p->base, MAXREG - MINREG);
10933 #ifdef CONFIG_PCI
10934 else {
10935 pci_release_regions(p->pdev);
10936 pci_dev_put(p->pdev);
10937 }
10938 #endif
10939 prev = NULL;
10940 next = first_aic7xxx;
10941 while(next != NULL)
10942 {
10943 if(next == p)
10944 {
10945 if(prev == NULL)
10946 first_aic7xxx = next->next;
10947 else
10948 prev->next = next->next;
10949 }
10950 else
10951 {
10952 prev = next;
10953 }
10954 next = next->next;
10955 }
10956 aic7xxx_free(p);
10957 return(0);
10958 }
10959
10960 /*+F*************************************************************************
10961 * Function:
10962 * aic7xxx_print_card
10963 *
10964 * Description:
10965 * Print out all of the control registers on the card
10966 *
10967 * NOTE: This function is not yet safe for use on the VLB and EISA
10968 * controllers, so it isn't used on those controllers at all.
10969 *-F*************************************************************************/
10970 static void
10971 aic7xxx_print_card(struct aic7xxx_host *p)
10972 {
10973 int i, j, k, chip;
10974 static struct register_ranges {
10975 int num_ranges;
10976 int range_val[32];
10977 } cards_ds[] = {
10978 { 0, {0,} }, /* none */
10979 {10, {0x00, 0x05, 0x08, 0x11, 0x18, 0x19, 0x1f, 0x1f, 0x60, 0x60, /*7771*/
10980 0x62, 0x66, 0x80, 0x8e, 0x90, 0x95, 0x97, 0x97, 0x9b, 0x9f} },
10981 { 9, {0x00, 0x05, 0x08, 0x11, 0x18, 0x1f, 0x60, 0x60, 0x62, 0x66, /*7850*/
10982 0x80, 0x8e, 0x90, 0x95, 0x97, 0x97, 0x9a, 0x9f} },
10983 { 9, {0x00, 0x05, 0x08, 0x11, 0x18, 0x1f, 0x60, 0x60, 0x62, 0x66, /*7860*/
10984 0x80, 0x8e, 0x90, 0x95, 0x97, 0x97, 0x9a, 0x9f} },
10985 {10, {0x00, 0x05, 0x08, 0x11, 0x18, 0x19, 0x1c, 0x1f, 0x60, 0x60, /*7870*/
10986 0x62, 0x66, 0x80, 0x8e, 0x90, 0x95, 0x97, 0x97, 0x9a, 0x9f} },
10987 {10, {0x00, 0x05, 0x08, 0x11, 0x18, 0x1a, 0x1c, 0x1f, 0x60, 0x60, /*7880*/
10988 0x62, 0x66, 0x80, 0x8e, 0x90, 0x95, 0x97, 0x97, 0x9a, 0x9f} },
10989 {16, {0x00, 0x05, 0x08, 0x11, 0x18, 0x1f, 0x60, 0x60, 0x62, 0x66, /*7890*/
10990 0x84, 0x8e, 0x90, 0x95, 0x97, 0x97, 0x9a, 0x9a, 0x9f, 0x9f,
10991 0xe0, 0xf1, 0xf4, 0xf4, 0xf6, 0xf6, 0xf8, 0xf8, 0xfa, 0xfc,
10992 0xfe, 0xff} },
10993 {12, {0x00, 0x05, 0x08, 0x11, 0x18, 0x19, 0x1b, 0x1f, 0x60, 0x60, /*7895*/
10994 0x62, 0x66, 0x80, 0x8e, 0x90, 0x95, 0x97, 0x97, 0x9a, 0x9a,
10995 0x9f, 0x9f, 0xe0, 0xf1} },
10996 {16, {0x00, 0x05, 0x08, 0x11, 0x18, 0x1f, 0x60, 0x60, 0x62, 0x66, /*7896*/
10997 0x84, 0x8e, 0x90, 0x95, 0x97, 0x97, 0x9a, 0x9a, 0x9f, 0x9f,
10998 0xe0, 0xf1, 0xf4, 0xf4, 0xf6, 0xf6, 0xf8, 0xf8, 0xfa, 0xfc,
10999 0xfe, 0xff} },
11000 {12, {0x00, 0x05, 0x08, 0x11, 0x18, 0x1f, 0x60, 0x60, 0x62, 0x66, /*7892*/
11001 0x84, 0x8e, 0x90, 0x95, 0x97, 0x97, 0x9a, 0x9a, 0x9c, 0x9f,
11002 0xe0, 0xf1, 0xf4, 0xfc} },
11003 {12, {0x00, 0x05, 0x08, 0x11, 0x18, 0x1f, 0x60, 0x60, 0x62, 0x66, /*7899*/
11004 0x84, 0x8e, 0x90, 0x95, 0x97, 0x97, 0x9a, 0x9a, 0x9c, 0x9f,
11005 0xe0, 0xf1, 0xf4, 0xfc} },
11006 };
11007 chip = p->chip & AHC_CHIPID_MASK;
11008 printk("%s at ",
11009 board_names[p->board_name_index]);
11010 switch(p->chip & ~AHC_CHIPID_MASK)
11011 {
11012 case AHC_VL:
11013 printk("VLB Slot %d.\n", p->pci_device_fn);
11014 break;
11015 case AHC_EISA:
11016 printk("EISA Slot %d.\n", p->pci_device_fn);
11017 break;
11018 case AHC_PCI:
11019 default:
11020 printk("PCI %d/%d/%d.\n", p->pci_bus, PCI_SLOT(p->pci_device_fn),
11021 PCI_FUNC(p->pci_device_fn));
11022 break;
11023 }
11024
11025 /*
11026 * the registers on the card....
11027 */
11028 printk("Card Dump:\n");
11029 k = 0;
11030 for(i=0; i<cards_ds[chip].num_ranges; i++)
11031 {
11032 for(j = cards_ds[chip].range_val[ i * 2 ];
11033 j <= cards_ds[chip].range_val[ i * 2 + 1 ] ;
11034 j++)
11035 {
11036 printk("%02x:%02x ", j, aic_inb(p, j));
11037 if(++k == 13)
11038 {
11039 printk("\n");
11040 k=0;
11041 }
11042 }
11043 }
11044 if(k != 0)
11045 printk("\n");
11046
11047 /*
11048 * If this was an Ultra2 controller, then we just hosed the card in terms
11049 * of the QUEUE REGS. This function is only called at init time or by
11050 * the panic_abort function, so it's safe to assume a generic init time
11051 * setting here
11052 */
11053
11054 if(p->features & AHC_QUEUE_REGS)
11055 {
11056 aic_outb(p, 0, SDSCB_QOFF);
11057 aic_outb(p, 0, SNSCB_QOFF);
11058 aic_outb(p, 0, HNSCB_QOFF);
11059 }
11060
11061 }
11062
11063 /*+F*************************************************************************
11064 * Function:
11065 * aic7xxx_print_scratch_ram
11066 *
11067 * Description:
11068 * Print out the scratch RAM values on the card.
11069 *-F*************************************************************************/
11070 static void
11071 aic7xxx_print_scratch_ram(struct aic7xxx_host *p)
11072 {
11073 int i, k;
11074
11075 k = 0;
11076 printk("Scratch RAM:\n");
11077 for(i = SRAM_BASE; i < SEQCTL; i++)
11078 {
11079 printk("%02x:%02x ", i, aic_inb(p, i));
11080 if(++k == 13)
11081 {
11082 printk("\n");
11083 k=0;
11084 }
11085 }
11086 if (p->features & AHC_MORE_SRAM)
11087 {
11088 for(i = TARG_OFFSET; i < 0x80; i++)
11089 {
11090 printk("%02x:%02x ", i, aic_inb(p, i));
11091 if(++k == 13)
11092 {
11093 printk("\n");
11094 k=0;
11095 }
11096 }
11097 }
11098 printk("\n");
11099 }
11100
11101
11102 #include "aic7xxx_old/aic7xxx_proc.c"
11103
11104 MODULE_LICENSE("Dual BSD/GPL");
11105 MODULE_VERSION(AIC7XXX_H_VERSION);
11106
11107
11108 static struct scsi_host_template driver_template = {
11109 .proc_info = aic7xxx_proc_info,
11110 .detect = aic7xxx_detect,
11111 .release = aic7xxx_release,
11112 .info = aic7xxx_info,
11113 .queuecommand = aic7xxx_queue,
11114 .slave_alloc = aic7xxx_slave_alloc,
11115 .slave_configure = aic7xxx_slave_configure,
11116 .slave_destroy = aic7xxx_slave_destroy,
11117 .bios_param = aic7xxx_biosparam,
11118 .eh_abort_handler = aic7xxx_abort,
11119 .eh_device_reset_handler = aic7xxx_bus_device_reset,
11120 .eh_host_reset_handler = aic7xxx_reset,
11121 .can_queue = 255,
11122 .this_id = -1,
11123 .max_sectors = 2048,
11124 .cmd_per_lun = 3,
11125 .use_clustering = ENABLE_CLUSTERING,
11126 };
11127
11128 #include "scsi_module.c"
11129
11130 /*
11131 * Overrides for Emacs so that we almost follow Linus's tabbing style.
11132 * Emacs will notice this stuff at the end of the file and automatically
11133 * adjust the settings for this buffer only. This must remain at the end
11134 * of the file.
11135 * ---------------------------------------------------------------------------
11136 * Local variables:
11137 * c-indent-level: 2
11138 * c-brace-imaginary-offset: 0
11139 * c-brace-offset: -2
11140 * c-argdecl-indent: 2
11141 * c-label-offset: -2
11142 * c-continued-statement-offset: 2
11143 * c-continued-brace-offset: 0
11144 * indent-tabs-mode: nil
11145 * tab-width: 8
11146 * End:
11147 */