[PATCH] Split struct request ->flags into two parts
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / scsi / aic7xxx_old.c
1 /*+M*************************************************************************
2 * Adaptec AIC7xxx device driver for Linux.
3 *
4 * Copyright (c) 1994 John Aycock
5 * The University of Calgary Department of Computer Science.
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2, or (at your option)
10 * any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; see the file COPYING. If not, write to
19 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
20 *
21 * Sources include the Adaptec 1740 driver (aha1740.c), the Ultrastor 24F
22 * driver (ultrastor.c), various Linux kernel source, the Adaptec EISA
23 * config file (!adp7771.cfg), the Adaptec AHA-2740A Series User's Guide,
24 * the Linux Kernel Hacker's Guide, Writing a SCSI Device Driver for Linux,
25 * the Adaptec 1542 driver (aha1542.c), the Adaptec EISA overlay file
26 * (adp7770.ovl), the Adaptec AHA-2740 Series Technical Reference Manual,
27 * the Adaptec AIC-7770 Data Book, the ANSI SCSI specification, the
28 * ANSI SCSI-2 specification (draft 10c), ...
29 *
30 * --------------------------------------------------------------------------
31 *
32 * Modifications by Daniel M. Eischen (deischen@iworks.InterWorks.org):
33 *
34 * Substantially modified to include support for wide and twin bus
35 * adapters, DMAing of SCBs, tagged queueing, IRQ sharing, bug fixes,
36 * SCB paging, and other rework of the code.
37 *
38 * Parts of this driver were also based on the FreeBSD driver by
39 * Justin T. Gibbs. His copyright follows:
40 *
41 * --------------------------------------------------------------------------
42 * Copyright (c) 1994-1997 Justin Gibbs.
43 * All rights reserved.
44 *
45 * Redistribution and use in source and binary forms, with or without
46 * modification, are permitted provided that the following conditions
47 * are met:
48 * 1. Redistributions of source code must retain the above copyright
49 * notice, this list of conditions, and the following disclaimer,
50 * without modification, immediately at the beginning of the file.
51 * 2. Redistributions in binary form must reproduce the above copyright
52 * notice, this list of conditions and the following disclaimer in the
53 * documentation and/or other materials provided with the distribution.
54 * 3. The name of the author may not be used to endorse or promote products
55 * derived from this software without specific prior written permission.
56 *
57 * Where this Software is combined with software released under the terms of
58 * the GNU General Public License ("GPL") and the terms of the GPL would require the
59 * combined work to also be released under the terms of the GPL, the terms
60 * and conditions of this License will apply in addition to those of the
61 * GPL with the exception of any terms or conditions of this License that
62 * conflict with, or are expressly prohibited by, the GPL.
63 *
64 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
65 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
66 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
67 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
68 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
69 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
70 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
71 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
72 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
73 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
74 * SUCH DAMAGE.
75 *
76 * $Id: aic7xxx.c,v 1.119 1997/06/27 19:39:18 gibbs Exp $
77 *---------------------------------------------------------------------------
78 *
79 * Thanks also go to (in alphabetical order) the following:
80 *
81 * Rory Bolt - Sequencer bug fixes
82 * Jay Estabrook - Initial DEC Alpha support
83 * Doug Ledford - Much needed abort/reset bug fixes
84 * Kai Makisara - DMAing of SCBs
85 *
86 * A Boot time option was also added for not resetting the scsi bus.
87 *
88 * Form: aic7xxx=extended
89 * aic7xxx=no_reset
90 * aic7xxx=ultra
91 * aic7xxx=irq_trigger:[0,1] # 0 edge, 1 level
92 * aic7xxx=verbose
93 *
94 * Daniel M. Eischen, deischen@iworks.InterWorks.org, 1/23/97
95 *
96 * $Id: aic7xxx.c,v 4.1 1997/06/12 08:23:42 deang Exp $
97 *-M*************************************************************************/
98
99 /*+M**************************************************************************
100 *
101 * Further driver modifications made by Doug Ledford <dledford@redhat.com>
102 *
103 * Copyright (c) 1997-1999 Doug Ledford
104 *
105 * These changes are released under the same licensing terms as the FreeBSD
106 * driver written by Justin Gibbs. Please see his Copyright notice above
107 * for the exact terms and conditions covering my changes as well as the
108 * warranty statement.
109 *
110 * Modifications made to the aic7xxx.c,v 4.1 driver from Dan Eischen include
111 * but are not limited to:
112 *
113 * 1: Import of the latest FreeBSD sequencer code for this driver
114 * 2: Modification of kernel code to accommodate different sequencer semantics
115 * 3: Extensive changes throughout kernel portion of driver to improve
116 * abort/reset processing and error hanndling
117 * 4: Other work contributed by various people on the Internet
118 * 5: Changes to printk information and verbosity selection code
119 * 6: General reliability related changes, especially in IRQ management
120 * 7: Modifications to the default probe/attach order for supported cards
121 * 8: SMP friendliness has been improved
122 *
123 * Overall, this driver represents a significant departure from the official
124 * aic7xxx driver released by Dan Eischen in two ways. First, in the code
125 * itself. A diff between the two version of the driver is now a several
126 * thousand line diff. Second, in approach to solving the same problem. The
127 * problem is importing the FreeBSD aic7xxx driver code to linux can be a
128 * difficult and time consuming process, that also can be error prone. Dan
129 * Eischen's official driver uses the approach that the linux and FreeBSD
130 * drivers should be as identical as possible. To that end, his next version
131 * of this driver will be using a mid-layer code library that he is developing
132 * to moderate communications between the linux mid-level SCSI code and the
133 * low level FreeBSD driver. He intends to be able to essentially drop the
134 * FreeBSD driver into the linux kernel with only a few minor tweaks to some
135 * include files and the like and get things working, making for fast easy
136 * imports of the FreeBSD code into linux.
137 *
138 * I disagree with Dan's approach. Not that I don't think his way of doing
139 * things would be nice, easy to maintain, and create a more uniform driver
140 * between FreeBSD and Linux. I have no objection to those issues. My
141 * disagreement is on the needed functionality. There simply are certain
142 * things that are done differently in FreeBSD than linux that will cause
143 * problems for this driver regardless of any middle ware Dan implements.
144 * The biggest example of this at the moment is interrupt semantics. Linux
145 * doesn't provide the same protection techniques as FreeBSD does, nor can
146 * they be easily implemented in any middle ware code since they would truly
147 * belong in the kernel proper and would effect all drivers. For the time
148 * being, I see issues such as these as major stumbling blocks to the
149 * reliability of code based upon such middle ware. Therefore, I choose to
150 * use a different approach to importing the FreeBSD code that doesn't
151 * involve any middle ware type code. My approach is to import the sequencer
152 * code from FreeBSD wholesale. Then, to only make changes in the kernel
153 * portion of the driver as they are needed for the new sequencer semantics.
154 * In this way, the portion of the driver that speaks to the rest of the
155 * linux kernel is fairly static and can be changed/modified to solve
156 * any problems one might encounter without concern for the FreeBSD driver.
157 *
158 * Note: If time and experience should prove me wrong that the middle ware
159 * code Dan writes is reliable in its operation, then I'll retract my above
160 * statements. But, for those that don't know, I'm from Missouri (in the US)
161 * and our state motto is "The Show-Me State". Well, before I will put
162 * faith into it, you'll have to show me that it works :)
163 *
164 *_M*************************************************************************/
165
166 /*
167 * The next three defines are user configurable. These should be the only
168 * defines a user might need to get in here and change. There are other
169 * defines buried deeper in the code, but those really shouldn't need touched
170 * under normal conditions.
171 */
172
173 /*
174 * AIC7XXX_STRICT_PCI_SETUP
175 * Should we assume the PCI config options on our controllers are set with
176 * sane and proper values, or should we be anal about our PCI config
177 * registers and force them to what we want? The main advantage to
178 * defining this option is on non-Intel hardware where the BIOS may not
179 * have been run to set things up, or if you have one of the BIOSless
180 * Adaptec controllers, such as a 2910, that don't get set up by the
181 * BIOS. However, keep in mind that we really do set the most important
182 * items in the driver regardless of this setting, this only controls some
183 * of the more esoteric PCI options on these cards. In that sense, I
184 * would default to leaving this off. However, if people wish to try
185 * things both ways, that would also help me to know if there are some
186 * machines where it works one way but not another.
187 *
188 * -- July 7, 17:09
189 * OK...I need this on my machine for testing, so the default is to
190 * leave it defined.
191 *
192 * -- July 7, 18:49
193 * I needed it for testing, but it didn't make any difference, so back
194 * off she goes.
195 *
196 * -- July 16, 23:04
197 * I turned it back on to try and compensate for the 2.1.x PCI code
198 * which no longer relies solely on the BIOS and now tries to set
199 * things itself.
200 */
201
202 #define AIC7XXX_STRICT_PCI_SETUP
203
204 /*
205 * AIC7XXX_VERBOSE_DEBUGGING
206 * This option enables a lot of extra printk();s in the code, surrounded
207 * by if (aic7xxx_verbose ...) statements. Executing all of those if
208 * statements and the extra checks can get to where it actually does have
209 * an impact on CPU usage and such, as well as code size. Disabling this
210 * define will keep some of those from becoming part of the code.
211 *
212 * NOTE: Currently, this option has no real effect, I will be adding the
213 * various #ifdef's in the code later when I've decided a section is
214 * complete and no longer needs debugging. OK...a lot of things are now
215 * surrounded by this define, so turning this off does have an impact.
216 */
217
218 /*
219 * #define AIC7XXX_VERBOSE_DEBUGGING
220 */
221
222 #include <linux/module.h>
223 #include <stdarg.h>
224 #include <asm/io.h>
225 #include <asm/irq.h>
226 #include <asm/byteorder.h>
227 #include <linux/string.h>
228 #include <linux/errno.h>
229 #include <linux/kernel.h>
230 #include <linux/ioport.h>
231 #include <linux/delay.h>
232 #include <linux/sched.h>
233 #include <linux/pci.h>
234 #include <linux/proc_fs.h>
235 #include <linux/blkdev.h>
236 #include <linux/init.h>
237 #include <linux/spinlock.h>
238 #include <linux/smp.h>
239 #include <linux/interrupt.h>
240 #include "scsi.h"
241 #include <scsi/scsi_host.h>
242 #include "aic7xxx_old/aic7xxx.h"
243
244 #include "aic7xxx_old/sequencer.h"
245 #include "aic7xxx_old/scsi_message.h"
246 #include "aic7xxx_old/aic7xxx_reg.h"
247 #include <scsi/scsicam.h>
248
249 #include <linux/stat.h>
250 #include <linux/slab.h> /* for kmalloc() */
251
252 #define AIC7XXX_C_VERSION "5.2.6"
253
254 #define ALL_TARGETS -1
255 #define ALL_CHANNELS -1
256 #define ALL_LUNS -1
257 #define MAX_TARGETS 16
258 #define MAX_LUNS 8
259 #ifndef TRUE
260 # define TRUE 1
261 #endif
262 #ifndef FALSE
263 # define FALSE 0
264 #endif
265
266 #if defined(__powerpc__) || defined(__i386__) || defined(__x86_64__)
267 # define MMAPIO
268 #endif
269
270 /*
271 * You can try raising me for better performance or lowering me if you have
272 * flaky devices that go off the scsi bus when hit with too many tagged
273 * commands (like some IBM SCSI-3 LVD drives).
274 */
275 #define AIC7XXX_CMDS_PER_DEVICE 32
276
277 typedef struct
278 {
279 unsigned char tag_commands[16]; /* Allow for wide/twin adapters. */
280 } adapter_tag_info_t;
281
282 /*
283 * Make a define that will tell the driver not to the default tag depth
284 * everywhere.
285 */
286 #define DEFAULT_TAG_COMMANDS {0, 0, 0, 0, 0, 0, 0, 0,\
287 0, 0, 0, 0, 0, 0, 0, 0}
288
289 /*
290 * Modify this as you see fit for your system. By setting tag_commands
291 * to 0, the driver will use it's own algorithm for determining the
292 * number of commands to use (see above). When 255, the driver will
293 * not enable tagged queueing for that particular device. When positive
294 * (> 0) and (< 255) the values in the array are used for the queue_depth.
295 * Note that the maximum value for an entry is 254, but you're insane if
296 * you try to use that many commands on one device.
297 *
298 * In this example, the first line will disable tagged queueing for all
299 * the devices on the first probed aic7xxx adapter.
300 *
301 * The second line enables tagged queueing with 4 commands/LUN for IDs
302 * (1, 2-11, 13-15), disables tagged queueing for ID 12, and tells the
303 * driver to use its own algorithm for ID 1.
304 *
305 * The third line is the same as the first line.
306 *
307 * The fourth line disables tagged queueing for devices 0 and 3. It
308 * enables tagged queueing for the other IDs, with 16 commands/LUN
309 * for IDs 1 and 4, 127 commands/LUN for ID 8, and 4 commands/LUN for
310 * IDs 2, 5-7, and 9-15.
311 */
312
313 /*
314 * NOTE: The below structure is for reference only, the actual structure
315 * to modify in order to change things is found after this fake one.
316 *
317 adapter_tag_info_t aic7xxx_tag_info[] =
318 {
319 {DEFAULT_TAG_COMMANDS},
320 {{4, 0, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 255, 4, 4, 4}},
321 {DEFAULT_TAG_COMMANDS},
322 {{255, 16, 4, 255, 16, 4, 4, 4, 127, 4, 4, 4, 4, 4, 4, 4}}
323 };
324 */
325
326 static adapter_tag_info_t aic7xxx_tag_info[] =
327 {
328 {DEFAULT_TAG_COMMANDS},
329 {DEFAULT_TAG_COMMANDS},
330 {DEFAULT_TAG_COMMANDS},
331 {DEFAULT_TAG_COMMANDS},
332 {DEFAULT_TAG_COMMANDS},
333 {DEFAULT_TAG_COMMANDS},
334 {DEFAULT_TAG_COMMANDS},
335 {DEFAULT_TAG_COMMANDS},
336 {DEFAULT_TAG_COMMANDS},
337 {DEFAULT_TAG_COMMANDS},
338 {DEFAULT_TAG_COMMANDS},
339 {DEFAULT_TAG_COMMANDS},
340 {DEFAULT_TAG_COMMANDS},
341 {DEFAULT_TAG_COMMANDS},
342 {DEFAULT_TAG_COMMANDS},
343 {DEFAULT_TAG_COMMANDS}
344 };
345
346
347 /*
348 * Define an array of board names that can be indexed by aha_type.
349 * Don't forget to change this when changing the types!
350 */
351 static const char *board_names[] = {
352 "AIC-7xxx Unknown", /* AIC_NONE */
353 "Adaptec AIC-7810 Hardware RAID Controller", /* AIC_7810 */
354 "Adaptec AIC-7770 SCSI host adapter", /* AIC_7770 */
355 "Adaptec AHA-274X SCSI host adapter", /* AIC_7771 */
356 "Adaptec AHA-284X SCSI host adapter", /* AIC_284x */
357 "Adaptec AIC-7850 SCSI host adapter", /* AIC_7850 */
358 "Adaptec AIC-7855 SCSI host adapter", /* AIC_7855 */
359 "Adaptec AIC-7860 Ultra SCSI host adapter", /* AIC_7860 */
360 "Adaptec AHA-2940A Ultra SCSI host adapter", /* AIC_7861 */
361 "Adaptec AIC-7870 SCSI host adapter", /* AIC_7870 */
362 "Adaptec AHA-294X SCSI host adapter", /* AIC_7871 */
363 "Adaptec AHA-394X SCSI host adapter", /* AIC_7872 */
364 "Adaptec AHA-398X SCSI host adapter", /* AIC_7873 */
365 "Adaptec AHA-2944 SCSI host adapter", /* AIC_7874 */
366 "Adaptec AIC-7880 Ultra SCSI host adapter", /* AIC_7880 */
367 "Adaptec AHA-294X Ultra SCSI host adapter", /* AIC_7881 */
368 "Adaptec AHA-394X Ultra SCSI host adapter", /* AIC_7882 */
369 "Adaptec AHA-398X Ultra SCSI host adapter", /* AIC_7883 */
370 "Adaptec AHA-2944 Ultra SCSI host adapter", /* AIC_7884 */
371 "Adaptec AHA-2940UW Pro Ultra SCSI host adapter", /* AIC_7887 */
372 "Adaptec AIC-7895 Ultra SCSI host adapter", /* AIC_7895 */
373 "Adaptec AIC-7890/1 Ultra2 SCSI host adapter", /* AIC_7890 */
374 "Adaptec AHA-293X Ultra2 SCSI host adapter", /* AIC_7890 */
375 "Adaptec AHA-294X Ultra2 SCSI host adapter", /* AIC_7890 */
376 "Adaptec AIC-7896/7 Ultra2 SCSI host adapter", /* AIC_7896 */
377 "Adaptec AHA-394X Ultra2 SCSI host adapter", /* AIC_7897 */
378 "Adaptec AHA-395X Ultra2 SCSI host adapter", /* AIC_7897 */
379 "Adaptec PCMCIA SCSI controller", /* card bus stuff */
380 "Adaptec AIC-7892 Ultra 160/m SCSI host adapter", /* AIC_7892 */
381 "Adaptec AIC-7899 Ultra 160/m SCSI host adapter", /* AIC_7899 */
382 };
383
384 /*
385 * There should be a specific return value for this in scsi.h, but
386 * it seems that most drivers ignore it.
387 */
388 #define DID_UNDERFLOW DID_ERROR
389
390 /*
391 * What we want to do is have the higher level scsi driver requeue
392 * the command to us. There is no specific driver status for this
393 * condition, but the higher level scsi driver will requeue the
394 * command on a DID_BUS_BUSY error.
395 *
396 * Upon further inspection and testing, it seems that DID_BUS_BUSY
397 * will *always* retry the command. We can get into an infinite loop
398 * if this happens when we really want some sort of counter that
399 * will automatically abort/reset the command after so many retries.
400 * Using DID_ERROR will do just that. (Made by a suggestion by
401 * Doug Ledford 8/1/96)
402 */
403 #define DID_RETRY_COMMAND DID_ERROR
404
405 #define HSCSIID 0x07
406 #define SCSI_RESET 0x040
407
408 /*
409 * EISA/VL-bus stuff
410 */
411 #define MINSLOT 1
412 #define MAXSLOT 15
413 #define SLOTBASE(x) ((x) << 12)
414 #define BASE_TO_SLOT(x) ((x) >> 12)
415
416 /*
417 * Standard EISA Host ID regs (Offset from slot base)
418 */
419 #define AHC_HID0 0x80 /* 0,1: msb of ID2, 2-7: ID1 */
420 #define AHC_HID1 0x81 /* 0-4: ID3, 5-7: LSB ID2 */
421 #define AHC_HID2 0x82 /* product */
422 #define AHC_HID3 0x83 /* firmware revision */
423
424 /*
425 * AIC-7770 I/O range to reserve for a card
426 */
427 #define MINREG 0xC00
428 #define MAXREG 0xCFF
429
430 #define INTDEF 0x5C /* Interrupt Definition Register */
431
432 /*
433 * AIC-78X0 PCI registers
434 */
435 #define CLASS_PROGIF_REVID 0x08
436 #define DEVREVID 0x000000FFul
437 #define PROGINFC 0x0000FF00ul
438 #define SUBCLASS 0x00FF0000ul
439 #define BASECLASS 0xFF000000ul
440
441 #define CSIZE_LATTIME 0x0C
442 #define CACHESIZE 0x0000003Ful /* only 5 bits */
443 #define LATTIME 0x0000FF00ul
444
445 #define DEVCONFIG 0x40
446 #define SCBSIZE32 0x00010000ul /* aic789X only */
447 #define MPORTMODE 0x00000400ul /* aic7870 only */
448 #define RAMPSM 0x00000200ul /* aic7870 only */
449 #define RAMPSM_ULTRA2 0x00000004
450 #define VOLSENSE 0x00000100ul
451 #define SCBRAMSEL 0x00000080ul
452 #define SCBRAMSEL_ULTRA2 0x00000008
453 #define MRDCEN 0x00000040ul
454 #define EXTSCBTIME 0x00000020ul /* aic7870 only */
455 #define EXTSCBPEN 0x00000010ul /* aic7870 only */
456 #define BERREN 0x00000008ul
457 #define DACEN 0x00000004ul
458 #define STPWLEVEL 0x00000002ul
459 #define DIFACTNEGEN 0x00000001ul /* aic7870 only */
460
461 #define SCAMCTL 0x1a /* Ultra2 only */
462 #define CCSCBBADDR 0xf0 /* aic7895/6/7 */
463
464 /*
465 * Define the different types of SEEPROMs on aic7xxx adapters
466 * and make it also represent the address size used in accessing
467 * its registers. The 93C46 chips have 1024 bits organized into
468 * 64 16-bit words, while the 93C56 chips have 2048 bits organized
469 * into 128 16-bit words. The C46 chips use 6 bits to address
470 * each word, while the C56 and C66 (4096 bits) use 8 bits to
471 * address each word.
472 */
473 typedef enum {C46 = 6, C56_66 = 8} seeprom_chip_type;
474
475 /*
476 *
477 * Define the format of the SEEPROM registers (16 bits).
478 *
479 */
480 struct seeprom_config {
481
482 /*
483 * SCSI ID Configuration Flags
484 */
485 #define CFXFER 0x0007 /* synchronous transfer rate */
486 #define CFSYNCH 0x0008 /* enable synchronous transfer */
487 #define CFDISC 0x0010 /* enable disconnection */
488 #define CFWIDEB 0x0020 /* wide bus device (wide card) */
489 #define CFSYNCHISULTRA 0x0040 /* CFSYNC is an ultra offset */
490 #define CFNEWULTRAFORMAT 0x0080 /* Use the Ultra2 SEEPROM format */
491 #define CFSTART 0x0100 /* send start unit SCSI command */
492 #define CFINCBIOS 0x0200 /* include in BIOS scan */
493 #define CFRNFOUND 0x0400 /* report even if not found */
494 #define CFMULTILUN 0x0800 /* probe mult luns in BIOS scan */
495 #define CFWBCACHEYES 0x4000 /* Enable W-Behind Cache on drive */
496 #define CFWBCACHENC 0xc000 /* Don't change W-Behind Cache */
497 /* UNUSED 0x3000 */
498 unsigned short device_flags[16]; /* words 0-15 */
499
500 /*
501 * BIOS Control Bits
502 */
503 #define CFSUPREM 0x0001 /* support all removable drives */
504 #define CFSUPREMB 0x0002 /* support removable drives for boot only */
505 #define CFBIOSEN 0x0004 /* BIOS enabled */
506 /* UNUSED 0x0008 */
507 #define CFSM2DRV 0x0010 /* support more than two drives */
508 #define CF284XEXTEND 0x0020 /* extended translation (284x cards) */
509 /* UNUSED 0x0040 */
510 #define CFEXTEND 0x0080 /* extended translation enabled */
511 /* UNUSED 0xFF00 */
512 unsigned short bios_control; /* word 16 */
513
514 /*
515 * Host Adapter Control Bits
516 */
517 #define CFAUTOTERM 0x0001 /* Perform Auto termination */
518 #define CFULTRAEN 0x0002 /* Ultra SCSI speed enable (Ultra cards) */
519 #define CF284XSELTO 0x0003 /* Selection timeout (284x cards) */
520 #define CF284XFIFO 0x000C /* FIFO Threshold (284x cards) */
521 #define CFSTERM 0x0004 /* SCSI low byte termination */
522 #define CFWSTERM 0x0008 /* SCSI high byte termination (wide card) */
523 #define CFSPARITY 0x0010 /* SCSI parity */
524 #define CF284XSTERM 0x0020 /* SCSI low byte termination (284x cards) */
525 #define CFRESETB 0x0040 /* reset SCSI bus at boot */
526 #define CFBPRIMARY 0x0100 /* Channel B primary on 7895 chipsets */
527 #define CFSEAUTOTERM 0x0400 /* aic7890 Perform SE Auto Term */
528 #define CFLVDSTERM 0x0800 /* aic7890 LVD Termination */
529 /* UNUSED 0xF280 */
530 unsigned short adapter_control; /* word 17 */
531
532 /*
533 * Bus Release, Host Adapter ID
534 */
535 #define CFSCSIID 0x000F /* host adapter SCSI ID */
536 /* UNUSED 0x00F0 */
537 #define CFBRTIME 0xFF00 /* bus release time */
538 unsigned short brtime_id; /* word 18 */
539
540 /*
541 * Maximum targets
542 */
543 #define CFMAXTARG 0x00FF /* maximum targets */
544 /* UNUSED 0xFF00 */
545 unsigned short max_targets; /* word 19 */
546
547 unsigned short res_1[11]; /* words 20-30 */
548 unsigned short checksum; /* word 31 */
549 };
550
551 #define SELBUS_MASK 0x0a
552 #define SELNARROW 0x00
553 #define SELBUSB 0x08
554 #define SINGLE_BUS 0x00
555
556 #define SCB_TARGET(scb) \
557 (((scb)->hscb->target_channel_lun & TID) >> 4)
558 #define SCB_LUN(scb) \
559 ((scb)->hscb->target_channel_lun & LID)
560 #define SCB_IS_SCSIBUS_B(scb) \
561 (((scb)->hscb->target_channel_lun & SELBUSB) != 0)
562
563 /*
564 * If an error occurs during a data transfer phase, run the command
565 * to completion - it's easier that way - making a note of the error
566 * condition in this location. This then will modify a DID_OK status
567 * into an appropriate error for the higher-level SCSI code.
568 */
569 #define aic7xxx_error(cmd) ((cmd)->SCp.Status)
570
571 /*
572 * Keep track of the targets returned status.
573 */
574 #define aic7xxx_status(cmd) ((cmd)->SCp.sent_command)
575
576 /*
577 * The position of the SCSI commands scb within the scb array.
578 */
579 #define aic7xxx_position(cmd) ((cmd)->SCp.have_data_in)
580
581 /*
582 * The stored DMA mapping for single-buffer data transfers.
583 */
584 #define aic7xxx_mapping(cmd) ((cmd)->SCp.phase)
585
586 /*
587 * Get out private data area from a scsi cmd pointer
588 */
589 #define AIC_DEV(cmd) ((struct aic_dev_data *)(cmd)->device->hostdata)
590
591 /*
592 * So we can keep track of our host structs
593 */
594 static struct aic7xxx_host *first_aic7xxx = NULL;
595
596 /*
597 * As of Linux 2.1, the mid-level SCSI code uses virtual addresses
598 * in the scatter-gather lists. We need to convert the virtual
599 * addresses to physical addresses.
600 */
601 struct hw_scatterlist {
602 unsigned int address;
603 unsigned int length;
604 };
605
606 /*
607 * Maximum number of SG segments these cards can support.
608 */
609 #define AIC7XXX_MAX_SG 128
610
611 /*
612 * The maximum number of SCBs we could have for ANY type
613 * of card. DON'T FORGET TO CHANGE THE SCB MASK IN THE
614 * SEQUENCER CODE IF THIS IS MODIFIED!
615 */
616 #define AIC7XXX_MAXSCB 255
617
618
619 struct aic7xxx_hwscb {
620 /* ------------ Begin hardware supported fields ---------------- */
621 /* 0*/ unsigned char control;
622 /* 1*/ unsigned char target_channel_lun; /* 4/1/3 bits */
623 /* 2*/ unsigned char target_status;
624 /* 3*/ unsigned char SG_segment_count;
625 /* 4*/ unsigned int SG_list_pointer;
626 /* 8*/ unsigned char residual_SG_segment_count;
627 /* 9*/ unsigned char residual_data_count[3];
628 /*12*/ unsigned int data_pointer;
629 /*16*/ unsigned int data_count;
630 /*20*/ unsigned int SCSI_cmd_pointer;
631 /*24*/ unsigned char SCSI_cmd_length;
632 /*25*/ unsigned char tag; /* Index into our kernel SCB array.
633 * Also used as the tag for tagged I/O
634 */
635 #define SCB_PIO_TRANSFER_SIZE 26 /* amount we need to upload/download
636 * via PIO to initialize a transaction.
637 */
638 /*26*/ unsigned char next; /* Used to thread SCBs awaiting selection
639 * or disconnected down in the sequencer.
640 */
641 /*27*/ unsigned char prev;
642 /*28*/ unsigned int pad; /*
643 * Unused by the kernel, but we require
644 * the padding so that the array of
645 * hardware SCBs is aligned on 32 byte
646 * boundaries so the sequencer can index
647 */
648 };
649
650 typedef enum {
651 SCB_FREE = 0x0000,
652 SCB_DTR_SCB = 0x0001,
653 SCB_WAITINGQ = 0x0002,
654 SCB_ACTIVE = 0x0004,
655 SCB_SENSE = 0x0008,
656 SCB_ABORT = 0x0010,
657 SCB_DEVICE_RESET = 0x0020,
658 SCB_RESET = 0x0040,
659 SCB_RECOVERY_SCB = 0x0080,
660 SCB_MSGOUT_PPR = 0x0100,
661 SCB_MSGOUT_SENT = 0x0200,
662 SCB_MSGOUT_SDTR = 0x0400,
663 SCB_MSGOUT_WDTR = 0x0800,
664 SCB_MSGOUT_BITS = SCB_MSGOUT_PPR |
665 SCB_MSGOUT_SENT |
666 SCB_MSGOUT_SDTR |
667 SCB_MSGOUT_WDTR,
668 SCB_QUEUED_ABORT = 0x1000,
669 SCB_QUEUED_FOR_DONE = 0x2000,
670 SCB_WAS_BUSY = 0x4000,
671 SCB_QUEUE_FULL = 0x8000
672 } scb_flag_type;
673
674 typedef enum {
675 AHC_FNONE = 0x00000000,
676 AHC_PAGESCBS = 0x00000001,
677 AHC_CHANNEL_B_PRIMARY = 0x00000002,
678 AHC_USEDEFAULTS = 0x00000004,
679 AHC_INDIRECT_PAGING = 0x00000008,
680 AHC_CHNLB = 0x00000020,
681 AHC_CHNLC = 0x00000040,
682 AHC_EXTEND_TRANS_A = 0x00000100,
683 AHC_EXTEND_TRANS_B = 0x00000200,
684 AHC_TERM_ENB_A = 0x00000400,
685 AHC_TERM_ENB_SE_LOW = 0x00000400,
686 AHC_TERM_ENB_B = 0x00000800,
687 AHC_TERM_ENB_SE_HIGH = 0x00000800,
688 AHC_HANDLING_REQINITS = 0x00001000,
689 AHC_TARGETMODE = 0x00002000,
690 AHC_NEWEEPROM_FMT = 0x00004000,
691 /*
692 * Here ends the FreeBSD defined flags and here begins the linux defined
693 * flags. NOTE: I did not preserve the old flag name during this change
694 * specifically to force me to evaluate what flags were being used properly
695 * and what flags weren't. This way, I could clean up the flag usage on
696 * a use by use basis. Doug Ledford
697 */
698 AHC_MOTHERBOARD = 0x00020000,
699 AHC_NO_STPWEN = 0x00040000,
700 AHC_RESET_DELAY = 0x00080000,
701 AHC_A_SCANNED = 0x00100000,
702 AHC_B_SCANNED = 0x00200000,
703 AHC_MULTI_CHANNEL = 0x00400000,
704 AHC_BIOS_ENABLED = 0x00800000,
705 AHC_SEEPROM_FOUND = 0x01000000,
706 AHC_TERM_ENB_LVD = 0x02000000,
707 AHC_ABORT_PENDING = 0x04000000,
708 AHC_RESET_PENDING = 0x08000000,
709 #define AHC_IN_ISR_BIT 28
710 AHC_IN_ISR = 0x10000000,
711 AHC_IN_ABORT = 0x20000000,
712 AHC_IN_RESET = 0x40000000,
713 AHC_EXTERNAL_SRAM = 0x80000000
714 } ahc_flag_type;
715
716 typedef enum {
717 AHC_NONE = 0x0000,
718 AHC_CHIPID_MASK = 0x00ff,
719 AHC_AIC7770 = 0x0001,
720 AHC_AIC7850 = 0x0002,
721 AHC_AIC7860 = 0x0003,
722 AHC_AIC7870 = 0x0004,
723 AHC_AIC7880 = 0x0005,
724 AHC_AIC7890 = 0x0006,
725 AHC_AIC7895 = 0x0007,
726 AHC_AIC7896 = 0x0008,
727 AHC_AIC7892 = 0x0009,
728 AHC_AIC7899 = 0x000a,
729 AHC_VL = 0x0100,
730 AHC_EISA = 0x0200,
731 AHC_PCI = 0x0400,
732 } ahc_chip;
733
734 typedef enum {
735 AHC_FENONE = 0x0000,
736 AHC_ULTRA = 0x0001,
737 AHC_ULTRA2 = 0x0002,
738 AHC_WIDE = 0x0004,
739 AHC_TWIN = 0x0008,
740 AHC_MORE_SRAM = 0x0010,
741 AHC_CMD_CHAN = 0x0020,
742 AHC_QUEUE_REGS = 0x0040,
743 AHC_SG_PRELOAD = 0x0080,
744 AHC_SPIOCAP = 0x0100,
745 AHC_ULTRA3 = 0x0200,
746 AHC_NEW_AUTOTERM = 0x0400,
747 AHC_AIC7770_FE = AHC_FENONE,
748 AHC_AIC7850_FE = AHC_SPIOCAP,
749 AHC_AIC7860_FE = AHC_ULTRA|AHC_SPIOCAP,
750 AHC_AIC7870_FE = AHC_FENONE,
751 AHC_AIC7880_FE = AHC_ULTRA,
752 AHC_AIC7890_FE = AHC_MORE_SRAM|AHC_CMD_CHAN|AHC_ULTRA2|
753 AHC_QUEUE_REGS|AHC_SG_PRELOAD|AHC_NEW_AUTOTERM,
754 AHC_AIC7895_FE = AHC_MORE_SRAM|AHC_CMD_CHAN|AHC_ULTRA,
755 AHC_AIC7896_FE = AHC_AIC7890_FE,
756 AHC_AIC7892_FE = AHC_AIC7890_FE|AHC_ULTRA3,
757 AHC_AIC7899_FE = AHC_AIC7890_FE|AHC_ULTRA3,
758 } ahc_feature;
759
760 #define SCB_DMA_ADDR(scb, addr) ((unsigned long)(addr) + (scb)->scb_dma->dma_offset)
761
762 struct aic7xxx_scb_dma {
763 unsigned long dma_offset; /* Correction you have to add
764 * to virtual address to get
765 * dma handle in this region */
766 dma_addr_t dma_address; /* DMA handle of the start,
767 * for unmap */
768 unsigned int dma_len; /* DMA length */
769 };
770
771 typedef enum {
772 AHC_BUG_NONE = 0x0000,
773 AHC_BUG_TMODE_WIDEODD = 0x0001,
774 AHC_BUG_AUTOFLUSH = 0x0002,
775 AHC_BUG_CACHETHEN = 0x0004,
776 AHC_BUG_CACHETHEN_DIS = 0x0008,
777 AHC_BUG_PCI_2_1_RETRY = 0x0010,
778 AHC_BUG_PCI_MWI = 0x0020,
779 AHC_BUG_SCBCHAN_UPLOAD = 0x0040,
780 } ahc_bugs;
781
782 struct aic7xxx_scb {
783 struct aic7xxx_hwscb *hscb; /* corresponding hardware scb */
784 Scsi_Cmnd *cmd; /* Scsi_Cmnd for this scb */
785 struct aic7xxx_scb *q_next; /* next scb in queue */
786 volatile scb_flag_type flags; /* current state of scb */
787 struct hw_scatterlist *sg_list; /* SG list in adapter format */
788 unsigned char tag_action;
789 unsigned char sg_count;
790 unsigned char *sense_cmd; /*
791 * Allocate 6 characters for
792 * sense command.
793 */
794 unsigned char *cmnd;
795 unsigned int sg_length; /* We init this during buildscb so we
796 * don't have to calculate anything
797 * during underflow/overflow/stat code
798 */
799 void *kmalloc_ptr;
800 struct aic7xxx_scb_dma *scb_dma;
801 };
802
803 /*
804 * Define a linked list of SCBs.
805 */
806 typedef struct {
807 struct aic7xxx_scb *head;
808 struct aic7xxx_scb *tail;
809 } scb_queue_type;
810
811 static struct {
812 unsigned char errno;
813 const char *errmesg;
814 } hard_error[] = {
815 { ILLHADDR, "Illegal Host Access" },
816 { ILLSADDR, "Illegal Sequencer Address referenced" },
817 { ILLOPCODE, "Illegal Opcode in sequencer program" },
818 { SQPARERR, "Sequencer Ram Parity Error" },
819 { DPARERR, "Data-Path Ram Parity Error" },
820 { MPARERR, "Scratch Ram/SCB Array Ram Parity Error" },
821 { PCIERRSTAT,"PCI Error detected" },
822 { CIOPARERR, "CIOBUS Parity Error" }
823 };
824
825 static unsigned char
826 generic_sense[] = { REQUEST_SENSE, 0, 0, 0, 255, 0 };
827
828 typedef struct {
829 scb_queue_type free_scbs; /*
830 * SCBs assigned to free slot on
831 * card (no paging required)
832 */
833 struct aic7xxx_scb *scb_array[AIC7XXX_MAXSCB];
834 struct aic7xxx_hwscb *hscbs;
835 unsigned char numscbs; /* current number of scbs */
836 unsigned char maxhscbs; /* hardware scbs */
837 unsigned char maxscbs; /* max scbs including pageable scbs */
838 dma_addr_t hscbs_dma; /* DMA handle to hscbs */
839 unsigned int hscbs_dma_len; /* length of the above DMA area */
840 void *hscb_kmalloc_ptr;
841 } scb_data_type;
842
843 struct target_cmd {
844 unsigned char mesg_bytes[4];
845 unsigned char command[28];
846 };
847
848 #define AHC_TRANS_CUR 0x0001
849 #define AHC_TRANS_ACTIVE 0x0002
850 #define AHC_TRANS_GOAL 0x0004
851 #define AHC_TRANS_USER 0x0008
852 #define AHC_TRANS_QUITE 0x0010
853 typedef struct {
854 unsigned char width;
855 unsigned char period;
856 unsigned char offset;
857 unsigned char options;
858 } transinfo_type;
859
860 struct aic_dev_data {
861 volatile scb_queue_type delayed_scbs;
862 volatile unsigned short temp_q_depth;
863 unsigned short max_q_depth;
864 volatile unsigned char active_cmds;
865 /*
866 * Statistics Kept:
867 *
868 * Total Xfers (count for each command that has a data xfer),
869 * broken down by reads && writes.
870 *
871 * Further sorted into a few bins for keeping tabs on how many commands
872 * we get of various sizes.
873 *
874 */
875 long w_total; /* total writes */
876 long r_total; /* total reads */
877 long barrier_total; /* total num of REQ_BARRIER commands */
878 long ordered_total; /* How many REQ_BARRIER commands we
879 used ordered tags to satisfy */
880 long w_bins[6]; /* binned write */
881 long r_bins[6]; /* binned reads */
882 transinfo_type cur;
883 transinfo_type goal;
884 #define BUS_DEVICE_RESET_PENDING 0x01
885 #define DEVICE_RESET_DELAY 0x02
886 #define DEVICE_PRINT_DTR 0x04
887 #define DEVICE_WAS_BUSY 0x08
888 #define DEVICE_DTR_SCANNED 0x10
889 #define DEVICE_SCSI_3 0x20
890 volatile unsigned char flags;
891 unsigned needppr:1;
892 unsigned needppr_copy:1;
893 unsigned needsdtr:1;
894 unsigned needsdtr_copy:1;
895 unsigned needwdtr:1;
896 unsigned needwdtr_copy:1;
897 unsigned dtr_pending:1;
898 struct scsi_device *SDptr;
899 struct list_head list;
900 };
901
902 /*
903 * Define a structure used for each host adapter. Note, in order to avoid
904 * problems with architectures I can't test on (because I don't have one,
905 * such as the Alpha based systems) which happen to give faults for
906 * non-aligned memory accesses, care was taken to align this structure
907 * in a way that gauranteed all accesses larger than 8 bits were aligned
908 * on the appropriate boundary. It's also organized to try and be more
909 * cache line efficient. Be careful when changing this lest you might hurt
910 * overall performance and bring down the wrath of the masses.
911 */
912 struct aic7xxx_host {
913 /*
914 * This is the first 64 bytes in the host struct
915 */
916
917 /*
918 * We are grouping things here....first, items that get either read or
919 * written with nearly every interrupt
920 */
921 volatile long flags;
922 ahc_feature features; /* chip features */
923 unsigned long base; /* card base address */
924 volatile unsigned char __iomem *maddr; /* memory mapped address */
925 unsigned long isr_count; /* Interrupt count */
926 unsigned long spurious_int;
927 scb_data_type *scb_data;
928 struct aic7xxx_cmd_queue {
929 Scsi_Cmnd *head;
930 Scsi_Cmnd *tail;
931 } completeq;
932
933 /*
934 * Things read/written on nearly every entry into aic7xxx_queue()
935 */
936 volatile scb_queue_type waiting_scbs;
937 unsigned char unpause; /* unpause value for HCNTRL */
938 unsigned char pause; /* pause value for HCNTRL */
939 volatile unsigned char qoutfifonext;
940 volatile unsigned char activescbs; /* active scbs */
941 volatile unsigned char max_activescbs;
942 volatile unsigned char qinfifonext;
943 volatile unsigned char *untagged_scbs;
944 volatile unsigned char *qoutfifo;
945 volatile unsigned char *qinfifo;
946
947 unsigned char dev_last_queue_full[MAX_TARGETS];
948 unsigned char dev_last_queue_full_count[MAX_TARGETS];
949 unsigned short ultraenb; /* Gets downloaded to card as a
950 bitmap */
951 unsigned short discenable; /* Gets downloaded to card as a
952 bitmap */
953 transinfo_type user[MAX_TARGETS];
954
955 unsigned char msg_buf[13]; /* The message for the target */
956 unsigned char msg_type;
957 #define MSG_TYPE_NONE 0x00
958 #define MSG_TYPE_INITIATOR_MSGOUT 0x01
959 #define MSG_TYPE_INITIATOR_MSGIN 0x02
960 unsigned char msg_len; /* Length of message */
961 unsigned char msg_index; /* Index into msg_buf array */
962
963
964 /*
965 * We put the less frequently used host structure items after the more
966 * frequently used items to try and ease the burden on the cache subsystem.
967 * These entries are not *commonly* accessed, whereas the preceding entries
968 * are accessed very often.
969 */
970
971 unsigned int irq; /* IRQ for this adapter */
972 int instance; /* aic7xxx instance number */
973 int scsi_id; /* host adapter SCSI ID */
974 int scsi_id_b; /* channel B for twin adapters */
975 unsigned int bios_address;
976 int board_name_index;
977 unsigned short bios_control; /* bios control - SEEPROM */
978 unsigned short adapter_control; /* adapter control - SEEPROM */
979 struct pci_dev *pdev;
980 unsigned char pci_bus;
981 unsigned char pci_device_fn;
982 struct seeprom_config sc;
983 unsigned short sc_type;
984 unsigned short sc_size;
985 struct aic7xxx_host *next; /* allow for multiple IRQs */
986 struct Scsi_Host *host; /* pointer to scsi host */
987 struct list_head aic_devs; /* all aic_dev structs on host */
988 int host_no; /* SCSI host number */
989 unsigned long mbase; /* I/O memory address */
990 ahc_chip chip; /* chip type */
991 ahc_bugs bugs;
992 dma_addr_t fifo_dma; /* DMA handle for fifo arrays */
993
994 };
995
996 /*
997 * Valid SCSIRATE values. (p. 3-17)
998 * Provides a mapping of transfer periods in ns/4 to the proper value to
999 * stick in the SCSIRATE reg to use that transfer rate.
1000 */
1001 #define AHC_SYNCRATE_ULTRA3 0
1002 #define AHC_SYNCRATE_ULTRA2 1
1003 #define AHC_SYNCRATE_ULTRA 3
1004 #define AHC_SYNCRATE_FAST 6
1005 #define AHC_SYNCRATE_CRC 0x40
1006 #define AHC_SYNCRATE_SE 0x10
1007 static struct aic7xxx_syncrate {
1008 /* Rates in Ultra mode have bit 8 of sxfr set */
1009 #define ULTRA_SXFR 0x100
1010 int sxfr_ultra2;
1011 int sxfr;
1012 unsigned char period;
1013 const char *rate[2];
1014 } aic7xxx_syncrates[] = {
1015 { 0x42, 0x000, 9, {"80.0", "160.0"} },
1016 { 0x13, 0x000, 10, {"40.0", "80.0"} },
1017 { 0x14, 0x000, 11, {"33.0", "66.6"} },
1018 { 0x15, 0x100, 12, {"20.0", "40.0"} },
1019 { 0x16, 0x110, 15, {"16.0", "32.0"} },
1020 { 0x17, 0x120, 18, {"13.4", "26.8"} },
1021 { 0x18, 0x000, 25, {"10.0", "20.0"} },
1022 { 0x19, 0x010, 31, {"8.0", "16.0"} },
1023 { 0x1a, 0x020, 37, {"6.67", "13.3"} },
1024 { 0x1b, 0x030, 43, {"5.7", "11.4"} },
1025 { 0x10, 0x040, 50, {"5.0", "10.0"} },
1026 { 0x00, 0x050, 56, {"4.4", "8.8" } },
1027 { 0x00, 0x060, 62, {"4.0", "8.0" } },
1028 { 0x00, 0x070, 68, {"3.6", "7.2" } },
1029 { 0x00, 0x000, 0, {NULL, NULL} },
1030 };
1031
1032 #define CTL_OF_SCB(scb) (((scb->hscb)->target_channel_lun >> 3) & 0x1), \
1033 (((scb->hscb)->target_channel_lun >> 4) & 0xf), \
1034 ((scb->hscb)->target_channel_lun & 0x07)
1035
1036 #define CTL_OF_CMD(cmd) ((cmd->device->channel) & 0x01), \
1037 ((cmd->device->id) & 0x0f), \
1038 ((cmd->device->lun) & 0x07)
1039
1040 #define TARGET_INDEX(cmd) ((cmd)->device->id | ((cmd)->device->channel << 3))
1041
1042 /*
1043 * A nice little define to make doing our printks a little easier
1044 */
1045
1046 #define WARN_LEAD KERN_WARNING "(scsi%d:%d:%d:%d) "
1047 #define INFO_LEAD KERN_INFO "(scsi%d:%d:%d:%d) "
1048
1049 /*
1050 * XXX - these options apply unilaterally to _all_ 274x/284x/294x
1051 * cards in the system. This should be fixed. Exceptions to this
1052 * rule are noted in the comments.
1053 */
1054
1055 /*
1056 * Use this as the default queue depth when setting tagged queueing on.
1057 */
1058 static unsigned int aic7xxx_default_queue_depth = AIC7XXX_CMDS_PER_DEVICE;
1059
1060 /*
1061 * Skip the scsi bus reset. Non 0 make us skip the reset at startup. This
1062 * has no effect on any later resets that might occur due to things like
1063 * SCSI bus timeouts.
1064 */
1065 static unsigned int aic7xxx_no_reset = 0;
1066 /*
1067 * Certain PCI motherboards will scan PCI devices from highest to lowest,
1068 * others scan from lowest to highest, and they tend to do all kinds of
1069 * strange things when they come into contact with PCI bridge chips. The
1070 * net result of all this is that the PCI card that is actually used to boot
1071 * the machine is very hard to detect. Most motherboards go from lowest
1072 * PCI slot number to highest, and the first SCSI controller found is the
1073 * one you boot from. The only exceptions to this are when a controller
1074 * has its BIOS disabled. So, we by default sort all of our SCSI controllers
1075 * from lowest PCI slot number to highest PCI slot number. We also force
1076 * all controllers with their BIOS disabled to the end of the list. This
1077 * works on *almost* all computers. Where it doesn't work, we have this
1078 * option. Setting this option to non-0 will reverse the order of the sort
1079 * to highest first, then lowest, but will still leave cards with their BIOS
1080 * disabled at the very end. That should fix everyone up unless there are
1081 * really strange cirumstances.
1082 */
1083 static int aic7xxx_reverse_scan = 0;
1084 /*
1085 * Should we force EXTENDED translation on a controller.
1086 * 0 == Use whatever is in the SEEPROM or default to off
1087 * 1 == Use whatever is in the SEEPROM or default to on
1088 */
1089 static unsigned int aic7xxx_extended = 0;
1090 /*
1091 * The IRQ trigger method used on EISA controllers. Does not effect PCI cards.
1092 * -1 = Use detected settings.
1093 * 0 = Force Edge triggered mode.
1094 * 1 = Force Level triggered mode.
1095 */
1096 static int aic7xxx_irq_trigger = -1;
1097 /*
1098 * This variable is used to override the termination settings on a controller.
1099 * This should not be used under normal conditions. However, in the case
1100 * that a controller does not have a readable SEEPROM (so that we can't
1101 * read the SEEPROM settings directly) and that a controller has a buggered
1102 * version of the cable detection logic, this can be used to force the
1103 * correct termination. It is preferable to use the manual termination
1104 * settings in the BIOS if possible, but some motherboard controllers store
1105 * those settings in a format we can't read. In other cases, auto term
1106 * should also work, but the chipset was put together with no auto term
1107 * logic (common on motherboard controllers). In those cases, we have
1108 * 32 bits here to work with. That's good for 8 controllers/channels. The
1109 * bits are organized as 4 bits per channel, with scsi0 getting the lowest
1110 * 4 bits in the int. A 1 in a bit position indicates the termination setting
1111 * that corresponds to that bit should be enabled, a 0 is disabled.
1112 * It looks something like this:
1113 *
1114 * 0x0f = 1111-Single Ended Low Byte Termination on/off
1115 * ||\-Single Ended High Byte Termination on/off
1116 * |\-LVD Low Byte Termination on/off
1117 * \-LVD High Byte Termination on/off
1118 *
1119 * For non-Ultra2 controllers, the upper 2 bits are not important. So, to
1120 * enable both high byte and low byte termination on scsi0, I would need to
1121 * make sure that the override_term variable was set to 0x03 (bits 0011).
1122 * To make sure that all termination is enabled on an Ultra2 controller at
1123 * scsi2 and only high byte termination on scsi1 and high and low byte
1124 * termination on scsi0, I would set override_term=0xf23 (bits 1111 0010 0011)
1125 *
1126 * For the most part, users should never have to use this, that's why I
1127 * left it fairly cryptic instead of easy to understand. If you need it,
1128 * most likely someone will be telling you what your's needs to be set to.
1129 */
1130 static int aic7xxx_override_term = -1;
1131 /*
1132 * Certain motherboard chipset controllers tend to screw
1133 * up the polarity of the term enable output pin. Use this variable
1134 * to force the correct polarity for your system. This is a bitfield variable
1135 * similar to the previous one, but this one has one bit per channel instead
1136 * of four.
1137 * 0 = Force the setting to active low.
1138 * 1 = Force setting to active high.
1139 * Most Adaptec cards are active high, several motherboards are active low.
1140 * To force a 2940 card at SCSI 0 to active high and a motherboard 7895
1141 * controller at scsi1 and scsi2 to active low, and a 2910 card at scsi3
1142 * to active high, you would need to set stpwlev=0x9 (bits 1001).
1143 *
1144 * People shouldn't need to use this, but if you are experiencing lots of
1145 * SCSI timeout problems, this may help. There is one sure way to test what
1146 * this option needs to be. Using a boot floppy to boot the system, configure
1147 * your system to enable all SCSI termination (in the Adaptec SCSI BIOS) and
1148 * if needed then also pass a value to override_term to make sure that the
1149 * driver is enabling SCSI termination, then set this variable to either 0
1150 * or 1. When the driver boots, make sure there are *NO* SCSI cables
1151 * connected to your controller. If it finds and inits the controller
1152 * without problem, then the setting you passed to stpwlev was correct. If
1153 * the driver goes into a reset loop and hangs the system, then you need the
1154 * other setting for this variable. If neither setting lets the machine
1155 * boot then you have definite termination problems that may not be fixable.
1156 */
1157 static int aic7xxx_stpwlev = -1;
1158 /*
1159 * Set this to non-0 in order to force the driver to panic the kernel
1160 * and print out debugging info on a SCSI abort or reset cycle.
1161 */
1162 static int aic7xxx_panic_on_abort = 0;
1163 /*
1164 * PCI bus parity checking of the Adaptec controllers. This is somewhat
1165 * dubious at best. To my knowledge, this option has never actually
1166 * solved a PCI parity problem, but on certain machines with broken PCI
1167 * chipset configurations, it can generate tons of false error messages.
1168 * It's included in the driver for completeness.
1169 * 0 = Shut off PCI parity check
1170 * -1 = Normal polarity pci parity checking
1171 * 1 = reverse polarity pci parity checking
1172 *
1173 * NOTE: you can't actually pass -1 on the lilo prompt. So, to set this
1174 * variable to -1 you would actually want to simply pass the variable
1175 * name without a number. That will invert the 0 which will result in
1176 * -1.
1177 */
1178 static int aic7xxx_pci_parity = 0;
1179 /*
1180 * Set this to any non-0 value to cause us to dump the contents of all
1181 * the card's registers in a hex dump format tailored to each model of
1182 * controller.
1183 *
1184 * NOTE: THE CONTROLLER IS LEFT IN AN UNUSEABLE STATE BY THIS OPTION.
1185 * YOU CANNOT BOOT UP WITH THIS OPTION, IT IS FOR DEBUGGING PURPOSES
1186 * ONLY
1187 */
1188 static int aic7xxx_dump_card = 0;
1189 /*
1190 * Set this to a non-0 value to make us dump out the 32 bit instruction
1191 * registers on the card after completing the sequencer download. This
1192 * allows the actual sequencer download to be verified. It is possible
1193 * to use this option and still boot up and run your system. This is
1194 * only intended for debugging purposes.
1195 */
1196 static int aic7xxx_dump_sequencer = 0;
1197 /*
1198 * Certain newer motherboards have put new PCI based devices into the
1199 * IO spaces that used to typically be occupied by VLB or EISA cards.
1200 * This overlap can cause these newer motherboards to lock up when scanned
1201 * for older EISA and VLB devices. Setting this option to non-0 will
1202 * cause the driver to skip scanning for any VLB or EISA controllers and
1203 * only support the PCI controllers. NOTE: this means that if the kernel
1204 * os compiled with PCI support disabled, then setting this to non-0
1205 * would result in never finding any devices :)
1206 */
1207 static int aic7xxx_no_probe = 0;
1208 /*
1209 * On some machines, enabling the external SCB RAM isn't reliable yet. I
1210 * haven't had time to make test patches for things like changing the
1211 * timing mode on that external RAM either. Some of those changes may
1212 * fix the problem. Until then though, we default to external SCB RAM
1213 * off and give a command line option to enable it.
1214 */
1215 static int aic7xxx_scbram = 0;
1216 /*
1217 * So that we can set how long each device is given as a selection timeout.
1218 * The table of values goes like this:
1219 * 0 - 256ms
1220 * 1 - 128ms
1221 * 2 - 64ms
1222 * 3 - 32ms
1223 * We default to 64ms because it's fast. Some old SCSI-I devices need a
1224 * longer time. The final value has to be left shifted by 3, hence 0x10
1225 * is the final value.
1226 */
1227 static int aic7xxx_seltime = 0x10;
1228 /*
1229 * So that insmod can find the variable and make it point to something
1230 */
1231 #ifdef MODULE
1232 static char * aic7xxx = NULL;
1233 module_param(aic7xxx, charp, 0);
1234 #endif
1235
1236 #define VERBOSE_NORMAL 0x0000
1237 #define VERBOSE_NEGOTIATION 0x0001
1238 #define VERBOSE_SEQINT 0x0002
1239 #define VERBOSE_SCSIINT 0x0004
1240 #define VERBOSE_PROBE 0x0008
1241 #define VERBOSE_PROBE2 0x0010
1242 #define VERBOSE_NEGOTIATION2 0x0020
1243 #define VERBOSE_MINOR_ERROR 0x0040
1244 #define VERBOSE_TRACING 0x0080
1245 #define VERBOSE_ABORT 0x0f00
1246 #define VERBOSE_ABORT_MID 0x0100
1247 #define VERBOSE_ABORT_FIND 0x0200
1248 #define VERBOSE_ABORT_PROCESS 0x0400
1249 #define VERBOSE_ABORT_RETURN 0x0800
1250 #define VERBOSE_RESET 0xf000
1251 #define VERBOSE_RESET_MID 0x1000
1252 #define VERBOSE_RESET_FIND 0x2000
1253 #define VERBOSE_RESET_PROCESS 0x4000
1254 #define VERBOSE_RESET_RETURN 0x8000
1255 static int aic7xxx_verbose = VERBOSE_NORMAL | VERBOSE_NEGOTIATION |
1256 VERBOSE_PROBE; /* verbose messages */
1257
1258
1259 /****************************************************************************
1260 *
1261 * We're going to start putting in function declarations so that order of
1262 * functions is no longer important. As needed, they are added here.
1263 *
1264 ***************************************************************************/
1265
1266 static int aic7xxx_release(struct Scsi_Host *host);
1267 static void aic7xxx_set_syncrate(struct aic7xxx_host *p,
1268 struct aic7xxx_syncrate *syncrate, int target, int channel,
1269 unsigned int period, unsigned int offset, unsigned char options,
1270 unsigned int type, struct aic_dev_data *aic_dev);
1271 static void aic7xxx_set_width(struct aic7xxx_host *p, int target, int channel,
1272 int lun, unsigned int width, unsigned int type,
1273 struct aic_dev_data *aic_dev);
1274 static void aic7xxx_panic_abort(struct aic7xxx_host *p, Scsi_Cmnd *cmd);
1275 static void aic7xxx_print_card(struct aic7xxx_host *p);
1276 static void aic7xxx_print_scratch_ram(struct aic7xxx_host *p);
1277 static void aic7xxx_print_sequencer(struct aic7xxx_host *p, int downloaded);
1278 #ifdef AIC7XXX_VERBOSE_DEBUGGING
1279 static void aic7xxx_check_scbs(struct aic7xxx_host *p, char *buffer);
1280 #endif
1281
1282 /****************************************************************************
1283 *
1284 * These functions are now used. They happen to be wrapped in useless
1285 * inb/outb port read/writes around the real reads and writes because it
1286 * seems that certain very fast CPUs have a problem dealing with us when
1287 * going at full speed.
1288 *
1289 ***************************************************************************/
1290
1291 static unsigned char
1292 aic_inb(struct aic7xxx_host *p, long port)
1293 {
1294 #ifdef MMAPIO
1295 unsigned char x;
1296 if(p->maddr)
1297 {
1298 x = readb(p->maddr + port);
1299 }
1300 else
1301 {
1302 x = inb(p->base + port);
1303 }
1304 return(x);
1305 #else
1306 return(inb(p->base + port));
1307 #endif
1308 }
1309
1310 static void
1311 aic_outb(struct aic7xxx_host *p, unsigned char val, long port)
1312 {
1313 #ifdef MMAPIO
1314 if(p->maddr)
1315 {
1316 writeb(val, p->maddr + port);
1317 mb(); /* locked operation in order to force CPU ordering */
1318 readb(p->maddr + HCNTRL); /* dummy read to flush the PCI write */
1319 }
1320 else
1321 {
1322 outb(val, p->base + port);
1323 mb(); /* locked operation in order to force CPU ordering */
1324 }
1325 #else
1326 outb(val, p->base + port);
1327 mb(); /* locked operation in order to force CPU ordering */
1328 #endif
1329 }
1330
1331 /*+F*************************************************************************
1332 * Function:
1333 * aic7xxx_setup
1334 *
1335 * Description:
1336 * Handle Linux boot parameters. This routine allows for assigning a value
1337 * to a parameter with a ':' between the parameter and the value.
1338 * ie. aic7xxx=unpause:0x0A,extended
1339 *-F*************************************************************************/
1340 static int
1341 aic7xxx_setup(char *s)
1342 {
1343 int i, n;
1344 char *p;
1345 char *end;
1346
1347 static struct {
1348 const char *name;
1349 unsigned int *flag;
1350 } options[] = {
1351 { "extended", &aic7xxx_extended },
1352 { "no_reset", &aic7xxx_no_reset },
1353 { "irq_trigger", &aic7xxx_irq_trigger },
1354 { "verbose", &aic7xxx_verbose },
1355 { "reverse_scan",&aic7xxx_reverse_scan },
1356 { "override_term", &aic7xxx_override_term },
1357 { "stpwlev", &aic7xxx_stpwlev },
1358 { "no_probe", &aic7xxx_no_probe },
1359 { "panic_on_abort", &aic7xxx_panic_on_abort },
1360 { "pci_parity", &aic7xxx_pci_parity },
1361 { "dump_card", &aic7xxx_dump_card },
1362 { "dump_sequencer", &aic7xxx_dump_sequencer },
1363 { "default_queue_depth", &aic7xxx_default_queue_depth },
1364 { "scbram", &aic7xxx_scbram },
1365 { "seltime", &aic7xxx_seltime },
1366 { "tag_info", NULL }
1367 };
1368
1369 end = strchr(s, '\0');
1370
1371 while ((p = strsep(&s, ",.")) != NULL)
1372 {
1373 for (i = 0; i < ARRAY_SIZE(options); i++)
1374 {
1375 n = strlen(options[i].name);
1376 if (!strncmp(options[i].name, p, n))
1377 {
1378 if (!strncmp(p, "tag_info", n))
1379 {
1380 if (p[n] == ':')
1381 {
1382 char *base;
1383 char *tok, *tok_end, *tok_end2;
1384 char tok_list[] = { '.', ',', '{', '}', '\0' };
1385 int i, instance = -1, device = -1;
1386 unsigned char done = FALSE;
1387
1388 base = p;
1389 tok = base + n + 1; /* Forward us just past the ':' */
1390 tok_end = strchr(tok, '\0');
1391 if (tok_end < end)
1392 *tok_end = ',';
1393 while(!done)
1394 {
1395 switch(*tok)
1396 {
1397 case '{':
1398 if (instance == -1)
1399 instance = 0;
1400 else if (device == -1)
1401 device = 0;
1402 tok++;
1403 break;
1404 case '}':
1405 if (device != -1)
1406 device = -1;
1407 else if (instance != -1)
1408 instance = -1;
1409 tok++;
1410 break;
1411 case ',':
1412 case '.':
1413 if (instance == -1)
1414 done = TRUE;
1415 else if (device >= 0)
1416 device++;
1417 else if (instance >= 0)
1418 instance++;
1419 if ( (device >= MAX_TARGETS) ||
1420 (instance >= ARRAY_SIZE(aic7xxx_tag_info)) )
1421 done = TRUE;
1422 tok++;
1423 if (!done)
1424 {
1425 base = tok;
1426 }
1427 break;
1428 case '\0':
1429 done = TRUE;
1430 break;
1431 default:
1432 done = TRUE;
1433 tok_end = strchr(tok, '\0');
1434 for(i=0; tok_list[i]; i++)
1435 {
1436 tok_end2 = strchr(tok, tok_list[i]);
1437 if ( (tok_end2) && (tok_end2 < tok_end) )
1438 {
1439 tok_end = tok_end2;
1440 done = FALSE;
1441 }
1442 }
1443 if ( (instance >= 0) && (device >= 0) &&
1444 (instance < ARRAY_SIZE(aic7xxx_tag_info)) &&
1445 (device < MAX_TARGETS) )
1446 aic7xxx_tag_info[instance].tag_commands[device] =
1447 simple_strtoul(tok, NULL, 0) & 0xff;
1448 tok = tok_end;
1449 break;
1450 }
1451 }
1452 while((p != base) && (p != NULL))
1453 p = strsep(&s, ",.");
1454 }
1455 }
1456 else if (p[n] == ':')
1457 {
1458 *(options[i].flag) = simple_strtoul(p + n + 1, NULL, 0);
1459 if(!strncmp(p, "seltime", n))
1460 {
1461 *(options[i].flag) = (*(options[i].flag) % 4) << 3;
1462 }
1463 }
1464 else if (!strncmp(p, "verbose", n))
1465 {
1466 *(options[i].flag) = 0xff29;
1467 }
1468 else
1469 {
1470 *(options[i].flag) = ~(*(options[i].flag));
1471 if(!strncmp(p, "seltime", n))
1472 {
1473 *(options[i].flag) = (*(options[i].flag) % 4) << 3;
1474 }
1475 }
1476 }
1477 }
1478 }
1479 return 1;
1480 }
1481
1482 __setup("aic7xxx=", aic7xxx_setup);
1483
1484 /*+F*************************************************************************
1485 * Function:
1486 * pause_sequencer
1487 *
1488 * Description:
1489 * Pause the sequencer and wait for it to actually stop - this
1490 * is important since the sequencer can disable pausing for critical
1491 * sections.
1492 *-F*************************************************************************/
1493 static void
1494 pause_sequencer(struct aic7xxx_host *p)
1495 {
1496 aic_outb(p, p->pause, HCNTRL);
1497 while ((aic_inb(p, HCNTRL) & PAUSE) == 0)
1498 {
1499 ;
1500 }
1501 if(p->features & AHC_ULTRA2)
1502 {
1503 aic_inb(p, CCSCBCTL);
1504 }
1505 }
1506
1507 /*+F*************************************************************************
1508 * Function:
1509 * unpause_sequencer
1510 *
1511 * Description:
1512 * Unpause the sequencer. Unremarkable, yet done often enough to
1513 * warrant an easy way to do it.
1514 *-F*************************************************************************/
1515 static void
1516 unpause_sequencer(struct aic7xxx_host *p, int unpause_always)
1517 {
1518 if (unpause_always ||
1519 ( !(aic_inb(p, INTSTAT) & (SCSIINT | SEQINT | BRKADRINT)) &&
1520 !(p->flags & AHC_HANDLING_REQINITS) ) )
1521 {
1522 aic_outb(p, p->unpause, HCNTRL);
1523 }
1524 }
1525
1526 /*+F*************************************************************************
1527 * Function:
1528 * restart_sequencer
1529 *
1530 * Description:
1531 * Restart the sequencer program from address zero. This assumes
1532 * that the sequencer is already paused.
1533 *-F*************************************************************************/
1534 static void
1535 restart_sequencer(struct aic7xxx_host *p)
1536 {
1537 aic_outb(p, 0, SEQADDR0);
1538 aic_outb(p, 0, SEQADDR1);
1539 aic_outb(p, FASTMODE, SEQCTL);
1540 }
1541
1542 /*
1543 * We include the aic7xxx_seq.c file here so that the other defines have
1544 * already been made, and so that it comes before the code that actually
1545 * downloads the instructions (since we don't typically use function
1546 * prototype, our code has to be ordered that way, it's a left-over from
1547 * the original driver days.....I should fix it some time DL).
1548 */
1549 #include "aic7xxx_old/aic7xxx_seq.c"
1550
1551 /*+F*************************************************************************
1552 * Function:
1553 * aic7xxx_check_patch
1554 *
1555 * Description:
1556 * See if the next patch to download should be downloaded.
1557 *-F*************************************************************************/
1558 static int
1559 aic7xxx_check_patch(struct aic7xxx_host *p,
1560 struct sequencer_patch **start_patch, int start_instr, int *skip_addr)
1561 {
1562 struct sequencer_patch *cur_patch;
1563 struct sequencer_patch *last_patch;
1564 int num_patches;
1565
1566 num_patches = ARRAY_SIZE(sequencer_patches);
1567 last_patch = &sequencer_patches[num_patches];
1568 cur_patch = *start_patch;
1569
1570 while ((cur_patch < last_patch) && (start_instr == cur_patch->begin))
1571 {
1572 if (cur_patch->patch_func(p) == 0)
1573 {
1574 /*
1575 * Start rejecting code.
1576 */
1577 *skip_addr = start_instr + cur_patch->skip_instr;
1578 cur_patch += cur_patch->skip_patch;
1579 }
1580 else
1581 {
1582 /*
1583 * Found an OK patch. Advance the patch pointer to the next patch
1584 * and wait for our instruction pointer to get here.
1585 */
1586 cur_patch++;
1587 }
1588 }
1589
1590 *start_patch = cur_patch;
1591 if (start_instr < *skip_addr)
1592 /*
1593 * Still skipping
1594 */
1595 return (0);
1596 return(1);
1597 }
1598
1599
1600 /*+F*************************************************************************
1601 * Function:
1602 * aic7xxx_download_instr
1603 *
1604 * Description:
1605 * Find the next patch to download.
1606 *-F*************************************************************************/
1607 static void
1608 aic7xxx_download_instr(struct aic7xxx_host *p, int instrptr,
1609 unsigned char *dconsts)
1610 {
1611 union ins_formats instr;
1612 struct ins_format1 *fmt1_ins;
1613 struct ins_format3 *fmt3_ins;
1614 unsigned char opcode;
1615
1616 instr = *(union ins_formats*) &seqprog[instrptr * 4];
1617
1618 instr.integer = le32_to_cpu(instr.integer);
1619
1620 fmt1_ins = &instr.format1;
1621 fmt3_ins = NULL;
1622
1623 /* Pull the opcode */
1624 opcode = instr.format1.opcode;
1625 switch (opcode)
1626 {
1627 case AIC_OP_JMP:
1628 case AIC_OP_JC:
1629 case AIC_OP_JNC:
1630 case AIC_OP_CALL:
1631 case AIC_OP_JNE:
1632 case AIC_OP_JNZ:
1633 case AIC_OP_JE:
1634 case AIC_OP_JZ:
1635 {
1636 struct sequencer_patch *cur_patch;
1637 int address_offset;
1638 unsigned int address;
1639 int skip_addr;
1640 int i;
1641
1642 fmt3_ins = &instr.format3;
1643 address_offset = 0;
1644 address = fmt3_ins->address;
1645 cur_patch = sequencer_patches;
1646 skip_addr = 0;
1647
1648 for (i = 0; i < address;)
1649 {
1650 aic7xxx_check_patch(p, &cur_patch, i, &skip_addr);
1651 if (skip_addr > i)
1652 {
1653 int end_addr;
1654
1655 end_addr = min_t(int, address, skip_addr);
1656 address_offset += end_addr - i;
1657 i = skip_addr;
1658 }
1659 else
1660 {
1661 i++;
1662 }
1663 }
1664 address -= address_offset;
1665 fmt3_ins->address = address;
1666 /* Fall Through to the next code section */
1667 }
1668 case AIC_OP_OR:
1669 case AIC_OP_AND:
1670 case AIC_OP_XOR:
1671 case AIC_OP_ADD:
1672 case AIC_OP_ADC:
1673 case AIC_OP_BMOV:
1674 if (fmt1_ins->parity != 0)
1675 {
1676 fmt1_ins->immediate = dconsts[fmt1_ins->immediate];
1677 }
1678 fmt1_ins->parity = 0;
1679 /* Fall Through to the next code section */
1680 case AIC_OP_ROL:
1681 if ((p->features & AHC_ULTRA2) != 0)
1682 {
1683 int i, count;
1684
1685 /* Calculate odd parity for the instruction */
1686 for ( i=0, count=0; i < 31; i++)
1687 {
1688 unsigned int mask;
1689
1690 mask = 0x01 << i;
1691 if ((instr.integer & mask) != 0)
1692 count++;
1693 }
1694 if (!(count & 0x01))
1695 instr.format1.parity = 1;
1696 }
1697 else
1698 {
1699 if (fmt3_ins != NULL)
1700 {
1701 instr.integer = fmt3_ins->immediate |
1702 (fmt3_ins->source << 8) |
1703 (fmt3_ins->address << 16) |
1704 (fmt3_ins->opcode << 25);
1705 }
1706 else
1707 {
1708 instr.integer = fmt1_ins->immediate |
1709 (fmt1_ins->source << 8) |
1710 (fmt1_ins->destination << 16) |
1711 (fmt1_ins->ret << 24) |
1712 (fmt1_ins->opcode << 25);
1713 }
1714 }
1715 aic_outb(p, (instr.integer & 0xff), SEQRAM);
1716 aic_outb(p, ((instr.integer >> 8) & 0xff), SEQRAM);
1717 aic_outb(p, ((instr.integer >> 16) & 0xff), SEQRAM);
1718 aic_outb(p, ((instr.integer >> 24) & 0xff), SEQRAM);
1719 udelay(10);
1720 break;
1721
1722 default:
1723 panic("aic7xxx: Unknown opcode encountered in sequencer program.");
1724 break;
1725 }
1726 }
1727
1728
1729 /*+F*************************************************************************
1730 * Function:
1731 * aic7xxx_loadseq
1732 *
1733 * Description:
1734 * Load the sequencer code into the controller memory.
1735 *-F*************************************************************************/
1736 static void
1737 aic7xxx_loadseq(struct aic7xxx_host *p)
1738 {
1739 struct sequencer_patch *cur_patch;
1740 int i;
1741 int downloaded;
1742 int skip_addr;
1743 unsigned char download_consts[4] = {0, 0, 0, 0};
1744
1745 if (aic7xxx_verbose & VERBOSE_PROBE)
1746 {
1747 printk(KERN_INFO "(scsi%d) Downloading sequencer code...", p->host_no);
1748 }
1749 #if 0
1750 download_consts[TMODE_NUMCMDS] = p->num_targetcmds;
1751 #endif
1752 download_consts[TMODE_NUMCMDS] = 0;
1753 cur_patch = &sequencer_patches[0];
1754 downloaded = 0;
1755 skip_addr = 0;
1756
1757 aic_outb(p, PERRORDIS|LOADRAM|FAILDIS|FASTMODE, SEQCTL);
1758 aic_outb(p, 0, SEQADDR0);
1759 aic_outb(p, 0, SEQADDR1);
1760
1761 for (i = 0; i < sizeof(seqprog) / 4; i++)
1762 {
1763 if (aic7xxx_check_patch(p, &cur_patch, i, &skip_addr) == 0)
1764 {
1765 /* Skip this instruction for this configuration. */
1766 continue;
1767 }
1768 aic7xxx_download_instr(p, i, &download_consts[0]);
1769 downloaded++;
1770 }
1771
1772 aic_outb(p, 0, SEQADDR0);
1773 aic_outb(p, 0, SEQADDR1);
1774 aic_outb(p, FASTMODE | FAILDIS, SEQCTL);
1775 unpause_sequencer(p, TRUE);
1776 mdelay(1);
1777 pause_sequencer(p);
1778 aic_outb(p, FASTMODE, SEQCTL);
1779 if (aic7xxx_verbose & VERBOSE_PROBE)
1780 {
1781 printk(" %d instructions downloaded\n", downloaded);
1782 }
1783 if (aic7xxx_dump_sequencer)
1784 aic7xxx_print_sequencer(p, downloaded);
1785 }
1786
1787 /*+F*************************************************************************
1788 * Function:
1789 * aic7xxx_print_sequencer
1790 *
1791 * Description:
1792 * Print the contents of the sequencer memory to the screen.
1793 *-F*************************************************************************/
1794 static void
1795 aic7xxx_print_sequencer(struct aic7xxx_host *p, int downloaded)
1796 {
1797 int i, k, temp;
1798
1799 aic_outb(p, PERRORDIS|LOADRAM|FAILDIS|FASTMODE, SEQCTL);
1800 aic_outb(p, 0, SEQADDR0);
1801 aic_outb(p, 0, SEQADDR1);
1802
1803 k = 0;
1804 for (i=0; i < downloaded; i++)
1805 {
1806 if ( k == 0 )
1807 printk("%03x: ", i);
1808 temp = aic_inb(p, SEQRAM);
1809 temp |= (aic_inb(p, SEQRAM) << 8);
1810 temp |= (aic_inb(p, SEQRAM) << 16);
1811 temp |= (aic_inb(p, SEQRAM) << 24);
1812 printk("%08x", temp);
1813 if ( ++k == 8 )
1814 {
1815 printk("\n");
1816 k = 0;
1817 }
1818 else
1819 printk(" ");
1820 }
1821 aic_outb(p, 0, SEQADDR0);
1822 aic_outb(p, 0, SEQADDR1);
1823 aic_outb(p, FASTMODE | FAILDIS, SEQCTL);
1824 unpause_sequencer(p, TRUE);
1825 mdelay(1);
1826 pause_sequencer(p);
1827 aic_outb(p, FASTMODE, SEQCTL);
1828 printk("\n");
1829 }
1830
1831 /*+F*************************************************************************
1832 * Function:
1833 * aic7xxx_info
1834 *
1835 * Description:
1836 * Return a string describing the driver.
1837 *-F*************************************************************************/
1838 static const char *
1839 aic7xxx_info(struct Scsi_Host *dooh)
1840 {
1841 static char buffer[256];
1842 char *bp;
1843 struct aic7xxx_host *p;
1844
1845 bp = &buffer[0];
1846 p = (struct aic7xxx_host *)dooh->hostdata;
1847 memset(bp, 0, sizeof(buffer));
1848 strcpy(bp, "Adaptec AHA274x/284x/294x (EISA/VLB/PCI-Fast SCSI) ");
1849 strcat(bp, AIC7XXX_C_VERSION);
1850 strcat(bp, "/");
1851 strcat(bp, AIC7XXX_H_VERSION);
1852 strcat(bp, "\n");
1853 strcat(bp, " <");
1854 strcat(bp, board_names[p->board_name_index]);
1855 strcat(bp, ">");
1856
1857 return(bp);
1858 }
1859
1860 /*+F*************************************************************************
1861 * Function:
1862 * aic7xxx_find_syncrate
1863 *
1864 * Description:
1865 * Look up the valid period to SCSIRATE conversion in our table
1866 *-F*************************************************************************/
1867 static struct aic7xxx_syncrate *
1868 aic7xxx_find_syncrate(struct aic7xxx_host *p, unsigned int *period,
1869 unsigned int maxsync, unsigned char *options)
1870 {
1871 struct aic7xxx_syncrate *syncrate;
1872 int done = FALSE;
1873
1874 switch(*options)
1875 {
1876 case MSG_EXT_PPR_OPTION_DT_CRC:
1877 case MSG_EXT_PPR_OPTION_DT_UNITS:
1878 if(!(p->features & AHC_ULTRA3))
1879 {
1880 *options = 0;
1881 maxsync = max_t(unsigned int, maxsync, AHC_SYNCRATE_ULTRA2);
1882 }
1883 break;
1884 case MSG_EXT_PPR_OPTION_DT_CRC_QUICK:
1885 case MSG_EXT_PPR_OPTION_DT_UNITS_QUICK:
1886 if(!(p->features & AHC_ULTRA3))
1887 {
1888 *options = 0;
1889 maxsync = max_t(unsigned int, maxsync, AHC_SYNCRATE_ULTRA2);
1890 }
1891 else
1892 {
1893 /*
1894 * we don't support the Quick Arbitration variants of dual edge
1895 * clocking. As it turns out, we want to send back the
1896 * same basic option, but without the QA attribute.
1897 * We know that we are responding because we would never set
1898 * these options ourself, we would only respond to them.
1899 */
1900 switch(*options)
1901 {
1902 case MSG_EXT_PPR_OPTION_DT_CRC_QUICK:
1903 *options = MSG_EXT_PPR_OPTION_DT_CRC;
1904 break;
1905 case MSG_EXT_PPR_OPTION_DT_UNITS_QUICK:
1906 *options = MSG_EXT_PPR_OPTION_DT_UNITS;
1907 break;
1908 }
1909 }
1910 break;
1911 default:
1912 *options = 0;
1913 maxsync = max_t(unsigned int, maxsync, AHC_SYNCRATE_ULTRA2);
1914 break;
1915 }
1916 syncrate = &aic7xxx_syncrates[maxsync];
1917 while ( (syncrate->rate[0] != NULL) &&
1918 (!(p->features & AHC_ULTRA2) || syncrate->sxfr_ultra2) )
1919 {
1920 if (*period <= syncrate->period)
1921 {
1922 switch(*options)
1923 {
1924 case MSG_EXT_PPR_OPTION_DT_CRC:
1925 case MSG_EXT_PPR_OPTION_DT_UNITS:
1926 if(!(syncrate->sxfr_ultra2 & AHC_SYNCRATE_CRC))
1927 {
1928 done = TRUE;
1929 /*
1930 * oops, we went too low for the CRC/DualEdge signalling, so
1931 * clear the options byte
1932 */
1933 *options = 0;
1934 /*
1935 * We'll be sending a reply to this packet to set the options
1936 * properly, so unilaterally set the period as well.
1937 */
1938 *period = syncrate->period;
1939 }
1940 else
1941 {
1942 done = TRUE;
1943 if(syncrate == &aic7xxx_syncrates[maxsync])
1944 {
1945 *period = syncrate->period;
1946 }
1947 }
1948 break;
1949 default:
1950 if(!(syncrate->sxfr_ultra2 & AHC_SYNCRATE_CRC))
1951 {
1952 done = TRUE;
1953 if(syncrate == &aic7xxx_syncrates[maxsync])
1954 {
1955 *period = syncrate->period;
1956 }
1957 }
1958 break;
1959 }
1960 if(done)
1961 {
1962 break;
1963 }
1964 }
1965 syncrate++;
1966 }
1967 if ( (*period == 0) || (syncrate->rate[0] == NULL) ||
1968 ((p->features & AHC_ULTRA2) && (syncrate->sxfr_ultra2 == 0)) )
1969 {
1970 /*
1971 * Use async transfers for this target
1972 */
1973 *options = 0;
1974 *period = 255;
1975 syncrate = NULL;
1976 }
1977 return (syncrate);
1978 }
1979
1980
1981 /*+F*************************************************************************
1982 * Function:
1983 * aic7xxx_find_period
1984 *
1985 * Description:
1986 * Look up the valid SCSIRATE to period conversion in our table
1987 *-F*************************************************************************/
1988 static unsigned int
1989 aic7xxx_find_period(struct aic7xxx_host *p, unsigned int scsirate,
1990 unsigned int maxsync)
1991 {
1992 struct aic7xxx_syncrate *syncrate;
1993
1994 if (p->features & AHC_ULTRA2)
1995 {
1996 scsirate &= SXFR_ULTRA2;
1997 }
1998 else
1999 {
2000 scsirate &= SXFR;
2001 }
2002
2003 syncrate = &aic7xxx_syncrates[maxsync];
2004 while (syncrate->rate[0] != NULL)
2005 {
2006 if (p->features & AHC_ULTRA2)
2007 {
2008 if (syncrate->sxfr_ultra2 == 0)
2009 break;
2010 else if (scsirate == syncrate->sxfr_ultra2)
2011 return (syncrate->period);
2012 else if (scsirate == (syncrate->sxfr_ultra2 & ~AHC_SYNCRATE_CRC))
2013 return (syncrate->period);
2014 }
2015 else if (scsirate == (syncrate->sxfr & ~ULTRA_SXFR))
2016 {
2017 return (syncrate->period);
2018 }
2019 syncrate++;
2020 }
2021 return (0); /* async */
2022 }
2023
2024 /*+F*************************************************************************
2025 * Function:
2026 * aic7xxx_validate_offset
2027 *
2028 * Description:
2029 * Set a valid offset value for a particular card in use and transfer
2030 * settings in use.
2031 *-F*************************************************************************/
2032 static void
2033 aic7xxx_validate_offset(struct aic7xxx_host *p,
2034 struct aic7xxx_syncrate *syncrate, unsigned int *offset, int wide)
2035 {
2036 unsigned int maxoffset;
2037
2038 /* Limit offset to what the card (and device) can do */
2039 if (syncrate == NULL)
2040 {
2041 maxoffset = 0;
2042 }
2043 else if (p->features & AHC_ULTRA2)
2044 {
2045 maxoffset = MAX_OFFSET_ULTRA2;
2046 }
2047 else
2048 {
2049 if (wide)
2050 maxoffset = MAX_OFFSET_16BIT;
2051 else
2052 maxoffset = MAX_OFFSET_8BIT;
2053 }
2054 *offset = min(*offset, maxoffset);
2055 }
2056
2057 /*+F*************************************************************************
2058 * Function:
2059 * aic7xxx_set_syncrate
2060 *
2061 * Description:
2062 * Set the actual syncrate down in the card and in our host structs
2063 *-F*************************************************************************/
2064 static void
2065 aic7xxx_set_syncrate(struct aic7xxx_host *p, struct aic7xxx_syncrate *syncrate,
2066 int target, int channel, unsigned int period, unsigned int offset,
2067 unsigned char options, unsigned int type, struct aic_dev_data *aic_dev)
2068 {
2069 unsigned char tindex;
2070 unsigned short target_mask;
2071 unsigned char lun, old_options;
2072 unsigned int old_period, old_offset;
2073
2074 tindex = target | (channel << 3);
2075 target_mask = 0x01 << tindex;
2076 lun = aic_inb(p, SCB_TCL) & 0x07;
2077
2078 if (syncrate == NULL)
2079 {
2080 period = 0;
2081 offset = 0;
2082 }
2083
2084 old_period = aic_dev->cur.period;
2085 old_offset = aic_dev->cur.offset;
2086 old_options = aic_dev->cur.options;
2087
2088
2089 if (type & AHC_TRANS_CUR)
2090 {
2091 unsigned int scsirate;
2092
2093 scsirate = aic_inb(p, TARG_SCSIRATE + tindex);
2094 if (p->features & AHC_ULTRA2)
2095 {
2096 scsirate &= ~SXFR_ULTRA2;
2097 if (syncrate != NULL)
2098 {
2099 switch(options)
2100 {
2101 case MSG_EXT_PPR_OPTION_DT_UNITS:
2102 /*
2103 * mask off the CRC bit in the xfer settings
2104 */
2105 scsirate |= (syncrate->sxfr_ultra2 & ~AHC_SYNCRATE_CRC);
2106 break;
2107 default:
2108 scsirate |= syncrate->sxfr_ultra2;
2109 break;
2110 }
2111 }
2112 if (type & AHC_TRANS_ACTIVE)
2113 {
2114 aic_outb(p, offset, SCSIOFFSET);
2115 }
2116 aic_outb(p, offset, TARG_OFFSET + tindex);
2117 }
2118 else /* Not an Ultra2 controller */
2119 {
2120 scsirate &= ~(SXFR|SOFS);
2121 p->ultraenb &= ~target_mask;
2122 if (syncrate != NULL)
2123 {
2124 if (syncrate->sxfr & ULTRA_SXFR)
2125 {
2126 p->ultraenb |= target_mask;
2127 }
2128 scsirate |= (syncrate->sxfr & SXFR);
2129 scsirate |= (offset & SOFS);
2130 }
2131 if (type & AHC_TRANS_ACTIVE)
2132 {
2133 unsigned char sxfrctl0;
2134
2135 sxfrctl0 = aic_inb(p, SXFRCTL0);
2136 sxfrctl0 &= ~FAST20;
2137 if (p->ultraenb & target_mask)
2138 sxfrctl0 |= FAST20;
2139 aic_outb(p, sxfrctl0, SXFRCTL0);
2140 }
2141 aic_outb(p, p->ultraenb & 0xff, ULTRA_ENB);
2142 aic_outb(p, (p->ultraenb >> 8) & 0xff, ULTRA_ENB + 1 );
2143 }
2144 if (type & AHC_TRANS_ACTIVE)
2145 {
2146 aic_outb(p, scsirate, SCSIRATE);
2147 }
2148 aic_outb(p, scsirate, TARG_SCSIRATE + tindex);
2149 aic_dev->cur.period = period;
2150 aic_dev->cur.offset = offset;
2151 aic_dev->cur.options = options;
2152 if ( !(type & AHC_TRANS_QUITE) &&
2153 (aic7xxx_verbose & VERBOSE_NEGOTIATION) &&
2154 (aic_dev->flags & DEVICE_PRINT_DTR) )
2155 {
2156 if (offset)
2157 {
2158 int rate_mod = (scsirate & WIDEXFER) ? 1 : 0;
2159
2160 printk(INFO_LEAD "Synchronous at %s Mbyte/sec, "
2161 "offset %d.\n", p->host_no, channel, target, lun,
2162 syncrate->rate[rate_mod], offset);
2163 }
2164 else
2165 {
2166 printk(INFO_LEAD "Using asynchronous transfers.\n",
2167 p->host_no, channel, target, lun);
2168 }
2169 aic_dev->flags &= ~DEVICE_PRINT_DTR;
2170 }
2171 }
2172
2173 if (type & AHC_TRANS_GOAL)
2174 {
2175 aic_dev->goal.period = period;
2176 aic_dev->goal.offset = offset;
2177 aic_dev->goal.options = options;
2178 }
2179
2180 if (type & AHC_TRANS_USER)
2181 {
2182 p->user[tindex].period = period;
2183 p->user[tindex].offset = offset;
2184 p->user[tindex].options = options;
2185 }
2186 }
2187
2188 /*+F*************************************************************************
2189 * Function:
2190 * aic7xxx_set_width
2191 *
2192 * Description:
2193 * Set the actual width down in the card and in our host structs
2194 *-F*************************************************************************/
2195 static void
2196 aic7xxx_set_width(struct aic7xxx_host *p, int target, int channel, int lun,
2197 unsigned int width, unsigned int type, struct aic_dev_data *aic_dev)
2198 {
2199 unsigned char tindex;
2200 unsigned short target_mask;
2201 unsigned int old_width;
2202
2203 tindex = target | (channel << 3);
2204 target_mask = 1 << tindex;
2205
2206 old_width = aic_dev->cur.width;
2207
2208 if (type & AHC_TRANS_CUR)
2209 {
2210 unsigned char scsirate;
2211
2212 scsirate = aic_inb(p, TARG_SCSIRATE + tindex);
2213
2214 scsirate &= ~WIDEXFER;
2215 if (width == MSG_EXT_WDTR_BUS_16_BIT)
2216 scsirate |= WIDEXFER;
2217
2218 aic_outb(p, scsirate, TARG_SCSIRATE + tindex);
2219
2220 if (type & AHC_TRANS_ACTIVE)
2221 aic_outb(p, scsirate, SCSIRATE);
2222
2223 aic_dev->cur.width = width;
2224
2225 if ( !(type & AHC_TRANS_QUITE) &&
2226 (aic7xxx_verbose & VERBOSE_NEGOTIATION2) &&
2227 (aic_dev->flags & DEVICE_PRINT_DTR) )
2228 {
2229 printk(INFO_LEAD "Using %s transfers\n", p->host_no, channel, target,
2230 lun, (scsirate & WIDEXFER) ? "Wide(16bit)" : "Narrow(8bit)" );
2231 }
2232 }
2233
2234 if (type & AHC_TRANS_GOAL)
2235 aic_dev->goal.width = width;
2236 if (type & AHC_TRANS_USER)
2237 p->user[tindex].width = width;
2238
2239 if (aic_dev->goal.offset)
2240 {
2241 if (p->features & AHC_ULTRA2)
2242 {
2243 aic_dev->goal.offset = MAX_OFFSET_ULTRA2;
2244 }
2245 else if (width == MSG_EXT_WDTR_BUS_16_BIT)
2246 {
2247 aic_dev->goal.offset = MAX_OFFSET_16BIT;
2248 }
2249 else
2250 {
2251 aic_dev->goal.offset = MAX_OFFSET_8BIT;
2252 }
2253 }
2254 }
2255
2256 /*+F*************************************************************************
2257 * Function:
2258 * scbq_init
2259 *
2260 * Description:
2261 * SCB queue initialization.
2262 *
2263 *-F*************************************************************************/
2264 static void
2265 scbq_init(volatile scb_queue_type *queue)
2266 {
2267 queue->head = NULL;
2268 queue->tail = NULL;
2269 }
2270
2271 /*+F*************************************************************************
2272 * Function:
2273 * scbq_insert_head
2274 *
2275 * Description:
2276 * Add an SCB to the head of the list.
2277 *
2278 *-F*************************************************************************/
2279 static inline void
2280 scbq_insert_head(volatile scb_queue_type *queue, struct aic7xxx_scb *scb)
2281 {
2282 scb->q_next = queue->head;
2283 queue->head = scb;
2284 if (queue->tail == NULL) /* If list was empty, update tail. */
2285 queue->tail = queue->head;
2286 }
2287
2288 /*+F*************************************************************************
2289 * Function:
2290 * scbq_remove_head
2291 *
2292 * Description:
2293 * Remove an SCB from the head of the list.
2294 *
2295 *-F*************************************************************************/
2296 static inline struct aic7xxx_scb *
2297 scbq_remove_head(volatile scb_queue_type *queue)
2298 {
2299 struct aic7xxx_scb * scbp;
2300
2301 scbp = queue->head;
2302 if (queue->head != NULL)
2303 queue->head = queue->head->q_next;
2304 if (queue->head == NULL) /* If list is now empty, update tail. */
2305 queue->tail = NULL;
2306 return(scbp);
2307 }
2308
2309 /*+F*************************************************************************
2310 * Function:
2311 * scbq_remove
2312 *
2313 * Description:
2314 * Removes an SCB from the list.
2315 *
2316 *-F*************************************************************************/
2317 static inline void
2318 scbq_remove(volatile scb_queue_type *queue, struct aic7xxx_scb *scb)
2319 {
2320 if (queue->head == scb)
2321 {
2322 /* At beginning of queue, remove from head. */
2323 scbq_remove_head(queue);
2324 }
2325 else
2326 {
2327 struct aic7xxx_scb *curscb = queue->head;
2328
2329 /*
2330 * Search until the next scb is the one we're looking for, or
2331 * we run out of queue.
2332 */
2333 while ((curscb != NULL) && (curscb->q_next != scb))
2334 {
2335 curscb = curscb->q_next;
2336 }
2337 if (curscb != NULL)
2338 {
2339 /* Found it. */
2340 curscb->q_next = scb->q_next;
2341 if (scb->q_next == NULL)
2342 {
2343 /* Update the tail when removing the tail. */
2344 queue->tail = curscb;
2345 }
2346 }
2347 }
2348 }
2349
2350 /*+F*************************************************************************
2351 * Function:
2352 * scbq_insert_tail
2353 *
2354 * Description:
2355 * Add an SCB at the tail of the list.
2356 *
2357 *-F*************************************************************************/
2358 static inline void
2359 scbq_insert_tail(volatile scb_queue_type *queue, struct aic7xxx_scb *scb)
2360 {
2361 scb->q_next = NULL;
2362 if (queue->tail != NULL) /* Add the scb at the end of the list. */
2363 queue->tail->q_next = scb;
2364 queue->tail = scb; /* Update the tail. */
2365 if (queue->head == NULL) /* If list was empty, update head. */
2366 queue->head = queue->tail;
2367 }
2368
2369 /*+F*************************************************************************
2370 * Function:
2371 * aic7xxx_match_scb
2372 *
2373 * Description:
2374 * Checks to see if an scb matches the target/channel as specified.
2375 * If target is ALL_TARGETS (-1), then we're looking for any device
2376 * on the specified channel; this happens when a channel is going
2377 * to be reset and all devices on that channel must be aborted.
2378 *-F*************************************************************************/
2379 static int
2380 aic7xxx_match_scb(struct aic7xxx_host *p, struct aic7xxx_scb *scb,
2381 int target, int channel, int lun, unsigned char tag)
2382 {
2383 int targ = (scb->hscb->target_channel_lun >> 4) & 0x0F;
2384 int chan = (scb->hscb->target_channel_lun >> 3) & 0x01;
2385 int slun = scb->hscb->target_channel_lun & 0x07;
2386 int match;
2387
2388 match = ((chan == channel) || (channel == ALL_CHANNELS));
2389 if (match != 0)
2390 match = ((targ == target) || (target == ALL_TARGETS));
2391 if (match != 0)
2392 match = ((lun == slun) || (lun == ALL_LUNS));
2393 if (match != 0)
2394 match = ((tag == scb->hscb->tag) || (tag == SCB_LIST_NULL));
2395
2396 return (match);
2397 }
2398
2399 /*+F*************************************************************************
2400 * Function:
2401 * aic7xxx_add_curscb_to_free_list
2402 *
2403 * Description:
2404 * Adds the current scb (in SCBPTR) to the list of free SCBs.
2405 *-F*************************************************************************/
2406 static void
2407 aic7xxx_add_curscb_to_free_list(struct aic7xxx_host *p)
2408 {
2409 /*
2410 * Invalidate the tag so that aic7xxx_find_scb doesn't think
2411 * it's active
2412 */
2413 aic_outb(p, SCB_LIST_NULL, SCB_TAG);
2414 aic_outb(p, 0, SCB_CONTROL);
2415
2416 aic_outb(p, aic_inb(p, FREE_SCBH), SCB_NEXT);
2417 aic_outb(p, aic_inb(p, SCBPTR), FREE_SCBH);
2418 }
2419
2420 /*+F*************************************************************************
2421 * Function:
2422 * aic7xxx_rem_scb_from_disc_list
2423 *
2424 * Description:
2425 * Removes the current SCB from the disconnected list and adds it
2426 * to the free list.
2427 *-F*************************************************************************/
2428 static unsigned char
2429 aic7xxx_rem_scb_from_disc_list(struct aic7xxx_host *p, unsigned char scbptr,
2430 unsigned char prev)
2431 {
2432 unsigned char next;
2433
2434 aic_outb(p, scbptr, SCBPTR);
2435 next = aic_inb(p, SCB_NEXT);
2436 aic7xxx_add_curscb_to_free_list(p);
2437
2438 if (prev != SCB_LIST_NULL)
2439 {
2440 aic_outb(p, prev, SCBPTR);
2441 aic_outb(p, next, SCB_NEXT);
2442 }
2443 else
2444 {
2445 aic_outb(p, next, DISCONNECTED_SCBH);
2446 }
2447
2448 return next;
2449 }
2450
2451 /*+F*************************************************************************
2452 * Function:
2453 * aic7xxx_busy_target
2454 *
2455 * Description:
2456 * Set the specified target busy.
2457 *-F*************************************************************************/
2458 static inline void
2459 aic7xxx_busy_target(struct aic7xxx_host *p, struct aic7xxx_scb *scb)
2460 {
2461 p->untagged_scbs[scb->hscb->target_channel_lun] = scb->hscb->tag;
2462 }
2463
2464 /*+F*************************************************************************
2465 * Function:
2466 * aic7xxx_index_busy_target
2467 *
2468 * Description:
2469 * Returns the index of the busy target, and optionally sets the
2470 * target inactive.
2471 *-F*************************************************************************/
2472 static inline unsigned char
2473 aic7xxx_index_busy_target(struct aic7xxx_host *p, unsigned char tcl,
2474 int unbusy)
2475 {
2476 unsigned char busy_scbid;
2477
2478 busy_scbid = p->untagged_scbs[tcl];
2479 if (unbusy)
2480 {
2481 p->untagged_scbs[tcl] = SCB_LIST_NULL;
2482 }
2483 return (busy_scbid);
2484 }
2485
2486 /*+F*************************************************************************
2487 * Function:
2488 * aic7xxx_find_scb
2489 *
2490 * Description:
2491 * Look through the SCB array of the card and attempt to find the
2492 * hardware SCB that corresponds to the passed in SCB. Return
2493 * SCB_LIST_NULL if unsuccessful. This routine assumes that the
2494 * card is already paused.
2495 *-F*************************************************************************/
2496 static unsigned char
2497 aic7xxx_find_scb(struct aic7xxx_host *p, struct aic7xxx_scb *scb)
2498 {
2499 unsigned char saved_scbptr;
2500 unsigned char curindex;
2501
2502 saved_scbptr = aic_inb(p, SCBPTR);
2503 curindex = 0;
2504 for (curindex = 0; curindex < p->scb_data->maxhscbs; curindex++)
2505 {
2506 aic_outb(p, curindex, SCBPTR);
2507 if (aic_inb(p, SCB_TAG) == scb->hscb->tag)
2508 {
2509 break;
2510 }
2511 }
2512 aic_outb(p, saved_scbptr, SCBPTR);
2513 if (curindex >= p->scb_data->maxhscbs)
2514 {
2515 curindex = SCB_LIST_NULL;
2516 }
2517
2518 return (curindex);
2519 }
2520
2521 /*+F*************************************************************************
2522 * Function:
2523 * aic7xxx_allocate_scb
2524 *
2525 * Description:
2526 * Get an SCB from the free list or by allocating a new one.
2527 *-F*************************************************************************/
2528 static int
2529 aic7xxx_allocate_scb(struct aic7xxx_host *p)
2530 {
2531 struct aic7xxx_scb *scbp = NULL;
2532 int scb_size = (sizeof (struct hw_scatterlist) * AIC7XXX_MAX_SG) + 12 + 6;
2533 int i;
2534 int step = PAGE_SIZE / 1024;
2535 unsigned long scb_count = 0;
2536 struct hw_scatterlist *hsgp;
2537 struct aic7xxx_scb *scb_ap;
2538 struct aic7xxx_scb_dma *scb_dma;
2539 unsigned char *bufs;
2540
2541 if (p->scb_data->numscbs < p->scb_data->maxscbs)
2542 {
2543 /*
2544 * Calculate the optimal number of SCBs to allocate.
2545 *
2546 * NOTE: This formula works because the sizeof(sg_array) is always
2547 * 1024. Therefore, scb_size * i would always be > PAGE_SIZE *
2548 * (i/step). The (i-1) allows the left hand side of the equation
2549 * to grow into the right hand side to a point of near perfect
2550 * efficiency since scb_size * (i -1) is growing slightly faster
2551 * than the right hand side. If the number of SG array elements
2552 * is changed, this function may not be near so efficient any more.
2553 *
2554 * Since the DMA'able buffers are now allocated in a separate
2555 * chunk this algorithm has been modified to match. The '12'
2556 * and '6' factors in scb_size are for the DMA'able command byte
2557 * and sensebuffers respectively. -DaveM
2558 */
2559 for ( i=step;; i *= 2 )
2560 {
2561 if ( (scb_size * (i-1)) >= ( (PAGE_SIZE * (i/step)) - 64 ) )
2562 {
2563 i /= 2;
2564 break;
2565 }
2566 }
2567 scb_count = min( (i-1), p->scb_data->maxscbs - p->scb_data->numscbs);
2568 scb_ap = (struct aic7xxx_scb *)kmalloc(sizeof (struct aic7xxx_scb) * scb_count
2569 + sizeof(struct aic7xxx_scb_dma), GFP_ATOMIC);
2570 if (scb_ap == NULL)
2571 return(0);
2572 scb_dma = (struct aic7xxx_scb_dma *)&scb_ap[scb_count];
2573 hsgp = (struct hw_scatterlist *)
2574 pci_alloc_consistent(p->pdev, scb_size * scb_count,
2575 &scb_dma->dma_address);
2576 if (hsgp == NULL)
2577 {
2578 kfree(scb_ap);
2579 return(0);
2580 }
2581 bufs = (unsigned char *)&hsgp[scb_count * AIC7XXX_MAX_SG];
2582 #ifdef AIC7XXX_VERBOSE_DEBUGGING
2583 if (aic7xxx_verbose > 0xffff)
2584 {
2585 if (p->scb_data->numscbs == 0)
2586 printk(INFO_LEAD "Allocating initial %ld SCB structures.\n",
2587 p->host_no, -1, -1, -1, scb_count);
2588 else
2589 printk(INFO_LEAD "Allocating %ld additional SCB structures.\n",
2590 p->host_no, -1, -1, -1, scb_count);
2591 }
2592 #endif
2593 memset(scb_ap, 0, sizeof (struct aic7xxx_scb) * scb_count);
2594 scb_dma->dma_offset = (unsigned long)scb_dma->dma_address
2595 - (unsigned long)hsgp;
2596 scb_dma->dma_len = scb_size * scb_count;
2597 for (i=0; i < scb_count; i++)
2598 {
2599 scbp = &scb_ap[i];
2600 scbp->hscb = &p->scb_data->hscbs[p->scb_data->numscbs];
2601 scbp->sg_list = &hsgp[i * AIC7XXX_MAX_SG];
2602 scbp->sense_cmd = bufs;
2603 scbp->cmnd = bufs + 6;
2604 bufs += 12 + 6;
2605 scbp->scb_dma = scb_dma;
2606 memset(scbp->hscb, 0, sizeof(struct aic7xxx_hwscb));
2607 scbp->hscb->tag = p->scb_data->numscbs;
2608 /*
2609 * Place in the scb array; never is removed
2610 */
2611 p->scb_data->scb_array[p->scb_data->numscbs++] = scbp;
2612 scbq_insert_tail(&p->scb_data->free_scbs, scbp);
2613 }
2614 scbp->kmalloc_ptr = scb_ap;
2615 }
2616 return(scb_count);
2617 }
2618
2619 /*+F*************************************************************************
2620 * Function:
2621 * aic7xxx_queue_cmd_complete
2622 *
2623 * Description:
2624 * Due to race conditions present in the SCSI subsystem, it is easier
2625 * to queue completed commands, then call scsi_done() on them when
2626 * we're finished. This function queues the completed commands.
2627 *-F*************************************************************************/
2628 static void
2629 aic7xxx_queue_cmd_complete(struct aic7xxx_host *p, Scsi_Cmnd *cmd)
2630 {
2631 aic7xxx_position(cmd) = SCB_LIST_NULL;
2632 cmd->host_scribble = (char *)p->completeq.head;
2633 p->completeq.head = cmd;
2634 }
2635
2636 /*+F*************************************************************************
2637 * Function:
2638 * aic7xxx_done_cmds_complete
2639 *
2640 * Description:
2641 * Process the completed command queue.
2642 *-F*************************************************************************/
2643 static void
2644 aic7xxx_done_cmds_complete(struct aic7xxx_host *p)
2645 {
2646 Scsi_Cmnd *cmd;
2647
2648 while (p->completeq.head != NULL)
2649 {
2650 cmd = p->completeq.head;
2651 p->completeq.head = (Scsi_Cmnd *)cmd->host_scribble;
2652 cmd->host_scribble = NULL;
2653 cmd->scsi_done(cmd);
2654 }
2655 }
2656
2657 /*+F*************************************************************************
2658 * Function:
2659 * aic7xxx_free_scb
2660 *
2661 * Description:
2662 * Free the scb and insert into the free scb list.
2663 *-F*************************************************************************/
2664 static void
2665 aic7xxx_free_scb(struct aic7xxx_host *p, struct aic7xxx_scb *scb)
2666 {
2667
2668 scb->flags = SCB_FREE;
2669 scb->cmd = NULL;
2670 scb->sg_count = 0;
2671 scb->sg_length = 0;
2672 scb->tag_action = 0;
2673 scb->hscb->control = 0;
2674 scb->hscb->target_status = 0;
2675 scb->hscb->target_channel_lun = SCB_LIST_NULL;
2676
2677 scbq_insert_head(&p->scb_data->free_scbs, scb);
2678 }
2679
2680 /*+F*************************************************************************
2681 * Function:
2682 * aic7xxx_done
2683 *
2684 * Description:
2685 * Calls the higher level scsi done function and frees the scb.
2686 *-F*************************************************************************/
2687 static void
2688 aic7xxx_done(struct aic7xxx_host *p, struct aic7xxx_scb *scb)
2689 {
2690 Scsi_Cmnd *cmd = scb->cmd;
2691 struct aic_dev_data *aic_dev = cmd->device->hostdata;
2692 int tindex = TARGET_INDEX(cmd);
2693 struct aic7xxx_scb *scbp;
2694 unsigned char queue_depth;
2695
2696 if (cmd->use_sg > 1)
2697 {
2698 struct scatterlist *sg;
2699
2700 sg = (struct scatterlist *)cmd->request_buffer;
2701 pci_unmap_sg(p->pdev, sg, cmd->use_sg, cmd->sc_data_direction);
2702 }
2703 else if (cmd->request_bufflen)
2704 pci_unmap_single(p->pdev, aic7xxx_mapping(cmd),
2705 cmd->request_bufflen,
2706 cmd->sc_data_direction);
2707 if (scb->flags & SCB_SENSE)
2708 {
2709 pci_unmap_single(p->pdev,
2710 le32_to_cpu(scb->sg_list[0].address),
2711 sizeof(cmd->sense_buffer),
2712 PCI_DMA_FROMDEVICE);
2713 }
2714 if (scb->flags & SCB_RECOVERY_SCB)
2715 {
2716 p->flags &= ~AHC_ABORT_PENDING;
2717 }
2718 if (scb->flags & (SCB_RESET|SCB_ABORT))
2719 {
2720 cmd->result |= (DID_RESET << 16);
2721 }
2722
2723 if ((scb->flags & SCB_MSGOUT_BITS) != 0)
2724 {
2725 unsigned short mask;
2726 int message_error = FALSE;
2727
2728 mask = 0x01 << tindex;
2729
2730 /*
2731 * Check to see if we get an invalid message or a message error
2732 * after failing to negotiate a wide or sync transfer message.
2733 */
2734 if ((scb->flags & SCB_SENSE) &&
2735 ((scb->cmd->sense_buffer[12] == 0x43) || /* INVALID_MESSAGE */
2736 (scb->cmd->sense_buffer[12] == 0x49))) /* MESSAGE_ERROR */
2737 {
2738 message_error = TRUE;
2739 }
2740
2741 if (scb->flags & SCB_MSGOUT_WDTR)
2742 {
2743 if (message_error)
2744 {
2745 if ( (aic7xxx_verbose & VERBOSE_NEGOTIATION2) &&
2746 (aic_dev->flags & DEVICE_PRINT_DTR) )
2747 {
2748 printk(INFO_LEAD "Device failed to complete Wide Negotiation "
2749 "processing and\n", p->host_no, CTL_OF_SCB(scb));
2750 printk(INFO_LEAD "returned a sense error code for invalid message, "
2751 "disabling future\n", p->host_no, CTL_OF_SCB(scb));
2752 printk(INFO_LEAD "Wide negotiation to this device.\n", p->host_no,
2753 CTL_OF_SCB(scb));
2754 }
2755 aic_dev->needwdtr = aic_dev->needwdtr_copy = 0;
2756 }
2757 }
2758 if (scb->flags & SCB_MSGOUT_SDTR)
2759 {
2760 if (message_error)
2761 {
2762 if ( (aic7xxx_verbose & VERBOSE_NEGOTIATION2) &&
2763 (aic_dev->flags & DEVICE_PRINT_DTR) )
2764 {
2765 printk(INFO_LEAD "Device failed to complete Sync Negotiation "
2766 "processing and\n", p->host_no, CTL_OF_SCB(scb));
2767 printk(INFO_LEAD "returned a sense error code for invalid message, "
2768 "disabling future\n", p->host_no, CTL_OF_SCB(scb));
2769 printk(INFO_LEAD "Sync negotiation to this device.\n", p->host_no,
2770 CTL_OF_SCB(scb));
2771 aic_dev->flags &= ~DEVICE_PRINT_DTR;
2772 }
2773 aic_dev->needsdtr = aic_dev->needsdtr_copy = 0;
2774 }
2775 }
2776 if (scb->flags & SCB_MSGOUT_PPR)
2777 {
2778 if(message_error)
2779 {
2780 if ( (aic7xxx_verbose & VERBOSE_NEGOTIATION2) &&
2781 (aic_dev->flags & DEVICE_PRINT_DTR) )
2782 {
2783 printk(INFO_LEAD "Device failed to complete Parallel Protocol "
2784 "Request processing and\n", p->host_no, CTL_OF_SCB(scb));
2785 printk(INFO_LEAD "returned a sense error code for invalid message, "
2786 "disabling future\n", p->host_no, CTL_OF_SCB(scb));
2787 printk(INFO_LEAD "Parallel Protocol Request negotiation to this "
2788 "device.\n", p->host_no, CTL_OF_SCB(scb));
2789 }
2790 /*
2791 * Disable PPR negotiation and revert back to WDTR and SDTR setup
2792 */
2793 aic_dev->needppr = aic_dev->needppr_copy = 0;
2794 aic_dev->needsdtr = aic_dev->needsdtr_copy = 1;
2795 aic_dev->needwdtr = aic_dev->needwdtr_copy = 1;
2796 }
2797 }
2798 }
2799
2800 queue_depth = aic_dev->temp_q_depth;
2801 if (queue_depth >= aic_dev->active_cmds)
2802 {
2803 scbp = scbq_remove_head(&aic_dev->delayed_scbs);
2804 if (scbp)
2805 {
2806 if (queue_depth == 1)
2807 {
2808 /*
2809 * Give extra preference to untagged devices, such as CD-R devices
2810 * This makes it more likely that a drive *won't* stuff up while
2811 * waiting on data at a critical time, such as CD-R writing and
2812 * audio CD ripping operations. Should also benefit tape drives.
2813 */
2814 scbq_insert_head(&p->waiting_scbs, scbp);
2815 }
2816 else
2817 {
2818 scbq_insert_tail(&p->waiting_scbs, scbp);
2819 }
2820 #ifdef AIC7XXX_VERBOSE_DEBUGGING
2821 if (aic7xxx_verbose > 0xffff)
2822 printk(INFO_LEAD "Moving SCB from delayed to waiting queue.\n",
2823 p->host_no, CTL_OF_SCB(scbp));
2824 #endif
2825 if (queue_depth > aic_dev->active_cmds)
2826 {
2827 scbp = scbq_remove_head(&aic_dev->delayed_scbs);
2828 if (scbp)
2829 scbq_insert_tail(&p->waiting_scbs, scbp);
2830 }
2831 }
2832 }
2833 if (!(scb->tag_action))
2834 {
2835 aic7xxx_index_busy_target(p, scb->hscb->target_channel_lun,
2836 /* unbusy */ TRUE);
2837 if (cmd->device->simple_tags)
2838 {
2839 aic_dev->temp_q_depth = aic_dev->max_q_depth;
2840 }
2841 }
2842 if(scb->flags & SCB_DTR_SCB)
2843 {
2844 aic_dev->dtr_pending = 0;
2845 }
2846 aic_dev->active_cmds--;
2847 p->activescbs--;
2848
2849 if ((scb->sg_length >= 512) && (((cmd->result >> 16) & 0xf) == DID_OK))
2850 {
2851 long *ptr;
2852 int x, i;
2853
2854
2855 if (rq_data_dir(cmd->request) == WRITE)
2856 {
2857 aic_dev->w_total++;
2858 ptr = aic_dev->w_bins;
2859 }
2860 else
2861 {
2862 aic_dev->r_total++;
2863 ptr = aic_dev->r_bins;
2864 }
2865 if(cmd->device->simple_tags && cmd->request->cmd_flags & REQ_HARDBARRIER)
2866 {
2867 aic_dev->barrier_total++;
2868 if(scb->tag_action == MSG_ORDERED_Q_TAG)
2869 aic_dev->ordered_total++;
2870 }
2871 x = scb->sg_length;
2872 x >>= 10;
2873 for(i=0; i<6; i++)
2874 {
2875 x >>= 2;
2876 if(!x) {
2877 ptr[i]++;
2878 break;
2879 }
2880 }
2881 if(i == 6 && x)
2882 ptr[5]++;
2883 }
2884 aic7xxx_free_scb(p, scb);
2885 aic7xxx_queue_cmd_complete(p, cmd);
2886
2887 }
2888
2889 /*+F*************************************************************************
2890 * Function:
2891 * aic7xxx_run_done_queue
2892 *
2893 * Description:
2894 * Calls the aic7xxx_done() for the Scsi_Cmnd of each scb in the
2895 * aborted list, and adds each scb to the free list. If complete
2896 * is TRUE, we also process the commands complete list.
2897 *-F*************************************************************************/
2898 static void
2899 aic7xxx_run_done_queue(struct aic7xxx_host *p, /*complete*/ int complete)
2900 {
2901 struct aic7xxx_scb *scb;
2902 int i, found = 0;
2903
2904 for (i = 0; i < p->scb_data->numscbs; i++)
2905 {
2906 scb = p->scb_data->scb_array[i];
2907 if (scb->flags & SCB_QUEUED_FOR_DONE)
2908 {
2909 if (scb->flags & SCB_QUEUE_FULL)
2910 {
2911 scb->cmd->result = QUEUE_FULL << 1;
2912 }
2913 else
2914 {
2915 if (aic7xxx_verbose & (VERBOSE_ABORT_PROCESS | VERBOSE_RESET_PROCESS))
2916 printk(INFO_LEAD "Aborting scb %d\n",
2917 p->host_no, CTL_OF_SCB(scb), scb->hscb->tag);
2918 /*
2919 * Clear any residual information since the normal aic7xxx_done() path
2920 * doesn't touch the residuals.
2921 */
2922 scb->hscb->residual_SG_segment_count = 0;
2923 scb->hscb->residual_data_count[0] = 0;
2924 scb->hscb->residual_data_count[1] = 0;
2925 scb->hscb->residual_data_count[2] = 0;
2926 }
2927 found++;
2928 aic7xxx_done(p, scb);
2929 }
2930 }
2931 if (aic7xxx_verbose & (VERBOSE_ABORT_RETURN | VERBOSE_RESET_RETURN))
2932 {
2933 printk(INFO_LEAD "%d commands found and queued for "
2934 "completion.\n", p->host_no, -1, -1, -1, found);
2935 }
2936 if (complete)
2937 {
2938 aic7xxx_done_cmds_complete(p);
2939 }
2940 }
2941
2942 /*+F*************************************************************************
2943 * Function:
2944 * aic7xxx_abort_waiting_scb
2945 *
2946 * Description:
2947 * Manipulate the waiting for selection list and return the
2948 * scb that follows the one that we remove.
2949 *-F*************************************************************************/
2950 static unsigned char
2951 aic7xxx_abort_waiting_scb(struct aic7xxx_host *p, struct aic7xxx_scb *scb,
2952 unsigned char scbpos, unsigned char prev)
2953 {
2954 unsigned char curscb, next;
2955
2956 /*
2957 * Select the SCB we want to abort and pull the next pointer out of it.
2958 */
2959 curscb = aic_inb(p, SCBPTR);
2960 aic_outb(p, scbpos, SCBPTR);
2961 next = aic_inb(p, SCB_NEXT);
2962
2963 aic7xxx_add_curscb_to_free_list(p);
2964
2965 /*
2966 * Update the waiting list
2967 */
2968 if (prev == SCB_LIST_NULL)
2969 {
2970 /*
2971 * First in the list
2972 */
2973 aic_outb(p, next, WAITING_SCBH);
2974 }
2975 else
2976 {
2977 /*
2978 * Select the scb that pointed to us and update its next pointer.
2979 */
2980 aic_outb(p, prev, SCBPTR);
2981 aic_outb(p, next, SCB_NEXT);
2982 }
2983 /*
2984 * Point us back at the original scb position and inform the SCSI
2985 * system that the command has been aborted.
2986 */
2987 aic_outb(p, curscb, SCBPTR);
2988 return (next);
2989 }
2990
2991 /*+F*************************************************************************
2992 * Function:
2993 * aic7xxx_search_qinfifo
2994 *
2995 * Description:
2996 * Search the queue-in FIFO for matching SCBs and conditionally
2997 * requeue. Returns the number of matching SCBs.
2998 *-F*************************************************************************/
2999 static int
3000 aic7xxx_search_qinfifo(struct aic7xxx_host *p, int target, int channel,
3001 int lun, unsigned char tag, int flags, int requeue,
3002 volatile scb_queue_type *queue)
3003 {
3004 int found;
3005 unsigned char qinpos, qintail;
3006 struct aic7xxx_scb *scbp;
3007
3008 found = 0;
3009 qinpos = aic_inb(p, QINPOS);
3010 qintail = p->qinfifonext;
3011
3012 p->qinfifonext = qinpos;
3013
3014 while (qinpos != qintail)
3015 {
3016 scbp = p->scb_data->scb_array[p->qinfifo[qinpos++]];
3017 if (aic7xxx_match_scb(p, scbp, target, channel, lun, tag))
3018 {
3019 /*
3020 * We found an scb that needs to be removed.
3021 */
3022 if (requeue && (queue != NULL))
3023 {
3024 if (scbp->flags & SCB_WAITINGQ)
3025 {
3026 scbq_remove(queue, scbp);
3027 scbq_remove(&p->waiting_scbs, scbp);
3028 scbq_remove(&AIC_DEV(scbp->cmd)->delayed_scbs, scbp);
3029 AIC_DEV(scbp->cmd)->active_cmds++;
3030 p->activescbs++;
3031 }
3032 scbq_insert_tail(queue, scbp);
3033 AIC_DEV(scbp->cmd)->active_cmds--;
3034 p->activescbs--;
3035 scbp->flags |= SCB_WAITINGQ;
3036 if ( !(scbp->tag_action & TAG_ENB) )
3037 {
3038 aic7xxx_index_busy_target(p, scbp->hscb->target_channel_lun,
3039 TRUE);
3040 }
3041 }
3042 else if (requeue)
3043 {
3044 p->qinfifo[p->qinfifonext++] = scbp->hscb->tag;
3045 }
3046 else
3047 {
3048 /*
3049 * Preserve any SCB_RECOVERY_SCB flags on this scb then set the
3050 * flags we were called with, presumeably so aic7xxx_run_done_queue
3051 * can find this scb
3052 */
3053 scbp->flags = flags | (scbp->flags & SCB_RECOVERY_SCB);
3054 if (aic7xxx_index_busy_target(p, scbp->hscb->target_channel_lun,
3055 FALSE) == scbp->hscb->tag)
3056 {
3057 aic7xxx_index_busy_target(p, scbp->hscb->target_channel_lun,
3058 TRUE);
3059 }
3060 }
3061 found++;
3062 }
3063 else
3064 {
3065 p->qinfifo[p->qinfifonext++] = scbp->hscb->tag;
3066 }
3067 }
3068 /*
3069 * Now that we've done the work, clear out any left over commands in the
3070 * qinfifo and update the KERNEL_QINPOS down on the card.
3071 *
3072 * NOTE: This routine expect the sequencer to already be paused when
3073 * it is run....make sure it's that way!
3074 */
3075 qinpos = p->qinfifonext;
3076 while(qinpos != qintail)
3077 {
3078 p->qinfifo[qinpos++] = SCB_LIST_NULL;
3079 }
3080 if (p->features & AHC_QUEUE_REGS)
3081 aic_outb(p, p->qinfifonext, HNSCB_QOFF);
3082 else
3083 aic_outb(p, p->qinfifonext, KERNEL_QINPOS);
3084
3085 return (found);
3086 }
3087
3088 /*+F*************************************************************************
3089 * Function:
3090 * aic7xxx_scb_on_qoutfifo
3091 *
3092 * Description:
3093 * Is the scb that was passed to us currently on the qoutfifo?
3094 *-F*************************************************************************/
3095 static int
3096 aic7xxx_scb_on_qoutfifo(struct aic7xxx_host *p, struct aic7xxx_scb *scb)
3097 {
3098 int i=0;
3099
3100 while(p->qoutfifo[(p->qoutfifonext + i) & 0xff ] != SCB_LIST_NULL)
3101 {
3102 if(p->qoutfifo[(p->qoutfifonext + i) & 0xff ] == scb->hscb->tag)
3103 return TRUE;
3104 else
3105 i++;
3106 }
3107 return FALSE;
3108 }
3109
3110
3111 /*+F*************************************************************************
3112 * Function:
3113 * aic7xxx_reset_device
3114 *
3115 * Description:
3116 * The device at the given target/channel has been reset. Abort
3117 * all active and queued scbs for that target/channel. This function
3118 * need not worry about linked next pointers because if was a MSG_ABORT_TAG
3119 * then we had a tagged command (no linked next), if it was MSG_ABORT or
3120 * MSG_BUS_DEV_RESET then the device won't know about any commands any more
3121 * and no busy commands will exist, and if it was a bus reset, then nothing
3122 * knows about any linked next commands any more. In all cases, we don't
3123 * need to worry about the linked next or busy scb, we just need to clear
3124 * them.
3125 *-F*************************************************************************/
3126 static void
3127 aic7xxx_reset_device(struct aic7xxx_host *p, int target, int channel,
3128 int lun, unsigned char tag)
3129 {
3130 struct aic7xxx_scb *scbp, *prev_scbp;
3131 struct scsi_device *sd;
3132 unsigned char active_scb, tcl, scb_tag;
3133 int i = 0, init_lists = FALSE;
3134 struct aic_dev_data *aic_dev;
3135
3136 /*
3137 * Restore this when we're done
3138 */
3139 active_scb = aic_inb(p, SCBPTR);
3140 scb_tag = aic_inb(p, SCB_TAG);
3141
3142 if (aic7xxx_verbose & (VERBOSE_RESET_PROCESS | VERBOSE_ABORT_PROCESS))
3143 {
3144 printk(INFO_LEAD "Reset device, hardware_scb %d,\n",
3145 p->host_no, channel, target, lun, active_scb);
3146 printk(INFO_LEAD "Current scb %d, SEQADDR 0x%x, LASTPHASE "
3147 "0x%x\n",
3148 p->host_no, channel, target, lun, scb_tag,
3149 aic_inb(p, SEQADDR0) | (aic_inb(p, SEQADDR1) << 8),
3150 aic_inb(p, LASTPHASE));
3151 printk(INFO_LEAD "SG_CACHEPTR 0x%x, SG_COUNT %d, SCSISIGI 0x%x\n",
3152 p->host_no, channel, target, lun,
3153 (p->features & AHC_ULTRA2) ? aic_inb(p, SG_CACHEPTR) : 0,
3154 aic_inb(p, SG_COUNT), aic_inb(p, SCSISIGI));
3155 printk(INFO_LEAD "SSTAT0 0x%x, SSTAT1 0x%x, SSTAT2 0x%x\n",
3156 p->host_no, channel, target, lun, aic_inb(p, SSTAT0),
3157 aic_inb(p, SSTAT1), aic_inb(p, SSTAT2));
3158 }
3159
3160 /*
3161 * Deal with the busy target and linked next issues.
3162 */
3163 list_for_each_entry(aic_dev, &p->aic_devs, list)
3164 {
3165 if (aic7xxx_verbose & (VERBOSE_RESET_PROCESS | VERBOSE_ABORT_PROCESS))
3166 printk(INFO_LEAD "processing aic_dev %p\n", p->host_no, channel, target,
3167 lun, aic_dev);
3168 sd = aic_dev->SDptr;
3169
3170 if((target != ALL_TARGETS && target != sd->id) ||
3171 (channel != ALL_CHANNELS && channel != sd->channel))
3172 continue;
3173 if (aic7xxx_verbose & (VERBOSE_ABORT_PROCESS | VERBOSE_RESET_PROCESS))
3174 printk(INFO_LEAD "Cleaning up status information "
3175 "and delayed_scbs.\n", p->host_no, sd->channel, sd->id, sd->lun);
3176 aic_dev->flags &= ~BUS_DEVICE_RESET_PENDING;
3177 if ( tag == SCB_LIST_NULL )
3178 {
3179 aic_dev->dtr_pending = 0;
3180 aic_dev->needppr = aic_dev->needppr_copy;
3181 aic_dev->needsdtr = aic_dev->needsdtr_copy;
3182 aic_dev->needwdtr = aic_dev->needwdtr_copy;
3183 aic_dev->flags = DEVICE_PRINT_DTR;
3184 aic_dev->temp_q_depth = aic_dev->max_q_depth;
3185 }
3186 tcl = (sd->id << 4) | (sd->channel << 3) | sd->lun;
3187 if ( (aic7xxx_index_busy_target(p, tcl, FALSE) == tag) ||
3188 (tag == SCB_LIST_NULL) )
3189 aic7xxx_index_busy_target(p, tcl, /* unbusy */ TRUE);
3190 prev_scbp = NULL;
3191 scbp = aic_dev->delayed_scbs.head;
3192 while (scbp != NULL)
3193 {
3194 prev_scbp = scbp;
3195 scbp = scbp->q_next;
3196 if (aic7xxx_match_scb(p, prev_scbp, target, channel, lun, tag))
3197 {
3198 scbq_remove(&aic_dev->delayed_scbs, prev_scbp);
3199 if (prev_scbp->flags & SCB_WAITINGQ)
3200 {
3201 aic_dev->active_cmds++;
3202 p->activescbs++;
3203 }
3204 prev_scbp->flags &= ~(SCB_ACTIVE | SCB_WAITINGQ);
3205 prev_scbp->flags |= SCB_RESET | SCB_QUEUED_FOR_DONE;
3206 }
3207 }
3208 }
3209
3210 if (aic7xxx_verbose & (VERBOSE_ABORT_PROCESS | VERBOSE_RESET_PROCESS))
3211 printk(INFO_LEAD "Cleaning QINFIFO.\n", p->host_no, channel, target, lun );
3212 aic7xxx_search_qinfifo(p, target, channel, lun, tag,
3213 SCB_RESET | SCB_QUEUED_FOR_DONE, /* requeue */ FALSE, NULL);
3214
3215 /*
3216 * Search the waiting_scbs queue for matches, this catches any SCB_QUEUED
3217 * ABORT/RESET commands.
3218 */
3219 if (aic7xxx_verbose & (VERBOSE_ABORT_PROCESS | VERBOSE_RESET_PROCESS))
3220 printk(INFO_LEAD "Cleaning waiting_scbs.\n", p->host_no, channel,
3221 target, lun );
3222 {
3223 struct aic7xxx_scb *scbp, *prev_scbp;
3224
3225 prev_scbp = NULL;
3226 scbp = p->waiting_scbs.head;
3227 while (scbp != NULL)
3228 {
3229 prev_scbp = scbp;
3230 scbp = scbp->q_next;
3231 if (aic7xxx_match_scb(p, prev_scbp, target, channel, lun, tag))
3232 {
3233 scbq_remove(&p->waiting_scbs, prev_scbp);
3234 if (prev_scbp->flags & SCB_WAITINGQ)
3235 {
3236 AIC_DEV(prev_scbp->cmd)->active_cmds++;
3237 p->activescbs++;
3238 }
3239 prev_scbp->flags &= ~(SCB_ACTIVE | SCB_WAITINGQ);
3240 prev_scbp->flags |= SCB_RESET | SCB_QUEUED_FOR_DONE;
3241 }
3242 }
3243 }
3244
3245
3246 /*
3247 * Search waiting for selection list.
3248 */
3249 if (aic7xxx_verbose & (VERBOSE_ABORT_PROCESS | VERBOSE_RESET_PROCESS))
3250 printk(INFO_LEAD "Cleaning waiting for selection "
3251 "list.\n", p->host_no, channel, target, lun);
3252 {
3253 unsigned char next, prev, scb_index;
3254
3255 next = aic_inb(p, WAITING_SCBH); /* Start at head of list. */
3256 prev = SCB_LIST_NULL;
3257 while (next != SCB_LIST_NULL)
3258 {
3259 aic_outb(p, next, SCBPTR);
3260 scb_index = aic_inb(p, SCB_TAG);
3261 if (scb_index >= p->scb_data->numscbs)
3262 {
3263 /*
3264 * No aic7xxx_verbose check here.....we want to see this since it
3265 * means either the kernel driver or the sequencer screwed things up
3266 */
3267 printk(WARN_LEAD "Waiting List inconsistency; SCB index=%d, "
3268 "numscbs=%d\n", p->host_no, channel, target, lun, scb_index,
3269 p->scb_data->numscbs);
3270 next = aic_inb(p, SCB_NEXT);
3271 aic7xxx_add_curscb_to_free_list(p);
3272 }
3273 else
3274 {
3275 scbp = p->scb_data->scb_array[scb_index];
3276 if (aic7xxx_match_scb(p, scbp, target, channel, lun, tag))
3277 {
3278 next = aic7xxx_abort_waiting_scb(p, scbp, next, prev);
3279 if (scbp->flags & SCB_WAITINGQ)
3280 {
3281 AIC_DEV(scbp->cmd)->active_cmds++;
3282 p->activescbs++;
3283 }
3284 scbp->flags &= ~(SCB_ACTIVE | SCB_WAITINGQ);
3285 scbp->flags |= SCB_RESET | SCB_QUEUED_FOR_DONE;
3286 if (prev == SCB_LIST_NULL)
3287 {
3288 /*
3289 * This is either the first scb on the waiting list, or we
3290 * have already yanked the first and haven't left any behind.
3291 * Either way, we need to turn off the selection hardware if
3292 * it isn't already off.
3293 */
3294 aic_outb(p, aic_inb(p, SCSISEQ) & ~ENSELO, SCSISEQ);
3295 aic_outb(p, CLRSELTIMEO, CLRSINT1);
3296 }
3297 }
3298 else
3299 {
3300 prev = next;
3301 next = aic_inb(p, SCB_NEXT);
3302 }
3303 }
3304 }
3305 }
3306
3307 /*
3308 * Go through disconnected list and remove any entries we have queued
3309 * for completion, zeroing their control byte too.
3310 */
3311 if (aic7xxx_verbose & (VERBOSE_ABORT_PROCESS | VERBOSE_RESET_PROCESS))
3312 printk(INFO_LEAD "Cleaning disconnected scbs "
3313 "list.\n", p->host_no, channel, target, lun);
3314 if (p->flags & AHC_PAGESCBS)
3315 {
3316 unsigned char next, prev, scb_index;
3317
3318 next = aic_inb(p, DISCONNECTED_SCBH);
3319 prev = SCB_LIST_NULL;
3320 while (next != SCB_LIST_NULL)
3321 {
3322 aic_outb(p, next, SCBPTR);
3323 scb_index = aic_inb(p, SCB_TAG);
3324 if (scb_index > p->scb_data->numscbs)
3325 {
3326 printk(WARN_LEAD "Disconnected List inconsistency; SCB index=%d, "
3327 "numscbs=%d\n", p->host_no, channel, target, lun, scb_index,
3328 p->scb_data->numscbs);
3329 next = aic7xxx_rem_scb_from_disc_list(p, next, prev);
3330 }
3331 else
3332 {
3333 scbp = p->scb_data->scb_array[scb_index];
3334 if (aic7xxx_match_scb(p, scbp, target, channel, lun, tag))
3335 {
3336 next = aic7xxx_rem_scb_from_disc_list(p, next, prev);
3337 if (scbp->flags & SCB_WAITINGQ)
3338 {
3339 AIC_DEV(scbp->cmd)->active_cmds++;
3340 p->activescbs++;
3341 }
3342 scbp->flags &= ~(SCB_ACTIVE | SCB_WAITINGQ);
3343 scbp->flags |= SCB_RESET | SCB_QUEUED_FOR_DONE;
3344 scbp->hscb->control = 0;
3345 }
3346 else
3347 {
3348 prev = next;
3349 next = aic_inb(p, SCB_NEXT);
3350 }
3351 }
3352 }
3353 }
3354
3355 /*
3356 * Walk the free list making sure no entries on the free list have
3357 * a valid SCB_TAG value or SCB_CONTROL byte.
3358 */
3359 if (p->flags & AHC_PAGESCBS)
3360 {
3361 unsigned char next;
3362
3363 next = aic_inb(p, FREE_SCBH);
3364 while (next != SCB_LIST_NULL)
3365 {
3366 aic_outb(p, next, SCBPTR);
3367 if (aic_inb(p, SCB_TAG) < p->scb_data->numscbs)
3368 {
3369 printk(WARN_LEAD "Free list inconsistency!.\n", p->host_no, channel,
3370 target, lun);
3371 init_lists = TRUE;
3372 next = SCB_LIST_NULL;
3373 }
3374 else
3375 {
3376 aic_outb(p, SCB_LIST_NULL, SCB_TAG);
3377 aic_outb(p, 0, SCB_CONTROL);
3378 next = aic_inb(p, SCB_NEXT);
3379 }
3380 }
3381 }
3382
3383 /*
3384 * Go through the hardware SCB array looking for commands that
3385 * were active but not on any list.
3386 */
3387 if (init_lists)
3388 {
3389 aic_outb(p, SCB_LIST_NULL, FREE_SCBH);
3390 aic_outb(p, SCB_LIST_NULL, WAITING_SCBH);
3391 aic_outb(p, SCB_LIST_NULL, DISCONNECTED_SCBH);
3392 }
3393 for (i = p->scb_data->maxhscbs - 1; i >= 0; i--)
3394 {
3395 unsigned char scbid;
3396
3397 aic_outb(p, i, SCBPTR);
3398 if (init_lists)
3399 {
3400 aic_outb(p, SCB_LIST_NULL, SCB_TAG);
3401 aic_outb(p, SCB_LIST_NULL, SCB_NEXT);
3402 aic_outb(p, 0, SCB_CONTROL);
3403 aic7xxx_add_curscb_to_free_list(p);
3404 }
3405 else
3406 {
3407 scbid = aic_inb(p, SCB_TAG);
3408 if (scbid < p->scb_data->numscbs)
3409 {
3410 scbp = p->scb_data->scb_array[scbid];
3411 if (aic7xxx_match_scb(p, scbp, target, channel, lun, tag))
3412 {
3413 aic_outb(p, 0, SCB_CONTROL);
3414 aic_outb(p, SCB_LIST_NULL, SCB_TAG);
3415 aic7xxx_add_curscb_to_free_list(p);
3416 }
3417 }
3418 }
3419 }
3420
3421 /*
3422 * Go through the entire SCB array now and look for commands for
3423 * for this target that are stillactive. These are other (most likely
3424 * tagged) commands that were disconnected when the reset occurred.
3425 * Any commands we find here we know this about, it wasn't on any queue,
3426 * it wasn't in the qinfifo, it wasn't in the disconnected or waiting
3427 * lists, so it really must have been a paged out SCB. In that case,
3428 * we shouldn't need to bother with updating any counters, just mark
3429 * the correct flags and go on.
3430 */
3431 for (i = 0; i < p->scb_data->numscbs; i++)
3432 {
3433 scbp = p->scb_data->scb_array[i];
3434 if ((scbp->flags & SCB_ACTIVE) &&
3435 aic7xxx_match_scb(p, scbp, target, channel, lun, tag) &&
3436 !aic7xxx_scb_on_qoutfifo(p, scbp))
3437 {
3438 if (scbp->flags & SCB_WAITINGQ)
3439 {
3440 scbq_remove(&p->waiting_scbs, scbp);
3441 scbq_remove(&AIC_DEV(scbp->cmd)->delayed_scbs, scbp);
3442 AIC_DEV(scbp->cmd)->active_cmds++;
3443 p->activescbs++;
3444 }
3445 scbp->flags |= SCB_RESET | SCB_QUEUED_FOR_DONE;
3446 scbp->flags &= ~(SCB_ACTIVE | SCB_WAITINGQ);
3447 }
3448 }
3449
3450 aic_outb(p, active_scb, SCBPTR);
3451 }
3452
3453
3454 /*+F*************************************************************************
3455 * Function:
3456 * aic7xxx_clear_intstat
3457 *
3458 * Description:
3459 * Clears the interrupt status.
3460 *-F*************************************************************************/
3461 static void
3462 aic7xxx_clear_intstat(struct aic7xxx_host *p)
3463 {
3464 /* Clear any interrupt conditions this may have caused. */
3465 aic_outb(p, CLRSELDO | CLRSELDI | CLRSELINGO, CLRSINT0);
3466 aic_outb(p, CLRSELTIMEO | CLRATNO | CLRSCSIRSTI | CLRBUSFREE | CLRSCSIPERR |
3467 CLRPHASECHG | CLRREQINIT, CLRSINT1);
3468 aic_outb(p, CLRSCSIINT | CLRSEQINT | CLRBRKADRINT | CLRPARERR, CLRINT);
3469 }
3470
3471 /*+F*************************************************************************
3472 * Function:
3473 * aic7xxx_reset_current_bus
3474 *
3475 * Description:
3476 * Reset the current SCSI bus.
3477 *-F*************************************************************************/
3478 static void
3479 aic7xxx_reset_current_bus(struct aic7xxx_host *p)
3480 {
3481
3482 /* Disable reset interrupts. */
3483 aic_outb(p, aic_inb(p, SIMODE1) & ~ENSCSIRST, SIMODE1);
3484
3485 /* Turn off the bus' current operations, after all, we shouldn't have any
3486 * valid commands left to cause a RSELI and SELO once we've tossed the
3487 * bus away with this reset, so we might as well shut down the sequencer
3488 * until the bus is restarted as oppossed to saving the current settings
3489 * and restoring them (which makes no sense to me). */
3490
3491 /* Turn on the bus reset. */
3492 aic_outb(p, aic_inb(p, SCSISEQ) | SCSIRSTO, SCSISEQ);
3493 while ( (aic_inb(p, SCSISEQ) & SCSIRSTO) == 0)
3494 mdelay(5);
3495
3496 /*
3497 * Some of the new Ultra2 chipsets need a longer delay after a chip
3498 * reset than just the init setup creates, so we have to delay here
3499 * before we go into a reset in order to make the chips happy.
3500 */
3501 if (p->features & AHC_ULTRA2)
3502 mdelay(250);
3503 else
3504 mdelay(50);
3505
3506 /* Turn off the bus reset. */
3507 aic_outb(p, 0, SCSISEQ);
3508 mdelay(10);
3509
3510 aic7xxx_clear_intstat(p);
3511 /* Re-enable reset interrupts. */
3512 aic_outb(p, aic_inb(p, SIMODE1) | ENSCSIRST, SIMODE1);
3513
3514 }
3515
3516 /*+F*************************************************************************
3517 * Function:
3518 * aic7xxx_reset_channel
3519 *
3520 * Description:
3521 * Reset the channel.
3522 *-F*************************************************************************/
3523 static void
3524 aic7xxx_reset_channel(struct aic7xxx_host *p, int channel, int initiate_reset)
3525 {
3526 unsigned long offset_min, offset_max;
3527 unsigned char sblkctl;
3528 int cur_channel;
3529
3530 if (aic7xxx_verbose & VERBOSE_RESET_PROCESS)
3531 printk(INFO_LEAD "Reset channel called, %s initiate reset.\n",
3532 p->host_no, channel, -1, -1, (initiate_reset==TRUE) ? "will" : "won't" );
3533
3534
3535 if (channel == 1)
3536 {
3537 offset_min = 8;
3538 offset_max = 16;
3539 }
3540 else
3541 {
3542 if (p->features & AHC_TWIN)
3543 {
3544 /* Channel A */
3545 offset_min = 0;
3546 offset_max = 8;
3547 }
3548 else
3549 {
3550 offset_min = 0;
3551 if (p->features & AHC_WIDE)
3552 {
3553 offset_max = 16;
3554 }
3555 else
3556 {
3557 offset_max = 8;
3558 }
3559 }
3560 }
3561
3562 while (offset_min < offset_max)
3563 {
3564 /*
3565 * Revert to async/narrow transfers until we renegotiate.
3566 */
3567 aic_outb(p, 0, TARG_SCSIRATE + offset_min);
3568 if (p->features & AHC_ULTRA2)
3569 {
3570 aic_outb(p, 0, TARG_OFFSET + offset_min);
3571 }
3572 offset_min++;
3573 }
3574
3575 /*
3576 * Reset the bus and unpause/restart the controller
3577 */
3578 sblkctl = aic_inb(p, SBLKCTL);
3579 if ( (p->chip & AHC_CHIPID_MASK) == AHC_AIC7770 )
3580 cur_channel = (sblkctl & SELBUSB) >> 3;
3581 else
3582 cur_channel = 0;
3583 if ( (cur_channel != channel) && (p->features & AHC_TWIN) )
3584 {
3585 /*
3586 * Case 1: Command for another bus is active
3587 */
3588 if (aic7xxx_verbose & VERBOSE_RESET_PROCESS)
3589 printk(INFO_LEAD "Stealthily resetting idle channel.\n", p->host_no,
3590 channel, -1, -1);
3591 /*
3592 * Stealthily reset the other bus without upsetting the current bus.
3593 */
3594 aic_outb(p, sblkctl ^ SELBUSB, SBLKCTL);
3595 aic_outb(p, aic_inb(p, SIMODE1) & ~ENBUSFREE, SIMODE1);
3596 if (initiate_reset)
3597 {
3598 aic7xxx_reset_current_bus(p);
3599 }
3600 aic_outb(p, aic_inb(p, SCSISEQ) & (ENSELI|ENRSELI|ENAUTOATNP), SCSISEQ);
3601 aic7xxx_clear_intstat(p);
3602 aic_outb(p, sblkctl, SBLKCTL);
3603 }
3604 else
3605 {
3606 /*
3607 * Case 2: A command from this bus is active or we're idle.
3608 */
3609 if (aic7xxx_verbose & VERBOSE_RESET_PROCESS)
3610 printk(INFO_LEAD "Resetting currently active channel.\n", p->host_no,
3611 channel, -1, -1);
3612 aic_outb(p, aic_inb(p, SIMODE1) & ~(ENBUSFREE|ENREQINIT),
3613 SIMODE1);
3614 p->flags &= ~AHC_HANDLING_REQINITS;
3615 p->msg_type = MSG_TYPE_NONE;
3616 p->msg_len = 0;
3617 if (initiate_reset)
3618 {
3619 aic7xxx_reset_current_bus(p);
3620 }
3621 aic_outb(p, aic_inb(p, SCSISEQ) & (ENSELI|ENRSELI|ENAUTOATNP), SCSISEQ);
3622 aic7xxx_clear_intstat(p);
3623 }
3624 if (aic7xxx_verbose & VERBOSE_RESET_RETURN)
3625 printk(INFO_LEAD "Channel reset\n", p->host_no, channel, -1, -1);
3626 /*
3627 * Clean up all the state information for the pending transactions
3628 * on this bus.
3629 */
3630 aic7xxx_reset_device(p, ALL_TARGETS, channel, ALL_LUNS, SCB_LIST_NULL);
3631
3632 if ( !(p->features & AHC_TWIN) )
3633 {
3634 restart_sequencer(p);
3635 }
3636
3637 return;
3638 }
3639
3640 /*+F*************************************************************************
3641 * Function:
3642 * aic7xxx_run_waiting_queues
3643 *
3644 * Description:
3645 * Scan the awaiting_scbs queue downloading and starting as many
3646 * scbs as we can.
3647 *-F*************************************************************************/
3648 static void
3649 aic7xxx_run_waiting_queues(struct aic7xxx_host *p)
3650 {
3651 struct aic7xxx_scb *scb;
3652 struct aic_dev_data *aic_dev;
3653 int sent;
3654
3655
3656 if (p->waiting_scbs.head == NULL)
3657 return;
3658
3659 sent = 0;
3660
3661 /*
3662 * First handle SCBs that are waiting but have been assigned a slot.
3663 */
3664 while ((scb = scbq_remove_head(&p->waiting_scbs)) != NULL)
3665 {
3666 aic_dev = scb->cmd->device->hostdata;
3667 if ( !scb->tag_action )
3668 {
3669 aic_dev->temp_q_depth = 1;
3670 }
3671 if ( aic_dev->active_cmds >= aic_dev->temp_q_depth)
3672 {
3673 scbq_insert_tail(&aic_dev->delayed_scbs, scb);
3674 }
3675 else
3676 {
3677 scb->flags &= ~SCB_WAITINGQ;
3678 aic_dev->active_cmds++;
3679 p->activescbs++;
3680 if ( !(scb->tag_action) )
3681 {
3682 aic7xxx_busy_target(p, scb);
3683 }
3684 p->qinfifo[p->qinfifonext++] = scb->hscb->tag;
3685 sent++;
3686 }
3687 }
3688 if (sent)
3689 {
3690 if (p->features & AHC_QUEUE_REGS)
3691 aic_outb(p, p->qinfifonext, HNSCB_QOFF);
3692 else
3693 {
3694 pause_sequencer(p);
3695 aic_outb(p, p->qinfifonext, KERNEL_QINPOS);
3696 unpause_sequencer(p, FALSE);
3697 }
3698 if (p->activescbs > p->max_activescbs)
3699 p->max_activescbs = p->activescbs;
3700 }
3701 }
3702
3703 #ifdef CONFIG_PCI
3704
3705 #define DPE 0x80
3706 #define SSE 0x40
3707 #define RMA 0x20
3708 #define RTA 0x10
3709 #define STA 0x08
3710 #define DPR 0x01
3711
3712 /*+F*************************************************************************
3713 * Function:
3714 * aic7xxx_pci_intr
3715 *
3716 * Description:
3717 * Check the scsi card for PCI errors and clear the interrupt
3718 *
3719 * NOTE: If you don't have this function and a 2940 card encounters
3720 * a PCI error condition, the machine will end up locked as the
3721 * interrupt handler gets slammed with non-stop PCI error interrupts
3722 *-F*************************************************************************/
3723 static void
3724 aic7xxx_pci_intr(struct aic7xxx_host *p)
3725 {
3726 unsigned char status1;
3727
3728 pci_read_config_byte(p->pdev, PCI_STATUS + 1, &status1);
3729
3730 if ( (status1 & DPE) && (aic7xxx_verbose & VERBOSE_MINOR_ERROR) )
3731 printk(WARN_LEAD "Data Parity Error during PCI address or PCI write"
3732 "phase.\n", p->host_no, -1, -1, -1);
3733 if ( (status1 & SSE) && (aic7xxx_verbose & VERBOSE_MINOR_ERROR) )
3734 printk(WARN_LEAD "Signal System Error Detected\n", p->host_no,
3735 -1, -1, -1);
3736 if ( (status1 & RMA) && (aic7xxx_verbose & VERBOSE_MINOR_ERROR) )
3737 printk(WARN_LEAD "Received a PCI Master Abort\n", p->host_no,
3738 -1, -1, -1);
3739 if ( (status1 & RTA) && (aic7xxx_verbose & VERBOSE_MINOR_ERROR) )
3740 printk(WARN_LEAD "Received a PCI Target Abort\n", p->host_no,
3741 -1, -1, -1);
3742 if ( (status1 & STA) && (aic7xxx_verbose & VERBOSE_MINOR_ERROR) )
3743 printk(WARN_LEAD "Signaled a PCI Target Abort\n", p->host_no,
3744 -1, -1, -1);
3745 if ( (status1 & DPR) && (aic7xxx_verbose & VERBOSE_MINOR_ERROR) )
3746 printk(WARN_LEAD "Data Parity Error has been reported via PCI pin "
3747 "PERR#\n", p->host_no, -1, -1, -1);
3748
3749 pci_write_config_byte(p->pdev, PCI_STATUS + 1, status1);
3750 if (status1 & (DPR|RMA|RTA))
3751 aic_outb(p, CLRPARERR, CLRINT);
3752
3753 if ( (aic7xxx_panic_on_abort) && (p->spurious_int > 500) )
3754 aic7xxx_panic_abort(p, NULL);
3755
3756 }
3757 #endif /* CONFIG_PCI */
3758
3759 /*+F*************************************************************************
3760 * Function:
3761 * aic7xxx_construct_ppr
3762 *
3763 * Description:
3764 * Build up a Parallel Protocol Request message for use with SCSI-3
3765 * devices.
3766 *-F*************************************************************************/
3767 static void
3768 aic7xxx_construct_ppr(struct aic7xxx_host *p, struct aic7xxx_scb *scb)
3769 {
3770 p->msg_buf[p->msg_index++] = MSG_EXTENDED;
3771 p->msg_buf[p->msg_index++] = MSG_EXT_PPR_LEN;
3772 p->msg_buf[p->msg_index++] = MSG_EXT_PPR;
3773 p->msg_buf[p->msg_index++] = AIC_DEV(scb->cmd)->goal.period;
3774 p->msg_buf[p->msg_index++] = 0;
3775 p->msg_buf[p->msg_index++] = AIC_DEV(scb->cmd)->goal.offset;
3776 p->msg_buf[p->msg_index++] = AIC_DEV(scb->cmd)->goal.width;
3777 p->msg_buf[p->msg_index++] = AIC_DEV(scb->cmd)->goal.options;
3778 p->msg_len += 8;
3779 }
3780
3781 /*+F*************************************************************************
3782 * Function:
3783 * aic7xxx_construct_sdtr
3784 *
3785 * Description:
3786 * Constucts a synchronous data transfer message in the message
3787 * buffer on the sequencer.
3788 *-F*************************************************************************/
3789 static void
3790 aic7xxx_construct_sdtr(struct aic7xxx_host *p, unsigned char period,
3791 unsigned char offset)
3792 {
3793 p->msg_buf[p->msg_index++] = MSG_EXTENDED;
3794 p->msg_buf[p->msg_index++] = MSG_EXT_SDTR_LEN;
3795 p->msg_buf[p->msg_index++] = MSG_EXT_SDTR;
3796 p->msg_buf[p->msg_index++] = period;
3797 p->msg_buf[p->msg_index++] = offset;
3798 p->msg_len += 5;
3799 }
3800
3801 /*+F*************************************************************************
3802 * Function:
3803 * aic7xxx_construct_wdtr
3804 *
3805 * Description:
3806 * Constucts a wide data transfer message in the message buffer
3807 * on the sequencer.
3808 *-F*************************************************************************/
3809 static void
3810 aic7xxx_construct_wdtr(struct aic7xxx_host *p, unsigned char bus_width)
3811 {
3812 p->msg_buf[p->msg_index++] = MSG_EXTENDED;
3813 p->msg_buf[p->msg_index++] = MSG_EXT_WDTR_LEN;
3814 p->msg_buf[p->msg_index++] = MSG_EXT_WDTR;
3815 p->msg_buf[p->msg_index++] = bus_width;
3816 p->msg_len += 4;
3817 }
3818
3819 /*+F*************************************************************************
3820 * Function:
3821 * aic7xxx_calc_residual
3822 *
3823 * Description:
3824 * Calculate the residual data not yet transferred.
3825 *-F*************************************************************************/
3826 static void
3827 aic7xxx_calculate_residual (struct aic7xxx_host *p, struct aic7xxx_scb *scb)
3828 {
3829 struct aic7xxx_hwscb *hscb;
3830 Scsi_Cmnd *cmd;
3831 int actual, i;
3832
3833 cmd = scb->cmd;
3834 hscb = scb->hscb;
3835
3836 /*
3837 * Don't destroy valid residual information with
3838 * residual coming from a check sense operation.
3839 */
3840 if (((scb->hscb->control & DISCONNECTED) == 0) &&
3841 (scb->flags & SCB_SENSE) == 0)
3842 {
3843 /*
3844 * We had an underflow. At this time, there's only
3845 * one other driver that bothers to check for this,
3846 * and cmd->underflow seems to be set rather half-
3847 * heartedly in the higher-level SCSI code.
3848 */
3849 actual = scb->sg_length;
3850 for (i=1; i < hscb->residual_SG_segment_count; i++)
3851 {
3852 actual -= scb->sg_list[scb->sg_count - i].length;
3853 }
3854 actual -= (hscb->residual_data_count[2] << 16) |
3855 (hscb->residual_data_count[1] << 8) |
3856 hscb->residual_data_count[0];
3857
3858 if (actual < cmd->underflow)
3859 {
3860 if (aic7xxx_verbose & VERBOSE_MINOR_ERROR)
3861 {
3862 printk(INFO_LEAD "Underflow - Wanted %u, %s %u, residual SG "
3863 "count %d.\n", p->host_no, CTL_OF_SCB(scb), cmd->underflow,
3864 (rq_data_dir(cmd->request) == WRITE) ? "wrote" : "read", actual,
3865 hscb->residual_SG_segment_count);
3866 printk(INFO_LEAD "status 0x%x.\n", p->host_no, CTL_OF_SCB(scb),
3867 hscb->target_status);
3868 }
3869 /*
3870 * In 2.4, only send back the residual information, don't flag this
3871 * as an error. Before 2.4 we had to flag this as an error because
3872 * the mid layer didn't check residual data counts to see if the
3873 * command needs retried.
3874 */
3875 cmd->resid = scb->sg_length - actual;
3876 aic7xxx_status(cmd) = hscb->target_status;
3877 }
3878 }
3879
3880 /*
3881 * Clean out the residual information in the SCB for the
3882 * next consumer.
3883 */
3884 hscb->residual_data_count[2] = 0;
3885 hscb->residual_data_count[1] = 0;
3886 hscb->residual_data_count[0] = 0;
3887 hscb->residual_SG_segment_count = 0;
3888 }
3889
3890 /*+F*************************************************************************
3891 * Function:
3892 * aic7xxx_handle_device_reset
3893 *
3894 * Description:
3895 * Interrupt handler for sequencer interrupts (SEQINT).
3896 *-F*************************************************************************/
3897 static void
3898 aic7xxx_handle_device_reset(struct aic7xxx_host *p, int target, int channel)
3899 {
3900 unsigned char tindex = target;
3901
3902 tindex |= ((channel & 0x01) << 3);
3903
3904 /*
3905 * Go back to async/narrow transfers and renegotiate.
3906 */
3907 aic_outb(p, 0, TARG_SCSIRATE + tindex);
3908 if (p->features & AHC_ULTRA2)
3909 aic_outb(p, 0, TARG_OFFSET + tindex);
3910 aic7xxx_reset_device(p, target, channel, ALL_LUNS, SCB_LIST_NULL);
3911 if (aic7xxx_verbose & VERBOSE_RESET_PROCESS)
3912 printk(INFO_LEAD "Bus Device Reset delivered.\n", p->host_no, channel,
3913 target, -1);
3914 aic7xxx_run_done_queue(p, /*complete*/ TRUE);
3915 }
3916
3917 /*+F*************************************************************************
3918 * Function:
3919 * aic7xxx_handle_seqint
3920 *
3921 * Description:
3922 * Interrupt handler for sequencer interrupts (SEQINT).
3923 *-F*************************************************************************/
3924 static void
3925 aic7xxx_handle_seqint(struct aic7xxx_host *p, unsigned char intstat)
3926 {
3927 struct aic7xxx_scb *scb;
3928 struct aic_dev_data *aic_dev;
3929 unsigned short target_mask;
3930 unsigned char target, lun, tindex;
3931 unsigned char queue_flag = FALSE;
3932 char channel;
3933 int result;
3934
3935 target = ((aic_inb(p, SAVED_TCL) >> 4) & 0x0f);
3936 if ( (p->chip & AHC_CHIPID_MASK) == AHC_AIC7770 )
3937 channel = (aic_inb(p, SBLKCTL) & SELBUSB) >> 3;
3938 else
3939 channel = 0;
3940 tindex = target + (channel << 3);
3941 lun = aic_inb(p, SAVED_TCL) & 0x07;
3942 target_mask = (0x01 << tindex);
3943
3944 /*
3945 * Go ahead and clear the SEQINT now, that avoids any interrupt race
3946 * conditions later on in case we enable some other interrupt.
3947 */
3948 aic_outb(p, CLRSEQINT, CLRINT);
3949 switch (intstat & SEQINT_MASK)
3950 {
3951 case NO_MATCH:
3952 {
3953 aic_outb(p, aic_inb(p, SCSISEQ) & (ENSELI|ENRSELI|ENAUTOATNP),
3954 SCSISEQ);
3955 printk(WARN_LEAD "No active SCB for reconnecting target - Issuing "
3956 "BUS DEVICE RESET.\n", p->host_no, channel, target, lun);
3957 printk(WARN_LEAD " SAVED_TCL=0x%x, ARG_1=0x%x, SEQADDR=0x%x\n",
3958 p->host_no, channel, target, lun,
3959 aic_inb(p, SAVED_TCL), aic_inb(p, ARG_1),
3960 (aic_inb(p, SEQADDR1) << 8) | aic_inb(p, SEQADDR0));
3961 if (aic7xxx_panic_on_abort)
3962 aic7xxx_panic_abort(p, NULL);
3963 }
3964 break;
3965
3966 case SEND_REJECT:
3967 {
3968 if (aic7xxx_verbose & VERBOSE_MINOR_ERROR)
3969 printk(INFO_LEAD "Rejecting unknown message (0x%x) received from "
3970 "target, SEQ_FLAGS=0x%x\n", p->host_no, channel, target, lun,
3971 aic_inb(p, ACCUM), aic_inb(p, SEQ_FLAGS));
3972 }
3973 break;
3974
3975 case NO_IDENT:
3976 {
3977 /*
3978 * The reconnecting target either did not send an identify
3979 * message, or did, but we didn't find an SCB to match and
3980 * before it could respond to our ATN/abort, it hit a dataphase.
3981 * The only safe thing to do is to blow it away with a bus
3982 * reset.
3983 */
3984 if (aic7xxx_verbose & (VERBOSE_SEQINT | VERBOSE_RESET_MID))
3985 printk(INFO_LEAD "Target did not send an IDENTIFY message; "
3986 "LASTPHASE 0x%x, SAVED_TCL 0x%x\n", p->host_no, channel, target,
3987 lun, aic_inb(p, LASTPHASE), aic_inb(p, SAVED_TCL));
3988
3989 aic7xxx_reset_channel(p, channel, /*initiate reset*/ TRUE);
3990 aic7xxx_run_done_queue(p, TRUE);
3991
3992 }
3993 break;
3994
3995 case BAD_PHASE:
3996 if (aic_inb(p, LASTPHASE) == P_BUSFREE)
3997 {
3998 if (aic7xxx_verbose & VERBOSE_SEQINT)
3999 printk(INFO_LEAD "Missed busfree.\n", p->host_no, channel,
4000 target, lun);
4001 restart_sequencer(p);
4002 }
4003 else
4004 {
4005 if (aic7xxx_verbose & VERBOSE_SEQINT)
4006 printk(INFO_LEAD "Unknown scsi bus phase, continuing\n", p->host_no,
4007 channel, target, lun);
4008 }
4009 break;
4010
4011 case EXTENDED_MSG:
4012 {
4013 p->msg_type = MSG_TYPE_INITIATOR_MSGIN;
4014 p->msg_len = 0;
4015 p->msg_index = 0;
4016
4017 #ifdef AIC7XXX_VERBOSE_DEBUGGING
4018 if (aic7xxx_verbose > 0xffff)
4019 printk(INFO_LEAD "Enabling REQINITs for MSG_IN\n", p->host_no,
4020 channel, target, lun);
4021 #endif
4022
4023 /*
4024 * To actually receive the message, simply turn on
4025 * REQINIT interrupts and let our interrupt handler
4026 * do the rest (REQINIT should already be true).
4027 */
4028 p->flags |= AHC_HANDLING_REQINITS;
4029 aic_outb(p, aic_inb(p, SIMODE1) | ENREQINIT, SIMODE1);
4030
4031 /*
4032 * We don't want the sequencer unpaused yet so we return early
4033 */
4034 return;
4035 }
4036
4037 case REJECT_MSG:
4038 {
4039 /*
4040 * What we care about here is if we had an outstanding SDTR
4041 * or WDTR message for this target. If we did, this is a
4042 * signal that the target is refusing negotiation.
4043 */
4044 unsigned char scb_index;
4045 unsigned char last_msg;
4046
4047 scb_index = aic_inb(p, SCB_TAG);
4048 scb = p->scb_data->scb_array[scb_index];
4049 aic_dev = AIC_DEV(scb->cmd);
4050 last_msg = aic_inb(p, LAST_MSG);
4051
4052 if ( (last_msg == MSG_IDENTIFYFLAG) &&
4053 (scb->tag_action) &&
4054 !(scb->flags & SCB_MSGOUT_BITS) )
4055 {
4056 if (scb->tag_action == MSG_ORDERED_Q_TAG)
4057 {
4058 /*
4059 * OK...the device seems able to accept tagged commands, but
4060 * not ordered tag commands, only simple tag commands. So, we
4061 * disable ordered tag commands and go on with life just like
4062 * normal.
4063 */
4064 scsi_adjust_queue_depth(scb->cmd->device, MSG_SIMPLE_TAG,
4065 scb->cmd->device->queue_depth);
4066 scb->tag_action = MSG_SIMPLE_Q_TAG;
4067 scb->hscb->control &= ~SCB_TAG_TYPE;
4068 scb->hscb->control |= MSG_SIMPLE_Q_TAG;
4069 aic_outb(p, scb->hscb->control, SCB_CONTROL);
4070 /*
4071 * OK..we set the tag type to simple tag command, now we re-assert
4072 * ATNO and hope this will take us into the identify phase again
4073 * so we can resend the tag type and info to the device.
4074 */
4075 aic_outb(p, MSG_IDENTIFYFLAG, MSG_OUT);
4076 aic_outb(p, aic_inb(p, SCSISIGI) | ATNO, SCSISIGO);
4077 }
4078 else if (scb->tag_action == MSG_SIMPLE_Q_TAG)
4079 {
4080 unsigned char i;
4081 struct aic7xxx_scb *scbp;
4082 int old_verbose;
4083 /*
4084 * Hmmmm....the device is flaking out on tagged commands.
4085 */
4086 scsi_adjust_queue_depth(scb->cmd->device, 0 /* untagged */,
4087 p->host->cmd_per_lun);
4088 aic_dev->max_q_depth = aic_dev->temp_q_depth = 1;
4089 /*
4090 * We set this command up as a bus device reset. However, we have
4091 * to clear the tag type as it's causing us problems. We shouldnt
4092 * have to worry about any other commands being active, since if
4093 * the device is refusing tagged commands, this should be the
4094 * first tagged command sent to the device, however, we do have
4095 * to worry about any other tagged commands that may already be
4096 * in the qinfifo. The easiest way to do this, is to issue a BDR,
4097 * send all the commands back to the mid level code, then let them
4098 * come back and get rebuilt as untagged commands.
4099 */
4100 scb->tag_action = 0;
4101 scb->hscb->control &= ~(TAG_ENB | SCB_TAG_TYPE);
4102 aic_outb(p, scb->hscb->control, SCB_CONTROL);
4103
4104 old_verbose = aic7xxx_verbose;
4105 aic7xxx_verbose &= ~(VERBOSE_RESET|VERBOSE_ABORT);
4106 for (i=0; i < p->scb_data->numscbs; i++)
4107 {
4108 scbp = p->scb_data->scb_array[i];
4109 if ((scbp->flags & SCB_ACTIVE) && (scbp != scb))
4110 {
4111 if (aic7xxx_match_scb(p, scbp, target, channel, lun, i))
4112 {
4113 aic7xxx_reset_device(p, target, channel, lun, i);
4114 }
4115 }
4116 }
4117 aic7xxx_run_done_queue(p, TRUE);
4118 aic7xxx_verbose = old_verbose;
4119 /*
4120 * Wait until after the for loop to set the busy index since
4121 * aic7xxx_reset_device will clear the busy index during its
4122 * operation.
4123 */
4124 aic7xxx_busy_target(p, scb);
4125 printk(INFO_LEAD "Device is refusing tagged commands, using "
4126 "untagged I/O.\n", p->host_no, channel, target, lun);
4127 aic_outb(p, MSG_IDENTIFYFLAG, MSG_OUT);
4128 aic_outb(p, aic_inb(p, SCSISIGI) | ATNO, SCSISIGO);
4129 }
4130 }
4131 else if (scb->flags & SCB_MSGOUT_PPR)
4132 {
4133 /*
4134 * As per the draft specs, any device capable of supporting any of
4135 * the option values other than 0 are not allowed to reject the
4136 * PPR message. Instead, they must negotiate out what they do
4137 * support instead of rejecting our offering or else they cause
4138 * a parity error during msg_out phase to signal that they don't
4139 * like our settings.
4140 */
4141 aic_dev->needppr = aic_dev->needppr_copy = 0;
4142 aic7xxx_set_width(p, target, channel, lun, MSG_EXT_WDTR_BUS_8_BIT,
4143 (AHC_TRANS_ACTIVE|AHC_TRANS_CUR|AHC_TRANS_QUITE), aic_dev);
4144 aic7xxx_set_syncrate(p, NULL, target, channel, 0, 0, 0,
4145 AHC_TRANS_ACTIVE|AHC_TRANS_CUR|AHC_TRANS_QUITE,
4146 aic_dev);
4147 aic_dev->goal.options = aic_dev->dtr_pending = 0;
4148 scb->flags &= ~SCB_MSGOUT_BITS;
4149 if(aic7xxx_verbose & VERBOSE_NEGOTIATION2)
4150 {
4151 printk(INFO_LEAD "Device is rejecting PPR messages, falling "
4152 "back.\n", p->host_no, channel, target, lun);
4153 }
4154 if ( aic_dev->goal.width )
4155 {
4156 aic_dev->needwdtr = aic_dev->needwdtr_copy = 1;
4157 aic_dev->dtr_pending = 1;
4158 scb->flags |= SCB_MSGOUT_WDTR;
4159 }
4160 if ( aic_dev->goal.offset )
4161 {
4162 aic_dev->needsdtr = aic_dev->needsdtr_copy = 1;
4163 if( !aic_dev->dtr_pending )
4164 {
4165 aic_dev->dtr_pending = 1;
4166 scb->flags |= SCB_MSGOUT_SDTR;
4167 }
4168 }
4169 if ( aic_dev->dtr_pending )
4170 {
4171 aic_outb(p, HOST_MSG, MSG_OUT);
4172 aic_outb(p, aic_inb(p, SCSISIGI) | ATNO, SCSISIGO);
4173 }
4174 }
4175 else if (scb->flags & SCB_MSGOUT_WDTR)
4176 {
4177 /*
4178 * note 8bit xfers and clear flag
4179 */
4180 aic_dev->needwdtr = aic_dev->needwdtr_copy = 0;
4181 scb->flags &= ~SCB_MSGOUT_BITS;
4182 aic7xxx_set_width(p, target, channel, lun, MSG_EXT_WDTR_BUS_8_BIT,
4183 (AHC_TRANS_ACTIVE|AHC_TRANS_GOAL|AHC_TRANS_CUR), aic_dev);
4184 aic7xxx_set_syncrate(p, NULL, target, channel, 0, 0, 0,
4185 AHC_TRANS_ACTIVE|AHC_TRANS_CUR|AHC_TRANS_QUITE,
4186 aic_dev);
4187 if(aic7xxx_verbose & VERBOSE_NEGOTIATION2)
4188 {
4189 printk(INFO_LEAD "Device is rejecting WDTR messages, using "
4190 "narrow transfers.\n", p->host_no, channel, target, lun);
4191 }
4192 aic_dev->needsdtr = aic_dev->needsdtr_copy;
4193 }
4194 else if (scb->flags & SCB_MSGOUT_SDTR)
4195 {
4196 /*
4197 * note asynch xfers and clear flag
4198 */
4199 aic_dev->needsdtr = aic_dev->needsdtr_copy = 0;
4200 scb->flags &= ~SCB_MSGOUT_BITS;
4201 aic7xxx_set_syncrate(p, NULL, target, channel, 0, 0, 0,
4202 (AHC_TRANS_CUR|AHC_TRANS_ACTIVE|AHC_TRANS_GOAL), aic_dev);
4203 if(aic7xxx_verbose & VERBOSE_NEGOTIATION2)
4204 {
4205 printk(INFO_LEAD "Device is rejecting SDTR messages, using "
4206 "async transfers.\n", p->host_no, channel, target, lun);
4207 }
4208 }
4209 else if (aic7xxx_verbose & VERBOSE_SEQINT)
4210 {
4211 /*
4212 * Otherwise, we ignore it.
4213 */
4214 printk(INFO_LEAD "Received MESSAGE_REJECT for unknown cause. "
4215 "Ignoring.\n", p->host_no, channel, target, lun);
4216 }
4217 }
4218 break;
4219
4220 case BAD_STATUS:
4221 {
4222 unsigned char scb_index;
4223 struct aic7xxx_hwscb *hscb;
4224 Scsi_Cmnd *cmd;
4225
4226 /* The sequencer will notify us when a command has an error that
4227 * would be of interest to the kernel. This allows us to leave
4228 * the sequencer running in the common case of command completes
4229 * without error. The sequencer will have DMA'd the SCB back
4230 * up to us, so we can reference the drivers SCB array.
4231 *
4232 * Set the default return value to 0 indicating not to send
4233 * sense. The sense code will change this if needed and this
4234 * reduces code duplication.
4235 */
4236 aic_outb(p, 0, RETURN_1);
4237 scb_index = aic_inb(p, SCB_TAG);
4238 if (scb_index > p->scb_data->numscbs)
4239 {
4240 printk(WARN_LEAD "Invalid SCB during SEQINT 0x%02x, SCB_TAG %d.\n",
4241 p->host_no, channel, target, lun, intstat, scb_index);
4242 break;
4243 }
4244 scb = p->scb_data->scb_array[scb_index];
4245 hscb = scb->hscb;
4246
4247 if (!(scb->flags & SCB_ACTIVE) || (scb->cmd == NULL))
4248 {
4249 printk(WARN_LEAD "Invalid SCB during SEQINT 0x%x, scb %d, flags 0x%x,"
4250 " cmd 0x%lx.\n", p->host_no, channel, target, lun, intstat,
4251 scb_index, scb->flags, (unsigned long) scb->cmd);
4252 }
4253 else
4254 {
4255 cmd = scb->cmd;
4256 aic_dev = AIC_DEV(scb->cmd);
4257 hscb->target_status = aic_inb(p, SCB_TARGET_STATUS);
4258 aic7xxx_status(cmd) = hscb->target_status;
4259
4260 cmd->result = hscb->target_status;
4261
4262 switch (status_byte(hscb->target_status))
4263 {
4264 case GOOD:
4265 if (aic7xxx_verbose & VERBOSE_SEQINT)
4266 printk(INFO_LEAD "Interrupted for status of GOOD???\n",
4267 p->host_no, CTL_OF_SCB(scb));
4268 break;
4269
4270 case COMMAND_TERMINATED:
4271 case CHECK_CONDITION:
4272 if ( !(scb->flags & SCB_SENSE) )
4273 {
4274 /*
4275 * Send a sense command to the requesting target.
4276 * XXX - revisit this and get rid of the memcopys.
4277 */
4278 memcpy(scb->sense_cmd, &generic_sense[0],
4279 sizeof(generic_sense));
4280
4281 scb->sense_cmd[1] = (cmd->device->lun << 5);
4282 scb->sense_cmd[4] = sizeof(cmd->sense_buffer);
4283
4284 scb->sg_list[0].length =
4285 cpu_to_le32(sizeof(cmd->sense_buffer));
4286 scb->sg_list[0].address =
4287 cpu_to_le32(pci_map_single(p->pdev, cmd->sense_buffer,
4288 sizeof(cmd->sense_buffer),
4289 PCI_DMA_FROMDEVICE));
4290
4291 /*
4292 * XXX - We should allow disconnection, but can't as it
4293 * might allow overlapped tagged commands.
4294 */
4295 /* hscb->control &= DISCENB; */
4296 hscb->control = 0;
4297 hscb->target_status = 0;
4298 hscb->SG_list_pointer =
4299 cpu_to_le32(SCB_DMA_ADDR(scb, scb->sg_list));
4300 hscb->SCSI_cmd_pointer =
4301 cpu_to_le32(SCB_DMA_ADDR(scb, scb->sense_cmd));
4302 hscb->data_count = scb->sg_list[0].length;
4303 hscb->data_pointer = scb->sg_list[0].address;
4304 hscb->SCSI_cmd_length = COMMAND_SIZE(scb->sense_cmd[0]);
4305 hscb->residual_SG_segment_count = 0;
4306 hscb->residual_data_count[0] = 0;
4307 hscb->residual_data_count[1] = 0;
4308 hscb->residual_data_count[2] = 0;
4309
4310 scb->sg_count = hscb->SG_segment_count = 1;
4311 scb->sg_length = sizeof(cmd->sense_buffer);
4312 scb->tag_action = 0;
4313 scb->flags |= SCB_SENSE;
4314 /*
4315 * Ensure the target is busy since this will be an
4316 * an untagged request.
4317 */
4318 #ifdef AIC7XXX_VERBOSE_DEBUGGING
4319 if (aic7xxx_verbose & VERBOSE_NEGOTIATION2)
4320 {
4321 if (scb->flags & SCB_MSGOUT_BITS)
4322 printk(INFO_LEAD "Requesting SENSE with %s\n", p->host_no,
4323 CTL_OF_SCB(scb), (scb->flags & SCB_MSGOUT_SDTR) ?
4324 "SDTR" : "WDTR");
4325 else
4326 printk(INFO_LEAD "Requesting SENSE, no MSG\n", p->host_no,
4327 CTL_OF_SCB(scb));
4328 }
4329 #endif
4330 aic7xxx_busy_target(p, scb);
4331 aic_outb(p, SEND_SENSE, RETURN_1);
4332 aic7xxx_error(cmd) = DID_OK;
4333 break;
4334 } /* first time sense, no errors */
4335 printk(INFO_LEAD "CHECK_CONDITION on REQUEST_SENSE, returning "
4336 "an error.\n", p->host_no, CTL_OF_SCB(scb));
4337 aic7xxx_error(cmd) = DID_ERROR;
4338 scb->flags &= ~SCB_SENSE;
4339 break;
4340
4341 case QUEUE_FULL:
4342 queue_flag = TRUE; /* Mark that this is a QUEUE_FULL and */
4343 case BUSY: /* drop through to here */
4344 {
4345 struct aic7xxx_scb *next_scbp, *prev_scbp;
4346 unsigned char active_hscb, next_hscb, prev_hscb, scb_index;
4347 /*
4348 * We have to look three places for queued commands:
4349 * 1: p->waiting_scbs queue
4350 * 2: QINFIFO
4351 * 3: WAITING_SCBS list on card (for commands that are started
4352 * but haven't yet made it to the device)
4353 *
4354 * Of special note here is that commands on 2 or 3 above will
4355 * have already been marked as active, while commands on 1 will
4356 * not. The aic7xxx_done() function will want to unmark them
4357 * from active, so any commands we pull off of 1 need to
4358 * up the active count.
4359 */
4360 next_scbp = p->waiting_scbs.head;
4361 while ( next_scbp != NULL )
4362 {
4363 prev_scbp = next_scbp;
4364 next_scbp = next_scbp->q_next;
4365 if ( aic7xxx_match_scb(p, prev_scbp, target, channel, lun,
4366 SCB_LIST_NULL) )
4367 {
4368 scbq_remove(&p->waiting_scbs, prev_scbp);
4369 scb->flags = SCB_QUEUED_FOR_DONE | SCB_QUEUE_FULL;
4370 p->activescbs++;
4371 aic_dev->active_cmds++;
4372 }
4373 }
4374 aic7xxx_search_qinfifo(p, target, channel, lun,
4375 SCB_LIST_NULL, SCB_QUEUED_FOR_DONE | SCB_QUEUE_FULL,
4376 FALSE, NULL);
4377 next_scbp = NULL;
4378 active_hscb = aic_inb(p, SCBPTR);
4379 prev_hscb = next_hscb = scb_index = SCB_LIST_NULL;
4380 next_hscb = aic_inb(p, WAITING_SCBH);
4381 while (next_hscb != SCB_LIST_NULL)
4382 {
4383 aic_outb(p, next_hscb, SCBPTR);
4384 scb_index = aic_inb(p, SCB_TAG);
4385 if (scb_index < p->scb_data->numscbs)
4386 {
4387 next_scbp = p->scb_data->scb_array[scb_index];
4388 if (aic7xxx_match_scb(p, next_scbp, target, channel, lun,
4389 SCB_LIST_NULL) )
4390 {
4391 next_scbp->flags = SCB_QUEUED_FOR_DONE | SCB_QUEUE_FULL;
4392 next_hscb = aic_inb(p, SCB_NEXT);
4393 aic_outb(p, 0, SCB_CONTROL);
4394 aic_outb(p, SCB_LIST_NULL, SCB_TAG);
4395 aic7xxx_add_curscb_to_free_list(p);
4396 if (prev_hscb == SCB_LIST_NULL)
4397 {
4398 /* We were first on the list,
4399 * so we kill the selection
4400 * hardware. Let the sequencer
4401 * re-init the hardware itself
4402 */
4403 aic_outb(p, aic_inb(p, SCSISEQ) & ~ENSELO, SCSISEQ);
4404 aic_outb(p, CLRSELTIMEO, CLRSINT1);
4405 aic_outb(p, next_hscb, WAITING_SCBH);
4406 }
4407 else
4408 {
4409 aic_outb(p, prev_hscb, SCBPTR);
4410 aic_outb(p, next_hscb, SCB_NEXT);
4411 }
4412 }
4413 else
4414 {
4415 prev_hscb = next_hscb;
4416 next_hscb = aic_inb(p, SCB_NEXT);
4417 }
4418 } /* scb_index >= p->scb_data->numscbs */
4419 }
4420 aic_outb(p, active_hscb, SCBPTR);
4421 aic7xxx_run_done_queue(p, FALSE);
4422
4423 #ifdef AIC7XXX_VERBOSE_DEBUGGING
4424 if( (aic7xxx_verbose & VERBOSE_MINOR_ERROR) ||
4425 (aic7xxx_verbose > 0xffff) )
4426 {
4427 if (queue_flag)
4428 printk(INFO_LEAD "Queue full received; queue depth %d, "
4429 "active %d\n", p->host_no, CTL_OF_SCB(scb),
4430 aic_dev->max_q_depth, aic_dev->active_cmds);
4431 else
4432 printk(INFO_LEAD "Target busy\n", p->host_no, CTL_OF_SCB(scb));
4433 }
4434 #endif
4435 if (queue_flag)
4436 {
4437 int diff;
4438 result = scsi_track_queue_full(cmd->device,
4439 aic_dev->active_cmds);
4440 if ( result < 0 )
4441 {
4442 if (aic7xxx_verbose & VERBOSE_NEGOTIATION2)
4443 printk(INFO_LEAD "Tagged Command Queueing disabled.\n",
4444 p->host_no, CTL_OF_SCB(scb));
4445 diff = aic_dev->max_q_depth - p->host->cmd_per_lun;
4446 aic_dev->temp_q_depth = 1;
4447 aic_dev->max_q_depth = 1;
4448 }
4449 else if ( result > 0 )
4450 {
4451 if (aic7xxx_verbose & VERBOSE_NEGOTIATION2)
4452 printk(INFO_LEAD "Queue depth reduced to %d\n", p->host_no,
4453 CTL_OF_SCB(scb), result);
4454 diff = aic_dev->max_q_depth - result;
4455 aic_dev->max_q_depth = result;
4456 /* temp_q_depth could have been dropped to 1 for an untagged
4457 * command that might be coming up */
4458 if(aic_dev->temp_q_depth > result)
4459 aic_dev->temp_q_depth = result;
4460 }
4461 /* We should free up the no unused SCB entries. But, that's
4462 * a difficult thing to do because we use a direct indexed
4463 * array, so we can't just take any entries and free them,
4464 * we *have* to free the ones at the end of the array, and
4465 * they very well could be in use right now, which means
4466 * in order to do this right, we have to add a delayed
4467 * freeing mechanism tied into the scb_free() code area.
4468 * We'll add that later.
4469 */
4470 }
4471 break;
4472 }
4473
4474 default:
4475 if (aic7xxx_verbose & VERBOSE_SEQINT)
4476 printk(INFO_LEAD "Unexpected target status 0x%x.\n", p->host_no,
4477 CTL_OF_SCB(scb), scb->hscb->target_status);
4478 if (!aic7xxx_error(cmd))
4479 {
4480 aic7xxx_error(cmd) = DID_RETRY_COMMAND;
4481 }
4482 break;
4483 } /* end switch */
4484 } /* end else of */
4485 }
4486 break;
4487
4488 case AWAITING_MSG:
4489 {
4490 unsigned char scb_index, msg_out;
4491
4492 scb_index = aic_inb(p, SCB_TAG);
4493 msg_out = aic_inb(p, MSG_OUT);
4494 scb = p->scb_data->scb_array[scb_index];
4495 aic_dev = AIC_DEV(scb->cmd);
4496 p->msg_index = p->msg_len = 0;
4497 /*
4498 * This SCB had a MK_MESSAGE set in its control byte informing
4499 * the sequencer that we wanted to send a special message to
4500 * this target.
4501 */
4502
4503 if ( !(scb->flags & SCB_DEVICE_RESET) &&
4504 (msg_out == MSG_IDENTIFYFLAG) &&
4505 (scb->hscb->control & TAG_ENB) )
4506 {
4507 p->msg_buf[p->msg_index++] = scb->tag_action;
4508 p->msg_buf[p->msg_index++] = scb->hscb->tag;
4509 p->msg_len += 2;
4510 }
4511
4512 if (scb->flags & SCB_DEVICE_RESET)
4513 {
4514 p->msg_buf[p->msg_index++] = MSG_BUS_DEV_RESET;
4515 p->msg_len++;
4516 if (aic7xxx_verbose & VERBOSE_RESET_PROCESS)
4517 printk(INFO_LEAD "Bus device reset mailed.\n",
4518 p->host_no, CTL_OF_SCB(scb));
4519 }
4520 else if (scb->flags & SCB_ABORT)
4521 {
4522 if (scb->tag_action)
4523 {
4524 p->msg_buf[p->msg_index++] = MSG_ABORT_TAG;
4525 }
4526 else
4527 {
4528 p->msg_buf[p->msg_index++] = MSG_ABORT;
4529 }
4530 p->msg_len++;
4531 if (aic7xxx_verbose & VERBOSE_ABORT_PROCESS)
4532 printk(INFO_LEAD "Abort message mailed.\n", p->host_no,
4533 CTL_OF_SCB(scb));
4534 }
4535 else if (scb->flags & SCB_MSGOUT_PPR)
4536 {
4537 if (aic7xxx_verbose & VERBOSE_NEGOTIATION2)
4538 {
4539 printk(INFO_LEAD "Sending PPR (%d/%d/%d/%d) message.\n",
4540 p->host_no, CTL_OF_SCB(scb),
4541 aic_dev->goal.period,
4542 aic_dev->goal.offset,
4543 aic_dev->goal.width,
4544 aic_dev->goal.options);
4545 }
4546 aic7xxx_construct_ppr(p, scb);
4547 }
4548 else if (scb->flags & SCB_MSGOUT_WDTR)
4549 {
4550 if (aic7xxx_verbose & VERBOSE_NEGOTIATION2)
4551 {
4552 printk(INFO_LEAD "Sending WDTR message.\n", p->host_no,
4553 CTL_OF_SCB(scb));
4554 }
4555 aic7xxx_construct_wdtr(p, aic_dev->goal.width);
4556 }
4557 else if (scb->flags & SCB_MSGOUT_SDTR)
4558 {
4559 unsigned int max_sync, period;
4560 unsigned char options = 0;
4561 /*
4562 * Now that the device is selected, use the bits in SBLKCTL and
4563 * SSTAT2 to determine the max sync rate for this device.
4564 */
4565 if (p->features & AHC_ULTRA2)
4566 {
4567 if ( (aic_inb(p, SBLKCTL) & ENAB40) &&
4568 !(aic_inb(p, SSTAT2) & EXP_ACTIVE) )
4569 {
4570 max_sync = AHC_SYNCRATE_ULTRA2;
4571 }
4572 else
4573 {
4574 max_sync = AHC_SYNCRATE_ULTRA;
4575 }
4576 }
4577 else if (p->features & AHC_ULTRA)
4578 {
4579 max_sync = AHC_SYNCRATE_ULTRA;
4580 }
4581 else
4582 {
4583 max_sync = AHC_SYNCRATE_FAST;
4584 }
4585 period = aic_dev->goal.period;
4586 aic7xxx_find_syncrate(p, &period, max_sync, &options);
4587 if (aic7xxx_verbose & VERBOSE_NEGOTIATION2)
4588 {
4589 printk(INFO_LEAD "Sending SDTR %d/%d message.\n", p->host_no,
4590 CTL_OF_SCB(scb), period,
4591 aic_dev->goal.offset);
4592 }
4593 aic7xxx_construct_sdtr(p, period, aic_dev->goal.offset);
4594 }
4595 else
4596 {
4597 panic("aic7xxx: AWAITING_MSG for an SCB that does "
4598 "not have a waiting message.\n");
4599 }
4600 /*
4601 * We've set everything up to send our message, now to actually do
4602 * so we need to enable reqinit interrupts and let the interrupt
4603 * handler do the rest. We don't want to unpause the sequencer yet
4604 * though so we'll return early. We also have to make sure that
4605 * we clear the SEQINT *BEFORE* we set the REQINIT handler active
4606 * or else it's possible on VLB cards to lose the first REQINIT
4607 * interrupt. Edge triggered EISA cards could also lose this
4608 * interrupt, although PCI and level triggered cards should not
4609 * have this problem since they continually interrupt the kernel
4610 * until we take care of the situation.
4611 */
4612 scb->flags |= SCB_MSGOUT_SENT;
4613 p->msg_index = 0;
4614 p->msg_type = MSG_TYPE_INITIATOR_MSGOUT;
4615 p->flags |= AHC_HANDLING_REQINITS;
4616 aic_outb(p, aic_inb(p, SIMODE1) | ENREQINIT, SIMODE1);
4617 return;
4618 }
4619 break;
4620
4621 case DATA_OVERRUN:
4622 {
4623 unsigned char scb_index = aic_inb(p, SCB_TAG);
4624 unsigned char lastphase = aic_inb(p, LASTPHASE);
4625 unsigned int i;
4626
4627 scb = (p->scb_data->scb_array[scb_index]);
4628 /*
4629 * XXX - What do we really want to do on an overrun? The
4630 * mid-level SCSI code should handle this, but for now,
4631 * we'll just indicate that the command should retried.
4632 * If we retrieved sense info on this target, then the
4633 * base SENSE info should have been saved prior to the
4634 * overrun error. In that case, we return DID_OK and let
4635 * the mid level code pick up on the sense info. Otherwise
4636 * we return DID_ERROR so the command will get retried.
4637 */
4638 if ( !(scb->flags & SCB_SENSE) )
4639 {
4640 printk(WARN_LEAD "Data overrun detected in %s phase, tag %d;\n",
4641 p->host_no, CTL_OF_SCB(scb),
4642 (lastphase == P_DATAIN) ? "Data-In" : "Data-Out", scb->hscb->tag);
4643 printk(KERN_WARNING " %s seen Data Phase. Length=%d, NumSGs=%d.\n",
4644 (aic_inb(p, SEQ_FLAGS) & DPHASE) ? "Have" : "Haven't",
4645 scb->sg_length, scb->sg_count);
4646 printk(KERN_WARNING " Raw SCSI Command: 0x");
4647 for (i = 0; i < scb->hscb->SCSI_cmd_length; i++)
4648 {
4649 printk("%02x ", scb->cmd->cmnd[i]);
4650 }
4651 printk("\n");
4652 if(aic7xxx_verbose > 0xffff)
4653 {
4654 for (i = 0; i < scb->sg_count; i++)
4655 {
4656 printk(KERN_WARNING " sg[%d] - Addr 0x%x : Length %d\n",
4657 i,
4658 le32_to_cpu(scb->sg_list[i].address),
4659 le32_to_cpu(scb->sg_list[i].length) );
4660 }
4661 }
4662 aic7xxx_error(scb->cmd) = DID_ERROR;
4663 }
4664 else
4665 printk(INFO_LEAD "Data Overrun during SEND_SENSE operation.\n",
4666 p->host_no, CTL_OF_SCB(scb));
4667 }
4668 break;
4669
4670 case WIDE_RESIDUE:
4671 {
4672 unsigned char resid_sgcnt, index;
4673 unsigned char scb_index = aic_inb(p, SCB_TAG);
4674 unsigned int cur_addr, resid_dcnt;
4675 unsigned int native_addr, native_length, sg_addr;
4676 int i;
4677
4678 if(scb_index > p->scb_data->numscbs)
4679 {
4680 printk(WARN_LEAD "invalid scb_index during WIDE_RESIDUE.\n",
4681 p->host_no, -1, -1, -1);
4682 /*
4683 * XXX: Add error handling here
4684 */
4685 break;
4686 }
4687 scb = p->scb_data->scb_array[scb_index];
4688 if(!(scb->flags & SCB_ACTIVE) || (scb->cmd == NULL))
4689 {
4690 printk(WARN_LEAD "invalid scb during WIDE_RESIDUE flags:0x%x "
4691 "scb->cmd:0x%lx\n", p->host_no, CTL_OF_SCB(scb),
4692 scb->flags, (unsigned long)scb->cmd);
4693 break;
4694 }
4695 if(aic7xxx_verbose & VERBOSE_MINOR_ERROR)
4696 printk(INFO_LEAD "Got WIDE_RESIDUE message, patching up data "
4697 "pointer.\n", p->host_no, CTL_OF_SCB(scb));
4698
4699 /*
4700 * We have a valid scb to use on this WIDE_RESIDUE message, so
4701 * we need to walk the sg list looking for this particular sg
4702 * segment, then see if we happen to be at the very beginning of
4703 * the segment. If we are, then we have to back things up to
4704 * the previous segment. If not, then we simply need to remove
4705 * one byte from this segments address and add one to the byte
4706 * count.
4707 */
4708 cur_addr = aic_inb(p, SHADDR) | (aic_inb(p, SHADDR + 1) << 8) |
4709 (aic_inb(p, SHADDR + 2) << 16) | (aic_inb(p, SHADDR + 3) << 24);
4710 sg_addr = aic_inb(p, SG_COUNT + 1) | (aic_inb(p, SG_COUNT + 2) << 8) |
4711 (aic_inb(p, SG_COUNT + 3) << 16) | (aic_inb(p, SG_COUNT + 4) << 24);
4712 resid_sgcnt = aic_inb(p, SCB_RESID_SGCNT);
4713 resid_dcnt = aic_inb(p, SCB_RESID_DCNT) |
4714 (aic_inb(p, SCB_RESID_DCNT + 1) << 8) |
4715 (aic_inb(p, SCB_RESID_DCNT + 2) << 16);
4716 index = scb->sg_count - ((resid_sgcnt) ? resid_sgcnt : 1);
4717 native_addr = le32_to_cpu(scb->sg_list[index].address);
4718 native_length = le32_to_cpu(scb->sg_list[index].length);
4719 /*
4720 * If resid_dcnt == native_length, then we just loaded this SG
4721 * segment and we need to back it up one...
4722 */
4723 if(resid_dcnt == native_length)
4724 {
4725 if(index == 0)
4726 {
4727 /*
4728 * Oops, this isn't right, we can't back up to before the
4729 * beginning. This must be a bogus message, ignore it.
4730 */
4731 break;
4732 }
4733 resid_dcnt = 1;
4734 resid_sgcnt += 1;
4735 native_addr = le32_to_cpu(scb->sg_list[index - 1].address);
4736 native_length = le32_to_cpu(scb->sg_list[index - 1].length);
4737 cur_addr = native_addr + (native_length - 1);
4738 sg_addr -= sizeof(struct hw_scatterlist);
4739 }
4740 else
4741 {
4742 /*
4743 * resid_dcnt != native_length, so we are in the middle of a SG
4744 * element. Back it up one byte and leave the rest alone.
4745 */
4746 resid_dcnt += 1;
4747 cur_addr -= 1;
4748 }
4749
4750 /*
4751 * Output the new addresses and counts to the right places on the
4752 * card.
4753 */
4754 aic_outb(p, resid_sgcnt, SG_COUNT);
4755 aic_outb(p, resid_sgcnt, SCB_RESID_SGCNT);
4756 aic_outb(p, sg_addr & 0xff, SG_COUNT + 1);
4757 aic_outb(p, (sg_addr >> 8) & 0xff, SG_COUNT + 2);
4758 aic_outb(p, (sg_addr >> 16) & 0xff, SG_COUNT + 3);
4759 aic_outb(p, (sg_addr >> 24) & 0xff, SG_COUNT + 4);
4760 aic_outb(p, resid_dcnt & 0xff, SCB_RESID_DCNT);
4761 aic_outb(p, (resid_dcnt >> 8) & 0xff, SCB_RESID_DCNT + 1);
4762 aic_outb(p, (resid_dcnt >> 16) & 0xff, SCB_RESID_DCNT + 2);
4763
4764 /*
4765 * The sequencer actually wants to find the new address
4766 * in the SHADDR register set. On the Ultra2 and later controllers
4767 * this register set is readonly. In order to get the right number
4768 * into the register, you actually have to enter it in HADDR and then
4769 * use the PRELOADEN bit of DFCNTRL to drop it through from the
4770 * HADDR register to the SHADDR register. On non-Ultra2 controllers,
4771 * we simply write it direct.
4772 */
4773 if(p->features & AHC_ULTRA2)
4774 {
4775 /*
4776 * We might as well be accurate and drop both the resid_dcnt and
4777 * cur_addr into HCNT and HADDR and have both of them drop
4778 * through to the shadow layer together.
4779 */
4780 aic_outb(p, resid_dcnt & 0xff, HCNT);
4781 aic_outb(p, (resid_dcnt >> 8) & 0xff, HCNT + 1);
4782 aic_outb(p, (resid_dcnt >> 16) & 0xff, HCNT + 2);
4783 aic_outb(p, cur_addr & 0xff, HADDR);
4784 aic_outb(p, (cur_addr >> 8) & 0xff, HADDR + 1);
4785 aic_outb(p, (cur_addr >> 16) & 0xff, HADDR + 2);
4786 aic_outb(p, (cur_addr >> 24) & 0xff, HADDR + 3);
4787 aic_outb(p, aic_inb(p, DMAPARAMS) | PRELOADEN, DFCNTRL);
4788 udelay(1);
4789 aic_outb(p, aic_inb(p, DMAPARAMS) & ~(SCSIEN|HDMAEN), DFCNTRL);
4790 i=0;
4791 while(((aic_inb(p, DFCNTRL) & (SCSIEN|HDMAEN)) != 0) && (i++ < 1000))
4792 {
4793 udelay(1);
4794 }
4795 }
4796 else
4797 {
4798 aic_outb(p, cur_addr & 0xff, SHADDR);
4799 aic_outb(p, (cur_addr >> 8) & 0xff, SHADDR + 1);
4800 aic_outb(p, (cur_addr >> 16) & 0xff, SHADDR + 2);
4801 aic_outb(p, (cur_addr >> 24) & 0xff, SHADDR + 3);
4802 }
4803 }
4804 break;
4805
4806 case SEQ_SG_FIXUP:
4807 {
4808 unsigned char scb_index, tmp;
4809 int sg_addr, sg_length;
4810
4811 scb_index = aic_inb(p, SCB_TAG);
4812
4813 if(scb_index > p->scb_data->numscbs)
4814 {
4815 printk(WARN_LEAD "invalid scb_index during SEQ_SG_FIXUP.\n",
4816 p->host_no, -1, -1, -1);
4817 printk(INFO_LEAD "SCSISIGI 0x%x, SEQADDR 0x%x, SSTAT0 0x%x, SSTAT1 "
4818 "0x%x\n", p->host_no, -1, -1, -1,
4819 aic_inb(p, SCSISIGI),
4820 aic_inb(p, SEQADDR0) | (aic_inb(p, SEQADDR1) << 8),
4821 aic_inb(p, SSTAT0), aic_inb(p, SSTAT1));
4822 printk(INFO_LEAD "SG_CACHEPTR 0x%x, SSTAT2 0x%x, STCNT 0x%x\n",
4823 p->host_no, -1, -1, -1, aic_inb(p, SG_CACHEPTR),
4824 aic_inb(p, SSTAT2), aic_inb(p, STCNT + 2) << 16 |
4825 aic_inb(p, STCNT + 1) << 8 | aic_inb(p, STCNT));
4826 /*
4827 * XXX: Add error handling here
4828 */
4829 break;
4830 }
4831 scb = p->scb_data->scb_array[scb_index];
4832 if(!(scb->flags & SCB_ACTIVE) || (scb->cmd == NULL))
4833 {
4834 printk(WARN_LEAD "invalid scb during SEQ_SG_FIXUP flags:0x%x "
4835 "scb->cmd:0x%p\n", p->host_no, CTL_OF_SCB(scb),
4836 scb->flags, scb->cmd);
4837 printk(INFO_LEAD "SCSISIGI 0x%x, SEQADDR 0x%x, SSTAT0 0x%x, SSTAT1 "
4838 "0x%x\n", p->host_no, CTL_OF_SCB(scb),
4839 aic_inb(p, SCSISIGI),
4840 aic_inb(p, SEQADDR0) | (aic_inb(p, SEQADDR1) << 8),
4841 aic_inb(p, SSTAT0), aic_inb(p, SSTAT1));
4842 printk(INFO_LEAD "SG_CACHEPTR 0x%x, SSTAT2 0x%x, STCNT 0x%x\n",
4843 p->host_no, CTL_OF_SCB(scb), aic_inb(p, SG_CACHEPTR),
4844 aic_inb(p, SSTAT2), aic_inb(p, STCNT + 2) << 16 |
4845 aic_inb(p, STCNT + 1) << 8 | aic_inb(p, STCNT));
4846 break;
4847 }
4848 if(aic7xxx_verbose & VERBOSE_MINOR_ERROR)
4849 printk(INFO_LEAD "Fixing up SG address for sequencer.\n", p->host_no,
4850 CTL_OF_SCB(scb));
4851 /*
4852 * Advance the SG pointer to the next element in the list
4853 */
4854 tmp = aic_inb(p, SG_NEXT);
4855 tmp += SG_SIZEOF;
4856 aic_outb(p, tmp, SG_NEXT);
4857 if( tmp < SG_SIZEOF )
4858 aic_outb(p, aic_inb(p, SG_NEXT + 1) + 1, SG_NEXT + 1);
4859 tmp = aic_inb(p, SG_COUNT) - 1;
4860 aic_outb(p, tmp, SG_COUNT);
4861 sg_addr = le32_to_cpu(scb->sg_list[scb->sg_count - tmp].address);
4862 sg_length = le32_to_cpu(scb->sg_list[scb->sg_count - tmp].length);
4863 /*
4864 * Now stuff the element we just advanced past down onto the
4865 * card so it can be stored in the residual area.
4866 */
4867 aic_outb(p, sg_addr & 0xff, HADDR);
4868 aic_outb(p, (sg_addr >> 8) & 0xff, HADDR + 1);
4869 aic_outb(p, (sg_addr >> 16) & 0xff, HADDR + 2);
4870 aic_outb(p, (sg_addr >> 24) & 0xff, HADDR + 3);
4871 aic_outb(p, sg_length & 0xff, HCNT);
4872 aic_outb(p, (sg_length >> 8) & 0xff, HCNT + 1);
4873 aic_outb(p, (sg_length >> 16) & 0xff, HCNT + 2);
4874 aic_outb(p, (tmp << 2) | ((tmp == 1) ? LAST_SEG : 0), SG_CACHEPTR);
4875 aic_outb(p, aic_inb(p, DMAPARAMS), DFCNTRL);
4876 while(aic_inb(p, SSTAT0) & SDONE) udelay(1);
4877 while(aic_inb(p, DFCNTRL) & (HDMAEN|SCSIEN)) aic_outb(p, 0, DFCNTRL);
4878 }
4879 break;
4880
4881 #ifdef AIC7XXX_NOT_YET
4882 case TRACEPOINT2:
4883 {
4884 printk(INFO_LEAD "Tracepoint #2 reached.\n", p->host_no,
4885 channel, target, lun);
4886 }
4887 break;
4888
4889 /* XXX Fill these in later */
4890 case MSG_BUFFER_BUSY:
4891 printk("aic7xxx: Message buffer busy.\n");
4892 break;
4893 case MSGIN_PHASEMIS:
4894 printk("aic7xxx: Message-in phasemis.\n");
4895 break;
4896 #endif
4897
4898 default: /* unknown */
4899 printk(WARN_LEAD "Unknown SEQINT, INTSTAT 0x%x, SCSISIGI 0x%x.\n",
4900 p->host_no, channel, target, lun, intstat,
4901 aic_inb(p, SCSISIGI));
4902 break;
4903 }
4904
4905 /*
4906 * Clear the sequencer interrupt and unpause the sequencer.
4907 */
4908 unpause_sequencer(p, /* unpause always */ TRUE);
4909 }
4910
4911 /*+F*************************************************************************
4912 * Function:
4913 * aic7xxx_parse_msg
4914 *
4915 * Description:
4916 * Parses incoming messages into actions on behalf of
4917 * aic7xxx_handle_reqinit
4918 *_F*************************************************************************/
4919 static int
4920 aic7xxx_parse_msg(struct aic7xxx_host *p, struct aic7xxx_scb *scb)
4921 {
4922 int reject, reply, done;
4923 unsigned char target_scsirate, tindex;
4924 unsigned short target_mask;
4925 unsigned char target, channel, lun;
4926 unsigned char bus_width, new_bus_width;
4927 unsigned char trans_options, new_trans_options;
4928 unsigned int period, new_period, offset, new_offset, maxsync;
4929 struct aic7xxx_syncrate *syncrate;
4930 struct aic_dev_data *aic_dev;
4931
4932 target = scb->cmd->device->id;
4933 channel = scb->cmd->device->channel;
4934 lun = scb->cmd->device->lun;
4935 reply = reject = done = FALSE;
4936 tindex = TARGET_INDEX(scb->cmd);
4937 aic_dev = AIC_DEV(scb->cmd);
4938 target_scsirate = aic_inb(p, TARG_SCSIRATE + tindex);
4939 target_mask = (0x01 << tindex);
4940
4941 /*
4942 * Parse as much of the message as is available,
4943 * rejecting it if we don't support it. When
4944 * the entire message is available and has been
4945 * handled, return TRUE indicating that we have
4946 * parsed an entire message.
4947 */
4948
4949 if (p->msg_buf[0] != MSG_EXTENDED)
4950 {
4951 reject = TRUE;
4952 }
4953
4954 /*
4955 * Even if we are an Ultra3 card, don't allow Ultra3 sync rates when
4956 * using the SDTR messages. We need the PPR messages to enable the
4957 * higher speeds that include things like Dual Edge clocking.
4958 */
4959 if (p->features & AHC_ULTRA2)
4960 {
4961 if ( (aic_inb(p, SBLKCTL) & ENAB40) &&
4962 !(aic_inb(p, SSTAT2) & EXP_ACTIVE) )
4963 {
4964 if (p->features & AHC_ULTRA3)
4965 maxsync = AHC_SYNCRATE_ULTRA3;
4966 else
4967 maxsync = AHC_SYNCRATE_ULTRA2;
4968 }
4969 else
4970 {
4971 maxsync = AHC_SYNCRATE_ULTRA;
4972 }
4973 }
4974 else if (p->features & AHC_ULTRA)
4975 {
4976 maxsync = AHC_SYNCRATE_ULTRA;
4977 }
4978 else
4979 {
4980 maxsync = AHC_SYNCRATE_FAST;
4981 }
4982
4983 /*
4984 * Just accept the length byte outright and perform
4985 * more checking once we know the message type.
4986 */
4987
4988 if ( !reject && (p->msg_len > 2) )
4989 {
4990 switch(p->msg_buf[2])
4991 {
4992 case MSG_EXT_SDTR:
4993 {
4994
4995 if (p->msg_buf[1] != MSG_EXT_SDTR_LEN)
4996 {
4997 reject = TRUE;
4998 break;
4999 }
5000
5001 if (p->msg_len < (MSG_EXT_SDTR_LEN + 2))
5002 {
5003 break;
5004 }
5005
5006 period = new_period = p->msg_buf[3];
5007 offset = new_offset = p->msg_buf[4];
5008 trans_options = new_trans_options = 0;
5009 bus_width = new_bus_width = target_scsirate & WIDEXFER;
5010
5011 /*
5012 * If our current max syncrate is in the Ultra3 range, bump it back
5013 * down to Ultra2 since we can't negotiate DT transfers using SDTR
5014 */
5015 if(maxsync == AHC_SYNCRATE_ULTRA3)
5016 maxsync = AHC_SYNCRATE_ULTRA2;
5017
5018 /*
5019 * We might have a device that is starting negotiation with us
5020 * before we can start up negotiation with it....be prepared to
5021 * have a device ask for a higher speed then we want to give it
5022 * in that case
5023 */
5024 if ( (scb->flags & (SCB_MSGOUT_SENT|SCB_MSGOUT_SDTR)) !=
5025 (SCB_MSGOUT_SENT|SCB_MSGOUT_SDTR) )
5026 {
5027 if (!(aic_dev->flags & DEVICE_DTR_SCANNED))
5028 {
5029 /*
5030 * We shouldn't get here unless this is a narrow drive, wide
5031 * devices should trigger this same section of code in the WDTR
5032 * handler first instead.
5033 */
5034 aic_dev->goal.width = MSG_EXT_WDTR_BUS_8_BIT;
5035 aic_dev->goal.options = 0;
5036 if(p->user[tindex].offset)
5037 {
5038 aic_dev->needsdtr_copy = 1;
5039 aic_dev->goal.period = max_t(unsigned char, 10,p->user[tindex].period);
5040 if(p->features & AHC_ULTRA2)
5041 {
5042 aic_dev->goal.offset = MAX_OFFSET_ULTRA2;
5043 }
5044 else
5045 {
5046 aic_dev->goal.offset = MAX_OFFSET_8BIT;
5047 }
5048 }
5049 else
5050 {
5051 aic_dev->needsdtr_copy = 0;
5052 aic_dev->goal.period = 255;
5053 aic_dev->goal.offset = 0;
5054 }
5055 aic_dev->flags |= DEVICE_DTR_SCANNED | DEVICE_PRINT_DTR;
5056 }
5057 else if (aic_dev->needsdtr_copy == 0)
5058 {
5059 /*
5060 * This is a preemptive message from the target, we've already
5061 * scanned this target and set our options for it, and we
5062 * don't need a SDTR with this target (for whatever reason),
5063 * so reject this incoming SDTR
5064 */
5065 reject = TRUE;
5066 break;
5067 }
5068
5069 /* The device is sending this message first and we have to reply */
5070 reply = TRUE;
5071
5072 if (aic7xxx_verbose & VERBOSE_NEGOTIATION2)
5073 {
5074 printk(INFO_LEAD "Received pre-emptive SDTR message from "
5075 "target.\n", p->host_no, CTL_OF_SCB(scb));
5076 }
5077 /*
5078 * Validate the values the device passed to us against our SEEPROM
5079 * settings. We don't have to do this if we aren't replying since
5080 * the device isn't allowed to send values greater than the ones
5081 * we first sent to it.
5082 */
5083 new_period = max_t(unsigned int, period, aic_dev->goal.period);
5084 new_offset = min_t(unsigned int, offset, aic_dev->goal.offset);
5085 }
5086
5087 /*
5088 * Use our new_period, new_offset, bus_width, and card options
5089 * to determine the actual syncrate settings
5090 */
5091 syncrate = aic7xxx_find_syncrate(p, &new_period, maxsync,
5092 &trans_options);
5093 aic7xxx_validate_offset(p, syncrate, &new_offset, bus_width);
5094
5095 /*
5096 * Did we drop to async? If so, send a reply regardless of whether
5097 * or not we initiated this negotiation.
5098 */
5099 if ((new_offset == 0) && (new_offset != offset))
5100 {
5101 aic_dev->needsdtr_copy = 0;
5102 reply = TRUE;
5103 }
5104
5105 /*
5106 * Did we start this, if not, or if we went too low and had to
5107 * go async, then send an SDTR back to the target
5108 */
5109 if(reply)
5110 {
5111 /* when sending a reply, make sure that the goal settings are
5112 * updated along with current and active since the code that
5113 * will actually build the message for the sequencer uses the
5114 * goal settings as its guidelines.
5115 */
5116 aic7xxx_set_syncrate(p, syncrate, target, channel, new_period,
5117 new_offset, trans_options,
5118 AHC_TRANS_GOAL|AHC_TRANS_ACTIVE|AHC_TRANS_CUR,
5119 aic_dev);
5120 scb->flags &= ~SCB_MSGOUT_BITS;
5121 scb->flags |= SCB_MSGOUT_SDTR;
5122 aic_outb(p, HOST_MSG, MSG_OUT);
5123 aic_outb(p, aic_inb(p, SCSISIGO) | ATNO, SCSISIGO);
5124 }
5125 else
5126 {
5127 aic7xxx_set_syncrate(p, syncrate, target, channel, new_period,
5128 new_offset, trans_options,
5129 AHC_TRANS_ACTIVE|AHC_TRANS_CUR, aic_dev);
5130 aic_dev->needsdtr = 0;
5131 }
5132 done = TRUE;
5133 break;
5134 }
5135 case MSG_EXT_WDTR:
5136 {
5137
5138 if (p->msg_buf[1] != MSG_EXT_WDTR_LEN)
5139 {
5140 reject = TRUE;
5141 break;
5142 }
5143
5144 if (p->msg_len < (MSG_EXT_WDTR_LEN + 2))
5145 {
5146 break;
5147 }
5148
5149 bus_width = new_bus_width = p->msg_buf[3];
5150
5151 if ( (scb->flags & (SCB_MSGOUT_SENT|SCB_MSGOUT_WDTR)) ==
5152 (SCB_MSGOUT_SENT|SCB_MSGOUT_WDTR) )
5153 {
5154 switch(bus_width)
5155 {
5156 default:
5157 {
5158 reject = TRUE;
5159 if ( (aic7xxx_verbose & VERBOSE_NEGOTIATION2) &&
5160 ((aic_dev->flags & DEVICE_PRINT_DTR) ||
5161 (aic7xxx_verbose > 0xffff)) )
5162 {
5163 printk(INFO_LEAD "Requesting %d bit transfers, rejecting.\n",
5164 p->host_no, CTL_OF_SCB(scb), 8 * (0x01 << bus_width));
5165 }
5166 } /* We fall through on purpose */
5167 case MSG_EXT_WDTR_BUS_8_BIT:
5168 {
5169 aic_dev->goal.width = MSG_EXT_WDTR_BUS_8_BIT;
5170 aic_dev->needwdtr_copy &= ~target_mask;
5171 break;
5172 }
5173 case MSG_EXT_WDTR_BUS_16_BIT:
5174 {
5175 break;
5176 }
5177 }
5178 aic_dev->needwdtr = 0;
5179 aic7xxx_set_width(p, target, channel, lun, new_bus_width,
5180 AHC_TRANS_ACTIVE|AHC_TRANS_CUR, aic_dev);
5181 }
5182 else
5183 {
5184 if ( !(aic_dev->flags & DEVICE_DTR_SCANNED) )
5185 {
5186 /*
5187 * Well, we now know the WDTR and SYNC caps of this device since
5188 * it contacted us first, mark it as such and copy the user stuff
5189 * over to the goal stuff.
5190 */
5191 if( (p->features & AHC_WIDE) && p->user[tindex].width )
5192 {
5193 aic_dev->goal.width = MSG_EXT_WDTR_BUS_16_BIT;
5194 aic_dev->needwdtr_copy = 1;
5195 }
5196
5197 /*
5198 * Devices that support DT transfers don't start WDTR requests
5199 */
5200 aic_dev->goal.options = 0;
5201
5202 if(p->user[tindex].offset)
5203 {
5204 aic_dev->needsdtr_copy = 1;
5205 aic_dev->goal.period = max_t(unsigned char, 10, p->user[tindex].period);
5206 if(p->features & AHC_ULTRA2)
5207 {
5208 aic_dev->goal.offset = MAX_OFFSET_ULTRA2;
5209 }
5210 else if( aic_dev->goal.width )
5211 {
5212 aic_dev->goal.offset = MAX_OFFSET_16BIT;
5213 }
5214 else
5215 {
5216 aic_dev->goal.offset = MAX_OFFSET_8BIT;
5217 }
5218 } else {
5219 aic_dev->needsdtr_copy = 0;
5220 aic_dev->goal.period = 255;
5221 aic_dev->goal.offset = 0;
5222 }
5223
5224 aic_dev->flags |= DEVICE_DTR_SCANNED | DEVICE_PRINT_DTR;
5225 }
5226 else if (aic_dev->needwdtr_copy == 0)
5227 {
5228 /*
5229 * This is a preemptive message from the target, we've already
5230 * scanned this target and set our options for it, and we
5231 * don't need a WDTR with this target (for whatever reason),
5232 * so reject this incoming WDTR
5233 */
5234 reject = TRUE;
5235 break;
5236 }
5237
5238 /* The device is sending this message first and we have to reply */
5239 reply = TRUE;
5240
5241 if (aic7xxx_verbose & VERBOSE_NEGOTIATION2)
5242 {
5243 printk(INFO_LEAD "Received pre-emptive WDTR message from "
5244 "target.\n", p->host_no, CTL_OF_SCB(scb));
5245 }
5246 switch(bus_width)
5247 {
5248 case MSG_EXT_WDTR_BUS_16_BIT:
5249 {
5250 if ( (p->features & AHC_WIDE) &&
5251 (aic_dev->goal.width == MSG_EXT_WDTR_BUS_16_BIT) )
5252 {
5253 new_bus_width = MSG_EXT_WDTR_BUS_16_BIT;
5254 break;
5255 }
5256 } /* Fall through if we aren't a wide card */
5257 default:
5258 case MSG_EXT_WDTR_BUS_8_BIT:
5259 {
5260 aic_dev->needwdtr_copy = 0;
5261 new_bus_width = MSG_EXT_WDTR_BUS_8_BIT;
5262 break;
5263 }
5264 }
5265 scb->flags &= ~SCB_MSGOUT_BITS;
5266 scb->flags |= SCB_MSGOUT_WDTR;
5267 aic_dev->needwdtr = 0;
5268 if(aic_dev->dtr_pending == 0)
5269 {
5270 /* there is no other command with SCB_DTR_SCB already set that will
5271 * trigger the release of the dtr_pending bit. Both set the bit
5272 * and set scb->flags |= SCB_DTR_SCB
5273 */
5274 aic_dev->dtr_pending = 1;
5275 scb->flags |= SCB_DTR_SCB;
5276 }
5277 aic_outb(p, HOST_MSG, MSG_OUT);
5278 aic_outb(p, aic_inb(p, SCSISIGO) | ATNO, SCSISIGO);
5279 /* when sending a reply, make sure that the goal settings are
5280 * updated along with current and active since the code that
5281 * will actually build the message for the sequencer uses the
5282 * goal settings as its guidelines.
5283 */
5284 aic7xxx_set_width(p, target, channel, lun, new_bus_width,
5285 AHC_TRANS_GOAL|AHC_TRANS_ACTIVE|AHC_TRANS_CUR,
5286 aic_dev);
5287 }
5288
5289 /*
5290 * By virtue of the SCSI spec, a WDTR message negates any existing
5291 * SDTR negotiations. So, even if needsdtr isn't marked for this
5292 * device, we still have to do a new SDTR message if the device
5293 * supports SDTR at all. Therefore, we check needsdtr_copy instead
5294 * of needstr.
5295 */
5296 aic7xxx_set_syncrate(p, NULL, target, channel, 0, 0, 0,
5297 AHC_TRANS_ACTIVE|AHC_TRANS_CUR|AHC_TRANS_QUITE,
5298 aic_dev);
5299 aic_dev->needsdtr = aic_dev->needsdtr_copy;
5300 done = TRUE;
5301 break;
5302 }
5303 case MSG_EXT_PPR:
5304 {
5305
5306 if (p->msg_buf[1] != MSG_EXT_PPR_LEN)
5307 {
5308 reject = TRUE;
5309 break;
5310 }
5311
5312 if (p->msg_len < (MSG_EXT_PPR_LEN + 2))
5313 {
5314 break;
5315 }
5316
5317 period = new_period = p->msg_buf[3];
5318 offset = new_offset = p->msg_buf[5];
5319 bus_width = new_bus_width = p->msg_buf[6];
5320 trans_options = new_trans_options = p->msg_buf[7] & 0xf;
5321
5322 if(aic7xxx_verbose & VERBOSE_NEGOTIATION2)
5323 {
5324 printk(INFO_LEAD "Parsing PPR message (%d/%d/%d/%d)\n",
5325 p->host_no, CTL_OF_SCB(scb), period, offset, bus_width,
5326 trans_options);
5327 }
5328
5329 /*
5330 * We might have a device that is starting negotiation with us
5331 * before we can start up negotiation with it....be prepared to
5332 * have a device ask for a higher speed then we want to give it
5333 * in that case
5334 */
5335 if ( (scb->flags & (SCB_MSGOUT_SENT|SCB_MSGOUT_PPR)) !=
5336 (SCB_MSGOUT_SENT|SCB_MSGOUT_PPR) )
5337 {
5338 /* Have we scanned the device yet? */
5339 if (!(aic_dev->flags & DEVICE_DTR_SCANNED))
5340 {
5341 /* The device is electing to use PPR messages, so we will too until
5342 * we know better */
5343 aic_dev->needppr = aic_dev->needppr_copy = 1;
5344 aic_dev->needsdtr = aic_dev->needsdtr_copy = 0;
5345 aic_dev->needwdtr = aic_dev->needwdtr_copy = 0;
5346
5347 /* We know the device is SCSI-3 compliant due to PPR */
5348 aic_dev->flags |= DEVICE_SCSI_3;
5349
5350 /*
5351 * Not only is the device starting this up, but it also hasn't
5352 * been scanned yet, so this would likely be our TUR or our
5353 * INQUIRY command at scan time, so we need to use the
5354 * settings from the SEEPROM if they existed. Of course, even
5355 * if we didn't find a SEEPROM, we stuffed default values into
5356 * the user settings anyway, so use those in all cases.
5357 */
5358 aic_dev->goal.width = p->user[tindex].width;
5359 if(p->user[tindex].offset)
5360 {
5361 aic_dev->goal.period = p->user[tindex].period;
5362 aic_dev->goal.options = p->user[tindex].options;
5363 if(p->features & AHC_ULTRA2)
5364 {
5365 aic_dev->goal.offset = MAX_OFFSET_ULTRA2;
5366 }
5367 else if( aic_dev->goal.width &&
5368 (bus_width == MSG_EXT_WDTR_BUS_16_BIT) &&
5369 p->features & AHC_WIDE )
5370 {
5371 aic_dev->goal.offset = MAX_OFFSET_16BIT;
5372 }
5373 else
5374 {
5375 aic_dev->goal.offset = MAX_OFFSET_8BIT;
5376 }
5377 }
5378 else
5379 {
5380 aic_dev->goal.period = 255;
5381 aic_dev->goal.offset = 0;
5382 aic_dev->goal.options = 0;
5383 }
5384 aic_dev->flags |= DEVICE_DTR_SCANNED | DEVICE_PRINT_DTR;
5385 }
5386 else if (aic_dev->needppr_copy == 0)
5387 {
5388 /*
5389 * This is a preemptive message from the target, we've already
5390 * scanned this target and set our options for it, and we
5391 * don't need a PPR with this target (for whatever reason),
5392 * so reject this incoming PPR
5393 */
5394 reject = TRUE;
5395 break;
5396 }
5397
5398 /* The device is sending this message first and we have to reply */
5399 reply = TRUE;
5400
5401 if (aic7xxx_verbose & VERBOSE_NEGOTIATION2)
5402 {
5403 printk(INFO_LEAD "Received pre-emptive PPR message from "
5404 "target.\n", p->host_no, CTL_OF_SCB(scb));
5405 }
5406
5407 }
5408
5409 switch(bus_width)
5410 {
5411 case MSG_EXT_WDTR_BUS_16_BIT:
5412 {
5413 if ( (aic_dev->goal.width == MSG_EXT_WDTR_BUS_16_BIT) &&
5414 p->features & AHC_WIDE)
5415 {
5416 break;
5417 }
5418 }
5419 default:
5420 {
5421 if ( (aic7xxx_verbose & VERBOSE_NEGOTIATION2) &&
5422 ((aic_dev->flags & DEVICE_PRINT_DTR) ||
5423 (aic7xxx_verbose > 0xffff)) )
5424 {
5425 reply = TRUE;
5426 printk(INFO_LEAD "Requesting %d bit transfers, rejecting.\n",
5427 p->host_no, CTL_OF_SCB(scb), 8 * (0x01 << bus_width));
5428 }
5429 } /* We fall through on purpose */
5430 case MSG_EXT_WDTR_BUS_8_BIT:
5431 {
5432 /*
5433 * According to the spec, if we aren't wide, we also can't be
5434 * Dual Edge so clear the options byte
5435 */
5436 new_trans_options = 0;
5437 new_bus_width = MSG_EXT_WDTR_BUS_8_BIT;
5438 break;
5439 }
5440 }
5441
5442 if(reply)
5443 {
5444 /* when sending a reply, make sure that the goal settings are
5445 * updated along with current and active since the code that
5446 * will actually build the message for the sequencer uses the
5447 * goal settings as its guidelines.
5448 */
5449 aic7xxx_set_width(p, target, channel, lun, new_bus_width,
5450 AHC_TRANS_GOAL|AHC_TRANS_ACTIVE|AHC_TRANS_CUR,
5451 aic_dev);
5452 syncrate = aic7xxx_find_syncrate(p, &new_period, maxsync,
5453 &new_trans_options);
5454 aic7xxx_validate_offset(p, syncrate, &new_offset, new_bus_width);
5455 aic7xxx_set_syncrate(p, syncrate, target, channel, new_period,
5456 new_offset, new_trans_options,
5457 AHC_TRANS_GOAL|AHC_TRANS_ACTIVE|AHC_TRANS_CUR,
5458 aic_dev);
5459 }
5460 else
5461 {
5462 aic7xxx_set_width(p, target, channel, lun, new_bus_width,
5463 AHC_TRANS_ACTIVE|AHC_TRANS_CUR, aic_dev);
5464 syncrate = aic7xxx_find_syncrate(p, &new_period, maxsync,
5465 &new_trans_options);
5466 aic7xxx_validate_offset(p, syncrate, &new_offset, new_bus_width);
5467 aic7xxx_set_syncrate(p, syncrate, target, channel, new_period,
5468 new_offset, new_trans_options,
5469 AHC_TRANS_ACTIVE|AHC_TRANS_CUR, aic_dev);
5470 }
5471
5472 /*
5473 * As it turns out, if we don't *have* to have PPR messages, then
5474 * configure ourselves not to use them since that makes some
5475 * external drive chassis work (those chassis can't parse PPR
5476 * messages and they mangle the SCSI bus until you send a WDTR
5477 * and SDTR that they can understand).
5478 */
5479 if(new_trans_options == 0)
5480 {
5481 aic_dev->needppr = aic_dev->needppr_copy = 0;
5482 if(new_offset)
5483 {
5484 aic_dev->needsdtr = aic_dev->needsdtr_copy = 1;
5485 }
5486 if (new_bus_width)
5487 {
5488 aic_dev->needwdtr = aic_dev->needwdtr_copy = 1;
5489 }
5490 }
5491
5492 if((new_offset == 0) && (offset != 0))
5493 {
5494 /*
5495 * Oops, the syncrate went to low for this card and we fell off
5496 * to async (should never happen with a device that uses PPR
5497 * messages, but have to be complete)
5498 */
5499 reply = TRUE;
5500 }
5501
5502 if(reply)
5503 {
5504 scb->flags &= ~SCB_MSGOUT_BITS;
5505 scb->flags |= SCB_MSGOUT_PPR;
5506 aic_outb(p, HOST_MSG, MSG_OUT);
5507 aic_outb(p, aic_inb(p, SCSISIGO) | ATNO, SCSISIGO);
5508 }
5509 else
5510 {
5511 aic_dev->needppr = 0;
5512 }
5513 done = TRUE;
5514 break;
5515 }
5516 default:
5517 {
5518 reject = TRUE;
5519 break;
5520 }
5521 } /* end of switch(p->msg_type) */
5522 } /* end of if (!reject && (p->msg_len > 2)) */
5523
5524 if (!reply && reject)
5525 {
5526 aic_outb(p, MSG_MESSAGE_REJECT, MSG_OUT);
5527 aic_outb(p, aic_inb(p, SCSISIGO) | ATNO, SCSISIGO);
5528 done = TRUE;
5529 }
5530 return(done);
5531 }
5532
5533
5534 /*+F*************************************************************************
5535 * Function:
5536 * aic7xxx_handle_reqinit
5537 *
5538 * Description:
5539 * Interrupt handler for REQINIT interrupts (used to transfer messages to
5540 * and from devices).
5541 *_F*************************************************************************/
5542 static void
5543 aic7xxx_handle_reqinit(struct aic7xxx_host *p, struct aic7xxx_scb *scb)
5544 {
5545 unsigned char lastbyte;
5546 unsigned char phasemis;
5547 int done = FALSE;
5548
5549 switch(p->msg_type)
5550 {
5551 case MSG_TYPE_INITIATOR_MSGOUT:
5552 {
5553 if (p->msg_len == 0)
5554 panic("aic7xxx: REQINIT with no active message!\n");
5555
5556 lastbyte = (p->msg_index == (p->msg_len - 1));
5557 phasemis = ( aic_inb(p, SCSISIGI) & PHASE_MASK) != P_MESGOUT;
5558
5559 if (lastbyte || phasemis)
5560 {
5561 /* Time to end the message */
5562 p->msg_len = 0;
5563 p->msg_type = MSG_TYPE_NONE;
5564 /*
5565 * NOTE-TO-MYSELF: If you clear the REQINIT after you
5566 * disable REQINITs, then cases of REJECT_MSG stop working
5567 * and hang the bus
5568 */
5569 aic_outb(p, aic_inb(p, SIMODE1) & ~ENREQINIT, SIMODE1);
5570 aic_outb(p, CLRSCSIINT, CLRINT);
5571 p->flags &= ~AHC_HANDLING_REQINITS;
5572
5573 if (phasemis == 0)
5574 {
5575 aic_outb(p, p->msg_buf[p->msg_index], SINDEX);
5576 aic_outb(p, 0, RETURN_1);
5577 #ifdef AIC7XXX_VERBOSE_DEBUGGING
5578 if (aic7xxx_verbose > 0xffff)
5579 printk(INFO_LEAD "Completed sending of REQINIT message.\n",
5580 p->host_no, CTL_OF_SCB(scb));
5581 #endif
5582 }
5583 else
5584 {
5585 aic_outb(p, MSGOUT_PHASEMIS, RETURN_1);
5586 #ifdef AIC7XXX_VERBOSE_DEBUGGING
5587 if (aic7xxx_verbose > 0xffff)
5588 printk(INFO_LEAD "PHASEMIS while sending REQINIT message.\n",
5589 p->host_no, CTL_OF_SCB(scb));
5590 #endif
5591 }
5592 unpause_sequencer(p, TRUE);
5593 }
5594 else
5595 {
5596 /*
5597 * Present the byte on the bus (clearing REQINIT) but don't
5598 * unpause the sequencer.
5599 */
5600 aic_outb(p, CLRREQINIT, CLRSINT1);
5601 aic_outb(p, CLRSCSIINT, CLRINT);
5602 aic_outb(p, p->msg_buf[p->msg_index++], SCSIDATL);
5603 }
5604 break;
5605 }
5606 case MSG_TYPE_INITIATOR_MSGIN:
5607 {
5608 phasemis = ( aic_inb(p, SCSISIGI) & PHASE_MASK ) != P_MESGIN;
5609
5610 if (phasemis == 0)
5611 {
5612 p->msg_len++;
5613 /* Pull the byte in without acking it */
5614 p->msg_buf[p->msg_index] = aic_inb(p, SCSIBUSL);
5615 done = aic7xxx_parse_msg(p, scb);
5616 /* Ack the byte */
5617 aic_outb(p, CLRREQINIT, CLRSINT1);
5618 aic_outb(p, CLRSCSIINT, CLRINT);
5619 aic_inb(p, SCSIDATL);
5620 p->msg_index++;
5621 }
5622 if (phasemis || done)
5623 {
5624 #ifdef AIC7XXX_VERBOSE_DEBUGGING
5625 if (aic7xxx_verbose > 0xffff)
5626 {
5627 if (phasemis)
5628 printk(INFO_LEAD "PHASEMIS while receiving REQINIT message.\n",
5629 p->host_no, CTL_OF_SCB(scb));
5630 else
5631 printk(INFO_LEAD "Completed receipt of REQINIT message.\n",
5632 p->host_no, CTL_OF_SCB(scb));
5633 }
5634 #endif
5635 /* Time to end our message session */
5636 p->msg_len = 0;
5637 p->msg_type = MSG_TYPE_NONE;
5638 aic_outb(p, aic_inb(p, SIMODE1) & ~ENREQINIT, SIMODE1);
5639 aic_outb(p, CLRSCSIINT, CLRINT);
5640 p->flags &= ~AHC_HANDLING_REQINITS;
5641 unpause_sequencer(p, TRUE);
5642 }
5643 break;
5644 }
5645 default:
5646 {
5647 panic("aic7xxx: Unknown REQINIT message type.\n");
5648 break;
5649 }
5650 } /* End of switch(p->msg_type) */
5651 }
5652
5653 /*+F*************************************************************************
5654 * Function:
5655 * aic7xxx_handle_scsiint
5656 *
5657 * Description:
5658 * Interrupt handler for SCSI interrupts (SCSIINT).
5659 *-F*************************************************************************/
5660 static void
5661 aic7xxx_handle_scsiint(struct aic7xxx_host *p, unsigned char intstat)
5662 {
5663 unsigned char scb_index;
5664 unsigned char status;
5665 struct aic7xxx_scb *scb;
5666 struct aic_dev_data *aic_dev;
5667
5668 scb_index = aic_inb(p, SCB_TAG);
5669 status = aic_inb(p, SSTAT1);
5670
5671 if (scb_index < p->scb_data->numscbs)
5672 {
5673 scb = p->scb_data->scb_array[scb_index];
5674 if ((scb->flags & SCB_ACTIVE) == 0)
5675 {
5676 scb = NULL;
5677 }
5678 }
5679 else
5680 {
5681 scb = NULL;
5682 }
5683
5684
5685 if ((status & SCSIRSTI) != 0)
5686 {
5687 int channel;
5688
5689 if ( (p->chip & AHC_CHIPID_MASK) == AHC_AIC7770 )
5690 channel = (aic_inb(p, SBLKCTL) & SELBUSB) >> 3;
5691 else
5692 channel = 0;
5693
5694 if (aic7xxx_verbose & VERBOSE_RESET)
5695 printk(WARN_LEAD "Someone else reset the channel!!\n",
5696 p->host_no, channel, -1, -1);
5697 if (aic7xxx_panic_on_abort)
5698 aic7xxx_panic_abort(p, NULL);
5699 /*
5700 * Go through and abort all commands for the channel, but do not
5701 * reset the channel again.
5702 */
5703 aic7xxx_reset_channel(p, channel, /* Initiate Reset */ FALSE);
5704 aic7xxx_run_done_queue(p, TRUE);
5705 scb = NULL;
5706 }
5707 else if ( ((status & BUSFREE) != 0) && ((status & SELTO) == 0) )
5708 {
5709 /*
5710 * First look at what phase we were last in. If it's message-out,
5711 * chances are pretty good that the bus free was in response to
5712 * one of our abort requests.
5713 */
5714 unsigned char lastphase = aic_inb(p, LASTPHASE);
5715 unsigned char saved_tcl = aic_inb(p, SAVED_TCL);
5716 unsigned char target = (saved_tcl >> 4) & 0x0F;
5717 int channel;
5718 int printerror = TRUE;
5719
5720 if ( (p->chip & AHC_CHIPID_MASK) == AHC_AIC7770 )
5721 channel = (aic_inb(p, SBLKCTL) & SELBUSB) >> 3;
5722 else
5723 channel = 0;
5724
5725 aic_outb(p, aic_inb(p, SCSISEQ) & (ENSELI|ENRSELI|ENAUTOATNP),
5726 SCSISEQ);
5727 if (lastphase == P_MESGOUT)
5728 {
5729 unsigned char message;
5730
5731 message = aic_inb(p, SINDEX);
5732
5733 if ((message == MSG_ABORT) || (message == MSG_ABORT_TAG))
5734 {
5735 if (aic7xxx_verbose & VERBOSE_ABORT_PROCESS)
5736 printk(INFO_LEAD "SCB %d abort delivered.\n", p->host_no,
5737 CTL_OF_SCB(scb), scb->hscb->tag);
5738 aic7xxx_reset_device(p, target, channel, ALL_LUNS,
5739 (message == MSG_ABORT) ? SCB_LIST_NULL : scb->hscb->tag );
5740 aic7xxx_run_done_queue(p, TRUE);
5741 scb = NULL;
5742 printerror = 0;
5743 }
5744 else if (message == MSG_BUS_DEV_RESET)
5745 {
5746 aic7xxx_handle_device_reset(p, target, channel);
5747 scb = NULL;
5748 printerror = 0;
5749 }
5750 }
5751 if ( (scb != NULL) && (scb->flags & SCB_DTR_SCB) )
5752 {
5753 /*
5754 * Hmmm...error during a negotiation command. Either we have a
5755 * borken bus, or the device doesn't like our negotiation message.
5756 * Since we check the INQUIRY data of a device before sending it
5757 * negotiation messages, assume the bus is borken for whatever
5758 * reason. Complete the command.
5759 */
5760 printerror = 0;
5761 aic7xxx_reset_device(p, target, channel, ALL_LUNS, scb->hscb->tag);
5762 aic7xxx_run_done_queue(p, TRUE);
5763 scb = NULL;
5764 }
5765 if (printerror != 0)
5766 {
5767 if (scb != NULL)
5768 {
5769 unsigned char tag;
5770
5771 if ((scb->hscb->control & TAG_ENB) != 0)
5772 {
5773 tag = scb->hscb->tag;
5774 }
5775 else
5776 {
5777 tag = SCB_LIST_NULL;
5778 }
5779 aic7xxx_reset_device(p, target, channel, ALL_LUNS, tag);
5780 aic7xxx_run_done_queue(p, TRUE);
5781 }
5782 else
5783 {
5784 aic7xxx_reset_device(p, target, channel, ALL_LUNS, SCB_LIST_NULL);
5785 aic7xxx_run_done_queue(p, TRUE);
5786 }
5787 printk(INFO_LEAD "Unexpected busfree, LASTPHASE = 0x%x, "
5788 "SEQADDR = 0x%x\n", p->host_no, channel, target, -1, lastphase,
5789 (aic_inb(p, SEQADDR1) << 8) | aic_inb(p, SEQADDR0));
5790 scb = NULL;
5791 }
5792 aic_outb(p, MSG_NOOP, MSG_OUT);
5793 aic_outb(p, aic_inb(p, SIMODE1) & ~(ENBUSFREE|ENREQINIT),
5794 SIMODE1);
5795 p->flags &= ~AHC_HANDLING_REQINITS;
5796 aic_outb(p, CLRBUSFREE, CLRSINT1);
5797 aic_outb(p, CLRSCSIINT, CLRINT);
5798 restart_sequencer(p);
5799 unpause_sequencer(p, TRUE);
5800 }
5801 else if ((status & SELTO) != 0)
5802 {
5803 unsigned char scbptr;
5804 unsigned char nextscb;
5805 Scsi_Cmnd *cmd;
5806
5807 scbptr = aic_inb(p, WAITING_SCBH);
5808 if (scbptr > p->scb_data->maxhscbs)
5809 {
5810 /*
5811 * I'm still trying to track down exactly how this happens, but until
5812 * I find it, this code will make sure we aren't passing bogus values
5813 * into the SCBPTR register, even if that register will just wrap
5814 * things around, we still don't like having out of range variables.
5815 *
5816 * NOTE: Don't check the aic7xxx_verbose variable, I want this message
5817 * to always be displayed.
5818 */
5819 printk(INFO_LEAD "Invalid WAITING_SCBH value %d, improvising.\n",
5820 p->host_no, -1, -1, -1, scbptr);
5821 if (p->scb_data->maxhscbs > 4)
5822 scbptr &= (p->scb_data->maxhscbs - 1);
5823 else
5824 scbptr &= 0x03;
5825 }
5826 aic_outb(p, scbptr, SCBPTR);
5827 scb_index = aic_inb(p, SCB_TAG);
5828
5829 scb = NULL;
5830 if (scb_index < p->scb_data->numscbs)
5831 {
5832 scb = p->scb_data->scb_array[scb_index];
5833 if ((scb->flags & SCB_ACTIVE) == 0)
5834 {
5835 scb = NULL;
5836 }
5837 }
5838 if (scb == NULL)
5839 {
5840 printk(WARN_LEAD "Referenced SCB %d not valid during SELTO.\n",
5841 p->host_no, -1, -1, -1, scb_index);
5842 printk(KERN_WARNING " SCSISEQ = 0x%x SEQADDR = 0x%x SSTAT0 = 0x%x "
5843 "SSTAT1 = 0x%x\n", aic_inb(p, SCSISEQ),
5844 aic_inb(p, SEQADDR0) | (aic_inb(p, SEQADDR1) << 8),
5845 aic_inb(p, SSTAT0), aic_inb(p, SSTAT1));
5846 if (aic7xxx_panic_on_abort)
5847 aic7xxx_panic_abort(p, NULL);
5848 }
5849 else
5850 {
5851 cmd = scb->cmd;
5852 cmd->result = (DID_TIME_OUT << 16);
5853
5854 /*
5855 * Clear out this hardware SCB
5856 */
5857 aic_outb(p, 0, SCB_CONTROL);
5858
5859 /*
5860 * Clear out a few values in the card that are in an undetermined
5861 * state.
5862 */
5863 aic_outb(p, MSG_NOOP, MSG_OUT);
5864
5865 /*
5866 * Shift the waiting for selection queue forward
5867 */
5868 nextscb = aic_inb(p, SCB_NEXT);
5869 aic_outb(p, nextscb, WAITING_SCBH);
5870
5871 /*
5872 * Put this SCB back on the free list.
5873 */
5874 aic7xxx_add_curscb_to_free_list(p);
5875 #ifdef AIC7XXX_VERBOSE_DEBUGGING
5876 if (aic7xxx_verbose > 0xffff)
5877 printk(INFO_LEAD "Selection Timeout.\n", p->host_no, CTL_OF_SCB(scb));
5878 #endif
5879 if (scb->flags & SCB_QUEUED_ABORT)
5880 {
5881 /*
5882 * We know that this particular SCB had to be the queued abort since
5883 * the disconnected SCB would have gotten a reconnect instead.
5884 * What we need to do then is to let the command timeout again so
5885 * we get a reset since this abort just failed.
5886 */
5887 cmd->result = 0;
5888 scb = NULL;
5889 }
5890 }
5891 /*
5892 * Keep the sequencer from trying to restart any selections
5893 */
5894 aic_outb(p, aic_inb(p, SCSISEQ) & ~ENSELO, SCSISEQ);
5895 /*
5896 * Make sure the data bits on the bus are released
5897 * Don't do this on 7770 chipsets, it makes them give us
5898 * a BRKADDRINT and kills the card.
5899 */
5900 if( (p->chip & ~AHC_CHIPID_MASK) == AHC_PCI )
5901 aic_outb(p, 0, SCSIBUSL);
5902
5903 /*
5904 * Delay for the selection timeout delay period then stop the selection
5905 */
5906 udelay(301);
5907 aic_outb(p, CLRSELINGO, CLRSINT0);
5908 /*
5909 * Clear out all the interrupt status bits
5910 */
5911 aic_outb(p, aic_inb(p, SIMODE1) & ~(ENREQINIT|ENBUSFREE), SIMODE1);
5912 p->flags &= ~AHC_HANDLING_REQINITS;
5913 aic_outb(p, CLRSELTIMEO | CLRBUSFREE, CLRSINT1);
5914 aic_outb(p, CLRSCSIINT, CLRINT);
5915 /*
5916 * Restarting the sequencer will stop the selection and make sure devices
5917 * are allowed to reselect in.
5918 */
5919 restart_sequencer(p);
5920 unpause_sequencer(p, TRUE);
5921 }
5922 else if (scb == NULL)
5923 {
5924 printk(WARN_LEAD "aic7xxx_isr - referenced scb not valid "
5925 "during scsiint 0x%x scb(%d)\n"
5926 " SIMODE0 0x%x, SIMODE1 0x%x, SSTAT0 0x%x, SEQADDR 0x%x\n",
5927 p->host_no, -1, -1, -1, status, scb_index, aic_inb(p, SIMODE0),
5928 aic_inb(p, SIMODE1), aic_inb(p, SSTAT0),
5929 (aic_inb(p, SEQADDR1) << 8) | aic_inb(p, SEQADDR0));
5930 /*
5931 * Turn off the interrupt and set status to zero, so that it
5932 * falls through the rest of the SCSIINT code.
5933 */
5934 aic_outb(p, status, CLRSINT1);
5935 aic_outb(p, CLRSCSIINT, CLRINT);
5936 unpause_sequencer(p, /* unpause always */ TRUE);
5937 scb = NULL;
5938 }
5939 else if (status & SCSIPERR)
5940 {
5941 /*
5942 * Determine the bus phase and queue an appropriate message.
5943 */
5944 char *phase;
5945 Scsi_Cmnd *cmd;
5946 unsigned char mesg_out = MSG_NOOP;
5947 unsigned char lastphase = aic_inb(p, LASTPHASE);
5948 unsigned char sstat2 = aic_inb(p, SSTAT2);
5949
5950 cmd = scb->cmd;
5951 switch (lastphase)
5952 {
5953 case P_DATAOUT:
5954 phase = "Data-Out";
5955 break;
5956 case P_DATAIN:
5957 phase = "Data-In";
5958 mesg_out = MSG_INITIATOR_DET_ERR;
5959 break;
5960 case P_COMMAND:
5961 phase = "Command";
5962 break;
5963 case P_MESGOUT:
5964 phase = "Message-Out";
5965 break;
5966 case P_STATUS:
5967 phase = "Status";
5968 mesg_out = MSG_INITIATOR_DET_ERR;
5969 break;
5970 case P_MESGIN:
5971 phase = "Message-In";
5972 mesg_out = MSG_PARITY_ERROR;
5973 break;
5974 default:
5975 phase = "unknown";
5976 break;
5977 }
5978
5979 /*
5980 * A parity error has occurred during a data
5981 * transfer phase. Flag it and continue.
5982 */
5983 if( (p->features & AHC_ULTRA3) &&
5984 (aic_inb(p, SCSIRATE) & AHC_SYNCRATE_CRC) &&
5985 (lastphase == P_DATAIN) )
5986 {
5987 printk(WARN_LEAD "CRC error during %s phase.\n",
5988 p->host_no, CTL_OF_SCB(scb), phase);
5989 if(sstat2 & CRCVALERR)
5990 {
5991 printk(WARN_LEAD " CRC error in intermediate CRC packet.\n",
5992 p->host_no, CTL_OF_SCB(scb));
5993 }
5994 if(sstat2 & CRCENDERR)
5995 {
5996 printk(WARN_LEAD " CRC error in ending CRC packet.\n",
5997 p->host_no, CTL_OF_SCB(scb));
5998 }
5999 if(sstat2 & CRCREQERR)
6000 {
6001 printk(WARN_LEAD " Target incorrectly requested a CRC packet.\n",
6002 p->host_no, CTL_OF_SCB(scb));
6003 }
6004 if(sstat2 & DUAL_EDGE_ERROR)
6005 {
6006 printk(WARN_LEAD " Dual Edge transmission error.\n",
6007 p->host_no, CTL_OF_SCB(scb));
6008 }
6009 }
6010 else if( (lastphase == P_MESGOUT) &&
6011 (scb->flags & SCB_MSGOUT_PPR) )
6012 {
6013 /*
6014 * As per the draft specs, any device capable of supporting any of
6015 * the option values other than 0 are not allowed to reject the
6016 * PPR message. Instead, they must negotiate out what they do
6017 * support instead of rejecting our offering or else they cause
6018 * a parity error during msg_out phase to signal that they don't
6019 * like our settings.
6020 */
6021 aic_dev = AIC_DEV(scb->cmd);
6022 aic_dev->needppr = aic_dev->needppr_copy = 0;
6023 aic7xxx_set_width(p, scb->cmd->device->id, scb->cmd->device->channel, scb->cmd->device->lun,
6024 MSG_EXT_WDTR_BUS_8_BIT,
6025 (AHC_TRANS_ACTIVE|AHC_TRANS_CUR|AHC_TRANS_QUITE),
6026 aic_dev);
6027 aic7xxx_set_syncrate(p, NULL, scb->cmd->device->id, scb->cmd->device->channel, 0, 0,
6028 0, AHC_TRANS_ACTIVE|AHC_TRANS_CUR|AHC_TRANS_QUITE,
6029 aic_dev);
6030 aic_dev->goal.options = 0;
6031 scb->flags &= ~SCB_MSGOUT_BITS;
6032 if(aic7xxx_verbose & VERBOSE_NEGOTIATION2)
6033 {
6034 printk(INFO_LEAD "parity error during PPR message, reverting "
6035 "to WDTR/SDTR\n", p->host_no, CTL_OF_SCB(scb));
6036 }
6037 if ( aic_dev->goal.width )
6038 {
6039 aic_dev->needwdtr = aic_dev->needwdtr_copy = 1;
6040 }
6041 if ( aic_dev->goal.offset )
6042 {
6043 if( aic_dev->goal.period <= 9 )
6044 {
6045 aic_dev->goal.period = 10;
6046 }
6047 aic_dev->needsdtr = aic_dev->needsdtr_copy = 1;
6048 }
6049 scb = NULL;
6050 }
6051
6052 /*
6053 * We've set the hardware to assert ATN if we get a parity
6054 * error on "in" phases, so all we need to do is stuff the
6055 * message buffer with the appropriate message. "In" phases
6056 * have set mesg_out to something other than MSG_NOP.
6057 */
6058 if (mesg_out != MSG_NOOP)
6059 {
6060 aic_outb(p, mesg_out, MSG_OUT);
6061 aic_outb(p, aic_inb(p, SCSISIGI) | ATNO, SCSISIGO);
6062 scb = NULL;
6063 }
6064 aic_outb(p, CLRSCSIPERR, CLRSINT1);
6065 aic_outb(p, CLRSCSIINT, CLRINT);
6066 unpause_sequencer(p, /* unpause_always */ TRUE);
6067 }
6068 else if ( (status & REQINIT) &&
6069 (p->flags & AHC_HANDLING_REQINITS) )
6070 {
6071 #ifdef AIC7XXX_VERBOSE_DEBUGGING
6072 if (aic7xxx_verbose > 0xffff)
6073 printk(INFO_LEAD "Handling REQINIT, SSTAT1=0x%x.\n", p->host_no,
6074 CTL_OF_SCB(scb), aic_inb(p, SSTAT1));
6075 #endif
6076 aic7xxx_handle_reqinit(p, scb);
6077 return;
6078 }
6079 else
6080 {
6081 /*
6082 * We don't know what's going on. Turn off the
6083 * interrupt source and try to continue.
6084 */
6085 if (aic7xxx_verbose & VERBOSE_SCSIINT)
6086 printk(INFO_LEAD "Unknown SCSIINT status, SSTAT1(0x%x).\n",
6087 p->host_no, -1, -1, -1, status);
6088 aic_outb(p, status, CLRSINT1);
6089 aic_outb(p, CLRSCSIINT, CLRINT);
6090 unpause_sequencer(p, /* unpause always */ TRUE);
6091 scb = NULL;
6092 }
6093 if (scb != NULL)
6094 {
6095 aic7xxx_done(p, scb);
6096 }
6097 }
6098
6099 #ifdef AIC7XXX_VERBOSE_DEBUGGING
6100 static void
6101 aic7xxx_check_scbs(struct aic7xxx_host *p, char *buffer)
6102 {
6103 unsigned char saved_scbptr, free_scbh, dis_scbh, wait_scbh, temp;
6104 int i, bogus, lost;
6105 static unsigned char scb_status[AIC7XXX_MAXSCB];
6106
6107 #define SCB_NO_LIST 0
6108 #define SCB_FREE_LIST 1
6109 #define SCB_WAITING_LIST 2
6110 #define SCB_DISCONNECTED_LIST 4
6111 #define SCB_CURRENTLY_ACTIVE 8
6112
6113 /*
6114 * Note, these checks will fail on a regular basis once the machine moves
6115 * beyond the bus scan phase. The problem is race conditions concerning
6116 * the scbs and where they are linked in. When you have 30 or so commands
6117 * outstanding on the bus, and run this twice with every interrupt, the
6118 * chances get pretty good that you'll catch the sequencer with an SCB
6119 * only partially linked in. Therefore, once we pass the scan phase
6120 * of the bus, we really should disable this function.
6121 */
6122 bogus = FALSE;
6123 memset(&scb_status[0], 0, sizeof(scb_status));
6124 pause_sequencer(p);
6125 saved_scbptr = aic_inb(p, SCBPTR);
6126 if (saved_scbptr >= p->scb_data->maxhscbs)
6127 {
6128 printk("Bogus SCBPTR %d\n", saved_scbptr);
6129 bogus = TRUE;
6130 }
6131 scb_status[saved_scbptr] = SCB_CURRENTLY_ACTIVE;
6132 free_scbh = aic_inb(p, FREE_SCBH);
6133 if ( (free_scbh != SCB_LIST_NULL) &&
6134 (free_scbh >= p->scb_data->maxhscbs) )
6135 {
6136 printk("Bogus FREE_SCBH %d\n", free_scbh);
6137 bogus = TRUE;
6138 }
6139 else
6140 {
6141 temp = free_scbh;
6142 while( (temp != SCB_LIST_NULL) && (temp < p->scb_data->maxhscbs) )
6143 {
6144 if(scb_status[temp] & 0x07)
6145 {
6146 printk("HSCB %d on multiple lists, status 0x%02x", temp,
6147 scb_status[temp] | SCB_FREE_LIST);
6148 bogus = TRUE;
6149 }
6150 scb_status[temp] |= SCB_FREE_LIST;
6151 aic_outb(p, temp, SCBPTR);
6152 temp = aic_inb(p, SCB_NEXT);
6153 }
6154 }
6155
6156 dis_scbh = aic_inb(p, DISCONNECTED_SCBH);
6157 if ( (dis_scbh != SCB_LIST_NULL) &&
6158 (dis_scbh >= p->scb_data->maxhscbs) )
6159 {
6160 printk("Bogus DISCONNECTED_SCBH %d\n", dis_scbh);
6161 bogus = TRUE;
6162 }
6163 else
6164 {
6165 temp = dis_scbh;
6166 while( (temp != SCB_LIST_NULL) && (temp < p->scb_data->maxhscbs) )
6167 {
6168 if(scb_status[temp] & 0x07)
6169 {
6170 printk("HSCB %d on multiple lists, status 0x%02x", temp,
6171 scb_status[temp] | SCB_DISCONNECTED_LIST);
6172 bogus = TRUE;
6173 }
6174 scb_status[temp] |= SCB_DISCONNECTED_LIST;
6175 aic_outb(p, temp, SCBPTR);
6176 temp = aic_inb(p, SCB_NEXT);
6177 }
6178 }
6179
6180 wait_scbh = aic_inb(p, WAITING_SCBH);
6181 if ( (wait_scbh != SCB_LIST_NULL) &&
6182 (wait_scbh >= p->scb_data->maxhscbs) )
6183 {
6184 printk("Bogus WAITING_SCBH %d\n", wait_scbh);
6185 bogus = TRUE;
6186 }
6187 else
6188 {
6189 temp = wait_scbh;
6190 while( (temp != SCB_LIST_NULL) && (temp < p->scb_data->maxhscbs) )
6191 {
6192 if(scb_status[temp] & 0x07)
6193 {
6194 printk("HSCB %d on multiple lists, status 0x%02x", temp,
6195 scb_status[temp] | SCB_WAITING_LIST);
6196 bogus = TRUE;
6197 }
6198 scb_status[temp] |= SCB_WAITING_LIST;
6199 aic_outb(p, temp, SCBPTR);
6200 temp = aic_inb(p, SCB_NEXT);
6201 }
6202 }
6203
6204 lost=0;
6205 for(i=0; i < p->scb_data->maxhscbs; i++)
6206 {
6207 aic_outb(p, i, SCBPTR);
6208 temp = aic_inb(p, SCB_NEXT);
6209 if ( ((temp != SCB_LIST_NULL) &&
6210 (temp >= p->scb_data->maxhscbs)) )
6211 {
6212 printk("HSCB %d bad, SCB_NEXT invalid(%d).\n", i, temp);
6213 bogus = TRUE;
6214 }
6215 if ( temp == i )
6216 {
6217 printk("HSCB %d bad, SCB_NEXT points to self.\n", i);
6218 bogus = TRUE;
6219 }
6220 if (scb_status[i] == 0)
6221 lost++;
6222 if (lost > 1)
6223 {
6224 printk("Too many lost scbs.\n");
6225 bogus=TRUE;
6226 }
6227 }
6228 aic_outb(p, saved_scbptr, SCBPTR);
6229 unpause_sequencer(p, FALSE);
6230 if (bogus)
6231 {
6232 printk("Bogus parameters found in card SCB array structures.\n");
6233 printk("%s\n", buffer);
6234 aic7xxx_panic_abort(p, NULL);
6235 }
6236 return;
6237 }
6238 #endif
6239
6240
6241 /*+F*************************************************************************
6242 * Function:
6243 * aic7xxx_handle_command_completion_intr
6244 *
6245 * Description:
6246 * SCSI command completion interrupt handler.
6247 *-F*************************************************************************/
6248 static void
6249 aic7xxx_handle_command_completion_intr(struct aic7xxx_host *p)
6250 {
6251 struct aic7xxx_scb *scb = NULL;
6252 struct aic_dev_data *aic_dev;
6253 Scsi_Cmnd *cmd;
6254 unsigned char scb_index, tindex;
6255
6256 #ifdef AIC7XXX_VERBOSE_DEBUGGING
6257 if( (p->isr_count < 16) && (aic7xxx_verbose > 0xffff) )
6258 printk(INFO_LEAD "Command Complete Int.\n", p->host_no, -1, -1, -1);
6259 #endif
6260
6261 /*
6262 * Read the INTSTAT location after clearing the CMDINT bit. This forces
6263 * any posted PCI writes to flush to memory. Gerard Roudier suggested
6264 * this fix to the possible race of clearing the CMDINT bit but not
6265 * having all command bytes flushed onto the qoutfifo.
6266 */
6267 aic_outb(p, CLRCMDINT, CLRINT);
6268 aic_inb(p, INTSTAT);
6269 /*
6270 * The sequencer will continue running when it
6271 * issues this interrupt. There may be >1 commands
6272 * finished, so loop until we've processed them all.
6273 */
6274
6275 while (p->qoutfifo[p->qoutfifonext] != SCB_LIST_NULL)
6276 {
6277 scb_index = p->qoutfifo[p->qoutfifonext];
6278 p->qoutfifo[p->qoutfifonext++] = SCB_LIST_NULL;
6279 if ( scb_index >= p->scb_data->numscbs )
6280 {
6281 printk(WARN_LEAD "CMDCMPLT with invalid SCB index %d\n", p->host_no,
6282 -1, -1, -1, scb_index);
6283 continue;
6284 }
6285 scb = p->scb_data->scb_array[scb_index];
6286 if (!(scb->flags & SCB_ACTIVE) || (scb->cmd == NULL))
6287 {
6288 printk(WARN_LEAD "CMDCMPLT without command for SCB %d, SCB flags "
6289 "0x%x, cmd 0x%lx\n", p->host_no, -1, -1, -1, scb_index, scb->flags,
6290 (unsigned long) scb->cmd);
6291 continue;
6292 }
6293 tindex = TARGET_INDEX(scb->cmd);
6294 aic_dev = AIC_DEV(scb->cmd);
6295 if (scb->flags & SCB_QUEUED_ABORT)
6296 {
6297 pause_sequencer(p);
6298 if ( ((aic_inb(p, LASTPHASE) & PHASE_MASK) != P_BUSFREE) &&
6299 (aic_inb(p, SCB_TAG) == scb->hscb->tag) )
6300 {
6301 unpause_sequencer(p, FALSE);
6302 continue;
6303 }
6304 aic7xxx_reset_device(p, scb->cmd->device->id, scb->cmd->device->channel,
6305 scb->cmd->device->lun, scb->hscb->tag);
6306 scb->flags &= ~(SCB_QUEUED_FOR_DONE | SCB_RESET | SCB_ABORT |
6307 SCB_QUEUED_ABORT);
6308 unpause_sequencer(p, FALSE);
6309 }
6310 else if (scb->flags & SCB_ABORT)
6311 {
6312 /*
6313 * We started to abort this, but it completed on us, let it
6314 * through as successful
6315 */
6316 scb->flags &= ~(SCB_ABORT|SCB_RESET);
6317 }
6318 else if (scb->flags & SCB_SENSE)
6319 {
6320 char *buffer = &scb->cmd->sense_buffer[0];
6321
6322 if (buffer[12] == 0x47 || buffer[12] == 0x54)
6323 {
6324 /*
6325 * Signal that we need to re-negotiate things.
6326 */
6327 aic_dev->needppr = aic_dev->needppr_copy;
6328 aic_dev->needsdtr = aic_dev->needsdtr_copy;
6329 aic_dev->needwdtr = aic_dev->needwdtr_copy;
6330 }
6331 }
6332 cmd = scb->cmd;
6333 if (scb->hscb->residual_SG_segment_count != 0)
6334 {
6335 aic7xxx_calculate_residual(p, scb);
6336 }
6337 cmd->result |= (aic7xxx_error(cmd) << 16);
6338 aic7xxx_done(p, scb);
6339 }
6340 }
6341
6342 /*+F*************************************************************************
6343 * Function:
6344 * aic7xxx_isr
6345 *
6346 * Description:
6347 * SCSI controller interrupt handler.
6348 *-F*************************************************************************/
6349 static void
6350 aic7xxx_isr(int irq, void *dev_id, struct pt_regs *regs)
6351 {
6352 struct aic7xxx_host *p;
6353 unsigned char intstat;
6354
6355 p = (struct aic7xxx_host *)dev_id;
6356
6357 /*
6358 * Just a few sanity checks. Make sure that we have an int pending.
6359 * Also, if PCI, then we are going to check for a PCI bus error status
6360 * should we get too many spurious interrupts.
6361 */
6362 if (!((intstat = aic_inb(p, INTSTAT)) & INT_PEND))
6363 {
6364 #ifdef CONFIG_PCI
6365 if ( (p->chip & AHC_PCI) && (p->spurious_int > 500) &&
6366 !(p->flags & AHC_HANDLING_REQINITS) )
6367 {
6368 if ( aic_inb(p, ERROR) & PCIERRSTAT )
6369 {
6370 aic7xxx_pci_intr(p);
6371 }
6372 p->spurious_int = 0;
6373 }
6374 else if ( !(p->flags & AHC_HANDLING_REQINITS) )
6375 {
6376 p->spurious_int++;
6377 }
6378 #endif
6379 return;
6380 }
6381
6382 p->spurious_int = 0;
6383
6384 /*
6385 * Keep track of interrupts for /proc/scsi
6386 */
6387 p->isr_count++;
6388
6389 #ifdef AIC7XXX_VERBOSE_DEBUGGING
6390 if ( (p->isr_count < 16) && (aic7xxx_verbose > 0xffff) &&
6391 (aic7xxx_panic_on_abort) && (p->flags & AHC_PAGESCBS) )
6392 aic7xxx_check_scbs(p, "Bogus settings at start of interrupt.");
6393 #endif
6394
6395 /*
6396 * Handle all the interrupt sources - especially for SCSI
6397 * interrupts, we won't get a second chance at them.
6398 */
6399 if (intstat & CMDCMPLT)
6400 {
6401 aic7xxx_handle_command_completion_intr(p);
6402 }
6403
6404 if (intstat & BRKADRINT)
6405 {
6406 int i;
6407 unsigned char errno = aic_inb(p, ERROR);
6408
6409 printk(KERN_ERR "(scsi%d) BRKADRINT error(0x%x):\n", p->host_no, errno);
6410 for (i = 0; i < ARRAY_SIZE(hard_error); i++)
6411 {
6412 if (errno & hard_error[i].errno)
6413 {
6414 printk(KERN_ERR " %s\n", hard_error[i].errmesg);
6415 }
6416 }
6417 printk(KERN_ERR "(scsi%d) SEQADDR=0x%x\n", p->host_no,
6418 (((aic_inb(p, SEQADDR1) << 8) & 0x100) | aic_inb(p, SEQADDR0)));
6419 if (aic7xxx_panic_on_abort)
6420 aic7xxx_panic_abort(p, NULL);
6421 #ifdef CONFIG_PCI
6422 if (errno & PCIERRSTAT)
6423 aic7xxx_pci_intr(p);
6424 #endif
6425 if (errno & (SQPARERR | ILLOPCODE | ILLSADDR))
6426 {
6427 panic("aic7xxx: unrecoverable BRKADRINT.\n");
6428 }
6429 if (errno & ILLHADDR)
6430 {
6431 printk(KERN_ERR "(scsi%d) BUG! Driver accessed chip without first "
6432 "pausing controller!\n", p->host_no);
6433 }
6434 #ifdef AIC7XXX_VERBOSE_DEBUGGING
6435 if (errno & DPARERR)
6436 {
6437 if (aic_inb(p, DMAPARAMS) & DIRECTION)
6438 printk("(scsi%d) while DMAing SCB from host to card.\n", p->host_no);
6439 else
6440 printk("(scsi%d) while DMAing SCB from card to host.\n", p->host_no);
6441 }
6442 #endif
6443 aic_outb(p, CLRPARERR | CLRBRKADRINT, CLRINT);
6444 unpause_sequencer(p, FALSE);
6445 }
6446
6447 if (intstat & SEQINT)
6448 {
6449 /*
6450 * Read the CCSCBCTL register to work around a bug in the Ultra2 cards
6451 */
6452 if(p->features & AHC_ULTRA2)
6453 {
6454 aic_inb(p, CCSCBCTL);
6455 }
6456 aic7xxx_handle_seqint(p, intstat);
6457 }
6458
6459 if (intstat & SCSIINT)
6460 {
6461 aic7xxx_handle_scsiint(p, intstat);
6462 }
6463
6464 #ifdef AIC7XXX_VERBOSE_DEBUGGING
6465 if ( (p->isr_count < 16) && (aic7xxx_verbose > 0xffff) &&
6466 (aic7xxx_panic_on_abort) && (p->flags & AHC_PAGESCBS) )
6467 aic7xxx_check_scbs(p, "Bogus settings at end of interrupt.");
6468 #endif
6469
6470 }
6471
6472 /*+F*************************************************************************
6473 * Function:
6474 * do_aic7xxx_isr
6475 *
6476 * Description:
6477 * This is a gross hack to solve a problem in linux kernels 2.1.85 and
6478 * above. Please, children, do not try this at home, and if you ever see
6479 * anything like it, please inform the Gross Hack Police immediately
6480 *-F*************************************************************************/
6481 static irqreturn_t
6482 do_aic7xxx_isr(int irq, void *dev_id, struct pt_regs *regs)
6483 {
6484 unsigned long cpu_flags;
6485 struct aic7xxx_host *p;
6486
6487 p = (struct aic7xxx_host *)dev_id;
6488 if(!p)
6489 return IRQ_NONE;
6490 spin_lock_irqsave(p->host->host_lock, cpu_flags);
6491 p->flags |= AHC_IN_ISR;
6492 do
6493 {
6494 aic7xxx_isr(irq, dev_id, regs);
6495 } while ( (aic_inb(p, INTSTAT) & INT_PEND) );
6496 aic7xxx_done_cmds_complete(p);
6497 aic7xxx_run_waiting_queues(p);
6498 p->flags &= ~AHC_IN_ISR;
6499 spin_unlock_irqrestore(p->host->host_lock, cpu_flags);
6500
6501 return IRQ_HANDLED;
6502 }
6503
6504 /*+F*************************************************************************
6505 * Function:
6506 * aic7xxx_init_transinfo
6507 *
6508 * Description:
6509 * Set up the initial aic_dev values from the BIOS settings and from
6510 * INQUIRY results
6511 *-F*************************************************************************/
6512 static void
6513 aic7xxx_init_transinfo(struct aic7xxx_host *p, struct aic_dev_data *aic_dev)
6514 {
6515 struct scsi_device *sdpnt = aic_dev->SDptr;
6516 unsigned char tindex;
6517
6518 tindex = sdpnt->id | (sdpnt->channel << 3);
6519 if (!(aic_dev->flags & DEVICE_DTR_SCANNED))
6520 {
6521 aic_dev->flags |= DEVICE_DTR_SCANNED;
6522
6523 if ( sdpnt->wdtr && (p->features & AHC_WIDE) )
6524 {
6525 aic_dev->needwdtr = aic_dev->needwdtr_copy = 1;
6526 aic_dev->goal.width = p->user[tindex].width;
6527 }
6528 else
6529 {
6530 aic_dev->needwdtr = aic_dev->needwdtr_copy = 0;
6531 pause_sequencer(p);
6532 aic7xxx_set_width(p, sdpnt->id, sdpnt->channel, sdpnt->lun,
6533 MSG_EXT_WDTR_BUS_8_BIT, (AHC_TRANS_ACTIVE |
6534 AHC_TRANS_GOAL |
6535 AHC_TRANS_CUR), aic_dev );
6536 unpause_sequencer(p, FALSE);
6537 }
6538 if ( sdpnt->sdtr && p->user[tindex].offset )
6539 {
6540 aic_dev->goal.period = p->user[tindex].period;
6541 aic_dev->goal.options = p->user[tindex].options;
6542 if (p->features & AHC_ULTRA2)
6543 aic_dev->goal.offset = MAX_OFFSET_ULTRA2;
6544 else if (aic_dev->goal.width == MSG_EXT_WDTR_BUS_16_BIT)
6545 aic_dev->goal.offset = MAX_OFFSET_16BIT;
6546 else
6547 aic_dev->goal.offset = MAX_OFFSET_8BIT;
6548 if ( sdpnt->ppr && p->user[tindex].period <= 9 &&
6549 p->user[tindex].options )
6550 {
6551 aic_dev->needppr = aic_dev->needppr_copy = 1;
6552 aic_dev->needsdtr = aic_dev->needsdtr_copy = 0;
6553 aic_dev->needwdtr = aic_dev->needwdtr_copy = 0;
6554 aic_dev->flags |= DEVICE_SCSI_3;
6555 }
6556 else
6557 {
6558 aic_dev->needsdtr = aic_dev->needsdtr_copy = 1;
6559 aic_dev->goal.period = max_t(unsigned char, 10, aic_dev->goal.period);
6560 aic_dev->goal.options = 0;
6561 }
6562 }
6563 else
6564 {
6565 aic_dev->needsdtr = aic_dev->needsdtr_copy = 0;
6566 aic_dev->goal.period = 255;
6567 aic_dev->goal.offset = 0;
6568 aic_dev->goal.options = 0;
6569 }
6570 aic_dev->flags |= DEVICE_PRINT_DTR;
6571 }
6572 }
6573
6574 /*+F*************************************************************************
6575 * Function:
6576 * aic7xxx_slave_alloc
6577 *
6578 * Description:
6579 * Set up the initial aic_dev struct pointers
6580 *-F*************************************************************************/
6581 static int
6582 aic7xxx_slave_alloc(struct scsi_device *SDptr)
6583 {
6584 struct aic7xxx_host *p = (struct aic7xxx_host *)SDptr->host->hostdata;
6585 struct aic_dev_data *aic_dev;
6586
6587 aic_dev = kmalloc(sizeof(struct aic_dev_data), GFP_ATOMIC | GFP_KERNEL);
6588 if(!aic_dev)
6589 return 1;
6590 /*
6591 * Check to see if channel was scanned.
6592 */
6593
6594 if (!(p->flags & AHC_A_SCANNED) && (SDptr->channel == 0))
6595 {
6596 if (aic7xxx_verbose & VERBOSE_PROBE2)
6597 printk(INFO_LEAD "Scanning channel for devices.\n",
6598 p->host_no, 0, -1, -1);
6599 p->flags |= AHC_A_SCANNED;
6600 }
6601 else
6602 {
6603 if (!(p->flags & AHC_B_SCANNED) && (SDptr->channel == 1))
6604 {
6605 if (aic7xxx_verbose & VERBOSE_PROBE2)
6606 printk(INFO_LEAD "Scanning channel for devices.\n",
6607 p->host_no, 1, -1, -1);
6608 p->flags |= AHC_B_SCANNED;
6609 }
6610 }
6611
6612 memset(aic_dev, 0, sizeof(struct aic_dev_data));
6613 SDptr->hostdata = aic_dev;
6614 aic_dev->SDptr = SDptr;
6615 aic_dev->max_q_depth = 1;
6616 aic_dev->temp_q_depth = 1;
6617 scbq_init(&aic_dev->delayed_scbs);
6618 INIT_LIST_HEAD(&aic_dev->list);
6619 list_add_tail(&aic_dev->list, &p->aic_devs);
6620 return 0;
6621 }
6622
6623 /*+F*************************************************************************
6624 * Function:
6625 * aic7xxx_device_queue_depth
6626 *
6627 * Description:
6628 * Determines the queue depth for a given device. There are two ways
6629 * a queue depth can be obtained for a tagged queueing device. One
6630 * way is the default queue depth which is determined by whether
6631 * aic7xxx_default_queue_depth. The other is by the aic7xxx_tag_info
6632 * array.
6633 *
6634 * If tagged queueing isn't supported on the device, then we set the
6635 * depth to p->host->hostt->cmd_per_lun for internal driver queueing.
6636 * as the default queue depth. Otherwise, we use either 4 or 8 as the
6637 * default queue depth (dependent on the number of hardware SCBs).
6638 * The other way we determine queue depth is through the use of the
6639 * aic7xxx_tag_info array which is enabled by defining
6640 * AIC7XXX_TAGGED_QUEUEING_BY_DEVICE. This array can be initialized
6641 * with queue depths for individual devices. It also allows tagged
6642 * queueing to be [en|dis]abled for a specific adapter.
6643 *-F*************************************************************************/
6644 static void
6645 aic7xxx_device_queue_depth(struct aic7xxx_host *p, struct scsi_device *device)
6646 {
6647 int tag_enabled = FALSE;
6648 struct aic_dev_data *aic_dev = device->hostdata;
6649 unsigned char tindex;
6650
6651 tindex = device->id | (device->channel << 3);
6652
6653 if (device->simple_tags)
6654 return; // We've already enabled this device
6655
6656 if (device->tagged_supported)
6657 {
6658 tag_enabled = TRUE;
6659
6660 if (!(p->discenable & (1 << tindex)))
6661 {
6662 if (aic7xxx_verbose & VERBOSE_NEGOTIATION2)
6663 printk(INFO_LEAD "Disconnection disabled, unable to "
6664 "enable tagged queueing.\n",
6665 p->host_no, device->channel, device->id, device->lun);
6666 tag_enabled = FALSE;
6667 }
6668 else
6669 {
6670 if (p->instance >= ARRAY_SIZE(aic7xxx_tag_info))
6671 {
6672 static int print_warning = TRUE;
6673 if(print_warning)
6674 {
6675 printk(KERN_INFO "aic7xxx: WARNING, insufficient tag_info instances for"
6676 " installed controllers.\n");
6677 printk(KERN_INFO "aic7xxx: Please update the aic7xxx_tag_info array in"
6678 " the aic7xxx.c source file.\n");
6679 print_warning = FALSE;
6680 }
6681 aic_dev->max_q_depth = aic_dev->temp_q_depth =
6682 aic7xxx_default_queue_depth;
6683 }
6684 else
6685 {
6686
6687 if (aic7xxx_tag_info[p->instance].tag_commands[tindex] == 255)
6688 {
6689 tag_enabled = FALSE;
6690 }
6691 else if (aic7xxx_tag_info[p->instance].tag_commands[tindex] == 0)
6692 {
6693 aic_dev->max_q_depth = aic_dev->temp_q_depth =
6694 aic7xxx_default_queue_depth;
6695 }
6696 else
6697 {
6698 aic_dev->max_q_depth = aic_dev->temp_q_depth =
6699 aic7xxx_tag_info[p->instance].tag_commands[tindex];
6700 }
6701 }
6702 }
6703 }
6704 if (tag_enabled)
6705 {
6706 if (aic7xxx_verbose & VERBOSE_NEGOTIATION2)
6707 {
6708 printk(INFO_LEAD "Tagged queuing enabled, queue depth %d.\n",
6709 p->host_no, device->channel, device->id,
6710 device->lun, aic_dev->max_q_depth);
6711 }
6712 scsi_adjust_queue_depth(device, MSG_ORDERED_TAG, aic_dev->max_q_depth);
6713 }
6714 else
6715 {
6716 if (aic7xxx_verbose & VERBOSE_NEGOTIATION2)
6717 {
6718 printk(INFO_LEAD "Tagged queuing disabled, queue depth %d.\n",
6719 p->host_no, device->channel, device->id,
6720 device->lun, device->host->cmd_per_lun);
6721 }
6722 scsi_adjust_queue_depth(device, 0, device->host->cmd_per_lun);
6723 }
6724 return;
6725 }
6726
6727 /*+F*************************************************************************
6728 * Function:
6729 * aic7xxx_slave_destroy
6730 *
6731 * Description:
6732 * prepare for this device to go away
6733 *-F*************************************************************************/
6734 static void
6735 aic7xxx_slave_destroy(struct scsi_device *SDptr)
6736 {
6737 struct aic_dev_data *aic_dev = SDptr->hostdata;
6738
6739 list_del(&aic_dev->list);
6740 SDptr->hostdata = NULL;
6741 kfree(aic_dev);
6742 return;
6743 }
6744
6745 /*+F*************************************************************************
6746 * Function:
6747 * aic7xxx_slave_configure
6748 *
6749 * Description:
6750 * Configure the device we are attaching to the controller. This is
6751 * where we get to do things like scan the INQUIRY data, set queue
6752 * depths, allocate command structs, etc.
6753 *-F*************************************************************************/
6754 static int
6755 aic7xxx_slave_configure(struct scsi_device *SDptr)
6756 {
6757 struct aic7xxx_host *p = (struct aic7xxx_host *) SDptr->host->hostdata;
6758 struct aic_dev_data *aic_dev;
6759 int scbnum;
6760
6761 aic_dev = (struct aic_dev_data *)SDptr->hostdata;
6762
6763 aic7xxx_init_transinfo(p, aic_dev);
6764 aic7xxx_device_queue_depth(p, SDptr);
6765 if(list_empty(&aic_dev->list))
6766 list_add_tail(&aic_dev->list, &p->aic_devs);
6767
6768 scbnum = 0;
6769 list_for_each_entry(aic_dev, &p->aic_devs, list) {
6770 scbnum += aic_dev->max_q_depth;
6771 }
6772 while (scbnum > p->scb_data->numscbs)
6773 {
6774 /*
6775 * Pre-allocate the needed SCBs to get around the possibility of having
6776 * to allocate some when memory is more or less exhausted and we need
6777 * the SCB in order to perform a swap operation (possible deadlock)
6778 */
6779 if ( aic7xxx_allocate_scb(p) == 0 )
6780 break;
6781 }
6782
6783
6784 return(0);
6785 }
6786
6787 /*+F*************************************************************************
6788 * Function:
6789 * aic7xxx_probe
6790 *
6791 * Description:
6792 * Probing for EISA boards: it looks like the first two bytes
6793 * are a manufacturer code - three characters, five bits each:
6794 *
6795 * BYTE 0 BYTE 1 BYTE 2 BYTE 3
6796 * ?1111122 22233333 PPPPPPPP RRRRRRRR
6797 *
6798 * The characters are baselined off ASCII '@', so add that value
6799 * to each to get the real ASCII code for it. The next two bytes
6800 * appear to be a product and revision number, probably vendor-
6801 * specific. This is what is being searched for at each port,
6802 * and what should probably correspond to the ID= field in the
6803 * ECU's .cfg file for the card - if your card is not detected,
6804 * make sure your signature is listed in the array.
6805 *
6806 * The fourth byte's lowest bit seems to be an enabled/disabled
6807 * flag (rest of the bits are reserved?).
6808 *
6809 * NOTE: This function is only needed on Intel and Alpha platforms,
6810 * the other platforms we support don't have EISA/VLB busses. So,
6811 * we #ifdef this entire function to avoid compiler warnings about
6812 * an unused function.
6813 *-F*************************************************************************/
6814 #if defined(__i386__) || defined(__alpha__)
6815 static int
6816 aic7xxx_probe(int slot, int base, ahc_flag_type *flags)
6817 {
6818 int i;
6819 unsigned char buf[4];
6820
6821 static struct {
6822 int n;
6823 unsigned char signature[sizeof(buf)];
6824 ahc_chip type;
6825 int bios_disabled;
6826 } AIC7xxx[] = {
6827 { 4, { 0x04, 0x90, 0x77, 0x70 },
6828 AHC_AIC7770|AHC_EISA, FALSE }, /* mb 7770 */
6829 { 4, { 0x04, 0x90, 0x77, 0x71 },
6830 AHC_AIC7770|AHC_EISA, FALSE }, /* host adapter 274x */
6831 { 4, { 0x04, 0x90, 0x77, 0x56 },
6832 AHC_AIC7770|AHC_VL, FALSE }, /* 284x BIOS enabled */
6833 { 4, { 0x04, 0x90, 0x77, 0x57 },
6834 AHC_AIC7770|AHC_VL, TRUE } /* 284x BIOS disabled */
6835 };
6836
6837 /*
6838 * The VL-bus cards need to be primed by
6839 * writing before a signature check.
6840 */
6841 for (i = 0; i < sizeof(buf); i++)
6842 {
6843 outb(0x80 + i, base);
6844 buf[i] = inb(base + i);
6845 }
6846
6847 for (i = 0; i < ARRAY_SIZE(AIC7xxx); i++)
6848 {
6849 /*
6850 * Signature match on enabled card?
6851 */
6852 if (!memcmp(buf, AIC7xxx[i].signature, AIC7xxx[i].n))
6853 {
6854 if (inb(base + 4) & 1)
6855 {
6856 if (AIC7xxx[i].bios_disabled)
6857 {
6858 *flags |= AHC_USEDEFAULTS;
6859 }
6860 else
6861 {
6862 *flags |= AHC_BIOS_ENABLED;
6863 }
6864 return (i);
6865 }
6866
6867 printk("aic7xxx: <Adaptec 7770 SCSI Host Adapter> "
6868 "disabled at slot %d, ignored.\n", slot);
6869 }
6870 }
6871
6872 return (-1);
6873 }
6874 #endif /* (__i386__) || (__alpha__) */
6875
6876
6877 /*+F*************************************************************************
6878 * Function:
6879 * read_2840_seeprom
6880 *
6881 * Description:
6882 * Reads the 2840 serial EEPROM and returns 1 if successful and 0 if
6883 * not successful.
6884 *
6885 * See read_seeprom (for the 2940) for the instruction set of the 93C46
6886 * chip.
6887 *
6888 * The 2840 interface to the 93C46 serial EEPROM is through the
6889 * STATUS_2840 and SEECTL_2840 registers. The CS_2840, CK_2840, and
6890 * DO_2840 bits of the SEECTL_2840 register are connected to the chip
6891 * select, clock, and data out lines respectively of the serial EEPROM.
6892 * The DI_2840 bit of the STATUS_2840 is connected to the data in line
6893 * of the serial EEPROM. The EEPROM_TF bit of STATUS_2840 register is
6894 * useful in that it gives us an 800 nsec timer. After a read from the
6895 * SEECTL_2840 register the timing flag is cleared and goes high 800 nsec
6896 * later.
6897 *-F*************************************************************************/
6898 static int
6899 read_284x_seeprom(struct aic7xxx_host *p, struct seeprom_config *sc)
6900 {
6901 int i = 0, k = 0;
6902 unsigned char temp;
6903 unsigned short checksum = 0;
6904 unsigned short *seeprom = (unsigned short *) sc;
6905 struct seeprom_cmd {
6906 unsigned char len;
6907 unsigned char bits[3];
6908 };
6909 struct seeprom_cmd seeprom_read = {3, {1, 1, 0}};
6910
6911 #define CLOCK_PULSE(p) \
6912 while ((aic_inb(p, STATUS_2840) & EEPROM_TF) == 0) \
6913 { \
6914 ; /* Do nothing */ \
6915 } \
6916 (void) aic_inb(p, SEECTL_2840);
6917
6918 /*
6919 * Read the first 32 registers of the seeprom. For the 2840,
6920 * the 93C46 SEEPROM is a 1024-bit device with 64 16-bit registers
6921 * but only the first 32 are used by Adaptec BIOS. The loop
6922 * will range from 0 to 31.
6923 */
6924 for (k = 0; k < (sizeof(*sc) / 2); k++)
6925 {
6926 /*
6927 * Send chip select for one clock cycle.
6928 */
6929 aic_outb(p, CK_2840 | CS_2840, SEECTL_2840);
6930 CLOCK_PULSE(p);
6931
6932 /*
6933 * Now we're ready to send the read command followed by the
6934 * address of the 16-bit register we want to read.
6935 */
6936 for (i = 0; i < seeprom_read.len; i++)
6937 {
6938 temp = CS_2840 | seeprom_read.bits[i];
6939 aic_outb(p, temp, SEECTL_2840);
6940 CLOCK_PULSE(p);
6941 temp = temp ^ CK_2840;
6942 aic_outb(p, temp, SEECTL_2840);
6943 CLOCK_PULSE(p);
6944 }
6945 /*
6946 * Send the 6 bit address (MSB first, LSB last).
6947 */
6948 for (i = 5; i >= 0; i--)
6949 {
6950 temp = k;
6951 temp = (temp >> i) & 1; /* Mask out all but lower bit. */
6952 temp = CS_2840 | temp;
6953 aic_outb(p, temp, SEECTL_2840);
6954 CLOCK_PULSE(p);
6955 temp = temp ^ CK_2840;
6956 aic_outb(p, temp, SEECTL_2840);
6957 CLOCK_PULSE(p);
6958 }
6959
6960 /*
6961 * Now read the 16 bit register. An initial 0 precedes the
6962 * register contents which begins with bit 15 (MSB) and ends
6963 * with bit 0 (LSB). The initial 0 will be shifted off the
6964 * top of our word as we let the loop run from 0 to 16.
6965 */
6966 for (i = 0; i <= 16; i++)
6967 {
6968 temp = CS_2840;
6969 aic_outb(p, temp, SEECTL_2840);
6970 CLOCK_PULSE(p);
6971 temp = temp ^ CK_2840;
6972 seeprom[k] = (seeprom[k] << 1) | (aic_inb(p, STATUS_2840) & DI_2840);
6973 aic_outb(p, temp, SEECTL_2840);
6974 CLOCK_PULSE(p);
6975 }
6976 /*
6977 * The serial EEPROM has a checksum in the last word. Keep a
6978 * running checksum for all words read except for the last
6979 * word. We'll verify the checksum after all words have been
6980 * read.
6981 */
6982 if (k < (sizeof(*sc) / 2) - 1)
6983 {
6984 checksum = checksum + seeprom[k];
6985 }
6986
6987 /*
6988 * Reset the chip select for the next command cycle.
6989 */
6990 aic_outb(p, 0, SEECTL_2840);
6991 CLOCK_PULSE(p);
6992 aic_outb(p, CK_2840, SEECTL_2840);
6993 CLOCK_PULSE(p);
6994 aic_outb(p, 0, SEECTL_2840);
6995 CLOCK_PULSE(p);
6996 }
6997
6998 #if 0
6999 printk("Computed checksum 0x%x, checksum read 0x%x\n", checksum, sc->checksum);
7000 printk("Serial EEPROM:");
7001 for (k = 0; k < (sizeof(*sc) / 2); k++)
7002 {
7003 if (((k % 8) == 0) && (k != 0))
7004 {
7005 printk("\n ");
7006 }
7007 printk(" 0x%x", seeprom[k]);
7008 }
7009 printk("\n");
7010 #endif
7011
7012 if (checksum != sc->checksum)
7013 {
7014 printk("aic7xxx: SEEPROM checksum error, ignoring SEEPROM settings.\n");
7015 return (0);
7016 }
7017
7018 return (1);
7019 #undef CLOCK_PULSE
7020 }
7021
7022 #define CLOCK_PULSE(p) \
7023 do { \
7024 int limit = 0; \
7025 do { \
7026 mb(); \
7027 pause_sequencer(p); /* This is just to generate some PCI */ \
7028 /* traffic so the PCI read is flushed */ \
7029 /* it shouldn't be needed, but some */ \
7030 /* chipsets do indeed appear to need */ \
7031 /* something to force PCI reads to get */ \
7032 /* flushed */ \
7033 udelay(1); /* Do nothing */ \
7034 } while (((aic_inb(p, SEECTL) & SEERDY) == 0) && (++limit < 1000)); \
7035 } while(0)
7036
7037 /*+F*************************************************************************
7038 * Function:
7039 * acquire_seeprom
7040 *
7041 * Description:
7042 * Acquires access to the memory port on PCI controllers.
7043 *-F*************************************************************************/
7044 static int
7045 acquire_seeprom(struct aic7xxx_host *p)
7046 {
7047
7048 /*
7049 * Request access of the memory port. When access is
7050 * granted, SEERDY will go high. We use a 1 second
7051 * timeout which should be near 1 second more than
7052 * is needed. Reason: after the 7870 chip reset, there
7053 * should be no contention.
7054 */
7055 aic_outb(p, SEEMS, SEECTL);
7056 CLOCK_PULSE(p);
7057 if ((aic_inb(p, SEECTL) & SEERDY) == 0)
7058 {
7059 aic_outb(p, 0, SEECTL);
7060 return (0);
7061 }
7062 return (1);
7063 }
7064
7065 /*+F*************************************************************************
7066 * Function:
7067 * release_seeprom
7068 *
7069 * Description:
7070 * Releases access to the memory port on PCI controllers.
7071 *-F*************************************************************************/
7072 static void
7073 release_seeprom(struct aic7xxx_host *p)
7074 {
7075 /*
7076 * Make sure the SEEPROM is ready before we release it.
7077 */
7078 CLOCK_PULSE(p);
7079 aic_outb(p, 0, SEECTL);
7080 }
7081
7082 /*+F*************************************************************************
7083 * Function:
7084 * read_seeprom
7085 *
7086 * Description:
7087 * Reads the serial EEPROM and returns 1 if successful and 0 if
7088 * not successful.
7089 *
7090 * The instruction set of the 93C46/56/66 chips is as follows:
7091 *
7092 * Start OP
7093 * Function Bit Code Address Data Description
7094 * -------------------------------------------------------------------
7095 * READ 1 10 A5 - A0 Reads data stored in memory,
7096 * starting at specified address
7097 * EWEN 1 00 11XXXX Write enable must precede
7098 * all programming modes
7099 * ERASE 1 11 A5 - A0 Erase register A5A4A3A2A1A0
7100 * WRITE 1 01 A5 - A0 D15 - D0 Writes register
7101 * ERAL 1 00 10XXXX Erase all registers
7102 * WRAL 1 00 01XXXX D15 - D0 Writes to all registers
7103 * EWDS 1 00 00XXXX Disables all programming
7104 * instructions
7105 * *Note: A value of X for address is a don't care condition.
7106 * *Note: The 93C56 and 93C66 have 8 address bits.
7107 *
7108 *
7109 * The 93C46 has a four wire interface: clock, chip select, data in, and
7110 * data out. In order to perform one of the above functions, you need
7111 * to enable the chip select for a clock period (typically a minimum of
7112 * 1 usec, with the clock high and low a minimum of 750 and 250 nsec
7113 * respectively. While the chip select remains high, you can clock in
7114 * the instructions (above) starting with the start bit, followed by the
7115 * OP code, Address, and Data (if needed). For the READ instruction, the
7116 * requested 16-bit register contents is read from the data out line but
7117 * is preceded by an initial zero (leading 0, followed by 16-bits, MSB
7118 * first). The clock cycling from low to high initiates the next data
7119 * bit to be sent from the chip.
7120 *
7121 * The 78xx interface to the 93C46 serial EEPROM is through the SEECTL
7122 * register. After successful arbitration for the memory port, the
7123 * SEECS bit of the SEECTL register is connected to the chip select.
7124 * The SEECK, SEEDO, and SEEDI are connected to the clock, data out,
7125 * and data in lines respectively. The SEERDY bit of SEECTL is useful
7126 * in that it gives us an 800 nsec timer. After a write to the SEECTL
7127 * register, the SEERDY goes high 800 nsec later. The one exception
7128 * to this is when we first request access to the memory port. The
7129 * SEERDY goes high to signify that access has been granted and, for
7130 * this case, has no implied timing.
7131 *-F*************************************************************************/
7132 static int
7133 read_seeprom(struct aic7xxx_host *p, int offset,
7134 unsigned short *scarray, unsigned int len, seeprom_chip_type chip)
7135 {
7136 int i = 0, k;
7137 unsigned char temp;
7138 unsigned short checksum = 0;
7139 struct seeprom_cmd {
7140 unsigned char len;
7141 unsigned char bits[3];
7142 };
7143 struct seeprom_cmd seeprom_read = {3, {1, 1, 0}};
7144
7145 /*
7146 * Request access of the memory port.
7147 */
7148 if (acquire_seeprom(p) == 0)
7149 {
7150 return (0);
7151 }
7152
7153 /*
7154 * Read 'len' registers of the seeprom. For the 7870, the 93C46
7155 * SEEPROM is a 1024-bit device with 64 16-bit registers but only
7156 * the first 32 are used by Adaptec BIOS. Some adapters use the
7157 * 93C56 SEEPROM which is a 2048-bit device. The loop will range
7158 * from 0 to 'len' - 1.
7159 */
7160 for (k = 0; k < len; k++)
7161 {
7162 /*
7163 * Send chip select for one clock cycle.
7164 */
7165 aic_outb(p, SEEMS | SEECK | SEECS, SEECTL);
7166 CLOCK_PULSE(p);
7167
7168 /*
7169 * Now we're ready to send the read command followed by the
7170 * address of the 16-bit register we want to read.
7171 */
7172 for (i = 0; i < seeprom_read.len; i++)
7173 {
7174 temp = SEEMS | SEECS | (seeprom_read.bits[i] << 1);
7175 aic_outb(p, temp, SEECTL);
7176 CLOCK_PULSE(p);
7177 temp = temp ^ SEECK;
7178 aic_outb(p, temp, SEECTL);
7179 CLOCK_PULSE(p);
7180 }
7181 /*
7182 * Send the 6 or 8 bit address (MSB first, LSB last).
7183 */
7184 for (i = ((int) chip - 1); i >= 0; i--)
7185 {
7186 temp = k + offset;
7187 temp = (temp >> i) & 1; /* Mask out all but lower bit. */
7188 temp = SEEMS | SEECS | (temp << 1);
7189 aic_outb(p, temp, SEECTL);
7190 CLOCK_PULSE(p);
7191 temp = temp ^ SEECK;
7192 aic_outb(p, temp, SEECTL);
7193 CLOCK_PULSE(p);
7194 }
7195
7196 /*
7197 * Now read the 16 bit register. An initial 0 precedes the
7198 * register contents which begins with bit 15 (MSB) and ends
7199 * with bit 0 (LSB). The initial 0 will be shifted off the
7200 * top of our word as we let the loop run from 0 to 16.
7201 */
7202 for (i = 0; i <= 16; i++)
7203 {
7204 temp = SEEMS | SEECS;
7205 aic_outb(p, temp, SEECTL);
7206 CLOCK_PULSE(p);
7207 temp = temp ^ SEECK;
7208 scarray[k] = (scarray[k] << 1) | (aic_inb(p, SEECTL) & SEEDI);
7209 aic_outb(p, temp, SEECTL);
7210 CLOCK_PULSE(p);
7211 }
7212
7213 /*
7214 * The serial EEPROM should have a checksum in the last word.
7215 * Keep a running checksum for all words read except for the
7216 * last word. We'll verify the checksum after all words have
7217 * been read.
7218 */
7219 if (k < (len - 1))
7220 {
7221 checksum = checksum + scarray[k];
7222 }
7223
7224 /*
7225 * Reset the chip select for the next command cycle.
7226 */
7227 aic_outb(p, SEEMS, SEECTL);
7228 CLOCK_PULSE(p);
7229 aic_outb(p, SEEMS | SEECK, SEECTL);
7230 CLOCK_PULSE(p);
7231 aic_outb(p, SEEMS, SEECTL);
7232 CLOCK_PULSE(p);
7233 }
7234
7235 /*
7236 * Release access to the memory port and the serial EEPROM.
7237 */
7238 release_seeprom(p);
7239
7240 #if 0
7241 printk("Computed checksum 0x%x, checksum read 0x%x\n",
7242 checksum, scarray[len - 1]);
7243 printk("Serial EEPROM:");
7244 for (k = 0; k < len; k++)
7245 {
7246 if (((k % 8) == 0) && (k != 0))
7247 {
7248 printk("\n ");
7249 }
7250 printk(" 0x%x", scarray[k]);
7251 }
7252 printk("\n");
7253 #endif
7254 if ( (checksum != scarray[len - 1]) || (checksum == 0) )
7255 {
7256 return (0);
7257 }
7258
7259 return (1);
7260 }
7261
7262 /*+F*************************************************************************
7263 * Function:
7264 * read_brdctl
7265 *
7266 * Description:
7267 * Reads the BRDCTL register.
7268 *-F*************************************************************************/
7269 static unsigned char
7270 read_brdctl(struct aic7xxx_host *p)
7271 {
7272 unsigned char brdctl, value;
7273
7274 /*
7275 * Make sure the SEEPROM is ready before we access it
7276 */
7277 CLOCK_PULSE(p);
7278 if (p->features & AHC_ULTRA2)
7279 {
7280 brdctl = BRDRW_ULTRA2;
7281 aic_outb(p, brdctl, BRDCTL);
7282 CLOCK_PULSE(p);
7283 value = aic_inb(p, BRDCTL);
7284 CLOCK_PULSE(p);
7285 return(value);
7286 }
7287 brdctl = BRDRW;
7288 if ( !((p->chip & AHC_CHIPID_MASK) == AHC_AIC7895) ||
7289 (p->flags & AHC_CHNLB) )
7290 {
7291 brdctl |= BRDCS;
7292 }
7293 aic_outb(p, brdctl, BRDCTL);
7294 CLOCK_PULSE(p);
7295 value = aic_inb(p, BRDCTL);
7296 CLOCK_PULSE(p);
7297 aic_outb(p, 0, BRDCTL);
7298 CLOCK_PULSE(p);
7299 return (value);
7300 }
7301
7302 /*+F*************************************************************************
7303 * Function:
7304 * write_brdctl
7305 *
7306 * Description:
7307 * Writes a value to the BRDCTL register.
7308 *-F*************************************************************************/
7309 static void
7310 write_brdctl(struct aic7xxx_host *p, unsigned char value)
7311 {
7312 unsigned char brdctl;
7313
7314 /*
7315 * Make sure the SEEPROM is ready before we access it
7316 */
7317 CLOCK_PULSE(p);
7318 if (p->features & AHC_ULTRA2)
7319 {
7320 brdctl = value;
7321 aic_outb(p, brdctl, BRDCTL);
7322 CLOCK_PULSE(p);
7323 brdctl |= BRDSTB_ULTRA2;
7324 aic_outb(p, brdctl, BRDCTL);
7325 CLOCK_PULSE(p);
7326 brdctl &= ~BRDSTB_ULTRA2;
7327 aic_outb(p, brdctl, BRDCTL);
7328 CLOCK_PULSE(p);
7329 read_brdctl(p);
7330 CLOCK_PULSE(p);
7331 }
7332 else
7333 {
7334 brdctl = BRDSTB;
7335 if ( !((p->chip & AHC_CHIPID_MASK) == AHC_AIC7895) ||
7336 (p->flags & AHC_CHNLB) )
7337 {
7338 brdctl |= BRDCS;
7339 }
7340 brdctl = BRDSTB | BRDCS;
7341 aic_outb(p, brdctl, BRDCTL);
7342 CLOCK_PULSE(p);
7343 brdctl |= value;
7344 aic_outb(p, brdctl, BRDCTL);
7345 CLOCK_PULSE(p);
7346 brdctl &= ~BRDSTB;
7347 aic_outb(p, brdctl, BRDCTL);
7348 CLOCK_PULSE(p);
7349 brdctl &= ~BRDCS;
7350 aic_outb(p, brdctl, BRDCTL);
7351 CLOCK_PULSE(p);
7352 }
7353 }
7354
7355 /*+F*************************************************************************
7356 * Function:
7357 * aic785x_cable_detect
7358 *
7359 * Description:
7360 * Detect the cables that are present on aic785x class controller chips
7361 *-F*************************************************************************/
7362 static void
7363 aic785x_cable_detect(struct aic7xxx_host *p, int *int_50,
7364 int *ext_present, int *eeprom)
7365 {
7366 unsigned char brdctl;
7367
7368 aic_outb(p, BRDRW | BRDCS, BRDCTL);
7369 CLOCK_PULSE(p);
7370 aic_outb(p, 0, BRDCTL);
7371 CLOCK_PULSE(p);
7372 brdctl = aic_inb(p, BRDCTL);
7373 CLOCK_PULSE(p);
7374 *int_50 = !(brdctl & BRDDAT5);
7375 *ext_present = !(brdctl & BRDDAT6);
7376 *eeprom = (aic_inb(p, SPIOCAP) & EEPROM);
7377 }
7378
7379 #undef CLOCK_PULSE
7380
7381 /*+F*************************************************************************
7382 * Function:
7383 * aic2940_uwpro_cable_detect
7384 *
7385 * Description:
7386 * Detect the cables that are present on the 2940-UWPro cards
7387 *
7388 * NOTE: This function assumes the SEEPROM will have already been acquired
7389 * prior to invocation of this function.
7390 *-F*************************************************************************/
7391 static void
7392 aic2940_uwpro_wide_cable_detect(struct aic7xxx_host *p, int *int_68,
7393 int *ext_68, int *eeprom)
7394 {
7395 unsigned char brdctl;
7396
7397 /*
7398 * First read the status of our cables. Set the rom bank to
7399 * 0 since the bank setting serves as a multiplexor for the
7400 * cable detection logic. BRDDAT5 controls the bank switch.
7401 */
7402 write_brdctl(p, 0);
7403
7404 /*
7405 * Now we read the state of the internal 68 connector. BRDDAT6
7406 * is don't care, BRDDAT7 is internal 68. The cable is
7407 * present if the bit is 0
7408 */
7409 brdctl = read_brdctl(p);
7410 *int_68 = !(brdctl & BRDDAT7);
7411
7412 /*
7413 * Set the bank bit in brdctl and then read the external cable state
7414 * and the EEPROM status
7415 */
7416 write_brdctl(p, BRDDAT5);
7417 brdctl = read_brdctl(p);
7418
7419 *ext_68 = !(brdctl & BRDDAT6);
7420 *eeprom = !(brdctl & BRDDAT7);
7421
7422 /*
7423 * We're done, the calling function will release the SEEPROM for us
7424 */
7425 }
7426
7427 /*+F*************************************************************************
7428 * Function:
7429 * aic787x_cable_detect
7430 *
7431 * Description:
7432 * Detect the cables that are present on aic787x class controller chips
7433 *
7434 * NOTE: This function assumes the SEEPROM will have already been acquired
7435 * prior to invocation of this function.
7436 *-F*************************************************************************/
7437 static void
7438 aic787x_cable_detect(struct aic7xxx_host *p, int *int_50, int *int_68,
7439 int *ext_present, int *eeprom)
7440 {
7441 unsigned char brdctl;
7442
7443 /*
7444 * First read the status of our cables. Set the rom bank to
7445 * 0 since the bank setting serves as a multiplexor for the
7446 * cable detection logic. BRDDAT5 controls the bank switch.
7447 */
7448 write_brdctl(p, 0);
7449
7450 /*
7451 * Now we read the state of the two internal connectors. BRDDAT6
7452 * is internal 50, BRDDAT7 is internal 68. For each, the cable is
7453 * present if the bit is 0
7454 */
7455 brdctl = read_brdctl(p);
7456 *int_50 = !(brdctl & BRDDAT6);
7457 *int_68 = !(brdctl & BRDDAT7);
7458
7459 /*
7460 * Set the bank bit in brdctl and then read the external cable state
7461 * and the EEPROM status
7462 */
7463 write_brdctl(p, BRDDAT5);
7464 brdctl = read_brdctl(p);
7465
7466 *ext_present = !(brdctl & BRDDAT6);
7467 *eeprom = !(brdctl & BRDDAT7);
7468
7469 /*
7470 * We're done, the calling function will release the SEEPROM for us
7471 */
7472 }
7473
7474 /*+F*************************************************************************
7475 * Function:
7476 * aic787x_ultra2_term_detect
7477 *
7478 * Description:
7479 * Detect the termination settings present on ultra2 class controllers
7480 *
7481 * NOTE: This function assumes the SEEPROM will have already been acquired
7482 * prior to invocation of this function.
7483 *-F*************************************************************************/
7484 static void
7485 aic7xxx_ultra2_term_detect(struct aic7xxx_host *p, int *enableSE_low,
7486 int *enableSE_high, int *enableLVD_low,
7487 int *enableLVD_high, int *eprom_present)
7488 {
7489 unsigned char brdctl;
7490
7491 brdctl = read_brdctl(p);
7492
7493 *eprom_present = (brdctl & BRDDAT7);
7494 *enableSE_high = (brdctl & BRDDAT6);
7495 *enableSE_low = (brdctl & BRDDAT5);
7496 *enableLVD_high = (brdctl & BRDDAT4);
7497 *enableLVD_low = (brdctl & BRDDAT3);
7498 }
7499
7500 /*+F*************************************************************************
7501 * Function:
7502 * configure_termination
7503 *
7504 * Description:
7505 * Configures the termination settings on PCI adapters that have
7506 * SEEPROMs available.
7507 *-F*************************************************************************/
7508 static void
7509 configure_termination(struct aic7xxx_host *p)
7510 {
7511 int internal50_present = 0;
7512 int internal68_present = 0;
7513 int external_present = 0;
7514 int eprom_present = 0;
7515 int enableSE_low = 0;
7516 int enableSE_high = 0;
7517 int enableLVD_low = 0;
7518 int enableLVD_high = 0;
7519 unsigned char brddat = 0;
7520 unsigned char max_target = 0;
7521 unsigned char sxfrctl1 = aic_inb(p, SXFRCTL1);
7522
7523 if (acquire_seeprom(p))
7524 {
7525 if (p->features & (AHC_WIDE|AHC_TWIN))
7526 max_target = 16;
7527 else
7528 max_target = 8;
7529 aic_outb(p, SEEMS | SEECS, SEECTL);
7530 sxfrctl1 &= ~STPWEN;
7531 /*
7532 * The termination/cable detection logic is split into three distinct
7533 * groups. Ultra2 and later controllers, 2940UW-Pro controllers, and
7534 * older 7850, 7860, 7870, 7880, and 7895 controllers. Each has its
7535 * own unique way of detecting their cables and writing the results
7536 * back to the card.
7537 */
7538 if (p->features & AHC_ULTRA2)
7539 {
7540 /*
7541 * As long as user hasn't overridden term settings, always check the
7542 * cable detection logic
7543 */
7544 if (aic7xxx_override_term == -1)
7545 {
7546 aic7xxx_ultra2_term_detect(p, &enableSE_low, &enableSE_high,
7547 &enableLVD_low, &enableLVD_high,
7548 &eprom_present);
7549 }
7550
7551 /*
7552 * If the user is overriding settings, then they have been preserved
7553 * to here as fake adapter_control entries. Parse them and allow
7554 * them to override the detected settings (if we even did detection).
7555 */
7556 if (!(p->adapter_control & CFSEAUTOTERM))
7557 {
7558 enableSE_low = (p->adapter_control & CFSTERM);
7559 enableSE_high = (p->adapter_control & CFWSTERM);
7560 }
7561 if (!(p->adapter_control & CFAUTOTERM))
7562 {
7563 enableLVD_low = enableLVD_high = (p->adapter_control & CFLVDSTERM);
7564 }
7565
7566 /*
7567 * Now take those settings that we have and translate them into the
7568 * values that must be written into the registers.
7569 *
7570 * Flash Enable = BRDDAT7
7571 * Secondary High Term Enable = BRDDAT6
7572 * Secondary Low Term Enable = BRDDAT5
7573 * LVD/Primary High Term Enable = BRDDAT4
7574 * LVD/Primary Low Term Enable = STPWEN bit in SXFRCTL1
7575 */
7576 if (enableLVD_low != 0)
7577 {
7578 sxfrctl1 |= STPWEN;
7579 p->flags |= AHC_TERM_ENB_LVD;
7580 if (aic7xxx_verbose & VERBOSE_PROBE2)
7581 printk(KERN_INFO "(scsi%d) LVD/Primary Low byte termination "
7582 "Enabled\n", p->host_no);
7583 }
7584
7585 if (enableLVD_high != 0)
7586 {
7587 brddat |= BRDDAT4;
7588 if (aic7xxx_verbose & VERBOSE_PROBE2)
7589 printk(KERN_INFO "(scsi%d) LVD/Primary High byte termination "
7590 "Enabled\n", p->host_no);
7591 }
7592
7593 if (enableSE_low != 0)
7594 {
7595 brddat |= BRDDAT5;
7596 if (aic7xxx_verbose & VERBOSE_PROBE2)
7597 printk(KERN_INFO "(scsi%d) Secondary Low byte termination "
7598 "Enabled\n", p->host_no);
7599 }
7600
7601 if (enableSE_high != 0)
7602 {
7603 brddat |= BRDDAT6;
7604 if (aic7xxx_verbose & VERBOSE_PROBE2)
7605 printk(KERN_INFO "(scsi%d) Secondary High byte termination "
7606 "Enabled\n", p->host_no);
7607 }
7608 }
7609 else if (p->features & AHC_NEW_AUTOTERM)
7610 {
7611 /*
7612 * The 50 pin connector termination is controlled by STPWEN in the
7613 * SXFRCTL1 register. Since the Adaptec docs typically say the
7614 * controller is not allowed to be in the middle of a cable and
7615 * this is the only connection on that stub of the bus, there is
7616 * no need to even check for narrow termination, it's simply
7617 * always on.
7618 */
7619 sxfrctl1 |= STPWEN;
7620 if (aic7xxx_verbose & VERBOSE_PROBE2)
7621 printk(KERN_INFO "(scsi%d) Narrow channel termination Enabled\n",
7622 p->host_no);
7623
7624 if (p->adapter_control & CFAUTOTERM)
7625 {
7626 aic2940_uwpro_wide_cable_detect(p, &internal68_present,
7627 &external_present,
7628 &eprom_present);
7629 printk(KERN_INFO "(scsi%d) Cables present (Int-50 %s, Int-68 %s, "
7630 "Ext-68 %s)\n", p->host_no,
7631 "Don't Care",
7632 internal68_present ? "YES" : "NO",
7633 external_present ? "YES" : "NO");
7634 if (aic7xxx_verbose & VERBOSE_PROBE2)
7635 printk(KERN_INFO "(scsi%d) EEPROM %s present.\n", p->host_no,
7636 eprom_present ? "is" : "is not");
7637 if (internal68_present && external_present)
7638 {
7639 brddat = 0;
7640 p->flags &= ~AHC_TERM_ENB_SE_HIGH;
7641 if (aic7xxx_verbose & VERBOSE_PROBE2)
7642 printk(KERN_INFO "(scsi%d) Wide channel termination Disabled\n",
7643 p->host_no);
7644 }
7645 else
7646 {
7647 brddat = BRDDAT6;
7648 p->flags |= AHC_TERM_ENB_SE_HIGH;
7649 if (aic7xxx_verbose & VERBOSE_PROBE2)
7650 printk(KERN_INFO "(scsi%d) Wide channel termination Enabled\n",
7651 p->host_no);
7652 }
7653 }
7654 else
7655 {
7656 /*
7657 * The termination of the Wide channel is done more like normal
7658 * though, and the setting of this termination is done by writing
7659 * either a 0 or 1 to BRDDAT6 of the BRDDAT register
7660 */
7661 if (p->adapter_control & CFWSTERM)
7662 {
7663 brddat = BRDDAT6;
7664 p->flags |= AHC_TERM_ENB_SE_HIGH;
7665 if (aic7xxx_verbose & VERBOSE_PROBE2)
7666 printk(KERN_INFO "(scsi%d) Wide channel termination Enabled\n",
7667 p->host_no);
7668 }
7669 else
7670 {
7671 brddat = 0;
7672 }
7673 }
7674 }
7675 else
7676 {
7677 if (p->adapter_control & CFAUTOTERM)
7678 {
7679 if (p->flags & AHC_MOTHERBOARD)
7680 {
7681 printk(KERN_INFO "(scsi%d) Warning - detected auto-termination\n",
7682 p->host_no);
7683 printk(KERN_INFO "(scsi%d) Please verify driver detected settings "
7684 "are correct.\n", p->host_no);
7685 printk(KERN_INFO "(scsi%d) If not, then please properly set the "
7686 "device termination\n", p->host_no);
7687 printk(KERN_INFO "(scsi%d) in the Adaptec SCSI BIOS by hitting "
7688 "CTRL-A when prompted\n", p->host_no);
7689 printk(KERN_INFO "(scsi%d) during machine bootup.\n", p->host_no);
7690 }
7691 /* Configure auto termination. */
7692
7693 if ( (p->chip & AHC_CHIPID_MASK) >= AHC_AIC7870 )
7694 {
7695 aic787x_cable_detect(p, &internal50_present, &internal68_present,
7696 &external_present, &eprom_present);
7697 }
7698 else
7699 {
7700 aic785x_cable_detect(p, &internal50_present, &external_present,
7701 &eprom_present);
7702 }
7703
7704 if (max_target <= 8)
7705 internal68_present = 0;
7706
7707 if (max_target > 8)
7708 {
7709 printk(KERN_INFO "(scsi%d) Cables present (Int-50 %s, Int-68 %s, "
7710 "Ext-68 %s)\n", p->host_no,
7711 internal50_present ? "YES" : "NO",
7712 internal68_present ? "YES" : "NO",
7713 external_present ? "YES" : "NO");
7714 }
7715 else
7716 {
7717 printk(KERN_INFO "(scsi%d) Cables present (Int-50 %s, Ext-50 %s)\n",
7718 p->host_no,
7719 internal50_present ? "YES" : "NO",
7720 external_present ? "YES" : "NO");
7721 }
7722 if (aic7xxx_verbose & VERBOSE_PROBE2)
7723 printk(KERN_INFO "(scsi%d) EEPROM %s present.\n", p->host_no,
7724 eprom_present ? "is" : "is not");
7725
7726 /*
7727 * Now set the termination based on what we found. BRDDAT6
7728 * controls wide termination enable.
7729 * Flash Enable = BRDDAT7
7730 * SE High Term Enable = BRDDAT6
7731 */
7732 if (internal50_present && internal68_present && external_present)
7733 {
7734 printk(KERN_INFO "(scsi%d) Illegal cable configuration!! Only two\n",
7735 p->host_no);
7736 printk(KERN_INFO "(scsi%d) connectors on the SCSI controller may be "
7737 "in use at a time!\n", p->host_no);
7738 /*
7739 * Force termination (low and high byte) on. This is safer than
7740 * leaving it completely off, especially since this message comes
7741 * most often from motherboard controllers that don't even have 3
7742 * connectors, but instead are failing the cable detection.
7743 */
7744 internal50_present = external_present = 0;
7745 enableSE_high = enableSE_low = 1;
7746 }
7747
7748 if ((max_target > 8) &&
7749 ((external_present == 0) || (internal68_present == 0)) )
7750 {
7751 brddat |= BRDDAT6;
7752 p->flags |= AHC_TERM_ENB_SE_HIGH;
7753 if (aic7xxx_verbose & VERBOSE_PROBE2)
7754 printk(KERN_INFO "(scsi%d) SE High byte termination Enabled\n",
7755 p->host_no);
7756 }
7757
7758 if ( ((internal50_present ? 1 : 0) +
7759 (internal68_present ? 1 : 0) +
7760 (external_present ? 1 : 0)) <= 1 )
7761 {
7762 sxfrctl1 |= STPWEN;
7763 p->flags |= AHC_TERM_ENB_SE_LOW;
7764 if (aic7xxx_verbose & VERBOSE_PROBE2)
7765 printk(KERN_INFO "(scsi%d) SE Low byte termination Enabled\n",
7766 p->host_no);
7767 }
7768 }
7769 else /* p->adapter_control & CFAUTOTERM */
7770 {
7771 if (p->adapter_control & CFSTERM)
7772 {
7773 sxfrctl1 |= STPWEN;
7774 if (aic7xxx_verbose & VERBOSE_PROBE2)
7775 printk(KERN_INFO "(scsi%d) SE Low byte termination Enabled\n",
7776 p->host_no);
7777 }
7778
7779 if (p->adapter_control & CFWSTERM)
7780 {
7781 brddat |= BRDDAT6;
7782 if (aic7xxx_verbose & VERBOSE_PROBE2)
7783 printk(KERN_INFO "(scsi%d) SE High byte termination Enabled\n",
7784 p->host_no);
7785 }
7786 }
7787 }
7788
7789 aic_outb(p, sxfrctl1, SXFRCTL1);
7790 write_brdctl(p, brddat);
7791 release_seeprom(p);
7792 }
7793 }
7794
7795 /*+F*************************************************************************
7796 * Function:
7797 * detect_maxscb
7798 *
7799 * Description:
7800 * Detects the maximum number of SCBs for the controller and returns
7801 * the count and a mask in p (p->maxscbs, p->qcntmask).
7802 *-F*************************************************************************/
7803 static void
7804 detect_maxscb(struct aic7xxx_host *p)
7805 {
7806 int i;
7807
7808 /*
7809 * It's possible that we've already done this for multichannel
7810 * adapters.
7811 */
7812 if (p->scb_data->maxhscbs == 0)
7813 {
7814 /*
7815 * We haven't initialized the SCB settings yet. Walk the SCBs to
7816 * determince how many there are.
7817 */
7818 aic_outb(p, 0, FREE_SCBH);
7819
7820 for (i = 0; i < AIC7XXX_MAXSCB; i++)
7821 {
7822 aic_outb(p, i, SCBPTR);
7823 aic_outb(p, i, SCB_CONTROL);
7824 if (aic_inb(p, SCB_CONTROL) != i)
7825 break;
7826 aic_outb(p, 0, SCBPTR);
7827 if (aic_inb(p, SCB_CONTROL) != 0)
7828 break;
7829
7830 aic_outb(p, i, SCBPTR);
7831 aic_outb(p, 0, SCB_CONTROL); /* Clear the control byte. */
7832 aic_outb(p, i + 1, SCB_NEXT); /* Set the next pointer. */
7833 aic_outb(p, SCB_LIST_NULL, SCB_TAG); /* Make the tag invalid. */
7834 aic_outb(p, SCB_LIST_NULL, SCB_BUSYTARGETS); /* no busy untagged */
7835 aic_outb(p, SCB_LIST_NULL, SCB_BUSYTARGETS+1);/* targets active yet */
7836 aic_outb(p, SCB_LIST_NULL, SCB_BUSYTARGETS+2);
7837 aic_outb(p, SCB_LIST_NULL, SCB_BUSYTARGETS+3);
7838 }
7839
7840 /* Make sure the last SCB terminates the free list. */
7841 aic_outb(p, i - 1, SCBPTR);
7842 aic_outb(p, SCB_LIST_NULL, SCB_NEXT);
7843
7844 /* Ensure we clear the first (0) SCBs control byte. */
7845 aic_outb(p, 0, SCBPTR);
7846 aic_outb(p, 0, SCB_CONTROL);
7847
7848 p->scb_data->maxhscbs = i;
7849 /*
7850 * Use direct indexing instead for speed
7851 */
7852 if ( i == AIC7XXX_MAXSCB )
7853 p->flags &= ~AHC_PAGESCBS;
7854 }
7855
7856 }
7857
7858 /*+F*************************************************************************
7859 * Function:
7860 * aic7xxx_register
7861 *
7862 * Description:
7863 * Register a Adaptec aic7xxx chip SCSI controller with the kernel.
7864 *-F*************************************************************************/
7865 static int
7866 aic7xxx_register(struct scsi_host_template *template, struct aic7xxx_host *p,
7867 int reset_delay)
7868 {
7869 int i, result;
7870 int max_targets;
7871 int found = 1;
7872 unsigned char term, scsi_conf;
7873 struct Scsi_Host *host;
7874
7875 host = p->host;
7876
7877 p->scb_data->maxscbs = AIC7XXX_MAXSCB;
7878 host->can_queue = AIC7XXX_MAXSCB;
7879 host->cmd_per_lun = 3;
7880 host->sg_tablesize = AIC7XXX_MAX_SG;
7881 host->this_id = p->scsi_id;
7882 host->io_port = p->base;
7883 host->n_io_port = 0xFF;
7884 host->base = p->mbase;
7885 host->irq = p->irq;
7886 if (p->features & AHC_WIDE)
7887 {
7888 host->max_id = 16;
7889 }
7890 if (p->features & AHC_TWIN)
7891 {
7892 host->max_channel = 1;
7893 }
7894
7895 p->host = host;
7896 p->host_no = host->host_no;
7897 host->unique_id = p->instance;
7898 p->isr_count = 0;
7899 p->next = NULL;
7900 p->completeq.head = NULL;
7901 p->completeq.tail = NULL;
7902 scbq_init(&p->scb_data->free_scbs);
7903 scbq_init(&p->waiting_scbs);
7904 INIT_LIST_HEAD(&p->aic_devs);
7905
7906 /*
7907 * We currently have no commands of any type
7908 */
7909 p->qinfifonext = 0;
7910 p->qoutfifonext = 0;
7911
7912 printk(KERN_INFO "(scsi%d) <%s> found at ", p->host_no,
7913 board_names[p->board_name_index]);
7914 switch(p->chip)
7915 {
7916 case (AHC_AIC7770|AHC_EISA):
7917 printk("EISA slot %d\n", p->pci_device_fn);
7918 break;
7919 case (AHC_AIC7770|AHC_VL):
7920 printk("VLB slot %d\n", p->pci_device_fn);
7921 break;
7922 default:
7923 printk("PCI %d/%d/%d\n", p->pci_bus, PCI_SLOT(p->pci_device_fn),
7924 PCI_FUNC(p->pci_device_fn));
7925 break;
7926 }
7927 if (p->features & AHC_TWIN)
7928 {
7929 printk(KERN_INFO "(scsi%d) Twin Channel, A SCSI ID %d, B SCSI ID %d, ",
7930 p->host_no, p->scsi_id, p->scsi_id_b);
7931 }
7932 else
7933 {
7934 char *channel;
7935
7936 channel = "";
7937
7938 if ((p->flags & AHC_MULTI_CHANNEL) != 0)
7939 {
7940 channel = " A";
7941
7942 if ( (p->flags & (AHC_CHNLB|AHC_CHNLC)) != 0 )
7943 {
7944 channel = (p->flags & AHC_CHNLB) ? " B" : " C";
7945 }
7946 }
7947 if (p->features & AHC_WIDE)
7948 {
7949 printk(KERN_INFO "(scsi%d) Wide ", p->host_no);
7950 }
7951 else
7952 {
7953 printk(KERN_INFO "(scsi%d) Narrow ", p->host_no);
7954 }
7955 printk("Channel%s, SCSI ID=%d, ", channel, p->scsi_id);
7956 }
7957 aic_outb(p, 0, SEQ_FLAGS);
7958
7959 detect_maxscb(p);
7960
7961 printk("%d/%d SCBs\n", p->scb_data->maxhscbs, p->scb_data->maxscbs);
7962 if (aic7xxx_verbose & VERBOSE_PROBE2)
7963 {
7964 printk(KERN_INFO "(scsi%d) BIOS %sabled, IO Port 0x%lx, IRQ %d\n",
7965 p->host_no, (p->flags & AHC_BIOS_ENABLED) ? "en" : "dis",
7966 p->base, p->irq);
7967 printk(KERN_INFO "(scsi%d) IO Memory at 0x%lx, MMAP Memory at %p\n",
7968 p->host_no, p->mbase, p->maddr);
7969 }
7970
7971 #ifdef CONFIG_PCI
7972 /*
7973 * Now that we know our instance number, we can set the flags we need to
7974 * force termination if need be.
7975 */
7976 if (aic7xxx_stpwlev != -1)
7977 {
7978 /*
7979 * This option only applies to PCI controllers.
7980 */
7981 if ( (p->chip & ~AHC_CHIPID_MASK) == AHC_PCI)
7982 {
7983 unsigned char devconfig;
7984
7985 pci_read_config_byte(p->pdev, DEVCONFIG, &devconfig);
7986 if ( (aic7xxx_stpwlev >> p->instance) & 0x01 )
7987 {
7988 devconfig |= STPWLEVEL;
7989 if (aic7xxx_verbose & VERBOSE_PROBE2)
7990 printk("(scsi%d) Force setting STPWLEVEL bit\n", p->host_no);
7991 }
7992 else
7993 {
7994 devconfig &= ~STPWLEVEL;
7995 if (aic7xxx_verbose & VERBOSE_PROBE2)
7996 printk("(scsi%d) Force clearing STPWLEVEL bit\n", p->host_no);
7997 }
7998 pci_write_config_byte(p->pdev, DEVCONFIG, devconfig);
7999 }
8000 }
8001 #endif
8002
8003 /*
8004 * That took care of devconfig and stpwlev, now for the actual termination
8005 * settings.
8006 */
8007 if (aic7xxx_override_term != -1)
8008 {
8009 /*
8010 * Again, this only applies to PCI controllers. We don't have problems
8011 * with the termination on 274x controllers to the best of my knowledge.
8012 */
8013 if ( (p->chip & ~AHC_CHIPID_MASK) == AHC_PCI)
8014 {
8015 unsigned char term_override;
8016
8017 term_override = ( (aic7xxx_override_term >> (p->instance * 4)) & 0x0f);
8018 p->adapter_control &=
8019 ~(CFSTERM|CFWSTERM|CFLVDSTERM|CFAUTOTERM|CFSEAUTOTERM);
8020 if ( (p->features & AHC_ULTRA2) && (term_override & 0x0c) )
8021 {
8022 p->adapter_control |= CFLVDSTERM;
8023 }
8024 if (term_override & 0x02)
8025 {
8026 p->adapter_control |= CFWSTERM;
8027 }
8028 if (term_override & 0x01)
8029 {
8030 p->adapter_control |= CFSTERM;
8031 }
8032 }
8033 }
8034
8035 if ( (p->flags & AHC_SEEPROM_FOUND) || (aic7xxx_override_term != -1) )
8036 {
8037 if (p->features & AHC_SPIOCAP)
8038 {
8039 if ( aic_inb(p, SPIOCAP) & SSPIOCPS )
8040 /*
8041 * Update the settings in sxfrctl1 to match the termination
8042 * settings.
8043 */
8044 configure_termination(p);
8045 }
8046 else if ((p->chip & AHC_CHIPID_MASK) >= AHC_AIC7870)
8047 {
8048 configure_termination(p);
8049 }
8050 }
8051
8052 /*
8053 * Set the SCSI Id, SXFRCTL0, SXFRCTL1, and SIMODE1, for both channels
8054 */
8055 if (p->features & AHC_TWIN)
8056 {
8057 /* Select channel B */
8058 aic_outb(p, aic_inb(p, SBLKCTL) | SELBUSB, SBLKCTL);
8059
8060 if ((p->flags & AHC_SEEPROM_FOUND) || (aic7xxx_override_term != -1))
8061 term = (aic_inb(p, SXFRCTL1) & STPWEN);
8062 else
8063 term = ((p->flags & AHC_TERM_ENB_B) ? STPWEN : 0);
8064
8065 aic_outb(p, p->scsi_id_b, SCSIID);
8066 scsi_conf = aic_inb(p, SCSICONF + 1);
8067 aic_outb(p, DFON | SPIOEN, SXFRCTL0);
8068 aic_outb(p, (scsi_conf & ENSPCHK) | aic7xxx_seltime | term |
8069 ENSTIMER | ACTNEGEN, SXFRCTL1);
8070 aic_outb(p, 0, SIMODE0);
8071 aic_outb(p, ENSELTIMO | ENSCSIRST | ENSCSIPERR, SIMODE1);
8072 aic_outb(p, 0, SCSIRATE);
8073
8074 /* Select channel A */
8075 aic_outb(p, aic_inb(p, SBLKCTL) & ~SELBUSB, SBLKCTL);
8076 }
8077
8078 if (p->features & AHC_ULTRA2)
8079 {
8080 aic_outb(p, p->scsi_id, SCSIID_ULTRA2);
8081 }
8082 else
8083 {
8084 aic_outb(p, p->scsi_id, SCSIID);
8085 }
8086 if ((p->flags & AHC_SEEPROM_FOUND) || (aic7xxx_override_term != -1))
8087 term = (aic_inb(p, SXFRCTL1) & STPWEN);
8088 else
8089 term = ((p->flags & (AHC_TERM_ENB_A|AHC_TERM_ENB_LVD)) ? STPWEN : 0);
8090 scsi_conf = aic_inb(p, SCSICONF);
8091 aic_outb(p, DFON | SPIOEN, SXFRCTL0);
8092 aic_outb(p, (scsi_conf & ENSPCHK) | aic7xxx_seltime | term |
8093 ENSTIMER | ACTNEGEN, SXFRCTL1);
8094 aic_outb(p, 0, SIMODE0);
8095 /*
8096 * If we are a cardbus adapter then don't enable SCSI reset detection.
8097 * We shouldn't likely be sharing SCSI busses with someone else, and
8098 * if we don't have a cable currently plugged into the controller then
8099 * we won't have a power source for the SCSI termination, which means
8100 * we'll see infinite incoming bus resets.
8101 */
8102 if(p->flags & AHC_NO_STPWEN)
8103 aic_outb(p, ENSELTIMO | ENSCSIPERR, SIMODE1);
8104 else
8105 aic_outb(p, ENSELTIMO | ENSCSIRST | ENSCSIPERR, SIMODE1);
8106 aic_outb(p, 0, SCSIRATE);
8107 if ( p->features & AHC_ULTRA2)
8108 aic_outb(p, 0, SCSIOFFSET);
8109
8110 /*
8111 * Look at the information that board initialization or the board
8112 * BIOS has left us. In the lower four bits of each target's
8113 * scratch space any value other than 0 indicates that we should
8114 * initiate synchronous transfers. If it's zero, the user or the
8115 * BIOS has decided to disable synchronous negotiation to that
8116 * target so we don't activate the needsdtr flag.
8117 */
8118 if ((p->features & (AHC_TWIN|AHC_WIDE)) == 0)
8119 {
8120 max_targets = 8;
8121 }
8122 else
8123 {
8124 max_targets = 16;
8125 }
8126
8127 if (!(aic7xxx_no_reset))
8128 {
8129 /*
8130 * If we reset the bus, then clear the transfer settings, else leave
8131 * them be.
8132 */
8133 aic_outb(p, 0, ULTRA_ENB);
8134 aic_outb(p, 0, ULTRA_ENB + 1);
8135 p->ultraenb = 0;
8136 }
8137
8138 /*
8139 * Allocate enough hardware scbs to handle the maximum number of
8140 * concurrent transactions we can have. We have to make sure that
8141 * the allocated memory is contiguous memory. The Linux kmalloc
8142 * routine should only allocate contiguous memory, but note that
8143 * this could be a problem if kmalloc() is changed.
8144 */
8145 {
8146 size_t array_size;
8147 unsigned int hscb_physaddr;
8148
8149 array_size = p->scb_data->maxscbs * sizeof(struct aic7xxx_hwscb);
8150 if (p->scb_data->hscbs == NULL)
8151 {
8152 /* pci_alloc_consistent enforces the alignment already and
8153 * clears the area as well.
8154 */
8155 p->scb_data->hscbs = pci_alloc_consistent(p->pdev, array_size,
8156 &p->scb_data->hscbs_dma);
8157 /* We have to use pci_free_consistent, not kfree */
8158 p->scb_data->hscb_kmalloc_ptr = NULL;
8159 p->scb_data->hscbs_dma_len = array_size;
8160 }
8161 if (p->scb_data->hscbs == NULL)
8162 {
8163 printk("(scsi%d) Unable to allocate hardware SCB array; "
8164 "failing detection.\n", p->host_no);
8165 aic_outb(p, 0, SIMODE1);
8166 p->irq = 0;
8167 return(0);
8168 }
8169
8170 hscb_physaddr = p->scb_data->hscbs_dma;
8171 aic_outb(p, hscb_physaddr & 0xFF, HSCB_ADDR);
8172 aic_outb(p, (hscb_physaddr >> 8) & 0xFF, HSCB_ADDR + 1);
8173 aic_outb(p, (hscb_physaddr >> 16) & 0xFF, HSCB_ADDR + 2);
8174 aic_outb(p, (hscb_physaddr >> 24) & 0xFF, HSCB_ADDR + 3);
8175
8176 /* Set up the fifo areas at the same time */
8177 p->untagged_scbs = pci_alloc_consistent(p->pdev, 3*256, &p->fifo_dma);
8178 if (p->untagged_scbs == NULL)
8179 {
8180 printk("(scsi%d) Unable to allocate hardware FIFO arrays; "
8181 "failing detection.\n", p->host_no);
8182 p->irq = 0;
8183 return(0);
8184 }
8185
8186 p->qoutfifo = p->untagged_scbs + 256;
8187 p->qinfifo = p->qoutfifo + 256;
8188 for (i = 0; i < 256; i++)
8189 {
8190 p->untagged_scbs[i] = SCB_LIST_NULL;
8191 p->qinfifo[i] = SCB_LIST_NULL;
8192 p->qoutfifo[i] = SCB_LIST_NULL;
8193 }
8194
8195 hscb_physaddr = p->fifo_dma;
8196 aic_outb(p, hscb_physaddr & 0xFF, SCBID_ADDR);
8197 aic_outb(p, (hscb_physaddr >> 8) & 0xFF, SCBID_ADDR + 1);
8198 aic_outb(p, (hscb_physaddr >> 16) & 0xFF, SCBID_ADDR + 2);
8199 aic_outb(p, (hscb_physaddr >> 24) & 0xFF, SCBID_ADDR + 3);
8200 }
8201
8202 /* The Q-FIFOs we just set up are all empty */
8203 aic_outb(p, 0, QINPOS);
8204 aic_outb(p, 0, KERNEL_QINPOS);
8205 aic_outb(p, 0, QOUTPOS);
8206
8207 if(p->features & AHC_QUEUE_REGS)
8208 {
8209 aic_outb(p, SCB_QSIZE_256, QOFF_CTLSTA);
8210 aic_outb(p, 0, SDSCB_QOFF);
8211 aic_outb(p, 0, SNSCB_QOFF);
8212 aic_outb(p, 0, HNSCB_QOFF);
8213 }
8214
8215 /*
8216 * We don't have any waiting selections or disconnected SCBs.
8217 */
8218 aic_outb(p, SCB_LIST_NULL, WAITING_SCBH);
8219 aic_outb(p, SCB_LIST_NULL, DISCONNECTED_SCBH);
8220
8221 /*
8222 * Message out buffer starts empty
8223 */
8224 aic_outb(p, MSG_NOOP, MSG_OUT);
8225 aic_outb(p, MSG_NOOP, LAST_MSG);
8226
8227 /*
8228 * Set all the other asundry items that haven't been set yet.
8229 * This includes just dumping init values to a lot of registers simply
8230 * to make sure they've been touched and are ready for use parity wise
8231 * speaking.
8232 */
8233 aic_outb(p, 0, TMODE_CMDADDR);
8234 aic_outb(p, 0, TMODE_CMDADDR + 1);
8235 aic_outb(p, 0, TMODE_CMDADDR + 2);
8236 aic_outb(p, 0, TMODE_CMDADDR + 3);
8237 aic_outb(p, 0, TMODE_CMDADDR_NEXT);
8238
8239 /*
8240 * Link us into the list of valid hosts
8241 */
8242 p->next = first_aic7xxx;
8243 first_aic7xxx = p;
8244
8245 /*
8246 * Allocate the first set of scbs for this controller. This is to stream-
8247 * line code elsewhere in the driver. If we have to check for the existence
8248 * of scbs in certain code sections, it slows things down. However, as
8249 * soon as we register the IRQ for this card, we could get an interrupt that
8250 * includes possibly the SCSI_RSTI interrupt. If we catch that interrupt
8251 * then we are likely to segfault if we don't have at least one chunk of
8252 * SCBs allocated or add checks all through the reset code to make sure
8253 * that the SCBs have been allocated which is an invalid running condition
8254 * and therefore I think it's preferable to simply pre-allocate the first
8255 * chunk of SCBs.
8256 */
8257 aic7xxx_allocate_scb(p);
8258
8259 /*
8260 * Load the sequencer program, then re-enable the board -
8261 * resetting the AIC-7770 disables it, leaving the lights
8262 * on with nobody home.
8263 */
8264 aic7xxx_loadseq(p);
8265
8266 /*
8267 * Make sure the AUTOFLUSHDIS bit is *not* set in the SBLKCTL register
8268 */
8269 aic_outb(p, aic_inb(p, SBLKCTL) & ~AUTOFLUSHDIS, SBLKCTL);
8270
8271 if ( (p->chip & AHC_CHIPID_MASK) == AHC_AIC7770 )
8272 {
8273 aic_outb(p, ENABLE, BCTL); /* Enable the boards BUS drivers. */
8274 }
8275
8276 if ( !(aic7xxx_no_reset) )
8277 {
8278 if (p->features & AHC_TWIN)
8279 {
8280 if (aic7xxx_verbose & VERBOSE_PROBE2)
8281 printk(KERN_INFO "(scsi%d) Resetting channel B\n", p->host_no);
8282 aic_outb(p, aic_inb(p, SBLKCTL) | SELBUSB, SBLKCTL);
8283 aic7xxx_reset_current_bus(p);
8284 aic_outb(p, aic_inb(p, SBLKCTL) & ~SELBUSB, SBLKCTL);
8285 }
8286 /* Reset SCSI bus A. */
8287 if (aic7xxx_verbose & VERBOSE_PROBE2)
8288 { /* In case we are a 3940, 3985, or 7895, print the right channel */
8289 char *channel = "";
8290 if (p->flags & AHC_MULTI_CHANNEL)
8291 {
8292 channel = " A";
8293 if (p->flags & (AHC_CHNLB|AHC_CHNLC))
8294 channel = (p->flags & AHC_CHNLB) ? " B" : " C";
8295 }
8296 printk(KERN_INFO "(scsi%d) Resetting channel%s\n", p->host_no, channel);
8297 }
8298
8299 aic7xxx_reset_current_bus(p);
8300
8301 }
8302 else
8303 {
8304 if (!reset_delay)
8305 {
8306 printk(KERN_INFO "(scsi%d) Not resetting SCSI bus. Note: Don't use "
8307 "the no_reset\n", p->host_no);
8308 printk(KERN_INFO "(scsi%d) option unless you have a verifiable need "
8309 "for it.\n", p->host_no);
8310 }
8311 }
8312
8313 /*
8314 * Register IRQ with the kernel. Only allow sharing IRQs with
8315 * PCI devices.
8316 */
8317 if (!(p->chip & AHC_PCI))
8318 {
8319 result = (request_irq(p->irq, do_aic7xxx_isr, 0, "aic7xxx", p));
8320 }
8321 else
8322 {
8323 result = (request_irq(p->irq, do_aic7xxx_isr, IRQF_SHARED,
8324 "aic7xxx", p));
8325 if (result < 0)
8326 {
8327 result = (request_irq(p->irq, do_aic7xxx_isr, IRQF_DISABLED | IRQF_SHARED,
8328 "aic7xxx", p));
8329 }
8330 }
8331 if (result < 0)
8332 {
8333 printk(KERN_WARNING "(scsi%d) Couldn't register IRQ %d, ignoring "
8334 "controller.\n", p->host_no, p->irq);
8335 aic_outb(p, 0, SIMODE1);
8336 p->irq = 0;
8337 return (0);
8338 }
8339
8340 if(aic_inb(p, INTSTAT) & INT_PEND)
8341 printk(INFO_LEAD "spurious interrupt during configuration, cleared.\n",
8342 p->host_no, -1, -1 , -1);
8343 aic7xxx_clear_intstat(p);
8344
8345 unpause_sequencer(p, /* unpause_always */ TRUE);
8346
8347 return (found);
8348 }
8349
8350 /*+F*************************************************************************
8351 * Function:
8352 * aic7xxx_chip_reset
8353 *
8354 * Description:
8355 * Perform a chip reset on the aic7xxx SCSI controller. The controller
8356 * is paused upon return.
8357 *-F*************************************************************************/
8358 static int
8359 aic7xxx_chip_reset(struct aic7xxx_host *p)
8360 {
8361 unsigned char sblkctl;
8362 int wait;
8363
8364 /*
8365 * For some 274x boards, we must clear the CHIPRST bit and pause
8366 * the sequencer. For some reason, this makes the driver work.
8367 */
8368 aic_outb(p, PAUSE | CHIPRST, HCNTRL);
8369
8370 /*
8371 * In the future, we may call this function as a last resort for
8372 * error handling. Let's be nice and not do any unnecessary delays.
8373 */
8374 wait = 1000; /* 1 msec (1000 * 1 msec) */
8375 while (--wait && !(aic_inb(p, HCNTRL) & CHIPRSTACK))
8376 {
8377 udelay(1); /* 1 usec */
8378 }
8379
8380 pause_sequencer(p);
8381
8382 sblkctl = aic_inb(p, SBLKCTL) & (SELBUSB|SELWIDE);
8383 if (p->chip & AHC_PCI)
8384 sblkctl &= ~SELBUSB;
8385 switch( sblkctl )
8386 {
8387 case 0: /* normal narrow card */
8388 break;
8389 case 2: /* Wide card */
8390 p->features |= AHC_WIDE;
8391 break;
8392 case 8: /* Twin card */
8393 p->features |= AHC_TWIN;
8394 p->flags |= AHC_MULTI_CHANNEL;
8395 break;
8396 default: /* hmmm...we don't know what this is */
8397 printk(KERN_WARNING "aic7xxx: Unsupported adapter type %d, ignoring.\n",
8398 aic_inb(p, SBLKCTL) & 0x0a);
8399 return(-1);
8400 }
8401 return(0);
8402 }
8403
8404 /*+F*************************************************************************
8405 * Function:
8406 * aic7xxx_alloc
8407 *
8408 * Description:
8409 * Allocate and initialize a host structure. Returns NULL upon error
8410 * and a pointer to a aic7xxx_host struct upon success.
8411 *-F*************************************************************************/
8412 static struct aic7xxx_host *
8413 aic7xxx_alloc(struct scsi_host_template *sht, struct aic7xxx_host *temp)
8414 {
8415 struct aic7xxx_host *p = NULL;
8416 struct Scsi_Host *host;
8417
8418 /*
8419 * Allocate a storage area by registering us with the mid-level
8420 * SCSI layer.
8421 */
8422 host = scsi_register(sht, sizeof(struct aic7xxx_host));
8423
8424 if (host != NULL)
8425 {
8426 p = (struct aic7xxx_host *) host->hostdata;
8427 memset(p, 0, sizeof(struct aic7xxx_host));
8428 *p = *temp;
8429 p->host = host;
8430
8431 p->scb_data = kmalloc(sizeof(scb_data_type), GFP_ATOMIC);
8432 if (p->scb_data != NULL)
8433 {
8434 memset(p->scb_data, 0, sizeof(scb_data_type));
8435 scbq_init (&p->scb_data->free_scbs);
8436 }
8437 else
8438 {
8439 /*
8440 * For some reason we don't have enough memory. Free the
8441 * allocated memory for the aic7xxx_host struct, and return NULL.
8442 */
8443 release_region(p->base, MAXREG - MINREG);
8444 scsi_unregister(host);
8445 return(NULL);
8446 }
8447 p->host_no = host->host_no;
8448 }
8449 return (p);
8450 }
8451
8452 /*+F*************************************************************************
8453 * Function:
8454 * aic7xxx_free
8455 *
8456 * Description:
8457 * Frees and releases all resources associated with an instance of
8458 * the driver (struct aic7xxx_host *).
8459 *-F*************************************************************************/
8460 static void
8461 aic7xxx_free(struct aic7xxx_host *p)
8462 {
8463 int i;
8464
8465 /*
8466 * Free the allocated hardware SCB space.
8467 */
8468 if (p->scb_data != NULL)
8469 {
8470 struct aic7xxx_scb_dma *scb_dma = NULL;
8471 if (p->scb_data->hscbs != NULL)
8472 {
8473 pci_free_consistent(p->pdev, p->scb_data->hscbs_dma_len,
8474 p->scb_data->hscbs, p->scb_data->hscbs_dma);
8475 p->scb_data->hscbs = p->scb_data->hscb_kmalloc_ptr = NULL;
8476 }
8477 /*
8478 * Free the driver SCBs. These were allocated on an as-need
8479 * basis. We allocated these in groups depending on how many
8480 * we could fit into a given amount of RAM. The tail SCB for
8481 * these allocations has a pointer to the alloced area.
8482 */
8483 for (i = 0; i < p->scb_data->numscbs; i++)
8484 {
8485 if (p->scb_data->scb_array[i]->scb_dma != scb_dma)
8486 {
8487 scb_dma = p->scb_data->scb_array[i]->scb_dma;
8488 pci_free_consistent(p->pdev, scb_dma->dma_len,
8489 (void *)((unsigned long)scb_dma->dma_address
8490 - scb_dma->dma_offset),
8491 scb_dma->dma_address);
8492 }
8493 kfree(p->scb_data->scb_array[i]->kmalloc_ptr);
8494 p->scb_data->scb_array[i] = NULL;
8495 }
8496
8497 /*
8498 * Free the SCB data area.
8499 */
8500 kfree(p->scb_data);
8501 }
8502
8503 pci_free_consistent(p->pdev, 3*256, (void *)p->untagged_scbs, p->fifo_dma);
8504 }
8505
8506 /*+F*************************************************************************
8507 * Function:
8508 * aic7xxx_load_seeprom
8509 *
8510 * Description:
8511 * Load the seeprom and configure adapter and target settings.
8512 * Returns 1 if the load was successful and 0 otherwise.
8513 *-F*************************************************************************/
8514 static void
8515 aic7xxx_load_seeprom(struct aic7xxx_host *p, unsigned char *sxfrctl1)
8516 {
8517 int have_seeprom = 0;
8518 int i, max_targets, mask;
8519 unsigned char scsirate, scsi_conf;
8520 unsigned short scarray[128];
8521 struct seeprom_config *sc = (struct seeprom_config *) scarray;
8522
8523 if (aic7xxx_verbose & VERBOSE_PROBE2)
8524 {
8525 printk(KERN_INFO "aic7xxx: Loading serial EEPROM...");
8526 }
8527 switch (p->chip)
8528 {
8529 case (AHC_AIC7770|AHC_EISA): /* None of these adapters have seeproms. */
8530 if (aic_inb(p, SCSICONF) & TERM_ENB)
8531 p->flags |= AHC_TERM_ENB_A;
8532 if ( (p->features & AHC_TWIN) && (aic_inb(p, SCSICONF + 1) & TERM_ENB) )
8533 p->flags |= AHC_TERM_ENB_B;
8534 break;
8535
8536 case (AHC_AIC7770|AHC_VL):
8537 have_seeprom = read_284x_seeprom(p, (struct seeprom_config *) scarray);
8538 break;
8539
8540 default:
8541 have_seeprom = read_seeprom(p, (p->flags & (AHC_CHNLB|AHC_CHNLC)),
8542 scarray, p->sc_size, p->sc_type);
8543 if (!have_seeprom)
8544 {
8545 if(p->sc_type == C46)
8546 have_seeprom = read_seeprom(p, (p->flags & (AHC_CHNLB|AHC_CHNLC)),
8547 scarray, p->sc_size, C56_66);
8548 else
8549 have_seeprom = read_seeprom(p, (p->flags & (AHC_CHNLB|AHC_CHNLC)),
8550 scarray, p->sc_size, C46);
8551 }
8552 if (!have_seeprom)
8553 {
8554 p->sc_size = 128;
8555 have_seeprom = read_seeprom(p, 4*(p->flags & (AHC_CHNLB|AHC_CHNLC)),
8556 scarray, p->sc_size, p->sc_type);
8557 if (!have_seeprom)
8558 {
8559 if(p->sc_type == C46)
8560 have_seeprom = read_seeprom(p, 4*(p->flags & (AHC_CHNLB|AHC_CHNLC)),
8561 scarray, p->sc_size, C56_66);
8562 else
8563 have_seeprom = read_seeprom(p, 4*(p->flags & (AHC_CHNLB|AHC_CHNLC)),
8564 scarray, p->sc_size, C46);
8565 }
8566 }
8567 break;
8568 }
8569
8570 if (!have_seeprom)
8571 {
8572 if (aic7xxx_verbose & VERBOSE_PROBE2)
8573 {
8574 printk("\naic7xxx: No SEEPROM available.\n");
8575 }
8576 p->flags |= AHC_NEWEEPROM_FMT;
8577 if (aic_inb(p, SCSISEQ) == 0)
8578 {
8579 p->flags |= AHC_USEDEFAULTS;
8580 p->flags &= ~AHC_BIOS_ENABLED;
8581 p->scsi_id = p->scsi_id_b = 7;
8582 *sxfrctl1 |= STPWEN;
8583 if (aic7xxx_verbose & VERBOSE_PROBE2)
8584 {
8585 printk("aic7xxx: Using default values.\n");
8586 }
8587 }
8588 else if (aic7xxx_verbose & VERBOSE_PROBE2)
8589 {
8590 printk("aic7xxx: Using leftover BIOS values.\n");
8591 }
8592 if ( ((p->chip & ~AHC_CHIPID_MASK) == AHC_PCI) && (*sxfrctl1 & STPWEN) )
8593 {
8594 p->flags |= AHC_TERM_ENB_SE_LOW | AHC_TERM_ENB_SE_HIGH;
8595 sc->adapter_control &= ~CFAUTOTERM;
8596 sc->adapter_control |= CFSTERM | CFWSTERM | CFLVDSTERM;
8597 }
8598 if (aic7xxx_extended)
8599 p->flags |= (AHC_EXTEND_TRANS_A | AHC_EXTEND_TRANS_B);
8600 else
8601 p->flags &= ~(AHC_EXTEND_TRANS_A | AHC_EXTEND_TRANS_B);
8602 }
8603 else
8604 {
8605 if (aic7xxx_verbose & VERBOSE_PROBE2)
8606 {
8607 printk("done\n");
8608 }
8609
8610 /*
8611 * Note things in our flags
8612 */
8613 p->flags |= AHC_SEEPROM_FOUND;
8614
8615 /*
8616 * Update the settings in sxfrctl1 to match the termination settings.
8617 */
8618 *sxfrctl1 = 0;
8619
8620 /*
8621 * Get our SCSI ID from the SEEPROM setting...
8622 */
8623 p->scsi_id = (sc->brtime_id & CFSCSIID);
8624
8625 /*
8626 * First process the settings that are different between the VLB
8627 * and PCI adapter seeproms.
8628 */
8629 if ((p->chip & AHC_CHIPID_MASK) == AHC_AIC7770)
8630 {
8631 /* VLB adapter seeproms */
8632 if (sc->bios_control & CF284XEXTEND)
8633 p->flags |= AHC_EXTEND_TRANS_A;
8634
8635 if (sc->adapter_control & CF284XSTERM)
8636 {
8637 *sxfrctl1 |= STPWEN;
8638 p->flags |= AHC_TERM_ENB_SE_LOW | AHC_TERM_ENB_SE_HIGH;
8639 }
8640 }
8641 else
8642 {
8643 /* PCI adapter seeproms */
8644 if (sc->bios_control & CFEXTEND)
8645 p->flags |= AHC_EXTEND_TRANS_A;
8646 if (sc->bios_control & CFBIOSEN)
8647 p->flags |= AHC_BIOS_ENABLED;
8648 else
8649 p->flags &= ~AHC_BIOS_ENABLED;
8650
8651 if (sc->adapter_control & CFSTERM)
8652 {
8653 *sxfrctl1 |= STPWEN;
8654 p->flags |= AHC_TERM_ENB_SE_LOW | AHC_TERM_ENB_SE_HIGH;
8655 }
8656 }
8657 memcpy(&p->sc, sc, sizeof(struct seeprom_config));
8658 }
8659
8660 p->discenable = 0;
8661
8662 /*
8663 * Limit to 16 targets just in case. The 2842 for one is known to
8664 * blow the max_targets setting, future cards might also.
8665 */
8666 max_targets = ((p->features & (AHC_TWIN | AHC_WIDE)) ? 16 : 8);
8667
8668 if (have_seeprom)
8669 {
8670 for (i = 0; i < max_targets; i++)
8671 {
8672 if( ((p->features & AHC_ULTRA) &&
8673 !(sc->adapter_control & CFULTRAEN) &&
8674 (sc->device_flags[i] & CFSYNCHISULTRA)) ||
8675 (sc->device_flags[i] & CFNEWULTRAFORMAT) )
8676 {
8677 p->flags |= AHC_NEWEEPROM_FMT;
8678 break;
8679 }
8680 }
8681 }
8682
8683 for (i = 0; i < max_targets; i++)
8684 {
8685 mask = (0x01 << i);
8686 if (!have_seeprom)
8687 {
8688 if (aic_inb(p, SCSISEQ) != 0)
8689 {
8690 /*
8691 * OK...the BIOS set things up and left behind the settings we need.
8692 * Just make our sc->device_flags[i] entry match what the card has
8693 * set for this device.
8694 */
8695 p->discenable =
8696 ~(aic_inb(p, DISC_DSB) | (aic_inb(p, DISC_DSB + 1) << 8) );
8697 p->ultraenb =
8698 (aic_inb(p, ULTRA_ENB) | (aic_inb(p, ULTRA_ENB + 1) << 8) );
8699 sc->device_flags[i] = (p->discenable & mask) ? CFDISC : 0;
8700 if (aic_inb(p, TARG_SCSIRATE + i) & WIDEXFER)
8701 sc->device_flags[i] |= CFWIDEB;
8702 if (p->features & AHC_ULTRA2)
8703 {
8704 if (aic_inb(p, TARG_OFFSET + i))
8705 {
8706 sc->device_flags[i] |= CFSYNCH;
8707 sc->device_flags[i] |= (aic_inb(p, TARG_SCSIRATE + i) & 0x07);
8708 if ( (aic_inb(p, TARG_SCSIRATE + i) & 0x18) == 0x18 )
8709 sc->device_flags[i] |= CFSYNCHISULTRA;
8710 }
8711 }
8712 else
8713 {
8714 if (aic_inb(p, TARG_SCSIRATE + i) & ~WIDEXFER)
8715 {
8716 sc->device_flags[i] |= CFSYNCH;
8717 if (p->features & AHC_ULTRA)
8718 sc->device_flags[i] |= ((p->ultraenb & mask) ?
8719 CFSYNCHISULTRA : 0);
8720 }
8721 }
8722 }
8723 else
8724 {
8725 /*
8726 * Assume the BIOS has NOT been run on this card and nothing between
8727 * the card and the devices is configured yet.
8728 */
8729 sc->device_flags[i] = CFDISC;
8730 if (p->features & AHC_WIDE)
8731 sc->device_flags[i] |= CFWIDEB;
8732 if (p->features & AHC_ULTRA3)
8733 sc->device_flags[i] |= 2;
8734 else if (p->features & AHC_ULTRA2)
8735 sc->device_flags[i] |= 3;
8736 else if (p->features & AHC_ULTRA)
8737 sc->device_flags[i] |= CFSYNCHISULTRA;
8738 sc->device_flags[i] |= CFSYNCH;
8739 aic_outb(p, 0, TARG_SCSIRATE + i);
8740 if (p->features & AHC_ULTRA2)
8741 aic_outb(p, 0, TARG_OFFSET + i);
8742 }
8743 }
8744 if (sc->device_flags[i] & CFDISC)
8745 {
8746 p->discenable |= mask;
8747 }
8748 if (p->flags & AHC_NEWEEPROM_FMT)
8749 {
8750 if ( !(p->features & AHC_ULTRA2) )
8751 {
8752 /*
8753 * I know of two different Ultra BIOSes that do this differently.
8754 * One on the Gigabyte 6BXU mb that wants flags[i] & CFXFER to
8755 * be == to 0x03 and SYNCHISULTRA to be true to mean 40MByte/s
8756 * while on the IBM Netfinity 5000 they want the same thing
8757 * to be something else, while flags[i] & CFXFER == 0x03 and
8758 * SYNCHISULTRA false should be 40MByte/s. So, we set both to
8759 * 40MByte/s and the lower speeds be damned. People will have
8760 * to select around the conversely mapped lower speeds in order
8761 * to select lower speeds on these boards.
8762 */
8763 if ( (sc->device_flags[i] & CFNEWULTRAFORMAT) &&
8764 ((sc->device_flags[i] & CFXFER) == 0x03) )
8765 {
8766 sc->device_flags[i] &= ~CFXFER;
8767 sc->device_flags[i] |= CFSYNCHISULTRA;
8768 }
8769 if (sc->device_flags[i] & CFSYNCHISULTRA)
8770 {
8771 p->ultraenb |= mask;
8772 }
8773 }
8774 else if ( !(sc->device_flags[i] & CFNEWULTRAFORMAT) &&
8775 (p->features & AHC_ULTRA2) &&
8776 (sc->device_flags[i] & CFSYNCHISULTRA) )
8777 {
8778 p->ultraenb |= mask;
8779 }
8780 }
8781 else if (sc->adapter_control & CFULTRAEN)
8782 {
8783 p->ultraenb |= mask;
8784 }
8785 if ( (sc->device_flags[i] & CFSYNCH) == 0)
8786 {
8787 sc->device_flags[i] &= ~CFXFER;
8788 p->ultraenb &= ~mask;
8789 p->user[i].offset = 0;
8790 p->user[i].period = 0;
8791 p->user[i].options = 0;
8792 }
8793 else
8794 {
8795 if (p->features & AHC_ULTRA3)
8796 {
8797 p->user[i].offset = MAX_OFFSET_ULTRA2;
8798 if( (sc->device_flags[i] & CFXFER) < 0x03 )
8799 {
8800 scsirate = (sc->device_flags[i] & CFXFER);
8801 p->user[i].options = MSG_EXT_PPR_OPTION_DT_CRC;
8802 }
8803 else
8804 {
8805 scsirate = (sc->device_flags[i] & CFXFER) |
8806 ((p->ultraenb & mask) ? 0x18 : 0x10);
8807 p->user[i].options = 0;
8808 }
8809 p->user[i].period = aic7xxx_find_period(p, scsirate,
8810 AHC_SYNCRATE_ULTRA3);
8811 }
8812 else if (p->features & AHC_ULTRA2)
8813 {
8814 p->user[i].offset = MAX_OFFSET_ULTRA2;
8815 scsirate = (sc->device_flags[i] & CFXFER) |
8816 ((p->ultraenb & mask) ? 0x18 : 0x10);
8817 p->user[i].options = 0;
8818 p->user[i].period = aic7xxx_find_period(p, scsirate,
8819 AHC_SYNCRATE_ULTRA2);
8820 }
8821 else
8822 {
8823 scsirate = (sc->device_flags[i] & CFXFER) << 4;
8824 p->user[i].options = 0;
8825 p->user[i].offset = MAX_OFFSET_8BIT;
8826 if (p->features & AHC_ULTRA)
8827 {
8828 short ultraenb;
8829 ultraenb = aic_inb(p, ULTRA_ENB) |
8830 (aic_inb(p, ULTRA_ENB + 1) << 8);
8831 p->user[i].period = aic7xxx_find_period(p, scsirate,
8832 (p->ultraenb & mask) ?
8833 AHC_SYNCRATE_ULTRA :
8834 AHC_SYNCRATE_FAST);
8835 }
8836 else
8837 p->user[i].period = aic7xxx_find_period(p, scsirate,
8838 AHC_SYNCRATE_FAST);
8839 }
8840 }
8841 if ( (sc->device_flags[i] & CFWIDEB) && (p->features & AHC_WIDE) )
8842 {
8843 p->user[i].width = MSG_EXT_WDTR_BUS_16_BIT;
8844 }
8845 else
8846 {
8847 p->user[i].width = MSG_EXT_WDTR_BUS_8_BIT;
8848 }
8849 }
8850 aic_outb(p, ~(p->discenable & 0xFF), DISC_DSB);
8851 aic_outb(p, ~((p->discenable >> 8) & 0xFF), DISC_DSB + 1);
8852
8853 /*
8854 * We set the p->ultraenb from the SEEPROM to begin with, but now we make
8855 * it match what is already down in the card. If we are doing a reset
8856 * on the card then this will get put back to a default state anyway.
8857 * This allows us to not have to pre-emptively negotiate when using the
8858 * no_reset option.
8859 */
8860 if (p->features & AHC_ULTRA)
8861 p->ultraenb = aic_inb(p, ULTRA_ENB) | (aic_inb(p, ULTRA_ENB + 1) << 8);
8862
8863
8864 scsi_conf = (p->scsi_id & HSCSIID);
8865
8866 if(have_seeprom)
8867 {
8868 p->adapter_control = sc->adapter_control;
8869 p->bios_control = sc->bios_control;
8870
8871 switch (p->chip & AHC_CHIPID_MASK)
8872 {
8873 case AHC_AIC7895:
8874 case AHC_AIC7896:
8875 case AHC_AIC7899:
8876 if (p->adapter_control & CFBPRIMARY)
8877 p->flags |= AHC_CHANNEL_B_PRIMARY;
8878 default:
8879 break;
8880 }
8881
8882 if (sc->adapter_control & CFSPARITY)
8883 scsi_conf |= ENSPCHK;
8884 }
8885 else
8886 {
8887 scsi_conf |= ENSPCHK | RESET_SCSI;
8888 }
8889
8890 /*
8891 * Only set the SCSICONF and SCSICONF + 1 registers if we are a PCI card.
8892 * The 2842 and 2742 cards already have these registers set and we don't
8893 * want to muck with them since we don't set all the bits they do.
8894 */
8895 if ( (p->chip & ~AHC_CHIPID_MASK) == AHC_PCI )
8896 {
8897 /* Set the host ID */
8898 aic_outb(p, scsi_conf, SCSICONF);
8899 /* In case we are a wide card */
8900 aic_outb(p, p->scsi_id, SCSICONF + 1);
8901 }
8902 }
8903
8904 /*+F*************************************************************************
8905 * Function:
8906 * aic7xxx_configure_bugs
8907 *
8908 * Description:
8909 * Take the card passed in and set the appropriate bug flags based upon
8910 * the card model. Also make any changes needed to device registers or
8911 * PCI registers while we are here.
8912 *-F*************************************************************************/
8913 static void
8914 aic7xxx_configure_bugs(struct aic7xxx_host *p)
8915 {
8916 unsigned short tmp_word;
8917
8918 switch(p->chip & AHC_CHIPID_MASK)
8919 {
8920 case AHC_AIC7860:
8921 p->bugs |= AHC_BUG_PCI_2_1_RETRY;
8922 /* fall through */
8923 case AHC_AIC7850:
8924 case AHC_AIC7870:
8925 p->bugs |= AHC_BUG_TMODE_WIDEODD | AHC_BUG_CACHETHEN | AHC_BUG_PCI_MWI;
8926 break;
8927 case AHC_AIC7880:
8928 p->bugs |= AHC_BUG_TMODE_WIDEODD | AHC_BUG_PCI_2_1_RETRY |
8929 AHC_BUG_CACHETHEN | AHC_BUG_PCI_MWI;
8930 break;
8931 case AHC_AIC7890:
8932 p->bugs |= AHC_BUG_AUTOFLUSH | AHC_BUG_CACHETHEN;
8933 break;
8934 case AHC_AIC7892:
8935 p->bugs |= AHC_BUG_SCBCHAN_UPLOAD;
8936 break;
8937 case AHC_AIC7895:
8938 p->bugs |= AHC_BUG_TMODE_WIDEODD | AHC_BUG_PCI_2_1_RETRY |
8939 AHC_BUG_CACHETHEN | AHC_BUG_PCI_MWI;
8940 break;
8941 case AHC_AIC7896:
8942 p->bugs |= AHC_BUG_CACHETHEN_DIS;
8943 break;
8944 case AHC_AIC7899:
8945 p->bugs |= AHC_BUG_SCBCHAN_UPLOAD;
8946 break;
8947 default:
8948 /* Nothing to do */
8949 break;
8950 }
8951
8952 /*
8953 * Now handle the bugs that require PCI register or card register tweaks
8954 */
8955 pci_read_config_word(p->pdev, PCI_COMMAND, &tmp_word);
8956 if(p->bugs & AHC_BUG_PCI_MWI)
8957 {
8958 tmp_word &= ~PCI_COMMAND_INVALIDATE;
8959 }
8960 else
8961 {
8962 tmp_word |= PCI_COMMAND_INVALIDATE;
8963 }
8964 pci_write_config_word(p->pdev, PCI_COMMAND, tmp_word);
8965
8966 if(p->bugs & AHC_BUG_CACHETHEN)
8967 {
8968 aic_outb(p, aic_inb(p, DSCOMMAND0) & ~CACHETHEN, DSCOMMAND0);
8969 }
8970 else if (p->bugs & AHC_BUG_CACHETHEN_DIS)
8971 {
8972 aic_outb(p, aic_inb(p, DSCOMMAND0) | CACHETHEN, DSCOMMAND0);
8973 }
8974
8975 return;
8976 }
8977
8978
8979 /*+F*************************************************************************
8980 * Function:
8981 * aic7xxx_detect
8982 *
8983 * Description:
8984 * Try to detect and register an Adaptec 7770 or 7870 SCSI controller.
8985 *
8986 * XXX - This should really be called aic7xxx_probe(). A sequence of
8987 * probe(), attach()/detach(), and init() makes more sense than
8988 * one do-it-all function. This may be useful when (and if) the
8989 * mid-level SCSI code is overhauled.
8990 *-F*************************************************************************/
8991 static int
8992 aic7xxx_detect(struct scsi_host_template *template)
8993 {
8994 struct aic7xxx_host *temp_p = NULL;
8995 struct aic7xxx_host *current_p = NULL;
8996 struct aic7xxx_host *list_p = NULL;
8997 int found = 0;
8998 #if defined(__i386__) || defined(__alpha__)
8999 ahc_flag_type flags = 0;
9000 int type;
9001 #endif
9002 unsigned char sxfrctl1;
9003 #if defined(__i386__) || defined(__alpha__)
9004 unsigned char hcntrl, hostconf;
9005 unsigned int slot, base;
9006 #endif
9007
9008 #ifdef MODULE
9009 /*
9010 * If we are called as a module, the aic7xxx pointer may not be null
9011 * and it would point to our bootup string, just like on the lilo
9012 * command line. IF not NULL, then process this config string with
9013 * aic7xxx_setup
9014 */
9015 if(aic7xxx)
9016 aic7xxx_setup(aic7xxx);
9017 #endif
9018
9019 template->proc_name = "aic7xxx";
9020 template->sg_tablesize = AIC7XXX_MAX_SG;
9021
9022
9023 #ifdef CONFIG_PCI
9024 /*
9025 * PCI-bus probe.
9026 */
9027 {
9028 static struct
9029 {
9030 unsigned short vendor_id;
9031 unsigned short device_id;
9032 ahc_chip chip;
9033 ahc_flag_type flags;
9034 ahc_feature features;
9035 int board_name_index;
9036 unsigned short seeprom_size;
9037 unsigned short seeprom_type;
9038 } const aic_pdevs[] = {
9039 {PCI_VENDOR_ID_ADAPTEC, PCI_DEVICE_ID_ADAPTEC_7810, AHC_NONE,
9040 AHC_FNONE, AHC_FENONE, 1,
9041 32, C46 },
9042 {PCI_VENDOR_ID_ADAPTEC, PCI_DEVICE_ID_ADAPTEC_7850, AHC_AIC7850,
9043 AHC_PAGESCBS, AHC_AIC7850_FE, 5,
9044 32, C46 },
9045 {PCI_VENDOR_ID_ADAPTEC, PCI_DEVICE_ID_ADAPTEC_7855, AHC_AIC7850,
9046 AHC_PAGESCBS, AHC_AIC7850_FE, 6,
9047 32, C46 },
9048 {PCI_VENDOR_ID_ADAPTEC, PCI_DEVICE_ID_ADAPTEC_7821, AHC_AIC7860,
9049 AHC_PAGESCBS | AHC_NEWEEPROM_FMT | AHC_BIOS_ENABLED,
9050 AHC_AIC7860_FE, 7,
9051 32, C46 },
9052 {PCI_VENDOR_ID_ADAPTEC, PCI_DEVICE_ID_ADAPTEC_3860, AHC_AIC7860,
9053 AHC_PAGESCBS | AHC_NEWEEPROM_FMT | AHC_BIOS_ENABLED,
9054 AHC_AIC7860_FE, 7,
9055 32, C46 },
9056 {PCI_VENDOR_ID_ADAPTEC, PCI_DEVICE_ID_ADAPTEC_38602, AHC_AIC7860,
9057 AHC_PAGESCBS | AHC_NEWEEPROM_FMT | AHC_BIOS_ENABLED,
9058 AHC_AIC7860_FE, 7,
9059 32, C46 },
9060 {PCI_VENDOR_ID_ADAPTEC, PCI_DEVICE_ID_ADAPTEC_38602, AHC_AIC7860,
9061 AHC_PAGESCBS | AHC_NEWEEPROM_FMT | AHC_BIOS_ENABLED,
9062 AHC_AIC7860_FE, 7,
9063 32, C46 },
9064 {PCI_VENDOR_ID_ADAPTEC, PCI_DEVICE_ID_ADAPTEC_7860, AHC_AIC7860,
9065 AHC_PAGESCBS | AHC_NEWEEPROM_FMT | AHC_BIOS_ENABLED | AHC_MOTHERBOARD,
9066 AHC_AIC7860_FE, 7,
9067 32, C46 },
9068 {PCI_VENDOR_ID_ADAPTEC, PCI_DEVICE_ID_ADAPTEC_7861, AHC_AIC7860,
9069 AHC_PAGESCBS | AHC_NEWEEPROM_FMT | AHC_BIOS_ENABLED,
9070 AHC_AIC7860_FE, 8,
9071 32, C46 },
9072 {PCI_VENDOR_ID_ADAPTEC, PCI_DEVICE_ID_ADAPTEC_7870, AHC_AIC7870,
9073 AHC_PAGESCBS | AHC_BIOS_ENABLED | AHC_MOTHERBOARD,
9074 AHC_AIC7870_FE, 9,
9075 32, C46 },
9076 {PCI_VENDOR_ID_ADAPTEC, PCI_DEVICE_ID_ADAPTEC_7871, AHC_AIC7870,
9077 AHC_PAGESCBS | AHC_BIOS_ENABLED, AHC_AIC7870_FE, 10,
9078 32, C46 },
9079 {PCI_VENDOR_ID_ADAPTEC, PCI_DEVICE_ID_ADAPTEC_7872, AHC_AIC7870,
9080 AHC_PAGESCBS | AHC_BIOS_ENABLED | AHC_MULTI_CHANNEL,
9081 AHC_AIC7870_FE, 11,
9082 32, C56_66 },
9083 {PCI_VENDOR_ID_ADAPTEC, PCI_DEVICE_ID_ADAPTEC_7873, AHC_AIC7870,
9084 AHC_PAGESCBS | AHC_BIOS_ENABLED | AHC_MULTI_CHANNEL,
9085 AHC_AIC7870_FE, 12,
9086 32, C56_66 },
9087 {PCI_VENDOR_ID_ADAPTEC, PCI_DEVICE_ID_ADAPTEC_7874, AHC_AIC7870,
9088 AHC_PAGESCBS | AHC_BIOS_ENABLED, AHC_AIC7870_FE, 13,
9089 32, C46 },
9090 {PCI_VENDOR_ID_ADAPTEC, PCI_DEVICE_ID_ADAPTEC_7880, AHC_AIC7880,
9091 AHC_PAGESCBS | AHC_BIOS_ENABLED | AHC_MOTHERBOARD,
9092 AHC_AIC7880_FE, 14,
9093 32, C46 },
9094 {PCI_VENDOR_ID_ADAPTEC, PCI_DEVICE_ID_ADAPTEC_7881, AHC_AIC7880,
9095 AHC_PAGESCBS | AHC_BIOS_ENABLED, AHC_AIC7880_FE, 15,
9096 32, C46 },
9097 {PCI_VENDOR_ID_ADAPTEC, PCI_DEVICE_ID_ADAPTEC_7882, AHC_AIC7880,
9098 AHC_PAGESCBS | AHC_BIOS_ENABLED | AHC_MULTI_CHANNEL,
9099 AHC_AIC7880_FE, 16,
9100 32, C56_66 },
9101 {PCI_VENDOR_ID_ADAPTEC, PCI_DEVICE_ID_ADAPTEC_7883, AHC_AIC7880,
9102 AHC_PAGESCBS | AHC_BIOS_ENABLED | AHC_MULTI_CHANNEL,
9103 AHC_AIC7880_FE, 17,
9104 32, C56_66 },
9105 {PCI_VENDOR_ID_ADAPTEC, PCI_DEVICE_ID_ADAPTEC_7884, AHC_AIC7880,
9106 AHC_PAGESCBS | AHC_BIOS_ENABLED, AHC_AIC7880_FE, 18,
9107 32, C46 },
9108 {PCI_VENDOR_ID_ADAPTEC, PCI_DEVICE_ID_ADAPTEC_7885, AHC_AIC7880,
9109 AHC_PAGESCBS | AHC_BIOS_ENABLED, AHC_AIC7880_FE, 18,
9110 32, C46 },
9111 {PCI_VENDOR_ID_ADAPTEC, PCI_DEVICE_ID_ADAPTEC_7886, AHC_AIC7880,
9112 AHC_PAGESCBS | AHC_BIOS_ENABLED, AHC_AIC7880_FE, 18,
9113 32, C46 },
9114 {PCI_VENDOR_ID_ADAPTEC, PCI_DEVICE_ID_ADAPTEC_7887, AHC_AIC7880,
9115 AHC_PAGESCBS | AHC_BIOS_ENABLED, AHC_AIC7880_FE | AHC_NEW_AUTOTERM, 19,
9116 32, C46 },
9117 {PCI_VENDOR_ID_ADAPTEC, PCI_DEVICE_ID_ADAPTEC_7888, AHC_AIC7880,
9118 AHC_PAGESCBS | AHC_BIOS_ENABLED, AHC_AIC7880_FE, 18,
9119 32, C46 },
9120 {PCI_VENDOR_ID_ADAPTEC, PCI_DEVICE_ID_ADAPTEC_7895, AHC_AIC7895,
9121 AHC_PAGESCBS | AHC_NEWEEPROM_FMT | AHC_BIOS_ENABLED | AHC_MULTI_CHANNEL,
9122 AHC_AIC7895_FE, 20,
9123 32, C56_66 },
9124 {PCI_VENDOR_ID_ADAPTEC2, PCI_DEVICE_ID_ADAPTEC2_7890, AHC_AIC7890,
9125 AHC_PAGESCBS | AHC_NEWEEPROM_FMT | AHC_BIOS_ENABLED,
9126 AHC_AIC7890_FE, 21,
9127 32, C46 },
9128 {PCI_VENDOR_ID_ADAPTEC2, PCI_DEVICE_ID_ADAPTEC2_7890B, AHC_AIC7890,
9129 AHC_PAGESCBS | AHC_NEWEEPROM_FMT | AHC_BIOS_ENABLED,
9130 AHC_AIC7890_FE, 21,
9131 32, C46 },
9132 {PCI_VENDOR_ID_ADAPTEC2, PCI_DEVICE_ID_ADAPTEC2_2930U2, AHC_AIC7890,
9133 AHC_PAGESCBS | AHC_NEWEEPROM_FMT | AHC_BIOS_ENABLED,
9134 AHC_AIC7890_FE, 22,
9135 32, C46 },
9136 {PCI_VENDOR_ID_ADAPTEC2, PCI_DEVICE_ID_ADAPTEC2_2940U2, AHC_AIC7890,
9137 AHC_PAGESCBS | AHC_NEWEEPROM_FMT | AHC_BIOS_ENABLED,
9138 AHC_AIC7890_FE, 23,
9139 32, C46 },
9140 {PCI_VENDOR_ID_ADAPTEC2, PCI_DEVICE_ID_ADAPTEC2_7896, AHC_AIC7896,
9141 AHC_PAGESCBS | AHC_NEWEEPROM_FMT | AHC_BIOS_ENABLED | AHC_MULTI_CHANNEL,
9142 AHC_AIC7896_FE, 24,
9143 32, C56_66 },
9144 {PCI_VENDOR_ID_ADAPTEC2, PCI_DEVICE_ID_ADAPTEC2_3940U2, AHC_AIC7896,
9145 AHC_PAGESCBS | AHC_NEWEEPROM_FMT | AHC_BIOS_ENABLED | AHC_MULTI_CHANNEL,
9146 AHC_AIC7896_FE, 25,
9147 32, C56_66 },
9148 {PCI_VENDOR_ID_ADAPTEC2, PCI_DEVICE_ID_ADAPTEC2_3950U2D, AHC_AIC7896,
9149 AHC_PAGESCBS | AHC_NEWEEPROM_FMT | AHC_BIOS_ENABLED | AHC_MULTI_CHANNEL,
9150 AHC_AIC7896_FE, 26,
9151 32, C56_66 },
9152 {PCI_VENDOR_ID_ADAPTEC, PCI_DEVICE_ID_ADAPTEC_1480A, AHC_AIC7860,
9153 AHC_PAGESCBS | AHC_NEWEEPROM_FMT | AHC_BIOS_ENABLED | AHC_NO_STPWEN,
9154 AHC_AIC7860_FE, 27,
9155 32, C46 },
9156 {PCI_VENDOR_ID_ADAPTEC2, PCI_DEVICE_ID_ADAPTEC2_7892A, AHC_AIC7892,
9157 AHC_PAGESCBS | AHC_NEWEEPROM_FMT | AHC_BIOS_ENABLED,
9158 AHC_AIC7892_FE, 28,
9159 32, C46 },
9160 {PCI_VENDOR_ID_ADAPTEC2, PCI_DEVICE_ID_ADAPTEC2_7892B, AHC_AIC7892,
9161 AHC_PAGESCBS | AHC_NEWEEPROM_FMT | AHC_BIOS_ENABLED,
9162 AHC_AIC7892_FE, 28,
9163 32, C46 },
9164 {PCI_VENDOR_ID_ADAPTEC2, PCI_DEVICE_ID_ADAPTEC2_7892D, AHC_AIC7892,
9165 AHC_PAGESCBS | AHC_NEWEEPROM_FMT | AHC_BIOS_ENABLED,
9166 AHC_AIC7892_FE, 28,
9167 32, C46 },
9168 {PCI_VENDOR_ID_ADAPTEC2, PCI_DEVICE_ID_ADAPTEC2_7892P, AHC_AIC7892,
9169 AHC_PAGESCBS | AHC_NEWEEPROM_FMT | AHC_BIOS_ENABLED,
9170 AHC_AIC7892_FE, 28,
9171 32, C46 },
9172 {PCI_VENDOR_ID_ADAPTEC2, PCI_DEVICE_ID_ADAPTEC2_7899A, AHC_AIC7899,
9173 AHC_PAGESCBS | AHC_NEWEEPROM_FMT | AHC_BIOS_ENABLED | AHC_MULTI_CHANNEL,
9174 AHC_AIC7899_FE, 29,
9175 32, C56_66 },
9176 {PCI_VENDOR_ID_ADAPTEC2, PCI_DEVICE_ID_ADAPTEC2_7899B, AHC_AIC7899,
9177 AHC_PAGESCBS | AHC_NEWEEPROM_FMT | AHC_BIOS_ENABLED | AHC_MULTI_CHANNEL,
9178 AHC_AIC7899_FE, 29,
9179 32, C56_66 },
9180 {PCI_VENDOR_ID_ADAPTEC2, PCI_DEVICE_ID_ADAPTEC2_7899D, AHC_AIC7899,
9181 AHC_PAGESCBS | AHC_NEWEEPROM_FMT | AHC_BIOS_ENABLED | AHC_MULTI_CHANNEL,
9182 AHC_AIC7899_FE, 29,
9183 32, C56_66 },
9184 {PCI_VENDOR_ID_ADAPTEC2, PCI_DEVICE_ID_ADAPTEC2_7899P, AHC_AIC7899,
9185 AHC_PAGESCBS | AHC_NEWEEPROM_FMT | AHC_BIOS_ENABLED | AHC_MULTI_CHANNEL,
9186 AHC_AIC7899_FE, 29,
9187 32, C56_66 },
9188 };
9189
9190 unsigned short command;
9191 unsigned int devconfig, i, oldverbose;
9192 struct pci_dev *pdev = NULL;
9193
9194 for (i = 0; i < ARRAY_SIZE(aic_pdevs); i++)
9195 {
9196 pdev = NULL;
9197 while ((pdev = pci_get_device(aic_pdevs[i].vendor_id,
9198 aic_pdevs[i].device_id,
9199 pdev))) {
9200 if (pci_enable_device(pdev))
9201 continue;
9202 if ( i == 0 ) /* We found one, but it's the 7810 RAID cont. */
9203 {
9204 if (aic7xxx_verbose & (VERBOSE_PROBE|VERBOSE_PROBE2))
9205 {
9206 printk(KERN_INFO "aic7xxx: The 7810 RAID controller is not "
9207 "supported by\n");
9208 printk(KERN_INFO " this driver, we are ignoring it.\n");
9209 }
9210 }
9211 else if ( (temp_p = kmalloc(sizeof(struct aic7xxx_host),
9212 GFP_ATOMIC)) != NULL )
9213 {
9214 memset(temp_p, 0, sizeof(struct aic7xxx_host));
9215 temp_p->chip = aic_pdevs[i].chip | AHC_PCI;
9216 temp_p->flags = aic_pdevs[i].flags;
9217 temp_p->features = aic_pdevs[i].features;
9218 temp_p->board_name_index = aic_pdevs[i].board_name_index;
9219 temp_p->sc_size = aic_pdevs[i].seeprom_size;
9220 temp_p->sc_type = aic_pdevs[i].seeprom_type;
9221
9222 /*
9223 * Read sundry information from PCI BIOS.
9224 */
9225 temp_p->irq = pdev->irq;
9226 temp_p->pdev = pdev;
9227 temp_p->pci_bus = pdev->bus->number;
9228 temp_p->pci_device_fn = pdev->devfn;
9229 temp_p->base = pci_resource_start(pdev, 0);
9230 temp_p->mbase = pci_resource_start(pdev, 1);
9231 current_p = list_p;
9232 while(current_p && temp_p)
9233 {
9234 if ( ((current_p->pci_bus == temp_p->pci_bus) &&
9235 (current_p->pci_device_fn == temp_p->pci_device_fn)) ||
9236 (temp_p->base && (current_p->base == temp_p->base)) ||
9237 (temp_p->mbase && (current_p->mbase == temp_p->mbase)) )
9238 {
9239 /* duplicate PCI entry, skip it */
9240 kfree(temp_p);
9241 temp_p = NULL;
9242 continue;
9243 }
9244 current_p = current_p->next;
9245 }
9246 if(pci_request_regions(temp_p->pdev, "aic7xxx"))
9247 {
9248 printk("aic7xxx: <%s> at PCI %d/%d/%d\n",
9249 board_names[aic_pdevs[i].board_name_index],
9250 temp_p->pci_bus,
9251 PCI_SLOT(temp_p->pci_device_fn),
9252 PCI_FUNC(temp_p->pci_device_fn));
9253 printk("aic7xxx: I/O ports already in use, ignoring.\n");
9254 kfree(temp_p);
9255 continue;
9256 }
9257
9258 if (aic7xxx_verbose & VERBOSE_PROBE2)
9259 printk("aic7xxx: <%s> at PCI %d/%d\n",
9260 board_names[aic_pdevs[i].board_name_index],
9261 PCI_SLOT(pdev->devfn),
9262 PCI_FUNC(pdev->devfn));
9263 pci_read_config_word(pdev, PCI_COMMAND, &command);
9264 if (aic7xxx_verbose & VERBOSE_PROBE2)
9265 {
9266 printk("aic7xxx: Initial PCI_COMMAND value was 0x%x\n",
9267 (int)command);
9268 }
9269 #ifdef AIC7XXX_STRICT_PCI_SETUP
9270 command |= PCI_COMMAND_SERR | PCI_COMMAND_PARITY |
9271 PCI_COMMAND_MASTER | PCI_COMMAND_MEMORY | PCI_COMMAND_IO;
9272 #else
9273 command |= PCI_COMMAND_MASTER | PCI_COMMAND_MEMORY | PCI_COMMAND_IO;
9274 #endif
9275 command &= ~PCI_COMMAND_INVALIDATE;
9276 if (aic7xxx_pci_parity == 0)
9277 command &= ~(PCI_COMMAND_SERR | PCI_COMMAND_PARITY);
9278 pci_write_config_word(pdev, PCI_COMMAND, command);
9279 #ifdef AIC7XXX_STRICT_PCI_SETUP
9280 pci_read_config_dword(pdev, DEVCONFIG, &devconfig);
9281 if (aic7xxx_verbose & VERBOSE_PROBE2)
9282 {
9283 printk("aic7xxx: Initial DEVCONFIG value was 0x%x\n", devconfig);
9284 }
9285 devconfig |= 0x80000040;
9286 pci_write_config_dword(pdev, DEVCONFIG, devconfig);
9287 #endif /* AIC7XXX_STRICT_PCI_SETUP */
9288
9289 temp_p->unpause = INTEN;
9290 temp_p->pause = temp_p->unpause | PAUSE;
9291 if ( ((temp_p->base == 0) &&
9292 (temp_p->mbase == 0)) ||
9293 (temp_p->irq == 0) )
9294 {
9295 printk("aic7xxx: <%s> at PCI %d/%d/%d\n",
9296 board_names[aic_pdevs[i].board_name_index],
9297 temp_p->pci_bus,
9298 PCI_SLOT(temp_p->pci_device_fn),
9299 PCI_FUNC(temp_p->pci_device_fn));
9300 printk("aic7xxx: Controller disabled by BIOS, ignoring.\n");
9301 goto skip_pci_controller;
9302 }
9303
9304 #ifdef MMAPIO
9305 if ( !(temp_p->base) || !(temp_p->flags & AHC_MULTI_CHANNEL) ||
9306 ((temp_p->chip != (AHC_AIC7870 | AHC_PCI)) &&
9307 (temp_p->chip != (AHC_AIC7880 | AHC_PCI))) )
9308 {
9309 temp_p->maddr = ioremap_nocache(temp_p->mbase, 256);
9310 if(temp_p->maddr)
9311 {
9312 /*
9313 * We need to check the I/O with the MMAPed address. Some machines
9314 * simply fail to work with MMAPed I/O and certain controllers.
9315 */
9316 if(aic_inb(temp_p, HCNTRL) == 0xff)
9317 {
9318 /*
9319 * OK.....we failed our test....go back to programmed I/O
9320 */
9321 printk(KERN_INFO "aic7xxx: <%s> at PCI %d/%d/%d\n",
9322 board_names[aic_pdevs[i].board_name_index],
9323 temp_p->pci_bus,
9324 PCI_SLOT(temp_p->pci_device_fn),
9325 PCI_FUNC(temp_p->pci_device_fn));
9326 printk(KERN_INFO "aic7xxx: MMAPed I/O failed, reverting to "
9327 "Programmed I/O.\n");
9328 iounmap(temp_p->maddr);
9329 temp_p->maddr = NULL;
9330 if(temp_p->base == 0)
9331 {
9332 printk("aic7xxx: <%s> at PCI %d/%d/%d\n",
9333 board_names[aic_pdevs[i].board_name_index],
9334 temp_p->pci_bus,
9335 PCI_SLOT(temp_p->pci_device_fn),
9336 PCI_FUNC(temp_p->pci_device_fn));
9337 printk("aic7xxx: Controller disabled by BIOS, ignoring.\n");
9338 goto skip_pci_controller;
9339 }
9340 }
9341 }
9342 }
9343 #endif
9344
9345 /*
9346 * We HAVE to make sure the first pause_sequencer() and all other
9347 * subsequent I/O that isn't PCI config space I/O takes place
9348 * after the MMAPed I/O region is configured and tested. The
9349 * problem is the PowerPC architecture that doesn't support
9350 * programmed I/O at all, so we have to have the MMAP I/O set up
9351 * for this pause to even work on those machines.
9352 */
9353 pause_sequencer(temp_p);
9354
9355 /*
9356 * Clear out any pending PCI error status messages. Also set
9357 * verbose to 0 so that we don't emit strange PCI error messages
9358 * while cleaning out the current status bits.
9359 */
9360 oldverbose = aic7xxx_verbose;
9361 aic7xxx_verbose = 0;
9362 aic7xxx_pci_intr(temp_p);
9363 aic7xxx_verbose = oldverbose;
9364
9365 temp_p->bios_address = 0;
9366
9367 /*
9368 * Remember how the card was setup in case there is no seeprom.
9369 */
9370 if (temp_p->features & AHC_ULTRA2)
9371 temp_p->scsi_id = aic_inb(temp_p, SCSIID_ULTRA2) & OID;
9372 else
9373 temp_p->scsi_id = aic_inb(temp_p, SCSIID) & OID;
9374 /*
9375 * Get current termination setting
9376 */
9377 sxfrctl1 = aic_inb(temp_p, SXFRCTL1);
9378
9379 if (aic7xxx_chip_reset(temp_p) == -1)
9380 {
9381 goto skip_pci_controller;
9382 }
9383 /*
9384 * Very quickly put the term setting back into the register since
9385 * the chip reset may cause odd things to happen. This is to keep
9386 * LVD busses with lots of drives from draining the power out of
9387 * the diffsense line before we get around to running the
9388 * configure_termination() function. Also restore the STPWLEVEL
9389 * bit of DEVCONFIG
9390 */
9391 aic_outb(temp_p, sxfrctl1, SXFRCTL1);
9392 pci_write_config_dword(temp_p->pdev, DEVCONFIG, devconfig);
9393 sxfrctl1 &= STPWEN;
9394
9395 /*
9396 * We need to set the CHNL? assignments before loading the SEEPROM
9397 * The 3940 and 3985 cards (original stuff, not any of the later
9398 * stuff) are 7870 and 7880 class chips. The Ultra2 stuff falls
9399 * under 7896 and 7897. The 7895 is in a class by itself :)
9400 */
9401 switch (temp_p->chip & AHC_CHIPID_MASK)
9402 {
9403 case AHC_AIC7870: /* 3840 / 3985 */
9404 case AHC_AIC7880: /* 3840 UW / 3985 UW */
9405 if(temp_p->flags & AHC_MULTI_CHANNEL)
9406 {
9407 switch(PCI_SLOT(temp_p->pci_device_fn))
9408 {
9409 case 5:
9410 temp_p->flags |= AHC_CHNLB;
9411 break;
9412 case 8:
9413 temp_p->flags |= AHC_CHNLB;
9414 break;
9415 case 12:
9416 temp_p->flags |= AHC_CHNLC;
9417 break;
9418 default:
9419 break;
9420 }
9421 }
9422 break;
9423
9424 case AHC_AIC7895: /* 7895 */
9425 case AHC_AIC7896: /* 7896/7 */
9426 case AHC_AIC7899: /* 7899 */
9427 if (PCI_FUNC(pdev->devfn) != 0)
9428 {
9429 temp_p->flags |= AHC_CHNLB;
9430 }
9431 /*
9432 * The 7895 is the only chipset that sets the SCBSIZE32 param
9433 * in the DEVCONFIG register. The Ultra2 chipsets use
9434 * the DSCOMMAND0 register instead.
9435 */
9436 if ((temp_p->chip & AHC_CHIPID_MASK) == AHC_AIC7895)
9437 {
9438 pci_read_config_dword(pdev, DEVCONFIG, &devconfig);
9439 devconfig |= SCBSIZE32;
9440 pci_write_config_dword(pdev, DEVCONFIG, devconfig);
9441 }
9442 break;
9443 default:
9444 break;
9445 }
9446
9447 /*
9448 * Loading of the SEEPROM needs to come after we've set the flags
9449 * to indicate possible CHNLB and CHNLC assigments. Otherwise,
9450 * on 394x and 398x cards we'll end up reading the wrong settings
9451 * for channels B and C
9452 */
9453 switch (temp_p->chip & AHC_CHIPID_MASK)
9454 {
9455 case AHC_AIC7892:
9456 case AHC_AIC7899:
9457 aic_outb(temp_p, 0, SCAMCTL);
9458 /*
9459 * Switch to the alt mode of the chip...
9460 */
9461 aic_outb(temp_p, aic_inb(temp_p, SFUNCT) | ALT_MODE, SFUNCT);
9462 /*
9463 * Set our options...the last two items set our CRC after x byte
9464 * count in target mode...
9465 */
9466 aic_outb(temp_p, AUTO_MSGOUT_DE | DIS_MSGIN_DUALEDGE, OPTIONMODE);
9467 aic_outb(temp_p, 0x00, 0x0b);
9468 aic_outb(temp_p, 0x10, 0x0a);
9469 /*
9470 * switch back to normal mode...
9471 */
9472 aic_outb(temp_p, aic_inb(temp_p, SFUNCT) & ~ALT_MODE, SFUNCT);
9473 aic_outb(temp_p, CRCVALCHKEN | CRCENDCHKEN | CRCREQCHKEN |
9474 TARGCRCENDEN | TARGCRCCNTEN,
9475 CRCCONTROL1);
9476 aic_outb(temp_p, ((aic_inb(temp_p, DSCOMMAND0) | USCBSIZE32 |
9477 MPARCKEN | CIOPARCKEN | CACHETHEN) &
9478 ~DPARCKEN), DSCOMMAND0);
9479 aic7xxx_load_seeprom(temp_p, &sxfrctl1);
9480 break;
9481 case AHC_AIC7890:
9482 case AHC_AIC7896:
9483 aic_outb(temp_p, 0, SCAMCTL);
9484 aic_outb(temp_p, (aic_inb(temp_p, DSCOMMAND0) |
9485 CACHETHEN | MPARCKEN | USCBSIZE32 |
9486 CIOPARCKEN) & ~DPARCKEN, DSCOMMAND0);
9487 aic7xxx_load_seeprom(temp_p, &sxfrctl1);
9488 break;
9489 case AHC_AIC7850:
9490 case AHC_AIC7860:
9491 /*
9492 * Set the DSCOMMAND0 register on these cards different from
9493 * on the 789x cards. Also, read the SEEPROM as well.
9494 */
9495 aic_outb(temp_p, (aic_inb(temp_p, DSCOMMAND0) |
9496 CACHETHEN | MPARCKEN) & ~DPARCKEN,
9497 DSCOMMAND0);
9498 /* FALLTHROUGH */
9499 default:
9500 aic7xxx_load_seeprom(temp_p, &sxfrctl1);
9501 break;
9502 case AHC_AIC7880:
9503 /*
9504 * Check the rev of the chipset before we change DSCOMMAND0
9505 */
9506 pci_read_config_dword(pdev, DEVCONFIG, &devconfig);
9507 if ((devconfig & 0xff) >= 1)
9508 {
9509 aic_outb(temp_p, (aic_inb(temp_p, DSCOMMAND0) |
9510 CACHETHEN | MPARCKEN) & ~DPARCKEN,
9511 DSCOMMAND0);
9512 }
9513 aic7xxx_load_seeprom(temp_p, &sxfrctl1);
9514 break;
9515 }
9516
9517
9518 /*
9519 * and then we need another switch based on the type in order to
9520 * make sure the channel B primary flag is set properly on 7895
9521 * controllers....Arrrgggghhh!!! We also have to catch the fact
9522 * that when you disable the BIOS on the 7895 on the Intel DK440LX
9523 * motherboard, and possibly others, it only sets the BIOS disabled
9524 * bit on the A channel...I think I'm starting to lean towards
9525 * going postal....
9526 */
9527 switch(temp_p->chip & AHC_CHIPID_MASK)
9528 {
9529 case AHC_AIC7895:
9530 case AHC_AIC7896:
9531 case AHC_AIC7899:
9532 current_p = list_p;
9533 while(current_p != NULL)
9534 {
9535 if ( (current_p->pci_bus == temp_p->pci_bus) &&
9536 (PCI_SLOT(current_p->pci_device_fn) ==
9537 PCI_SLOT(temp_p->pci_device_fn)) )
9538 {
9539 if ( PCI_FUNC(current_p->pci_device_fn) == 0 )
9540 {
9541 temp_p->flags |=
9542 (current_p->flags & AHC_CHANNEL_B_PRIMARY);
9543 temp_p->flags &= ~(AHC_BIOS_ENABLED|AHC_USEDEFAULTS);
9544 temp_p->flags |=
9545 (current_p->flags & (AHC_BIOS_ENABLED|AHC_USEDEFAULTS));
9546 }
9547 else
9548 {
9549 current_p->flags |=
9550 (temp_p->flags & AHC_CHANNEL_B_PRIMARY);
9551 current_p->flags &= ~(AHC_BIOS_ENABLED|AHC_USEDEFAULTS);
9552 current_p->flags |=
9553 (temp_p->flags & (AHC_BIOS_ENABLED|AHC_USEDEFAULTS));
9554 }
9555 }
9556 current_p = current_p->next;
9557 }
9558 break;
9559 default:
9560 break;
9561 }
9562
9563 /*
9564 * We only support external SCB RAM on the 7895/6/7 chipsets.
9565 * We could support it on the 7890/1 easy enough, but I don't
9566 * know of any 7890/1 based cards that have it. I do know
9567 * of 7895/6/7 cards that have it and they work properly.
9568 */
9569 switch(temp_p->chip & AHC_CHIPID_MASK)
9570 {
9571 default:
9572 break;
9573 case AHC_AIC7895:
9574 case AHC_AIC7896:
9575 case AHC_AIC7899:
9576 pci_read_config_dword(pdev, DEVCONFIG, &devconfig);
9577 if (temp_p->features & AHC_ULTRA2)
9578 {
9579 if ( (aic_inb(temp_p, DSCOMMAND0) & RAMPSM_ULTRA2) &&
9580 (aic7xxx_scbram) )
9581 {
9582 aic_outb(temp_p,
9583 aic_inb(temp_p, DSCOMMAND0) & ~SCBRAMSEL_ULTRA2,
9584 DSCOMMAND0);
9585 temp_p->flags |= AHC_EXTERNAL_SRAM;
9586 devconfig |= EXTSCBPEN;
9587 }
9588 else if (aic_inb(temp_p, DSCOMMAND0) & RAMPSM_ULTRA2)
9589 {
9590 printk(KERN_INFO "aic7xxx: <%s> at PCI %d/%d/%d\n",
9591 board_names[aic_pdevs[i].board_name_index],
9592 temp_p->pci_bus,
9593 PCI_SLOT(temp_p->pci_device_fn),
9594 PCI_FUNC(temp_p->pci_device_fn));
9595 printk("aic7xxx: external SCB RAM detected, "
9596 "but not enabled\n");
9597 }
9598 }
9599 else
9600 {
9601 if ((devconfig & RAMPSM) && (aic7xxx_scbram))
9602 {
9603 devconfig &= ~SCBRAMSEL;
9604 devconfig |= EXTSCBPEN;
9605 temp_p->flags |= AHC_EXTERNAL_SRAM;
9606 }
9607 else if (devconfig & RAMPSM)
9608 {
9609 printk(KERN_INFO "aic7xxx: <%s> at PCI %d/%d/%d\n",
9610 board_names[aic_pdevs[i].board_name_index],
9611 temp_p->pci_bus,
9612 PCI_SLOT(temp_p->pci_device_fn),
9613 PCI_FUNC(temp_p->pci_device_fn));
9614 printk("aic7xxx: external SCB RAM detected, "
9615 "but not enabled\n");
9616 }
9617 }
9618 pci_write_config_dword(pdev, DEVCONFIG, devconfig);
9619 if ( (temp_p->flags & AHC_EXTERNAL_SRAM) &&
9620 (temp_p->flags & AHC_CHNLB) )
9621 aic_outb(temp_p, 1, CCSCBBADDR);
9622 break;
9623 }
9624
9625 /*
9626 * Take the LED out of diagnostic mode
9627 */
9628 aic_outb(temp_p,
9629 (aic_inb(temp_p, SBLKCTL) & ~(DIAGLEDEN | DIAGLEDON)),
9630 SBLKCTL);
9631
9632 /*
9633 * We don't know where this is set in the SEEPROM or by the
9634 * BIOS, so we default to 100%. On Ultra2 controllers, use 75%
9635 * instead.
9636 */
9637 if (temp_p->features & AHC_ULTRA2)
9638 {
9639 aic_outb(temp_p, RD_DFTHRSH_MAX | WR_DFTHRSH_MAX, DFF_THRSH);
9640 }
9641 else
9642 {
9643 aic_outb(temp_p, DFTHRSH_100, DSPCISTATUS);
9644 }
9645
9646 /*
9647 * Call our function to fixup any bugs that exist on this chipset.
9648 * This may muck with PCI settings and other device settings, so
9649 * make sure it's after all the other PCI and device register
9650 * tweaks so it can back out bad settings on specific broken cards.
9651 */
9652 aic7xxx_configure_bugs(temp_p);
9653
9654 /* Hold a pci device reference */
9655 pci_dev_get(temp_p->pdev);
9656
9657 if ( list_p == NULL )
9658 {
9659 list_p = current_p = temp_p;
9660 }
9661 else
9662 {
9663 current_p = list_p;
9664 while(current_p->next != NULL)
9665 current_p = current_p->next;
9666 current_p->next = temp_p;
9667 }
9668 temp_p->next = NULL;
9669 found++;
9670 continue;
9671 skip_pci_controller:
9672 #ifdef CONFIG_PCI
9673 pci_release_regions(temp_p->pdev);
9674 #endif
9675 kfree(temp_p);
9676 } /* Found an Adaptec PCI device. */
9677 else /* Well, we found one, but we couldn't get any memory */
9678 {
9679 printk("aic7xxx: Found <%s>\n",
9680 board_names[aic_pdevs[i].board_name_index]);
9681 printk(KERN_INFO "aic7xxx: Unable to allocate device memory, "
9682 "skipping.\n");
9683 }
9684 } /* while(pdev=....) */
9685 } /* for PCI_DEVICES */
9686 }
9687 #endif /* CONFIG_PCI */
9688
9689 #if defined(__i386__) || defined(__alpha__)
9690 /*
9691 * EISA/VL-bus card signature probe.
9692 */
9693 slot = MINSLOT;
9694 while ( (slot <= MAXSLOT) &&
9695 !(aic7xxx_no_probe) )
9696 {
9697 base = SLOTBASE(slot) + MINREG;
9698
9699 if (!request_region(base, MAXREG - MINREG, "aic7xxx"))
9700 {
9701 /*
9702 * Some other driver has staked a
9703 * claim to this i/o region already.
9704 */
9705 slot++;
9706 continue; /* back to the beginning of the for loop */
9707 }
9708 flags = 0;
9709 type = aic7xxx_probe(slot, base + AHC_HID0, &flags);
9710 if (type == -1)
9711 {
9712 release_region(base, MAXREG - MINREG);
9713 slot++;
9714 continue;
9715 }
9716 temp_p = kmalloc(sizeof(struct aic7xxx_host), GFP_ATOMIC);
9717 if (temp_p == NULL)
9718 {
9719 printk(KERN_WARNING "aic7xxx: Unable to allocate device space.\n");
9720 release_region(base, MAXREG - MINREG);
9721 slot++;
9722 continue; /* back to the beginning of the while loop */
9723 }
9724
9725 /*
9726 * Pause the card preserving the IRQ type. Allow the operator
9727 * to override the IRQ trigger.
9728 */
9729 if (aic7xxx_irq_trigger == 1)
9730 hcntrl = IRQMS; /* Level */
9731 else if (aic7xxx_irq_trigger == 0)
9732 hcntrl = 0; /* Edge */
9733 else
9734 hcntrl = inb(base + HCNTRL) & IRQMS; /* Default */
9735 memset(temp_p, 0, sizeof(struct aic7xxx_host));
9736 temp_p->unpause = hcntrl | INTEN;
9737 temp_p->pause = hcntrl | PAUSE | INTEN;
9738 temp_p->base = base;
9739 temp_p->mbase = 0;
9740 temp_p->maddr = NULL;
9741 temp_p->pci_bus = 0;
9742 temp_p->pci_device_fn = slot;
9743 aic_outb(temp_p, hcntrl | PAUSE, HCNTRL);
9744 while( (aic_inb(temp_p, HCNTRL) & PAUSE) == 0 ) ;
9745 if (aic7xxx_chip_reset(temp_p) == -1)
9746 temp_p->irq = 0;
9747 else
9748 temp_p->irq = aic_inb(temp_p, INTDEF) & 0x0F;
9749 temp_p->flags |= AHC_PAGESCBS;
9750
9751 switch (temp_p->irq)
9752 {
9753 case 9:
9754 case 10:
9755 case 11:
9756 case 12:
9757 case 14:
9758 case 15:
9759 break;
9760
9761 default:
9762 printk(KERN_WARNING "aic7xxx: Host adapter uses unsupported IRQ "
9763 "level %d, ignoring.\n", temp_p->irq);
9764 kfree(temp_p);
9765 release_region(base, MAXREG - MINREG);
9766 slot++;
9767 continue; /* back to the beginning of the while loop */
9768 }
9769
9770 /*
9771 * We are commited now, everything has been checked and this card
9772 * has been found, now we just set it up
9773 */
9774
9775 /*
9776 * Insert our new struct into the list at the end
9777 */
9778 if (list_p == NULL)
9779 {
9780 list_p = current_p = temp_p;
9781 }
9782 else
9783 {
9784 current_p = list_p;
9785 while (current_p->next != NULL)
9786 current_p = current_p->next;
9787 current_p->next = temp_p;
9788 }
9789
9790 switch (type)
9791 {
9792 case 0:
9793 temp_p->board_name_index = 2;
9794 if (aic7xxx_verbose & VERBOSE_PROBE2)
9795 printk("aic7xxx: <%s> at EISA %d\n",
9796 board_names[2], slot);
9797 /* FALLTHROUGH */
9798 case 1:
9799 {
9800 temp_p->chip = AHC_AIC7770 | AHC_EISA;
9801 temp_p->features |= AHC_AIC7770_FE;
9802 temp_p->bios_control = aic_inb(temp_p, HA_274_BIOSCTRL);
9803
9804 /*
9805 * Get the primary channel information. Right now we don't
9806 * do anything with this, but someday we will be able to inform
9807 * the mid-level SCSI code which channel is primary.
9808 */
9809 if (temp_p->board_name_index == 0)
9810 {
9811 temp_p->board_name_index = 3;
9812 if (aic7xxx_verbose & VERBOSE_PROBE2)
9813 printk("aic7xxx: <%s> at EISA %d\n",
9814 board_names[3], slot);
9815 }
9816 if (temp_p->bios_control & CHANNEL_B_PRIMARY)
9817 {
9818 temp_p->flags |= AHC_CHANNEL_B_PRIMARY;
9819 }
9820
9821 if ((temp_p->bios_control & BIOSMODE) == BIOSDISABLED)
9822 {
9823 temp_p->flags &= ~AHC_BIOS_ENABLED;
9824 }
9825 else
9826 {
9827 temp_p->flags &= ~AHC_USEDEFAULTS;
9828 temp_p->flags |= AHC_BIOS_ENABLED;
9829 if ( (temp_p->bios_control & 0x20) == 0 )
9830 {
9831 temp_p->bios_address = 0xcc000;
9832 temp_p->bios_address += (0x4000 * (temp_p->bios_control & 0x07));
9833 }
9834 else
9835 {
9836 temp_p->bios_address = 0xd0000;
9837 temp_p->bios_address += (0x8000 * (temp_p->bios_control & 0x06));
9838 }
9839 }
9840 temp_p->adapter_control = aic_inb(temp_p, SCSICONF) << 8;
9841 temp_p->adapter_control |= aic_inb(temp_p, SCSICONF + 1);
9842 if (temp_p->features & AHC_WIDE)
9843 {
9844 temp_p->scsi_id = temp_p->adapter_control & HWSCSIID;
9845 temp_p->scsi_id_b = temp_p->scsi_id;
9846 }
9847 else
9848 {
9849 temp_p->scsi_id = (temp_p->adapter_control >> 8) & HSCSIID;
9850 temp_p->scsi_id_b = temp_p->adapter_control & HSCSIID;
9851 }
9852 aic7xxx_load_seeprom(temp_p, &sxfrctl1);
9853 break;
9854 }
9855
9856 case 2:
9857 case 3:
9858 temp_p->chip = AHC_AIC7770 | AHC_VL;
9859 temp_p->features |= AHC_AIC7770_FE;
9860 if (type == 2)
9861 temp_p->flags |= AHC_BIOS_ENABLED;
9862 else
9863 temp_p->flags &= ~AHC_BIOS_ENABLED;
9864 if (aic_inb(temp_p, SCSICONF) & TERM_ENB)
9865 sxfrctl1 = STPWEN;
9866 aic7xxx_load_seeprom(temp_p, &sxfrctl1);
9867 temp_p->board_name_index = 4;
9868 if (aic7xxx_verbose & VERBOSE_PROBE2)
9869 printk("aic7xxx: <%s> at VLB %d\n",
9870 board_names[2], slot);
9871 switch( aic_inb(temp_p, STATUS_2840) & BIOS_SEL )
9872 {
9873 case 0x00:
9874 temp_p->bios_address = 0xe0000;
9875 break;
9876 case 0x20:
9877 temp_p->bios_address = 0xc8000;
9878 break;
9879 case 0x40:
9880 temp_p->bios_address = 0xd0000;
9881 break;
9882 case 0x60:
9883 temp_p->bios_address = 0xd8000;
9884 break;
9885 default:
9886 break; /* can't get here */
9887 }
9888 break;
9889
9890 default: /* Won't get here. */
9891 break;
9892 }
9893 if (aic7xxx_verbose & VERBOSE_PROBE2)
9894 {
9895 printk(KERN_INFO "aic7xxx: BIOS %sabled, IO Port 0x%lx, IRQ %d (%s)\n",
9896 (temp_p->flags & AHC_USEDEFAULTS) ? "dis" : "en", temp_p->base,
9897 temp_p->irq,
9898 (temp_p->pause & IRQMS) ? "level sensitive" : "edge triggered");
9899 printk(KERN_INFO "aic7xxx: Extended translation %sabled.\n",
9900 (temp_p->flags & AHC_EXTEND_TRANS_A) ? "en" : "dis");
9901 }
9902
9903 /*
9904 * All the 7770 based chipsets have this bug
9905 */
9906 temp_p->bugs |= AHC_BUG_TMODE_WIDEODD;
9907
9908 /*
9909 * Set the FIFO threshold and the bus off time.
9910 */
9911 hostconf = aic_inb(temp_p, HOSTCONF);
9912 aic_outb(temp_p, hostconf & DFTHRSH, BUSSPD);
9913 aic_outb(temp_p, (hostconf << 2) & BOFF, BUSTIME);
9914 slot++;
9915 found++;
9916 }
9917
9918 #endif /* defined(__i386__) || defined(__alpha__) */
9919
9920 /*
9921 * Now, we re-order the probed devices by BIOS address and BUS class.
9922 * In general, we follow this algorithm to make the adapters show up
9923 * in the same order under linux that the computer finds them.
9924 * 1: All VLB/EISA cards with BIOS_ENABLED first, according to BIOS
9925 * address, going from lowest to highest.
9926 * 2: All PCI controllers with BIOS_ENABLED next, according to BIOS
9927 * address, going from lowest to highest.
9928 * 3: Remaining VLB/EISA controllers going in slot order.
9929 * 4: Remaining PCI controllers, going in PCI device order (reversable)
9930 */
9931
9932 {
9933 struct aic7xxx_host *sort_list[4] = { NULL, NULL, NULL, NULL };
9934 struct aic7xxx_host *vlb, *pci;
9935 struct aic7xxx_host *prev_p;
9936 struct aic7xxx_host *p;
9937 unsigned char left;
9938
9939 prev_p = vlb = pci = NULL;
9940
9941 temp_p = list_p;
9942 while (temp_p != NULL)
9943 {
9944 switch(temp_p->chip & ~AHC_CHIPID_MASK)
9945 {
9946 case AHC_EISA:
9947 case AHC_VL:
9948 {
9949 p = temp_p;
9950 if (p->flags & AHC_BIOS_ENABLED)
9951 vlb = sort_list[0];
9952 else
9953 vlb = sort_list[2];
9954
9955 if (vlb == NULL)
9956 {
9957 vlb = temp_p;
9958 temp_p = temp_p->next;
9959 vlb->next = NULL;
9960 }
9961 else
9962 {
9963 current_p = vlb;
9964 prev_p = NULL;
9965 while ( (current_p != NULL) &&
9966 (current_p->bios_address < temp_p->bios_address))
9967 {
9968 prev_p = current_p;
9969 current_p = current_p->next;
9970 }
9971 if (prev_p != NULL)
9972 {
9973 prev_p->next = temp_p;
9974 temp_p = temp_p->next;
9975 prev_p->next->next = current_p;
9976 }
9977 else
9978 {
9979 vlb = temp_p;
9980 temp_p = temp_p->next;
9981 vlb->next = current_p;
9982 }
9983 }
9984
9985 if (p->flags & AHC_BIOS_ENABLED)
9986 sort_list[0] = vlb;
9987 else
9988 sort_list[2] = vlb;
9989
9990 break;
9991 }
9992 default: /* All PCI controllers fall through to default */
9993 {
9994
9995 p = temp_p;
9996 if (p->flags & AHC_BIOS_ENABLED)
9997 pci = sort_list[1];
9998 else
9999 pci = sort_list[3];
10000
10001 if (pci == NULL)
10002 {
10003 pci = temp_p;
10004 temp_p = temp_p->next;
10005 pci->next = NULL;
10006 }
10007 else
10008 {
10009 current_p = pci;
10010 prev_p = NULL;
10011 if (!aic7xxx_reverse_scan)
10012 {
10013 while ( (current_p != NULL) &&
10014 ( (PCI_SLOT(current_p->pci_device_fn) |
10015 (current_p->pci_bus << 8)) <
10016 (PCI_SLOT(temp_p->pci_device_fn) |
10017 (temp_p->pci_bus << 8)) ) )
10018 {
10019 prev_p = current_p;
10020 current_p = current_p->next;
10021 }
10022 }
10023 else
10024 {
10025 while ( (current_p != NULL) &&
10026 ( (PCI_SLOT(current_p->pci_device_fn) |
10027 (current_p->pci_bus << 8)) >
10028 (PCI_SLOT(temp_p->pci_device_fn) |
10029 (temp_p->pci_bus << 8)) ) )
10030 {
10031 prev_p = current_p;
10032 current_p = current_p->next;
10033 }
10034 }
10035 /*
10036 * Are we dealing with a 7895/6/7/9 where we need to sort the
10037 * channels as well, if so, the bios_address values should
10038 * be the same
10039 */
10040 if ( (current_p) && (temp_p->flags & AHC_MULTI_CHANNEL) &&
10041 (temp_p->pci_bus == current_p->pci_bus) &&
10042 (PCI_SLOT(temp_p->pci_device_fn) ==
10043 PCI_SLOT(current_p->pci_device_fn)) )
10044 {
10045 if (temp_p->flags & AHC_CHNLB)
10046 {
10047 if ( !(temp_p->flags & AHC_CHANNEL_B_PRIMARY) )
10048 {
10049 prev_p = current_p;
10050 current_p = current_p->next;
10051 }
10052 }
10053 else
10054 {
10055 if (temp_p->flags & AHC_CHANNEL_B_PRIMARY)
10056 {
10057 prev_p = current_p;
10058 current_p = current_p->next;
10059 }
10060 }
10061 }
10062 if (prev_p != NULL)
10063 {
10064 prev_p->next = temp_p;
10065 temp_p = temp_p->next;
10066 prev_p->next->next = current_p;
10067 }
10068 else
10069 {
10070 pci = temp_p;
10071 temp_p = temp_p->next;
10072 pci->next = current_p;
10073 }
10074 }
10075
10076 if (p->flags & AHC_BIOS_ENABLED)
10077 sort_list[1] = pci;
10078 else
10079 sort_list[3] = pci;
10080
10081 break;
10082 }
10083 } /* End of switch(temp_p->type) */
10084 } /* End of while (temp_p != NULL) */
10085 /*
10086 * At this point, the cards have been broken into 4 sorted lists, now
10087 * we run through the lists in order and register each controller
10088 */
10089 {
10090 int i;
10091
10092 left = found;
10093 for (i=0; i<ARRAY_SIZE(sort_list); i++)
10094 {
10095 temp_p = sort_list[i];
10096 while(temp_p != NULL)
10097 {
10098 template->name = board_names[temp_p->board_name_index];
10099 p = aic7xxx_alloc(template, temp_p);
10100 if (p != NULL)
10101 {
10102 p->instance = found - left;
10103 if (aic7xxx_register(template, p, (--left)) == 0)
10104 {
10105 found--;
10106 aic7xxx_release(p->host);
10107 scsi_unregister(p->host);
10108 }
10109 else if (aic7xxx_dump_card)
10110 {
10111 pause_sequencer(p);
10112 aic7xxx_print_card(p);
10113 aic7xxx_print_scratch_ram(p);
10114 unpause_sequencer(p, TRUE);
10115 }
10116 }
10117 current_p = temp_p;
10118 temp_p = (struct aic7xxx_host *)temp_p->next;
10119 kfree(current_p);
10120 }
10121 }
10122 }
10123 }
10124 return (found);
10125 }
10126
10127 /*+F*************************************************************************
10128 * Function:
10129 * aic7xxx_buildscb
10130 *
10131 * Description:
10132 * Build a SCB.
10133 *-F*************************************************************************/
10134 static void
10135 aic7xxx_buildscb(struct aic7xxx_host *p, Scsi_Cmnd *cmd,
10136 struct aic7xxx_scb *scb)
10137 {
10138 unsigned short mask;
10139 struct aic7xxx_hwscb *hscb;
10140 struct aic_dev_data *aic_dev = cmd->device->hostdata;
10141 struct scsi_device *sdptr = cmd->device;
10142 unsigned char tindex = TARGET_INDEX(cmd);
10143 struct request *req = cmd->request;
10144
10145 mask = (0x01 << tindex);
10146 hscb = scb->hscb;
10147
10148 /*
10149 * Setup the control byte if we need negotiation and have not
10150 * already requested it.
10151 */
10152 hscb->control = 0;
10153 scb->tag_action = 0;
10154
10155 if (p->discenable & mask)
10156 {
10157 hscb->control |= DISCENB;
10158 /* We always force TEST_UNIT_READY to untagged */
10159 if (cmd->cmnd[0] != TEST_UNIT_READY && sdptr->simple_tags)
10160 {
10161 if (req->cmd_flags & REQ_HARDBARRIER)
10162 {
10163 if(sdptr->ordered_tags)
10164 {
10165 hscb->control |= MSG_ORDERED_Q_TAG;
10166 scb->tag_action = MSG_ORDERED_Q_TAG;
10167 }
10168 }
10169 else
10170 {
10171 hscb->control |= MSG_SIMPLE_Q_TAG;
10172 scb->tag_action = MSG_SIMPLE_Q_TAG;
10173 }
10174 }
10175 }
10176 if ( !(aic_dev->dtr_pending) &&
10177 (aic_dev->needppr || aic_dev->needwdtr || aic_dev->needsdtr) &&
10178 (aic_dev->flags & DEVICE_DTR_SCANNED) )
10179 {
10180 aic_dev->dtr_pending = 1;
10181 scb->tag_action = 0;
10182 hscb->control &= DISCENB;
10183 hscb->control |= MK_MESSAGE;
10184 if(aic_dev->needppr)
10185 {
10186 scb->flags |= SCB_MSGOUT_PPR;
10187 }
10188 else if(aic_dev->needwdtr)
10189 {
10190 scb->flags |= SCB_MSGOUT_WDTR;
10191 }
10192 else if(aic_dev->needsdtr)
10193 {
10194 scb->flags |= SCB_MSGOUT_SDTR;
10195 }
10196 scb->flags |= SCB_DTR_SCB;
10197 }
10198 hscb->target_channel_lun = ((cmd->device->id << 4) & 0xF0) |
10199 ((cmd->device->channel & 0x01) << 3) | (cmd->device->lun & 0x07);
10200
10201 /*
10202 * The interpretation of request_buffer and request_bufflen
10203 * changes depending on whether or not use_sg is zero; a
10204 * non-zero use_sg indicates the number of elements in the
10205 * scatter-gather array.
10206 */
10207
10208 /*
10209 * XXX - this relies on the host data being stored in a
10210 * little-endian format.
10211 */
10212 hscb->SCSI_cmd_length = cmd->cmd_len;
10213 memcpy(scb->cmnd, cmd->cmnd, cmd->cmd_len);
10214 hscb->SCSI_cmd_pointer = cpu_to_le32(SCB_DMA_ADDR(scb, scb->cmnd));
10215
10216 if (cmd->use_sg)
10217 {
10218 struct scatterlist *sg; /* Must be mid-level SCSI code scatterlist */
10219
10220 /*
10221 * We must build an SG list in adapter format, as the kernel's SG list
10222 * cannot be used directly because of data field size (__alpha__)
10223 * differences and the kernel SG list uses virtual addresses where
10224 * we need physical addresses.
10225 */
10226 int i, use_sg;
10227
10228 sg = (struct scatterlist *)cmd->request_buffer;
10229 scb->sg_length = 0;
10230 use_sg = pci_map_sg(p->pdev, sg, cmd->use_sg, cmd->sc_data_direction);
10231 /*
10232 * Copy the segments into the SG array. NOTE!!! - We used to
10233 * have the first entry both in the data_pointer area and the first
10234 * SG element. That has changed somewhat. We still have the first
10235 * entry in both places, but now we download the address of
10236 * scb->sg_list[1] instead of 0 to the sg pointer in the hscb.
10237 */
10238 for (i = 0; i < use_sg; i++)
10239 {
10240 unsigned int len = sg_dma_len(sg+i);
10241 scb->sg_list[i].address = cpu_to_le32(sg_dma_address(sg+i));
10242 scb->sg_list[i].length = cpu_to_le32(len);
10243 scb->sg_length += len;
10244 }
10245 /* Copy the first SG into the data pointer area. */
10246 hscb->data_pointer = scb->sg_list[0].address;
10247 hscb->data_count = scb->sg_list[0].length;
10248 scb->sg_count = i;
10249 hscb->SG_segment_count = i;
10250 hscb->SG_list_pointer = cpu_to_le32(SCB_DMA_ADDR(scb, &scb->sg_list[1]));
10251 }
10252 else
10253 {
10254 if (cmd->request_bufflen)
10255 {
10256 unsigned int address = pci_map_single(p->pdev, cmd->request_buffer,
10257 cmd->request_bufflen,
10258 cmd->sc_data_direction);
10259 aic7xxx_mapping(cmd) = address;
10260 scb->sg_list[0].address = cpu_to_le32(address);
10261 scb->sg_list[0].length = cpu_to_le32(cmd->request_bufflen);
10262 scb->sg_count = 1;
10263 scb->sg_length = cmd->request_bufflen;
10264 hscb->SG_segment_count = 1;
10265 hscb->SG_list_pointer = cpu_to_le32(SCB_DMA_ADDR(scb, &scb->sg_list[0]));
10266 hscb->data_count = scb->sg_list[0].length;
10267 hscb->data_pointer = scb->sg_list[0].address;
10268 }
10269 else
10270 {
10271 scb->sg_count = 0;
10272 scb->sg_length = 0;
10273 hscb->SG_segment_count = 0;
10274 hscb->SG_list_pointer = 0;
10275 hscb->data_count = 0;
10276 hscb->data_pointer = 0;
10277 }
10278 }
10279 }
10280
10281 /*+F*************************************************************************
10282 * Function:
10283 * aic7xxx_queue
10284 *
10285 * Description:
10286 * Queue a SCB to the controller.
10287 *-F*************************************************************************/
10288 static int
10289 aic7xxx_queue(Scsi_Cmnd *cmd, void (*fn)(Scsi_Cmnd *))
10290 {
10291 struct aic7xxx_host *p;
10292 struct aic7xxx_scb *scb;
10293 struct aic_dev_data *aic_dev;
10294
10295 p = (struct aic7xxx_host *) cmd->device->host->hostdata;
10296
10297 aic_dev = cmd->device->hostdata;
10298 #ifdef AIC7XXX_VERBOSE_DEBUGGING
10299 if (aic_dev->active_cmds > aic_dev->max_q_depth)
10300 {
10301 printk(WARN_LEAD "Commands queued exceeds queue "
10302 "depth, active=%d\n",
10303 p->host_no, CTL_OF_CMD(cmd),
10304 aic_dev->active_cmds);
10305 }
10306 #endif
10307
10308 scb = scbq_remove_head(&p->scb_data->free_scbs);
10309 if (scb == NULL)
10310 {
10311 aic7xxx_allocate_scb(p);
10312 scb = scbq_remove_head(&p->scb_data->free_scbs);
10313 if(scb == NULL)
10314 {
10315 printk(WARN_LEAD "Couldn't get a free SCB.\n", p->host_no,
10316 CTL_OF_CMD(cmd));
10317 return 1;
10318 }
10319 }
10320 scb->cmd = cmd;
10321
10322 /*
10323 * Make sure the Scsi_Cmnd pointer is saved, the struct it points to
10324 * is set up properly, and the parity error flag is reset, then send
10325 * the SCB to the sequencer and watch the fun begin.
10326 */
10327 aic7xxx_position(cmd) = scb->hscb->tag;
10328 cmd->scsi_done = fn;
10329 cmd->result = DID_OK;
10330 memset(cmd->sense_buffer, 0, sizeof(cmd->sense_buffer));
10331 aic7xxx_error(cmd) = DID_OK;
10332 aic7xxx_status(cmd) = 0;
10333 cmd->host_scribble = NULL;
10334
10335 /*
10336 * Construct the SCB beforehand, so the sequencer is
10337 * paused a minimal amount of time.
10338 */
10339 aic7xxx_buildscb(p, cmd, scb);
10340
10341 scb->flags |= SCB_ACTIVE | SCB_WAITINGQ;
10342
10343 scbq_insert_tail(&p->waiting_scbs, scb);
10344 aic7xxx_run_waiting_queues(p);
10345 return (0);
10346 }
10347
10348 /*+F*************************************************************************
10349 * Function:
10350 * aic7xxx_bus_device_reset
10351 *
10352 * Description:
10353 * Abort or reset the current SCSI command(s). If the scb has not
10354 * previously been aborted, then we attempt to send a BUS_DEVICE_RESET
10355 * message to the target. If the scb has previously been unsuccessfully
10356 * aborted, then we will reset the channel and have all devices renegotiate.
10357 * Returns an enumerated type that indicates the status of the operation.
10358 *-F*************************************************************************/
10359 static int
10360 __aic7xxx_bus_device_reset(Scsi_Cmnd *cmd)
10361 {
10362 struct aic7xxx_host *p;
10363 struct aic7xxx_scb *scb;
10364 struct aic7xxx_hwscb *hscb;
10365 int channel;
10366 unsigned char saved_scbptr, lastphase;
10367 unsigned char hscb_index;
10368 int disconnected;
10369 struct aic_dev_data *aic_dev;
10370
10371 if(cmd == NULL)
10372 {
10373 printk(KERN_ERR "aic7xxx_bus_device_reset: called with NULL cmd!\n");
10374 return FAILED;
10375 }
10376 p = (struct aic7xxx_host *)cmd->device->host->hostdata;
10377 aic_dev = AIC_DEV(cmd);
10378 if(aic7xxx_position(cmd) < p->scb_data->numscbs)
10379 scb = (p->scb_data->scb_array[aic7xxx_position(cmd)]);
10380 else
10381 return FAILED;
10382
10383 hscb = scb->hscb;
10384
10385 aic7xxx_isr(p->irq, (void *)p, NULL);
10386 aic7xxx_done_cmds_complete(p);
10387 /* If the command was already complete or just completed, then we didn't
10388 * do a reset, return FAILED */
10389 if(!(scb->flags & SCB_ACTIVE))
10390 return FAILED;
10391
10392 pause_sequencer(p);
10393 lastphase = aic_inb(p, LASTPHASE);
10394 if (aic7xxx_verbose & VERBOSE_RESET_PROCESS)
10395 {
10396 printk(INFO_LEAD "Bus Device reset, scb flags 0x%x, ",
10397 p->host_no, CTL_OF_SCB(scb), scb->flags);
10398 switch (lastphase)
10399 {
10400 case P_DATAOUT:
10401 printk("Data-Out phase\n");
10402 break;
10403 case P_DATAIN:
10404 printk("Data-In phase\n");
10405 break;
10406 case P_COMMAND:
10407 printk("Command phase\n");
10408 break;
10409 case P_MESGOUT:
10410 printk("Message-Out phase\n");
10411 break;
10412 case P_STATUS:
10413 printk("Status phase\n");
10414 break;
10415 case P_MESGIN:
10416 printk("Message-In phase\n");
10417 break;
10418 default:
10419 /*
10420 * We're not in a valid phase, so assume we're idle.
10421 */
10422 printk("while idle, LASTPHASE = 0x%x\n", lastphase);
10423 break;
10424 }
10425 printk(INFO_LEAD "SCSISIGI 0x%x, SEQADDR 0x%x, SSTAT0 0x%x, SSTAT1 "
10426 "0x%x\n", p->host_no, CTL_OF_SCB(scb),
10427 aic_inb(p, SCSISIGI),
10428 aic_inb(p, SEQADDR0) | (aic_inb(p, SEQADDR1) << 8),
10429 aic_inb(p, SSTAT0), aic_inb(p, SSTAT1));
10430 printk(INFO_LEAD "SG_CACHEPTR 0x%x, SSTAT2 0x%x, STCNT 0x%x\n", p->host_no,
10431 CTL_OF_SCB(scb),
10432 (p->features & AHC_ULTRA2) ? aic_inb(p, SG_CACHEPTR) : 0,
10433 aic_inb(p, SSTAT2),
10434 aic_inb(p, STCNT + 2) << 16 | aic_inb(p, STCNT + 1) << 8 |
10435 aic_inb(p, STCNT));
10436 }
10437
10438 channel = cmd->device->channel;
10439
10440 /*
10441 * Send a Device Reset Message:
10442 * The target that is holding up the bus may not be the same as
10443 * the one that triggered this timeout (different commands have
10444 * different timeout lengths). Our strategy here is to queue an
10445 * abort message to the timed out target if it is disconnected.
10446 * Otherwise, if we have an active target we stuff the message buffer
10447 * with an abort message and assert ATN in the hopes that the target
10448 * will let go of the bus and go to the mesgout phase. If this
10449 * fails, we'll get another timeout a few seconds later which will
10450 * attempt a bus reset.
10451 */
10452 saved_scbptr = aic_inb(p, SCBPTR);
10453 disconnected = FALSE;
10454
10455 if (lastphase != P_BUSFREE)
10456 {
10457 if (aic_inb(p, SCB_TAG) >= p->scb_data->numscbs)
10458 {
10459 printk(WARN_LEAD "Invalid SCB ID %d is active, "
10460 "SCB flags = 0x%x.\n", p->host_no,
10461 CTL_OF_CMD(cmd), scb->hscb->tag, scb->flags);
10462 unpause_sequencer(p, FALSE);
10463 return FAILED;
10464 }
10465 if (scb->hscb->tag == aic_inb(p, SCB_TAG))
10466 {
10467 if ( (lastphase == P_MESGOUT) || (lastphase == P_MESGIN) )
10468 {
10469 printk(WARN_LEAD "Device reset, Message buffer "
10470 "in use\n", p->host_no, CTL_OF_SCB(scb));
10471 unpause_sequencer(p, FALSE);
10472 return FAILED;
10473 }
10474
10475 if (aic7xxx_verbose & VERBOSE_RESET_PROCESS)
10476 printk(INFO_LEAD "Device reset message in "
10477 "message buffer\n", p->host_no, CTL_OF_SCB(scb));
10478 scb->flags |= SCB_RESET | SCB_DEVICE_RESET;
10479 aic7xxx_error(cmd) = DID_RESET;
10480 aic_dev->flags |= BUS_DEVICE_RESET_PENDING;
10481 /* Send the abort message to the active SCB. */
10482 aic_outb(p, HOST_MSG, MSG_OUT);
10483 aic_outb(p, lastphase | ATNO, SCSISIGO);
10484 unpause_sequencer(p, FALSE);
10485 spin_unlock_irq(p->host->host_lock);
10486 ssleep(1);
10487 spin_lock_irq(p->host->host_lock);
10488 if(aic_dev->flags & BUS_DEVICE_RESET_PENDING)
10489 return FAILED;
10490 else
10491 return SUCCESS;
10492 }
10493 } /* if (last_phase != P_BUSFREE).....indicates we are idle and can work */
10494 /*
10495 * Simply set the MK_MESSAGE flag and the SEQINT handler will do
10496 * the rest on a reconnect/connect.
10497 */
10498 scb->hscb->control |= MK_MESSAGE;
10499 scb->flags |= SCB_RESET | SCB_DEVICE_RESET;
10500 aic_dev->flags |= BUS_DEVICE_RESET_PENDING;
10501 /*
10502 * Check to see if the command is on the qinfifo. If it is, then we will
10503 * not need to queue the command again since the card should start it soon
10504 */
10505 if (aic7xxx_search_qinfifo(p, cmd->device->channel, cmd->device->id, cmd->device->lun, hscb->tag,
10506 0, TRUE, NULL) == 0)
10507 {
10508 disconnected = TRUE;
10509 if ((hscb_index = aic7xxx_find_scb(p, scb)) != SCB_LIST_NULL)
10510 {
10511 unsigned char scb_control;
10512
10513 aic_outb(p, hscb_index, SCBPTR);
10514 scb_control = aic_inb(p, SCB_CONTROL);
10515 /*
10516 * If the DISCONNECTED bit is not set in SCB_CONTROL, then we are
10517 * actually on the waiting list, not disconnected, and we don't
10518 * need to requeue the command.
10519 */
10520 disconnected = (scb_control & DISCONNECTED);
10521 aic_outb(p, scb_control | MK_MESSAGE, SCB_CONTROL);
10522 }
10523 if (disconnected)
10524 {
10525 /*
10526 * Actually requeue this SCB in case we can select the
10527 * device before it reconnects. This can result in the command
10528 * being on the qinfifo twice, but we don't care because it will
10529 * all get cleaned up if/when the reset takes place.
10530 */
10531 if (aic7xxx_verbose & VERBOSE_RESET_PROCESS)
10532 printk(INFO_LEAD "Queueing device reset command.\n", p->host_no,
10533 CTL_OF_SCB(scb));
10534 p->qinfifo[p->qinfifonext++] = scb->hscb->tag;
10535 if (p->features & AHC_QUEUE_REGS)
10536 aic_outb(p, p->qinfifonext, HNSCB_QOFF);
10537 else
10538 aic_outb(p, p->qinfifonext, KERNEL_QINPOS);
10539 scb->flags |= SCB_QUEUED_ABORT;
10540 }
10541 }
10542 aic_outb(p, saved_scbptr, SCBPTR);
10543 unpause_sequencer(p, FALSE);
10544 spin_unlock_irq(p->host->host_lock);
10545 msleep(1000/4);
10546 spin_lock_irq(p->host->host_lock);
10547 if(aic_dev->flags & BUS_DEVICE_RESET_PENDING)
10548 return FAILED;
10549 else
10550 return SUCCESS;
10551 }
10552
10553 static int
10554 aic7xxx_bus_device_reset(Scsi_Cmnd *cmd)
10555 {
10556 int rc;
10557
10558 spin_lock_irq(cmd->device->host->host_lock);
10559 rc = __aic7xxx_bus_device_reset(cmd);
10560 spin_unlock_irq(cmd->device->host->host_lock);
10561
10562 return rc;
10563 }
10564
10565
10566 /*+F*************************************************************************
10567 * Function:
10568 * aic7xxx_panic_abort
10569 *
10570 * Description:
10571 * Abort the current SCSI command(s).
10572 *-F*************************************************************************/
10573 static void
10574 aic7xxx_panic_abort(struct aic7xxx_host *p, Scsi_Cmnd *cmd)
10575 {
10576
10577 printk("aic7xxx driver version %s\n", AIC7XXX_C_VERSION);
10578 printk("Controller type:\n %s\n", board_names[p->board_name_index]);
10579 printk("p->flags=0x%lx, p->chip=0x%x, p->features=0x%x, "
10580 "sequencer %s paused\n",
10581 p->flags, p->chip, p->features,
10582 (aic_inb(p, HCNTRL) & PAUSE) ? "is" : "isn't" );
10583 pause_sequencer(p);
10584 disable_irq(p->irq);
10585 aic7xxx_print_card(p);
10586 aic7xxx_print_scratch_ram(p);
10587 spin_unlock_irq(p->host->host_lock);
10588 for(;;) barrier();
10589 }
10590
10591 /*+F*************************************************************************
10592 * Function:
10593 * aic7xxx_abort
10594 *
10595 * Description:
10596 * Abort the current SCSI command(s).
10597 *-F*************************************************************************/
10598 static int
10599 __aic7xxx_abort(Scsi_Cmnd *cmd)
10600 {
10601 struct aic7xxx_scb *scb = NULL;
10602 struct aic7xxx_host *p;
10603 int found=0, disconnected;
10604 unsigned char saved_hscbptr, hscbptr, scb_control;
10605 struct aic_dev_data *aic_dev;
10606
10607 if(cmd == NULL)
10608 {
10609 printk(KERN_ERR "aic7xxx_abort: called with NULL cmd!\n");
10610 return FAILED;
10611 }
10612 p = (struct aic7xxx_host *)cmd->device->host->hostdata;
10613 aic_dev = AIC_DEV(cmd);
10614 if(aic7xxx_position(cmd) < p->scb_data->numscbs)
10615 scb = (p->scb_data->scb_array[aic7xxx_position(cmd)]);
10616 else
10617 return FAILED;
10618
10619 aic7xxx_isr(p->irq, (void *)p, NULL);
10620 aic7xxx_done_cmds_complete(p);
10621 /* If the command was already complete or just completed, then we didn't
10622 * do a reset, return FAILED */
10623 if(!(scb->flags & SCB_ACTIVE))
10624 return FAILED;
10625
10626 pause_sequencer(p);
10627
10628 /*
10629 * I added a new config option to the driver: "panic_on_abort" that will
10630 * cause the driver to panic and the machine to stop on the first abort
10631 * or reset call into the driver. At that point, it prints out a lot of
10632 * useful information for me which I can then use to try and debug the
10633 * problem. Simply enable the boot time prompt in order to activate this
10634 * code.
10635 */
10636 if (aic7xxx_panic_on_abort)
10637 aic7xxx_panic_abort(p, cmd);
10638
10639 if (aic7xxx_verbose & VERBOSE_ABORT)
10640 {
10641 printk(INFO_LEAD "Aborting scb %d, flags 0x%x, SEQADDR 0x%x, LASTPHASE "
10642 "0x%x\n",
10643 p->host_no, CTL_OF_SCB(scb), scb->hscb->tag, scb->flags,
10644 aic_inb(p, SEQADDR0) | (aic_inb(p, SEQADDR1) << 8),
10645 aic_inb(p, LASTPHASE));
10646 printk(INFO_LEAD "SG_CACHEPTR 0x%x, SG_COUNT %d, SCSISIGI 0x%x\n",
10647 p->host_no, CTL_OF_SCB(scb), (p->features & AHC_ULTRA2) ?
10648 aic_inb(p, SG_CACHEPTR) : 0, aic_inb(p, SG_COUNT),
10649 aic_inb(p, SCSISIGI));
10650 printk(INFO_LEAD "SSTAT0 0x%x, SSTAT1 0x%x, SSTAT2 0x%x\n",
10651 p->host_no, CTL_OF_SCB(scb), aic_inb(p, SSTAT0),
10652 aic_inb(p, SSTAT1), aic_inb(p, SSTAT2));
10653 }
10654
10655 if (scb->flags & SCB_WAITINGQ)
10656 {
10657 if (aic7xxx_verbose & VERBOSE_ABORT_PROCESS)
10658 printk(INFO_LEAD "SCB found on waiting list and "
10659 "aborted.\n", p->host_no, CTL_OF_SCB(scb));
10660 scbq_remove(&p->waiting_scbs, scb);
10661 scbq_remove(&aic_dev->delayed_scbs, scb);
10662 aic_dev->active_cmds++;
10663 p->activescbs++;
10664 scb->flags &= ~(SCB_WAITINGQ | SCB_ACTIVE);
10665 scb->flags |= SCB_ABORT | SCB_QUEUED_FOR_DONE;
10666 goto success;
10667 }
10668
10669 /*
10670 * We just checked the waiting_q, now for the QINFIFO
10671 */
10672 if ( ((found = aic7xxx_search_qinfifo(p, cmd->device->id, cmd->device->channel,
10673 cmd->device->lun, scb->hscb->tag, SCB_ABORT | SCB_QUEUED_FOR_DONE,
10674 FALSE, NULL)) != 0) &&
10675 (aic7xxx_verbose & VERBOSE_ABORT_PROCESS))
10676 {
10677 printk(INFO_LEAD "SCB found in QINFIFO and aborted.\n", p->host_no,
10678 CTL_OF_SCB(scb));
10679 goto success;
10680 }
10681
10682 /*
10683 * QINFIFO, waitingq, completeq done. Next, check WAITING_SCB list in card
10684 */
10685
10686 saved_hscbptr = aic_inb(p, SCBPTR);
10687 if ((hscbptr = aic7xxx_find_scb(p, scb)) != SCB_LIST_NULL)
10688 {
10689 aic_outb(p, hscbptr, SCBPTR);
10690 scb_control = aic_inb(p, SCB_CONTROL);
10691 disconnected = scb_control & DISCONNECTED;
10692 /*
10693 * If the DISCONNECTED bit is not set in SCB_CONTROL, then we are
10694 * either currently active or on the waiting list.
10695 */
10696 if(!disconnected && aic_inb(p, LASTPHASE) == P_BUSFREE) {
10697 if (aic7xxx_verbose & VERBOSE_ABORT_PROCESS)
10698 printk(INFO_LEAD "SCB found on hardware waiting"
10699 " list and aborted.\n", p->host_no, CTL_OF_SCB(scb));
10700 /* If we are the only waiting command, stop the selection engine */
10701 if (aic_inb(p, WAITING_SCBH) == hscbptr && aic_inb(p, SCB_NEXT) ==
10702 SCB_LIST_NULL)
10703 {
10704 aic_outb(p, aic_inb(p, SCSISEQ) & ~ENSELO, SCSISEQ);
10705 aic_outb(p, CLRSELTIMEO, CLRSINT1);
10706 aic_outb(p, SCB_LIST_NULL, WAITING_SCBH);
10707 }
10708 else
10709 {
10710 unsigned char prev, next;
10711 prev = SCB_LIST_NULL;
10712 next = aic_inb(p, WAITING_SCBH);
10713 while(next != SCB_LIST_NULL)
10714 {
10715 aic_outb(p, next, SCBPTR);
10716 if (next == hscbptr)
10717 {
10718 next = aic_inb(p, SCB_NEXT);
10719 if (prev != SCB_LIST_NULL)
10720 {
10721 aic_outb(p, prev, SCBPTR);
10722 aic_outb(p, next, SCB_NEXT);
10723 }
10724 else
10725 aic_outb(p, next, WAITING_SCBH);
10726 aic_outb(p, hscbptr, SCBPTR);
10727 next = SCB_LIST_NULL;
10728 }
10729 else
10730 {
10731 prev = next;
10732 next = aic_inb(p, SCB_NEXT);
10733 }
10734 }
10735 }
10736 aic_outb(p, SCB_LIST_NULL, SCB_TAG);
10737 aic_outb(p, 0, SCB_CONTROL);
10738 aic7xxx_add_curscb_to_free_list(p);
10739 scb->flags = SCB_ABORT | SCB_QUEUED_FOR_DONE;
10740 goto success;
10741 }
10742 else if (!disconnected)
10743 {
10744 /*
10745 * We are the currently active command
10746 */
10747 if((aic_inb(p, LASTPHASE) == P_MESGIN) ||
10748 (aic_inb(p, LASTPHASE) == P_MESGOUT))
10749 {
10750 /*
10751 * Message buffer busy, unable to abort
10752 */
10753 printk(INFO_LEAD "message buffer busy, unable to abort.\n",
10754 p->host_no, CTL_OF_SCB(scb));
10755 unpause_sequencer(p, FALSE);
10756 return FAILED;
10757 }
10758 /* Fallthrough to below, set ATNO after we set SCB_CONTROL */
10759 }
10760 aic_outb(p, scb_control | MK_MESSAGE, SCB_CONTROL);
10761 if(!disconnected)
10762 {
10763 aic_outb(p, HOST_MSG, MSG_OUT);
10764 aic_outb(p, aic_inb(p, SCSISIGI) | ATNO, SCSISIGO);
10765 }
10766 aic_outb(p, saved_hscbptr, SCBPTR);
10767 }
10768 else
10769 {
10770 /*
10771 * The scb isn't in the card at all and it is active and it isn't in
10772 * any of the queues, so it must be disconnected and paged out. Fall
10773 * through to the code below.
10774 */
10775 disconnected = 1;
10776 }
10777
10778 p->flags |= AHC_ABORT_PENDING;
10779 scb->flags |= SCB_QUEUED_ABORT | SCB_ABORT | SCB_RECOVERY_SCB;
10780 scb->hscb->control |= MK_MESSAGE;
10781 if(disconnected)
10782 {
10783 if (aic7xxx_verbose & VERBOSE_ABORT_PROCESS)
10784 printk(INFO_LEAD "SCB disconnected. Queueing Abort"
10785 " SCB.\n", p->host_no, CTL_OF_SCB(scb));
10786 p->qinfifo[p->qinfifonext++] = scb->hscb->tag;
10787 if (p->features & AHC_QUEUE_REGS)
10788 aic_outb(p, p->qinfifonext, HNSCB_QOFF);
10789 else
10790 aic_outb(p, p->qinfifonext, KERNEL_QINPOS);
10791 }
10792 unpause_sequencer(p, FALSE);
10793 spin_unlock_irq(p->host->host_lock);
10794 msleep(1000/4);
10795 spin_lock_irq(p->host->host_lock);
10796 if (p->flags & AHC_ABORT_PENDING)
10797 {
10798 if (aic7xxx_verbose & VERBOSE_ABORT_RETURN)
10799 printk(INFO_LEAD "Abort never delivered, returning FAILED\n", p->host_no,
10800 CTL_OF_CMD(cmd));
10801 p->flags &= ~AHC_ABORT_PENDING;
10802 return FAILED;
10803 }
10804 if (aic7xxx_verbose & VERBOSE_ABORT_RETURN)
10805 printk(INFO_LEAD "Abort successful.\n", p->host_no, CTL_OF_CMD(cmd));
10806 return SUCCESS;
10807
10808 success:
10809 if (aic7xxx_verbose & VERBOSE_ABORT_RETURN)
10810 printk(INFO_LEAD "Abort successful.\n", p->host_no, CTL_OF_CMD(cmd));
10811 aic7xxx_run_done_queue(p, TRUE);
10812 unpause_sequencer(p, FALSE);
10813 return SUCCESS;
10814 }
10815
10816 static int
10817 aic7xxx_abort(Scsi_Cmnd *cmd)
10818 {
10819 int rc;
10820
10821 spin_lock_irq(cmd->device->host->host_lock);
10822 rc = __aic7xxx_abort(cmd);
10823 spin_unlock_irq(cmd->device->host->host_lock);
10824
10825 return rc;
10826 }
10827
10828
10829 /*+F*************************************************************************
10830 * Function:
10831 * aic7xxx_reset
10832 *
10833 * Description:
10834 * Resetting the bus always succeeds - is has to, otherwise the
10835 * kernel will panic! Try a surgical technique - sending a BUS
10836 * DEVICE RESET message - on the offending target before pulling
10837 * the SCSI bus reset line.
10838 *-F*************************************************************************/
10839 static int
10840 aic7xxx_reset(Scsi_Cmnd *cmd)
10841 {
10842 struct aic7xxx_scb *scb;
10843 struct aic7xxx_host *p;
10844 struct aic_dev_data *aic_dev;
10845
10846 p = (struct aic7xxx_host *) cmd->device->host->hostdata;
10847 spin_lock_irq(p->host->host_lock);
10848
10849 aic_dev = AIC_DEV(cmd);
10850 if(aic7xxx_position(cmd) < p->scb_data->numscbs)
10851 {
10852 scb = (p->scb_data->scb_array[aic7xxx_position(cmd)]);
10853 if (scb->cmd != cmd)
10854 scb = NULL;
10855 }
10856 else
10857 {
10858 scb = NULL;
10859 }
10860
10861 /*
10862 * I added a new config option to the driver: "panic_on_abort" that will
10863 * cause the driver to panic and the machine to stop on the first abort
10864 * or reset call into the driver. At that point, it prints out a lot of
10865 * useful information for me which I can then use to try and debug the
10866 * problem. Simply enable the boot time prompt in order to activate this
10867 * code.
10868 */
10869 if (aic7xxx_panic_on_abort)
10870 aic7xxx_panic_abort(p, cmd);
10871
10872 pause_sequencer(p);
10873
10874 while((aic_inb(p, INTSTAT) & INT_PEND) && !(p->flags & AHC_IN_ISR))
10875 {
10876 aic7xxx_isr(p->irq, p, (void *)NULL );
10877 pause_sequencer(p);
10878 }
10879 aic7xxx_done_cmds_complete(p);
10880
10881 if(scb && (scb->cmd == NULL))
10882 {
10883 /*
10884 * We just completed the command when we ran the isr stuff, so we no
10885 * longer have it.
10886 */
10887 unpause_sequencer(p, FALSE);
10888 spin_unlock_irq(p->host->host_lock);
10889 return SUCCESS;
10890 }
10891
10892 /*
10893 * By this point, we want to already know what we are going to do and
10894 * only have the following code implement our course of action.
10895 */
10896 aic7xxx_reset_channel(p, cmd->device->channel, TRUE);
10897 if (p->features & AHC_TWIN)
10898 {
10899 aic7xxx_reset_channel(p, cmd->device->channel ^ 0x01, TRUE);
10900 restart_sequencer(p);
10901 }
10902 aic_outb(p, aic_inb(p, SIMODE1) & ~(ENREQINIT|ENBUSFREE), SIMODE1);
10903 aic7xxx_clear_intstat(p);
10904 p->flags &= ~AHC_HANDLING_REQINITS;
10905 p->msg_type = MSG_TYPE_NONE;
10906 p->msg_index = 0;
10907 p->msg_len = 0;
10908 aic7xxx_run_done_queue(p, TRUE);
10909 unpause_sequencer(p, FALSE);
10910 spin_unlock_irq(p->host->host_lock);
10911 ssleep(2);
10912 return SUCCESS;
10913 }
10914
10915 /*+F*************************************************************************
10916 * Function:
10917 * aic7xxx_biosparam
10918 *
10919 * Description:
10920 * Return the disk geometry for the given SCSI device.
10921 *
10922 * Note:
10923 * This function is broken for today's really large drives and needs
10924 * fixed.
10925 *-F*************************************************************************/
10926 static int
10927 aic7xxx_biosparam(struct scsi_device *sdev, struct block_device *bdev,
10928 sector_t capacity, int geom[])
10929 {
10930 sector_t heads, sectors, cylinders;
10931 int ret;
10932 struct aic7xxx_host *p;
10933 unsigned char *buf;
10934
10935 p = (struct aic7xxx_host *) sdev->host->hostdata;
10936 buf = scsi_bios_ptable(bdev);
10937
10938 if ( buf )
10939 {
10940 ret = scsi_partsize(buf, capacity, &geom[2], &geom[0], &geom[1]);
10941 kfree(buf);
10942 if ( ret != -1 )
10943 return(ret);
10944 }
10945
10946 heads = 64;
10947 sectors = 32;
10948 cylinders = capacity >> 11;
10949
10950 if ((p->flags & AHC_EXTEND_TRANS_A) && (cylinders > 1024))
10951 {
10952 heads = 255;
10953 sectors = 63;
10954 cylinders = capacity >> 14;
10955 if(capacity > (65535 * heads * sectors))
10956 cylinders = 65535;
10957 else
10958 cylinders = ((unsigned int)capacity) / (unsigned int)(heads * sectors);
10959 }
10960
10961 geom[0] = (int)heads;
10962 geom[1] = (int)sectors;
10963 geom[2] = (int)cylinders;
10964
10965 return (0);
10966 }
10967
10968 /*+F*************************************************************************
10969 * Function:
10970 * aic7xxx_release
10971 *
10972 * Description:
10973 * Free the passed in Scsi_Host memory structures prior to unloading the
10974 * module.
10975 *-F*************************************************************************/
10976 static int
10977 aic7xxx_release(struct Scsi_Host *host)
10978 {
10979 struct aic7xxx_host *p = (struct aic7xxx_host *) host->hostdata;
10980 struct aic7xxx_host *next, *prev;
10981
10982 if(p->irq)
10983 free_irq(p->irq, p);
10984 #ifdef MMAPIO
10985 if(p->maddr)
10986 {
10987 iounmap(p->maddr);
10988 }
10989 #endif /* MMAPIO */
10990 if(!p->pdev)
10991 release_region(p->base, MAXREG - MINREG);
10992 #ifdef CONFIG_PCI
10993 else {
10994 pci_release_regions(p->pdev);
10995 pci_dev_put(p->pdev);
10996 }
10997 #endif
10998 prev = NULL;
10999 next = first_aic7xxx;
11000 while(next != NULL)
11001 {
11002 if(next == p)
11003 {
11004 if(prev == NULL)
11005 first_aic7xxx = next->next;
11006 else
11007 prev->next = next->next;
11008 }
11009 else
11010 {
11011 prev = next;
11012 }
11013 next = next->next;
11014 }
11015 aic7xxx_free(p);
11016 return(0);
11017 }
11018
11019 /*+F*************************************************************************
11020 * Function:
11021 * aic7xxx_print_card
11022 *
11023 * Description:
11024 * Print out all of the control registers on the card
11025 *
11026 * NOTE: This function is not yet safe for use on the VLB and EISA
11027 * controllers, so it isn't used on those controllers at all.
11028 *-F*************************************************************************/
11029 static void
11030 aic7xxx_print_card(struct aic7xxx_host *p)
11031 {
11032 int i, j, k, chip;
11033 static struct register_ranges {
11034 int num_ranges;
11035 int range_val[32];
11036 } cards_ds[] = {
11037 { 0, {0,} }, /* none */
11038 {10, {0x00, 0x05, 0x08, 0x11, 0x18, 0x19, 0x1f, 0x1f, 0x60, 0x60, /*7771*/
11039 0x62, 0x66, 0x80, 0x8e, 0x90, 0x95, 0x97, 0x97, 0x9b, 0x9f} },
11040 { 9, {0x00, 0x05, 0x08, 0x11, 0x18, 0x1f, 0x60, 0x60, 0x62, 0x66, /*7850*/
11041 0x80, 0x8e, 0x90, 0x95, 0x97, 0x97, 0x9a, 0x9f} },
11042 { 9, {0x00, 0x05, 0x08, 0x11, 0x18, 0x1f, 0x60, 0x60, 0x62, 0x66, /*7860*/
11043 0x80, 0x8e, 0x90, 0x95, 0x97, 0x97, 0x9a, 0x9f} },
11044 {10, {0x00, 0x05, 0x08, 0x11, 0x18, 0x19, 0x1c, 0x1f, 0x60, 0x60, /*7870*/
11045 0x62, 0x66, 0x80, 0x8e, 0x90, 0x95, 0x97, 0x97, 0x9a, 0x9f} },
11046 {10, {0x00, 0x05, 0x08, 0x11, 0x18, 0x1a, 0x1c, 0x1f, 0x60, 0x60, /*7880*/
11047 0x62, 0x66, 0x80, 0x8e, 0x90, 0x95, 0x97, 0x97, 0x9a, 0x9f} },
11048 {16, {0x00, 0x05, 0x08, 0x11, 0x18, 0x1f, 0x60, 0x60, 0x62, 0x66, /*7890*/
11049 0x84, 0x8e, 0x90, 0x95, 0x97, 0x97, 0x9a, 0x9a, 0x9f, 0x9f,
11050 0xe0, 0xf1, 0xf4, 0xf4, 0xf6, 0xf6, 0xf8, 0xf8, 0xfa, 0xfc,
11051 0xfe, 0xff} },
11052 {12, {0x00, 0x05, 0x08, 0x11, 0x18, 0x19, 0x1b, 0x1f, 0x60, 0x60, /*7895*/
11053 0x62, 0x66, 0x80, 0x8e, 0x90, 0x95, 0x97, 0x97, 0x9a, 0x9a,
11054 0x9f, 0x9f, 0xe0, 0xf1} },
11055 {16, {0x00, 0x05, 0x08, 0x11, 0x18, 0x1f, 0x60, 0x60, 0x62, 0x66, /*7896*/
11056 0x84, 0x8e, 0x90, 0x95, 0x97, 0x97, 0x9a, 0x9a, 0x9f, 0x9f,
11057 0xe0, 0xf1, 0xf4, 0xf4, 0xf6, 0xf6, 0xf8, 0xf8, 0xfa, 0xfc,
11058 0xfe, 0xff} },
11059 {12, {0x00, 0x05, 0x08, 0x11, 0x18, 0x1f, 0x60, 0x60, 0x62, 0x66, /*7892*/
11060 0x84, 0x8e, 0x90, 0x95, 0x97, 0x97, 0x9a, 0x9a, 0x9c, 0x9f,
11061 0xe0, 0xf1, 0xf4, 0xfc} },
11062 {12, {0x00, 0x05, 0x08, 0x11, 0x18, 0x1f, 0x60, 0x60, 0x62, 0x66, /*7899*/
11063 0x84, 0x8e, 0x90, 0x95, 0x97, 0x97, 0x9a, 0x9a, 0x9c, 0x9f,
11064 0xe0, 0xf1, 0xf4, 0xfc} },
11065 };
11066 chip = p->chip & AHC_CHIPID_MASK;
11067 printk("%s at ",
11068 board_names[p->board_name_index]);
11069 switch(p->chip & ~AHC_CHIPID_MASK)
11070 {
11071 case AHC_VL:
11072 printk("VLB Slot %d.\n", p->pci_device_fn);
11073 break;
11074 case AHC_EISA:
11075 printk("EISA Slot %d.\n", p->pci_device_fn);
11076 break;
11077 case AHC_PCI:
11078 default:
11079 printk("PCI %d/%d/%d.\n", p->pci_bus, PCI_SLOT(p->pci_device_fn),
11080 PCI_FUNC(p->pci_device_fn));
11081 break;
11082 }
11083
11084 /*
11085 * the registers on the card....
11086 */
11087 printk("Card Dump:\n");
11088 k = 0;
11089 for(i=0; i<cards_ds[chip].num_ranges; i++)
11090 {
11091 for(j = cards_ds[chip].range_val[ i * 2 ];
11092 j <= cards_ds[chip].range_val[ i * 2 + 1 ] ;
11093 j++)
11094 {
11095 printk("%02x:%02x ", j, aic_inb(p, j));
11096 if(++k == 13)
11097 {
11098 printk("\n");
11099 k=0;
11100 }
11101 }
11102 }
11103 if(k != 0)
11104 printk("\n");
11105
11106 /*
11107 * If this was an Ultra2 controller, then we just hosed the card in terms
11108 * of the QUEUE REGS. This function is only called at init time or by
11109 * the panic_abort function, so it's safe to assume a generic init time
11110 * setting here
11111 */
11112
11113 if(p->features & AHC_QUEUE_REGS)
11114 {
11115 aic_outb(p, 0, SDSCB_QOFF);
11116 aic_outb(p, 0, SNSCB_QOFF);
11117 aic_outb(p, 0, HNSCB_QOFF);
11118 }
11119
11120 }
11121
11122 /*+F*************************************************************************
11123 * Function:
11124 * aic7xxx_print_scratch_ram
11125 *
11126 * Description:
11127 * Print out the scratch RAM values on the card.
11128 *-F*************************************************************************/
11129 static void
11130 aic7xxx_print_scratch_ram(struct aic7xxx_host *p)
11131 {
11132 int i, k;
11133
11134 k = 0;
11135 printk("Scratch RAM:\n");
11136 for(i = SRAM_BASE; i < SEQCTL; i++)
11137 {
11138 printk("%02x:%02x ", i, aic_inb(p, i));
11139 if(++k == 13)
11140 {
11141 printk("\n");
11142 k=0;
11143 }
11144 }
11145 if (p->features & AHC_MORE_SRAM)
11146 {
11147 for(i = TARG_OFFSET; i < 0x80; i++)
11148 {
11149 printk("%02x:%02x ", i, aic_inb(p, i));
11150 if(++k == 13)
11151 {
11152 printk("\n");
11153 k=0;
11154 }
11155 }
11156 }
11157 printk("\n");
11158 }
11159
11160
11161 #include "aic7xxx_old/aic7xxx_proc.c"
11162
11163 MODULE_LICENSE("Dual BSD/GPL");
11164 MODULE_VERSION(AIC7XXX_H_VERSION);
11165
11166
11167 static struct scsi_host_template driver_template = {
11168 .proc_info = aic7xxx_proc_info,
11169 .detect = aic7xxx_detect,
11170 .release = aic7xxx_release,
11171 .info = aic7xxx_info,
11172 .queuecommand = aic7xxx_queue,
11173 .slave_alloc = aic7xxx_slave_alloc,
11174 .slave_configure = aic7xxx_slave_configure,
11175 .slave_destroy = aic7xxx_slave_destroy,
11176 .bios_param = aic7xxx_biosparam,
11177 .eh_abort_handler = aic7xxx_abort,
11178 .eh_device_reset_handler = aic7xxx_bus_device_reset,
11179 .eh_host_reset_handler = aic7xxx_reset,
11180 .can_queue = 255,
11181 .this_id = -1,
11182 .max_sectors = 2048,
11183 .cmd_per_lun = 3,
11184 .use_clustering = ENABLE_CLUSTERING,
11185 };
11186
11187 #include "scsi_module.c"
11188
11189 /*
11190 * Overrides for Emacs so that we almost follow Linus's tabbing style.
11191 * Emacs will notice this stuff at the end of the file and automatically
11192 * adjust the settings for this buffer only. This must remain at the end
11193 * of the file.
11194 * ---------------------------------------------------------------------------
11195 * Local variables:
11196 * c-indent-level: 2
11197 * c-brace-imaginary-offset: 0
11198 * c-brace-offset: -2
11199 * c-argdecl-indent: 2
11200 * c-label-offset: -2
11201 * c-continued-statement-offset: 2
11202 * c-continued-brace-offset: 0
11203 * indent-tabs-mode: nil
11204 * tab-width: 8
11205 * End:
11206 */