609fd19b18449d69fdcfe403e2035a9f54e780e4
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / scsi / aacraid / commsup.c
1 /*
2 * Adaptec AAC series RAID controller driver
3 * (c) Copyright 2001 Red Hat Inc. <alan@redhat.com>
4 *
5 * based on the old aacraid driver that is..
6 * Adaptec aacraid device driver for Linux.
7 *
8 * Copyright (c) 2000 Adaptec, Inc. (aacraid@adaptec.com)
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2, or (at your option)
13 * any later version.
14 *
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public License
21 * along with this program; see the file COPYING. If not, write to
22 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
23 *
24 * Module Name:
25 * commsup.c
26 *
27 * Abstract: Contain all routines that are required for FSA host/adapter
28 * communication.
29 *
30 */
31
32 #include <linux/kernel.h>
33 #include <linux/init.h>
34 #include <linux/types.h>
35 #include <linux/sched.h>
36 #include <linux/pci.h>
37 #include <linux/spinlock.h>
38 #include <linux/slab.h>
39 #include <linux/completion.h>
40 #include <linux/blkdev.h>
41 #include <linux/delay.h>
42 #include <scsi/scsi_host.h>
43 #include <scsi/scsi_device.h>
44 #include <asm/semaphore.h>
45
46 #include "aacraid.h"
47
48 /**
49 * fib_map_alloc - allocate the fib objects
50 * @dev: Adapter to allocate for
51 *
52 * Allocate and map the shared PCI space for the FIB blocks used to
53 * talk to the Adaptec firmware.
54 */
55
56 static int fib_map_alloc(struct aac_dev *dev)
57 {
58 dprintk((KERN_INFO
59 "allocate hardware fibs pci_alloc_consistent(%p, %d * (%d + %d), %p)\n",
60 dev->pdev, dev->max_fib_size, dev->scsi_host_ptr->can_queue,
61 AAC_NUM_MGT_FIB, &dev->hw_fib_pa));
62 if((dev->hw_fib_va = pci_alloc_consistent(dev->pdev, dev->max_fib_size
63 * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB),
64 &dev->hw_fib_pa))==NULL)
65 return -ENOMEM;
66 return 0;
67 }
68
69 /**
70 * aac_fib_map_free - free the fib objects
71 * @dev: Adapter to free
72 *
73 * Free the PCI mappings and the memory allocated for FIB blocks
74 * on this adapter.
75 */
76
77 void aac_fib_map_free(struct aac_dev *dev)
78 {
79 pci_free_consistent(dev->pdev, dev->max_fib_size * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB), dev->hw_fib_va, dev->hw_fib_pa);
80 }
81
82 /**
83 * aac_fib_setup - setup the fibs
84 * @dev: Adapter to set up
85 *
86 * Allocate the PCI space for the fibs, map it and then intialise the
87 * fib area, the unmapped fib data and also the free list
88 */
89
90 int aac_fib_setup(struct aac_dev * dev)
91 {
92 struct fib *fibptr;
93 struct hw_fib *hw_fib_va;
94 dma_addr_t hw_fib_pa;
95 int i;
96
97 while (((i = fib_map_alloc(dev)) == -ENOMEM)
98 && (dev->scsi_host_ptr->can_queue > (64 - AAC_NUM_MGT_FIB))) {
99 dev->init->MaxIoCommands = cpu_to_le32((dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB) >> 1);
100 dev->scsi_host_ptr->can_queue = le32_to_cpu(dev->init->MaxIoCommands) - AAC_NUM_MGT_FIB;
101 }
102 if (i<0)
103 return -ENOMEM;
104
105 hw_fib_va = dev->hw_fib_va;
106 hw_fib_pa = dev->hw_fib_pa;
107 memset(hw_fib_va, 0, dev->max_fib_size * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB));
108 /*
109 * Initialise the fibs
110 */
111 for (i = 0, fibptr = &dev->fibs[i]; i < (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB); i++, fibptr++)
112 {
113 fibptr->dev = dev;
114 fibptr->hw_fib = hw_fib_va;
115 fibptr->data = (void *) fibptr->hw_fib->data;
116 fibptr->next = fibptr+1; /* Forward chain the fibs */
117 init_MUTEX_LOCKED(&fibptr->event_wait);
118 spin_lock_init(&fibptr->event_lock);
119 hw_fib_va->header.XferState = cpu_to_le32(0xffffffff);
120 hw_fib_va->header.SenderSize = cpu_to_le16(dev->max_fib_size);
121 fibptr->hw_fib_pa = hw_fib_pa;
122 hw_fib_va = (struct hw_fib *)((unsigned char *)hw_fib_va + dev->max_fib_size);
123 hw_fib_pa = hw_fib_pa + dev->max_fib_size;
124 }
125 /*
126 * Add the fib chain to the free list
127 */
128 dev->fibs[dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB - 1].next = NULL;
129 /*
130 * Enable this to debug out of queue space
131 */
132 dev->free_fib = &dev->fibs[0];
133 return 0;
134 }
135
136 /**
137 * aac_fib_alloc - allocate a fib
138 * @dev: Adapter to allocate the fib for
139 *
140 * Allocate a fib from the adapter fib pool. If the pool is empty we
141 * return NULL.
142 */
143
144 struct fib *aac_fib_alloc(struct aac_dev *dev)
145 {
146 struct fib * fibptr;
147 unsigned long flags;
148 spin_lock_irqsave(&dev->fib_lock, flags);
149 fibptr = dev->free_fib;
150 if(!fibptr){
151 spin_unlock_irqrestore(&dev->fib_lock, flags);
152 return fibptr;
153 }
154 dev->free_fib = fibptr->next;
155 spin_unlock_irqrestore(&dev->fib_lock, flags);
156 /*
157 * Set the proper node type code and node byte size
158 */
159 fibptr->type = FSAFS_NTC_FIB_CONTEXT;
160 fibptr->size = sizeof(struct fib);
161 /*
162 * Null out fields that depend on being zero at the start of
163 * each I/O
164 */
165 fibptr->hw_fib->header.XferState = 0;
166 fibptr->callback = NULL;
167 fibptr->callback_data = NULL;
168
169 return fibptr;
170 }
171
172 /**
173 * aac_fib_free - free a fib
174 * @fibptr: fib to free up
175 *
176 * Frees up a fib and places it on the appropriate queue
177 * (either free or timed out)
178 */
179
180 void aac_fib_free(struct fib *fibptr)
181 {
182 unsigned long flags;
183
184 spin_lock_irqsave(&fibptr->dev->fib_lock, flags);
185 if (fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT) {
186 aac_config.fib_timeouts++;
187 fibptr->next = fibptr->dev->timeout_fib;
188 fibptr->dev->timeout_fib = fibptr;
189 } else {
190 if (fibptr->hw_fib->header.XferState != 0) {
191 printk(KERN_WARNING "aac_fib_free, XferState != 0, fibptr = 0x%p, XferState = 0x%x\n",
192 (void*)fibptr,
193 le32_to_cpu(fibptr->hw_fib->header.XferState));
194 }
195 fibptr->next = fibptr->dev->free_fib;
196 fibptr->dev->free_fib = fibptr;
197 }
198 spin_unlock_irqrestore(&fibptr->dev->fib_lock, flags);
199 }
200
201 /**
202 * aac_fib_init - initialise a fib
203 * @fibptr: The fib to initialize
204 *
205 * Set up the generic fib fields ready for use
206 */
207
208 void aac_fib_init(struct fib *fibptr)
209 {
210 struct hw_fib *hw_fib = fibptr->hw_fib;
211
212 hw_fib->header.StructType = FIB_MAGIC;
213 hw_fib->header.Size = cpu_to_le16(fibptr->dev->max_fib_size);
214 hw_fib->header.XferState = cpu_to_le32(HostOwned | FibInitialized | FibEmpty | FastResponseCapable);
215 hw_fib->header.SenderFibAddress = 0; /* Filled in later if needed */
216 hw_fib->header.ReceiverFibAddress = cpu_to_le32(fibptr->hw_fib_pa);
217 hw_fib->header.SenderSize = cpu_to_le16(fibptr->dev->max_fib_size);
218 }
219
220 /**
221 * fib_deallocate - deallocate a fib
222 * @fibptr: fib to deallocate
223 *
224 * Will deallocate and return to the free pool the FIB pointed to by the
225 * caller.
226 */
227
228 static void fib_dealloc(struct fib * fibptr)
229 {
230 struct hw_fib *hw_fib = fibptr->hw_fib;
231 if(hw_fib->header.StructType != FIB_MAGIC)
232 BUG();
233 hw_fib->header.XferState = 0;
234 }
235
236 /*
237 * Commuication primitives define and support the queuing method we use to
238 * support host to adapter commuication. All queue accesses happen through
239 * these routines and are the only routines which have a knowledge of the
240 * how these queues are implemented.
241 */
242
243 /**
244 * aac_get_entry - get a queue entry
245 * @dev: Adapter
246 * @qid: Queue Number
247 * @entry: Entry return
248 * @index: Index return
249 * @nonotify: notification control
250 *
251 * With a priority the routine returns a queue entry if the queue has free entries. If the queue
252 * is full(no free entries) than no entry is returned and the function returns 0 otherwise 1 is
253 * returned.
254 */
255
256 static int aac_get_entry (struct aac_dev * dev, u32 qid, struct aac_entry **entry, u32 * index, unsigned long *nonotify)
257 {
258 struct aac_queue * q;
259 unsigned long idx;
260
261 /*
262 * All of the queues wrap when they reach the end, so we check
263 * to see if they have reached the end and if they have we just
264 * set the index back to zero. This is a wrap. You could or off
265 * the high bits in all updates but this is a bit faster I think.
266 */
267
268 q = &dev->queues->queue[qid];
269
270 idx = *index = le32_to_cpu(*(q->headers.producer));
271 /* Interrupt Moderation, only interrupt for first two entries */
272 if (idx != le32_to_cpu(*(q->headers.consumer))) {
273 if (--idx == 0) {
274 if (qid == AdapNormCmdQueue)
275 idx = ADAP_NORM_CMD_ENTRIES;
276 else
277 idx = ADAP_NORM_RESP_ENTRIES;
278 }
279 if (idx != le32_to_cpu(*(q->headers.consumer)))
280 *nonotify = 1;
281 }
282
283 if (qid == AdapNormCmdQueue) {
284 if (*index >= ADAP_NORM_CMD_ENTRIES)
285 *index = 0; /* Wrap to front of the Producer Queue. */
286 } else {
287 if (*index >= ADAP_NORM_RESP_ENTRIES)
288 *index = 0; /* Wrap to front of the Producer Queue. */
289 }
290
291 if ((*index + 1) == le32_to_cpu(*(q->headers.consumer))) { /* Queue is full */
292 printk(KERN_WARNING "Queue %d full, %u outstanding.\n",
293 qid, q->numpending);
294 return 0;
295 } else {
296 *entry = q->base + *index;
297 return 1;
298 }
299 }
300
301 /**
302 * aac_queue_get - get the next free QE
303 * @dev: Adapter
304 * @index: Returned index
305 * @priority: Priority of fib
306 * @fib: Fib to associate with the queue entry
307 * @wait: Wait if queue full
308 * @fibptr: Driver fib object to go with fib
309 * @nonotify: Don't notify the adapter
310 *
311 * Gets the next free QE off the requested priorty adapter command
312 * queue and associates the Fib with the QE. The QE represented by
313 * index is ready to insert on the queue when this routine returns
314 * success.
315 */
316
317 static int aac_queue_get(struct aac_dev * dev, u32 * index, u32 qid, struct hw_fib * hw_fib, int wait, struct fib * fibptr, unsigned long *nonotify)
318 {
319 struct aac_entry * entry = NULL;
320 int map = 0;
321
322 if (qid == AdapNormCmdQueue) {
323 /* if no entries wait for some if caller wants to */
324 while (!aac_get_entry(dev, qid, &entry, index, nonotify))
325 {
326 printk(KERN_ERR "GetEntries failed\n");
327 }
328 /*
329 * Setup queue entry with a command, status and fib mapped
330 */
331 entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size));
332 map = 1;
333 } else {
334 while(!aac_get_entry(dev, qid, &entry, index, nonotify))
335 {
336 /* if no entries wait for some if caller wants to */
337 }
338 /*
339 * Setup queue entry with command, status and fib mapped
340 */
341 entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size));
342 entry->addr = hw_fib->header.SenderFibAddress;
343 /* Restore adapters pointer to the FIB */
344 hw_fib->header.ReceiverFibAddress = hw_fib->header.SenderFibAddress; /* Let the adapter now where to find its data */
345 map = 0;
346 }
347 /*
348 * If MapFib is true than we need to map the Fib and put pointers
349 * in the queue entry.
350 */
351 if (map)
352 entry->addr = cpu_to_le32(fibptr->hw_fib_pa);
353 return 0;
354 }
355
356 /*
357 * Define the highest level of host to adapter communication routines.
358 * These routines will support host to adapter FS commuication. These
359 * routines have no knowledge of the commuication method used. This level
360 * sends and receives FIBs. This level has no knowledge of how these FIBs
361 * get passed back and forth.
362 */
363
364 /**
365 * aac_fib_send - send a fib to the adapter
366 * @command: Command to send
367 * @fibptr: The fib
368 * @size: Size of fib data area
369 * @priority: Priority of Fib
370 * @wait: Async/sync select
371 * @reply: True if a reply is wanted
372 * @callback: Called with reply
373 * @callback_data: Passed to callback
374 *
375 * Sends the requested FIB to the adapter and optionally will wait for a
376 * response FIB. If the caller does not wish to wait for a response than
377 * an event to wait on must be supplied. This event will be set when a
378 * response FIB is received from the adapter.
379 */
380
381 int aac_fib_send(u16 command, struct fib *fibptr, unsigned long size,
382 int priority, int wait, int reply, fib_callback callback,
383 void *callback_data)
384 {
385 struct aac_dev * dev = fibptr->dev;
386 struct hw_fib * hw_fib = fibptr->hw_fib;
387 struct aac_queue * q;
388 unsigned long flags = 0;
389 unsigned long qflags;
390
391 if (!(hw_fib->header.XferState & cpu_to_le32(HostOwned)))
392 return -EBUSY;
393 /*
394 * There are 5 cases with the wait and reponse requested flags.
395 * The only invalid cases are if the caller requests to wait and
396 * does not request a response and if the caller does not want a
397 * response and the Fib is not allocated from pool. If a response
398 * is not requesed the Fib will just be deallocaed by the DPC
399 * routine when the response comes back from the adapter. No
400 * further processing will be done besides deleting the Fib. We
401 * will have a debug mode where the adapter can notify the host
402 * it had a problem and the host can log that fact.
403 */
404 if (wait && !reply) {
405 return -EINVAL;
406 } else if (!wait && reply) {
407 hw_fib->header.XferState |= cpu_to_le32(Async | ResponseExpected);
408 FIB_COUNTER_INCREMENT(aac_config.AsyncSent);
409 } else if (!wait && !reply) {
410 hw_fib->header.XferState |= cpu_to_le32(NoResponseExpected);
411 FIB_COUNTER_INCREMENT(aac_config.NoResponseSent);
412 } else if (wait && reply) {
413 hw_fib->header.XferState |= cpu_to_le32(ResponseExpected);
414 FIB_COUNTER_INCREMENT(aac_config.NormalSent);
415 }
416 /*
417 * Map the fib into 32bits by using the fib number
418 */
419
420 hw_fib->header.SenderFibAddress = cpu_to_le32(((u32)(fibptr - dev->fibs)) << 2);
421 hw_fib->header.SenderData = (u32)(fibptr - dev->fibs);
422 /*
423 * Set FIB state to indicate where it came from and if we want a
424 * response from the adapter. Also load the command from the
425 * caller.
426 *
427 * Map the hw fib pointer as a 32bit value
428 */
429 hw_fib->header.Command = cpu_to_le16(command);
430 hw_fib->header.XferState |= cpu_to_le32(SentFromHost);
431 fibptr->hw_fib->header.Flags = 0; /* 0 the flags field - internal only*/
432 /*
433 * Set the size of the Fib we want to send to the adapter
434 */
435 hw_fib->header.Size = cpu_to_le16(sizeof(struct aac_fibhdr) + size);
436 if (le16_to_cpu(hw_fib->header.Size) > le16_to_cpu(hw_fib->header.SenderSize)) {
437 return -EMSGSIZE;
438 }
439 /*
440 * Get a queue entry connect the FIB to it and send an notify
441 * the adapter a command is ready.
442 */
443 hw_fib->header.XferState |= cpu_to_le32(NormalPriority);
444
445 /*
446 * Fill in the Callback and CallbackContext if we are not
447 * going to wait.
448 */
449 if (!wait) {
450 fibptr->callback = callback;
451 fibptr->callback_data = callback_data;
452 }
453
454 fibptr->done = 0;
455 fibptr->flags = 0;
456
457 FIB_COUNTER_INCREMENT(aac_config.FibsSent);
458
459 dprintk((KERN_DEBUG "Fib contents:.\n"));
460 dprintk((KERN_DEBUG " Command = %d.\n", le32_to_cpu(hw_fib->header.Command)));
461 dprintk((KERN_DEBUG " SubCommand = %d.\n", le32_to_cpu(((struct aac_query_mount *)fib_data(fibptr))->command)));
462 dprintk((KERN_DEBUG " XferState = %x.\n", le32_to_cpu(hw_fib->header.XferState)));
463 dprintk((KERN_DEBUG " hw_fib va being sent=%p\n",fibptr->hw_fib));
464 dprintk((KERN_DEBUG " hw_fib pa being sent=%lx\n",(ulong)fibptr->hw_fib_pa));
465 dprintk((KERN_DEBUG " fib being sent=%p\n",fibptr));
466
467 q = &dev->queues->queue[AdapNormCmdQueue];
468
469 if(wait)
470 spin_lock_irqsave(&fibptr->event_lock, flags);
471 spin_lock_irqsave(q->lock, qflags);
472 if (dev->new_comm_interface) {
473 unsigned long count = 10000000L; /* 50 seconds */
474 list_add_tail(&fibptr->queue, &q->pendingq);
475 q->numpending++;
476 spin_unlock_irqrestore(q->lock, qflags);
477 while (aac_adapter_send(fibptr) != 0) {
478 if (--count == 0) {
479 if (wait)
480 spin_unlock_irqrestore(&fibptr->event_lock, flags);
481 spin_lock_irqsave(q->lock, qflags);
482 q->numpending--;
483 list_del(&fibptr->queue);
484 spin_unlock_irqrestore(q->lock, qflags);
485 return -ETIMEDOUT;
486 }
487 udelay(5);
488 }
489 } else {
490 u32 index;
491 unsigned long nointr = 0;
492 aac_queue_get( dev, &index, AdapNormCmdQueue, hw_fib, 1, fibptr, &nointr);
493
494 list_add_tail(&fibptr->queue, &q->pendingq);
495 q->numpending++;
496 *(q->headers.producer) = cpu_to_le32(index + 1);
497 spin_unlock_irqrestore(q->lock, qflags);
498 dprintk((KERN_DEBUG "aac_fib_send: inserting a queue entry at index %d.\n",index));
499 if (!(nointr & aac_config.irq_mod))
500 aac_adapter_notify(dev, AdapNormCmdQueue);
501 }
502
503 /*
504 * If the caller wanted us to wait for response wait now.
505 */
506
507 if (wait) {
508 spin_unlock_irqrestore(&fibptr->event_lock, flags);
509 /* Only set for first known interruptable command */
510 if (wait < 0) {
511 /*
512 * *VERY* Dangerous to time out a command, the
513 * assumption is made that we have no hope of
514 * functioning because an interrupt routing or other
515 * hardware failure has occurred.
516 */
517 unsigned long count = 36000000L; /* 3 minutes */
518 while (down_trylock(&fibptr->event_wait)) {
519 if (--count == 0) {
520 spin_lock_irqsave(q->lock, qflags);
521 q->numpending--;
522 list_del(&fibptr->queue);
523 spin_unlock_irqrestore(q->lock, qflags);
524 if (wait == -1) {
525 printk(KERN_ERR "aacraid: aac_fib_send: first asynchronous command timed out.\n"
526 "Usually a result of a PCI interrupt routing problem;\n"
527 "update mother board BIOS or consider utilizing one of\n"
528 "the SAFE mode kernel options (acpi, apic etc)\n");
529 }
530 return -ETIMEDOUT;
531 }
532 udelay(5);
533 }
534 } else
535 down(&fibptr->event_wait);
536 if(fibptr->done == 0)
537 BUG();
538
539 if((fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT)){
540 return -ETIMEDOUT;
541 } else {
542 return 0;
543 }
544 }
545 /*
546 * If the user does not want a response than return success otherwise
547 * return pending
548 */
549 if (reply)
550 return -EINPROGRESS;
551 else
552 return 0;
553 }
554
555 /**
556 * aac_consumer_get - get the top of the queue
557 * @dev: Adapter
558 * @q: Queue
559 * @entry: Return entry
560 *
561 * Will return a pointer to the entry on the top of the queue requested that
562 * we are a consumer of, and return the address of the queue entry. It does
563 * not change the state of the queue.
564 */
565
566 int aac_consumer_get(struct aac_dev * dev, struct aac_queue * q, struct aac_entry **entry)
567 {
568 u32 index;
569 int status;
570 if (le32_to_cpu(*q->headers.producer) == le32_to_cpu(*q->headers.consumer)) {
571 status = 0;
572 } else {
573 /*
574 * The consumer index must be wrapped if we have reached
575 * the end of the queue, else we just use the entry
576 * pointed to by the header index
577 */
578 if (le32_to_cpu(*q->headers.consumer) >= q->entries)
579 index = 0;
580 else
581 index = le32_to_cpu(*q->headers.consumer);
582 *entry = q->base + index;
583 status = 1;
584 }
585 return(status);
586 }
587
588 /**
589 * aac_consumer_free - free consumer entry
590 * @dev: Adapter
591 * @q: Queue
592 * @qid: Queue ident
593 *
594 * Frees up the current top of the queue we are a consumer of. If the
595 * queue was full notify the producer that the queue is no longer full.
596 */
597
598 void aac_consumer_free(struct aac_dev * dev, struct aac_queue *q, u32 qid)
599 {
600 int wasfull = 0;
601 u32 notify;
602
603 if ((le32_to_cpu(*q->headers.producer)+1) == le32_to_cpu(*q->headers.consumer))
604 wasfull = 1;
605
606 if (le32_to_cpu(*q->headers.consumer) >= q->entries)
607 *q->headers.consumer = cpu_to_le32(1);
608 else
609 *q->headers.consumer = cpu_to_le32(le32_to_cpu(*q->headers.consumer)+1);
610
611 if (wasfull) {
612 switch (qid) {
613
614 case HostNormCmdQueue:
615 notify = HostNormCmdNotFull;
616 break;
617 case HostNormRespQueue:
618 notify = HostNormRespNotFull;
619 break;
620 default:
621 BUG();
622 return;
623 }
624 aac_adapter_notify(dev, notify);
625 }
626 }
627
628 /**
629 * aac_fib_adapter_complete - complete adapter issued fib
630 * @fibptr: fib to complete
631 * @size: size of fib
632 *
633 * Will do all necessary work to complete a FIB that was sent from
634 * the adapter.
635 */
636
637 int aac_fib_adapter_complete(struct fib *fibptr, unsigned short size)
638 {
639 struct hw_fib * hw_fib = fibptr->hw_fib;
640 struct aac_dev * dev = fibptr->dev;
641 struct aac_queue * q;
642 unsigned long nointr = 0;
643 unsigned long qflags;
644
645 if (hw_fib->header.XferState == 0) {
646 if (dev->new_comm_interface)
647 kfree (hw_fib);
648 return 0;
649 }
650 /*
651 * If we plan to do anything check the structure type first.
652 */
653 if ( hw_fib->header.StructType != FIB_MAGIC ) {
654 if (dev->new_comm_interface)
655 kfree (hw_fib);
656 return -EINVAL;
657 }
658 /*
659 * This block handles the case where the adapter had sent us a
660 * command and we have finished processing the command. We
661 * call completeFib when we are done processing the command
662 * and want to send a response back to the adapter. This will
663 * send the completed cdb to the adapter.
664 */
665 if (hw_fib->header.XferState & cpu_to_le32(SentFromAdapter)) {
666 if (dev->new_comm_interface) {
667 kfree (hw_fib);
668 } else {
669 u32 index;
670 hw_fib->header.XferState |= cpu_to_le32(HostProcessed);
671 if (size) {
672 size += sizeof(struct aac_fibhdr);
673 if (size > le16_to_cpu(hw_fib->header.SenderSize))
674 return -EMSGSIZE;
675 hw_fib->header.Size = cpu_to_le16(size);
676 }
677 q = &dev->queues->queue[AdapNormRespQueue];
678 spin_lock_irqsave(q->lock, qflags);
679 aac_queue_get(dev, &index, AdapNormRespQueue, hw_fib, 1, NULL, &nointr);
680 *(q->headers.producer) = cpu_to_le32(index + 1);
681 spin_unlock_irqrestore(q->lock, qflags);
682 if (!(nointr & (int)aac_config.irq_mod))
683 aac_adapter_notify(dev, AdapNormRespQueue);
684 }
685 }
686 else
687 {
688 printk(KERN_WARNING "aac_fib_adapter_complete: Unknown xferstate detected.\n");
689 BUG();
690 }
691 return 0;
692 }
693
694 /**
695 * aac_fib_complete - fib completion handler
696 * @fib: FIB to complete
697 *
698 * Will do all necessary work to complete a FIB.
699 */
700
701 int aac_fib_complete(struct fib *fibptr)
702 {
703 struct hw_fib * hw_fib = fibptr->hw_fib;
704
705 /*
706 * Check for a fib which has already been completed
707 */
708
709 if (hw_fib->header.XferState == 0)
710 return 0;
711 /*
712 * If we plan to do anything check the structure type first.
713 */
714
715 if (hw_fib->header.StructType != FIB_MAGIC)
716 return -EINVAL;
717 /*
718 * This block completes a cdb which orginated on the host and we
719 * just need to deallocate the cdb or reinit it. At this point the
720 * command is complete that we had sent to the adapter and this
721 * cdb could be reused.
722 */
723 if((hw_fib->header.XferState & cpu_to_le32(SentFromHost)) &&
724 (hw_fib->header.XferState & cpu_to_le32(AdapterProcessed)))
725 {
726 fib_dealloc(fibptr);
727 }
728 else if(hw_fib->header.XferState & cpu_to_le32(SentFromHost))
729 {
730 /*
731 * This handles the case when the host has aborted the I/O
732 * to the adapter because the adapter is not responding
733 */
734 fib_dealloc(fibptr);
735 } else if(hw_fib->header.XferState & cpu_to_le32(HostOwned)) {
736 fib_dealloc(fibptr);
737 } else {
738 BUG();
739 }
740 return 0;
741 }
742
743 /**
744 * aac_printf - handle printf from firmware
745 * @dev: Adapter
746 * @val: Message info
747 *
748 * Print a message passed to us by the controller firmware on the
749 * Adaptec board
750 */
751
752 void aac_printf(struct aac_dev *dev, u32 val)
753 {
754 char *cp = dev->printfbuf;
755 if (dev->printf_enabled)
756 {
757 int length = val & 0xffff;
758 int level = (val >> 16) & 0xffff;
759
760 /*
761 * The size of the printfbuf is set in port.c
762 * There is no variable or define for it
763 */
764 if (length > 255)
765 length = 255;
766 if (cp[length] != 0)
767 cp[length] = 0;
768 if (level == LOG_AAC_HIGH_ERROR)
769 printk(KERN_WARNING "aacraid:%s", cp);
770 else
771 printk(KERN_INFO "aacraid:%s", cp);
772 }
773 memset(cp, 0, 256);
774 }
775
776
777 /**
778 * aac_handle_aif - Handle a message from the firmware
779 * @dev: Which adapter this fib is from
780 * @fibptr: Pointer to fibptr from adapter
781 *
782 * This routine handles a driver notify fib from the adapter and
783 * dispatches it to the appropriate routine for handling.
784 */
785
786 static void aac_handle_aif(struct aac_dev * dev, struct fib * fibptr)
787 {
788 struct hw_fib * hw_fib = fibptr->hw_fib;
789 struct aac_aifcmd * aifcmd = (struct aac_aifcmd *)hw_fib->data;
790 int busy;
791 u32 container;
792 struct scsi_device *device;
793 enum {
794 NOTHING,
795 DELETE,
796 ADD,
797 CHANGE
798 } device_config_needed;
799
800 /* Sniff for container changes */
801
802 if (!dev)
803 return;
804 container = (u32)-1;
805
806 /*
807 * We have set this up to try and minimize the number of
808 * re-configures that take place. As a result of this when
809 * certain AIF's come in we will set a flag waiting for another
810 * type of AIF before setting the re-config flag.
811 */
812 switch (le32_to_cpu(aifcmd->command)) {
813 case AifCmdDriverNotify:
814 switch (le32_to_cpu(((u32 *)aifcmd->data)[0])) {
815 /*
816 * Morph or Expand complete
817 */
818 case AifDenMorphComplete:
819 case AifDenVolumeExtendComplete:
820 container = le32_to_cpu(((u32 *)aifcmd->data)[1]);
821 if (container >= dev->maximum_num_containers)
822 break;
823
824 /*
825 * Find the scsi_device associated with the SCSI
826 * address. Make sure we have the right array, and if
827 * so set the flag to initiate a new re-config once we
828 * see an AifEnConfigChange AIF come through.
829 */
830
831 if ((dev != NULL) && (dev->scsi_host_ptr != NULL)) {
832 device = scsi_device_lookup(dev->scsi_host_ptr,
833 CONTAINER_TO_CHANNEL(container),
834 CONTAINER_TO_ID(container),
835 CONTAINER_TO_LUN(container));
836 if (device) {
837 dev->fsa_dev[container].config_needed = CHANGE;
838 dev->fsa_dev[container].config_waiting_on = AifEnConfigChange;
839 scsi_device_put(device);
840 }
841 }
842 }
843
844 /*
845 * If we are waiting on something and this happens to be
846 * that thing then set the re-configure flag.
847 */
848 if (container != (u32)-1) {
849 if (container >= dev->maximum_num_containers)
850 break;
851 if (dev->fsa_dev[container].config_waiting_on ==
852 le32_to_cpu(*(u32 *)aifcmd->data))
853 dev->fsa_dev[container].config_waiting_on = 0;
854 } else for (container = 0;
855 container < dev->maximum_num_containers; ++container) {
856 if (dev->fsa_dev[container].config_waiting_on ==
857 le32_to_cpu(*(u32 *)aifcmd->data))
858 dev->fsa_dev[container].config_waiting_on = 0;
859 }
860 break;
861
862 case AifCmdEventNotify:
863 switch (le32_to_cpu(((u32 *)aifcmd->data)[0])) {
864 /*
865 * Add an Array.
866 */
867 case AifEnAddContainer:
868 container = le32_to_cpu(((u32 *)aifcmd->data)[1]);
869 if (container >= dev->maximum_num_containers)
870 break;
871 dev->fsa_dev[container].config_needed = ADD;
872 dev->fsa_dev[container].config_waiting_on =
873 AifEnConfigChange;
874 break;
875
876 /*
877 * Delete an Array.
878 */
879 case AifEnDeleteContainer:
880 container = le32_to_cpu(((u32 *)aifcmd->data)[1]);
881 if (container >= dev->maximum_num_containers)
882 break;
883 dev->fsa_dev[container].config_needed = DELETE;
884 dev->fsa_dev[container].config_waiting_on =
885 AifEnConfigChange;
886 break;
887
888 /*
889 * Container change detected. If we currently are not
890 * waiting on something else, setup to wait on a Config Change.
891 */
892 case AifEnContainerChange:
893 container = le32_to_cpu(((u32 *)aifcmd->data)[1]);
894 if (container >= dev->maximum_num_containers)
895 break;
896 if (dev->fsa_dev[container].config_waiting_on)
897 break;
898 dev->fsa_dev[container].config_needed = CHANGE;
899 dev->fsa_dev[container].config_waiting_on =
900 AifEnConfigChange;
901 break;
902
903 case AifEnConfigChange:
904 break;
905
906 }
907
908 /*
909 * If we are waiting on something and this happens to be
910 * that thing then set the re-configure flag.
911 */
912 if (container != (u32)-1) {
913 if (container >= dev->maximum_num_containers)
914 break;
915 if (dev->fsa_dev[container].config_waiting_on ==
916 le32_to_cpu(*(u32 *)aifcmd->data))
917 dev->fsa_dev[container].config_waiting_on = 0;
918 } else for (container = 0;
919 container < dev->maximum_num_containers; ++container) {
920 if (dev->fsa_dev[container].config_waiting_on ==
921 le32_to_cpu(*(u32 *)aifcmd->data))
922 dev->fsa_dev[container].config_waiting_on = 0;
923 }
924 break;
925
926 case AifCmdJobProgress:
927 /*
928 * These are job progress AIF's. When a Clear is being
929 * done on a container it is initially created then hidden from
930 * the OS. When the clear completes we don't get a config
931 * change so we monitor the job status complete on a clear then
932 * wait for a container change.
933 */
934
935 if ((((u32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero))
936 && ((((u32 *)aifcmd->data)[6] == ((u32 *)aifcmd->data)[5])
937 || (((u32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsSuccess)))) {
938 for (container = 0;
939 container < dev->maximum_num_containers;
940 ++container) {
941 /*
942 * Stomp on all config sequencing for all
943 * containers?
944 */
945 dev->fsa_dev[container].config_waiting_on =
946 AifEnContainerChange;
947 dev->fsa_dev[container].config_needed = ADD;
948 }
949 }
950 if ((((u32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero))
951 && (((u32 *)aifcmd->data)[6] == 0)
952 && (((u32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsRunning))) {
953 for (container = 0;
954 container < dev->maximum_num_containers;
955 ++container) {
956 /*
957 * Stomp on all config sequencing for all
958 * containers?
959 */
960 dev->fsa_dev[container].config_waiting_on =
961 AifEnContainerChange;
962 dev->fsa_dev[container].config_needed = DELETE;
963 }
964 }
965 break;
966 }
967
968 device_config_needed = NOTHING;
969 for (container = 0; container < dev->maximum_num_containers;
970 ++container) {
971 if ((dev->fsa_dev[container].config_waiting_on == 0)
972 && (dev->fsa_dev[container].config_needed != NOTHING)) {
973 device_config_needed =
974 dev->fsa_dev[container].config_needed;
975 dev->fsa_dev[container].config_needed = NOTHING;
976 break;
977 }
978 }
979 if (device_config_needed == NOTHING)
980 return;
981
982 /*
983 * If we decided that a re-configuration needs to be done,
984 * schedule it here on the way out the door, please close the door
985 * behind you.
986 */
987
988 busy = 0;
989
990
991 /*
992 * Find the scsi_device associated with the SCSI address,
993 * and mark it as changed, invalidating the cache. This deals
994 * with changes to existing device IDs.
995 */
996
997 if (!dev || !dev->scsi_host_ptr)
998 return;
999 /*
1000 * force reload of disk info via aac_probe_container
1001 */
1002 if ((device_config_needed == CHANGE)
1003 && (dev->fsa_dev[container].valid == 1))
1004 dev->fsa_dev[container].valid = 2;
1005 if ((device_config_needed == CHANGE) ||
1006 (device_config_needed == ADD))
1007 aac_probe_container(dev, container);
1008 device = scsi_device_lookup(dev->scsi_host_ptr,
1009 CONTAINER_TO_CHANNEL(container),
1010 CONTAINER_TO_ID(container),
1011 CONTAINER_TO_LUN(container));
1012 if (device) {
1013 switch (device_config_needed) {
1014 case DELETE:
1015 scsi_remove_device(device);
1016 break;
1017 case CHANGE:
1018 if (!dev->fsa_dev[container].valid) {
1019 scsi_remove_device(device);
1020 break;
1021 }
1022 scsi_rescan_device(&device->sdev_gendev);
1023
1024 default:
1025 break;
1026 }
1027 scsi_device_put(device);
1028 }
1029 if (device_config_needed == ADD) {
1030 scsi_add_device(dev->scsi_host_ptr,
1031 CONTAINER_TO_CHANNEL(container),
1032 CONTAINER_TO_ID(container),
1033 CONTAINER_TO_LUN(container));
1034 }
1035
1036 }
1037
1038 /**
1039 * aac_command_thread - command processing thread
1040 * @dev: Adapter to monitor
1041 *
1042 * Waits on the commandready event in it's queue. When the event gets set
1043 * it will pull FIBs off it's queue. It will continue to pull FIBs off
1044 * until the queue is empty. When the queue is empty it will wait for
1045 * more FIBs.
1046 */
1047
1048 int aac_command_thread(struct aac_dev * dev)
1049 {
1050 struct hw_fib *hw_fib, *hw_newfib;
1051 struct fib *fib, *newfib;
1052 struct aac_fib_context *fibctx;
1053 unsigned long flags;
1054 DECLARE_WAITQUEUE(wait, current);
1055
1056 /*
1057 * We can only have one thread per adapter for AIF's.
1058 */
1059 if (dev->aif_thread)
1060 return -EINVAL;
1061 /*
1062 * Set up the name that will appear in 'ps'
1063 * stored in task_struct.comm[16].
1064 */
1065 daemonize("aacraid");
1066 allow_signal(SIGKILL);
1067 /*
1068 * Let the DPC know it has a place to send the AIF's to.
1069 */
1070 dev->aif_thread = 1;
1071 add_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait);
1072 set_current_state(TASK_INTERRUPTIBLE);
1073 dprintk ((KERN_INFO "aac_command_thread start\n"));
1074 while(1)
1075 {
1076 spin_lock_irqsave(dev->queues->queue[HostNormCmdQueue].lock, flags);
1077 while(!list_empty(&(dev->queues->queue[HostNormCmdQueue].cmdq))) {
1078 struct list_head *entry;
1079 struct aac_aifcmd * aifcmd;
1080
1081 set_current_state(TASK_RUNNING);
1082
1083 entry = dev->queues->queue[HostNormCmdQueue].cmdq.next;
1084 list_del(entry);
1085
1086 spin_unlock_irqrestore(dev->queues->queue[HostNormCmdQueue].lock, flags);
1087 fib = list_entry(entry, struct fib, fiblink);
1088 /*
1089 * We will process the FIB here or pass it to a
1090 * worker thread that is TBD. We Really can't
1091 * do anything at this point since we don't have
1092 * anything defined for this thread to do.
1093 */
1094 hw_fib = fib->hw_fib;
1095 memset(fib, 0, sizeof(struct fib));
1096 fib->type = FSAFS_NTC_FIB_CONTEXT;
1097 fib->size = sizeof( struct fib );
1098 fib->hw_fib = hw_fib;
1099 fib->data = hw_fib->data;
1100 fib->dev = dev;
1101 /*
1102 * We only handle AifRequest fibs from the adapter.
1103 */
1104 aifcmd = (struct aac_aifcmd *) hw_fib->data;
1105 if (aifcmd->command == cpu_to_le32(AifCmdDriverNotify)) {
1106 /* Handle Driver Notify Events */
1107 aac_handle_aif(dev, fib);
1108 *(__le32 *)hw_fib->data = cpu_to_le32(ST_OK);
1109 aac_fib_adapter_complete(fib, (u16)sizeof(u32));
1110 } else {
1111 struct list_head *entry;
1112 /* The u32 here is important and intended. We are using
1113 32bit wrapping time to fit the adapter field */
1114
1115 u32 time_now, time_last;
1116 unsigned long flagv;
1117 unsigned num;
1118 struct hw_fib ** hw_fib_pool, ** hw_fib_p;
1119 struct fib ** fib_pool, ** fib_p;
1120
1121 /* Sniff events */
1122 if ((aifcmd->command ==
1123 cpu_to_le32(AifCmdEventNotify)) ||
1124 (aifcmd->command ==
1125 cpu_to_le32(AifCmdJobProgress))) {
1126 aac_handle_aif(dev, fib);
1127 }
1128
1129 time_now = jiffies/HZ;
1130
1131 /*
1132 * Warning: no sleep allowed while
1133 * holding spinlock. We take the estimate
1134 * and pre-allocate a set of fibs outside the
1135 * lock.
1136 */
1137 num = le32_to_cpu(dev->init->AdapterFibsSize)
1138 / sizeof(struct hw_fib); /* some extra */
1139 spin_lock_irqsave(&dev->fib_lock, flagv);
1140 entry = dev->fib_list.next;
1141 while (entry != &dev->fib_list) {
1142 entry = entry->next;
1143 ++num;
1144 }
1145 spin_unlock_irqrestore(&dev->fib_lock, flagv);
1146 hw_fib_pool = NULL;
1147 fib_pool = NULL;
1148 if (num
1149 && ((hw_fib_pool = kmalloc(sizeof(struct hw_fib *) * num, GFP_KERNEL)))
1150 && ((fib_pool = kmalloc(sizeof(struct fib *) * num, GFP_KERNEL)))) {
1151 hw_fib_p = hw_fib_pool;
1152 fib_p = fib_pool;
1153 while (hw_fib_p < &hw_fib_pool[num]) {
1154 if (!(*(hw_fib_p++) = kmalloc(sizeof(struct hw_fib), GFP_KERNEL))) {
1155 --hw_fib_p;
1156 break;
1157 }
1158 if (!(*(fib_p++) = kmalloc(sizeof(struct fib), GFP_KERNEL))) {
1159 kfree(*(--hw_fib_p));
1160 break;
1161 }
1162 }
1163 if ((num = hw_fib_p - hw_fib_pool) == 0) {
1164 kfree(fib_pool);
1165 fib_pool = NULL;
1166 kfree(hw_fib_pool);
1167 hw_fib_pool = NULL;
1168 }
1169 } else {
1170 kfree(hw_fib_pool);
1171 hw_fib_pool = NULL;
1172 }
1173 spin_lock_irqsave(&dev->fib_lock, flagv);
1174 entry = dev->fib_list.next;
1175 /*
1176 * For each Context that is on the
1177 * fibctxList, make a copy of the
1178 * fib, and then set the event to wake up the
1179 * thread that is waiting for it.
1180 */
1181 hw_fib_p = hw_fib_pool;
1182 fib_p = fib_pool;
1183 while (entry != &dev->fib_list) {
1184 /*
1185 * Extract the fibctx
1186 */
1187 fibctx = list_entry(entry, struct aac_fib_context, next);
1188 /*
1189 * Check if the queue is getting
1190 * backlogged
1191 */
1192 if (fibctx->count > 20)
1193 {
1194 /*
1195 * It's *not* jiffies folks,
1196 * but jiffies / HZ so do not
1197 * panic ...
1198 */
1199 time_last = fibctx->jiffies;
1200 /*
1201 * Has it been > 2 minutes
1202 * since the last read off
1203 * the queue?
1204 */
1205 if ((time_now - time_last) > 120) {
1206 entry = entry->next;
1207 aac_close_fib_context(dev, fibctx);
1208 continue;
1209 }
1210 }
1211 /*
1212 * Warning: no sleep allowed while
1213 * holding spinlock
1214 */
1215 if (hw_fib_p < &hw_fib_pool[num]) {
1216 hw_newfib = *hw_fib_p;
1217 *(hw_fib_p++) = NULL;
1218 newfib = *fib_p;
1219 *(fib_p++) = NULL;
1220 /*
1221 * Make the copy of the FIB
1222 */
1223 memcpy(hw_newfib, hw_fib, sizeof(struct hw_fib));
1224 memcpy(newfib, fib, sizeof(struct fib));
1225 newfib->hw_fib = hw_newfib;
1226 /*
1227 * Put the FIB onto the
1228 * fibctx's fibs
1229 */
1230 list_add_tail(&newfib->fiblink, &fibctx->fib_list);
1231 fibctx->count++;
1232 /*
1233 * Set the event to wake up the
1234 * thread that is waiting.
1235 */
1236 up(&fibctx->wait_sem);
1237 } else {
1238 printk(KERN_WARNING "aifd: didn't allocate NewFib.\n");
1239 }
1240 entry = entry->next;
1241 }
1242 /*
1243 * Set the status of this FIB
1244 */
1245 *(__le32 *)hw_fib->data = cpu_to_le32(ST_OK);
1246 aac_fib_adapter_complete(fib, sizeof(u32));
1247 spin_unlock_irqrestore(&dev->fib_lock, flagv);
1248 /* Free up the remaining resources */
1249 hw_fib_p = hw_fib_pool;
1250 fib_p = fib_pool;
1251 while (hw_fib_p < &hw_fib_pool[num]) {
1252 kfree(*hw_fib_p);
1253 kfree(*fib_p);
1254 ++fib_p;
1255 ++hw_fib_p;
1256 }
1257 kfree(hw_fib_pool);
1258 kfree(fib_pool);
1259 }
1260 kfree(fib);
1261 spin_lock_irqsave(dev->queues->queue[HostNormCmdQueue].lock, flags);
1262 }
1263 /*
1264 * There are no more AIF's
1265 */
1266 spin_unlock_irqrestore(dev->queues->queue[HostNormCmdQueue].lock, flags);
1267 schedule();
1268
1269 if(signal_pending(current))
1270 break;
1271 set_current_state(TASK_INTERRUPTIBLE);
1272 }
1273 if (dev->queues)
1274 remove_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait);
1275 dev->aif_thread = 0;
1276 complete_and_exit(&dev->aif_completion, 0);
1277 return 0;
1278 }