Merge branch 'master' of /home/davem/src/GIT/linux-2.6/
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / s390 / crypto / ap_bus.c
1 /*
2 * linux/drivers/s390/crypto/ap_bus.c
3 *
4 * Copyright (C) 2006 IBM Corporation
5 * Author(s): Cornelia Huck <cornelia.huck@de.ibm.com>
6 * Martin Schwidefsky <schwidefsky@de.ibm.com>
7 * Ralph Wuerthner <rwuerthn@de.ibm.com>
8 * Felix Beck <felix.beck@de.ibm.com>
9 *
10 * Adjunct processor bus.
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, write to the Free Software
24 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
25 */
26
27 #define KMSG_COMPONENT "ap"
28 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
29
30 #include <linux/module.h>
31 #include <linux/init.h>
32 #include <linux/delay.h>
33 #include <linux/err.h>
34 #include <linux/interrupt.h>
35 #include <linux/workqueue.h>
36 #include <linux/notifier.h>
37 #include <linux/kthread.h>
38 #include <linux/mutex.h>
39 #include <asm/reset.h>
40 #include <asm/airq.h>
41 #include <asm/atomic.h>
42 #include <asm/system.h>
43 #include <asm/isc.h>
44 #include <linux/hrtimer.h>
45 #include <linux/ktime.h>
46
47 #include "ap_bus.h"
48
49 /* Some prototypes. */
50 static void ap_scan_bus(struct work_struct *);
51 static void ap_poll_all(unsigned long);
52 static enum hrtimer_restart ap_poll_timeout(struct hrtimer *);
53 static int ap_poll_thread_start(void);
54 static void ap_poll_thread_stop(void);
55 static void ap_request_timeout(unsigned long);
56 static inline void ap_schedule_poll_timer(void);
57 static int __ap_poll_device(struct ap_device *ap_dev, unsigned long *flags);
58 static int ap_device_remove(struct device *dev);
59 static int ap_device_probe(struct device *dev);
60 static void ap_interrupt_handler(void *unused1, void *unused2);
61 static void ap_reset(struct ap_device *ap_dev);
62 static void ap_config_timeout(unsigned long ptr);
63 static int ap_select_domain(void);
64
65 /*
66 * Module description.
67 */
68 MODULE_AUTHOR("IBM Corporation");
69 MODULE_DESCRIPTION("Adjunct Processor Bus driver, "
70 "Copyright 2006 IBM Corporation");
71 MODULE_LICENSE("GPL");
72
73 /*
74 * Module parameter
75 */
76 int ap_domain_index = -1; /* Adjunct Processor Domain Index */
77 module_param_named(domain, ap_domain_index, int, 0000);
78 MODULE_PARM_DESC(domain, "domain index for ap devices");
79 EXPORT_SYMBOL(ap_domain_index);
80
81 static int ap_thread_flag = 0;
82 module_param_named(poll_thread, ap_thread_flag, int, 0000);
83 MODULE_PARM_DESC(poll_thread, "Turn on/off poll thread, default is 0 (off).");
84
85 static struct device *ap_root_device = NULL;
86 static DEFINE_SPINLOCK(ap_device_list_lock);
87 static LIST_HEAD(ap_device_list);
88
89 /*
90 * Workqueue & timer for bus rescan.
91 */
92 static struct workqueue_struct *ap_work_queue;
93 static struct timer_list ap_config_timer;
94 static int ap_config_time = AP_CONFIG_TIME;
95 static DECLARE_WORK(ap_config_work, ap_scan_bus);
96
97 /*
98 * Tasklet & timer for AP request polling and interrupts
99 */
100 static DECLARE_TASKLET(ap_tasklet, ap_poll_all, 0);
101 static atomic_t ap_poll_requests = ATOMIC_INIT(0);
102 static DECLARE_WAIT_QUEUE_HEAD(ap_poll_wait);
103 static struct task_struct *ap_poll_kthread = NULL;
104 static DEFINE_MUTEX(ap_poll_thread_mutex);
105 static void *ap_interrupt_indicator;
106 static struct hrtimer ap_poll_timer;
107 /* In LPAR poll with 4kHz frequency. Poll every 250000 nanoseconds.
108 * If z/VM change to 1500000 nanoseconds to adjust to z/VM polling.*/
109 static unsigned long long poll_timeout = 250000;
110
111 /* Suspend flag */
112 static int ap_suspend_flag;
113 /* Flag to check if domain was set through module parameter domain=. This is
114 * important when supsend and resume is done in a z/VM environment where the
115 * domain might change. */
116 static int user_set_domain = 0;
117 static struct bus_type ap_bus_type;
118
119 /**
120 * ap_using_interrupts() - Returns non-zero if interrupt support is
121 * available.
122 */
123 static inline int ap_using_interrupts(void)
124 {
125 return ap_interrupt_indicator != NULL;
126 }
127
128 /**
129 * ap_intructions_available() - Test if AP instructions are available.
130 *
131 * Returns 0 if the AP instructions are installed.
132 */
133 static inline int ap_instructions_available(void)
134 {
135 register unsigned long reg0 asm ("0") = AP_MKQID(0,0);
136 register unsigned long reg1 asm ("1") = -ENODEV;
137 register unsigned long reg2 asm ("2") = 0UL;
138
139 asm volatile(
140 " .long 0xb2af0000\n" /* PQAP(TAPQ) */
141 "0: la %1,0\n"
142 "1:\n"
143 EX_TABLE(0b, 1b)
144 : "+d" (reg0), "+d" (reg1), "+d" (reg2) : : "cc" );
145 return reg1;
146 }
147
148 /**
149 * ap_interrupts_available(): Test if AP interrupts are available.
150 *
151 * Returns 1 if AP interrupts are available.
152 */
153 static int ap_interrupts_available(void)
154 {
155 unsigned long long facility_bits[2];
156
157 if (stfle(facility_bits, 2) <= 1)
158 return 0;
159 if (!(facility_bits[0] & (1ULL << 61)) ||
160 !(facility_bits[1] & (1ULL << 62)))
161 return 0;
162 return 1;
163 }
164
165 /**
166 * ap_test_queue(): Test adjunct processor queue.
167 * @qid: The AP queue number
168 * @queue_depth: Pointer to queue depth value
169 * @device_type: Pointer to device type value
170 *
171 * Returns AP queue status structure.
172 */
173 static inline struct ap_queue_status
174 ap_test_queue(ap_qid_t qid, int *queue_depth, int *device_type)
175 {
176 register unsigned long reg0 asm ("0") = qid;
177 register struct ap_queue_status reg1 asm ("1");
178 register unsigned long reg2 asm ("2") = 0UL;
179
180 asm volatile(".long 0xb2af0000" /* PQAP(TAPQ) */
181 : "+d" (reg0), "=d" (reg1), "+d" (reg2) : : "cc");
182 *device_type = (int) (reg2 >> 24);
183 *queue_depth = (int) (reg2 & 0xff);
184 return reg1;
185 }
186
187 /**
188 * ap_reset_queue(): Reset adjunct processor queue.
189 * @qid: The AP queue number
190 *
191 * Returns AP queue status structure.
192 */
193 static inline struct ap_queue_status ap_reset_queue(ap_qid_t qid)
194 {
195 register unsigned long reg0 asm ("0") = qid | 0x01000000UL;
196 register struct ap_queue_status reg1 asm ("1");
197 register unsigned long reg2 asm ("2") = 0UL;
198
199 asm volatile(
200 ".long 0xb2af0000" /* PQAP(RAPQ) */
201 : "+d" (reg0), "=d" (reg1), "+d" (reg2) : : "cc");
202 return reg1;
203 }
204
205 #ifdef CONFIG_64BIT
206 /**
207 * ap_queue_interruption_control(): Enable interruption for a specific AP.
208 * @qid: The AP queue number
209 * @ind: The notification indicator byte
210 *
211 * Returns AP queue status.
212 */
213 static inline struct ap_queue_status
214 ap_queue_interruption_control(ap_qid_t qid, void *ind)
215 {
216 register unsigned long reg0 asm ("0") = qid | 0x03000000UL;
217 register unsigned long reg1_in asm ("1") = 0x0000800000000000UL | AP_ISC;
218 register struct ap_queue_status reg1_out asm ("1");
219 register void *reg2 asm ("2") = ind;
220 asm volatile(
221 ".long 0xb2af0000" /* PQAP(RAPQ) */
222 : "+d" (reg0), "+d" (reg1_in), "=d" (reg1_out), "+d" (reg2)
223 :
224 : "cc" );
225 return reg1_out;
226 }
227 #endif
228
229 /**
230 * ap_queue_enable_interruption(): Enable interruption on an AP.
231 * @qid: The AP queue number
232 * @ind: the notification indicator byte
233 *
234 * Enables interruption on AP queue via ap_queue_interruption_control(). Based
235 * on the return value it waits a while and tests the AP queue if interrupts
236 * have been switched on using ap_test_queue().
237 */
238 static int ap_queue_enable_interruption(ap_qid_t qid, void *ind)
239 {
240 #ifdef CONFIG_64BIT
241 struct ap_queue_status status;
242 int t_depth, t_device_type, rc, i;
243
244 rc = -EBUSY;
245 status = ap_queue_interruption_control(qid, ind);
246
247 for (i = 0; i < AP_MAX_RESET; i++) {
248 switch (status.response_code) {
249 case AP_RESPONSE_NORMAL:
250 if (status.int_enabled)
251 return 0;
252 break;
253 case AP_RESPONSE_RESET_IN_PROGRESS:
254 case AP_RESPONSE_BUSY:
255 break;
256 case AP_RESPONSE_Q_NOT_AVAIL:
257 case AP_RESPONSE_DECONFIGURED:
258 case AP_RESPONSE_CHECKSTOPPED:
259 case AP_RESPONSE_INVALID_ADDRESS:
260 return -ENODEV;
261 case AP_RESPONSE_OTHERWISE_CHANGED:
262 if (status.int_enabled)
263 return 0;
264 break;
265 default:
266 break;
267 }
268 if (i < AP_MAX_RESET - 1) {
269 udelay(5);
270 status = ap_test_queue(qid, &t_depth, &t_device_type);
271 }
272 }
273 return rc;
274 #else
275 return -EINVAL;
276 #endif
277 }
278
279 /**
280 * __ap_send(): Send message to adjunct processor queue.
281 * @qid: The AP queue number
282 * @psmid: The program supplied message identifier
283 * @msg: The message text
284 * @length: The message length
285 *
286 * Returns AP queue status structure.
287 * Condition code 1 on NQAP can't happen because the L bit is 1.
288 * Condition code 2 on NQAP also means the send is incomplete,
289 * because a segment boundary was reached. The NQAP is repeated.
290 */
291 static inline struct ap_queue_status
292 __ap_send(ap_qid_t qid, unsigned long long psmid, void *msg, size_t length)
293 {
294 typedef struct { char _[length]; } msgblock;
295 register unsigned long reg0 asm ("0") = qid | 0x40000000UL;
296 register struct ap_queue_status reg1 asm ("1");
297 register unsigned long reg2 asm ("2") = (unsigned long) msg;
298 register unsigned long reg3 asm ("3") = (unsigned long) length;
299 register unsigned long reg4 asm ("4") = (unsigned int) (psmid >> 32);
300 register unsigned long reg5 asm ("5") = (unsigned int) psmid;
301
302 asm volatile (
303 "0: .long 0xb2ad0042\n" /* DQAP */
304 " brc 2,0b"
305 : "+d" (reg0), "=d" (reg1), "+d" (reg2), "+d" (reg3)
306 : "d" (reg4), "d" (reg5), "m" (*(msgblock *) msg)
307 : "cc" );
308 return reg1;
309 }
310
311 int ap_send(ap_qid_t qid, unsigned long long psmid, void *msg, size_t length)
312 {
313 struct ap_queue_status status;
314
315 status = __ap_send(qid, psmid, msg, length);
316 switch (status.response_code) {
317 case AP_RESPONSE_NORMAL:
318 return 0;
319 case AP_RESPONSE_Q_FULL:
320 case AP_RESPONSE_RESET_IN_PROGRESS:
321 return -EBUSY;
322 default: /* Device is gone. */
323 return -ENODEV;
324 }
325 }
326 EXPORT_SYMBOL(ap_send);
327
328 /**
329 * __ap_recv(): Receive message from adjunct processor queue.
330 * @qid: The AP queue number
331 * @psmid: Pointer to program supplied message identifier
332 * @msg: The message text
333 * @length: The message length
334 *
335 * Returns AP queue status structure.
336 * Condition code 1 on DQAP means the receive has taken place
337 * but only partially. The response is incomplete, hence the
338 * DQAP is repeated.
339 * Condition code 2 on DQAP also means the receive is incomplete,
340 * this time because a segment boundary was reached. Again, the
341 * DQAP is repeated.
342 * Note that gpr2 is used by the DQAP instruction to keep track of
343 * any 'residual' length, in case the instruction gets interrupted.
344 * Hence it gets zeroed before the instruction.
345 */
346 static inline struct ap_queue_status
347 __ap_recv(ap_qid_t qid, unsigned long long *psmid, void *msg, size_t length)
348 {
349 typedef struct { char _[length]; } msgblock;
350 register unsigned long reg0 asm("0") = qid | 0x80000000UL;
351 register struct ap_queue_status reg1 asm ("1");
352 register unsigned long reg2 asm("2") = 0UL;
353 register unsigned long reg4 asm("4") = (unsigned long) msg;
354 register unsigned long reg5 asm("5") = (unsigned long) length;
355 register unsigned long reg6 asm("6") = 0UL;
356 register unsigned long reg7 asm("7") = 0UL;
357
358
359 asm volatile(
360 "0: .long 0xb2ae0064\n"
361 " brc 6,0b\n"
362 : "+d" (reg0), "=d" (reg1), "+d" (reg2),
363 "+d" (reg4), "+d" (reg5), "+d" (reg6), "+d" (reg7),
364 "=m" (*(msgblock *) msg) : : "cc" );
365 *psmid = (((unsigned long long) reg6) << 32) + reg7;
366 return reg1;
367 }
368
369 int ap_recv(ap_qid_t qid, unsigned long long *psmid, void *msg, size_t length)
370 {
371 struct ap_queue_status status;
372
373 status = __ap_recv(qid, psmid, msg, length);
374 switch (status.response_code) {
375 case AP_RESPONSE_NORMAL:
376 return 0;
377 case AP_RESPONSE_NO_PENDING_REPLY:
378 if (status.queue_empty)
379 return -ENOENT;
380 return -EBUSY;
381 case AP_RESPONSE_RESET_IN_PROGRESS:
382 return -EBUSY;
383 default:
384 return -ENODEV;
385 }
386 }
387 EXPORT_SYMBOL(ap_recv);
388
389 /**
390 * ap_query_queue(): Check if an AP queue is available.
391 * @qid: The AP queue number
392 * @queue_depth: Pointer to queue depth value
393 * @device_type: Pointer to device type value
394 *
395 * The test is repeated for AP_MAX_RESET times.
396 */
397 static int ap_query_queue(ap_qid_t qid, int *queue_depth, int *device_type)
398 {
399 struct ap_queue_status status;
400 int t_depth, t_device_type, rc, i;
401
402 rc = -EBUSY;
403 for (i = 0; i < AP_MAX_RESET; i++) {
404 status = ap_test_queue(qid, &t_depth, &t_device_type);
405 switch (status.response_code) {
406 case AP_RESPONSE_NORMAL:
407 *queue_depth = t_depth + 1;
408 *device_type = t_device_type;
409 rc = 0;
410 break;
411 case AP_RESPONSE_Q_NOT_AVAIL:
412 rc = -ENODEV;
413 break;
414 case AP_RESPONSE_RESET_IN_PROGRESS:
415 break;
416 case AP_RESPONSE_DECONFIGURED:
417 rc = -ENODEV;
418 break;
419 case AP_RESPONSE_CHECKSTOPPED:
420 rc = -ENODEV;
421 break;
422 case AP_RESPONSE_INVALID_ADDRESS:
423 rc = -ENODEV;
424 break;
425 case AP_RESPONSE_OTHERWISE_CHANGED:
426 break;
427 case AP_RESPONSE_BUSY:
428 break;
429 default:
430 BUG();
431 }
432 if (rc != -EBUSY)
433 break;
434 if (i < AP_MAX_RESET - 1)
435 udelay(5);
436 }
437 return rc;
438 }
439
440 /**
441 * ap_init_queue(): Reset an AP queue.
442 * @qid: The AP queue number
443 *
444 * Reset an AP queue and wait for it to become available again.
445 */
446 static int ap_init_queue(ap_qid_t qid)
447 {
448 struct ap_queue_status status;
449 int rc, dummy, i;
450
451 rc = -ENODEV;
452 status = ap_reset_queue(qid);
453 for (i = 0; i < AP_MAX_RESET; i++) {
454 switch (status.response_code) {
455 case AP_RESPONSE_NORMAL:
456 if (status.queue_empty)
457 rc = 0;
458 break;
459 case AP_RESPONSE_Q_NOT_AVAIL:
460 case AP_RESPONSE_DECONFIGURED:
461 case AP_RESPONSE_CHECKSTOPPED:
462 i = AP_MAX_RESET; /* return with -ENODEV */
463 break;
464 case AP_RESPONSE_RESET_IN_PROGRESS:
465 rc = -EBUSY;
466 case AP_RESPONSE_BUSY:
467 default:
468 break;
469 }
470 if (rc != -ENODEV && rc != -EBUSY)
471 break;
472 if (i < AP_MAX_RESET - 1) {
473 udelay(5);
474 status = ap_test_queue(qid, &dummy, &dummy);
475 }
476 }
477 if (rc == 0 && ap_using_interrupts()) {
478 rc = ap_queue_enable_interruption(qid, ap_interrupt_indicator);
479 /* If interruption mode is supported by the machine,
480 * but an AP can not be enabled for interruption then
481 * the AP will be discarded. */
482 if (rc)
483 pr_err("Registering adapter interrupts for "
484 "AP %d failed\n", AP_QID_DEVICE(qid));
485 }
486 return rc;
487 }
488
489 /**
490 * ap_increase_queue_count(): Arm request timeout.
491 * @ap_dev: Pointer to an AP device.
492 *
493 * Arm request timeout if an AP device was idle and a new request is submitted.
494 */
495 static void ap_increase_queue_count(struct ap_device *ap_dev)
496 {
497 int timeout = ap_dev->drv->request_timeout;
498
499 ap_dev->queue_count++;
500 if (ap_dev->queue_count == 1) {
501 mod_timer(&ap_dev->timeout, jiffies + timeout);
502 ap_dev->reset = AP_RESET_ARMED;
503 }
504 }
505
506 /**
507 * ap_decrease_queue_count(): Decrease queue count.
508 * @ap_dev: Pointer to an AP device.
509 *
510 * If AP device is still alive, re-schedule request timeout if there are still
511 * pending requests.
512 */
513 static void ap_decrease_queue_count(struct ap_device *ap_dev)
514 {
515 int timeout = ap_dev->drv->request_timeout;
516
517 ap_dev->queue_count--;
518 if (ap_dev->queue_count > 0)
519 mod_timer(&ap_dev->timeout, jiffies + timeout);
520 else
521 /*
522 * The timeout timer should to be disabled now - since
523 * del_timer_sync() is very expensive, we just tell via the
524 * reset flag to ignore the pending timeout timer.
525 */
526 ap_dev->reset = AP_RESET_IGNORE;
527 }
528
529 /*
530 * AP device related attributes.
531 */
532 static ssize_t ap_hwtype_show(struct device *dev,
533 struct device_attribute *attr, char *buf)
534 {
535 struct ap_device *ap_dev = to_ap_dev(dev);
536 return snprintf(buf, PAGE_SIZE, "%d\n", ap_dev->device_type);
537 }
538
539 static DEVICE_ATTR(hwtype, 0444, ap_hwtype_show, NULL);
540 static ssize_t ap_depth_show(struct device *dev, struct device_attribute *attr,
541 char *buf)
542 {
543 struct ap_device *ap_dev = to_ap_dev(dev);
544 return snprintf(buf, PAGE_SIZE, "%d\n", ap_dev->queue_depth);
545 }
546
547 static DEVICE_ATTR(depth, 0444, ap_depth_show, NULL);
548 static ssize_t ap_request_count_show(struct device *dev,
549 struct device_attribute *attr,
550 char *buf)
551 {
552 struct ap_device *ap_dev = to_ap_dev(dev);
553 int rc;
554
555 spin_lock_bh(&ap_dev->lock);
556 rc = snprintf(buf, PAGE_SIZE, "%d\n", ap_dev->total_request_count);
557 spin_unlock_bh(&ap_dev->lock);
558 return rc;
559 }
560
561 static DEVICE_ATTR(request_count, 0444, ap_request_count_show, NULL);
562
563 static ssize_t ap_modalias_show(struct device *dev,
564 struct device_attribute *attr, char *buf)
565 {
566 return sprintf(buf, "ap:t%02X", to_ap_dev(dev)->device_type);
567 }
568
569 static DEVICE_ATTR(modalias, 0444, ap_modalias_show, NULL);
570
571 static struct attribute *ap_dev_attrs[] = {
572 &dev_attr_hwtype.attr,
573 &dev_attr_depth.attr,
574 &dev_attr_request_count.attr,
575 &dev_attr_modalias.attr,
576 NULL
577 };
578 static struct attribute_group ap_dev_attr_group = {
579 .attrs = ap_dev_attrs
580 };
581
582 /**
583 * ap_bus_match()
584 * @dev: Pointer to device
585 * @drv: Pointer to device_driver
586 *
587 * AP bus driver registration/unregistration.
588 */
589 static int ap_bus_match(struct device *dev, struct device_driver *drv)
590 {
591 struct ap_device *ap_dev = to_ap_dev(dev);
592 struct ap_driver *ap_drv = to_ap_drv(drv);
593 struct ap_device_id *id;
594
595 /*
596 * Compare device type of the device with the list of
597 * supported types of the device_driver.
598 */
599 for (id = ap_drv->ids; id->match_flags; id++) {
600 if ((id->match_flags & AP_DEVICE_ID_MATCH_DEVICE_TYPE) &&
601 (id->dev_type != ap_dev->device_type))
602 continue;
603 return 1;
604 }
605 return 0;
606 }
607
608 /**
609 * ap_uevent(): Uevent function for AP devices.
610 * @dev: Pointer to device
611 * @env: Pointer to kobj_uevent_env
612 *
613 * It sets up a single environment variable DEV_TYPE which contains the
614 * hardware device type.
615 */
616 static int ap_uevent (struct device *dev, struct kobj_uevent_env *env)
617 {
618 struct ap_device *ap_dev = to_ap_dev(dev);
619 int retval = 0;
620
621 if (!ap_dev)
622 return -ENODEV;
623
624 /* Set up DEV_TYPE environment variable. */
625 retval = add_uevent_var(env, "DEV_TYPE=%04X", ap_dev->device_type);
626 if (retval)
627 return retval;
628
629 /* Add MODALIAS= */
630 retval = add_uevent_var(env, "MODALIAS=ap:t%02X", ap_dev->device_type);
631
632 return retval;
633 }
634
635 static int ap_bus_suspend(struct device *dev, pm_message_t state)
636 {
637 struct ap_device *ap_dev = to_ap_dev(dev);
638 unsigned long flags;
639
640 if (!ap_suspend_flag) {
641 ap_suspend_flag = 1;
642
643 /* Disable scanning for devices, thus we do not want to scan
644 * for them after removing.
645 */
646 del_timer_sync(&ap_config_timer);
647 if (ap_work_queue != NULL) {
648 destroy_workqueue(ap_work_queue);
649 ap_work_queue = NULL;
650 }
651
652 tasklet_disable(&ap_tasklet);
653 }
654 /* Poll on the device until all requests are finished. */
655 do {
656 flags = 0;
657 spin_lock_bh(&ap_dev->lock);
658 __ap_poll_device(ap_dev, &flags);
659 spin_unlock_bh(&ap_dev->lock);
660 } while ((flags & 1) || (flags & 2));
661
662 spin_lock_bh(&ap_dev->lock);
663 ap_dev->unregistered = 1;
664 spin_unlock_bh(&ap_dev->lock);
665
666 return 0;
667 }
668
669 static int ap_bus_resume(struct device *dev)
670 {
671 int rc = 0;
672 struct ap_device *ap_dev = to_ap_dev(dev);
673
674 if (ap_suspend_flag) {
675 ap_suspend_flag = 0;
676 if (!ap_interrupts_available())
677 ap_interrupt_indicator = NULL;
678 if (!user_set_domain) {
679 ap_domain_index = -1;
680 ap_select_domain();
681 }
682 init_timer(&ap_config_timer);
683 ap_config_timer.function = ap_config_timeout;
684 ap_config_timer.data = 0;
685 ap_config_timer.expires = jiffies + ap_config_time * HZ;
686 add_timer(&ap_config_timer);
687 ap_work_queue = create_singlethread_workqueue("kapwork");
688 if (!ap_work_queue)
689 return -ENOMEM;
690 tasklet_enable(&ap_tasklet);
691 if (!ap_using_interrupts())
692 ap_schedule_poll_timer();
693 else
694 tasklet_schedule(&ap_tasklet);
695 if (ap_thread_flag)
696 rc = ap_poll_thread_start();
697 }
698 if (AP_QID_QUEUE(ap_dev->qid) != ap_domain_index) {
699 spin_lock_bh(&ap_dev->lock);
700 ap_dev->qid = AP_MKQID(AP_QID_DEVICE(ap_dev->qid),
701 ap_domain_index);
702 spin_unlock_bh(&ap_dev->lock);
703 }
704 queue_work(ap_work_queue, &ap_config_work);
705
706 return rc;
707 }
708
709 static struct bus_type ap_bus_type = {
710 .name = "ap",
711 .match = &ap_bus_match,
712 .uevent = &ap_uevent,
713 .suspend = ap_bus_suspend,
714 .resume = ap_bus_resume
715 };
716
717 static int ap_device_probe(struct device *dev)
718 {
719 struct ap_device *ap_dev = to_ap_dev(dev);
720 struct ap_driver *ap_drv = to_ap_drv(dev->driver);
721 int rc;
722
723 ap_dev->drv = ap_drv;
724 rc = ap_drv->probe ? ap_drv->probe(ap_dev) : -ENODEV;
725 if (!rc) {
726 spin_lock_bh(&ap_device_list_lock);
727 list_add(&ap_dev->list, &ap_device_list);
728 spin_unlock_bh(&ap_device_list_lock);
729 }
730 return rc;
731 }
732
733 /**
734 * __ap_flush_queue(): Flush requests.
735 * @ap_dev: Pointer to the AP device
736 *
737 * Flush all requests from the request/pending queue of an AP device.
738 */
739 static void __ap_flush_queue(struct ap_device *ap_dev)
740 {
741 struct ap_message *ap_msg, *next;
742
743 list_for_each_entry_safe(ap_msg, next, &ap_dev->pendingq, list) {
744 list_del_init(&ap_msg->list);
745 ap_dev->pendingq_count--;
746 ap_dev->drv->receive(ap_dev, ap_msg, ERR_PTR(-ENODEV));
747 }
748 list_for_each_entry_safe(ap_msg, next, &ap_dev->requestq, list) {
749 list_del_init(&ap_msg->list);
750 ap_dev->requestq_count--;
751 ap_dev->drv->receive(ap_dev, ap_msg, ERR_PTR(-ENODEV));
752 }
753 }
754
755 void ap_flush_queue(struct ap_device *ap_dev)
756 {
757 spin_lock_bh(&ap_dev->lock);
758 __ap_flush_queue(ap_dev);
759 spin_unlock_bh(&ap_dev->lock);
760 }
761 EXPORT_SYMBOL(ap_flush_queue);
762
763 static int ap_device_remove(struct device *dev)
764 {
765 struct ap_device *ap_dev = to_ap_dev(dev);
766 struct ap_driver *ap_drv = ap_dev->drv;
767
768 ap_flush_queue(ap_dev);
769 del_timer_sync(&ap_dev->timeout);
770 spin_lock_bh(&ap_device_list_lock);
771 list_del_init(&ap_dev->list);
772 spin_unlock_bh(&ap_device_list_lock);
773 if (ap_drv->remove)
774 ap_drv->remove(ap_dev);
775 spin_lock_bh(&ap_dev->lock);
776 atomic_sub(ap_dev->queue_count, &ap_poll_requests);
777 spin_unlock_bh(&ap_dev->lock);
778 return 0;
779 }
780
781 int ap_driver_register(struct ap_driver *ap_drv, struct module *owner,
782 char *name)
783 {
784 struct device_driver *drv = &ap_drv->driver;
785
786 drv->bus = &ap_bus_type;
787 drv->probe = ap_device_probe;
788 drv->remove = ap_device_remove;
789 drv->owner = owner;
790 drv->name = name;
791 return driver_register(drv);
792 }
793 EXPORT_SYMBOL(ap_driver_register);
794
795 void ap_driver_unregister(struct ap_driver *ap_drv)
796 {
797 driver_unregister(&ap_drv->driver);
798 }
799 EXPORT_SYMBOL(ap_driver_unregister);
800
801 /*
802 * AP bus attributes.
803 */
804 static ssize_t ap_domain_show(struct bus_type *bus, char *buf)
805 {
806 return snprintf(buf, PAGE_SIZE, "%d\n", ap_domain_index);
807 }
808
809 static BUS_ATTR(ap_domain, 0444, ap_domain_show, NULL);
810
811 static ssize_t ap_config_time_show(struct bus_type *bus, char *buf)
812 {
813 return snprintf(buf, PAGE_SIZE, "%d\n", ap_config_time);
814 }
815
816 static ssize_t ap_interrupts_show(struct bus_type *bus, char *buf)
817 {
818 return snprintf(buf, PAGE_SIZE, "%d\n",
819 ap_using_interrupts() ? 1 : 0);
820 }
821
822 static BUS_ATTR(ap_interrupts, 0444, ap_interrupts_show, NULL);
823
824 static ssize_t ap_config_time_store(struct bus_type *bus,
825 const char *buf, size_t count)
826 {
827 int time;
828
829 if (sscanf(buf, "%d\n", &time) != 1 || time < 5 || time > 120)
830 return -EINVAL;
831 ap_config_time = time;
832 if (!timer_pending(&ap_config_timer) ||
833 !mod_timer(&ap_config_timer, jiffies + ap_config_time * HZ)) {
834 ap_config_timer.expires = jiffies + ap_config_time * HZ;
835 add_timer(&ap_config_timer);
836 }
837 return count;
838 }
839
840 static BUS_ATTR(config_time, 0644, ap_config_time_show, ap_config_time_store);
841
842 static ssize_t ap_poll_thread_show(struct bus_type *bus, char *buf)
843 {
844 return snprintf(buf, PAGE_SIZE, "%d\n", ap_poll_kthread ? 1 : 0);
845 }
846
847 static ssize_t ap_poll_thread_store(struct bus_type *bus,
848 const char *buf, size_t count)
849 {
850 int flag, rc;
851
852 if (sscanf(buf, "%d\n", &flag) != 1)
853 return -EINVAL;
854 if (flag) {
855 rc = ap_poll_thread_start();
856 if (rc)
857 return rc;
858 }
859 else
860 ap_poll_thread_stop();
861 return count;
862 }
863
864 static BUS_ATTR(poll_thread, 0644, ap_poll_thread_show, ap_poll_thread_store);
865
866 static ssize_t poll_timeout_show(struct bus_type *bus, char *buf)
867 {
868 return snprintf(buf, PAGE_SIZE, "%llu\n", poll_timeout);
869 }
870
871 static ssize_t poll_timeout_store(struct bus_type *bus, const char *buf,
872 size_t count)
873 {
874 unsigned long long time;
875 ktime_t hr_time;
876
877 /* 120 seconds = maximum poll interval */
878 if (sscanf(buf, "%llu\n", &time) != 1 || time < 1 ||
879 time > 120000000000ULL)
880 return -EINVAL;
881 poll_timeout = time;
882 hr_time = ktime_set(0, poll_timeout);
883
884 if (!hrtimer_is_queued(&ap_poll_timer) ||
885 !hrtimer_forward(&ap_poll_timer, hrtimer_get_expires(&ap_poll_timer), hr_time)) {
886 hrtimer_set_expires(&ap_poll_timer, hr_time);
887 hrtimer_start_expires(&ap_poll_timer, HRTIMER_MODE_ABS);
888 }
889 return count;
890 }
891
892 static BUS_ATTR(poll_timeout, 0644, poll_timeout_show, poll_timeout_store);
893
894 static struct bus_attribute *const ap_bus_attrs[] = {
895 &bus_attr_ap_domain,
896 &bus_attr_config_time,
897 &bus_attr_poll_thread,
898 &bus_attr_ap_interrupts,
899 &bus_attr_poll_timeout,
900 NULL,
901 };
902
903 /**
904 * ap_select_domain(): Select an AP domain.
905 *
906 * Pick one of the 16 AP domains.
907 */
908 static int ap_select_domain(void)
909 {
910 int queue_depth, device_type, count, max_count, best_domain;
911 int rc, i, j;
912
913 /*
914 * We want to use a single domain. Either the one specified with
915 * the "domain=" parameter or the domain with the maximum number
916 * of devices.
917 */
918 if (ap_domain_index >= 0 && ap_domain_index < AP_DOMAINS)
919 /* Domain has already been selected. */
920 return 0;
921 best_domain = -1;
922 max_count = 0;
923 for (i = 0; i < AP_DOMAINS; i++) {
924 count = 0;
925 for (j = 0; j < AP_DEVICES; j++) {
926 ap_qid_t qid = AP_MKQID(j, i);
927 rc = ap_query_queue(qid, &queue_depth, &device_type);
928 if (rc)
929 continue;
930 count++;
931 }
932 if (count > max_count) {
933 max_count = count;
934 best_domain = i;
935 }
936 }
937 if (best_domain >= 0){
938 ap_domain_index = best_domain;
939 return 0;
940 }
941 return -ENODEV;
942 }
943
944 /**
945 * ap_probe_device_type(): Find the device type of an AP.
946 * @ap_dev: pointer to the AP device.
947 *
948 * Find the device type if query queue returned a device type of 0.
949 */
950 static int ap_probe_device_type(struct ap_device *ap_dev)
951 {
952 static unsigned char msg[] = {
953 0x00,0x06,0x00,0x00,0x00,0x00,0x00,0x00,
954 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
955 0x00,0x00,0x00,0x58,0x00,0x00,0x00,0x00,
956 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
957 0x01,0x00,0x43,0x43,0x41,0x2d,0x41,0x50,
958 0x50,0x4c,0x20,0x20,0x20,0x01,0x01,0x01,
959 0x00,0x00,0x00,0x00,0x50,0x4b,0x00,0x00,
960 0x00,0x00,0x01,0x1c,0x00,0x00,0x00,0x00,
961 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
962 0x00,0x00,0x05,0xb8,0x00,0x00,0x00,0x00,
963 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
964 0x70,0x00,0x41,0x00,0x00,0x00,0x00,0x00,
965 0x00,0x00,0x54,0x32,0x01,0x00,0xa0,0x00,
966 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
967 0x00,0x00,0x00,0x00,0xb8,0x05,0x00,0x00,
968 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
969 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
970 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
971 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
972 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
973 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
974 0x00,0x00,0x0a,0x00,0x00,0x00,0x00,0x00,
975 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
976 0x00,0x00,0x00,0x00,0x00,0x00,0x08,0x00,
977 0x49,0x43,0x53,0x46,0x20,0x20,0x20,0x20,
978 0x50,0x4b,0x0a,0x00,0x50,0x4b,0x43,0x53,
979 0x2d,0x31,0x2e,0x32,0x37,0x00,0x11,0x22,
980 0x33,0x44,0x55,0x66,0x77,0x88,0x99,0x00,
981 0x11,0x22,0x33,0x44,0x55,0x66,0x77,0x88,
982 0x99,0x00,0x11,0x22,0x33,0x44,0x55,0x66,
983 0x77,0x88,0x99,0x00,0x11,0x22,0x33,0x44,
984 0x55,0x66,0x77,0x88,0x99,0x00,0x11,0x22,
985 0x33,0x44,0x55,0x66,0x77,0x88,0x99,0x00,
986 0x11,0x22,0x33,0x5d,0x00,0x5b,0x00,0x77,
987 0x88,0x1e,0x00,0x00,0x57,0x00,0x00,0x00,
988 0x00,0x04,0x00,0x00,0x4f,0x00,0x00,0x00,
989 0x03,0x02,0x00,0x00,0x40,0x01,0x00,0x01,
990 0xce,0x02,0x68,0x2d,0x5f,0xa9,0xde,0x0c,
991 0xf6,0xd2,0x7b,0x58,0x4b,0xf9,0x28,0x68,
992 0x3d,0xb4,0xf4,0xef,0x78,0xd5,0xbe,0x66,
993 0x63,0x42,0xef,0xf8,0xfd,0xa4,0xf8,0xb0,
994 0x8e,0x29,0xc2,0xc9,0x2e,0xd8,0x45,0xb8,
995 0x53,0x8c,0x6f,0x4e,0x72,0x8f,0x6c,0x04,
996 0x9c,0x88,0xfc,0x1e,0xc5,0x83,0x55,0x57,
997 0xf7,0xdd,0xfd,0x4f,0x11,0x36,0x95,0x5d,
998 };
999 struct ap_queue_status status;
1000 unsigned long long psmid;
1001 char *reply;
1002 int rc, i;
1003
1004 reply = (void *) get_zeroed_page(GFP_KERNEL);
1005 if (!reply) {
1006 rc = -ENOMEM;
1007 goto out;
1008 }
1009
1010 status = __ap_send(ap_dev->qid, 0x0102030405060708ULL,
1011 msg, sizeof(msg));
1012 if (status.response_code != AP_RESPONSE_NORMAL) {
1013 rc = -ENODEV;
1014 goto out_free;
1015 }
1016
1017 /* Wait for the test message to complete. */
1018 for (i = 0; i < 6; i++) {
1019 mdelay(300);
1020 status = __ap_recv(ap_dev->qid, &psmid, reply, 4096);
1021 if (status.response_code == AP_RESPONSE_NORMAL &&
1022 psmid == 0x0102030405060708ULL)
1023 break;
1024 }
1025 if (i < 6) {
1026 /* Got an answer. */
1027 if (reply[0] == 0x00 && reply[1] == 0x86)
1028 ap_dev->device_type = AP_DEVICE_TYPE_PCICC;
1029 else
1030 ap_dev->device_type = AP_DEVICE_TYPE_PCICA;
1031 rc = 0;
1032 } else
1033 rc = -ENODEV;
1034
1035 out_free:
1036 free_page((unsigned long) reply);
1037 out:
1038 return rc;
1039 }
1040
1041 static void ap_interrupt_handler(void *unused1, void *unused2)
1042 {
1043 tasklet_schedule(&ap_tasklet);
1044 }
1045
1046 /**
1047 * __ap_scan_bus(): Scan the AP bus.
1048 * @dev: Pointer to device
1049 * @data: Pointer to data
1050 *
1051 * Scan the AP bus for new devices.
1052 */
1053 static int __ap_scan_bus(struct device *dev, void *data)
1054 {
1055 return to_ap_dev(dev)->qid == (ap_qid_t)(unsigned long) data;
1056 }
1057
1058 static void ap_device_release(struct device *dev)
1059 {
1060 struct ap_device *ap_dev = to_ap_dev(dev);
1061
1062 kfree(ap_dev);
1063 }
1064
1065 static void ap_scan_bus(struct work_struct *unused)
1066 {
1067 struct ap_device *ap_dev;
1068 struct device *dev;
1069 ap_qid_t qid;
1070 int queue_depth, device_type;
1071 int rc, i;
1072
1073 if (ap_select_domain() != 0)
1074 return;
1075 for (i = 0; i < AP_DEVICES; i++) {
1076 qid = AP_MKQID(i, ap_domain_index);
1077 dev = bus_find_device(&ap_bus_type, NULL,
1078 (void *)(unsigned long)qid,
1079 __ap_scan_bus);
1080 rc = ap_query_queue(qid, &queue_depth, &device_type);
1081 if (dev) {
1082 if (rc == -EBUSY) {
1083 set_current_state(TASK_UNINTERRUPTIBLE);
1084 schedule_timeout(AP_RESET_TIMEOUT);
1085 rc = ap_query_queue(qid, &queue_depth,
1086 &device_type);
1087 }
1088 ap_dev = to_ap_dev(dev);
1089 spin_lock_bh(&ap_dev->lock);
1090 if (rc || ap_dev->unregistered) {
1091 spin_unlock_bh(&ap_dev->lock);
1092 if (ap_dev->unregistered)
1093 i--;
1094 device_unregister(dev);
1095 put_device(dev);
1096 continue;
1097 }
1098 spin_unlock_bh(&ap_dev->lock);
1099 put_device(dev);
1100 continue;
1101 }
1102 if (rc)
1103 continue;
1104 rc = ap_init_queue(qid);
1105 if (rc)
1106 continue;
1107 ap_dev = kzalloc(sizeof(*ap_dev), GFP_KERNEL);
1108 if (!ap_dev)
1109 break;
1110 ap_dev->qid = qid;
1111 ap_dev->queue_depth = queue_depth;
1112 ap_dev->unregistered = 1;
1113 spin_lock_init(&ap_dev->lock);
1114 INIT_LIST_HEAD(&ap_dev->pendingq);
1115 INIT_LIST_HEAD(&ap_dev->requestq);
1116 INIT_LIST_HEAD(&ap_dev->list);
1117 setup_timer(&ap_dev->timeout, ap_request_timeout,
1118 (unsigned long) ap_dev);
1119 if (device_type == 0)
1120 ap_probe_device_type(ap_dev);
1121 else
1122 ap_dev->device_type = device_type;
1123
1124 ap_dev->device.bus = &ap_bus_type;
1125 ap_dev->device.parent = ap_root_device;
1126 if (dev_set_name(&ap_dev->device, "card%02x",
1127 AP_QID_DEVICE(ap_dev->qid))) {
1128 kfree(ap_dev);
1129 continue;
1130 }
1131 ap_dev->device.release = ap_device_release;
1132 rc = device_register(&ap_dev->device);
1133 if (rc) {
1134 put_device(&ap_dev->device);
1135 continue;
1136 }
1137 /* Add device attributes. */
1138 rc = sysfs_create_group(&ap_dev->device.kobj,
1139 &ap_dev_attr_group);
1140 if (!rc) {
1141 spin_lock_bh(&ap_dev->lock);
1142 ap_dev->unregistered = 0;
1143 spin_unlock_bh(&ap_dev->lock);
1144 }
1145 else
1146 device_unregister(&ap_dev->device);
1147 }
1148 }
1149
1150 static void
1151 ap_config_timeout(unsigned long ptr)
1152 {
1153 queue_work(ap_work_queue, &ap_config_work);
1154 ap_config_timer.expires = jiffies + ap_config_time * HZ;
1155 add_timer(&ap_config_timer);
1156 }
1157
1158 /**
1159 * ap_schedule_poll_timer(): Schedule poll timer.
1160 *
1161 * Set up the timer to run the poll tasklet
1162 */
1163 static inline void ap_schedule_poll_timer(void)
1164 {
1165 ktime_t hr_time;
1166 if (ap_using_interrupts() || ap_suspend_flag)
1167 return;
1168 if (hrtimer_is_queued(&ap_poll_timer))
1169 return;
1170 if (ktime_to_ns(hrtimer_expires_remaining(&ap_poll_timer)) <= 0) {
1171 hr_time = ktime_set(0, poll_timeout);
1172 hrtimer_forward_now(&ap_poll_timer, hr_time);
1173 hrtimer_restart(&ap_poll_timer);
1174 }
1175 return;
1176 }
1177
1178 /**
1179 * ap_poll_read(): Receive pending reply messages from an AP device.
1180 * @ap_dev: pointer to the AP device
1181 * @flags: pointer to control flags, bit 2^0 is set if another poll is
1182 * required, bit 2^1 is set if the poll timer needs to get armed
1183 *
1184 * Returns 0 if the device is still present, -ENODEV if not.
1185 */
1186 static int ap_poll_read(struct ap_device *ap_dev, unsigned long *flags)
1187 {
1188 struct ap_queue_status status;
1189 struct ap_message *ap_msg;
1190
1191 if (ap_dev->queue_count <= 0)
1192 return 0;
1193 status = __ap_recv(ap_dev->qid, &ap_dev->reply->psmid,
1194 ap_dev->reply->message, ap_dev->reply->length);
1195 switch (status.response_code) {
1196 case AP_RESPONSE_NORMAL:
1197 atomic_dec(&ap_poll_requests);
1198 ap_decrease_queue_count(ap_dev);
1199 list_for_each_entry(ap_msg, &ap_dev->pendingq, list) {
1200 if (ap_msg->psmid != ap_dev->reply->psmid)
1201 continue;
1202 list_del_init(&ap_msg->list);
1203 ap_dev->pendingq_count--;
1204 ap_dev->drv->receive(ap_dev, ap_msg, ap_dev->reply);
1205 break;
1206 }
1207 if (ap_dev->queue_count > 0)
1208 *flags |= 1;
1209 break;
1210 case AP_RESPONSE_NO_PENDING_REPLY:
1211 if (status.queue_empty) {
1212 /* The card shouldn't forget requests but who knows. */
1213 atomic_sub(ap_dev->queue_count, &ap_poll_requests);
1214 ap_dev->queue_count = 0;
1215 list_splice_init(&ap_dev->pendingq, &ap_dev->requestq);
1216 ap_dev->requestq_count += ap_dev->pendingq_count;
1217 ap_dev->pendingq_count = 0;
1218 } else
1219 *flags |= 2;
1220 break;
1221 default:
1222 return -ENODEV;
1223 }
1224 return 0;
1225 }
1226
1227 /**
1228 * ap_poll_write(): Send messages from the request queue to an AP device.
1229 * @ap_dev: pointer to the AP device
1230 * @flags: pointer to control flags, bit 2^0 is set if another poll is
1231 * required, bit 2^1 is set if the poll timer needs to get armed
1232 *
1233 * Returns 0 if the device is still present, -ENODEV if not.
1234 */
1235 static int ap_poll_write(struct ap_device *ap_dev, unsigned long *flags)
1236 {
1237 struct ap_queue_status status;
1238 struct ap_message *ap_msg;
1239
1240 if (ap_dev->requestq_count <= 0 ||
1241 ap_dev->queue_count >= ap_dev->queue_depth)
1242 return 0;
1243 /* Start the next request on the queue. */
1244 ap_msg = list_entry(ap_dev->requestq.next, struct ap_message, list);
1245 status = __ap_send(ap_dev->qid, ap_msg->psmid,
1246 ap_msg->message, ap_msg->length);
1247 switch (status.response_code) {
1248 case AP_RESPONSE_NORMAL:
1249 atomic_inc(&ap_poll_requests);
1250 ap_increase_queue_count(ap_dev);
1251 list_move_tail(&ap_msg->list, &ap_dev->pendingq);
1252 ap_dev->requestq_count--;
1253 ap_dev->pendingq_count++;
1254 if (ap_dev->queue_count < ap_dev->queue_depth &&
1255 ap_dev->requestq_count > 0)
1256 *flags |= 1;
1257 *flags |= 2;
1258 break;
1259 case AP_RESPONSE_Q_FULL:
1260 case AP_RESPONSE_RESET_IN_PROGRESS:
1261 *flags |= 2;
1262 break;
1263 case AP_RESPONSE_MESSAGE_TOO_BIG:
1264 return -EINVAL;
1265 default:
1266 return -ENODEV;
1267 }
1268 return 0;
1269 }
1270
1271 /**
1272 * ap_poll_queue(): Poll AP device for pending replies and send new messages.
1273 * @ap_dev: pointer to the bus device
1274 * @flags: pointer to control flags, bit 2^0 is set if another poll is
1275 * required, bit 2^1 is set if the poll timer needs to get armed
1276 *
1277 * Poll AP device for pending replies and send new messages. If either
1278 * ap_poll_read or ap_poll_write returns -ENODEV unregister the device.
1279 * Returns 0.
1280 */
1281 static inline int ap_poll_queue(struct ap_device *ap_dev, unsigned long *flags)
1282 {
1283 int rc;
1284
1285 rc = ap_poll_read(ap_dev, flags);
1286 if (rc)
1287 return rc;
1288 return ap_poll_write(ap_dev, flags);
1289 }
1290
1291 /**
1292 * __ap_queue_message(): Queue a message to a device.
1293 * @ap_dev: pointer to the AP device
1294 * @ap_msg: the message to be queued
1295 *
1296 * Queue a message to a device. Returns 0 if successful.
1297 */
1298 static int __ap_queue_message(struct ap_device *ap_dev, struct ap_message *ap_msg)
1299 {
1300 struct ap_queue_status status;
1301
1302 if (list_empty(&ap_dev->requestq) &&
1303 ap_dev->queue_count < ap_dev->queue_depth) {
1304 status = __ap_send(ap_dev->qid, ap_msg->psmid,
1305 ap_msg->message, ap_msg->length);
1306 switch (status.response_code) {
1307 case AP_RESPONSE_NORMAL:
1308 list_add_tail(&ap_msg->list, &ap_dev->pendingq);
1309 atomic_inc(&ap_poll_requests);
1310 ap_dev->pendingq_count++;
1311 ap_increase_queue_count(ap_dev);
1312 ap_dev->total_request_count++;
1313 break;
1314 case AP_RESPONSE_Q_FULL:
1315 case AP_RESPONSE_RESET_IN_PROGRESS:
1316 list_add_tail(&ap_msg->list, &ap_dev->requestq);
1317 ap_dev->requestq_count++;
1318 ap_dev->total_request_count++;
1319 return -EBUSY;
1320 case AP_RESPONSE_MESSAGE_TOO_BIG:
1321 ap_dev->drv->receive(ap_dev, ap_msg, ERR_PTR(-EINVAL));
1322 return -EINVAL;
1323 default: /* Device is gone. */
1324 ap_dev->drv->receive(ap_dev, ap_msg, ERR_PTR(-ENODEV));
1325 return -ENODEV;
1326 }
1327 } else {
1328 list_add_tail(&ap_msg->list, &ap_dev->requestq);
1329 ap_dev->requestq_count++;
1330 ap_dev->total_request_count++;
1331 return -EBUSY;
1332 }
1333 ap_schedule_poll_timer();
1334 return 0;
1335 }
1336
1337 void ap_queue_message(struct ap_device *ap_dev, struct ap_message *ap_msg)
1338 {
1339 unsigned long flags;
1340 int rc;
1341
1342 spin_lock_bh(&ap_dev->lock);
1343 if (!ap_dev->unregistered) {
1344 /* Make room on the queue by polling for finished requests. */
1345 rc = ap_poll_queue(ap_dev, &flags);
1346 if (!rc)
1347 rc = __ap_queue_message(ap_dev, ap_msg);
1348 if (!rc)
1349 wake_up(&ap_poll_wait);
1350 if (rc == -ENODEV)
1351 ap_dev->unregistered = 1;
1352 } else {
1353 ap_dev->drv->receive(ap_dev, ap_msg, ERR_PTR(-ENODEV));
1354 rc = -ENODEV;
1355 }
1356 spin_unlock_bh(&ap_dev->lock);
1357 if (rc == -ENODEV)
1358 device_unregister(&ap_dev->device);
1359 }
1360 EXPORT_SYMBOL(ap_queue_message);
1361
1362 /**
1363 * ap_cancel_message(): Cancel a crypto request.
1364 * @ap_dev: The AP device that has the message queued
1365 * @ap_msg: The message that is to be removed
1366 *
1367 * Cancel a crypto request. This is done by removing the request
1368 * from the device pending or request queue. Note that the
1369 * request stays on the AP queue. When it finishes the message
1370 * reply will be discarded because the psmid can't be found.
1371 */
1372 void ap_cancel_message(struct ap_device *ap_dev, struct ap_message *ap_msg)
1373 {
1374 struct ap_message *tmp;
1375
1376 spin_lock_bh(&ap_dev->lock);
1377 if (!list_empty(&ap_msg->list)) {
1378 list_for_each_entry(tmp, &ap_dev->pendingq, list)
1379 if (tmp->psmid == ap_msg->psmid) {
1380 ap_dev->pendingq_count--;
1381 goto found;
1382 }
1383 ap_dev->requestq_count--;
1384 found:
1385 list_del_init(&ap_msg->list);
1386 }
1387 spin_unlock_bh(&ap_dev->lock);
1388 }
1389 EXPORT_SYMBOL(ap_cancel_message);
1390
1391 /**
1392 * ap_poll_timeout(): AP receive polling for finished AP requests.
1393 * @unused: Unused pointer.
1394 *
1395 * Schedules the AP tasklet using a high resolution timer.
1396 */
1397 static enum hrtimer_restart ap_poll_timeout(struct hrtimer *unused)
1398 {
1399 tasklet_schedule(&ap_tasklet);
1400 return HRTIMER_NORESTART;
1401 }
1402
1403 /**
1404 * ap_reset(): Reset a not responding AP device.
1405 * @ap_dev: Pointer to the AP device
1406 *
1407 * Reset a not responding AP device and move all requests from the
1408 * pending queue to the request queue.
1409 */
1410 static void ap_reset(struct ap_device *ap_dev)
1411 {
1412 int rc;
1413
1414 ap_dev->reset = AP_RESET_IGNORE;
1415 atomic_sub(ap_dev->queue_count, &ap_poll_requests);
1416 ap_dev->queue_count = 0;
1417 list_splice_init(&ap_dev->pendingq, &ap_dev->requestq);
1418 ap_dev->requestq_count += ap_dev->pendingq_count;
1419 ap_dev->pendingq_count = 0;
1420 rc = ap_init_queue(ap_dev->qid);
1421 if (rc == -ENODEV)
1422 ap_dev->unregistered = 1;
1423 }
1424
1425 static int __ap_poll_device(struct ap_device *ap_dev, unsigned long *flags)
1426 {
1427 if (!ap_dev->unregistered) {
1428 if (ap_poll_queue(ap_dev, flags))
1429 ap_dev->unregistered = 1;
1430 if (ap_dev->reset == AP_RESET_DO)
1431 ap_reset(ap_dev);
1432 }
1433 return 0;
1434 }
1435
1436 /**
1437 * ap_poll_all(): Poll all AP devices.
1438 * @dummy: Unused variable
1439 *
1440 * Poll all AP devices on the bus in a round robin fashion. Continue
1441 * polling until bit 2^0 of the control flags is not set. If bit 2^1
1442 * of the control flags has been set arm the poll timer.
1443 */
1444 static void ap_poll_all(unsigned long dummy)
1445 {
1446 unsigned long flags;
1447 struct ap_device *ap_dev;
1448
1449 /* Reset the indicator if interrupts are used. Thus new interrupts can
1450 * be received. Doing it in the beginning of the tasklet is therefor
1451 * important that no requests on any AP get lost.
1452 */
1453 if (ap_using_interrupts())
1454 xchg((u8 *)ap_interrupt_indicator, 0);
1455 do {
1456 flags = 0;
1457 spin_lock(&ap_device_list_lock);
1458 list_for_each_entry(ap_dev, &ap_device_list, list) {
1459 spin_lock(&ap_dev->lock);
1460 __ap_poll_device(ap_dev, &flags);
1461 spin_unlock(&ap_dev->lock);
1462 }
1463 spin_unlock(&ap_device_list_lock);
1464 } while (flags & 1);
1465 if (flags & 2)
1466 ap_schedule_poll_timer();
1467 }
1468
1469 /**
1470 * ap_poll_thread(): Thread that polls for finished requests.
1471 * @data: Unused pointer
1472 *
1473 * AP bus poll thread. The purpose of this thread is to poll for
1474 * finished requests in a loop if there is a "free" cpu - that is
1475 * a cpu that doesn't have anything better to do. The polling stops
1476 * as soon as there is another task or if all messages have been
1477 * delivered.
1478 */
1479 static int ap_poll_thread(void *data)
1480 {
1481 DECLARE_WAITQUEUE(wait, current);
1482 unsigned long flags;
1483 int requests;
1484 struct ap_device *ap_dev;
1485
1486 set_user_nice(current, 19);
1487 while (1) {
1488 if (ap_suspend_flag)
1489 return 0;
1490 if (need_resched()) {
1491 schedule();
1492 continue;
1493 }
1494 add_wait_queue(&ap_poll_wait, &wait);
1495 set_current_state(TASK_INTERRUPTIBLE);
1496 if (kthread_should_stop())
1497 break;
1498 requests = atomic_read(&ap_poll_requests);
1499 if (requests <= 0)
1500 schedule();
1501 set_current_state(TASK_RUNNING);
1502 remove_wait_queue(&ap_poll_wait, &wait);
1503
1504 flags = 0;
1505 spin_lock_bh(&ap_device_list_lock);
1506 list_for_each_entry(ap_dev, &ap_device_list, list) {
1507 spin_lock(&ap_dev->lock);
1508 __ap_poll_device(ap_dev, &flags);
1509 spin_unlock(&ap_dev->lock);
1510 }
1511 spin_unlock_bh(&ap_device_list_lock);
1512 }
1513 set_current_state(TASK_RUNNING);
1514 remove_wait_queue(&ap_poll_wait, &wait);
1515 return 0;
1516 }
1517
1518 static int ap_poll_thread_start(void)
1519 {
1520 int rc;
1521
1522 if (ap_using_interrupts() || ap_suspend_flag)
1523 return 0;
1524 mutex_lock(&ap_poll_thread_mutex);
1525 if (!ap_poll_kthread) {
1526 ap_poll_kthread = kthread_run(ap_poll_thread, NULL, "appoll");
1527 rc = IS_ERR(ap_poll_kthread) ? PTR_ERR(ap_poll_kthread) : 0;
1528 if (rc)
1529 ap_poll_kthread = NULL;
1530 }
1531 else
1532 rc = 0;
1533 mutex_unlock(&ap_poll_thread_mutex);
1534 return rc;
1535 }
1536
1537 static void ap_poll_thread_stop(void)
1538 {
1539 mutex_lock(&ap_poll_thread_mutex);
1540 if (ap_poll_kthread) {
1541 kthread_stop(ap_poll_kthread);
1542 ap_poll_kthread = NULL;
1543 }
1544 mutex_unlock(&ap_poll_thread_mutex);
1545 }
1546
1547 /**
1548 * ap_request_timeout(): Handling of request timeouts
1549 * @data: Holds the AP device.
1550 *
1551 * Handles request timeouts.
1552 */
1553 static void ap_request_timeout(unsigned long data)
1554 {
1555 struct ap_device *ap_dev = (struct ap_device *) data;
1556
1557 if (ap_dev->reset == AP_RESET_ARMED) {
1558 ap_dev->reset = AP_RESET_DO;
1559
1560 if (ap_using_interrupts())
1561 tasklet_schedule(&ap_tasklet);
1562 }
1563 }
1564
1565 static void ap_reset_domain(void)
1566 {
1567 int i;
1568
1569 if (ap_domain_index != -1)
1570 for (i = 0; i < AP_DEVICES; i++)
1571 ap_reset_queue(AP_MKQID(i, ap_domain_index));
1572 }
1573
1574 static void ap_reset_all(void)
1575 {
1576 int i, j;
1577
1578 for (i = 0; i < AP_DOMAINS; i++)
1579 for (j = 0; j < AP_DEVICES; j++)
1580 ap_reset_queue(AP_MKQID(j, i));
1581 }
1582
1583 static struct reset_call ap_reset_call = {
1584 .fn = ap_reset_all,
1585 };
1586
1587 /**
1588 * ap_module_init(): The module initialization code.
1589 *
1590 * Initializes the module.
1591 */
1592 int __init ap_module_init(void)
1593 {
1594 int rc, i;
1595
1596 if (ap_domain_index < -1 || ap_domain_index >= AP_DOMAINS) {
1597 pr_warning("%d is not a valid cryptographic domain\n",
1598 ap_domain_index);
1599 return -EINVAL;
1600 }
1601 /* In resume callback we need to know if the user had set the domain.
1602 * If so, we can not just reset it.
1603 */
1604 if (ap_domain_index >= 0)
1605 user_set_domain = 1;
1606
1607 if (ap_instructions_available() != 0) {
1608 pr_warning("The hardware system does not support "
1609 "AP instructions\n");
1610 return -ENODEV;
1611 }
1612 if (ap_interrupts_available()) {
1613 isc_register(AP_ISC);
1614 ap_interrupt_indicator = s390_register_adapter_interrupt(
1615 &ap_interrupt_handler, NULL, AP_ISC);
1616 if (IS_ERR(ap_interrupt_indicator)) {
1617 ap_interrupt_indicator = NULL;
1618 isc_unregister(AP_ISC);
1619 }
1620 }
1621
1622 register_reset_call(&ap_reset_call);
1623
1624 /* Create /sys/bus/ap. */
1625 rc = bus_register(&ap_bus_type);
1626 if (rc)
1627 goto out;
1628 for (i = 0; ap_bus_attrs[i]; i++) {
1629 rc = bus_create_file(&ap_bus_type, ap_bus_attrs[i]);
1630 if (rc)
1631 goto out_bus;
1632 }
1633
1634 /* Create /sys/devices/ap. */
1635 ap_root_device = root_device_register("ap");
1636 rc = IS_ERR(ap_root_device) ? PTR_ERR(ap_root_device) : 0;
1637 if (rc)
1638 goto out_bus;
1639
1640 ap_work_queue = create_singlethread_workqueue("kapwork");
1641 if (!ap_work_queue) {
1642 rc = -ENOMEM;
1643 goto out_root;
1644 }
1645
1646 if (ap_select_domain() == 0)
1647 ap_scan_bus(NULL);
1648
1649 /* Setup the AP bus rescan timer. */
1650 init_timer(&ap_config_timer);
1651 ap_config_timer.function = ap_config_timeout;
1652 ap_config_timer.data = 0;
1653 ap_config_timer.expires = jiffies + ap_config_time * HZ;
1654 add_timer(&ap_config_timer);
1655
1656 /* Setup the high resultion poll timer.
1657 * If we are running under z/VM adjust polling to z/VM polling rate.
1658 */
1659 if (MACHINE_IS_VM)
1660 poll_timeout = 1500000;
1661 hrtimer_init(&ap_poll_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1662 ap_poll_timer.function = ap_poll_timeout;
1663
1664 /* Start the low priority AP bus poll thread. */
1665 if (ap_thread_flag) {
1666 rc = ap_poll_thread_start();
1667 if (rc)
1668 goto out_work;
1669 }
1670
1671 return 0;
1672
1673 out_work:
1674 del_timer_sync(&ap_config_timer);
1675 hrtimer_cancel(&ap_poll_timer);
1676 destroy_workqueue(ap_work_queue);
1677 out_root:
1678 root_device_unregister(ap_root_device);
1679 out_bus:
1680 while (i--)
1681 bus_remove_file(&ap_bus_type, ap_bus_attrs[i]);
1682 bus_unregister(&ap_bus_type);
1683 out:
1684 unregister_reset_call(&ap_reset_call);
1685 if (ap_using_interrupts()) {
1686 s390_unregister_adapter_interrupt(ap_interrupt_indicator, AP_ISC);
1687 isc_unregister(AP_ISC);
1688 }
1689 return rc;
1690 }
1691
1692 static int __ap_match_all(struct device *dev, void *data)
1693 {
1694 return 1;
1695 }
1696
1697 /**
1698 * ap_modules_exit(): The module termination code
1699 *
1700 * Terminates the module.
1701 */
1702 void ap_module_exit(void)
1703 {
1704 int i;
1705 struct device *dev;
1706
1707 ap_reset_domain();
1708 ap_poll_thread_stop();
1709 del_timer_sync(&ap_config_timer);
1710 hrtimer_cancel(&ap_poll_timer);
1711 destroy_workqueue(ap_work_queue);
1712 tasklet_kill(&ap_tasklet);
1713 root_device_unregister(ap_root_device);
1714 while ((dev = bus_find_device(&ap_bus_type, NULL, NULL,
1715 __ap_match_all)))
1716 {
1717 device_unregister(dev);
1718 put_device(dev);
1719 }
1720 for (i = 0; ap_bus_attrs[i]; i++)
1721 bus_remove_file(&ap_bus_type, ap_bus_attrs[i]);
1722 bus_unregister(&ap_bus_type);
1723 unregister_reset_call(&ap_reset_call);
1724 if (ap_using_interrupts()) {
1725 s390_unregister_adapter_interrupt(ap_interrupt_indicator, AP_ISC);
1726 isc_unregister(AP_ISC);
1727 }
1728 }
1729
1730 #ifndef CONFIG_ZCRYPT_MONOLITHIC
1731 module_init(ap_module_init);
1732 module_exit(ap_module_exit);
1733 #endif