drivers/rtc/rtc-max8907.c: remove redundant code
[GitHub/LineageOS/android_kernel_samsung_universal7580.git] / drivers / rtc / rtc-rs5c372.c
1 /*
2 * An I2C driver for Ricoh RS5C372, R2025S/D and RV5C38[67] RTCs
3 *
4 * Copyright (C) 2005 Pavel Mironchik <pmironchik@optifacio.net>
5 * Copyright (C) 2006 Tower Technologies
6 * Copyright (C) 2008 Paul Mundt
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 */
12
13 #include <linux/i2c.h>
14 #include <linux/rtc.h>
15 #include <linux/bcd.h>
16 #include <linux/slab.h>
17 #include <linux/module.h>
18
19 #define DRV_VERSION "0.6"
20
21
22 /*
23 * Ricoh has a family of I2C based RTCs, which differ only slightly from
24 * each other. Differences center on pinout (e.g. how many interrupts,
25 * output clock, etc) and how the control registers are used. The '372
26 * is significant only because that's the one this driver first supported.
27 */
28 #define RS5C372_REG_SECS 0
29 #define RS5C372_REG_MINS 1
30 #define RS5C372_REG_HOURS 2
31 #define RS5C372_REG_WDAY 3
32 #define RS5C372_REG_DAY 4
33 #define RS5C372_REG_MONTH 5
34 #define RS5C372_REG_YEAR 6
35 #define RS5C372_REG_TRIM 7
36 # define RS5C372_TRIM_XSL 0x80
37 # define RS5C372_TRIM_MASK 0x7F
38
39 #define RS5C_REG_ALARM_A_MIN 8 /* or ALARM_W */
40 #define RS5C_REG_ALARM_A_HOURS 9
41 #define RS5C_REG_ALARM_A_WDAY 10
42
43 #define RS5C_REG_ALARM_B_MIN 11 /* or ALARM_D */
44 #define RS5C_REG_ALARM_B_HOURS 12
45 #define RS5C_REG_ALARM_B_WDAY 13 /* (ALARM_B only) */
46
47 #define RS5C_REG_CTRL1 14
48 # define RS5C_CTRL1_AALE (1 << 7) /* or WALE */
49 # define RS5C_CTRL1_BALE (1 << 6) /* or DALE */
50 # define RV5C387_CTRL1_24 (1 << 5)
51 # define RS5C372A_CTRL1_SL1 (1 << 5)
52 # define RS5C_CTRL1_CT_MASK (7 << 0)
53 # define RS5C_CTRL1_CT0 (0 << 0) /* no periodic irq */
54 # define RS5C_CTRL1_CT4 (4 << 0) /* 1 Hz level irq */
55 #define RS5C_REG_CTRL2 15
56 # define RS5C372_CTRL2_24 (1 << 5)
57 # define R2025_CTRL2_XST (1 << 5)
58 # define RS5C_CTRL2_XSTP (1 << 4) /* only if !R2025S/D */
59 # define RS5C_CTRL2_CTFG (1 << 2)
60 # define RS5C_CTRL2_AAFG (1 << 1) /* or WAFG */
61 # define RS5C_CTRL2_BAFG (1 << 0) /* or DAFG */
62
63
64 /* to read (style 1) or write registers starting at R */
65 #define RS5C_ADDR(R) (((R) << 4) | 0)
66
67
68 enum rtc_type {
69 rtc_undef = 0,
70 rtc_r2025sd,
71 rtc_rs5c372a,
72 rtc_rs5c372b,
73 rtc_rv5c386,
74 rtc_rv5c387a,
75 };
76
77 static const struct i2c_device_id rs5c372_id[] = {
78 { "r2025sd", rtc_r2025sd },
79 { "rs5c372a", rtc_rs5c372a },
80 { "rs5c372b", rtc_rs5c372b },
81 { "rv5c386", rtc_rv5c386 },
82 { "rv5c387a", rtc_rv5c387a },
83 { }
84 };
85 MODULE_DEVICE_TABLE(i2c, rs5c372_id);
86
87 /* REVISIT: this assumes that:
88 * - we're in the 21st century, so it's safe to ignore the century
89 * bit for rv5c38[67] (REG_MONTH bit 7);
90 * - we should use ALARM_A not ALARM_B (may be wrong on some boards)
91 */
92 struct rs5c372 {
93 struct i2c_client *client;
94 struct rtc_device *rtc;
95 enum rtc_type type;
96 unsigned time24:1;
97 unsigned has_irq:1;
98 unsigned smbus:1;
99 char buf[17];
100 char *regs;
101 };
102
103 static int rs5c_get_regs(struct rs5c372 *rs5c)
104 {
105 struct i2c_client *client = rs5c->client;
106 struct i2c_msg msgs[] = {
107 {
108 .addr = client->addr,
109 .flags = I2C_M_RD,
110 .len = sizeof(rs5c->buf),
111 .buf = rs5c->buf
112 },
113 };
114
115 /* This implements the third reading method from the datasheet, using
116 * an internal address that's reset after each transaction (by STOP)
117 * to 0x0f ... so we read extra registers, and skip the first one.
118 *
119 * The first method doesn't work with the iop3xx adapter driver, on at
120 * least 80219 chips; this works around that bug.
121 *
122 * The third method on the other hand doesn't work for the SMBus-only
123 * configurations, so we use the the first method there, stripping off
124 * the extra register in the process.
125 */
126 if (rs5c->smbus) {
127 int addr = RS5C_ADDR(RS5C372_REG_SECS);
128 int size = sizeof(rs5c->buf) - 1;
129
130 if (i2c_smbus_read_i2c_block_data(client, addr, size,
131 rs5c->buf + 1) != size) {
132 dev_warn(&client->dev, "can't read registers\n");
133 return -EIO;
134 }
135 } else {
136 if ((i2c_transfer(client->adapter, msgs, 1)) != 1) {
137 dev_warn(&client->dev, "can't read registers\n");
138 return -EIO;
139 }
140 }
141
142 dev_dbg(&client->dev,
143 "%02x %02x %02x (%02x) %02x %02x %02x (%02x), "
144 "%02x %02x %02x, %02x %02x %02x; %02x %02x\n",
145 rs5c->regs[0], rs5c->regs[1], rs5c->regs[2], rs5c->regs[3],
146 rs5c->regs[4], rs5c->regs[5], rs5c->regs[6], rs5c->regs[7],
147 rs5c->regs[8], rs5c->regs[9], rs5c->regs[10], rs5c->regs[11],
148 rs5c->regs[12], rs5c->regs[13], rs5c->regs[14], rs5c->regs[15]);
149
150 return 0;
151 }
152
153 static unsigned rs5c_reg2hr(struct rs5c372 *rs5c, unsigned reg)
154 {
155 unsigned hour;
156
157 if (rs5c->time24)
158 return bcd2bin(reg & 0x3f);
159
160 hour = bcd2bin(reg & 0x1f);
161 if (hour == 12)
162 hour = 0;
163 if (reg & 0x20)
164 hour += 12;
165 return hour;
166 }
167
168 static unsigned rs5c_hr2reg(struct rs5c372 *rs5c, unsigned hour)
169 {
170 if (rs5c->time24)
171 return bin2bcd(hour);
172
173 if (hour > 12)
174 return 0x20 | bin2bcd(hour - 12);
175 if (hour == 12)
176 return 0x20 | bin2bcd(12);
177 if (hour == 0)
178 return bin2bcd(12);
179 return bin2bcd(hour);
180 }
181
182 static int rs5c372_get_datetime(struct i2c_client *client, struct rtc_time *tm)
183 {
184 struct rs5c372 *rs5c = i2c_get_clientdata(client);
185 int status = rs5c_get_regs(rs5c);
186
187 if (status < 0)
188 return status;
189
190 tm->tm_sec = bcd2bin(rs5c->regs[RS5C372_REG_SECS] & 0x7f);
191 tm->tm_min = bcd2bin(rs5c->regs[RS5C372_REG_MINS] & 0x7f);
192 tm->tm_hour = rs5c_reg2hr(rs5c, rs5c->regs[RS5C372_REG_HOURS]);
193
194 tm->tm_wday = bcd2bin(rs5c->regs[RS5C372_REG_WDAY] & 0x07);
195 tm->tm_mday = bcd2bin(rs5c->regs[RS5C372_REG_DAY] & 0x3f);
196
197 /* tm->tm_mon is zero-based */
198 tm->tm_mon = bcd2bin(rs5c->regs[RS5C372_REG_MONTH] & 0x1f) - 1;
199
200 /* year is 1900 + tm->tm_year */
201 tm->tm_year = bcd2bin(rs5c->regs[RS5C372_REG_YEAR]) + 100;
202
203 dev_dbg(&client->dev, "%s: tm is secs=%d, mins=%d, hours=%d, "
204 "mday=%d, mon=%d, year=%d, wday=%d\n",
205 __func__,
206 tm->tm_sec, tm->tm_min, tm->tm_hour,
207 tm->tm_mday, tm->tm_mon, tm->tm_year, tm->tm_wday);
208
209 /* rtc might need initialization */
210 return rtc_valid_tm(tm);
211 }
212
213 static int rs5c372_set_datetime(struct i2c_client *client, struct rtc_time *tm)
214 {
215 struct rs5c372 *rs5c = i2c_get_clientdata(client);
216 unsigned char buf[7];
217 int addr;
218
219 dev_dbg(&client->dev, "%s: tm is secs=%d, mins=%d, hours=%d "
220 "mday=%d, mon=%d, year=%d, wday=%d\n",
221 __func__,
222 tm->tm_sec, tm->tm_min, tm->tm_hour,
223 tm->tm_mday, tm->tm_mon, tm->tm_year, tm->tm_wday);
224
225 addr = RS5C_ADDR(RS5C372_REG_SECS);
226 buf[0] = bin2bcd(tm->tm_sec);
227 buf[1] = bin2bcd(tm->tm_min);
228 buf[2] = rs5c_hr2reg(rs5c, tm->tm_hour);
229 buf[3] = bin2bcd(tm->tm_wday);
230 buf[4] = bin2bcd(tm->tm_mday);
231 buf[5] = bin2bcd(tm->tm_mon + 1);
232 buf[6] = bin2bcd(tm->tm_year - 100);
233
234 if (i2c_smbus_write_i2c_block_data(client, addr, sizeof(buf), buf) < 0) {
235 dev_err(&client->dev, "%s: write error\n", __func__);
236 return -EIO;
237 }
238
239 return 0;
240 }
241
242 #if defined(CONFIG_RTC_INTF_PROC) || defined(CONFIG_RTC_INTF_PROC_MODULE)
243 #define NEED_TRIM
244 #endif
245
246 #if defined(CONFIG_RTC_INTF_SYSFS) || defined(CONFIG_RTC_INTF_SYSFS_MODULE)
247 #define NEED_TRIM
248 #endif
249
250 #ifdef NEED_TRIM
251 static int rs5c372_get_trim(struct i2c_client *client, int *osc, int *trim)
252 {
253 struct rs5c372 *rs5c372 = i2c_get_clientdata(client);
254 u8 tmp = rs5c372->regs[RS5C372_REG_TRIM];
255
256 if (osc)
257 *osc = (tmp & RS5C372_TRIM_XSL) ? 32000 : 32768;
258
259 if (trim) {
260 dev_dbg(&client->dev, "%s: raw trim=%x\n", __func__, tmp);
261 tmp &= RS5C372_TRIM_MASK;
262 if (tmp & 0x3e) {
263 int t = tmp & 0x3f;
264
265 if (tmp & 0x40)
266 t = (~t | (s8)0xc0) + 1;
267 else
268 t = t - 1;
269
270 tmp = t * 2;
271 } else
272 tmp = 0;
273 *trim = tmp;
274 }
275
276 return 0;
277 }
278 #endif
279
280 static int rs5c372_rtc_read_time(struct device *dev, struct rtc_time *tm)
281 {
282 return rs5c372_get_datetime(to_i2c_client(dev), tm);
283 }
284
285 static int rs5c372_rtc_set_time(struct device *dev, struct rtc_time *tm)
286 {
287 return rs5c372_set_datetime(to_i2c_client(dev), tm);
288 }
289
290
291 static int rs5c_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled)
292 {
293 struct i2c_client *client = to_i2c_client(dev);
294 struct rs5c372 *rs5c = i2c_get_clientdata(client);
295 unsigned char buf;
296 int status, addr;
297
298 buf = rs5c->regs[RS5C_REG_CTRL1];
299
300 if (!rs5c->has_irq)
301 return -EINVAL;
302
303 status = rs5c_get_regs(rs5c);
304 if (status < 0)
305 return status;
306
307 addr = RS5C_ADDR(RS5C_REG_CTRL1);
308 if (enabled)
309 buf |= RS5C_CTRL1_AALE;
310 else
311 buf &= ~RS5C_CTRL1_AALE;
312
313 if (i2c_smbus_write_byte_data(client, addr, buf) < 0) {
314 dev_warn(dev, "can't update alarm\n");
315 status = -EIO;
316 } else
317 rs5c->regs[RS5C_REG_CTRL1] = buf;
318
319 return status;
320 }
321
322
323 /* NOTE: Since RTC_WKALM_{RD,SET} were originally defined for EFI,
324 * which only exposes a polled programming interface; and since
325 * these calls map directly to those EFI requests; we don't demand
326 * we have an IRQ for this chip when we go through this API.
327 *
328 * The older x86_pc derived RTC_ALM_{READ,SET} calls require irqs
329 * though, managed through RTC_AIE_{ON,OFF} requests.
330 */
331
332 static int rs5c_read_alarm(struct device *dev, struct rtc_wkalrm *t)
333 {
334 struct i2c_client *client = to_i2c_client(dev);
335 struct rs5c372 *rs5c = i2c_get_clientdata(client);
336 int status;
337
338 status = rs5c_get_regs(rs5c);
339 if (status < 0)
340 return status;
341
342 /* report alarm time */
343 t->time.tm_sec = 0;
344 t->time.tm_min = bcd2bin(rs5c->regs[RS5C_REG_ALARM_A_MIN] & 0x7f);
345 t->time.tm_hour = rs5c_reg2hr(rs5c, rs5c->regs[RS5C_REG_ALARM_A_HOURS]);
346 t->time.tm_mday = -1;
347 t->time.tm_mon = -1;
348 t->time.tm_year = -1;
349 t->time.tm_wday = -1;
350 t->time.tm_yday = -1;
351 t->time.tm_isdst = -1;
352
353 /* ... and status */
354 t->enabled = !!(rs5c->regs[RS5C_REG_CTRL1] & RS5C_CTRL1_AALE);
355 t->pending = !!(rs5c->regs[RS5C_REG_CTRL2] & RS5C_CTRL2_AAFG);
356
357 return 0;
358 }
359
360 static int rs5c_set_alarm(struct device *dev, struct rtc_wkalrm *t)
361 {
362 struct i2c_client *client = to_i2c_client(dev);
363 struct rs5c372 *rs5c = i2c_get_clientdata(client);
364 int status, addr, i;
365 unsigned char buf[3];
366
367 /* only handle up to 24 hours in the future, like RTC_ALM_SET */
368 if (t->time.tm_mday != -1
369 || t->time.tm_mon != -1
370 || t->time.tm_year != -1)
371 return -EINVAL;
372
373 /* REVISIT: round up tm_sec */
374
375 /* if needed, disable irq (clears pending status) */
376 status = rs5c_get_regs(rs5c);
377 if (status < 0)
378 return status;
379 if (rs5c->regs[RS5C_REG_CTRL1] & RS5C_CTRL1_AALE) {
380 addr = RS5C_ADDR(RS5C_REG_CTRL1);
381 buf[0] = rs5c->regs[RS5C_REG_CTRL1] & ~RS5C_CTRL1_AALE;
382 if (i2c_smbus_write_byte_data(client, addr, buf[0]) < 0) {
383 dev_dbg(dev, "can't disable alarm\n");
384 return -EIO;
385 }
386 rs5c->regs[RS5C_REG_CTRL1] = buf[0];
387 }
388
389 /* set alarm */
390 buf[0] = bin2bcd(t->time.tm_min);
391 buf[1] = rs5c_hr2reg(rs5c, t->time.tm_hour);
392 buf[2] = 0x7f; /* any/all days */
393
394 for (i = 0; i < sizeof(buf); i++) {
395 addr = RS5C_ADDR(RS5C_REG_ALARM_A_MIN + i);
396 if (i2c_smbus_write_byte_data(client, addr, buf[i]) < 0) {
397 dev_dbg(dev, "can't set alarm time\n");
398 return -EIO;
399 }
400 }
401
402 /* ... and maybe enable its irq */
403 if (t->enabled) {
404 addr = RS5C_ADDR(RS5C_REG_CTRL1);
405 buf[0] = rs5c->regs[RS5C_REG_CTRL1] | RS5C_CTRL1_AALE;
406 if (i2c_smbus_write_byte_data(client, addr, buf[0]) < 0)
407 dev_warn(dev, "can't enable alarm\n");
408 rs5c->regs[RS5C_REG_CTRL1] = buf[0];
409 }
410
411 return 0;
412 }
413
414 #if defined(CONFIG_RTC_INTF_PROC) || defined(CONFIG_RTC_INTF_PROC_MODULE)
415
416 static int rs5c372_rtc_proc(struct device *dev, struct seq_file *seq)
417 {
418 int err, osc, trim;
419
420 err = rs5c372_get_trim(to_i2c_client(dev), &osc, &trim);
421 if (err == 0) {
422 seq_printf(seq, "crystal\t\t: %d.%03d KHz\n",
423 osc / 1000, osc % 1000);
424 seq_printf(seq, "trim\t\t: %d\n", trim);
425 }
426
427 return 0;
428 }
429
430 #else
431 #define rs5c372_rtc_proc NULL
432 #endif
433
434 static const struct rtc_class_ops rs5c372_rtc_ops = {
435 .proc = rs5c372_rtc_proc,
436 .read_time = rs5c372_rtc_read_time,
437 .set_time = rs5c372_rtc_set_time,
438 .read_alarm = rs5c_read_alarm,
439 .set_alarm = rs5c_set_alarm,
440 .alarm_irq_enable = rs5c_rtc_alarm_irq_enable,
441 };
442
443 #if defined(CONFIG_RTC_INTF_SYSFS) || defined(CONFIG_RTC_INTF_SYSFS_MODULE)
444
445 static ssize_t rs5c372_sysfs_show_trim(struct device *dev,
446 struct device_attribute *attr, char *buf)
447 {
448 int err, trim;
449
450 err = rs5c372_get_trim(to_i2c_client(dev), NULL, &trim);
451 if (err)
452 return err;
453
454 return sprintf(buf, "%d\n", trim);
455 }
456 static DEVICE_ATTR(trim, S_IRUGO, rs5c372_sysfs_show_trim, NULL);
457
458 static ssize_t rs5c372_sysfs_show_osc(struct device *dev,
459 struct device_attribute *attr, char *buf)
460 {
461 int err, osc;
462
463 err = rs5c372_get_trim(to_i2c_client(dev), &osc, NULL);
464 if (err)
465 return err;
466
467 return sprintf(buf, "%d.%03d KHz\n", osc / 1000, osc % 1000);
468 }
469 static DEVICE_ATTR(osc, S_IRUGO, rs5c372_sysfs_show_osc, NULL);
470
471 static int rs5c_sysfs_register(struct device *dev)
472 {
473 int err;
474
475 err = device_create_file(dev, &dev_attr_trim);
476 if (err)
477 return err;
478 err = device_create_file(dev, &dev_attr_osc);
479 if (err)
480 device_remove_file(dev, &dev_attr_trim);
481
482 return err;
483 }
484
485 static void rs5c_sysfs_unregister(struct device *dev)
486 {
487 device_remove_file(dev, &dev_attr_trim);
488 device_remove_file(dev, &dev_attr_osc);
489 }
490
491 #else
492 static int rs5c_sysfs_register(struct device *dev)
493 {
494 return 0;
495 }
496
497 static void rs5c_sysfs_unregister(struct device *dev)
498 {
499 /* nothing */
500 }
501 #endif /* SYSFS */
502
503 static struct i2c_driver rs5c372_driver;
504
505 static int rs5c_oscillator_setup(struct rs5c372 *rs5c372)
506 {
507 unsigned char buf[2];
508 int addr, i, ret = 0;
509
510 if (rs5c372->type == rtc_r2025sd) {
511 if (!(rs5c372->regs[RS5C_REG_CTRL2] & R2025_CTRL2_XST))
512 return ret;
513 rs5c372->regs[RS5C_REG_CTRL2] &= ~R2025_CTRL2_XST;
514 } else {
515 if (!(rs5c372->regs[RS5C_REG_CTRL2] & RS5C_CTRL2_XSTP))
516 return ret;
517 rs5c372->regs[RS5C_REG_CTRL2] &= ~RS5C_CTRL2_XSTP;
518 }
519
520 addr = RS5C_ADDR(RS5C_REG_CTRL1);
521 buf[0] = rs5c372->regs[RS5C_REG_CTRL1];
522 buf[1] = rs5c372->regs[RS5C_REG_CTRL2];
523
524 /* use 24hr mode */
525 switch (rs5c372->type) {
526 case rtc_rs5c372a:
527 case rtc_rs5c372b:
528 buf[1] |= RS5C372_CTRL2_24;
529 rs5c372->time24 = 1;
530 break;
531 case rtc_r2025sd:
532 case rtc_rv5c386:
533 case rtc_rv5c387a:
534 buf[0] |= RV5C387_CTRL1_24;
535 rs5c372->time24 = 1;
536 break;
537 default:
538 /* impossible */
539 break;
540 }
541
542 for (i = 0; i < sizeof(buf); i++) {
543 addr = RS5C_ADDR(RS5C_REG_CTRL1 + i);
544 ret = i2c_smbus_write_byte_data(rs5c372->client, addr, buf[i]);
545 if (unlikely(ret < 0))
546 return ret;
547 }
548
549 rs5c372->regs[RS5C_REG_CTRL1] = buf[0];
550 rs5c372->regs[RS5C_REG_CTRL2] = buf[1];
551
552 return 0;
553 }
554
555 static int rs5c372_probe(struct i2c_client *client,
556 const struct i2c_device_id *id)
557 {
558 int err = 0;
559 int smbus_mode = 0;
560 struct rs5c372 *rs5c372;
561 struct rtc_time tm;
562
563 dev_dbg(&client->dev, "%s\n", __func__);
564
565 if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C |
566 I2C_FUNC_SMBUS_BYTE_DATA | I2C_FUNC_SMBUS_I2C_BLOCK)) {
567 /*
568 * If we don't have any master mode adapter, try breaking
569 * it down in to the barest of capabilities.
570 */
571 if (i2c_check_functionality(client->adapter,
572 I2C_FUNC_SMBUS_BYTE_DATA |
573 I2C_FUNC_SMBUS_I2C_BLOCK))
574 smbus_mode = 1;
575 else {
576 /* Still no good, give up */
577 err = -ENODEV;
578 goto exit;
579 }
580 }
581
582 if (!(rs5c372 = kzalloc(sizeof(struct rs5c372), GFP_KERNEL))) {
583 err = -ENOMEM;
584 goto exit;
585 }
586
587 rs5c372->client = client;
588 i2c_set_clientdata(client, rs5c372);
589 rs5c372->type = id->driver_data;
590
591 /* we read registers 0x0f then 0x00-0x0f; skip the first one */
592 rs5c372->regs = &rs5c372->buf[1];
593 rs5c372->smbus = smbus_mode;
594
595 err = rs5c_get_regs(rs5c372);
596 if (err < 0)
597 goto exit_kfree;
598
599 /* clock may be set for am/pm or 24 hr time */
600 switch (rs5c372->type) {
601 case rtc_rs5c372a:
602 case rtc_rs5c372b:
603 /* alarm uses ALARM_A; and nINTRA on 372a, nINTR on 372b.
604 * so does periodic irq, except some 327a modes.
605 */
606 if (rs5c372->regs[RS5C_REG_CTRL2] & RS5C372_CTRL2_24)
607 rs5c372->time24 = 1;
608 break;
609 case rtc_r2025sd:
610 case rtc_rv5c386:
611 case rtc_rv5c387a:
612 if (rs5c372->regs[RS5C_REG_CTRL1] & RV5C387_CTRL1_24)
613 rs5c372->time24 = 1;
614 /* alarm uses ALARM_W; and nINTRB for alarm and periodic
615 * irq, on both 386 and 387
616 */
617 break;
618 default:
619 dev_err(&client->dev, "unknown RTC type\n");
620 goto exit_kfree;
621 }
622
623 /* if the oscillator lost power and no other software (like
624 * the bootloader) set it up, do it here.
625 *
626 * The R2025S/D does this a little differently than the other
627 * parts, so we special case that..
628 */
629 err = rs5c_oscillator_setup(rs5c372);
630 if (unlikely(err < 0)) {
631 dev_err(&client->dev, "setup error\n");
632 goto exit_kfree;
633 }
634
635 if (rs5c372_get_datetime(client, &tm) < 0)
636 dev_warn(&client->dev, "clock needs to be set\n");
637
638 dev_info(&client->dev, "%s found, %s, driver version " DRV_VERSION "\n",
639 ({ char *s; switch (rs5c372->type) {
640 case rtc_r2025sd: s = "r2025sd"; break;
641 case rtc_rs5c372a: s = "rs5c372a"; break;
642 case rtc_rs5c372b: s = "rs5c372b"; break;
643 case rtc_rv5c386: s = "rv5c386"; break;
644 case rtc_rv5c387a: s = "rv5c387a"; break;
645 default: s = "chip"; break;
646 }; s;}),
647 rs5c372->time24 ? "24hr" : "am/pm"
648 );
649
650 /* REVISIT use client->irq to register alarm irq ... */
651
652 rs5c372->rtc = rtc_device_register(rs5c372_driver.driver.name,
653 &client->dev, &rs5c372_rtc_ops, THIS_MODULE);
654
655 if (IS_ERR(rs5c372->rtc)) {
656 err = PTR_ERR(rs5c372->rtc);
657 goto exit_kfree;
658 }
659
660 err = rs5c_sysfs_register(&client->dev);
661 if (err)
662 goto exit_devreg;
663
664 return 0;
665
666 exit_devreg:
667 rtc_device_unregister(rs5c372->rtc);
668
669 exit_kfree:
670 kfree(rs5c372);
671
672 exit:
673 return err;
674 }
675
676 static int rs5c372_remove(struct i2c_client *client)
677 {
678 struct rs5c372 *rs5c372 = i2c_get_clientdata(client);
679
680 rtc_device_unregister(rs5c372->rtc);
681 rs5c_sysfs_unregister(&client->dev);
682 kfree(rs5c372);
683 return 0;
684 }
685
686 static struct i2c_driver rs5c372_driver = {
687 .driver = {
688 .name = "rtc-rs5c372",
689 },
690 .probe = rs5c372_probe,
691 .remove = rs5c372_remove,
692 .id_table = rs5c372_id,
693 };
694
695 module_i2c_driver(rs5c372_driver);
696
697 MODULE_AUTHOR(
698 "Pavel Mironchik <pmironchik@optifacio.net>, "
699 "Alessandro Zummo <a.zummo@towertech.it>, "
700 "Paul Mundt <lethal@linux-sh.org>");
701 MODULE_DESCRIPTION("Ricoh RS5C372 RTC driver");
702 MODULE_LICENSE("GPL");
703 MODULE_VERSION(DRV_VERSION);