fmvj18x_cs: write interrupt ack bit for lan and modem to work simultaneously.
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / rtc / rtc-dev.c
1 /*
2 * RTC subsystem, dev interface
3 *
4 * Copyright (C) 2005 Tower Technologies
5 * Author: Alessandro Zummo <a.zummo@towertech.it>
6 *
7 * based on arch/arm/common/rtctime.c
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 */
13
14 #include <linux/module.h>
15 #include <linux/rtc.h>
16 #include "rtc-core.h"
17
18 static dev_t rtc_devt;
19
20 #define RTC_DEV_MAX 16 /* 16 RTCs should be enough for everyone... */
21
22 static int rtc_dev_open(struct inode *inode, struct file *file)
23 {
24 int err;
25 struct rtc_device *rtc = container_of(inode->i_cdev,
26 struct rtc_device, char_dev);
27 const struct rtc_class_ops *ops = rtc->ops;
28
29 if (test_and_set_bit_lock(RTC_DEV_BUSY, &rtc->flags))
30 return -EBUSY;
31
32 file->private_data = rtc;
33
34 err = ops->open ? ops->open(rtc->dev.parent) : 0;
35 if (err == 0) {
36 spin_lock_irq(&rtc->irq_lock);
37 rtc->irq_data = 0;
38 spin_unlock_irq(&rtc->irq_lock);
39
40 return 0;
41 }
42
43 /* something has gone wrong */
44 clear_bit_unlock(RTC_DEV_BUSY, &rtc->flags);
45 return err;
46 }
47
48 #ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL
49 /*
50 * Routine to poll RTC seconds field for change as often as possible,
51 * after first RTC_UIE use timer to reduce polling
52 */
53 static void rtc_uie_task(struct work_struct *work)
54 {
55 struct rtc_device *rtc =
56 container_of(work, struct rtc_device, uie_task);
57 struct rtc_time tm;
58 int num = 0;
59 int err;
60
61 err = rtc_read_time(rtc, &tm);
62
63 local_irq_disable();
64 spin_lock(&rtc->irq_lock);
65 if (rtc->stop_uie_polling || err) {
66 rtc->uie_task_active = 0;
67 } else if (rtc->oldsecs != tm.tm_sec) {
68 num = (tm.tm_sec + 60 - rtc->oldsecs) % 60;
69 rtc->oldsecs = tm.tm_sec;
70 rtc->uie_timer.expires = jiffies + HZ - (HZ/10);
71 rtc->uie_timer_active = 1;
72 rtc->uie_task_active = 0;
73 add_timer(&rtc->uie_timer);
74 } else if (schedule_work(&rtc->uie_task) == 0) {
75 rtc->uie_task_active = 0;
76 }
77 spin_unlock(&rtc->irq_lock);
78 if (num)
79 rtc_update_irq(rtc, num, RTC_UF | RTC_IRQF);
80 local_irq_enable();
81 }
82 static void rtc_uie_timer(unsigned long data)
83 {
84 struct rtc_device *rtc = (struct rtc_device *)data;
85 unsigned long flags;
86
87 spin_lock_irqsave(&rtc->irq_lock, flags);
88 rtc->uie_timer_active = 0;
89 rtc->uie_task_active = 1;
90 if ((schedule_work(&rtc->uie_task) == 0))
91 rtc->uie_task_active = 0;
92 spin_unlock_irqrestore(&rtc->irq_lock, flags);
93 }
94
95 static void clear_uie(struct rtc_device *rtc)
96 {
97 spin_lock_irq(&rtc->irq_lock);
98 if (rtc->irq_active) {
99 rtc->stop_uie_polling = 1;
100 if (rtc->uie_timer_active) {
101 spin_unlock_irq(&rtc->irq_lock);
102 del_timer_sync(&rtc->uie_timer);
103 spin_lock_irq(&rtc->irq_lock);
104 rtc->uie_timer_active = 0;
105 }
106 if (rtc->uie_task_active) {
107 spin_unlock_irq(&rtc->irq_lock);
108 flush_scheduled_work();
109 spin_lock_irq(&rtc->irq_lock);
110 }
111 rtc->irq_active = 0;
112 }
113 spin_unlock_irq(&rtc->irq_lock);
114 }
115
116 static int set_uie(struct rtc_device *rtc)
117 {
118 struct rtc_time tm;
119 int err;
120
121 err = rtc_read_time(rtc, &tm);
122 if (err)
123 return err;
124 spin_lock_irq(&rtc->irq_lock);
125 if (!rtc->irq_active) {
126 rtc->irq_active = 1;
127 rtc->stop_uie_polling = 0;
128 rtc->oldsecs = tm.tm_sec;
129 rtc->uie_task_active = 1;
130 if (schedule_work(&rtc->uie_task) == 0)
131 rtc->uie_task_active = 0;
132 }
133 rtc->irq_data = 0;
134 spin_unlock_irq(&rtc->irq_lock);
135 return 0;
136 }
137 #endif /* CONFIG_RTC_INTF_DEV_UIE_EMUL */
138
139 static ssize_t
140 rtc_dev_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
141 {
142 struct rtc_device *rtc = file->private_data;
143
144 DECLARE_WAITQUEUE(wait, current);
145 unsigned long data;
146 ssize_t ret;
147
148 if (count != sizeof(unsigned int) && count < sizeof(unsigned long))
149 return -EINVAL;
150
151 add_wait_queue(&rtc->irq_queue, &wait);
152 do {
153 __set_current_state(TASK_INTERRUPTIBLE);
154
155 spin_lock_irq(&rtc->irq_lock);
156 data = rtc->irq_data;
157 rtc->irq_data = 0;
158 spin_unlock_irq(&rtc->irq_lock);
159
160 if (data != 0) {
161 ret = 0;
162 break;
163 }
164 if (file->f_flags & O_NONBLOCK) {
165 ret = -EAGAIN;
166 break;
167 }
168 if (signal_pending(current)) {
169 ret = -ERESTARTSYS;
170 break;
171 }
172 schedule();
173 } while (1);
174 set_current_state(TASK_RUNNING);
175 remove_wait_queue(&rtc->irq_queue, &wait);
176
177 if (ret == 0) {
178 /* Check for any data updates */
179 if (rtc->ops->read_callback)
180 data = rtc->ops->read_callback(rtc->dev.parent,
181 data);
182
183 if (sizeof(int) != sizeof(long) &&
184 count == sizeof(unsigned int))
185 ret = put_user(data, (unsigned int __user *)buf) ?:
186 sizeof(unsigned int);
187 else
188 ret = put_user(data, (unsigned long __user *)buf) ?:
189 sizeof(unsigned long);
190 }
191 return ret;
192 }
193
194 static unsigned int rtc_dev_poll(struct file *file, poll_table *wait)
195 {
196 struct rtc_device *rtc = file->private_data;
197 unsigned long data;
198
199 poll_wait(file, &rtc->irq_queue, wait);
200
201 data = rtc->irq_data;
202
203 return (data != 0) ? (POLLIN | POLLRDNORM) : 0;
204 }
205
206 static long rtc_dev_ioctl(struct file *file,
207 unsigned int cmd, unsigned long arg)
208 {
209 int err = 0;
210 struct rtc_device *rtc = file->private_data;
211 const struct rtc_class_ops *ops = rtc->ops;
212 struct rtc_time tm;
213 struct rtc_wkalrm alarm;
214 void __user *uarg = (void __user *) arg;
215
216 err = mutex_lock_interruptible(&rtc->ops_lock);
217 if (err)
218 return err;
219
220 /* check that the calling task has appropriate permissions
221 * for certain ioctls. doing this check here is useful
222 * to avoid duplicate code in each driver.
223 */
224 switch (cmd) {
225 case RTC_EPOCH_SET:
226 case RTC_SET_TIME:
227 if (!capable(CAP_SYS_TIME))
228 err = -EACCES;
229 break;
230
231 case RTC_IRQP_SET:
232 if (arg > rtc->max_user_freq && !capable(CAP_SYS_RESOURCE))
233 err = -EACCES;
234 break;
235
236 case RTC_PIE_ON:
237 if (rtc->irq_freq > rtc->max_user_freq &&
238 !capable(CAP_SYS_RESOURCE))
239 err = -EACCES;
240 break;
241 }
242
243 if (err)
244 goto done;
245
246 /* try the driver's ioctl interface */
247 if (ops->ioctl) {
248 err = ops->ioctl(rtc->dev.parent, cmd, arg);
249 if (err != -ENOIOCTLCMD) {
250 mutex_unlock(&rtc->ops_lock);
251 return err;
252 }
253 }
254
255 /* if the driver does not provide the ioctl interface
256 * or if that particular ioctl was not implemented
257 * (-ENOIOCTLCMD), we will try to emulate here.
258 *
259 * Drivers *SHOULD NOT* provide ioctl implementations
260 * for these requests. Instead, provide methods to
261 * support the following code, so that the RTC's main
262 * features are accessible without using ioctls.
263 *
264 * RTC and alarm times will be in UTC, by preference,
265 * but dual-booting with MS-Windows implies RTCs must
266 * use the local wall clock time.
267 */
268
269 switch (cmd) {
270 case RTC_ALM_READ:
271 mutex_unlock(&rtc->ops_lock);
272
273 err = rtc_read_alarm(rtc, &alarm);
274 if (err < 0)
275 return err;
276
277 if (copy_to_user(uarg, &alarm.time, sizeof(tm)))
278 err = -EFAULT;
279 return err;
280
281 case RTC_ALM_SET:
282 mutex_unlock(&rtc->ops_lock);
283
284 if (copy_from_user(&alarm.time, uarg, sizeof(tm)))
285 return -EFAULT;
286
287 alarm.enabled = 0;
288 alarm.pending = 0;
289 alarm.time.tm_wday = -1;
290 alarm.time.tm_yday = -1;
291 alarm.time.tm_isdst = -1;
292
293 /* RTC_ALM_SET alarms may be up to 24 hours in the future.
294 * Rather than expecting every RTC to implement "don't care"
295 * for day/month/year fields, just force the alarm to have
296 * the right values for those fields.
297 *
298 * RTC_WKALM_SET should be used instead. Not only does it
299 * eliminate the need for a separate RTC_AIE_ON call, it
300 * doesn't have the "alarm 23:59:59 in the future" race.
301 *
302 * NOTE: some legacy code may have used invalid fields as
303 * wildcards, exposing hardware "periodic alarm" capabilities.
304 * Not supported here.
305 */
306 {
307 unsigned long now, then;
308
309 err = rtc_read_time(rtc, &tm);
310 if (err < 0)
311 return err;
312 rtc_tm_to_time(&tm, &now);
313
314 alarm.time.tm_mday = tm.tm_mday;
315 alarm.time.tm_mon = tm.tm_mon;
316 alarm.time.tm_year = tm.tm_year;
317 err = rtc_valid_tm(&alarm.time);
318 if (err < 0)
319 return err;
320 rtc_tm_to_time(&alarm.time, &then);
321
322 /* alarm may need to wrap into tomorrow */
323 if (then < now) {
324 rtc_time_to_tm(now + 24 * 60 * 60, &tm);
325 alarm.time.tm_mday = tm.tm_mday;
326 alarm.time.tm_mon = tm.tm_mon;
327 alarm.time.tm_year = tm.tm_year;
328 }
329 }
330
331 return rtc_set_alarm(rtc, &alarm);
332
333 case RTC_RD_TIME:
334 mutex_unlock(&rtc->ops_lock);
335
336 err = rtc_read_time(rtc, &tm);
337 if (err < 0)
338 return err;
339
340 if (copy_to_user(uarg, &tm, sizeof(tm)))
341 err = -EFAULT;
342 return err;
343
344 case RTC_SET_TIME:
345 mutex_unlock(&rtc->ops_lock);
346
347 if (copy_from_user(&tm, uarg, sizeof(tm)))
348 return -EFAULT;
349
350 return rtc_set_time(rtc, &tm);
351
352 case RTC_PIE_ON:
353 err = rtc_irq_set_state(rtc, NULL, 1);
354 break;
355
356 case RTC_PIE_OFF:
357 err = rtc_irq_set_state(rtc, NULL, 0);
358 break;
359
360 case RTC_IRQP_SET:
361 err = rtc_irq_set_freq(rtc, NULL, arg);
362 break;
363
364 case RTC_IRQP_READ:
365 err = put_user(rtc->irq_freq, (unsigned long __user *)uarg);
366 break;
367
368 #if 0
369 case RTC_EPOCH_SET:
370 #ifndef rtc_epoch
371 /*
372 * There were no RTC clocks before 1900.
373 */
374 if (arg < 1900) {
375 err = -EINVAL;
376 break;
377 }
378 rtc_epoch = arg;
379 err = 0;
380 #endif
381 break;
382
383 case RTC_EPOCH_READ:
384 err = put_user(rtc_epoch, (unsigned long __user *)uarg);
385 break;
386 #endif
387 case RTC_WKALM_SET:
388 mutex_unlock(&rtc->ops_lock);
389 if (copy_from_user(&alarm, uarg, sizeof(alarm)))
390 return -EFAULT;
391
392 return rtc_set_alarm(rtc, &alarm);
393
394 case RTC_WKALM_RD:
395 mutex_unlock(&rtc->ops_lock);
396 err = rtc_read_alarm(rtc, &alarm);
397 if (err < 0)
398 return err;
399
400 if (copy_to_user(uarg, &alarm, sizeof(alarm)))
401 err = -EFAULT;
402 return err;
403
404 #ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL
405 case RTC_UIE_OFF:
406 mutex_unlock(&rtc->ops_lock);
407 clear_uie(rtc);
408 return 0;
409
410 case RTC_UIE_ON:
411 mutex_unlock(&rtc->ops_lock);
412 err = set_uie(rtc);
413 return err;
414 #endif
415 default:
416 err = -ENOTTY;
417 break;
418 }
419
420 done:
421 mutex_unlock(&rtc->ops_lock);
422 return err;
423 }
424
425 static int rtc_dev_fasync(int fd, struct file *file, int on)
426 {
427 struct rtc_device *rtc = file->private_data;
428 return fasync_helper(fd, file, on, &rtc->async_queue);
429 }
430
431 static int rtc_dev_release(struct inode *inode, struct file *file)
432 {
433 struct rtc_device *rtc = file->private_data;
434
435 /* We shut down the repeating IRQs that userspace enabled,
436 * since nothing is listening to them.
437 * - Update (UIE) ... currently only managed through ioctls
438 * - Periodic (PIE) ... also used through rtc_*() interface calls
439 *
440 * Leave the alarm alone; it may be set to trigger a system wakeup
441 * later, or be used by kernel code, and is a one-shot event anyway.
442 */
443 rtc_dev_ioctl(file, RTC_UIE_OFF, 0);
444 rtc_irq_set_state(rtc, NULL, 0);
445
446 if (rtc->ops->release)
447 rtc->ops->release(rtc->dev.parent);
448
449 if (file->f_flags & FASYNC)
450 rtc_dev_fasync(-1, file, 0);
451
452 clear_bit_unlock(RTC_DEV_BUSY, &rtc->flags);
453 return 0;
454 }
455
456 static const struct file_operations rtc_dev_fops = {
457 .owner = THIS_MODULE,
458 .llseek = no_llseek,
459 .read = rtc_dev_read,
460 .poll = rtc_dev_poll,
461 .unlocked_ioctl = rtc_dev_ioctl,
462 .open = rtc_dev_open,
463 .release = rtc_dev_release,
464 .fasync = rtc_dev_fasync,
465 };
466
467 /* insertion/removal hooks */
468
469 void rtc_dev_prepare(struct rtc_device *rtc)
470 {
471 if (!rtc_devt)
472 return;
473
474 if (rtc->id >= RTC_DEV_MAX) {
475 pr_debug("%s: too many RTC devices\n", rtc->name);
476 return;
477 }
478
479 rtc->dev.devt = MKDEV(MAJOR(rtc_devt), rtc->id);
480
481 #ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL
482 INIT_WORK(&rtc->uie_task, rtc_uie_task);
483 setup_timer(&rtc->uie_timer, rtc_uie_timer, (unsigned long)rtc);
484 #endif
485
486 cdev_init(&rtc->char_dev, &rtc_dev_fops);
487 rtc->char_dev.owner = rtc->owner;
488 }
489
490 void rtc_dev_add_device(struct rtc_device *rtc)
491 {
492 if (cdev_add(&rtc->char_dev, rtc->dev.devt, 1))
493 printk(KERN_WARNING "%s: failed to add char device %d:%d\n",
494 rtc->name, MAJOR(rtc_devt), rtc->id);
495 else
496 pr_debug("%s: dev (%d:%d)\n", rtc->name,
497 MAJOR(rtc_devt), rtc->id);
498 }
499
500 void rtc_dev_del_device(struct rtc_device *rtc)
501 {
502 if (rtc->dev.devt)
503 cdev_del(&rtc->char_dev);
504 }
505
506 void __init rtc_dev_init(void)
507 {
508 int err;
509
510 err = alloc_chrdev_region(&rtc_devt, 0, RTC_DEV_MAX, "rtc");
511 if (err < 0)
512 printk(KERN_ERR "%s: failed to allocate char dev region\n",
513 __FILE__);
514 }
515
516 void __exit rtc_dev_exit(void)
517 {
518 if (rtc_devt)
519 unregister_chrdev_region(rtc_devt, RTC_DEV_MAX);
520 }