Merge branch 'fixes-for-3.5' of git://git.kernel.org/pub/scm/linux/kernel/git/coolone...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / regulator / core.c
1 /*
2 * core.c -- Voltage/Current Regulator framework.
3 *
4 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5 * Copyright 2008 SlimLogic Ltd.
6 *
7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8 *
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2 of the License, or (at your
12 * option) any later version.
13 *
14 */
15
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/debugfs.h>
19 #include <linux/device.h>
20 #include <linux/slab.h>
21 #include <linux/async.h>
22 #include <linux/err.h>
23 #include <linux/mutex.h>
24 #include <linux/suspend.h>
25 #include <linux/delay.h>
26 #include <linux/of.h>
27 #include <linux/regmap.h>
28 #include <linux/regulator/of_regulator.h>
29 #include <linux/regulator/consumer.h>
30 #include <linux/regulator/driver.h>
31 #include <linux/regulator/machine.h>
32 #include <linux/module.h>
33
34 #define CREATE_TRACE_POINTS
35 #include <trace/events/regulator.h>
36
37 #include "dummy.h"
38
39 #define rdev_crit(rdev, fmt, ...) \
40 pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
41 #define rdev_err(rdev, fmt, ...) \
42 pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
43 #define rdev_warn(rdev, fmt, ...) \
44 pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
45 #define rdev_info(rdev, fmt, ...) \
46 pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
47 #define rdev_dbg(rdev, fmt, ...) \
48 pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
49
50 static DEFINE_MUTEX(regulator_list_mutex);
51 static LIST_HEAD(regulator_list);
52 static LIST_HEAD(regulator_map_list);
53 static bool has_full_constraints;
54 static bool board_wants_dummy_regulator;
55
56 static struct dentry *debugfs_root;
57
58 /*
59 * struct regulator_map
60 *
61 * Used to provide symbolic supply names to devices.
62 */
63 struct regulator_map {
64 struct list_head list;
65 const char *dev_name; /* The dev_name() for the consumer */
66 const char *supply;
67 struct regulator_dev *regulator;
68 };
69
70 /*
71 * struct regulator
72 *
73 * One for each consumer device.
74 */
75 struct regulator {
76 struct device *dev;
77 struct list_head list;
78 unsigned int always_on:1;
79 int uA_load;
80 int min_uV;
81 int max_uV;
82 char *supply_name;
83 struct device_attribute dev_attr;
84 struct regulator_dev *rdev;
85 struct dentry *debugfs;
86 };
87
88 static int _regulator_is_enabled(struct regulator_dev *rdev);
89 static int _regulator_disable(struct regulator_dev *rdev);
90 static int _regulator_get_voltage(struct regulator_dev *rdev);
91 static int _regulator_get_current_limit(struct regulator_dev *rdev);
92 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
93 static void _notifier_call_chain(struct regulator_dev *rdev,
94 unsigned long event, void *data);
95 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
96 int min_uV, int max_uV);
97 static struct regulator *create_regulator(struct regulator_dev *rdev,
98 struct device *dev,
99 const char *supply_name);
100
101 static const char *rdev_get_name(struct regulator_dev *rdev)
102 {
103 if (rdev->constraints && rdev->constraints->name)
104 return rdev->constraints->name;
105 else if (rdev->desc->name)
106 return rdev->desc->name;
107 else
108 return "";
109 }
110
111 /* gets the regulator for a given consumer device */
112 static struct regulator *get_device_regulator(struct device *dev)
113 {
114 struct regulator *regulator = NULL;
115 struct regulator_dev *rdev;
116
117 mutex_lock(&regulator_list_mutex);
118 list_for_each_entry(rdev, &regulator_list, list) {
119 mutex_lock(&rdev->mutex);
120 list_for_each_entry(regulator, &rdev->consumer_list, list) {
121 if (regulator->dev == dev) {
122 mutex_unlock(&rdev->mutex);
123 mutex_unlock(&regulator_list_mutex);
124 return regulator;
125 }
126 }
127 mutex_unlock(&rdev->mutex);
128 }
129 mutex_unlock(&regulator_list_mutex);
130 return NULL;
131 }
132
133 /**
134 * of_get_regulator - get a regulator device node based on supply name
135 * @dev: Device pointer for the consumer (of regulator) device
136 * @supply: regulator supply name
137 *
138 * Extract the regulator device node corresponding to the supply name.
139 * retruns the device node corresponding to the regulator if found, else
140 * returns NULL.
141 */
142 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
143 {
144 struct device_node *regnode = NULL;
145 char prop_name[32]; /* 32 is max size of property name */
146
147 dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
148
149 snprintf(prop_name, 32, "%s-supply", supply);
150 regnode = of_parse_phandle(dev->of_node, prop_name, 0);
151
152 if (!regnode) {
153 dev_dbg(dev, "Looking up %s property in node %s failed",
154 prop_name, dev->of_node->full_name);
155 return NULL;
156 }
157 return regnode;
158 }
159
160 static int _regulator_can_change_status(struct regulator_dev *rdev)
161 {
162 if (!rdev->constraints)
163 return 0;
164
165 if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
166 return 1;
167 else
168 return 0;
169 }
170
171 /* Platform voltage constraint check */
172 static int regulator_check_voltage(struct regulator_dev *rdev,
173 int *min_uV, int *max_uV)
174 {
175 BUG_ON(*min_uV > *max_uV);
176
177 if (!rdev->constraints) {
178 rdev_err(rdev, "no constraints\n");
179 return -ENODEV;
180 }
181 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
182 rdev_err(rdev, "operation not allowed\n");
183 return -EPERM;
184 }
185
186 if (*max_uV > rdev->constraints->max_uV)
187 *max_uV = rdev->constraints->max_uV;
188 if (*min_uV < rdev->constraints->min_uV)
189 *min_uV = rdev->constraints->min_uV;
190
191 if (*min_uV > *max_uV) {
192 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
193 *min_uV, *max_uV);
194 return -EINVAL;
195 }
196
197 return 0;
198 }
199
200 /* Make sure we select a voltage that suits the needs of all
201 * regulator consumers
202 */
203 static int regulator_check_consumers(struct regulator_dev *rdev,
204 int *min_uV, int *max_uV)
205 {
206 struct regulator *regulator;
207
208 list_for_each_entry(regulator, &rdev->consumer_list, list) {
209 /*
210 * Assume consumers that didn't say anything are OK
211 * with anything in the constraint range.
212 */
213 if (!regulator->min_uV && !regulator->max_uV)
214 continue;
215
216 if (*max_uV > regulator->max_uV)
217 *max_uV = regulator->max_uV;
218 if (*min_uV < regulator->min_uV)
219 *min_uV = regulator->min_uV;
220 }
221
222 if (*min_uV > *max_uV)
223 return -EINVAL;
224
225 return 0;
226 }
227
228 /* current constraint check */
229 static int regulator_check_current_limit(struct regulator_dev *rdev,
230 int *min_uA, int *max_uA)
231 {
232 BUG_ON(*min_uA > *max_uA);
233
234 if (!rdev->constraints) {
235 rdev_err(rdev, "no constraints\n");
236 return -ENODEV;
237 }
238 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
239 rdev_err(rdev, "operation not allowed\n");
240 return -EPERM;
241 }
242
243 if (*max_uA > rdev->constraints->max_uA)
244 *max_uA = rdev->constraints->max_uA;
245 if (*min_uA < rdev->constraints->min_uA)
246 *min_uA = rdev->constraints->min_uA;
247
248 if (*min_uA > *max_uA) {
249 rdev_err(rdev, "unsupportable current range: %d-%duA\n",
250 *min_uA, *max_uA);
251 return -EINVAL;
252 }
253
254 return 0;
255 }
256
257 /* operating mode constraint check */
258 static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
259 {
260 switch (*mode) {
261 case REGULATOR_MODE_FAST:
262 case REGULATOR_MODE_NORMAL:
263 case REGULATOR_MODE_IDLE:
264 case REGULATOR_MODE_STANDBY:
265 break;
266 default:
267 rdev_err(rdev, "invalid mode %x specified\n", *mode);
268 return -EINVAL;
269 }
270
271 if (!rdev->constraints) {
272 rdev_err(rdev, "no constraints\n");
273 return -ENODEV;
274 }
275 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
276 rdev_err(rdev, "operation not allowed\n");
277 return -EPERM;
278 }
279
280 /* The modes are bitmasks, the most power hungry modes having
281 * the lowest values. If the requested mode isn't supported
282 * try higher modes. */
283 while (*mode) {
284 if (rdev->constraints->valid_modes_mask & *mode)
285 return 0;
286 *mode /= 2;
287 }
288
289 return -EINVAL;
290 }
291
292 /* dynamic regulator mode switching constraint check */
293 static int regulator_check_drms(struct regulator_dev *rdev)
294 {
295 if (!rdev->constraints) {
296 rdev_err(rdev, "no constraints\n");
297 return -ENODEV;
298 }
299 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
300 rdev_err(rdev, "operation not allowed\n");
301 return -EPERM;
302 }
303 return 0;
304 }
305
306 static ssize_t device_requested_uA_show(struct device *dev,
307 struct device_attribute *attr, char *buf)
308 {
309 struct regulator *regulator;
310
311 regulator = get_device_regulator(dev);
312 if (regulator == NULL)
313 return 0;
314
315 return sprintf(buf, "%d\n", regulator->uA_load);
316 }
317
318 static ssize_t regulator_uV_show(struct device *dev,
319 struct device_attribute *attr, char *buf)
320 {
321 struct regulator_dev *rdev = dev_get_drvdata(dev);
322 ssize_t ret;
323
324 mutex_lock(&rdev->mutex);
325 ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
326 mutex_unlock(&rdev->mutex);
327
328 return ret;
329 }
330 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
331
332 static ssize_t regulator_uA_show(struct device *dev,
333 struct device_attribute *attr, char *buf)
334 {
335 struct regulator_dev *rdev = dev_get_drvdata(dev);
336
337 return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
338 }
339 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
340
341 static ssize_t regulator_name_show(struct device *dev,
342 struct device_attribute *attr, char *buf)
343 {
344 struct regulator_dev *rdev = dev_get_drvdata(dev);
345
346 return sprintf(buf, "%s\n", rdev_get_name(rdev));
347 }
348
349 static ssize_t regulator_print_opmode(char *buf, int mode)
350 {
351 switch (mode) {
352 case REGULATOR_MODE_FAST:
353 return sprintf(buf, "fast\n");
354 case REGULATOR_MODE_NORMAL:
355 return sprintf(buf, "normal\n");
356 case REGULATOR_MODE_IDLE:
357 return sprintf(buf, "idle\n");
358 case REGULATOR_MODE_STANDBY:
359 return sprintf(buf, "standby\n");
360 }
361 return sprintf(buf, "unknown\n");
362 }
363
364 static ssize_t regulator_opmode_show(struct device *dev,
365 struct device_attribute *attr, char *buf)
366 {
367 struct regulator_dev *rdev = dev_get_drvdata(dev);
368
369 return regulator_print_opmode(buf, _regulator_get_mode(rdev));
370 }
371 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
372
373 static ssize_t regulator_print_state(char *buf, int state)
374 {
375 if (state > 0)
376 return sprintf(buf, "enabled\n");
377 else if (state == 0)
378 return sprintf(buf, "disabled\n");
379 else
380 return sprintf(buf, "unknown\n");
381 }
382
383 static ssize_t regulator_state_show(struct device *dev,
384 struct device_attribute *attr, char *buf)
385 {
386 struct regulator_dev *rdev = dev_get_drvdata(dev);
387 ssize_t ret;
388
389 mutex_lock(&rdev->mutex);
390 ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
391 mutex_unlock(&rdev->mutex);
392
393 return ret;
394 }
395 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
396
397 static ssize_t regulator_status_show(struct device *dev,
398 struct device_attribute *attr, char *buf)
399 {
400 struct regulator_dev *rdev = dev_get_drvdata(dev);
401 int status;
402 char *label;
403
404 status = rdev->desc->ops->get_status(rdev);
405 if (status < 0)
406 return status;
407
408 switch (status) {
409 case REGULATOR_STATUS_OFF:
410 label = "off";
411 break;
412 case REGULATOR_STATUS_ON:
413 label = "on";
414 break;
415 case REGULATOR_STATUS_ERROR:
416 label = "error";
417 break;
418 case REGULATOR_STATUS_FAST:
419 label = "fast";
420 break;
421 case REGULATOR_STATUS_NORMAL:
422 label = "normal";
423 break;
424 case REGULATOR_STATUS_IDLE:
425 label = "idle";
426 break;
427 case REGULATOR_STATUS_STANDBY:
428 label = "standby";
429 break;
430 default:
431 return -ERANGE;
432 }
433
434 return sprintf(buf, "%s\n", label);
435 }
436 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
437
438 static ssize_t regulator_min_uA_show(struct device *dev,
439 struct device_attribute *attr, char *buf)
440 {
441 struct regulator_dev *rdev = dev_get_drvdata(dev);
442
443 if (!rdev->constraints)
444 return sprintf(buf, "constraint not defined\n");
445
446 return sprintf(buf, "%d\n", rdev->constraints->min_uA);
447 }
448 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
449
450 static ssize_t regulator_max_uA_show(struct device *dev,
451 struct device_attribute *attr, char *buf)
452 {
453 struct regulator_dev *rdev = dev_get_drvdata(dev);
454
455 if (!rdev->constraints)
456 return sprintf(buf, "constraint not defined\n");
457
458 return sprintf(buf, "%d\n", rdev->constraints->max_uA);
459 }
460 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
461
462 static ssize_t regulator_min_uV_show(struct device *dev,
463 struct device_attribute *attr, char *buf)
464 {
465 struct regulator_dev *rdev = dev_get_drvdata(dev);
466
467 if (!rdev->constraints)
468 return sprintf(buf, "constraint not defined\n");
469
470 return sprintf(buf, "%d\n", rdev->constraints->min_uV);
471 }
472 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
473
474 static ssize_t regulator_max_uV_show(struct device *dev,
475 struct device_attribute *attr, char *buf)
476 {
477 struct regulator_dev *rdev = dev_get_drvdata(dev);
478
479 if (!rdev->constraints)
480 return sprintf(buf, "constraint not defined\n");
481
482 return sprintf(buf, "%d\n", rdev->constraints->max_uV);
483 }
484 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
485
486 static ssize_t regulator_total_uA_show(struct device *dev,
487 struct device_attribute *attr, char *buf)
488 {
489 struct regulator_dev *rdev = dev_get_drvdata(dev);
490 struct regulator *regulator;
491 int uA = 0;
492
493 mutex_lock(&rdev->mutex);
494 list_for_each_entry(regulator, &rdev->consumer_list, list)
495 uA += regulator->uA_load;
496 mutex_unlock(&rdev->mutex);
497 return sprintf(buf, "%d\n", uA);
498 }
499 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
500
501 static ssize_t regulator_num_users_show(struct device *dev,
502 struct device_attribute *attr, char *buf)
503 {
504 struct regulator_dev *rdev = dev_get_drvdata(dev);
505 return sprintf(buf, "%d\n", rdev->use_count);
506 }
507
508 static ssize_t regulator_type_show(struct device *dev,
509 struct device_attribute *attr, char *buf)
510 {
511 struct regulator_dev *rdev = dev_get_drvdata(dev);
512
513 switch (rdev->desc->type) {
514 case REGULATOR_VOLTAGE:
515 return sprintf(buf, "voltage\n");
516 case REGULATOR_CURRENT:
517 return sprintf(buf, "current\n");
518 }
519 return sprintf(buf, "unknown\n");
520 }
521
522 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
523 struct device_attribute *attr, char *buf)
524 {
525 struct regulator_dev *rdev = dev_get_drvdata(dev);
526
527 return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
528 }
529 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
530 regulator_suspend_mem_uV_show, NULL);
531
532 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
533 struct device_attribute *attr, char *buf)
534 {
535 struct regulator_dev *rdev = dev_get_drvdata(dev);
536
537 return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
538 }
539 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
540 regulator_suspend_disk_uV_show, NULL);
541
542 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
543 struct device_attribute *attr, char *buf)
544 {
545 struct regulator_dev *rdev = dev_get_drvdata(dev);
546
547 return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
548 }
549 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
550 regulator_suspend_standby_uV_show, NULL);
551
552 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
553 struct device_attribute *attr, char *buf)
554 {
555 struct regulator_dev *rdev = dev_get_drvdata(dev);
556
557 return regulator_print_opmode(buf,
558 rdev->constraints->state_mem.mode);
559 }
560 static DEVICE_ATTR(suspend_mem_mode, 0444,
561 regulator_suspend_mem_mode_show, NULL);
562
563 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
564 struct device_attribute *attr, char *buf)
565 {
566 struct regulator_dev *rdev = dev_get_drvdata(dev);
567
568 return regulator_print_opmode(buf,
569 rdev->constraints->state_disk.mode);
570 }
571 static DEVICE_ATTR(suspend_disk_mode, 0444,
572 regulator_suspend_disk_mode_show, NULL);
573
574 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
575 struct device_attribute *attr, char *buf)
576 {
577 struct regulator_dev *rdev = dev_get_drvdata(dev);
578
579 return regulator_print_opmode(buf,
580 rdev->constraints->state_standby.mode);
581 }
582 static DEVICE_ATTR(suspend_standby_mode, 0444,
583 regulator_suspend_standby_mode_show, NULL);
584
585 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
586 struct device_attribute *attr, char *buf)
587 {
588 struct regulator_dev *rdev = dev_get_drvdata(dev);
589
590 return regulator_print_state(buf,
591 rdev->constraints->state_mem.enabled);
592 }
593 static DEVICE_ATTR(suspend_mem_state, 0444,
594 regulator_suspend_mem_state_show, NULL);
595
596 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
597 struct device_attribute *attr, char *buf)
598 {
599 struct regulator_dev *rdev = dev_get_drvdata(dev);
600
601 return regulator_print_state(buf,
602 rdev->constraints->state_disk.enabled);
603 }
604 static DEVICE_ATTR(suspend_disk_state, 0444,
605 regulator_suspend_disk_state_show, NULL);
606
607 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
608 struct device_attribute *attr, char *buf)
609 {
610 struct regulator_dev *rdev = dev_get_drvdata(dev);
611
612 return regulator_print_state(buf,
613 rdev->constraints->state_standby.enabled);
614 }
615 static DEVICE_ATTR(suspend_standby_state, 0444,
616 regulator_suspend_standby_state_show, NULL);
617
618
619 /*
620 * These are the only attributes are present for all regulators.
621 * Other attributes are a function of regulator functionality.
622 */
623 static struct device_attribute regulator_dev_attrs[] = {
624 __ATTR(name, 0444, regulator_name_show, NULL),
625 __ATTR(num_users, 0444, regulator_num_users_show, NULL),
626 __ATTR(type, 0444, regulator_type_show, NULL),
627 __ATTR_NULL,
628 };
629
630 static void regulator_dev_release(struct device *dev)
631 {
632 struct regulator_dev *rdev = dev_get_drvdata(dev);
633 kfree(rdev);
634 }
635
636 static struct class regulator_class = {
637 .name = "regulator",
638 .dev_release = regulator_dev_release,
639 .dev_attrs = regulator_dev_attrs,
640 };
641
642 /* Calculate the new optimum regulator operating mode based on the new total
643 * consumer load. All locks held by caller */
644 static void drms_uA_update(struct regulator_dev *rdev)
645 {
646 struct regulator *sibling;
647 int current_uA = 0, output_uV, input_uV, err;
648 unsigned int mode;
649
650 err = regulator_check_drms(rdev);
651 if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
652 (!rdev->desc->ops->get_voltage &&
653 !rdev->desc->ops->get_voltage_sel) ||
654 !rdev->desc->ops->set_mode)
655 return;
656
657 /* get output voltage */
658 output_uV = _regulator_get_voltage(rdev);
659 if (output_uV <= 0)
660 return;
661
662 /* get input voltage */
663 input_uV = 0;
664 if (rdev->supply)
665 input_uV = regulator_get_voltage(rdev->supply);
666 if (input_uV <= 0)
667 input_uV = rdev->constraints->input_uV;
668 if (input_uV <= 0)
669 return;
670
671 /* calc total requested load */
672 list_for_each_entry(sibling, &rdev->consumer_list, list)
673 current_uA += sibling->uA_load;
674
675 /* now get the optimum mode for our new total regulator load */
676 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
677 output_uV, current_uA);
678
679 /* check the new mode is allowed */
680 err = regulator_mode_constrain(rdev, &mode);
681 if (err == 0)
682 rdev->desc->ops->set_mode(rdev, mode);
683 }
684
685 static int suspend_set_state(struct regulator_dev *rdev,
686 struct regulator_state *rstate)
687 {
688 int ret = 0;
689
690 /* If we have no suspend mode configration don't set anything;
691 * only warn if the driver implements set_suspend_voltage or
692 * set_suspend_mode callback.
693 */
694 if (!rstate->enabled && !rstate->disabled) {
695 if (rdev->desc->ops->set_suspend_voltage ||
696 rdev->desc->ops->set_suspend_mode)
697 rdev_warn(rdev, "No configuration\n");
698 return 0;
699 }
700
701 if (rstate->enabled && rstate->disabled) {
702 rdev_err(rdev, "invalid configuration\n");
703 return -EINVAL;
704 }
705
706 if (rstate->enabled && rdev->desc->ops->set_suspend_enable)
707 ret = rdev->desc->ops->set_suspend_enable(rdev);
708 else if (rstate->disabled && rdev->desc->ops->set_suspend_disable)
709 ret = rdev->desc->ops->set_suspend_disable(rdev);
710 else /* OK if set_suspend_enable or set_suspend_disable is NULL */
711 ret = 0;
712
713 if (ret < 0) {
714 rdev_err(rdev, "failed to enabled/disable\n");
715 return ret;
716 }
717
718 if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
719 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
720 if (ret < 0) {
721 rdev_err(rdev, "failed to set voltage\n");
722 return ret;
723 }
724 }
725
726 if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
727 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
728 if (ret < 0) {
729 rdev_err(rdev, "failed to set mode\n");
730 return ret;
731 }
732 }
733 return ret;
734 }
735
736 /* locks held by caller */
737 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
738 {
739 if (!rdev->constraints)
740 return -EINVAL;
741
742 switch (state) {
743 case PM_SUSPEND_STANDBY:
744 return suspend_set_state(rdev,
745 &rdev->constraints->state_standby);
746 case PM_SUSPEND_MEM:
747 return suspend_set_state(rdev,
748 &rdev->constraints->state_mem);
749 case PM_SUSPEND_MAX:
750 return suspend_set_state(rdev,
751 &rdev->constraints->state_disk);
752 default:
753 return -EINVAL;
754 }
755 }
756
757 static void print_constraints(struct regulator_dev *rdev)
758 {
759 struct regulation_constraints *constraints = rdev->constraints;
760 char buf[80] = "";
761 int count = 0;
762 int ret;
763
764 if (constraints->min_uV && constraints->max_uV) {
765 if (constraints->min_uV == constraints->max_uV)
766 count += sprintf(buf + count, "%d mV ",
767 constraints->min_uV / 1000);
768 else
769 count += sprintf(buf + count, "%d <--> %d mV ",
770 constraints->min_uV / 1000,
771 constraints->max_uV / 1000);
772 }
773
774 if (!constraints->min_uV ||
775 constraints->min_uV != constraints->max_uV) {
776 ret = _regulator_get_voltage(rdev);
777 if (ret > 0)
778 count += sprintf(buf + count, "at %d mV ", ret / 1000);
779 }
780
781 if (constraints->uV_offset)
782 count += sprintf(buf, "%dmV offset ",
783 constraints->uV_offset / 1000);
784
785 if (constraints->min_uA && constraints->max_uA) {
786 if (constraints->min_uA == constraints->max_uA)
787 count += sprintf(buf + count, "%d mA ",
788 constraints->min_uA / 1000);
789 else
790 count += sprintf(buf + count, "%d <--> %d mA ",
791 constraints->min_uA / 1000,
792 constraints->max_uA / 1000);
793 }
794
795 if (!constraints->min_uA ||
796 constraints->min_uA != constraints->max_uA) {
797 ret = _regulator_get_current_limit(rdev);
798 if (ret > 0)
799 count += sprintf(buf + count, "at %d mA ", ret / 1000);
800 }
801
802 if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
803 count += sprintf(buf + count, "fast ");
804 if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
805 count += sprintf(buf + count, "normal ");
806 if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
807 count += sprintf(buf + count, "idle ");
808 if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
809 count += sprintf(buf + count, "standby");
810
811 rdev_info(rdev, "%s\n", buf);
812
813 if ((constraints->min_uV != constraints->max_uV) &&
814 !(constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE))
815 rdev_warn(rdev,
816 "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
817 }
818
819 static int machine_constraints_voltage(struct regulator_dev *rdev,
820 struct regulation_constraints *constraints)
821 {
822 struct regulator_ops *ops = rdev->desc->ops;
823 int ret;
824
825 /* do we need to apply the constraint voltage */
826 if (rdev->constraints->apply_uV &&
827 rdev->constraints->min_uV == rdev->constraints->max_uV) {
828 ret = _regulator_do_set_voltage(rdev,
829 rdev->constraints->min_uV,
830 rdev->constraints->max_uV);
831 if (ret < 0) {
832 rdev_err(rdev, "failed to apply %duV constraint\n",
833 rdev->constraints->min_uV);
834 return ret;
835 }
836 }
837
838 /* constrain machine-level voltage specs to fit
839 * the actual range supported by this regulator.
840 */
841 if (ops->list_voltage && rdev->desc->n_voltages) {
842 int count = rdev->desc->n_voltages;
843 int i;
844 int min_uV = INT_MAX;
845 int max_uV = INT_MIN;
846 int cmin = constraints->min_uV;
847 int cmax = constraints->max_uV;
848
849 /* it's safe to autoconfigure fixed-voltage supplies
850 and the constraints are used by list_voltage. */
851 if (count == 1 && !cmin) {
852 cmin = 1;
853 cmax = INT_MAX;
854 constraints->min_uV = cmin;
855 constraints->max_uV = cmax;
856 }
857
858 /* voltage constraints are optional */
859 if ((cmin == 0) && (cmax == 0))
860 return 0;
861
862 /* else require explicit machine-level constraints */
863 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
864 rdev_err(rdev, "invalid voltage constraints\n");
865 return -EINVAL;
866 }
867
868 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
869 for (i = 0; i < count; i++) {
870 int value;
871
872 value = ops->list_voltage(rdev, i);
873 if (value <= 0)
874 continue;
875
876 /* maybe adjust [min_uV..max_uV] */
877 if (value >= cmin && value < min_uV)
878 min_uV = value;
879 if (value <= cmax && value > max_uV)
880 max_uV = value;
881 }
882
883 /* final: [min_uV..max_uV] valid iff constraints valid */
884 if (max_uV < min_uV) {
885 rdev_err(rdev, "unsupportable voltage constraints\n");
886 return -EINVAL;
887 }
888
889 /* use regulator's subset of machine constraints */
890 if (constraints->min_uV < min_uV) {
891 rdev_dbg(rdev, "override min_uV, %d -> %d\n",
892 constraints->min_uV, min_uV);
893 constraints->min_uV = min_uV;
894 }
895 if (constraints->max_uV > max_uV) {
896 rdev_dbg(rdev, "override max_uV, %d -> %d\n",
897 constraints->max_uV, max_uV);
898 constraints->max_uV = max_uV;
899 }
900 }
901
902 return 0;
903 }
904
905 /**
906 * set_machine_constraints - sets regulator constraints
907 * @rdev: regulator source
908 * @constraints: constraints to apply
909 *
910 * Allows platform initialisation code to define and constrain
911 * regulator circuits e.g. valid voltage/current ranges, etc. NOTE:
912 * Constraints *must* be set by platform code in order for some
913 * regulator operations to proceed i.e. set_voltage, set_current_limit,
914 * set_mode.
915 */
916 static int set_machine_constraints(struct regulator_dev *rdev,
917 const struct regulation_constraints *constraints)
918 {
919 int ret = 0;
920 struct regulator_ops *ops = rdev->desc->ops;
921
922 if (constraints)
923 rdev->constraints = kmemdup(constraints, sizeof(*constraints),
924 GFP_KERNEL);
925 else
926 rdev->constraints = kzalloc(sizeof(*constraints),
927 GFP_KERNEL);
928 if (!rdev->constraints)
929 return -ENOMEM;
930
931 ret = machine_constraints_voltage(rdev, rdev->constraints);
932 if (ret != 0)
933 goto out;
934
935 /* do we need to setup our suspend state */
936 if (rdev->constraints->initial_state) {
937 ret = suspend_prepare(rdev, rdev->constraints->initial_state);
938 if (ret < 0) {
939 rdev_err(rdev, "failed to set suspend state\n");
940 goto out;
941 }
942 }
943
944 if (rdev->constraints->initial_mode) {
945 if (!ops->set_mode) {
946 rdev_err(rdev, "no set_mode operation\n");
947 ret = -EINVAL;
948 goto out;
949 }
950
951 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
952 if (ret < 0) {
953 rdev_err(rdev, "failed to set initial mode: %d\n", ret);
954 goto out;
955 }
956 }
957
958 /* If the constraints say the regulator should be on at this point
959 * and we have control then make sure it is enabled.
960 */
961 if ((rdev->constraints->always_on || rdev->constraints->boot_on) &&
962 ops->enable) {
963 ret = ops->enable(rdev);
964 if (ret < 0) {
965 rdev_err(rdev, "failed to enable\n");
966 goto out;
967 }
968 }
969
970 print_constraints(rdev);
971 return 0;
972 out:
973 kfree(rdev->constraints);
974 rdev->constraints = NULL;
975 return ret;
976 }
977
978 /**
979 * set_supply - set regulator supply regulator
980 * @rdev: regulator name
981 * @supply_rdev: supply regulator name
982 *
983 * Called by platform initialisation code to set the supply regulator for this
984 * regulator. This ensures that a regulators supply will also be enabled by the
985 * core if it's child is enabled.
986 */
987 static int set_supply(struct regulator_dev *rdev,
988 struct regulator_dev *supply_rdev)
989 {
990 int err;
991
992 rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
993
994 rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
995 if (rdev->supply == NULL) {
996 err = -ENOMEM;
997 return err;
998 }
999
1000 return 0;
1001 }
1002
1003 /**
1004 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1005 * @rdev: regulator source
1006 * @consumer_dev_name: dev_name() string for device supply applies to
1007 * @supply: symbolic name for supply
1008 *
1009 * Allows platform initialisation code to map physical regulator
1010 * sources to symbolic names for supplies for use by devices. Devices
1011 * should use these symbolic names to request regulators, avoiding the
1012 * need to provide board-specific regulator names as platform data.
1013 */
1014 static int set_consumer_device_supply(struct regulator_dev *rdev,
1015 const char *consumer_dev_name,
1016 const char *supply)
1017 {
1018 struct regulator_map *node;
1019 int has_dev;
1020
1021 if (supply == NULL)
1022 return -EINVAL;
1023
1024 if (consumer_dev_name != NULL)
1025 has_dev = 1;
1026 else
1027 has_dev = 0;
1028
1029 list_for_each_entry(node, &regulator_map_list, list) {
1030 if (node->dev_name && consumer_dev_name) {
1031 if (strcmp(node->dev_name, consumer_dev_name) != 0)
1032 continue;
1033 } else if (node->dev_name || consumer_dev_name) {
1034 continue;
1035 }
1036
1037 if (strcmp(node->supply, supply) != 0)
1038 continue;
1039
1040 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1041 consumer_dev_name,
1042 dev_name(&node->regulator->dev),
1043 node->regulator->desc->name,
1044 supply,
1045 dev_name(&rdev->dev), rdev_get_name(rdev));
1046 return -EBUSY;
1047 }
1048
1049 node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1050 if (node == NULL)
1051 return -ENOMEM;
1052
1053 node->regulator = rdev;
1054 node->supply = supply;
1055
1056 if (has_dev) {
1057 node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1058 if (node->dev_name == NULL) {
1059 kfree(node);
1060 return -ENOMEM;
1061 }
1062 }
1063
1064 list_add(&node->list, &regulator_map_list);
1065 return 0;
1066 }
1067
1068 static void unset_regulator_supplies(struct regulator_dev *rdev)
1069 {
1070 struct regulator_map *node, *n;
1071
1072 list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1073 if (rdev == node->regulator) {
1074 list_del(&node->list);
1075 kfree(node->dev_name);
1076 kfree(node);
1077 }
1078 }
1079 }
1080
1081 #define REG_STR_SIZE 64
1082
1083 static struct regulator *create_regulator(struct regulator_dev *rdev,
1084 struct device *dev,
1085 const char *supply_name)
1086 {
1087 struct regulator *regulator;
1088 char buf[REG_STR_SIZE];
1089 int err, size;
1090
1091 regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1092 if (regulator == NULL)
1093 return NULL;
1094
1095 mutex_lock(&rdev->mutex);
1096 regulator->rdev = rdev;
1097 list_add(&regulator->list, &rdev->consumer_list);
1098
1099 if (dev) {
1100 /* create a 'requested_microamps_name' sysfs entry */
1101 size = scnprintf(buf, REG_STR_SIZE,
1102 "microamps_requested_%s-%s",
1103 dev_name(dev), supply_name);
1104 if (size >= REG_STR_SIZE)
1105 goto overflow_err;
1106
1107 regulator->dev = dev;
1108 sysfs_attr_init(&regulator->dev_attr.attr);
1109 regulator->dev_attr.attr.name = kstrdup(buf, GFP_KERNEL);
1110 if (regulator->dev_attr.attr.name == NULL)
1111 goto attr_name_err;
1112
1113 regulator->dev_attr.attr.mode = 0444;
1114 regulator->dev_attr.show = device_requested_uA_show;
1115 err = device_create_file(dev, &regulator->dev_attr);
1116 if (err < 0) {
1117 rdev_warn(rdev, "could not add regulator_dev requested microamps sysfs entry\n");
1118 goto attr_name_err;
1119 }
1120
1121 /* also add a link to the device sysfs entry */
1122 size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1123 dev->kobj.name, supply_name);
1124 if (size >= REG_STR_SIZE)
1125 goto attr_err;
1126
1127 regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1128 if (regulator->supply_name == NULL)
1129 goto attr_err;
1130
1131 err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1132 buf);
1133 if (err) {
1134 rdev_warn(rdev, "could not add device link %s err %d\n",
1135 dev->kobj.name, err);
1136 goto link_name_err;
1137 }
1138 } else {
1139 regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
1140 if (regulator->supply_name == NULL)
1141 goto attr_err;
1142 }
1143
1144 regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1145 rdev->debugfs);
1146 if (!regulator->debugfs) {
1147 rdev_warn(rdev, "Failed to create debugfs directory\n");
1148 } else {
1149 debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1150 &regulator->uA_load);
1151 debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1152 &regulator->min_uV);
1153 debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1154 &regulator->max_uV);
1155 }
1156
1157 /*
1158 * Check now if the regulator is an always on regulator - if
1159 * it is then we don't need to do nearly so much work for
1160 * enable/disable calls.
1161 */
1162 if (!_regulator_can_change_status(rdev) &&
1163 _regulator_is_enabled(rdev))
1164 regulator->always_on = true;
1165
1166 mutex_unlock(&rdev->mutex);
1167 return regulator;
1168 link_name_err:
1169 kfree(regulator->supply_name);
1170 attr_err:
1171 device_remove_file(regulator->dev, &regulator->dev_attr);
1172 attr_name_err:
1173 kfree(regulator->dev_attr.attr.name);
1174 overflow_err:
1175 list_del(&regulator->list);
1176 kfree(regulator);
1177 mutex_unlock(&rdev->mutex);
1178 return NULL;
1179 }
1180
1181 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1182 {
1183 if (!rdev->desc->ops->enable_time)
1184 return 0;
1185 return rdev->desc->ops->enable_time(rdev);
1186 }
1187
1188 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1189 const char *supply,
1190 int *ret)
1191 {
1192 struct regulator_dev *r;
1193 struct device_node *node;
1194 struct regulator_map *map;
1195 const char *devname = NULL;
1196
1197 /* first do a dt based lookup */
1198 if (dev && dev->of_node) {
1199 node = of_get_regulator(dev, supply);
1200 if (node) {
1201 list_for_each_entry(r, &regulator_list, list)
1202 if (r->dev.parent &&
1203 node == r->dev.of_node)
1204 return r;
1205 } else {
1206 /*
1207 * If we couldn't even get the node then it's
1208 * not just that the device didn't register
1209 * yet, there's no node and we'll never
1210 * succeed.
1211 */
1212 *ret = -ENODEV;
1213 }
1214 }
1215
1216 /* if not found, try doing it non-dt way */
1217 if (dev)
1218 devname = dev_name(dev);
1219
1220 list_for_each_entry(r, &regulator_list, list)
1221 if (strcmp(rdev_get_name(r), supply) == 0)
1222 return r;
1223
1224 list_for_each_entry(map, &regulator_map_list, list) {
1225 /* If the mapping has a device set up it must match */
1226 if (map->dev_name &&
1227 (!devname || strcmp(map->dev_name, devname)))
1228 continue;
1229
1230 if (strcmp(map->supply, supply) == 0)
1231 return map->regulator;
1232 }
1233
1234
1235 return NULL;
1236 }
1237
1238 /* Internal regulator request function */
1239 static struct regulator *_regulator_get(struct device *dev, const char *id,
1240 int exclusive)
1241 {
1242 struct regulator_dev *rdev;
1243 struct regulator *regulator = ERR_PTR(-EPROBE_DEFER);
1244 const char *devname = NULL;
1245 int ret;
1246
1247 if (id == NULL) {
1248 pr_err("get() with no identifier\n");
1249 return regulator;
1250 }
1251
1252 if (dev)
1253 devname = dev_name(dev);
1254
1255 mutex_lock(&regulator_list_mutex);
1256
1257 rdev = regulator_dev_lookup(dev, id, &ret);
1258 if (rdev)
1259 goto found;
1260
1261 if (board_wants_dummy_regulator) {
1262 rdev = dummy_regulator_rdev;
1263 goto found;
1264 }
1265
1266 #ifdef CONFIG_REGULATOR_DUMMY
1267 if (!devname)
1268 devname = "deviceless";
1269
1270 /* If the board didn't flag that it was fully constrained then
1271 * substitute in a dummy regulator so consumers can continue.
1272 */
1273 if (!has_full_constraints) {
1274 pr_warn("%s supply %s not found, using dummy regulator\n",
1275 devname, id);
1276 rdev = dummy_regulator_rdev;
1277 goto found;
1278 }
1279 #endif
1280
1281 mutex_unlock(&regulator_list_mutex);
1282 return regulator;
1283
1284 found:
1285 if (rdev->exclusive) {
1286 regulator = ERR_PTR(-EPERM);
1287 goto out;
1288 }
1289
1290 if (exclusive && rdev->open_count) {
1291 regulator = ERR_PTR(-EBUSY);
1292 goto out;
1293 }
1294
1295 if (!try_module_get(rdev->owner))
1296 goto out;
1297
1298 regulator = create_regulator(rdev, dev, id);
1299 if (regulator == NULL) {
1300 regulator = ERR_PTR(-ENOMEM);
1301 module_put(rdev->owner);
1302 goto out;
1303 }
1304
1305 rdev->open_count++;
1306 if (exclusive) {
1307 rdev->exclusive = 1;
1308
1309 ret = _regulator_is_enabled(rdev);
1310 if (ret > 0)
1311 rdev->use_count = 1;
1312 else
1313 rdev->use_count = 0;
1314 }
1315
1316 out:
1317 mutex_unlock(&regulator_list_mutex);
1318
1319 return regulator;
1320 }
1321
1322 /**
1323 * regulator_get - lookup and obtain a reference to a regulator.
1324 * @dev: device for regulator "consumer"
1325 * @id: Supply name or regulator ID.
1326 *
1327 * Returns a struct regulator corresponding to the regulator producer,
1328 * or IS_ERR() condition containing errno.
1329 *
1330 * Use of supply names configured via regulator_set_device_supply() is
1331 * strongly encouraged. It is recommended that the supply name used
1332 * should match the name used for the supply and/or the relevant
1333 * device pins in the datasheet.
1334 */
1335 struct regulator *regulator_get(struct device *dev, const char *id)
1336 {
1337 return _regulator_get(dev, id, 0);
1338 }
1339 EXPORT_SYMBOL_GPL(regulator_get);
1340
1341 static void devm_regulator_release(struct device *dev, void *res)
1342 {
1343 regulator_put(*(struct regulator **)res);
1344 }
1345
1346 /**
1347 * devm_regulator_get - Resource managed regulator_get()
1348 * @dev: device for regulator "consumer"
1349 * @id: Supply name or regulator ID.
1350 *
1351 * Managed regulator_get(). Regulators returned from this function are
1352 * automatically regulator_put() on driver detach. See regulator_get() for more
1353 * information.
1354 */
1355 struct regulator *devm_regulator_get(struct device *dev, const char *id)
1356 {
1357 struct regulator **ptr, *regulator;
1358
1359 ptr = devres_alloc(devm_regulator_release, sizeof(*ptr), GFP_KERNEL);
1360 if (!ptr)
1361 return ERR_PTR(-ENOMEM);
1362
1363 regulator = regulator_get(dev, id);
1364 if (!IS_ERR(regulator)) {
1365 *ptr = regulator;
1366 devres_add(dev, ptr);
1367 } else {
1368 devres_free(ptr);
1369 }
1370
1371 return regulator;
1372 }
1373 EXPORT_SYMBOL_GPL(devm_regulator_get);
1374
1375 /**
1376 * regulator_get_exclusive - obtain exclusive access to a regulator.
1377 * @dev: device for regulator "consumer"
1378 * @id: Supply name or regulator ID.
1379 *
1380 * Returns a struct regulator corresponding to the regulator producer,
1381 * or IS_ERR() condition containing errno. Other consumers will be
1382 * unable to obtain this reference is held and the use count for the
1383 * regulator will be initialised to reflect the current state of the
1384 * regulator.
1385 *
1386 * This is intended for use by consumers which cannot tolerate shared
1387 * use of the regulator such as those which need to force the
1388 * regulator off for correct operation of the hardware they are
1389 * controlling.
1390 *
1391 * Use of supply names configured via regulator_set_device_supply() is
1392 * strongly encouraged. It is recommended that the supply name used
1393 * should match the name used for the supply and/or the relevant
1394 * device pins in the datasheet.
1395 */
1396 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1397 {
1398 return _regulator_get(dev, id, 1);
1399 }
1400 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1401
1402 /**
1403 * regulator_put - "free" the regulator source
1404 * @regulator: regulator source
1405 *
1406 * Note: drivers must ensure that all regulator_enable calls made on this
1407 * regulator source are balanced by regulator_disable calls prior to calling
1408 * this function.
1409 */
1410 void regulator_put(struct regulator *regulator)
1411 {
1412 struct regulator_dev *rdev;
1413
1414 if (regulator == NULL || IS_ERR(regulator))
1415 return;
1416
1417 mutex_lock(&regulator_list_mutex);
1418 rdev = regulator->rdev;
1419
1420 debugfs_remove_recursive(regulator->debugfs);
1421
1422 /* remove any sysfs entries */
1423 if (regulator->dev) {
1424 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1425 device_remove_file(regulator->dev, &regulator->dev_attr);
1426 kfree(regulator->dev_attr.attr.name);
1427 }
1428 kfree(regulator->supply_name);
1429 list_del(&regulator->list);
1430 kfree(regulator);
1431
1432 rdev->open_count--;
1433 rdev->exclusive = 0;
1434
1435 module_put(rdev->owner);
1436 mutex_unlock(&regulator_list_mutex);
1437 }
1438 EXPORT_SYMBOL_GPL(regulator_put);
1439
1440 static int devm_regulator_match(struct device *dev, void *res, void *data)
1441 {
1442 struct regulator **r = res;
1443 if (!r || !*r) {
1444 WARN_ON(!r || !*r);
1445 return 0;
1446 }
1447 return *r == data;
1448 }
1449
1450 /**
1451 * devm_regulator_put - Resource managed regulator_put()
1452 * @regulator: regulator to free
1453 *
1454 * Deallocate a regulator allocated with devm_regulator_get(). Normally
1455 * this function will not need to be called and the resource management
1456 * code will ensure that the resource is freed.
1457 */
1458 void devm_regulator_put(struct regulator *regulator)
1459 {
1460 int rc;
1461
1462 rc = devres_destroy(regulator->dev, devm_regulator_release,
1463 devm_regulator_match, regulator);
1464 if (rc == 0)
1465 regulator_put(regulator);
1466 else
1467 WARN_ON(rc);
1468 }
1469 EXPORT_SYMBOL_GPL(devm_regulator_put);
1470
1471 /* locks held by regulator_enable() */
1472 static int _regulator_enable(struct regulator_dev *rdev)
1473 {
1474 int ret, delay;
1475
1476 /* check voltage and requested load before enabling */
1477 if (rdev->constraints &&
1478 (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1479 drms_uA_update(rdev);
1480
1481 if (rdev->use_count == 0) {
1482 /* The regulator may on if it's not switchable or left on */
1483 ret = _regulator_is_enabled(rdev);
1484 if (ret == -EINVAL || ret == 0) {
1485 if (!_regulator_can_change_status(rdev))
1486 return -EPERM;
1487
1488 if (!rdev->desc->ops->enable)
1489 return -EINVAL;
1490
1491 /* Query before enabling in case configuration
1492 * dependent. */
1493 ret = _regulator_get_enable_time(rdev);
1494 if (ret >= 0) {
1495 delay = ret;
1496 } else {
1497 rdev_warn(rdev, "enable_time() failed: %d\n",
1498 ret);
1499 delay = 0;
1500 }
1501
1502 trace_regulator_enable(rdev_get_name(rdev));
1503
1504 /* Allow the regulator to ramp; it would be useful
1505 * to extend this for bulk operations so that the
1506 * regulators can ramp together. */
1507 ret = rdev->desc->ops->enable(rdev);
1508 if (ret < 0)
1509 return ret;
1510
1511 trace_regulator_enable_delay(rdev_get_name(rdev));
1512
1513 if (delay >= 1000) {
1514 mdelay(delay / 1000);
1515 udelay(delay % 1000);
1516 } else if (delay) {
1517 udelay(delay);
1518 }
1519
1520 trace_regulator_enable_complete(rdev_get_name(rdev));
1521
1522 } else if (ret < 0) {
1523 rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1524 return ret;
1525 }
1526 /* Fallthrough on positive return values - already enabled */
1527 }
1528
1529 rdev->use_count++;
1530
1531 return 0;
1532 }
1533
1534 /**
1535 * regulator_enable - enable regulator output
1536 * @regulator: regulator source
1537 *
1538 * Request that the regulator be enabled with the regulator output at
1539 * the predefined voltage or current value. Calls to regulator_enable()
1540 * must be balanced with calls to regulator_disable().
1541 *
1542 * NOTE: the output value can be set by other drivers, boot loader or may be
1543 * hardwired in the regulator.
1544 */
1545 int regulator_enable(struct regulator *regulator)
1546 {
1547 struct regulator_dev *rdev = regulator->rdev;
1548 int ret = 0;
1549
1550 if (regulator->always_on)
1551 return 0;
1552
1553 if (rdev->supply) {
1554 ret = regulator_enable(rdev->supply);
1555 if (ret != 0)
1556 return ret;
1557 }
1558
1559 mutex_lock(&rdev->mutex);
1560 ret = _regulator_enable(rdev);
1561 mutex_unlock(&rdev->mutex);
1562
1563 if (ret != 0 && rdev->supply)
1564 regulator_disable(rdev->supply);
1565
1566 return ret;
1567 }
1568 EXPORT_SYMBOL_GPL(regulator_enable);
1569
1570 /* locks held by regulator_disable() */
1571 static int _regulator_disable(struct regulator_dev *rdev)
1572 {
1573 int ret = 0;
1574
1575 if (WARN(rdev->use_count <= 0,
1576 "unbalanced disables for %s\n", rdev_get_name(rdev)))
1577 return -EIO;
1578
1579 /* are we the last user and permitted to disable ? */
1580 if (rdev->use_count == 1 &&
1581 (rdev->constraints && !rdev->constraints->always_on)) {
1582
1583 /* we are last user */
1584 if (_regulator_can_change_status(rdev) &&
1585 rdev->desc->ops->disable) {
1586 trace_regulator_disable(rdev_get_name(rdev));
1587
1588 ret = rdev->desc->ops->disable(rdev);
1589 if (ret < 0) {
1590 rdev_err(rdev, "failed to disable\n");
1591 return ret;
1592 }
1593
1594 trace_regulator_disable_complete(rdev_get_name(rdev));
1595
1596 _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
1597 NULL);
1598 }
1599
1600 rdev->use_count = 0;
1601 } else if (rdev->use_count > 1) {
1602
1603 if (rdev->constraints &&
1604 (rdev->constraints->valid_ops_mask &
1605 REGULATOR_CHANGE_DRMS))
1606 drms_uA_update(rdev);
1607
1608 rdev->use_count--;
1609 }
1610
1611 return ret;
1612 }
1613
1614 /**
1615 * regulator_disable - disable regulator output
1616 * @regulator: regulator source
1617 *
1618 * Disable the regulator output voltage or current. Calls to
1619 * regulator_enable() must be balanced with calls to
1620 * regulator_disable().
1621 *
1622 * NOTE: this will only disable the regulator output if no other consumer
1623 * devices have it enabled, the regulator device supports disabling and
1624 * machine constraints permit this operation.
1625 */
1626 int regulator_disable(struct regulator *regulator)
1627 {
1628 struct regulator_dev *rdev = regulator->rdev;
1629 int ret = 0;
1630
1631 if (regulator->always_on)
1632 return 0;
1633
1634 mutex_lock(&rdev->mutex);
1635 ret = _regulator_disable(rdev);
1636 mutex_unlock(&rdev->mutex);
1637
1638 if (ret == 0 && rdev->supply)
1639 regulator_disable(rdev->supply);
1640
1641 return ret;
1642 }
1643 EXPORT_SYMBOL_GPL(regulator_disable);
1644
1645 /* locks held by regulator_force_disable() */
1646 static int _regulator_force_disable(struct regulator_dev *rdev)
1647 {
1648 int ret = 0;
1649
1650 /* force disable */
1651 if (rdev->desc->ops->disable) {
1652 /* ah well, who wants to live forever... */
1653 ret = rdev->desc->ops->disable(rdev);
1654 if (ret < 0) {
1655 rdev_err(rdev, "failed to force disable\n");
1656 return ret;
1657 }
1658 /* notify other consumers that power has been forced off */
1659 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
1660 REGULATOR_EVENT_DISABLE, NULL);
1661 }
1662
1663 return ret;
1664 }
1665
1666 /**
1667 * regulator_force_disable - force disable regulator output
1668 * @regulator: regulator source
1669 *
1670 * Forcibly disable the regulator output voltage or current.
1671 * NOTE: this *will* disable the regulator output even if other consumer
1672 * devices have it enabled. This should be used for situations when device
1673 * damage will likely occur if the regulator is not disabled (e.g. over temp).
1674 */
1675 int regulator_force_disable(struct regulator *regulator)
1676 {
1677 struct regulator_dev *rdev = regulator->rdev;
1678 int ret;
1679
1680 mutex_lock(&rdev->mutex);
1681 regulator->uA_load = 0;
1682 ret = _regulator_force_disable(regulator->rdev);
1683 mutex_unlock(&rdev->mutex);
1684
1685 if (rdev->supply)
1686 while (rdev->open_count--)
1687 regulator_disable(rdev->supply);
1688
1689 return ret;
1690 }
1691 EXPORT_SYMBOL_GPL(regulator_force_disable);
1692
1693 static void regulator_disable_work(struct work_struct *work)
1694 {
1695 struct regulator_dev *rdev = container_of(work, struct regulator_dev,
1696 disable_work.work);
1697 int count, i, ret;
1698
1699 mutex_lock(&rdev->mutex);
1700
1701 BUG_ON(!rdev->deferred_disables);
1702
1703 count = rdev->deferred_disables;
1704 rdev->deferred_disables = 0;
1705
1706 for (i = 0; i < count; i++) {
1707 ret = _regulator_disable(rdev);
1708 if (ret != 0)
1709 rdev_err(rdev, "Deferred disable failed: %d\n", ret);
1710 }
1711
1712 mutex_unlock(&rdev->mutex);
1713
1714 if (rdev->supply) {
1715 for (i = 0; i < count; i++) {
1716 ret = regulator_disable(rdev->supply);
1717 if (ret != 0) {
1718 rdev_err(rdev,
1719 "Supply disable failed: %d\n", ret);
1720 }
1721 }
1722 }
1723 }
1724
1725 /**
1726 * regulator_disable_deferred - disable regulator output with delay
1727 * @regulator: regulator source
1728 * @ms: miliseconds until the regulator is disabled
1729 *
1730 * Execute regulator_disable() on the regulator after a delay. This
1731 * is intended for use with devices that require some time to quiesce.
1732 *
1733 * NOTE: this will only disable the regulator output if no other consumer
1734 * devices have it enabled, the regulator device supports disabling and
1735 * machine constraints permit this operation.
1736 */
1737 int regulator_disable_deferred(struct regulator *regulator, int ms)
1738 {
1739 struct regulator_dev *rdev = regulator->rdev;
1740 int ret;
1741
1742 if (regulator->always_on)
1743 return 0;
1744
1745 mutex_lock(&rdev->mutex);
1746 rdev->deferred_disables++;
1747 mutex_unlock(&rdev->mutex);
1748
1749 ret = schedule_delayed_work(&rdev->disable_work,
1750 msecs_to_jiffies(ms));
1751 if (ret < 0)
1752 return ret;
1753 else
1754 return 0;
1755 }
1756 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
1757
1758 /**
1759 * regulator_is_enabled_regmap - standard is_enabled() for regmap users
1760 *
1761 * @rdev: regulator to operate on
1762 *
1763 * Regulators that use regmap for their register I/O can set the
1764 * enable_reg and enable_mask fields in their descriptor and then use
1765 * this as their is_enabled operation, saving some code.
1766 */
1767 int regulator_is_enabled_regmap(struct regulator_dev *rdev)
1768 {
1769 unsigned int val;
1770 int ret;
1771
1772 ret = regmap_read(rdev->regmap, rdev->desc->enable_reg, &val);
1773 if (ret != 0)
1774 return ret;
1775
1776 return (val & rdev->desc->enable_mask) != 0;
1777 }
1778 EXPORT_SYMBOL_GPL(regulator_is_enabled_regmap);
1779
1780 /**
1781 * regulator_enable_regmap - standard enable() for regmap users
1782 *
1783 * @rdev: regulator to operate on
1784 *
1785 * Regulators that use regmap for their register I/O can set the
1786 * enable_reg and enable_mask fields in their descriptor and then use
1787 * this as their enable() operation, saving some code.
1788 */
1789 int regulator_enable_regmap(struct regulator_dev *rdev)
1790 {
1791 return regmap_update_bits(rdev->regmap, rdev->desc->enable_reg,
1792 rdev->desc->enable_mask,
1793 rdev->desc->enable_mask);
1794 }
1795 EXPORT_SYMBOL_GPL(regulator_enable_regmap);
1796
1797 /**
1798 * regulator_disable_regmap - standard disable() for regmap users
1799 *
1800 * @rdev: regulator to operate on
1801 *
1802 * Regulators that use regmap for their register I/O can set the
1803 * enable_reg and enable_mask fields in their descriptor and then use
1804 * this as their disable() operation, saving some code.
1805 */
1806 int regulator_disable_regmap(struct regulator_dev *rdev)
1807 {
1808 return regmap_update_bits(rdev->regmap, rdev->desc->enable_reg,
1809 rdev->desc->enable_mask, 0);
1810 }
1811 EXPORT_SYMBOL_GPL(regulator_disable_regmap);
1812
1813 static int _regulator_is_enabled(struct regulator_dev *rdev)
1814 {
1815 /* If we don't know then assume that the regulator is always on */
1816 if (!rdev->desc->ops->is_enabled)
1817 return 1;
1818
1819 return rdev->desc->ops->is_enabled(rdev);
1820 }
1821
1822 /**
1823 * regulator_is_enabled - is the regulator output enabled
1824 * @regulator: regulator source
1825 *
1826 * Returns positive if the regulator driver backing the source/client
1827 * has requested that the device be enabled, zero if it hasn't, else a
1828 * negative errno code.
1829 *
1830 * Note that the device backing this regulator handle can have multiple
1831 * users, so it might be enabled even if regulator_enable() was never
1832 * called for this particular source.
1833 */
1834 int regulator_is_enabled(struct regulator *regulator)
1835 {
1836 int ret;
1837
1838 if (regulator->always_on)
1839 return 1;
1840
1841 mutex_lock(&regulator->rdev->mutex);
1842 ret = _regulator_is_enabled(regulator->rdev);
1843 mutex_unlock(&regulator->rdev->mutex);
1844
1845 return ret;
1846 }
1847 EXPORT_SYMBOL_GPL(regulator_is_enabled);
1848
1849 /**
1850 * regulator_count_voltages - count regulator_list_voltage() selectors
1851 * @regulator: regulator source
1852 *
1853 * Returns number of selectors, or negative errno. Selectors are
1854 * numbered starting at zero, and typically correspond to bitfields
1855 * in hardware registers.
1856 */
1857 int regulator_count_voltages(struct regulator *regulator)
1858 {
1859 struct regulator_dev *rdev = regulator->rdev;
1860
1861 return rdev->desc->n_voltages ? : -EINVAL;
1862 }
1863 EXPORT_SYMBOL_GPL(regulator_count_voltages);
1864
1865 /**
1866 * regulator_list_voltage_linear - List voltages with simple calculation
1867 *
1868 * @rdev: Regulator device
1869 * @selector: Selector to convert into a voltage
1870 *
1871 * Regulators with a simple linear mapping between voltages and
1872 * selectors can set min_uV and uV_step in the regulator descriptor
1873 * and then use this function as their list_voltage() operation,
1874 */
1875 int regulator_list_voltage_linear(struct regulator_dev *rdev,
1876 unsigned int selector)
1877 {
1878 if (selector >= rdev->desc->n_voltages)
1879 return -EINVAL;
1880
1881 return rdev->desc->min_uV + (rdev->desc->uV_step * selector);
1882 }
1883 EXPORT_SYMBOL_GPL(regulator_list_voltage_linear);
1884
1885 /**
1886 * regulator_list_voltage - enumerate supported voltages
1887 * @regulator: regulator source
1888 * @selector: identify voltage to list
1889 * Context: can sleep
1890 *
1891 * Returns a voltage that can be passed to @regulator_set_voltage(),
1892 * zero if this selector code can't be used on this system, or a
1893 * negative errno.
1894 */
1895 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
1896 {
1897 struct regulator_dev *rdev = regulator->rdev;
1898 struct regulator_ops *ops = rdev->desc->ops;
1899 int ret;
1900
1901 if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
1902 return -EINVAL;
1903
1904 mutex_lock(&rdev->mutex);
1905 ret = ops->list_voltage(rdev, selector);
1906 mutex_unlock(&rdev->mutex);
1907
1908 if (ret > 0) {
1909 if (ret < rdev->constraints->min_uV)
1910 ret = 0;
1911 else if (ret > rdev->constraints->max_uV)
1912 ret = 0;
1913 }
1914
1915 return ret;
1916 }
1917 EXPORT_SYMBOL_GPL(regulator_list_voltage);
1918
1919 /**
1920 * regulator_is_supported_voltage - check if a voltage range can be supported
1921 *
1922 * @regulator: Regulator to check.
1923 * @min_uV: Minimum required voltage in uV.
1924 * @max_uV: Maximum required voltage in uV.
1925 *
1926 * Returns a boolean or a negative error code.
1927 */
1928 int regulator_is_supported_voltage(struct regulator *regulator,
1929 int min_uV, int max_uV)
1930 {
1931 int i, voltages, ret;
1932
1933 ret = regulator_count_voltages(regulator);
1934 if (ret < 0)
1935 return ret;
1936 voltages = ret;
1937
1938 for (i = 0; i < voltages; i++) {
1939 ret = regulator_list_voltage(regulator, i);
1940
1941 if (ret >= min_uV && ret <= max_uV)
1942 return 1;
1943 }
1944
1945 return 0;
1946 }
1947 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
1948
1949 /**
1950 * regulator_get_voltage_sel_regmap - standard get_voltage_sel for regmap users
1951 *
1952 * @rdev: regulator to operate on
1953 *
1954 * Regulators that use regmap for their register I/O can set the
1955 * vsel_reg and vsel_mask fields in their descriptor and then use this
1956 * as their get_voltage_vsel operation, saving some code.
1957 */
1958 int regulator_get_voltage_sel_regmap(struct regulator_dev *rdev)
1959 {
1960 unsigned int val;
1961 int ret;
1962
1963 ret = regmap_read(rdev->regmap, rdev->desc->vsel_reg, &val);
1964 if (ret != 0)
1965 return ret;
1966
1967 val &= rdev->desc->vsel_mask;
1968 val >>= ffs(rdev->desc->vsel_mask) - 1;
1969
1970 return val;
1971 }
1972 EXPORT_SYMBOL_GPL(regulator_get_voltage_sel_regmap);
1973
1974 /**
1975 * regulator_set_voltage_sel_regmap - standard set_voltage_sel for regmap users
1976 *
1977 * @rdev: regulator to operate on
1978 * @sel: Selector to set
1979 *
1980 * Regulators that use regmap for their register I/O can set the
1981 * vsel_reg and vsel_mask fields in their descriptor and then use this
1982 * as their set_voltage_vsel operation, saving some code.
1983 */
1984 int regulator_set_voltage_sel_regmap(struct regulator_dev *rdev, unsigned sel)
1985 {
1986 sel <<= ffs(rdev->desc->vsel_mask) - 1;
1987
1988 return regmap_update_bits(rdev->regmap, rdev->desc->vsel_reg,
1989 rdev->desc->vsel_mask, sel);
1990 }
1991 EXPORT_SYMBOL_GPL(regulator_set_voltage_sel_regmap);
1992
1993 /**
1994 * regulator_map_voltage_iterate - map_voltage() based on list_voltage()
1995 *
1996 * @rdev: Regulator to operate on
1997 * @min_uV: Lower bound for voltage
1998 * @max_uV: Upper bound for voltage
1999 *
2000 * Drivers implementing set_voltage_sel() and list_voltage() can use
2001 * this as their map_voltage() operation. It will find a suitable
2002 * voltage by calling list_voltage() until it gets something in bounds
2003 * for the requested voltages.
2004 */
2005 int regulator_map_voltage_iterate(struct regulator_dev *rdev,
2006 int min_uV, int max_uV)
2007 {
2008 int best_val = INT_MAX;
2009 int selector = 0;
2010 int i, ret;
2011
2012 /* Find the smallest voltage that falls within the specified
2013 * range.
2014 */
2015 for (i = 0; i < rdev->desc->n_voltages; i++) {
2016 ret = rdev->desc->ops->list_voltage(rdev, i);
2017 if (ret < 0)
2018 continue;
2019
2020 if (ret < best_val && ret >= min_uV && ret <= max_uV) {
2021 best_val = ret;
2022 selector = i;
2023 }
2024 }
2025
2026 if (best_val != INT_MAX)
2027 return selector;
2028 else
2029 return -EINVAL;
2030 }
2031 EXPORT_SYMBOL_GPL(regulator_map_voltage_iterate);
2032
2033 /**
2034 * regulator_map_voltage_linear - map_voltage() for simple linear mappings
2035 *
2036 * @rdev: Regulator to operate on
2037 * @min_uV: Lower bound for voltage
2038 * @max_uV: Upper bound for voltage
2039 *
2040 * Drivers providing min_uV and uV_step in their regulator_desc can
2041 * use this as their map_voltage() operation.
2042 */
2043 int regulator_map_voltage_linear(struct regulator_dev *rdev,
2044 int min_uV, int max_uV)
2045 {
2046 int ret, voltage;
2047
2048 if (!rdev->desc->uV_step) {
2049 BUG_ON(!rdev->desc->uV_step);
2050 return -EINVAL;
2051 }
2052
2053 if (min_uV < rdev->desc->min_uV)
2054 min_uV = rdev->desc->min_uV;
2055
2056 ret = DIV_ROUND_UP(min_uV - rdev->desc->min_uV, rdev->desc->uV_step);
2057 if (ret < 0)
2058 return ret;
2059
2060 /* Map back into a voltage to verify we're still in bounds */
2061 voltage = rdev->desc->ops->list_voltage(rdev, ret);
2062 if (voltage < min_uV || voltage > max_uV)
2063 return -EINVAL;
2064
2065 return ret;
2066 }
2067 EXPORT_SYMBOL_GPL(regulator_map_voltage_linear);
2068
2069 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
2070 int min_uV, int max_uV)
2071 {
2072 int ret;
2073 int delay = 0;
2074 int best_val;
2075 unsigned int selector;
2076 int old_selector = -1;
2077
2078 trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
2079
2080 min_uV += rdev->constraints->uV_offset;
2081 max_uV += rdev->constraints->uV_offset;
2082
2083 /*
2084 * If we can't obtain the old selector there is not enough
2085 * info to call set_voltage_time_sel().
2086 */
2087 if (rdev->desc->ops->set_voltage_time_sel &&
2088 rdev->desc->ops->get_voltage_sel) {
2089 old_selector = rdev->desc->ops->get_voltage_sel(rdev);
2090 if (old_selector < 0)
2091 return old_selector;
2092 }
2093
2094 if (rdev->desc->ops->set_voltage) {
2095 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV,
2096 &selector);
2097 } else if (rdev->desc->ops->set_voltage_sel) {
2098 if (rdev->desc->ops->map_voltage)
2099 ret = rdev->desc->ops->map_voltage(rdev, min_uV,
2100 max_uV);
2101 else
2102 ret = regulator_map_voltage_iterate(rdev, min_uV,
2103 max_uV);
2104
2105 if (ret >= 0) {
2106 selector = ret;
2107 ret = rdev->desc->ops->set_voltage_sel(rdev, ret);
2108 }
2109 } else {
2110 ret = -EINVAL;
2111 }
2112
2113 if (rdev->desc->ops->list_voltage)
2114 best_val = rdev->desc->ops->list_voltage(rdev, selector);
2115 else
2116 best_val = -1;
2117
2118 /* Call set_voltage_time_sel if successfully obtained old_selector */
2119 if (ret == 0 && old_selector >= 0 &&
2120 rdev->desc->ops->set_voltage_time_sel) {
2121
2122 delay = rdev->desc->ops->set_voltage_time_sel(rdev,
2123 old_selector, selector);
2124 if (delay < 0) {
2125 rdev_warn(rdev, "set_voltage_time_sel() failed: %d\n",
2126 delay);
2127 delay = 0;
2128 }
2129 }
2130
2131 /* Insert any necessary delays */
2132 if (delay >= 1000) {
2133 mdelay(delay / 1000);
2134 udelay(delay % 1000);
2135 } else if (delay) {
2136 udelay(delay);
2137 }
2138
2139 if (ret == 0)
2140 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2141 NULL);
2142
2143 trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2144
2145 return ret;
2146 }
2147
2148 /**
2149 * regulator_set_voltage - set regulator output voltage
2150 * @regulator: regulator source
2151 * @min_uV: Minimum required voltage in uV
2152 * @max_uV: Maximum acceptable voltage in uV
2153 *
2154 * Sets a voltage regulator to the desired output voltage. This can be set
2155 * during any regulator state. IOW, regulator can be disabled or enabled.
2156 *
2157 * If the regulator is enabled then the voltage will change to the new value
2158 * immediately otherwise if the regulator is disabled the regulator will
2159 * output at the new voltage when enabled.
2160 *
2161 * NOTE: If the regulator is shared between several devices then the lowest
2162 * request voltage that meets the system constraints will be used.
2163 * Regulator system constraints must be set for this regulator before
2164 * calling this function otherwise this call will fail.
2165 */
2166 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
2167 {
2168 struct regulator_dev *rdev = regulator->rdev;
2169 int ret = 0;
2170
2171 mutex_lock(&rdev->mutex);
2172
2173 /* If we're setting the same range as last time the change
2174 * should be a noop (some cpufreq implementations use the same
2175 * voltage for multiple frequencies, for example).
2176 */
2177 if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
2178 goto out;
2179
2180 /* sanity check */
2181 if (!rdev->desc->ops->set_voltage &&
2182 !rdev->desc->ops->set_voltage_sel) {
2183 ret = -EINVAL;
2184 goto out;
2185 }
2186
2187 /* constraints check */
2188 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2189 if (ret < 0)
2190 goto out;
2191 regulator->min_uV = min_uV;
2192 regulator->max_uV = max_uV;
2193
2194 ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2195 if (ret < 0)
2196 goto out;
2197
2198 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2199
2200 out:
2201 mutex_unlock(&rdev->mutex);
2202 return ret;
2203 }
2204 EXPORT_SYMBOL_GPL(regulator_set_voltage);
2205
2206 /**
2207 * regulator_set_voltage_time - get raise/fall time
2208 * @regulator: regulator source
2209 * @old_uV: starting voltage in microvolts
2210 * @new_uV: target voltage in microvolts
2211 *
2212 * Provided with the starting and ending voltage, this function attempts to
2213 * calculate the time in microseconds required to rise or fall to this new
2214 * voltage.
2215 */
2216 int regulator_set_voltage_time(struct regulator *regulator,
2217 int old_uV, int new_uV)
2218 {
2219 struct regulator_dev *rdev = regulator->rdev;
2220 struct regulator_ops *ops = rdev->desc->ops;
2221 int old_sel = -1;
2222 int new_sel = -1;
2223 int voltage;
2224 int i;
2225
2226 /* Currently requires operations to do this */
2227 if (!ops->list_voltage || !ops->set_voltage_time_sel
2228 || !rdev->desc->n_voltages)
2229 return -EINVAL;
2230
2231 for (i = 0; i < rdev->desc->n_voltages; i++) {
2232 /* We only look for exact voltage matches here */
2233 voltage = regulator_list_voltage(regulator, i);
2234 if (voltage < 0)
2235 return -EINVAL;
2236 if (voltage == 0)
2237 continue;
2238 if (voltage == old_uV)
2239 old_sel = i;
2240 if (voltage == new_uV)
2241 new_sel = i;
2242 }
2243
2244 if (old_sel < 0 || new_sel < 0)
2245 return -EINVAL;
2246
2247 return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
2248 }
2249 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
2250
2251 /**
2252 * regulator_sync_voltage - re-apply last regulator output voltage
2253 * @regulator: regulator source
2254 *
2255 * Re-apply the last configured voltage. This is intended to be used
2256 * where some external control source the consumer is cooperating with
2257 * has caused the configured voltage to change.
2258 */
2259 int regulator_sync_voltage(struct regulator *regulator)
2260 {
2261 struct regulator_dev *rdev = regulator->rdev;
2262 int ret, min_uV, max_uV;
2263
2264 mutex_lock(&rdev->mutex);
2265
2266 if (!rdev->desc->ops->set_voltage &&
2267 !rdev->desc->ops->set_voltage_sel) {
2268 ret = -EINVAL;
2269 goto out;
2270 }
2271
2272 /* This is only going to work if we've had a voltage configured. */
2273 if (!regulator->min_uV && !regulator->max_uV) {
2274 ret = -EINVAL;
2275 goto out;
2276 }
2277
2278 min_uV = regulator->min_uV;
2279 max_uV = regulator->max_uV;
2280
2281 /* This should be a paranoia check... */
2282 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2283 if (ret < 0)
2284 goto out;
2285
2286 ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2287 if (ret < 0)
2288 goto out;
2289
2290 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2291
2292 out:
2293 mutex_unlock(&rdev->mutex);
2294 return ret;
2295 }
2296 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
2297
2298 static int _regulator_get_voltage(struct regulator_dev *rdev)
2299 {
2300 int sel, ret;
2301
2302 if (rdev->desc->ops->get_voltage_sel) {
2303 sel = rdev->desc->ops->get_voltage_sel(rdev);
2304 if (sel < 0)
2305 return sel;
2306 ret = rdev->desc->ops->list_voltage(rdev, sel);
2307 } else if (rdev->desc->ops->get_voltage) {
2308 ret = rdev->desc->ops->get_voltage(rdev);
2309 } else {
2310 return -EINVAL;
2311 }
2312
2313 if (ret < 0)
2314 return ret;
2315 return ret - rdev->constraints->uV_offset;
2316 }
2317
2318 /**
2319 * regulator_get_voltage - get regulator output voltage
2320 * @regulator: regulator source
2321 *
2322 * This returns the current regulator voltage in uV.
2323 *
2324 * NOTE: If the regulator is disabled it will return the voltage value. This
2325 * function should not be used to determine regulator state.
2326 */
2327 int regulator_get_voltage(struct regulator *regulator)
2328 {
2329 int ret;
2330
2331 mutex_lock(&regulator->rdev->mutex);
2332
2333 ret = _regulator_get_voltage(regulator->rdev);
2334
2335 mutex_unlock(&regulator->rdev->mutex);
2336
2337 return ret;
2338 }
2339 EXPORT_SYMBOL_GPL(regulator_get_voltage);
2340
2341 /**
2342 * regulator_set_current_limit - set regulator output current limit
2343 * @regulator: regulator source
2344 * @min_uA: Minimuum supported current in uA
2345 * @max_uA: Maximum supported current in uA
2346 *
2347 * Sets current sink to the desired output current. This can be set during
2348 * any regulator state. IOW, regulator can be disabled or enabled.
2349 *
2350 * If the regulator is enabled then the current will change to the new value
2351 * immediately otherwise if the regulator is disabled the regulator will
2352 * output at the new current when enabled.
2353 *
2354 * NOTE: Regulator system constraints must be set for this regulator before
2355 * calling this function otherwise this call will fail.
2356 */
2357 int regulator_set_current_limit(struct regulator *regulator,
2358 int min_uA, int max_uA)
2359 {
2360 struct regulator_dev *rdev = regulator->rdev;
2361 int ret;
2362
2363 mutex_lock(&rdev->mutex);
2364
2365 /* sanity check */
2366 if (!rdev->desc->ops->set_current_limit) {
2367 ret = -EINVAL;
2368 goto out;
2369 }
2370
2371 /* constraints check */
2372 ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
2373 if (ret < 0)
2374 goto out;
2375
2376 ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
2377 out:
2378 mutex_unlock(&rdev->mutex);
2379 return ret;
2380 }
2381 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
2382
2383 static int _regulator_get_current_limit(struct regulator_dev *rdev)
2384 {
2385 int ret;
2386
2387 mutex_lock(&rdev->mutex);
2388
2389 /* sanity check */
2390 if (!rdev->desc->ops->get_current_limit) {
2391 ret = -EINVAL;
2392 goto out;
2393 }
2394
2395 ret = rdev->desc->ops->get_current_limit(rdev);
2396 out:
2397 mutex_unlock(&rdev->mutex);
2398 return ret;
2399 }
2400
2401 /**
2402 * regulator_get_current_limit - get regulator output current
2403 * @regulator: regulator source
2404 *
2405 * This returns the current supplied by the specified current sink in uA.
2406 *
2407 * NOTE: If the regulator is disabled it will return the current value. This
2408 * function should not be used to determine regulator state.
2409 */
2410 int regulator_get_current_limit(struct regulator *regulator)
2411 {
2412 return _regulator_get_current_limit(regulator->rdev);
2413 }
2414 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
2415
2416 /**
2417 * regulator_set_mode - set regulator operating mode
2418 * @regulator: regulator source
2419 * @mode: operating mode - one of the REGULATOR_MODE constants
2420 *
2421 * Set regulator operating mode to increase regulator efficiency or improve
2422 * regulation performance.
2423 *
2424 * NOTE: Regulator system constraints must be set for this regulator before
2425 * calling this function otherwise this call will fail.
2426 */
2427 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
2428 {
2429 struct regulator_dev *rdev = regulator->rdev;
2430 int ret;
2431 int regulator_curr_mode;
2432
2433 mutex_lock(&rdev->mutex);
2434
2435 /* sanity check */
2436 if (!rdev->desc->ops->set_mode) {
2437 ret = -EINVAL;
2438 goto out;
2439 }
2440
2441 /* return if the same mode is requested */
2442 if (rdev->desc->ops->get_mode) {
2443 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
2444 if (regulator_curr_mode == mode) {
2445 ret = 0;
2446 goto out;
2447 }
2448 }
2449
2450 /* constraints check */
2451 ret = regulator_mode_constrain(rdev, &mode);
2452 if (ret < 0)
2453 goto out;
2454
2455 ret = rdev->desc->ops->set_mode(rdev, mode);
2456 out:
2457 mutex_unlock(&rdev->mutex);
2458 return ret;
2459 }
2460 EXPORT_SYMBOL_GPL(regulator_set_mode);
2461
2462 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
2463 {
2464 int ret;
2465
2466 mutex_lock(&rdev->mutex);
2467
2468 /* sanity check */
2469 if (!rdev->desc->ops->get_mode) {
2470 ret = -EINVAL;
2471 goto out;
2472 }
2473
2474 ret = rdev->desc->ops->get_mode(rdev);
2475 out:
2476 mutex_unlock(&rdev->mutex);
2477 return ret;
2478 }
2479
2480 /**
2481 * regulator_get_mode - get regulator operating mode
2482 * @regulator: regulator source
2483 *
2484 * Get the current regulator operating mode.
2485 */
2486 unsigned int regulator_get_mode(struct regulator *regulator)
2487 {
2488 return _regulator_get_mode(regulator->rdev);
2489 }
2490 EXPORT_SYMBOL_GPL(regulator_get_mode);
2491
2492 /**
2493 * regulator_set_optimum_mode - set regulator optimum operating mode
2494 * @regulator: regulator source
2495 * @uA_load: load current
2496 *
2497 * Notifies the regulator core of a new device load. This is then used by
2498 * DRMS (if enabled by constraints) to set the most efficient regulator
2499 * operating mode for the new regulator loading.
2500 *
2501 * Consumer devices notify their supply regulator of the maximum power
2502 * they will require (can be taken from device datasheet in the power
2503 * consumption tables) when they change operational status and hence power
2504 * state. Examples of operational state changes that can affect power
2505 * consumption are :-
2506 *
2507 * o Device is opened / closed.
2508 * o Device I/O is about to begin or has just finished.
2509 * o Device is idling in between work.
2510 *
2511 * This information is also exported via sysfs to userspace.
2512 *
2513 * DRMS will sum the total requested load on the regulator and change
2514 * to the most efficient operating mode if platform constraints allow.
2515 *
2516 * Returns the new regulator mode or error.
2517 */
2518 int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
2519 {
2520 struct regulator_dev *rdev = regulator->rdev;
2521 struct regulator *consumer;
2522 int ret, output_uV, input_uV, total_uA_load = 0;
2523 unsigned int mode;
2524
2525 mutex_lock(&rdev->mutex);
2526
2527 /*
2528 * first check to see if we can set modes at all, otherwise just
2529 * tell the consumer everything is OK.
2530 */
2531 regulator->uA_load = uA_load;
2532 ret = regulator_check_drms(rdev);
2533 if (ret < 0) {
2534 ret = 0;
2535 goto out;
2536 }
2537
2538 if (!rdev->desc->ops->get_optimum_mode)
2539 goto out;
2540
2541 /*
2542 * we can actually do this so any errors are indicators of
2543 * potential real failure.
2544 */
2545 ret = -EINVAL;
2546
2547 if (!rdev->desc->ops->set_mode)
2548 goto out;
2549
2550 /* get output voltage */
2551 output_uV = _regulator_get_voltage(rdev);
2552 if (output_uV <= 0) {
2553 rdev_err(rdev, "invalid output voltage found\n");
2554 goto out;
2555 }
2556
2557 /* get input voltage */
2558 input_uV = 0;
2559 if (rdev->supply)
2560 input_uV = regulator_get_voltage(rdev->supply);
2561 if (input_uV <= 0)
2562 input_uV = rdev->constraints->input_uV;
2563 if (input_uV <= 0) {
2564 rdev_err(rdev, "invalid input voltage found\n");
2565 goto out;
2566 }
2567
2568 /* calc total requested load for this regulator */
2569 list_for_each_entry(consumer, &rdev->consumer_list, list)
2570 total_uA_load += consumer->uA_load;
2571
2572 mode = rdev->desc->ops->get_optimum_mode(rdev,
2573 input_uV, output_uV,
2574 total_uA_load);
2575 ret = regulator_mode_constrain(rdev, &mode);
2576 if (ret < 0) {
2577 rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
2578 total_uA_load, input_uV, output_uV);
2579 goto out;
2580 }
2581
2582 ret = rdev->desc->ops->set_mode(rdev, mode);
2583 if (ret < 0) {
2584 rdev_err(rdev, "failed to set optimum mode %x\n", mode);
2585 goto out;
2586 }
2587 ret = mode;
2588 out:
2589 mutex_unlock(&rdev->mutex);
2590 return ret;
2591 }
2592 EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
2593
2594 /**
2595 * regulator_register_notifier - register regulator event notifier
2596 * @regulator: regulator source
2597 * @nb: notifier block
2598 *
2599 * Register notifier block to receive regulator events.
2600 */
2601 int regulator_register_notifier(struct regulator *regulator,
2602 struct notifier_block *nb)
2603 {
2604 return blocking_notifier_chain_register(&regulator->rdev->notifier,
2605 nb);
2606 }
2607 EXPORT_SYMBOL_GPL(regulator_register_notifier);
2608
2609 /**
2610 * regulator_unregister_notifier - unregister regulator event notifier
2611 * @regulator: regulator source
2612 * @nb: notifier block
2613 *
2614 * Unregister regulator event notifier block.
2615 */
2616 int regulator_unregister_notifier(struct regulator *regulator,
2617 struct notifier_block *nb)
2618 {
2619 return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
2620 nb);
2621 }
2622 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
2623
2624 /* notify regulator consumers and downstream regulator consumers.
2625 * Note mutex must be held by caller.
2626 */
2627 static void _notifier_call_chain(struct regulator_dev *rdev,
2628 unsigned long event, void *data)
2629 {
2630 /* call rdev chain first */
2631 blocking_notifier_call_chain(&rdev->notifier, event, NULL);
2632 }
2633
2634 /**
2635 * regulator_bulk_get - get multiple regulator consumers
2636 *
2637 * @dev: Device to supply
2638 * @num_consumers: Number of consumers to register
2639 * @consumers: Configuration of consumers; clients are stored here.
2640 *
2641 * @return 0 on success, an errno on failure.
2642 *
2643 * This helper function allows drivers to get several regulator
2644 * consumers in one operation. If any of the regulators cannot be
2645 * acquired then any regulators that were allocated will be freed
2646 * before returning to the caller.
2647 */
2648 int regulator_bulk_get(struct device *dev, int num_consumers,
2649 struct regulator_bulk_data *consumers)
2650 {
2651 int i;
2652 int ret;
2653
2654 for (i = 0; i < num_consumers; i++)
2655 consumers[i].consumer = NULL;
2656
2657 for (i = 0; i < num_consumers; i++) {
2658 consumers[i].consumer = regulator_get(dev,
2659 consumers[i].supply);
2660 if (IS_ERR(consumers[i].consumer)) {
2661 ret = PTR_ERR(consumers[i].consumer);
2662 dev_err(dev, "Failed to get supply '%s': %d\n",
2663 consumers[i].supply, ret);
2664 consumers[i].consumer = NULL;
2665 goto err;
2666 }
2667 }
2668
2669 return 0;
2670
2671 err:
2672 while (--i >= 0)
2673 regulator_put(consumers[i].consumer);
2674
2675 return ret;
2676 }
2677 EXPORT_SYMBOL_GPL(regulator_bulk_get);
2678
2679 /**
2680 * devm_regulator_bulk_get - managed get multiple regulator consumers
2681 *
2682 * @dev: Device to supply
2683 * @num_consumers: Number of consumers to register
2684 * @consumers: Configuration of consumers; clients are stored here.
2685 *
2686 * @return 0 on success, an errno on failure.
2687 *
2688 * This helper function allows drivers to get several regulator
2689 * consumers in one operation with management, the regulators will
2690 * automatically be freed when the device is unbound. If any of the
2691 * regulators cannot be acquired then any regulators that were
2692 * allocated will be freed before returning to the caller.
2693 */
2694 int devm_regulator_bulk_get(struct device *dev, int num_consumers,
2695 struct regulator_bulk_data *consumers)
2696 {
2697 int i;
2698 int ret;
2699
2700 for (i = 0; i < num_consumers; i++)
2701 consumers[i].consumer = NULL;
2702
2703 for (i = 0; i < num_consumers; i++) {
2704 consumers[i].consumer = devm_regulator_get(dev,
2705 consumers[i].supply);
2706 if (IS_ERR(consumers[i].consumer)) {
2707 ret = PTR_ERR(consumers[i].consumer);
2708 dev_err(dev, "Failed to get supply '%s': %d\n",
2709 consumers[i].supply, ret);
2710 consumers[i].consumer = NULL;
2711 goto err;
2712 }
2713 }
2714
2715 return 0;
2716
2717 err:
2718 for (i = 0; i < num_consumers && consumers[i].consumer; i++)
2719 devm_regulator_put(consumers[i].consumer);
2720
2721 return ret;
2722 }
2723 EXPORT_SYMBOL_GPL(devm_regulator_bulk_get);
2724
2725 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
2726 {
2727 struct regulator_bulk_data *bulk = data;
2728
2729 bulk->ret = regulator_enable(bulk->consumer);
2730 }
2731
2732 /**
2733 * regulator_bulk_enable - enable multiple regulator consumers
2734 *
2735 * @num_consumers: Number of consumers
2736 * @consumers: Consumer data; clients are stored here.
2737 * @return 0 on success, an errno on failure
2738 *
2739 * This convenience API allows consumers to enable multiple regulator
2740 * clients in a single API call. If any consumers cannot be enabled
2741 * then any others that were enabled will be disabled again prior to
2742 * return.
2743 */
2744 int regulator_bulk_enable(int num_consumers,
2745 struct regulator_bulk_data *consumers)
2746 {
2747 LIST_HEAD(async_domain);
2748 int i;
2749 int ret = 0;
2750
2751 for (i = 0; i < num_consumers; i++) {
2752 if (consumers[i].consumer->always_on)
2753 consumers[i].ret = 0;
2754 else
2755 async_schedule_domain(regulator_bulk_enable_async,
2756 &consumers[i], &async_domain);
2757 }
2758
2759 async_synchronize_full_domain(&async_domain);
2760
2761 /* If any consumer failed we need to unwind any that succeeded */
2762 for (i = 0; i < num_consumers; i++) {
2763 if (consumers[i].ret != 0) {
2764 ret = consumers[i].ret;
2765 goto err;
2766 }
2767 }
2768
2769 return 0;
2770
2771 err:
2772 pr_err("Failed to enable %s: %d\n", consumers[i].supply, ret);
2773 while (--i >= 0)
2774 regulator_disable(consumers[i].consumer);
2775
2776 return ret;
2777 }
2778 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
2779
2780 /**
2781 * regulator_bulk_disable - disable multiple regulator consumers
2782 *
2783 * @num_consumers: Number of consumers
2784 * @consumers: Consumer data; clients are stored here.
2785 * @return 0 on success, an errno on failure
2786 *
2787 * This convenience API allows consumers to disable multiple regulator
2788 * clients in a single API call. If any consumers cannot be disabled
2789 * then any others that were disabled will be enabled again prior to
2790 * return.
2791 */
2792 int regulator_bulk_disable(int num_consumers,
2793 struct regulator_bulk_data *consumers)
2794 {
2795 int i;
2796 int ret, r;
2797
2798 for (i = num_consumers - 1; i >= 0; --i) {
2799 ret = regulator_disable(consumers[i].consumer);
2800 if (ret != 0)
2801 goto err;
2802 }
2803
2804 return 0;
2805
2806 err:
2807 pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
2808 for (++i; i < num_consumers; ++i) {
2809 r = regulator_enable(consumers[i].consumer);
2810 if (r != 0)
2811 pr_err("Failed to reename %s: %d\n",
2812 consumers[i].supply, r);
2813 }
2814
2815 return ret;
2816 }
2817 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
2818
2819 /**
2820 * regulator_bulk_force_disable - force disable multiple regulator consumers
2821 *
2822 * @num_consumers: Number of consumers
2823 * @consumers: Consumer data; clients are stored here.
2824 * @return 0 on success, an errno on failure
2825 *
2826 * This convenience API allows consumers to forcibly disable multiple regulator
2827 * clients in a single API call.
2828 * NOTE: This should be used for situations when device damage will
2829 * likely occur if the regulators are not disabled (e.g. over temp).
2830 * Although regulator_force_disable function call for some consumers can
2831 * return error numbers, the function is called for all consumers.
2832 */
2833 int regulator_bulk_force_disable(int num_consumers,
2834 struct regulator_bulk_data *consumers)
2835 {
2836 int i;
2837 int ret;
2838
2839 for (i = 0; i < num_consumers; i++)
2840 consumers[i].ret =
2841 regulator_force_disable(consumers[i].consumer);
2842
2843 for (i = 0; i < num_consumers; i++) {
2844 if (consumers[i].ret != 0) {
2845 ret = consumers[i].ret;
2846 goto out;
2847 }
2848 }
2849
2850 return 0;
2851 out:
2852 return ret;
2853 }
2854 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
2855
2856 /**
2857 * regulator_bulk_free - free multiple regulator consumers
2858 *
2859 * @num_consumers: Number of consumers
2860 * @consumers: Consumer data; clients are stored here.
2861 *
2862 * This convenience API allows consumers to free multiple regulator
2863 * clients in a single API call.
2864 */
2865 void regulator_bulk_free(int num_consumers,
2866 struct regulator_bulk_data *consumers)
2867 {
2868 int i;
2869
2870 for (i = 0; i < num_consumers; i++) {
2871 regulator_put(consumers[i].consumer);
2872 consumers[i].consumer = NULL;
2873 }
2874 }
2875 EXPORT_SYMBOL_GPL(regulator_bulk_free);
2876
2877 /**
2878 * regulator_notifier_call_chain - call regulator event notifier
2879 * @rdev: regulator source
2880 * @event: notifier block
2881 * @data: callback-specific data.
2882 *
2883 * Called by regulator drivers to notify clients a regulator event has
2884 * occurred. We also notify regulator clients downstream.
2885 * Note lock must be held by caller.
2886 */
2887 int regulator_notifier_call_chain(struct regulator_dev *rdev,
2888 unsigned long event, void *data)
2889 {
2890 _notifier_call_chain(rdev, event, data);
2891 return NOTIFY_DONE;
2892
2893 }
2894 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
2895
2896 /**
2897 * regulator_mode_to_status - convert a regulator mode into a status
2898 *
2899 * @mode: Mode to convert
2900 *
2901 * Convert a regulator mode into a status.
2902 */
2903 int regulator_mode_to_status(unsigned int mode)
2904 {
2905 switch (mode) {
2906 case REGULATOR_MODE_FAST:
2907 return REGULATOR_STATUS_FAST;
2908 case REGULATOR_MODE_NORMAL:
2909 return REGULATOR_STATUS_NORMAL;
2910 case REGULATOR_MODE_IDLE:
2911 return REGULATOR_STATUS_IDLE;
2912 case REGULATOR_STATUS_STANDBY:
2913 return REGULATOR_STATUS_STANDBY;
2914 default:
2915 return 0;
2916 }
2917 }
2918 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
2919
2920 /*
2921 * To avoid cluttering sysfs (and memory) with useless state, only
2922 * create attributes that can be meaningfully displayed.
2923 */
2924 static int add_regulator_attributes(struct regulator_dev *rdev)
2925 {
2926 struct device *dev = &rdev->dev;
2927 struct regulator_ops *ops = rdev->desc->ops;
2928 int status = 0;
2929
2930 /* some attributes need specific methods to be displayed */
2931 if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
2932 (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0)) {
2933 status = device_create_file(dev, &dev_attr_microvolts);
2934 if (status < 0)
2935 return status;
2936 }
2937 if (ops->get_current_limit) {
2938 status = device_create_file(dev, &dev_attr_microamps);
2939 if (status < 0)
2940 return status;
2941 }
2942 if (ops->get_mode) {
2943 status = device_create_file(dev, &dev_attr_opmode);
2944 if (status < 0)
2945 return status;
2946 }
2947 if (ops->is_enabled) {
2948 status = device_create_file(dev, &dev_attr_state);
2949 if (status < 0)
2950 return status;
2951 }
2952 if (ops->get_status) {
2953 status = device_create_file(dev, &dev_attr_status);
2954 if (status < 0)
2955 return status;
2956 }
2957
2958 /* some attributes are type-specific */
2959 if (rdev->desc->type == REGULATOR_CURRENT) {
2960 status = device_create_file(dev, &dev_attr_requested_microamps);
2961 if (status < 0)
2962 return status;
2963 }
2964
2965 /* all the other attributes exist to support constraints;
2966 * don't show them if there are no constraints, or if the
2967 * relevant supporting methods are missing.
2968 */
2969 if (!rdev->constraints)
2970 return status;
2971
2972 /* constraints need specific supporting methods */
2973 if (ops->set_voltage || ops->set_voltage_sel) {
2974 status = device_create_file(dev, &dev_attr_min_microvolts);
2975 if (status < 0)
2976 return status;
2977 status = device_create_file(dev, &dev_attr_max_microvolts);
2978 if (status < 0)
2979 return status;
2980 }
2981 if (ops->set_current_limit) {
2982 status = device_create_file(dev, &dev_attr_min_microamps);
2983 if (status < 0)
2984 return status;
2985 status = device_create_file(dev, &dev_attr_max_microamps);
2986 if (status < 0)
2987 return status;
2988 }
2989
2990 status = device_create_file(dev, &dev_attr_suspend_standby_state);
2991 if (status < 0)
2992 return status;
2993 status = device_create_file(dev, &dev_attr_suspend_mem_state);
2994 if (status < 0)
2995 return status;
2996 status = device_create_file(dev, &dev_attr_suspend_disk_state);
2997 if (status < 0)
2998 return status;
2999
3000 if (ops->set_suspend_voltage) {
3001 status = device_create_file(dev,
3002 &dev_attr_suspend_standby_microvolts);
3003 if (status < 0)
3004 return status;
3005 status = device_create_file(dev,
3006 &dev_attr_suspend_mem_microvolts);
3007 if (status < 0)
3008 return status;
3009 status = device_create_file(dev,
3010 &dev_attr_suspend_disk_microvolts);
3011 if (status < 0)
3012 return status;
3013 }
3014
3015 if (ops->set_suspend_mode) {
3016 status = device_create_file(dev,
3017 &dev_attr_suspend_standby_mode);
3018 if (status < 0)
3019 return status;
3020 status = device_create_file(dev,
3021 &dev_attr_suspend_mem_mode);
3022 if (status < 0)
3023 return status;
3024 status = device_create_file(dev,
3025 &dev_attr_suspend_disk_mode);
3026 if (status < 0)
3027 return status;
3028 }
3029
3030 return status;
3031 }
3032
3033 static void rdev_init_debugfs(struct regulator_dev *rdev)
3034 {
3035 rdev->debugfs = debugfs_create_dir(rdev_get_name(rdev), debugfs_root);
3036 if (!rdev->debugfs) {
3037 rdev_warn(rdev, "Failed to create debugfs directory\n");
3038 return;
3039 }
3040
3041 debugfs_create_u32("use_count", 0444, rdev->debugfs,
3042 &rdev->use_count);
3043 debugfs_create_u32("open_count", 0444, rdev->debugfs,
3044 &rdev->open_count);
3045 }
3046
3047 /**
3048 * regulator_register - register regulator
3049 * @regulator_desc: regulator to register
3050 * @config: runtime configuration for regulator
3051 *
3052 * Called by regulator drivers to register a regulator.
3053 * Returns 0 on success.
3054 */
3055 struct regulator_dev *
3056 regulator_register(const struct regulator_desc *regulator_desc,
3057 const struct regulator_config *config)
3058 {
3059 const struct regulation_constraints *constraints = NULL;
3060 const struct regulator_init_data *init_data;
3061 static atomic_t regulator_no = ATOMIC_INIT(0);
3062 struct regulator_dev *rdev;
3063 struct device *dev;
3064 int ret, i;
3065 const char *supply = NULL;
3066
3067 if (regulator_desc == NULL || config == NULL)
3068 return ERR_PTR(-EINVAL);
3069
3070 dev = config->dev;
3071 WARN_ON(!dev);
3072
3073 if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
3074 return ERR_PTR(-EINVAL);
3075
3076 if (regulator_desc->type != REGULATOR_VOLTAGE &&
3077 regulator_desc->type != REGULATOR_CURRENT)
3078 return ERR_PTR(-EINVAL);
3079
3080 /* Only one of each should be implemented */
3081 WARN_ON(regulator_desc->ops->get_voltage &&
3082 regulator_desc->ops->get_voltage_sel);
3083 WARN_ON(regulator_desc->ops->set_voltage &&
3084 regulator_desc->ops->set_voltage_sel);
3085
3086 /* If we're using selectors we must implement list_voltage. */
3087 if (regulator_desc->ops->get_voltage_sel &&
3088 !regulator_desc->ops->list_voltage) {
3089 return ERR_PTR(-EINVAL);
3090 }
3091 if (regulator_desc->ops->set_voltage_sel &&
3092 !regulator_desc->ops->list_voltage) {
3093 return ERR_PTR(-EINVAL);
3094 }
3095
3096 init_data = config->init_data;
3097
3098 rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
3099 if (rdev == NULL)
3100 return ERR_PTR(-ENOMEM);
3101
3102 mutex_lock(&regulator_list_mutex);
3103
3104 mutex_init(&rdev->mutex);
3105 rdev->reg_data = config->driver_data;
3106 rdev->owner = regulator_desc->owner;
3107 rdev->desc = regulator_desc;
3108 rdev->regmap = config->regmap;
3109 INIT_LIST_HEAD(&rdev->consumer_list);
3110 INIT_LIST_HEAD(&rdev->list);
3111 BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
3112 INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
3113
3114 /* preform any regulator specific init */
3115 if (init_data && init_data->regulator_init) {
3116 ret = init_data->regulator_init(rdev->reg_data);
3117 if (ret < 0)
3118 goto clean;
3119 }
3120
3121 /* register with sysfs */
3122 rdev->dev.class = &regulator_class;
3123 rdev->dev.of_node = config->of_node;
3124 rdev->dev.parent = dev;
3125 dev_set_name(&rdev->dev, "regulator.%d",
3126 atomic_inc_return(&regulator_no) - 1);
3127 ret = device_register(&rdev->dev);
3128 if (ret != 0) {
3129 put_device(&rdev->dev);
3130 goto clean;
3131 }
3132
3133 dev_set_drvdata(&rdev->dev, rdev);
3134
3135 /* set regulator constraints */
3136 if (init_data)
3137 constraints = &init_data->constraints;
3138
3139 ret = set_machine_constraints(rdev, constraints);
3140 if (ret < 0)
3141 goto scrub;
3142
3143 /* add attributes supported by this regulator */
3144 ret = add_regulator_attributes(rdev);
3145 if (ret < 0)
3146 goto scrub;
3147
3148 if (init_data && init_data->supply_regulator)
3149 supply = init_data->supply_regulator;
3150 else if (regulator_desc->supply_name)
3151 supply = regulator_desc->supply_name;
3152
3153 if (supply) {
3154 struct regulator_dev *r;
3155
3156 r = regulator_dev_lookup(dev, supply, &ret);
3157
3158 if (!r) {
3159 dev_err(dev, "Failed to find supply %s\n", supply);
3160 ret = -EPROBE_DEFER;
3161 goto scrub;
3162 }
3163
3164 ret = set_supply(rdev, r);
3165 if (ret < 0)
3166 goto scrub;
3167
3168 /* Enable supply if rail is enabled */
3169 if (_regulator_is_enabled(rdev)) {
3170 ret = regulator_enable(rdev->supply);
3171 if (ret < 0)
3172 goto scrub;
3173 }
3174 }
3175
3176 /* add consumers devices */
3177 if (init_data) {
3178 for (i = 0; i < init_data->num_consumer_supplies; i++) {
3179 ret = set_consumer_device_supply(rdev,
3180 init_data->consumer_supplies[i].dev_name,
3181 init_data->consumer_supplies[i].supply);
3182 if (ret < 0) {
3183 dev_err(dev, "Failed to set supply %s\n",
3184 init_data->consumer_supplies[i].supply);
3185 goto unset_supplies;
3186 }
3187 }
3188 }
3189
3190 list_add(&rdev->list, &regulator_list);
3191
3192 rdev_init_debugfs(rdev);
3193 out:
3194 mutex_unlock(&regulator_list_mutex);
3195 return rdev;
3196
3197 unset_supplies:
3198 unset_regulator_supplies(rdev);
3199
3200 scrub:
3201 if (rdev->supply)
3202 regulator_put(rdev->supply);
3203 kfree(rdev->constraints);
3204 device_unregister(&rdev->dev);
3205 /* device core frees rdev */
3206 rdev = ERR_PTR(ret);
3207 goto out;
3208
3209 clean:
3210 kfree(rdev);
3211 rdev = ERR_PTR(ret);
3212 goto out;
3213 }
3214 EXPORT_SYMBOL_GPL(regulator_register);
3215
3216 /**
3217 * regulator_unregister - unregister regulator
3218 * @rdev: regulator to unregister
3219 *
3220 * Called by regulator drivers to unregister a regulator.
3221 */
3222 void regulator_unregister(struct regulator_dev *rdev)
3223 {
3224 if (rdev == NULL)
3225 return;
3226
3227 if (rdev->supply)
3228 regulator_put(rdev->supply);
3229 mutex_lock(&regulator_list_mutex);
3230 debugfs_remove_recursive(rdev->debugfs);
3231 flush_work_sync(&rdev->disable_work.work);
3232 WARN_ON(rdev->open_count);
3233 unset_regulator_supplies(rdev);
3234 list_del(&rdev->list);
3235 kfree(rdev->constraints);
3236 device_unregister(&rdev->dev);
3237 mutex_unlock(&regulator_list_mutex);
3238 }
3239 EXPORT_SYMBOL_GPL(regulator_unregister);
3240
3241 /**
3242 * regulator_suspend_prepare - prepare regulators for system wide suspend
3243 * @state: system suspend state
3244 *
3245 * Configure each regulator with it's suspend operating parameters for state.
3246 * This will usually be called by machine suspend code prior to supending.
3247 */
3248 int regulator_suspend_prepare(suspend_state_t state)
3249 {
3250 struct regulator_dev *rdev;
3251 int ret = 0;
3252
3253 /* ON is handled by regulator active state */
3254 if (state == PM_SUSPEND_ON)
3255 return -EINVAL;
3256
3257 mutex_lock(&regulator_list_mutex);
3258 list_for_each_entry(rdev, &regulator_list, list) {
3259
3260 mutex_lock(&rdev->mutex);
3261 ret = suspend_prepare(rdev, state);
3262 mutex_unlock(&rdev->mutex);
3263
3264 if (ret < 0) {
3265 rdev_err(rdev, "failed to prepare\n");
3266 goto out;
3267 }
3268 }
3269 out:
3270 mutex_unlock(&regulator_list_mutex);
3271 return ret;
3272 }
3273 EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
3274
3275 /**
3276 * regulator_suspend_finish - resume regulators from system wide suspend
3277 *
3278 * Turn on regulators that might be turned off by regulator_suspend_prepare
3279 * and that should be turned on according to the regulators properties.
3280 */
3281 int regulator_suspend_finish(void)
3282 {
3283 struct regulator_dev *rdev;
3284 int ret = 0, error;
3285
3286 mutex_lock(&regulator_list_mutex);
3287 list_for_each_entry(rdev, &regulator_list, list) {
3288 struct regulator_ops *ops = rdev->desc->ops;
3289
3290 mutex_lock(&rdev->mutex);
3291 if ((rdev->use_count > 0 || rdev->constraints->always_on) &&
3292 ops->enable) {
3293 error = ops->enable(rdev);
3294 if (error)
3295 ret = error;
3296 } else {
3297 if (!has_full_constraints)
3298 goto unlock;
3299 if (!ops->disable)
3300 goto unlock;
3301 if (!_regulator_is_enabled(rdev))
3302 goto unlock;
3303
3304 error = ops->disable(rdev);
3305 if (error)
3306 ret = error;
3307 }
3308 unlock:
3309 mutex_unlock(&rdev->mutex);
3310 }
3311 mutex_unlock(&regulator_list_mutex);
3312 return ret;
3313 }
3314 EXPORT_SYMBOL_GPL(regulator_suspend_finish);
3315
3316 /**
3317 * regulator_has_full_constraints - the system has fully specified constraints
3318 *
3319 * Calling this function will cause the regulator API to disable all
3320 * regulators which have a zero use count and don't have an always_on
3321 * constraint in a late_initcall.
3322 *
3323 * The intention is that this will become the default behaviour in a
3324 * future kernel release so users are encouraged to use this facility
3325 * now.
3326 */
3327 void regulator_has_full_constraints(void)
3328 {
3329 has_full_constraints = 1;
3330 }
3331 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
3332
3333 /**
3334 * regulator_use_dummy_regulator - Provide a dummy regulator when none is found
3335 *
3336 * Calling this function will cause the regulator API to provide a
3337 * dummy regulator to consumers if no physical regulator is found,
3338 * allowing most consumers to proceed as though a regulator were
3339 * configured. This allows systems such as those with software
3340 * controllable regulators for the CPU core only to be brought up more
3341 * readily.
3342 */
3343 void regulator_use_dummy_regulator(void)
3344 {
3345 board_wants_dummy_regulator = true;
3346 }
3347 EXPORT_SYMBOL_GPL(regulator_use_dummy_regulator);
3348
3349 /**
3350 * rdev_get_drvdata - get rdev regulator driver data
3351 * @rdev: regulator
3352 *
3353 * Get rdev regulator driver private data. This call can be used in the
3354 * regulator driver context.
3355 */
3356 void *rdev_get_drvdata(struct regulator_dev *rdev)
3357 {
3358 return rdev->reg_data;
3359 }
3360 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
3361
3362 /**
3363 * regulator_get_drvdata - get regulator driver data
3364 * @regulator: regulator
3365 *
3366 * Get regulator driver private data. This call can be used in the consumer
3367 * driver context when non API regulator specific functions need to be called.
3368 */
3369 void *regulator_get_drvdata(struct regulator *regulator)
3370 {
3371 return regulator->rdev->reg_data;
3372 }
3373 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
3374
3375 /**
3376 * regulator_set_drvdata - set regulator driver data
3377 * @regulator: regulator
3378 * @data: data
3379 */
3380 void regulator_set_drvdata(struct regulator *regulator, void *data)
3381 {
3382 regulator->rdev->reg_data = data;
3383 }
3384 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
3385
3386 /**
3387 * regulator_get_id - get regulator ID
3388 * @rdev: regulator
3389 */
3390 int rdev_get_id(struct regulator_dev *rdev)
3391 {
3392 return rdev->desc->id;
3393 }
3394 EXPORT_SYMBOL_GPL(rdev_get_id);
3395
3396 struct device *rdev_get_dev(struct regulator_dev *rdev)
3397 {
3398 return &rdev->dev;
3399 }
3400 EXPORT_SYMBOL_GPL(rdev_get_dev);
3401
3402 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
3403 {
3404 return reg_init_data->driver_data;
3405 }
3406 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
3407
3408 #ifdef CONFIG_DEBUG_FS
3409 static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
3410 size_t count, loff_t *ppos)
3411 {
3412 char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
3413 ssize_t len, ret = 0;
3414 struct regulator_map *map;
3415
3416 if (!buf)
3417 return -ENOMEM;
3418
3419 list_for_each_entry(map, &regulator_map_list, list) {
3420 len = snprintf(buf + ret, PAGE_SIZE - ret,
3421 "%s -> %s.%s\n",
3422 rdev_get_name(map->regulator), map->dev_name,
3423 map->supply);
3424 if (len >= 0)
3425 ret += len;
3426 if (ret > PAGE_SIZE) {
3427 ret = PAGE_SIZE;
3428 break;
3429 }
3430 }
3431
3432 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
3433
3434 kfree(buf);
3435
3436 return ret;
3437 }
3438 #endif
3439
3440 static const struct file_operations supply_map_fops = {
3441 #ifdef CONFIG_DEBUG_FS
3442 .read = supply_map_read_file,
3443 .llseek = default_llseek,
3444 #endif
3445 };
3446
3447 static int __init regulator_init(void)
3448 {
3449 int ret;
3450
3451 ret = class_register(&regulator_class);
3452
3453 debugfs_root = debugfs_create_dir("regulator", NULL);
3454 if (!debugfs_root)
3455 pr_warn("regulator: Failed to create debugfs directory\n");
3456
3457 debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
3458 &supply_map_fops);
3459
3460 regulator_dummy_init();
3461
3462 return ret;
3463 }
3464
3465 /* init early to allow our consumers to complete system booting */
3466 core_initcall(regulator_init);
3467
3468 static int __init regulator_init_complete(void)
3469 {
3470 struct regulator_dev *rdev;
3471 struct regulator_ops *ops;
3472 struct regulation_constraints *c;
3473 int enabled, ret;
3474
3475 mutex_lock(&regulator_list_mutex);
3476
3477 /* If we have a full configuration then disable any regulators
3478 * which are not in use or always_on. This will become the
3479 * default behaviour in the future.
3480 */
3481 list_for_each_entry(rdev, &regulator_list, list) {
3482 ops = rdev->desc->ops;
3483 c = rdev->constraints;
3484
3485 if (!ops->disable || (c && c->always_on))
3486 continue;
3487
3488 mutex_lock(&rdev->mutex);
3489
3490 if (rdev->use_count)
3491 goto unlock;
3492
3493 /* If we can't read the status assume it's on. */
3494 if (ops->is_enabled)
3495 enabled = ops->is_enabled(rdev);
3496 else
3497 enabled = 1;
3498
3499 if (!enabled)
3500 goto unlock;
3501
3502 if (has_full_constraints) {
3503 /* We log since this may kill the system if it
3504 * goes wrong. */
3505 rdev_info(rdev, "disabling\n");
3506 ret = ops->disable(rdev);
3507 if (ret != 0) {
3508 rdev_err(rdev, "couldn't disable: %d\n", ret);
3509 }
3510 } else {
3511 /* The intention is that in future we will
3512 * assume that full constraints are provided
3513 * so warn even if we aren't going to do
3514 * anything here.
3515 */
3516 rdev_warn(rdev, "incomplete constraints, leaving on\n");
3517 }
3518
3519 unlock:
3520 mutex_unlock(&rdev->mutex);
3521 }
3522
3523 mutex_unlock(&regulator_list_mutex);
3524
3525 return 0;
3526 }
3527 late_initcall(regulator_init_complete);