Merge commit 'gcl/next' into next
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / regulator / core.c
1 /*
2 * core.c -- Voltage/Current Regulator framework.
3 *
4 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5 * Copyright 2008 SlimLogic Ltd.
6 *
7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8 *
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2 of the License, or (at your
12 * option) any later version.
13 *
14 */
15
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/device.h>
19 #include <linux/err.h>
20 #include <linux/mutex.h>
21 #include <linux/suspend.h>
22 #include <linux/regulator/consumer.h>
23 #include <linux/regulator/driver.h>
24 #include <linux/regulator/machine.h>
25
26 #define REGULATOR_VERSION "0.5"
27
28 static DEFINE_MUTEX(regulator_list_mutex);
29 static LIST_HEAD(regulator_list);
30 static LIST_HEAD(regulator_map_list);
31 static int has_full_constraints;
32
33 /*
34 * struct regulator_map
35 *
36 * Used to provide symbolic supply names to devices.
37 */
38 struct regulator_map {
39 struct list_head list;
40 const char *dev_name; /* The dev_name() for the consumer */
41 const char *supply;
42 struct regulator_dev *regulator;
43 };
44
45 /*
46 * struct regulator
47 *
48 * One for each consumer device.
49 */
50 struct regulator {
51 struct device *dev;
52 struct list_head list;
53 int uA_load;
54 int min_uV;
55 int max_uV;
56 char *supply_name;
57 struct device_attribute dev_attr;
58 struct regulator_dev *rdev;
59 };
60
61 static int _regulator_is_enabled(struct regulator_dev *rdev);
62 static int _regulator_disable(struct regulator_dev *rdev);
63 static int _regulator_get_voltage(struct regulator_dev *rdev);
64 static int _regulator_get_current_limit(struct regulator_dev *rdev);
65 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
66 static void _notifier_call_chain(struct regulator_dev *rdev,
67 unsigned long event, void *data);
68
69 /* gets the regulator for a given consumer device */
70 static struct regulator *get_device_regulator(struct device *dev)
71 {
72 struct regulator *regulator = NULL;
73 struct regulator_dev *rdev;
74
75 mutex_lock(&regulator_list_mutex);
76 list_for_each_entry(rdev, &regulator_list, list) {
77 mutex_lock(&rdev->mutex);
78 list_for_each_entry(regulator, &rdev->consumer_list, list) {
79 if (regulator->dev == dev) {
80 mutex_unlock(&rdev->mutex);
81 mutex_unlock(&regulator_list_mutex);
82 return regulator;
83 }
84 }
85 mutex_unlock(&rdev->mutex);
86 }
87 mutex_unlock(&regulator_list_mutex);
88 return NULL;
89 }
90
91 /* Platform voltage constraint check */
92 static int regulator_check_voltage(struct regulator_dev *rdev,
93 int *min_uV, int *max_uV)
94 {
95 BUG_ON(*min_uV > *max_uV);
96
97 if (!rdev->constraints) {
98 printk(KERN_ERR "%s: no constraints for %s\n", __func__,
99 rdev->desc->name);
100 return -ENODEV;
101 }
102 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
103 printk(KERN_ERR "%s: operation not allowed for %s\n",
104 __func__, rdev->desc->name);
105 return -EPERM;
106 }
107
108 if (*max_uV > rdev->constraints->max_uV)
109 *max_uV = rdev->constraints->max_uV;
110 if (*min_uV < rdev->constraints->min_uV)
111 *min_uV = rdev->constraints->min_uV;
112
113 if (*min_uV > *max_uV)
114 return -EINVAL;
115
116 return 0;
117 }
118
119 /* current constraint check */
120 static int regulator_check_current_limit(struct regulator_dev *rdev,
121 int *min_uA, int *max_uA)
122 {
123 BUG_ON(*min_uA > *max_uA);
124
125 if (!rdev->constraints) {
126 printk(KERN_ERR "%s: no constraints for %s\n", __func__,
127 rdev->desc->name);
128 return -ENODEV;
129 }
130 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
131 printk(KERN_ERR "%s: operation not allowed for %s\n",
132 __func__, rdev->desc->name);
133 return -EPERM;
134 }
135
136 if (*max_uA > rdev->constraints->max_uA)
137 *max_uA = rdev->constraints->max_uA;
138 if (*min_uA < rdev->constraints->min_uA)
139 *min_uA = rdev->constraints->min_uA;
140
141 if (*min_uA > *max_uA)
142 return -EINVAL;
143
144 return 0;
145 }
146
147 /* operating mode constraint check */
148 static int regulator_check_mode(struct regulator_dev *rdev, int mode)
149 {
150 switch (mode) {
151 case REGULATOR_MODE_FAST:
152 case REGULATOR_MODE_NORMAL:
153 case REGULATOR_MODE_IDLE:
154 case REGULATOR_MODE_STANDBY:
155 break;
156 default:
157 return -EINVAL;
158 }
159
160 if (!rdev->constraints) {
161 printk(KERN_ERR "%s: no constraints for %s\n", __func__,
162 rdev->desc->name);
163 return -ENODEV;
164 }
165 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
166 printk(KERN_ERR "%s: operation not allowed for %s\n",
167 __func__, rdev->desc->name);
168 return -EPERM;
169 }
170 if (!(rdev->constraints->valid_modes_mask & mode)) {
171 printk(KERN_ERR "%s: invalid mode %x for %s\n",
172 __func__, mode, rdev->desc->name);
173 return -EINVAL;
174 }
175 return 0;
176 }
177
178 /* dynamic regulator mode switching constraint check */
179 static int regulator_check_drms(struct regulator_dev *rdev)
180 {
181 if (!rdev->constraints) {
182 printk(KERN_ERR "%s: no constraints for %s\n", __func__,
183 rdev->desc->name);
184 return -ENODEV;
185 }
186 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
187 printk(KERN_ERR "%s: operation not allowed for %s\n",
188 __func__, rdev->desc->name);
189 return -EPERM;
190 }
191 return 0;
192 }
193
194 static ssize_t device_requested_uA_show(struct device *dev,
195 struct device_attribute *attr, char *buf)
196 {
197 struct regulator *regulator;
198
199 regulator = get_device_regulator(dev);
200 if (regulator == NULL)
201 return 0;
202
203 return sprintf(buf, "%d\n", regulator->uA_load);
204 }
205
206 static ssize_t regulator_uV_show(struct device *dev,
207 struct device_attribute *attr, char *buf)
208 {
209 struct regulator_dev *rdev = dev_get_drvdata(dev);
210 ssize_t ret;
211
212 mutex_lock(&rdev->mutex);
213 ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
214 mutex_unlock(&rdev->mutex);
215
216 return ret;
217 }
218 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
219
220 static ssize_t regulator_uA_show(struct device *dev,
221 struct device_attribute *attr, char *buf)
222 {
223 struct regulator_dev *rdev = dev_get_drvdata(dev);
224
225 return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
226 }
227 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
228
229 static ssize_t regulator_name_show(struct device *dev,
230 struct device_attribute *attr, char *buf)
231 {
232 struct regulator_dev *rdev = dev_get_drvdata(dev);
233 const char *name;
234
235 if (rdev->constraints && rdev->constraints->name)
236 name = rdev->constraints->name;
237 else if (rdev->desc->name)
238 name = rdev->desc->name;
239 else
240 name = "";
241
242 return sprintf(buf, "%s\n", name);
243 }
244
245 static ssize_t regulator_print_opmode(char *buf, int mode)
246 {
247 switch (mode) {
248 case REGULATOR_MODE_FAST:
249 return sprintf(buf, "fast\n");
250 case REGULATOR_MODE_NORMAL:
251 return sprintf(buf, "normal\n");
252 case REGULATOR_MODE_IDLE:
253 return sprintf(buf, "idle\n");
254 case REGULATOR_MODE_STANDBY:
255 return sprintf(buf, "standby\n");
256 }
257 return sprintf(buf, "unknown\n");
258 }
259
260 static ssize_t regulator_opmode_show(struct device *dev,
261 struct device_attribute *attr, char *buf)
262 {
263 struct regulator_dev *rdev = dev_get_drvdata(dev);
264
265 return regulator_print_opmode(buf, _regulator_get_mode(rdev));
266 }
267 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
268
269 static ssize_t regulator_print_state(char *buf, int state)
270 {
271 if (state > 0)
272 return sprintf(buf, "enabled\n");
273 else if (state == 0)
274 return sprintf(buf, "disabled\n");
275 else
276 return sprintf(buf, "unknown\n");
277 }
278
279 static ssize_t regulator_state_show(struct device *dev,
280 struct device_attribute *attr, char *buf)
281 {
282 struct regulator_dev *rdev = dev_get_drvdata(dev);
283 ssize_t ret;
284
285 mutex_lock(&rdev->mutex);
286 ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
287 mutex_unlock(&rdev->mutex);
288
289 return ret;
290 }
291 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
292
293 static ssize_t regulator_status_show(struct device *dev,
294 struct device_attribute *attr, char *buf)
295 {
296 struct regulator_dev *rdev = dev_get_drvdata(dev);
297 int status;
298 char *label;
299
300 status = rdev->desc->ops->get_status(rdev);
301 if (status < 0)
302 return status;
303
304 switch (status) {
305 case REGULATOR_STATUS_OFF:
306 label = "off";
307 break;
308 case REGULATOR_STATUS_ON:
309 label = "on";
310 break;
311 case REGULATOR_STATUS_ERROR:
312 label = "error";
313 break;
314 case REGULATOR_STATUS_FAST:
315 label = "fast";
316 break;
317 case REGULATOR_STATUS_NORMAL:
318 label = "normal";
319 break;
320 case REGULATOR_STATUS_IDLE:
321 label = "idle";
322 break;
323 case REGULATOR_STATUS_STANDBY:
324 label = "standby";
325 break;
326 default:
327 return -ERANGE;
328 }
329
330 return sprintf(buf, "%s\n", label);
331 }
332 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
333
334 static ssize_t regulator_min_uA_show(struct device *dev,
335 struct device_attribute *attr, char *buf)
336 {
337 struct regulator_dev *rdev = dev_get_drvdata(dev);
338
339 if (!rdev->constraints)
340 return sprintf(buf, "constraint not defined\n");
341
342 return sprintf(buf, "%d\n", rdev->constraints->min_uA);
343 }
344 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
345
346 static ssize_t regulator_max_uA_show(struct device *dev,
347 struct device_attribute *attr, char *buf)
348 {
349 struct regulator_dev *rdev = dev_get_drvdata(dev);
350
351 if (!rdev->constraints)
352 return sprintf(buf, "constraint not defined\n");
353
354 return sprintf(buf, "%d\n", rdev->constraints->max_uA);
355 }
356 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
357
358 static ssize_t regulator_min_uV_show(struct device *dev,
359 struct device_attribute *attr, char *buf)
360 {
361 struct regulator_dev *rdev = dev_get_drvdata(dev);
362
363 if (!rdev->constraints)
364 return sprintf(buf, "constraint not defined\n");
365
366 return sprintf(buf, "%d\n", rdev->constraints->min_uV);
367 }
368 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
369
370 static ssize_t regulator_max_uV_show(struct device *dev,
371 struct device_attribute *attr, char *buf)
372 {
373 struct regulator_dev *rdev = dev_get_drvdata(dev);
374
375 if (!rdev->constraints)
376 return sprintf(buf, "constraint not defined\n");
377
378 return sprintf(buf, "%d\n", rdev->constraints->max_uV);
379 }
380 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
381
382 static ssize_t regulator_total_uA_show(struct device *dev,
383 struct device_attribute *attr, char *buf)
384 {
385 struct regulator_dev *rdev = dev_get_drvdata(dev);
386 struct regulator *regulator;
387 int uA = 0;
388
389 mutex_lock(&rdev->mutex);
390 list_for_each_entry(regulator, &rdev->consumer_list, list)
391 uA += regulator->uA_load;
392 mutex_unlock(&rdev->mutex);
393 return sprintf(buf, "%d\n", uA);
394 }
395 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
396
397 static ssize_t regulator_num_users_show(struct device *dev,
398 struct device_attribute *attr, char *buf)
399 {
400 struct regulator_dev *rdev = dev_get_drvdata(dev);
401 return sprintf(buf, "%d\n", rdev->use_count);
402 }
403
404 static ssize_t regulator_type_show(struct device *dev,
405 struct device_attribute *attr, char *buf)
406 {
407 struct regulator_dev *rdev = dev_get_drvdata(dev);
408
409 switch (rdev->desc->type) {
410 case REGULATOR_VOLTAGE:
411 return sprintf(buf, "voltage\n");
412 case REGULATOR_CURRENT:
413 return sprintf(buf, "current\n");
414 }
415 return sprintf(buf, "unknown\n");
416 }
417
418 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
419 struct device_attribute *attr, char *buf)
420 {
421 struct regulator_dev *rdev = dev_get_drvdata(dev);
422
423 return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
424 }
425 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
426 regulator_suspend_mem_uV_show, NULL);
427
428 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
429 struct device_attribute *attr, char *buf)
430 {
431 struct regulator_dev *rdev = dev_get_drvdata(dev);
432
433 return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
434 }
435 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
436 regulator_suspend_disk_uV_show, NULL);
437
438 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
439 struct device_attribute *attr, char *buf)
440 {
441 struct regulator_dev *rdev = dev_get_drvdata(dev);
442
443 return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
444 }
445 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
446 regulator_suspend_standby_uV_show, NULL);
447
448 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
449 struct device_attribute *attr, char *buf)
450 {
451 struct regulator_dev *rdev = dev_get_drvdata(dev);
452
453 return regulator_print_opmode(buf,
454 rdev->constraints->state_mem.mode);
455 }
456 static DEVICE_ATTR(suspend_mem_mode, 0444,
457 regulator_suspend_mem_mode_show, NULL);
458
459 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
460 struct device_attribute *attr, char *buf)
461 {
462 struct regulator_dev *rdev = dev_get_drvdata(dev);
463
464 return regulator_print_opmode(buf,
465 rdev->constraints->state_disk.mode);
466 }
467 static DEVICE_ATTR(suspend_disk_mode, 0444,
468 regulator_suspend_disk_mode_show, NULL);
469
470 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
471 struct device_attribute *attr, char *buf)
472 {
473 struct regulator_dev *rdev = dev_get_drvdata(dev);
474
475 return regulator_print_opmode(buf,
476 rdev->constraints->state_standby.mode);
477 }
478 static DEVICE_ATTR(suspend_standby_mode, 0444,
479 regulator_suspend_standby_mode_show, NULL);
480
481 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
482 struct device_attribute *attr, char *buf)
483 {
484 struct regulator_dev *rdev = dev_get_drvdata(dev);
485
486 return regulator_print_state(buf,
487 rdev->constraints->state_mem.enabled);
488 }
489 static DEVICE_ATTR(suspend_mem_state, 0444,
490 regulator_suspend_mem_state_show, NULL);
491
492 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
493 struct device_attribute *attr, char *buf)
494 {
495 struct regulator_dev *rdev = dev_get_drvdata(dev);
496
497 return regulator_print_state(buf,
498 rdev->constraints->state_disk.enabled);
499 }
500 static DEVICE_ATTR(suspend_disk_state, 0444,
501 regulator_suspend_disk_state_show, NULL);
502
503 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
504 struct device_attribute *attr, char *buf)
505 {
506 struct regulator_dev *rdev = dev_get_drvdata(dev);
507
508 return regulator_print_state(buf,
509 rdev->constraints->state_standby.enabled);
510 }
511 static DEVICE_ATTR(suspend_standby_state, 0444,
512 regulator_suspend_standby_state_show, NULL);
513
514
515 /*
516 * These are the only attributes are present for all regulators.
517 * Other attributes are a function of regulator functionality.
518 */
519 static struct device_attribute regulator_dev_attrs[] = {
520 __ATTR(name, 0444, regulator_name_show, NULL),
521 __ATTR(num_users, 0444, regulator_num_users_show, NULL),
522 __ATTR(type, 0444, regulator_type_show, NULL),
523 __ATTR_NULL,
524 };
525
526 static void regulator_dev_release(struct device *dev)
527 {
528 struct regulator_dev *rdev = dev_get_drvdata(dev);
529 kfree(rdev);
530 }
531
532 static struct class regulator_class = {
533 .name = "regulator",
534 .dev_release = regulator_dev_release,
535 .dev_attrs = regulator_dev_attrs,
536 };
537
538 /* Calculate the new optimum regulator operating mode based on the new total
539 * consumer load. All locks held by caller */
540 static void drms_uA_update(struct regulator_dev *rdev)
541 {
542 struct regulator *sibling;
543 int current_uA = 0, output_uV, input_uV, err;
544 unsigned int mode;
545
546 err = regulator_check_drms(rdev);
547 if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
548 !rdev->desc->ops->get_voltage || !rdev->desc->ops->set_mode)
549 return;
550
551 /* get output voltage */
552 output_uV = rdev->desc->ops->get_voltage(rdev);
553 if (output_uV <= 0)
554 return;
555
556 /* get input voltage */
557 if (rdev->supply && rdev->supply->desc->ops->get_voltage)
558 input_uV = rdev->supply->desc->ops->get_voltage(rdev->supply);
559 else
560 input_uV = rdev->constraints->input_uV;
561 if (input_uV <= 0)
562 return;
563
564 /* calc total requested load */
565 list_for_each_entry(sibling, &rdev->consumer_list, list)
566 current_uA += sibling->uA_load;
567
568 /* now get the optimum mode for our new total regulator load */
569 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
570 output_uV, current_uA);
571
572 /* check the new mode is allowed */
573 err = regulator_check_mode(rdev, mode);
574 if (err == 0)
575 rdev->desc->ops->set_mode(rdev, mode);
576 }
577
578 static int suspend_set_state(struct regulator_dev *rdev,
579 struct regulator_state *rstate)
580 {
581 int ret = 0;
582
583 /* enable & disable are mandatory for suspend control */
584 if (!rdev->desc->ops->set_suspend_enable ||
585 !rdev->desc->ops->set_suspend_disable) {
586 printk(KERN_ERR "%s: no way to set suspend state\n",
587 __func__);
588 return -EINVAL;
589 }
590
591 if (rstate->enabled)
592 ret = rdev->desc->ops->set_suspend_enable(rdev);
593 else
594 ret = rdev->desc->ops->set_suspend_disable(rdev);
595 if (ret < 0) {
596 printk(KERN_ERR "%s: failed to enabled/disable\n", __func__);
597 return ret;
598 }
599
600 if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
601 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
602 if (ret < 0) {
603 printk(KERN_ERR "%s: failed to set voltage\n",
604 __func__);
605 return ret;
606 }
607 }
608
609 if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
610 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
611 if (ret < 0) {
612 printk(KERN_ERR "%s: failed to set mode\n", __func__);
613 return ret;
614 }
615 }
616 return ret;
617 }
618
619 /* locks held by caller */
620 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
621 {
622 if (!rdev->constraints)
623 return -EINVAL;
624
625 switch (state) {
626 case PM_SUSPEND_STANDBY:
627 return suspend_set_state(rdev,
628 &rdev->constraints->state_standby);
629 case PM_SUSPEND_MEM:
630 return suspend_set_state(rdev,
631 &rdev->constraints->state_mem);
632 case PM_SUSPEND_MAX:
633 return suspend_set_state(rdev,
634 &rdev->constraints->state_disk);
635 default:
636 return -EINVAL;
637 }
638 }
639
640 static void print_constraints(struct regulator_dev *rdev)
641 {
642 struct regulation_constraints *constraints = rdev->constraints;
643 char buf[80];
644 int count;
645
646 if (rdev->desc->type == REGULATOR_VOLTAGE) {
647 if (constraints->min_uV == constraints->max_uV)
648 count = sprintf(buf, "%d mV ",
649 constraints->min_uV / 1000);
650 else
651 count = sprintf(buf, "%d <--> %d mV ",
652 constraints->min_uV / 1000,
653 constraints->max_uV / 1000);
654 } else {
655 if (constraints->min_uA == constraints->max_uA)
656 count = sprintf(buf, "%d mA ",
657 constraints->min_uA / 1000);
658 else
659 count = sprintf(buf, "%d <--> %d mA ",
660 constraints->min_uA / 1000,
661 constraints->max_uA / 1000);
662 }
663 if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
664 count += sprintf(buf + count, "fast ");
665 if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
666 count += sprintf(buf + count, "normal ");
667 if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
668 count += sprintf(buf + count, "idle ");
669 if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
670 count += sprintf(buf + count, "standby");
671
672 printk(KERN_INFO "regulator: %s: %s\n", rdev->desc->name, buf);
673 }
674
675 /**
676 * set_machine_constraints - sets regulator constraints
677 * @rdev: regulator source
678 * @constraints: constraints to apply
679 *
680 * Allows platform initialisation code to define and constrain
681 * regulator circuits e.g. valid voltage/current ranges, etc. NOTE:
682 * Constraints *must* be set by platform code in order for some
683 * regulator operations to proceed i.e. set_voltage, set_current_limit,
684 * set_mode.
685 */
686 static int set_machine_constraints(struct regulator_dev *rdev,
687 struct regulation_constraints *constraints)
688 {
689 int ret = 0;
690 const char *name;
691 struct regulator_ops *ops = rdev->desc->ops;
692
693 if (constraints->name)
694 name = constraints->name;
695 else if (rdev->desc->name)
696 name = rdev->desc->name;
697 else
698 name = "regulator";
699
700 /* constrain machine-level voltage specs to fit
701 * the actual range supported by this regulator.
702 */
703 if (ops->list_voltage && rdev->desc->n_voltages) {
704 int count = rdev->desc->n_voltages;
705 int i;
706 int min_uV = INT_MAX;
707 int max_uV = INT_MIN;
708 int cmin = constraints->min_uV;
709 int cmax = constraints->max_uV;
710
711 /* it's safe to autoconfigure fixed-voltage supplies
712 and the constraints are used by list_voltage. */
713 if (count == 1 && !cmin) {
714 cmin = 1;
715 cmax = INT_MAX;
716 constraints->min_uV = cmin;
717 constraints->max_uV = cmax;
718 }
719
720 /* voltage constraints are optional */
721 if ((cmin == 0) && (cmax == 0))
722 goto out;
723
724 /* else require explicit machine-level constraints */
725 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
726 pr_err("%s: %s '%s' voltage constraints\n",
727 __func__, "invalid", name);
728 ret = -EINVAL;
729 goto out;
730 }
731
732 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
733 for (i = 0; i < count; i++) {
734 int value;
735
736 value = ops->list_voltage(rdev, i);
737 if (value <= 0)
738 continue;
739
740 /* maybe adjust [min_uV..max_uV] */
741 if (value >= cmin && value < min_uV)
742 min_uV = value;
743 if (value <= cmax && value > max_uV)
744 max_uV = value;
745 }
746
747 /* final: [min_uV..max_uV] valid iff constraints valid */
748 if (max_uV < min_uV) {
749 pr_err("%s: %s '%s' voltage constraints\n",
750 __func__, "unsupportable", name);
751 ret = -EINVAL;
752 goto out;
753 }
754
755 /* use regulator's subset of machine constraints */
756 if (constraints->min_uV < min_uV) {
757 pr_debug("%s: override '%s' %s, %d -> %d\n",
758 __func__, name, "min_uV",
759 constraints->min_uV, min_uV);
760 constraints->min_uV = min_uV;
761 }
762 if (constraints->max_uV > max_uV) {
763 pr_debug("%s: override '%s' %s, %d -> %d\n",
764 __func__, name, "max_uV",
765 constraints->max_uV, max_uV);
766 constraints->max_uV = max_uV;
767 }
768 }
769
770 rdev->constraints = constraints;
771
772 /* do we need to apply the constraint voltage */
773 if (rdev->constraints->apply_uV &&
774 rdev->constraints->min_uV == rdev->constraints->max_uV &&
775 ops->set_voltage) {
776 ret = ops->set_voltage(rdev,
777 rdev->constraints->min_uV, rdev->constraints->max_uV);
778 if (ret < 0) {
779 printk(KERN_ERR "%s: failed to apply %duV constraint to %s\n",
780 __func__,
781 rdev->constraints->min_uV, name);
782 rdev->constraints = NULL;
783 goto out;
784 }
785 }
786
787 /* do we need to setup our suspend state */
788 if (constraints->initial_state) {
789 ret = suspend_prepare(rdev, constraints->initial_state);
790 if (ret < 0) {
791 printk(KERN_ERR "%s: failed to set suspend state for %s\n",
792 __func__, name);
793 rdev->constraints = NULL;
794 goto out;
795 }
796 }
797
798 if (constraints->initial_mode) {
799 if (!ops->set_mode) {
800 printk(KERN_ERR "%s: no set_mode operation for %s\n",
801 __func__, name);
802 ret = -EINVAL;
803 goto out;
804 }
805
806 ret = ops->set_mode(rdev, constraints->initial_mode);
807 if (ret < 0) {
808 printk(KERN_ERR
809 "%s: failed to set initial mode for %s: %d\n",
810 __func__, name, ret);
811 goto out;
812 }
813 }
814
815 /* If the constraints say the regulator should be on at this point
816 * and we have control then make sure it is enabled.
817 */
818 if ((constraints->always_on || constraints->boot_on) && ops->enable) {
819 ret = ops->enable(rdev);
820 if (ret < 0) {
821 printk(KERN_ERR "%s: failed to enable %s\n",
822 __func__, name);
823 rdev->constraints = NULL;
824 goto out;
825 }
826 }
827
828 print_constraints(rdev);
829 out:
830 return ret;
831 }
832
833 /**
834 * set_supply - set regulator supply regulator
835 * @rdev: regulator name
836 * @supply_rdev: supply regulator name
837 *
838 * Called by platform initialisation code to set the supply regulator for this
839 * regulator. This ensures that a regulators supply will also be enabled by the
840 * core if it's child is enabled.
841 */
842 static int set_supply(struct regulator_dev *rdev,
843 struct regulator_dev *supply_rdev)
844 {
845 int err;
846
847 err = sysfs_create_link(&rdev->dev.kobj, &supply_rdev->dev.kobj,
848 "supply");
849 if (err) {
850 printk(KERN_ERR
851 "%s: could not add device link %s err %d\n",
852 __func__, supply_rdev->dev.kobj.name, err);
853 goto out;
854 }
855 rdev->supply = supply_rdev;
856 list_add(&rdev->slist, &supply_rdev->supply_list);
857 out:
858 return err;
859 }
860
861 /**
862 * set_consumer_device_supply: Bind a regulator to a symbolic supply
863 * @rdev: regulator source
864 * @consumer_dev: device the supply applies to
865 * @consumer_dev_name: dev_name() string for device supply applies to
866 * @supply: symbolic name for supply
867 *
868 * Allows platform initialisation code to map physical regulator
869 * sources to symbolic names for supplies for use by devices. Devices
870 * should use these symbolic names to request regulators, avoiding the
871 * need to provide board-specific regulator names as platform data.
872 *
873 * Only one of consumer_dev and consumer_dev_name may be specified.
874 */
875 static int set_consumer_device_supply(struct regulator_dev *rdev,
876 struct device *consumer_dev, const char *consumer_dev_name,
877 const char *supply)
878 {
879 struct regulator_map *node;
880 int has_dev;
881
882 if (consumer_dev && consumer_dev_name)
883 return -EINVAL;
884
885 if (!consumer_dev_name && consumer_dev)
886 consumer_dev_name = dev_name(consumer_dev);
887
888 if (supply == NULL)
889 return -EINVAL;
890
891 if (consumer_dev_name != NULL)
892 has_dev = 1;
893 else
894 has_dev = 0;
895
896 list_for_each_entry(node, &regulator_map_list, list) {
897 if (consumer_dev_name != node->dev_name)
898 continue;
899 if (strcmp(node->supply, supply) != 0)
900 continue;
901
902 dev_dbg(consumer_dev, "%s/%s is '%s' supply; fail %s/%s\n",
903 dev_name(&node->regulator->dev),
904 node->regulator->desc->name,
905 supply,
906 dev_name(&rdev->dev), rdev->desc->name);
907 return -EBUSY;
908 }
909
910 node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
911 if (node == NULL)
912 return -ENOMEM;
913
914 node->regulator = rdev;
915 node->supply = supply;
916
917 if (has_dev) {
918 node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
919 if (node->dev_name == NULL) {
920 kfree(node);
921 return -ENOMEM;
922 }
923 }
924
925 list_add(&node->list, &regulator_map_list);
926 return 0;
927 }
928
929 static void unset_consumer_device_supply(struct regulator_dev *rdev,
930 const char *consumer_dev_name, struct device *consumer_dev)
931 {
932 struct regulator_map *node, *n;
933
934 if (consumer_dev && !consumer_dev_name)
935 consumer_dev_name = dev_name(consumer_dev);
936
937 list_for_each_entry_safe(node, n, &regulator_map_list, list) {
938 if (rdev != node->regulator)
939 continue;
940
941 if (consumer_dev_name && node->dev_name &&
942 strcmp(consumer_dev_name, node->dev_name))
943 continue;
944
945 list_del(&node->list);
946 kfree(node->dev_name);
947 kfree(node);
948 return;
949 }
950 }
951
952 static void unset_regulator_supplies(struct regulator_dev *rdev)
953 {
954 struct regulator_map *node, *n;
955
956 list_for_each_entry_safe(node, n, &regulator_map_list, list) {
957 if (rdev == node->regulator) {
958 list_del(&node->list);
959 kfree(node->dev_name);
960 kfree(node);
961 return;
962 }
963 }
964 }
965
966 #define REG_STR_SIZE 32
967
968 static struct regulator *create_regulator(struct regulator_dev *rdev,
969 struct device *dev,
970 const char *supply_name)
971 {
972 struct regulator *regulator;
973 char buf[REG_STR_SIZE];
974 int err, size;
975
976 regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
977 if (regulator == NULL)
978 return NULL;
979
980 mutex_lock(&rdev->mutex);
981 regulator->rdev = rdev;
982 list_add(&regulator->list, &rdev->consumer_list);
983
984 if (dev) {
985 /* create a 'requested_microamps_name' sysfs entry */
986 size = scnprintf(buf, REG_STR_SIZE, "microamps_requested_%s",
987 supply_name);
988 if (size >= REG_STR_SIZE)
989 goto overflow_err;
990
991 regulator->dev = dev;
992 regulator->dev_attr.attr.name = kstrdup(buf, GFP_KERNEL);
993 if (regulator->dev_attr.attr.name == NULL)
994 goto attr_name_err;
995
996 regulator->dev_attr.attr.owner = THIS_MODULE;
997 regulator->dev_attr.attr.mode = 0444;
998 regulator->dev_attr.show = device_requested_uA_show;
999 err = device_create_file(dev, &regulator->dev_attr);
1000 if (err < 0) {
1001 printk(KERN_WARNING "%s: could not add regulator_dev"
1002 " load sysfs\n", __func__);
1003 goto attr_name_err;
1004 }
1005
1006 /* also add a link to the device sysfs entry */
1007 size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1008 dev->kobj.name, supply_name);
1009 if (size >= REG_STR_SIZE)
1010 goto attr_err;
1011
1012 regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1013 if (regulator->supply_name == NULL)
1014 goto attr_err;
1015
1016 err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1017 buf);
1018 if (err) {
1019 printk(KERN_WARNING
1020 "%s: could not add device link %s err %d\n",
1021 __func__, dev->kobj.name, err);
1022 device_remove_file(dev, &regulator->dev_attr);
1023 goto link_name_err;
1024 }
1025 }
1026 mutex_unlock(&rdev->mutex);
1027 return regulator;
1028 link_name_err:
1029 kfree(regulator->supply_name);
1030 attr_err:
1031 device_remove_file(regulator->dev, &regulator->dev_attr);
1032 attr_name_err:
1033 kfree(regulator->dev_attr.attr.name);
1034 overflow_err:
1035 list_del(&regulator->list);
1036 kfree(regulator);
1037 mutex_unlock(&rdev->mutex);
1038 return NULL;
1039 }
1040
1041 /* Internal regulator request function */
1042 static struct regulator *_regulator_get(struct device *dev, const char *id,
1043 int exclusive)
1044 {
1045 struct regulator_dev *rdev;
1046 struct regulator_map *map;
1047 struct regulator *regulator = ERR_PTR(-ENODEV);
1048 const char *devname = NULL;
1049 int ret;
1050
1051 if (id == NULL) {
1052 printk(KERN_ERR "regulator: get() with no identifier\n");
1053 return regulator;
1054 }
1055
1056 if (dev)
1057 devname = dev_name(dev);
1058
1059 mutex_lock(&regulator_list_mutex);
1060
1061 list_for_each_entry(map, &regulator_map_list, list) {
1062 /* If the mapping has a device set up it must match */
1063 if (map->dev_name &&
1064 (!devname || strcmp(map->dev_name, devname)))
1065 continue;
1066
1067 if (strcmp(map->supply, id) == 0) {
1068 rdev = map->regulator;
1069 goto found;
1070 }
1071 }
1072 mutex_unlock(&regulator_list_mutex);
1073 return regulator;
1074
1075 found:
1076 if (rdev->exclusive) {
1077 regulator = ERR_PTR(-EPERM);
1078 goto out;
1079 }
1080
1081 if (exclusive && rdev->open_count) {
1082 regulator = ERR_PTR(-EBUSY);
1083 goto out;
1084 }
1085
1086 if (!try_module_get(rdev->owner))
1087 goto out;
1088
1089 regulator = create_regulator(rdev, dev, id);
1090 if (regulator == NULL) {
1091 regulator = ERR_PTR(-ENOMEM);
1092 module_put(rdev->owner);
1093 }
1094
1095 rdev->open_count++;
1096 if (exclusive) {
1097 rdev->exclusive = 1;
1098
1099 ret = _regulator_is_enabled(rdev);
1100 if (ret > 0)
1101 rdev->use_count = 1;
1102 else
1103 rdev->use_count = 0;
1104 }
1105
1106 out:
1107 mutex_unlock(&regulator_list_mutex);
1108
1109 return regulator;
1110 }
1111
1112 /**
1113 * regulator_get - lookup and obtain a reference to a regulator.
1114 * @dev: device for regulator "consumer"
1115 * @id: Supply name or regulator ID.
1116 *
1117 * Returns a struct regulator corresponding to the regulator producer,
1118 * or IS_ERR() condition containing errno.
1119 *
1120 * Use of supply names configured via regulator_set_device_supply() is
1121 * strongly encouraged. It is recommended that the supply name used
1122 * should match the name used for the supply and/or the relevant
1123 * device pins in the datasheet.
1124 */
1125 struct regulator *regulator_get(struct device *dev, const char *id)
1126 {
1127 return _regulator_get(dev, id, 0);
1128 }
1129 EXPORT_SYMBOL_GPL(regulator_get);
1130
1131 /**
1132 * regulator_get_exclusive - obtain exclusive access to a regulator.
1133 * @dev: device for regulator "consumer"
1134 * @id: Supply name or regulator ID.
1135 *
1136 * Returns a struct regulator corresponding to the regulator producer,
1137 * or IS_ERR() condition containing errno. Other consumers will be
1138 * unable to obtain this reference is held and the use count for the
1139 * regulator will be initialised to reflect the current state of the
1140 * regulator.
1141 *
1142 * This is intended for use by consumers which cannot tolerate shared
1143 * use of the regulator such as those which need to force the
1144 * regulator off for correct operation of the hardware they are
1145 * controlling.
1146 *
1147 * Use of supply names configured via regulator_set_device_supply() is
1148 * strongly encouraged. It is recommended that the supply name used
1149 * should match the name used for the supply and/or the relevant
1150 * device pins in the datasheet.
1151 */
1152 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1153 {
1154 return _regulator_get(dev, id, 1);
1155 }
1156 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1157
1158 /**
1159 * regulator_put - "free" the regulator source
1160 * @regulator: regulator source
1161 *
1162 * Note: drivers must ensure that all regulator_enable calls made on this
1163 * regulator source are balanced by regulator_disable calls prior to calling
1164 * this function.
1165 */
1166 void regulator_put(struct regulator *regulator)
1167 {
1168 struct regulator_dev *rdev;
1169
1170 if (regulator == NULL || IS_ERR(regulator))
1171 return;
1172
1173 mutex_lock(&regulator_list_mutex);
1174 rdev = regulator->rdev;
1175
1176 /* remove any sysfs entries */
1177 if (regulator->dev) {
1178 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1179 kfree(regulator->supply_name);
1180 device_remove_file(regulator->dev, &regulator->dev_attr);
1181 kfree(regulator->dev_attr.attr.name);
1182 }
1183 list_del(&regulator->list);
1184 kfree(regulator);
1185
1186 rdev->open_count--;
1187 rdev->exclusive = 0;
1188
1189 module_put(rdev->owner);
1190 mutex_unlock(&regulator_list_mutex);
1191 }
1192 EXPORT_SYMBOL_GPL(regulator_put);
1193
1194 static int _regulator_can_change_status(struct regulator_dev *rdev)
1195 {
1196 if (!rdev->constraints)
1197 return 0;
1198
1199 if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
1200 return 1;
1201 else
1202 return 0;
1203 }
1204
1205 /* locks held by regulator_enable() */
1206 static int _regulator_enable(struct regulator_dev *rdev)
1207 {
1208 int ret;
1209
1210 /* do we need to enable the supply regulator first */
1211 if (rdev->supply) {
1212 ret = _regulator_enable(rdev->supply);
1213 if (ret < 0) {
1214 printk(KERN_ERR "%s: failed to enable %s: %d\n",
1215 __func__, rdev->desc->name, ret);
1216 return ret;
1217 }
1218 }
1219
1220 /* check voltage and requested load before enabling */
1221 if (rdev->constraints &&
1222 (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1223 drms_uA_update(rdev);
1224
1225 if (rdev->use_count == 0) {
1226 /* The regulator may on if it's not switchable or left on */
1227 ret = _regulator_is_enabled(rdev);
1228 if (ret == -EINVAL || ret == 0) {
1229 if (!_regulator_can_change_status(rdev))
1230 return -EPERM;
1231
1232 if (rdev->desc->ops->enable) {
1233 ret = rdev->desc->ops->enable(rdev);
1234 if (ret < 0)
1235 return ret;
1236 } else {
1237 return -EINVAL;
1238 }
1239 } else if (ret < 0) {
1240 printk(KERN_ERR "%s: is_enabled() failed for %s: %d\n",
1241 __func__, rdev->desc->name, ret);
1242 return ret;
1243 }
1244 /* Fallthrough on positive return values - already enabled */
1245 }
1246
1247 rdev->use_count++;
1248
1249 return 0;
1250 }
1251
1252 /**
1253 * regulator_enable - enable regulator output
1254 * @regulator: regulator source
1255 *
1256 * Request that the regulator be enabled with the regulator output at
1257 * the predefined voltage or current value. Calls to regulator_enable()
1258 * must be balanced with calls to regulator_disable().
1259 *
1260 * NOTE: the output value can be set by other drivers, boot loader or may be
1261 * hardwired in the regulator.
1262 */
1263 int regulator_enable(struct regulator *regulator)
1264 {
1265 struct regulator_dev *rdev = regulator->rdev;
1266 int ret = 0;
1267
1268 mutex_lock(&rdev->mutex);
1269 ret = _regulator_enable(rdev);
1270 mutex_unlock(&rdev->mutex);
1271 return ret;
1272 }
1273 EXPORT_SYMBOL_GPL(regulator_enable);
1274
1275 /* locks held by regulator_disable() */
1276 static int _regulator_disable(struct regulator_dev *rdev)
1277 {
1278 int ret = 0;
1279
1280 if (WARN(rdev->use_count <= 0,
1281 "unbalanced disables for %s\n",
1282 rdev->desc->name))
1283 return -EIO;
1284
1285 /* are we the last user and permitted to disable ? */
1286 if (rdev->use_count == 1 &&
1287 (rdev->constraints && !rdev->constraints->always_on)) {
1288
1289 /* we are last user */
1290 if (_regulator_can_change_status(rdev) &&
1291 rdev->desc->ops->disable) {
1292 ret = rdev->desc->ops->disable(rdev);
1293 if (ret < 0) {
1294 printk(KERN_ERR "%s: failed to disable %s\n",
1295 __func__, rdev->desc->name);
1296 return ret;
1297 }
1298 }
1299
1300 /* decrease our supplies ref count and disable if required */
1301 if (rdev->supply)
1302 _regulator_disable(rdev->supply);
1303
1304 rdev->use_count = 0;
1305 } else if (rdev->use_count > 1) {
1306
1307 if (rdev->constraints &&
1308 (rdev->constraints->valid_ops_mask &
1309 REGULATOR_CHANGE_DRMS))
1310 drms_uA_update(rdev);
1311
1312 rdev->use_count--;
1313 }
1314 return ret;
1315 }
1316
1317 /**
1318 * regulator_disable - disable regulator output
1319 * @regulator: regulator source
1320 *
1321 * Disable the regulator output voltage or current. Calls to
1322 * regulator_enable() must be balanced with calls to
1323 * regulator_disable().
1324 *
1325 * NOTE: this will only disable the regulator output if no other consumer
1326 * devices have it enabled, the regulator device supports disabling and
1327 * machine constraints permit this operation.
1328 */
1329 int regulator_disable(struct regulator *regulator)
1330 {
1331 struct regulator_dev *rdev = regulator->rdev;
1332 int ret = 0;
1333
1334 mutex_lock(&rdev->mutex);
1335 ret = _regulator_disable(rdev);
1336 mutex_unlock(&rdev->mutex);
1337 return ret;
1338 }
1339 EXPORT_SYMBOL_GPL(regulator_disable);
1340
1341 /* locks held by regulator_force_disable() */
1342 static int _regulator_force_disable(struct regulator_dev *rdev)
1343 {
1344 int ret = 0;
1345
1346 /* force disable */
1347 if (rdev->desc->ops->disable) {
1348 /* ah well, who wants to live forever... */
1349 ret = rdev->desc->ops->disable(rdev);
1350 if (ret < 0) {
1351 printk(KERN_ERR "%s: failed to force disable %s\n",
1352 __func__, rdev->desc->name);
1353 return ret;
1354 }
1355 /* notify other consumers that power has been forced off */
1356 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE,
1357 NULL);
1358 }
1359
1360 /* decrease our supplies ref count and disable if required */
1361 if (rdev->supply)
1362 _regulator_disable(rdev->supply);
1363
1364 rdev->use_count = 0;
1365 return ret;
1366 }
1367
1368 /**
1369 * regulator_force_disable - force disable regulator output
1370 * @regulator: regulator source
1371 *
1372 * Forcibly disable the regulator output voltage or current.
1373 * NOTE: this *will* disable the regulator output even if other consumer
1374 * devices have it enabled. This should be used for situations when device
1375 * damage will likely occur if the regulator is not disabled (e.g. over temp).
1376 */
1377 int regulator_force_disable(struct regulator *regulator)
1378 {
1379 int ret;
1380
1381 mutex_lock(&regulator->rdev->mutex);
1382 regulator->uA_load = 0;
1383 ret = _regulator_force_disable(regulator->rdev);
1384 mutex_unlock(&regulator->rdev->mutex);
1385 return ret;
1386 }
1387 EXPORT_SYMBOL_GPL(regulator_force_disable);
1388
1389 static int _regulator_is_enabled(struct regulator_dev *rdev)
1390 {
1391 /* sanity check */
1392 if (!rdev->desc->ops->is_enabled)
1393 return -EINVAL;
1394
1395 return rdev->desc->ops->is_enabled(rdev);
1396 }
1397
1398 /**
1399 * regulator_is_enabled - is the regulator output enabled
1400 * @regulator: regulator source
1401 *
1402 * Returns positive if the regulator driver backing the source/client
1403 * has requested that the device be enabled, zero if it hasn't, else a
1404 * negative errno code.
1405 *
1406 * Note that the device backing this regulator handle can have multiple
1407 * users, so it might be enabled even if regulator_enable() was never
1408 * called for this particular source.
1409 */
1410 int regulator_is_enabled(struct regulator *regulator)
1411 {
1412 int ret;
1413
1414 mutex_lock(&regulator->rdev->mutex);
1415 ret = _regulator_is_enabled(regulator->rdev);
1416 mutex_unlock(&regulator->rdev->mutex);
1417
1418 return ret;
1419 }
1420 EXPORT_SYMBOL_GPL(regulator_is_enabled);
1421
1422 /**
1423 * regulator_count_voltages - count regulator_list_voltage() selectors
1424 * @regulator: regulator source
1425 *
1426 * Returns number of selectors, or negative errno. Selectors are
1427 * numbered starting at zero, and typically correspond to bitfields
1428 * in hardware registers.
1429 */
1430 int regulator_count_voltages(struct regulator *regulator)
1431 {
1432 struct regulator_dev *rdev = regulator->rdev;
1433
1434 return rdev->desc->n_voltages ? : -EINVAL;
1435 }
1436 EXPORT_SYMBOL_GPL(regulator_count_voltages);
1437
1438 /**
1439 * regulator_list_voltage - enumerate supported voltages
1440 * @regulator: regulator source
1441 * @selector: identify voltage to list
1442 * Context: can sleep
1443 *
1444 * Returns a voltage that can be passed to @regulator_set_voltage(),
1445 * zero if this selector code can't be used on this sytem, or a
1446 * negative errno.
1447 */
1448 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
1449 {
1450 struct regulator_dev *rdev = regulator->rdev;
1451 struct regulator_ops *ops = rdev->desc->ops;
1452 int ret;
1453
1454 if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
1455 return -EINVAL;
1456
1457 mutex_lock(&rdev->mutex);
1458 ret = ops->list_voltage(rdev, selector);
1459 mutex_unlock(&rdev->mutex);
1460
1461 if (ret > 0) {
1462 if (ret < rdev->constraints->min_uV)
1463 ret = 0;
1464 else if (ret > rdev->constraints->max_uV)
1465 ret = 0;
1466 }
1467
1468 return ret;
1469 }
1470 EXPORT_SYMBOL_GPL(regulator_list_voltage);
1471
1472 /**
1473 * regulator_is_supported_voltage - check if a voltage range can be supported
1474 *
1475 * @regulator: Regulator to check.
1476 * @min_uV: Minimum required voltage in uV.
1477 * @max_uV: Maximum required voltage in uV.
1478 *
1479 * Returns a boolean or a negative error code.
1480 */
1481 int regulator_is_supported_voltage(struct regulator *regulator,
1482 int min_uV, int max_uV)
1483 {
1484 int i, voltages, ret;
1485
1486 ret = regulator_count_voltages(regulator);
1487 if (ret < 0)
1488 return ret;
1489 voltages = ret;
1490
1491 for (i = 0; i < voltages; i++) {
1492 ret = regulator_list_voltage(regulator, i);
1493
1494 if (ret >= min_uV && ret <= max_uV)
1495 return 1;
1496 }
1497
1498 return 0;
1499 }
1500
1501 /**
1502 * regulator_set_voltage - set regulator output voltage
1503 * @regulator: regulator source
1504 * @min_uV: Minimum required voltage in uV
1505 * @max_uV: Maximum acceptable voltage in uV
1506 *
1507 * Sets a voltage regulator to the desired output voltage. This can be set
1508 * during any regulator state. IOW, regulator can be disabled or enabled.
1509 *
1510 * If the regulator is enabled then the voltage will change to the new value
1511 * immediately otherwise if the regulator is disabled the regulator will
1512 * output at the new voltage when enabled.
1513 *
1514 * NOTE: If the regulator is shared between several devices then the lowest
1515 * request voltage that meets the system constraints will be used.
1516 * Regulator system constraints must be set for this regulator before
1517 * calling this function otherwise this call will fail.
1518 */
1519 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
1520 {
1521 struct regulator_dev *rdev = regulator->rdev;
1522 int ret;
1523
1524 mutex_lock(&rdev->mutex);
1525
1526 /* sanity check */
1527 if (!rdev->desc->ops->set_voltage) {
1528 ret = -EINVAL;
1529 goto out;
1530 }
1531
1532 /* constraints check */
1533 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
1534 if (ret < 0)
1535 goto out;
1536 regulator->min_uV = min_uV;
1537 regulator->max_uV = max_uV;
1538 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV);
1539
1540 out:
1541 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE, NULL);
1542 mutex_unlock(&rdev->mutex);
1543 return ret;
1544 }
1545 EXPORT_SYMBOL_GPL(regulator_set_voltage);
1546
1547 static int _regulator_get_voltage(struct regulator_dev *rdev)
1548 {
1549 /* sanity check */
1550 if (rdev->desc->ops->get_voltage)
1551 return rdev->desc->ops->get_voltage(rdev);
1552 else
1553 return -EINVAL;
1554 }
1555
1556 /**
1557 * regulator_get_voltage - get regulator output voltage
1558 * @regulator: regulator source
1559 *
1560 * This returns the current regulator voltage in uV.
1561 *
1562 * NOTE: If the regulator is disabled it will return the voltage value. This
1563 * function should not be used to determine regulator state.
1564 */
1565 int regulator_get_voltage(struct regulator *regulator)
1566 {
1567 int ret;
1568
1569 mutex_lock(&regulator->rdev->mutex);
1570
1571 ret = _regulator_get_voltage(regulator->rdev);
1572
1573 mutex_unlock(&regulator->rdev->mutex);
1574
1575 return ret;
1576 }
1577 EXPORT_SYMBOL_GPL(regulator_get_voltage);
1578
1579 /**
1580 * regulator_set_current_limit - set regulator output current limit
1581 * @regulator: regulator source
1582 * @min_uA: Minimuum supported current in uA
1583 * @max_uA: Maximum supported current in uA
1584 *
1585 * Sets current sink to the desired output current. This can be set during
1586 * any regulator state. IOW, regulator can be disabled or enabled.
1587 *
1588 * If the regulator is enabled then the current will change to the new value
1589 * immediately otherwise if the regulator is disabled the regulator will
1590 * output at the new current when enabled.
1591 *
1592 * NOTE: Regulator system constraints must be set for this regulator before
1593 * calling this function otherwise this call will fail.
1594 */
1595 int regulator_set_current_limit(struct regulator *regulator,
1596 int min_uA, int max_uA)
1597 {
1598 struct regulator_dev *rdev = regulator->rdev;
1599 int ret;
1600
1601 mutex_lock(&rdev->mutex);
1602
1603 /* sanity check */
1604 if (!rdev->desc->ops->set_current_limit) {
1605 ret = -EINVAL;
1606 goto out;
1607 }
1608
1609 /* constraints check */
1610 ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
1611 if (ret < 0)
1612 goto out;
1613
1614 ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
1615 out:
1616 mutex_unlock(&rdev->mutex);
1617 return ret;
1618 }
1619 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
1620
1621 static int _regulator_get_current_limit(struct regulator_dev *rdev)
1622 {
1623 int ret;
1624
1625 mutex_lock(&rdev->mutex);
1626
1627 /* sanity check */
1628 if (!rdev->desc->ops->get_current_limit) {
1629 ret = -EINVAL;
1630 goto out;
1631 }
1632
1633 ret = rdev->desc->ops->get_current_limit(rdev);
1634 out:
1635 mutex_unlock(&rdev->mutex);
1636 return ret;
1637 }
1638
1639 /**
1640 * regulator_get_current_limit - get regulator output current
1641 * @regulator: regulator source
1642 *
1643 * This returns the current supplied by the specified current sink in uA.
1644 *
1645 * NOTE: If the regulator is disabled it will return the current value. This
1646 * function should not be used to determine regulator state.
1647 */
1648 int regulator_get_current_limit(struct regulator *regulator)
1649 {
1650 return _regulator_get_current_limit(regulator->rdev);
1651 }
1652 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
1653
1654 /**
1655 * regulator_set_mode - set regulator operating mode
1656 * @regulator: regulator source
1657 * @mode: operating mode - one of the REGULATOR_MODE constants
1658 *
1659 * Set regulator operating mode to increase regulator efficiency or improve
1660 * regulation performance.
1661 *
1662 * NOTE: Regulator system constraints must be set for this regulator before
1663 * calling this function otherwise this call will fail.
1664 */
1665 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
1666 {
1667 struct regulator_dev *rdev = regulator->rdev;
1668 int ret;
1669
1670 mutex_lock(&rdev->mutex);
1671
1672 /* sanity check */
1673 if (!rdev->desc->ops->set_mode) {
1674 ret = -EINVAL;
1675 goto out;
1676 }
1677
1678 /* constraints check */
1679 ret = regulator_check_mode(rdev, mode);
1680 if (ret < 0)
1681 goto out;
1682
1683 ret = rdev->desc->ops->set_mode(rdev, mode);
1684 out:
1685 mutex_unlock(&rdev->mutex);
1686 return ret;
1687 }
1688 EXPORT_SYMBOL_GPL(regulator_set_mode);
1689
1690 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
1691 {
1692 int ret;
1693
1694 mutex_lock(&rdev->mutex);
1695
1696 /* sanity check */
1697 if (!rdev->desc->ops->get_mode) {
1698 ret = -EINVAL;
1699 goto out;
1700 }
1701
1702 ret = rdev->desc->ops->get_mode(rdev);
1703 out:
1704 mutex_unlock(&rdev->mutex);
1705 return ret;
1706 }
1707
1708 /**
1709 * regulator_get_mode - get regulator operating mode
1710 * @regulator: regulator source
1711 *
1712 * Get the current regulator operating mode.
1713 */
1714 unsigned int regulator_get_mode(struct regulator *regulator)
1715 {
1716 return _regulator_get_mode(regulator->rdev);
1717 }
1718 EXPORT_SYMBOL_GPL(regulator_get_mode);
1719
1720 /**
1721 * regulator_set_optimum_mode - set regulator optimum operating mode
1722 * @regulator: regulator source
1723 * @uA_load: load current
1724 *
1725 * Notifies the regulator core of a new device load. This is then used by
1726 * DRMS (if enabled by constraints) to set the most efficient regulator
1727 * operating mode for the new regulator loading.
1728 *
1729 * Consumer devices notify their supply regulator of the maximum power
1730 * they will require (can be taken from device datasheet in the power
1731 * consumption tables) when they change operational status and hence power
1732 * state. Examples of operational state changes that can affect power
1733 * consumption are :-
1734 *
1735 * o Device is opened / closed.
1736 * o Device I/O is about to begin or has just finished.
1737 * o Device is idling in between work.
1738 *
1739 * This information is also exported via sysfs to userspace.
1740 *
1741 * DRMS will sum the total requested load on the regulator and change
1742 * to the most efficient operating mode if platform constraints allow.
1743 *
1744 * Returns the new regulator mode or error.
1745 */
1746 int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
1747 {
1748 struct regulator_dev *rdev = regulator->rdev;
1749 struct regulator *consumer;
1750 int ret, output_uV, input_uV, total_uA_load = 0;
1751 unsigned int mode;
1752
1753 mutex_lock(&rdev->mutex);
1754
1755 regulator->uA_load = uA_load;
1756 ret = regulator_check_drms(rdev);
1757 if (ret < 0)
1758 goto out;
1759 ret = -EINVAL;
1760
1761 /* sanity check */
1762 if (!rdev->desc->ops->get_optimum_mode)
1763 goto out;
1764
1765 /* get output voltage */
1766 output_uV = rdev->desc->ops->get_voltage(rdev);
1767 if (output_uV <= 0) {
1768 printk(KERN_ERR "%s: invalid output voltage found for %s\n",
1769 __func__, rdev->desc->name);
1770 goto out;
1771 }
1772
1773 /* get input voltage */
1774 if (rdev->supply && rdev->supply->desc->ops->get_voltage)
1775 input_uV = rdev->supply->desc->ops->get_voltage(rdev->supply);
1776 else
1777 input_uV = rdev->constraints->input_uV;
1778 if (input_uV <= 0) {
1779 printk(KERN_ERR "%s: invalid input voltage found for %s\n",
1780 __func__, rdev->desc->name);
1781 goto out;
1782 }
1783
1784 /* calc total requested load for this regulator */
1785 list_for_each_entry(consumer, &rdev->consumer_list, list)
1786 total_uA_load += consumer->uA_load;
1787
1788 mode = rdev->desc->ops->get_optimum_mode(rdev,
1789 input_uV, output_uV,
1790 total_uA_load);
1791 ret = regulator_check_mode(rdev, mode);
1792 if (ret < 0) {
1793 printk(KERN_ERR "%s: failed to get optimum mode for %s @"
1794 " %d uA %d -> %d uV\n", __func__, rdev->desc->name,
1795 total_uA_load, input_uV, output_uV);
1796 goto out;
1797 }
1798
1799 ret = rdev->desc->ops->set_mode(rdev, mode);
1800 if (ret < 0) {
1801 printk(KERN_ERR "%s: failed to set optimum mode %x for %s\n",
1802 __func__, mode, rdev->desc->name);
1803 goto out;
1804 }
1805 ret = mode;
1806 out:
1807 mutex_unlock(&rdev->mutex);
1808 return ret;
1809 }
1810 EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
1811
1812 /**
1813 * regulator_register_notifier - register regulator event notifier
1814 * @regulator: regulator source
1815 * @nb: notifier block
1816 *
1817 * Register notifier block to receive regulator events.
1818 */
1819 int regulator_register_notifier(struct regulator *regulator,
1820 struct notifier_block *nb)
1821 {
1822 return blocking_notifier_chain_register(&regulator->rdev->notifier,
1823 nb);
1824 }
1825 EXPORT_SYMBOL_GPL(regulator_register_notifier);
1826
1827 /**
1828 * regulator_unregister_notifier - unregister regulator event notifier
1829 * @regulator: regulator source
1830 * @nb: notifier block
1831 *
1832 * Unregister regulator event notifier block.
1833 */
1834 int regulator_unregister_notifier(struct regulator *regulator,
1835 struct notifier_block *nb)
1836 {
1837 return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
1838 nb);
1839 }
1840 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
1841
1842 /* notify regulator consumers and downstream regulator consumers.
1843 * Note mutex must be held by caller.
1844 */
1845 static void _notifier_call_chain(struct regulator_dev *rdev,
1846 unsigned long event, void *data)
1847 {
1848 struct regulator_dev *_rdev;
1849
1850 /* call rdev chain first */
1851 blocking_notifier_call_chain(&rdev->notifier, event, NULL);
1852
1853 /* now notify regulator we supply */
1854 list_for_each_entry(_rdev, &rdev->supply_list, slist) {
1855 mutex_lock(&_rdev->mutex);
1856 _notifier_call_chain(_rdev, event, data);
1857 mutex_unlock(&_rdev->mutex);
1858 }
1859 }
1860
1861 /**
1862 * regulator_bulk_get - get multiple regulator consumers
1863 *
1864 * @dev: Device to supply
1865 * @num_consumers: Number of consumers to register
1866 * @consumers: Configuration of consumers; clients are stored here.
1867 *
1868 * @return 0 on success, an errno on failure.
1869 *
1870 * This helper function allows drivers to get several regulator
1871 * consumers in one operation. If any of the regulators cannot be
1872 * acquired then any regulators that were allocated will be freed
1873 * before returning to the caller.
1874 */
1875 int regulator_bulk_get(struct device *dev, int num_consumers,
1876 struct regulator_bulk_data *consumers)
1877 {
1878 int i;
1879 int ret;
1880
1881 for (i = 0; i < num_consumers; i++)
1882 consumers[i].consumer = NULL;
1883
1884 for (i = 0; i < num_consumers; i++) {
1885 consumers[i].consumer = regulator_get(dev,
1886 consumers[i].supply);
1887 if (IS_ERR(consumers[i].consumer)) {
1888 dev_err(dev, "Failed to get supply '%s'\n",
1889 consumers[i].supply);
1890 ret = PTR_ERR(consumers[i].consumer);
1891 consumers[i].consumer = NULL;
1892 goto err;
1893 }
1894 }
1895
1896 return 0;
1897
1898 err:
1899 for (i = 0; i < num_consumers && consumers[i].consumer; i++)
1900 regulator_put(consumers[i].consumer);
1901
1902 return ret;
1903 }
1904 EXPORT_SYMBOL_GPL(regulator_bulk_get);
1905
1906 /**
1907 * regulator_bulk_enable - enable multiple regulator consumers
1908 *
1909 * @num_consumers: Number of consumers
1910 * @consumers: Consumer data; clients are stored here.
1911 * @return 0 on success, an errno on failure
1912 *
1913 * This convenience API allows consumers to enable multiple regulator
1914 * clients in a single API call. If any consumers cannot be enabled
1915 * then any others that were enabled will be disabled again prior to
1916 * return.
1917 */
1918 int regulator_bulk_enable(int num_consumers,
1919 struct regulator_bulk_data *consumers)
1920 {
1921 int i;
1922 int ret;
1923
1924 for (i = 0; i < num_consumers; i++) {
1925 ret = regulator_enable(consumers[i].consumer);
1926 if (ret != 0)
1927 goto err;
1928 }
1929
1930 return 0;
1931
1932 err:
1933 printk(KERN_ERR "Failed to enable %s\n", consumers[i].supply);
1934 for (i = 0; i < num_consumers; i++)
1935 regulator_disable(consumers[i].consumer);
1936
1937 return ret;
1938 }
1939 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
1940
1941 /**
1942 * regulator_bulk_disable - disable multiple regulator consumers
1943 *
1944 * @num_consumers: Number of consumers
1945 * @consumers: Consumer data; clients are stored here.
1946 * @return 0 on success, an errno on failure
1947 *
1948 * This convenience API allows consumers to disable multiple regulator
1949 * clients in a single API call. If any consumers cannot be enabled
1950 * then any others that were disabled will be disabled again prior to
1951 * return.
1952 */
1953 int regulator_bulk_disable(int num_consumers,
1954 struct regulator_bulk_data *consumers)
1955 {
1956 int i;
1957 int ret;
1958
1959 for (i = 0; i < num_consumers; i++) {
1960 ret = regulator_disable(consumers[i].consumer);
1961 if (ret != 0)
1962 goto err;
1963 }
1964
1965 return 0;
1966
1967 err:
1968 printk(KERN_ERR "Failed to disable %s\n", consumers[i].supply);
1969 for (i = 0; i < num_consumers; i++)
1970 regulator_enable(consumers[i].consumer);
1971
1972 return ret;
1973 }
1974 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
1975
1976 /**
1977 * regulator_bulk_free - free multiple regulator consumers
1978 *
1979 * @num_consumers: Number of consumers
1980 * @consumers: Consumer data; clients are stored here.
1981 *
1982 * This convenience API allows consumers to free multiple regulator
1983 * clients in a single API call.
1984 */
1985 void regulator_bulk_free(int num_consumers,
1986 struct regulator_bulk_data *consumers)
1987 {
1988 int i;
1989
1990 for (i = 0; i < num_consumers; i++) {
1991 regulator_put(consumers[i].consumer);
1992 consumers[i].consumer = NULL;
1993 }
1994 }
1995 EXPORT_SYMBOL_GPL(regulator_bulk_free);
1996
1997 /**
1998 * regulator_notifier_call_chain - call regulator event notifier
1999 * @rdev: regulator source
2000 * @event: notifier block
2001 * @data: callback-specific data.
2002 *
2003 * Called by regulator drivers to notify clients a regulator event has
2004 * occurred. We also notify regulator clients downstream.
2005 * Note lock must be held by caller.
2006 */
2007 int regulator_notifier_call_chain(struct regulator_dev *rdev,
2008 unsigned long event, void *data)
2009 {
2010 _notifier_call_chain(rdev, event, data);
2011 return NOTIFY_DONE;
2012
2013 }
2014 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
2015
2016 /**
2017 * regulator_mode_to_status - convert a regulator mode into a status
2018 *
2019 * @mode: Mode to convert
2020 *
2021 * Convert a regulator mode into a status.
2022 */
2023 int regulator_mode_to_status(unsigned int mode)
2024 {
2025 switch (mode) {
2026 case REGULATOR_MODE_FAST:
2027 return REGULATOR_STATUS_FAST;
2028 case REGULATOR_MODE_NORMAL:
2029 return REGULATOR_STATUS_NORMAL;
2030 case REGULATOR_MODE_IDLE:
2031 return REGULATOR_STATUS_IDLE;
2032 case REGULATOR_STATUS_STANDBY:
2033 return REGULATOR_STATUS_STANDBY;
2034 default:
2035 return 0;
2036 }
2037 }
2038 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
2039
2040 /*
2041 * To avoid cluttering sysfs (and memory) with useless state, only
2042 * create attributes that can be meaningfully displayed.
2043 */
2044 static int add_regulator_attributes(struct regulator_dev *rdev)
2045 {
2046 struct device *dev = &rdev->dev;
2047 struct regulator_ops *ops = rdev->desc->ops;
2048 int status = 0;
2049
2050 /* some attributes need specific methods to be displayed */
2051 if (ops->get_voltage) {
2052 status = device_create_file(dev, &dev_attr_microvolts);
2053 if (status < 0)
2054 return status;
2055 }
2056 if (ops->get_current_limit) {
2057 status = device_create_file(dev, &dev_attr_microamps);
2058 if (status < 0)
2059 return status;
2060 }
2061 if (ops->get_mode) {
2062 status = device_create_file(dev, &dev_attr_opmode);
2063 if (status < 0)
2064 return status;
2065 }
2066 if (ops->is_enabled) {
2067 status = device_create_file(dev, &dev_attr_state);
2068 if (status < 0)
2069 return status;
2070 }
2071 if (ops->get_status) {
2072 status = device_create_file(dev, &dev_attr_status);
2073 if (status < 0)
2074 return status;
2075 }
2076
2077 /* some attributes are type-specific */
2078 if (rdev->desc->type == REGULATOR_CURRENT) {
2079 status = device_create_file(dev, &dev_attr_requested_microamps);
2080 if (status < 0)
2081 return status;
2082 }
2083
2084 /* all the other attributes exist to support constraints;
2085 * don't show them if there are no constraints, or if the
2086 * relevant supporting methods are missing.
2087 */
2088 if (!rdev->constraints)
2089 return status;
2090
2091 /* constraints need specific supporting methods */
2092 if (ops->set_voltage) {
2093 status = device_create_file(dev, &dev_attr_min_microvolts);
2094 if (status < 0)
2095 return status;
2096 status = device_create_file(dev, &dev_attr_max_microvolts);
2097 if (status < 0)
2098 return status;
2099 }
2100 if (ops->set_current_limit) {
2101 status = device_create_file(dev, &dev_attr_min_microamps);
2102 if (status < 0)
2103 return status;
2104 status = device_create_file(dev, &dev_attr_max_microamps);
2105 if (status < 0)
2106 return status;
2107 }
2108
2109 /* suspend mode constraints need multiple supporting methods */
2110 if (!(ops->set_suspend_enable && ops->set_suspend_disable))
2111 return status;
2112
2113 status = device_create_file(dev, &dev_attr_suspend_standby_state);
2114 if (status < 0)
2115 return status;
2116 status = device_create_file(dev, &dev_attr_suspend_mem_state);
2117 if (status < 0)
2118 return status;
2119 status = device_create_file(dev, &dev_attr_suspend_disk_state);
2120 if (status < 0)
2121 return status;
2122
2123 if (ops->set_suspend_voltage) {
2124 status = device_create_file(dev,
2125 &dev_attr_suspend_standby_microvolts);
2126 if (status < 0)
2127 return status;
2128 status = device_create_file(dev,
2129 &dev_attr_suspend_mem_microvolts);
2130 if (status < 0)
2131 return status;
2132 status = device_create_file(dev,
2133 &dev_attr_suspend_disk_microvolts);
2134 if (status < 0)
2135 return status;
2136 }
2137
2138 if (ops->set_suspend_mode) {
2139 status = device_create_file(dev,
2140 &dev_attr_suspend_standby_mode);
2141 if (status < 0)
2142 return status;
2143 status = device_create_file(dev,
2144 &dev_attr_suspend_mem_mode);
2145 if (status < 0)
2146 return status;
2147 status = device_create_file(dev,
2148 &dev_attr_suspend_disk_mode);
2149 if (status < 0)
2150 return status;
2151 }
2152
2153 return status;
2154 }
2155
2156 /**
2157 * regulator_register - register regulator
2158 * @regulator_desc: regulator to register
2159 * @dev: struct device for the regulator
2160 * @init_data: platform provided init data, passed through by driver
2161 * @driver_data: private regulator data
2162 *
2163 * Called by regulator drivers to register a regulator.
2164 * Returns 0 on success.
2165 */
2166 struct regulator_dev *regulator_register(struct regulator_desc *regulator_desc,
2167 struct device *dev, struct regulator_init_data *init_data,
2168 void *driver_data)
2169 {
2170 static atomic_t regulator_no = ATOMIC_INIT(0);
2171 struct regulator_dev *rdev;
2172 int ret, i;
2173
2174 if (regulator_desc == NULL)
2175 return ERR_PTR(-EINVAL);
2176
2177 if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
2178 return ERR_PTR(-EINVAL);
2179
2180 if (regulator_desc->type != REGULATOR_VOLTAGE &&
2181 regulator_desc->type != REGULATOR_CURRENT)
2182 return ERR_PTR(-EINVAL);
2183
2184 if (!init_data)
2185 return ERR_PTR(-EINVAL);
2186
2187 rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
2188 if (rdev == NULL)
2189 return ERR_PTR(-ENOMEM);
2190
2191 mutex_lock(&regulator_list_mutex);
2192
2193 mutex_init(&rdev->mutex);
2194 rdev->reg_data = driver_data;
2195 rdev->owner = regulator_desc->owner;
2196 rdev->desc = regulator_desc;
2197 INIT_LIST_HEAD(&rdev->consumer_list);
2198 INIT_LIST_HEAD(&rdev->supply_list);
2199 INIT_LIST_HEAD(&rdev->list);
2200 INIT_LIST_HEAD(&rdev->slist);
2201 BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
2202
2203 /* preform any regulator specific init */
2204 if (init_data->regulator_init) {
2205 ret = init_data->regulator_init(rdev->reg_data);
2206 if (ret < 0)
2207 goto clean;
2208 }
2209
2210 /* register with sysfs */
2211 rdev->dev.class = &regulator_class;
2212 rdev->dev.parent = dev;
2213 dev_set_name(&rdev->dev, "regulator.%d",
2214 atomic_inc_return(&regulator_no) - 1);
2215 ret = device_register(&rdev->dev);
2216 if (ret != 0)
2217 goto clean;
2218
2219 dev_set_drvdata(&rdev->dev, rdev);
2220
2221 /* set regulator constraints */
2222 ret = set_machine_constraints(rdev, &init_data->constraints);
2223 if (ret < 0)
2224 goto scrub;
2225
2226 /* add attributes supported by this regulator */
2227 ret = add_regulator_attributes(rdev);
2228 if (ret < 0)
2229 goto scrub;
2230
2231 /* set supply regulator if it exists */
2232 if (init_data->supply_regulator_dev) {
2233 ret = set_supply(rdev,
2234 dev_get_drvdata(init_data->supply_regulator_dev));
2235 if (ret < 0)
2236 goto scrub;
2237 }
2238
2239 /* add consumers devices */
2240 for (i = 0; i < init_data->num_consumer_supplies; i++) {
2241 ret = set_consumer_device_supply(rdev,
2242 init_data->consumer_supplies[i].dev,
2243 init_data->consumer_supplies[i].dev_name,
2244 init_data->consumer_supplies[i].supply);
2245 if (ret < 0) {
2246 for (--i; i >= 0; i--)
2247 unset_consumer_device_supply(rdev,
2248 init_data->consumer_supplies[i].dev_name,
2249 init_data->consumer_supplies[i].dev);
2250 goto scrub;
2251 }
2252 }
2253
2254 list_add(&rdev->list, &regulator_list);
2255 out:
2256 mutex_unlock(&regulator_list_mutex);
2257 return rdev;
2258
2259 scrub:
2260 device_unregister(&rdev->dev);
2261 /* device core frees rdev */
2262 rdev = ERR_PTR(ret);
2263 goto out;
2264
2265 clean:
2266 kfree(rdev);
2267 rdev = ERR_PTR(ret);
2268 goto out;
2269 }
2270 EXPORT_SYMBOL_GPL(regulator_register);
2271
2272 /**
2273 * regulator_unregister - unregister regulator
2274 * @rdev: regulator to unregister
2275 *
2276 * Called by regulator drivers to unregister a regulator.
2277 */
2278 void regulator_unregister(struct regulator_dev *rdev)
2279 {
2280 if (rdev == NULL)
2281 return;
2282
2283 mutex_lock(&regulator_list_mutex);
2284 WARN_ON(rdev->open_count);
2285 unset_regulator_supplies(rdev);
2286 list_del(&rdev->list);
2287 if (rdev->supply)
2288 sysfs_remove_link(&rdev->dev.kobj, "supply");
2289 device_unregister(&rdev->dev);
2290 mutex_unlock(&regulator_list_mutex);
2291 }
2292 EXPORT_SYMBOL_GPL(regulator_unregister);
2293
2294 /**
2295 * regulator_suspend_prepare - prepare regulators for system wide suspend
2296 * @state: system suspend state
2297 *
2298 * Configure each regulator with it's suspend operating parameters for state.
2299 * This will usually be called by machine suspend code prior to supending.
2300 */
2301 int regulator_suspend_prepare(suspend_state_t state)
2302 {
2303 struct regulator_dev *rdev;
2304 int ret = 0;
2305
2306 /* ON is handled by regulator active state */
2307 if (state == PM_SUSPEND_ON)
2308 return -EINVAL;
2309
2310 mutex_lock(&regulator_list_mutex);
2311 list_for_each_entry(rdev, &regulator_list, list) {
2312
2313 mutex_lock(&rdev->mutex);
2314 ret = suspend_prepare(rdev, state);
2315 mutex_unlock(&rdev->mutex);
2316
2317 if (ret < 0) {
2318 printk(KERN_ERR "%s: failed to prepare %s\n",
2319 __func__, rdev->desc->name);
2320 goto out;
2321 }
2322 }
2323 out:
2324 mutex_unlock(&regulator_list_mutex);
2325 return ret;
2326 }
2327 EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
2328
2329 /**
2330 * regulator_has_full_constraints - the system has fully specified constraints
2331 *
2332 * Calling this function will cause the regulator API to disable all
2333 * regulators which have a zero use count and don't have an always_on
2334 * constraint in a late_initcall.
2335 *
2336 * The intention is that this will become the default behaviour in a
2337 * future kernel release so users are encouraged to use this facility
2338 * now.
2339 */
2340 void regulator_has_full_constraints(void)
2341 {
2342 has_full_constraints = 1;
2343 }
2344 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
2345
2346 /**
2347 * rdev_get_drvdata - get rdev regulator driver data
2348 * @rdev: regulator
2349 *
2350 * Get rdev regulator driver private data. This call can be used in the
2351 * regulator driver context.
2352 */
2353 void *rdev_get_drvdata(struct regulator_dev *rdev)
2354 {
2355 return rdev->reg_data;
2356 }
2357 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
2358
2359 /**
2360 * regulator_get_drvdata - get regulator driver data
2361 * @regulator: regulator
2362 *
2363 * Get regulator driver private data. This call can be used in the consumer
2364 * driver context when non API regulator specific functions need to be called.
2365 */
2366 void *regulator_get_drvdata(struct regulator *regulator)
2367 {
2368 return regulator->rdev->reg_data;
2369 }
2370 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
2371
2372 /**
2373 * regulator_set_drvdata - set regulator driver data
2374 * @regulator: regulator
2375 * @data: data
2376 */
2377 void regulator_set_drvdata(struct regulator *regulator, void *data)
2378 {
2379 regulator->rdev->reg_data = data;
2380 }
2381 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
2382
2383 /**
2384 * regulator_get_id - get regulator ID
2385 * @rdev: regulator
2386 */
2387 int rdev_get_id(struct regulator_dev *rdev)
2388 {
2389 return rdev->desc->id;
2390 }
2391 EXPORT_SYMBOL_GPL(rdev_get_id);
2392
2393 struct device *rdev_get_dev(struct regulator_dev *rdev)
2394 {
2395 return &rdev->dev;
2396 }
2397 EXPORT_SYMBOL_GPL(rdev_get_dev);
2398
2399 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
2400 {
2401 return reg_init_data->driver_data;
2402 }
2403 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
2404
2405 static int __init regulator_init(void)
2406 {
2407 printk(KERN_INFO "regulator: core version %s\n", REGULATOR_VERSION);
2408 return class_register(&regulator_class);
2409 }
2410
2411 /* init early to allow our consumers to complete system booting */
2412 core_initcall(regulator_init);
2413
2414 static int __init regulator_init_complete(void)
2415 {
2416 struct regulator_dev *rdev;
2417 struct regulator_ops *ops;
2418 struct regulation_constraints *c;
2419 int enabled, ret;
2420 const char *name;
2421
2422 mutex_lock(&regulator_list_mutex);
2423
2424 /* If we have a full configuration then disable any regulators
2425 * which are not in use or always_on. This will become the
2426 * default behaviour in the future.
2427 */
2428 list_for_each_entry(rdev, &regulator_list, list) {
2429 ops = rdev->desc->ops;
2430 c = rdev->constraints;
2431
2432 if (c && c->name)
2433 name = c->name;
2434 else if (rdev->desc->name)
2435 name = rdev->desc->name;
2436 else
2437 name = "regulator";
2438
2439 if (!ops->disable || (c && c->always_on))
2440 continue;
2441
2442 mutex_lock(&rdev->mutex);
2443
2444 if (rdev->use_count)
2445 goto unlock;
2446
2447 /* If we can't read the status assume it's on. */
2448 if (ops->is_enabled)
2449 enabled = ops->is_enabled(rdev);
2450 else
2451 enabled = 1;
2452
2453 if (!enabled)
2454 goto unlock;
2455
2456 if (has_full_constraints) {
2457 /* We log since this may kill the system if it
2458 * goes wrong. */
2459 printk(KERN_INFO "%s: disabling %s\n",
2460 __func__, name);
2461 ret = ops->disable(rdev);
2462 if (ret != 0) {
2463 printk(KERN_ERR
2464 "%s: couldn't disable %s: %d\n",
2465 __func__, name, ret);
2466 }
2467 } else {
2468 /* The intention is that in future we will
2469 * assume that full constraints are provided
2470 * so warn even if we aren't going to do
2471 * anything here.
2472 */
2473 printk(KERN_WARNING
2474 "%s: incomplete constraints, leaving %s on\n",
2475 __func__, name);
2476 }
2477
2478 unlock:
2479 mutex_unlock(&rdev->mutex);
2480 }
2481
2482 mutex_unlock(&regulator_list_mutex);
2483
2484 return 0;
2485 }
2486 late_initcall(regulator_init_complete);