Merge tag 'v3.10.108' into update
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / regulator / core.c
1 /*
2 * core.c -- Voltage/Current Regulator framework.
3 *
4 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5 * Copyright 2008 SlimLogic Ltd.
6 *
7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8 *
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2 of the License, or (at your
12 * option) any later version.
13 *
14 */
15
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/debugfs.h>
19 #include <linux/device.h>
20 #include <linux/slab.h>
21 #include <linux/async.h>
22 #include <linux/err.h>
23 #include <linux/mutex.h>
24 #include <linux/suspend.h>
25 #include <linux/delay.h>
26 #include <linux/gpio.h>
27 #include <linux/of.h>
28 #include <linux/regmap.h>
29 #include <linux/regulator/of_regulator.h>
30 #include <linux/regulator/consumer.h>
31 #include <linux/regulator/driver.h>
32 #include <linux/regulator/machine.h>
33 #include <linux/module.h>
34
35 #define CREATE_TRACE_POINTS
36 #include <trace/events/regulator.h>
37
38 #include "dummy.h"
39
40 #define rdev_crit(rdev, fmt, ...) \
41 pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
42 #define rdev_err(rdev, fmt, ...) \
43 pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44 #define rdev_warn(rdev, fmt, ...) \
45 pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
46 #define rdev_info(rdev, fmt, ...) \
47 pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
48 #define rdev_dbg(rdev, fmt, ...) \
49 pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
50
51 static DEFINE_MUTEX(regulator_list_mutex);
52 static LIST_HEAD(regulator_list);
53 static LIST_HEAD(regulator_map_list);
54 static LIST_HEAD(regulator_ena_gpio_list);
55 static bool has_full_constraints;
56 static bool board_wants_dummy_regulator;
57
58 static struct dentry *debugfs_root;
59
60 /*
61 * struct regulator_map
62 *
63 * Used to provide symbolic supply names to devices.
64 */
65 struct regulator_map {
66 struct list_head list;
67 const char *dev_name; /* The dev_name() for the consumer */
68 const char *supply;
69 struct regulator_dev *regulator;
70 };
71
72 /*
73 * struct regulator_enable_gpio
74 *
75 * Management for shared enable GPIO pin
76 */
77 struct regulator_enable_gpio {
78 struct list_head list;
79 int gpio;
80 u32 enable_count; /* a number of enabled shared GPIO */
81 u32 request_count; /* a number of requested shared GPIO */
82 unsigned int ena_gpio_invert:1;
83 };
84
85 /*
86 * struct regulator
87 *
88 * One for each consumer device.
89 */
90 struct regulator {
91 struct device *dev;
92 struct list_head list;
93 unsigned int always_on:1;
94 unsigned int bypass:1;
95 int uA_load;
96 int min_uV;
97 int max_uV;
98 char *supply_name;
99 struct device_attribute dev_attr;
100 struct regulator_dev *rdev;
101 struct dentry *debugfs;
102 };
103
104 static int _regulator_is_enabled(struct regulator_dev *rdev);
105 static int _regulator_disable(struct regulator_dev *rdev);
106 static int _regulator_get_voltage(struct regulator_dev *rdev);
107 static int _regulator_get_current_limit(struct regulator_dev *rdev);
108 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
109 static void _notifier_call_chain(struct regulator_dev *rdev,
110 unsigned long event, void *data);
111 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
112 int min_uV, int max_uV);
113 static struct regulator *create_regulator(struct regulator_dev *rdev,
114 struct device *dev,
115 const char *supply_name);
116
117 static const char *rdev_get_name(struct regulator_dev *rdev)
118 {
119 if (rdev->constraints && rdev->constraints->name)
120 return rdev->constraints->name;
121 else if (rdev->desc->name)
122 return rdev->desc->name;
123 else
124 return "";
125 }
126
127 /**
128 * of_get_regulator - get a regulator device node based on supply name
129 * @dev: Device pointer for the consumer (of regulator) device
130 * @supply: regulator supply name
131 *
132 * Extract the regulator device node corresponding to the supply name.
133 * returns the device node corresponding to the regulator if found, else
134 * returns NULL.
135 */
136 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
137 {
138 struct device_node *regnode = NULL;
139 char prop_name[32]; /* 32 is max size of property name */
140
141 dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
142
143 snprintf(prop_name, 32, "%s-supply", supply);
144 regnode = of_parse_phandle(dev->of_node, prop_name, 0);
145
146 if (!regnode) {
147 dev_dbg(dev, "Looking up %s property in node %s failed",
148 prop_name, dev->of_node->full_name);
149 return NULL;
150 }
151 return regnode;
152 }
153
154 static int _regulator_can_change_status(struct regulator_dev *rdev)
155 {
156 if (!rdev->constraints)
157 return 0;
158
159 if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
160 return 1;
161 else
162 return 0;
163 }
164
165 /* Platform voltage constraint check */
166 static int regulator_check_voltage(struct regulator_dev *rdev,
167 int *min_uV, int *max_uV)
168 {
169 BUG_ON(*min_uV > *max_uV);
170
171 if (!rdev->constraints) {
172 rdev_err(rdev, "no constraints\n");
173 return -ENODEV;
174 }
175 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
176 rdev_err(rdev, "operation not allowed\n");
177 return -EPERM;
178 }
179
180 if (*max_uV > rdev->constraints->max_uV)
181 *max_uV = rdev->constraints->max_uV;
182 if (*min_uV < rdev->constraints->min_uV)
183 *min_uV = rdev->constraints->min_uV;
184
185 if (*min_uV > *max_uV) {
186 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
187 *min_uV, *max_uV);
188 return -EINVAL;
189 }
190
191 return 0;
192 }
193
194 /* Make sure we select a voltage that suits the needs of all
195 * regulator consumers
196 */
197 static int regulator_check_consumers(struct regulator_dev *rdev,
198 int *min_uV, int *max_uV)
199 {
200 struct regulator *regulator;
201
202 list_for_each_entry(regulator, &rdev->consumer_list, list) {
203 /*
204 * Assume consumers that didn't say anything are OK
205 * with anything in the constraint range.
206 */
207 if (!regulator->min_uV && !regulator->max_uV)
208 continue;
209
210 if (*max_uV > regulator->max_uV)
211 *max_uV = regulator->max_uV;
212 if (*min_uV < regulator->min_uV)
213 *min_uV = regulator->min_uV;
214 }
215
216 if (*min_uV > *max_uV) {
217 rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
218 *min_uV, *max_uV);
219 return -EINVAL;
220 }
221
222 return 0;
223 }
224
225 /* current constraint check */
226 static int regulator_check_current_limit(struct regulator_dev *rdev,
227 int *min_uA, int *max_uA)
228 {
229 BUG_ON(*min_uA > *max_uA);
230
231 if (!rdev->constraints) {
232 rdev_err(rdev, "no constraints\n");
233 return -ENODEV;
234 }
235 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
236 rdev_err(rdev, "operation not allowed\n");
237 return -EPERM;
238 }
239
240 if (*max_uA > rdev->constraints->max_uA)
241 *max_uA = rdev->constraints->max_uA;
242 if (*min_uA < rdev->constraints->min_uA)
243 *min_uA = rdev->constraints->min_uA;
244
245 if (*min_uA > *max_uA) {
246 rdev_err(rdev, "unsupportable current range: %d-%duA\n",
247 *min_uA, *max_uA);
248 return -EINVAL;
249 }
250
251 return 0;
252 }
253
254 /* operating mode constraint check */
255 static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
256 {
257 switch (*mode) {
258 case REGULATOR_MODE_FAST:
259 case REGULATOR_MODE_NORMAL:
260 case REGULATOR_MODE_IDLE:
261 case REGULATOR_MODE_STANDBY:
262 break;
263 default:
264 rdev_err(rdev, "invalid mode %x specified\n", *mode);
265 return -EINVAL;
266 }
267
268 if (!rdev->constraints) {
269 rdev_err(rdev, "no constraints\n");
270 return -ENODEV;
271 }
272 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
273 rdev_err(rdev, "operation not allowed\n");
274 return -EPERM;
275 }
276
277 /* The modes are bitmasks, the most power hungry modes having
278 * the lowest values. If the requested mode isn't supported
279 * try higher modes. */
280 while (*mode) {
281 if (rdev->constraints->valid_modes_mask & *mode)
282 return 0;
283 *mode /= 2;
284 }
285
286 return -EINVAL;
287 }
288
289 /* dynamic regulator mode switching constraint check */
290 static int regulator_check_drms(struct regulator_dev *rdev)
291 {
292 if (!rdev->constraints) {
293 rdev_err(rdev, "no constraints\n");
294 return -ENODEV;
295 }
296 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
297 rdev_err(rdev, "operation not allowed\n");
298 return -EPERM;
299 }
300 return 0;
301 }
302
303 static ssize_t regulator_uV_show(struct device *dev,
304 struct device_attribute *attr, char *buf)
305 {
306 struct regulator_dev *rdev = dev_get_drvdata(dev);
307 ssize_t ret;
308
309 mutex_lock(&rdev->mutex);
310 ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
311 mutex_unlock(&rdev->mutex);
312
313 return ret;
314 }
315 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
316
317 static ssize_t regulator_uA_show(struct device *dev,
318 struct device_attribute *attr, char *buf)
319 {
320 struct regulator_dev *rdev = dev_get_drvdata(dev);
321
322 return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
323 }
324 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
325
326 static ssize_t regulator_name_show(struct device *dev,
327 struct device_attribute *attr, char *buf)
328 {
329 struct regulator_dev *rdev = dev_get_drvdata(dev);
330
331 return sprintf(buf, "%s\n", rdev_get_name(rdev));
332 }
333
334 static ssize_t regulator_print_opmode(char *buf, int mode)
335 {
336 switch (mode) {
337 case REGULATOR_MODE_FAST:
338 return sprintf(buf, "fast\n");
339 case REGULATOR_MODE_NORMAL:
340 return sprintf(buf, "normal\n");
341 case REGULATOR_MODE_IDLE:
342 return sprintf(buf, "idle\n");
343 case REGULATOR_MODE_STANDBY:
344 return sprintf(buf, "standby\n");
345 }
346 return sprintf(buf, "unknown\n");
347 }
348
349 static ssize_t regulator_opmode_show(struct device *dev,
350 struct device_attribute *attr, char *buf)
351 {
352 struct regulator_dev *rdev = dev_get_drvdata(dev);
353
354 return regulator_print_opmode(buf, _regulator_get_mode(rdev));
355 }
356 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
357
358 static ssize_t regulator_print_state(char *buf, int state)
359 {
360 if (state > 0)
361 return sprintf(buf, "enabled\n");
362 else if (state == 0)
363 return sprintf(buf, "disabled\n");
364 else
365 return sprintf(buf, "unknown\n");
366 }
367
368 static ssize_t regulator_state_show(struct device *dev,
369 struct device_attribute *attr, char *buf)
370 {
371 struct regulator_dev *rdev = dev_get_drvdata(dev);
372 ssize_t ret;
373
374 mutex_lock(&rdev->mutex);
375 ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
376 mutex_unlock(&rdev->mutex);
377
378 return ret;
379 }
380 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
381
382 static ssize_t regulator_status_show(struct device *dev,
383 struct device_attribute *attr, char *buf)
384 {
385 struct regulator_dev *rdev = dev_get_drvdata(dev);
386 int status;
387 char *label;
388
389 status = rdev->desc->ops->get_status(rdev);
390 if (status < 0)
391 return status;
392
393 switch (status) {
394 case REGULATOR_STATUS_OFF:
395 label = "off";
396 break;
397 case REGULATOR_STATUS_ON:
398 label = "on";
399 break;
400 case REGULATOR_STATUS_ERROR:
401 label = "error";
402 break;
403 case REGULATOR_STATUS_FAST:
404 label = "fast";
405 break;
406 case REGULATOR_STATUS_NORMAL:
407 label = "normal";
408 break;
409 case REGULATOR_STATUS_IDLE:
410 label = "idle";
411 break;
412 case REGULATOR_STATUS_STANDBY:
413 label = "standby";
414 break;
415 case REGULATOR_STATUS_BYPASS:
416 label = "bypass";
417 break;
418 case REGULATOR_STATUS_UNDEFINED:
419 label = "undefined";
420 break;
421 default:
422 return -ERANGE;
423 }
424
425 return sprintf(buf, "%s\n", label);
426 }
427 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
428
429 static ssize_t regulator_min_uA_show(struct device *dev,
430 struct device_attribute *attr, char *buf)
431 {
432 struct regulator_dev *rdev = dev_get_drvdata(dev);
433
434 if (!rdev->constraints)
435 return sprintf(buf, "constraint not defined\n");
436
437 return sprintf(buf, "%d\n", rdev->constraints->min_uA);
438 }
439 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
440
441 static ssize_t regulator_max_uA_show(struct device *dev,
442 struct device_attribute *attr, char *buf)
443 {
444 struct regulator_dev *rdev = dev_get_drvdata(dev);
445
446 if (!rdev->constraints)
447 return sprintf(buf, "constraint not defined\n");
448
449 return sprintf(buf, "%d\n", rdev->constraints->max_uA);
450 }
451 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
452
453 static ssize_t regulator_min_uV_show(struct device *dev,
454 struct device_attribute *attr, char *buf)
455 {
456 struct regulator_dev *rdev = dev_get_drvdata(dev);
457
458 if (!rdev->constraints)
459 return sprintf(buf, "constraint not defined\n");
460
461 return sprintf(buf, "%d\n", rdev->constraints->min_uV);
462 }
463 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
464
465 static ssize_t regulator_max_uV_show(struct device *dev,
466 struct device_attribute *attr, char *buf)
467 {
468 struct regulator_dev *rdev = dev_get_drvdata(dev);
469
470 if (!rdev->constraints)
471 return sprintf(buf, "constraint not defined\n");
472
473 return sprintf(buf, "%d\n", rdev->constraints->max_uV);
474 }
475 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
476
477 static ssize_t regulator_total_uA_show(struct device *dev,
478 struct device_attribute *attr, char *buf)
479 {
480 struct regulator_dev *rdev = dev_get_drvdata(dev);
481 struct regulator *regulator;
482 int uA = 0;
483
484 mutex_lock(&rdev->mutex);
485 list_for_each_entry(regulator, &rdev->consumer_list, list)
486 uA += regulator->uA_load;
487 mutex_unlock(&rdev->mutex);
488 return sprintf(buf, "%d\n", uA);
489 }
490 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
491
492 static ssize_t regulator_num_users_show(struct device *dev,
493 struct device_attribute *attr, char *buf)
494 {
495 struct regulator_dev *rdev = dev_get_drvdata(dev);
496 return sprintf(buf, "%d\n", rdev->use_count);
497 }
498
499 static ssize_t regulator_type_show(struct device *dev,
500 struct device_attribute *attr, char *buf)
501 {
502 struct regulator_dev *rdev = dev_get_drvdata(dev);
503
504 switch (rdev->desc->type) {
505 case REGULATOR_VOLTAGE:
506 return sprintf(buf, "voltage\n");
507 case REGULATOR_CURRENT:
508 return sprintf(buf, "current\n");
509 }
510 return sprintf(buf, "unknown\n");
511 }
512
513 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
514 struct device_attribute *attr, char *buf)
515 {
516 struct regulator_dev *rdev = dev_get_drvdata(dev);
517
518 return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
519 }
520 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
521 regulator_suspend_mem_uV_show, NULL);
522
523 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
524 struct device_attribute *attr, char *buf)
525 {
526 struct regulator_dev *rdev = dev_get_drvdata(dev);
527
528 return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
529 }
530 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
531 regulator_suspend_disk_uV_show, NULL);
532
533 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
534 struct device_attribute *attr, char *buf)
535 {
536 struct regulator_dev *rdev = dev_get_drvdata(dev);
537
538 return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
539 }
540 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
541 regulator_suspend_standby_uV_show, NULL);
542
543 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
544 struct device_attribute *attr, char *buf)
545 {
546 struct regulator_dev *rdev = dev_get_drvdata(dev);
547
548 return regulator_print_opmode(buf,
549 rdev->constraints->state_mem.mode);
550 }
551 static DEVICE_ATTR(suspend_mem_mode, 0444,
552 regulator_suspend_mem_mode_show, NULL);
553
554 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
555 struct device_attribute *attr, char *buf)
556 {
557 struct regulator_dev *rdev = dev_get_drvdata(dev);
558
559 return regulator_print_opmode(buf,
560 rdev->constraints->state_disk.mode);
561 }
562 static DEVICE_ATTR(suspend_disk_mode, 0444,
563 regulator_suspend_disk_mode_show, NULL);
564
565 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
566 struct device_attribute *attr, char *buf)
567 {
568 struct regulator_dev *rdev = dev_get_drvdata(dev);
569
570 return regulator_print_opmode(buf,
571 rdev->constraints->state_standby.mode);
572 }
573 static DEVICE_ATTR(suspend_standby_mode, 0444,
574 regulator_suspend_standby_mode_show, NULL);
575
576 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
577 struct device_attribute *attr, char *buf)
578 {
579 struct regulator_dev *rdev = dev_get_drvdata(dev);
580
581 return regulator_print_state(buf,
582 rdev->constraints->state_mem.enabled);
583 }
584 static DEVICE_ATTR(suspend_mem_state, 0444,
585 regulator_suspend_mem_state_show, NULL);
586
587 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
588 struct device_attribute *attr, char *buf)
589 {
590 struct regulator_dev *rdev = dev_get_drvdata(dev);
591
592 return regulator_print_state(buf,
593 rdev->constraints->state_disk.enabled);
594 }
595 static DEVICE_ATTR(suspend_disk_state, 0444,
596 regulator_suspend_disk_state_show, NULL);
597
598 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
599 struct device_attribute *attr, char *buf)
600 {
601 struct regulator_dev *rdev = dev_get_drvdata(dev);
602
603 return regulator_print_state(buf,
604 rdev->constraints->state_standby.enabled);
605 }
606 static DEVICE_ATTR(suspend_standby_state, 0444,
607 regulator_suspend_standby_state_show, NULL);
608
609 static ssize_t regulator_bypass_show(struct device *dev,
610 struct device_attribute *attr, char *buf)
611 {
612 struct regulator_dev *rdev = dev_get_drvdata(dev);
613 const char *report;
614 bool bypass;
615 int ret;
616
617 ret = rdev->desc->ops->get_bypass(rdev, &bypass);
618
619 if (ret != 0)
620 report = "unknown";
621 else if (bypass)
622 report = "enabled";
623 else
624 report = "disabled";
625
626 return sprintf(buf, "%s\n", report);
627 }
628 static DEVICE_ATTR(bypass, 0444,
629 regulator_bypass_show, NULL);
630
631 /*
632 * These are the only attributes are present for all regulators.
633 * Other attributes are a function of regulator functionality.
634 */
635 static struct device_attribute regulator_dev_attrs[] = {
636 __ATTR(name, 0444, regulator_name_show, NULL),
637 __ATTR(num_users, 0444, regulator_num_users_show, NULL),
638 __ATTR(type, 0444, regulator_type_show, NULL),
639 __ATTR_NULL,
640 };
641
642 static void regulator_dev_release(struct device *dev)
643 {
644 struct regulator_dev *rdev = dev_get_drvdata(dev);
645 kfree(rdev);
646 }
647
648 static struct class regulator_class = {
649 .name = "regulator",
650 .dev_release = regulator_dev_release,
651 .dev_attrs = regulator_dev_attrs,
652 };
653
654 /* Calculate the new optimum regulator operating mode based on the new total
655 * consumer load. All locks held by caller */
656 static void drms_uA_update(struct regulator_dev *rdev)
657 {
658 struct regulator *sibling;
659 int current_uA = 0, output_uV, input_uV, err;
660 unsigned int mode;
661
662 err = regulator_check_drms(rdev);
663 if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
664 (!rdev->desc->ops->get_voltage &&
665 !rdev->desc->ops->get_voltage_sel) ||
666 !rdev->desc->ops->set_mode)
667 return;
668
669 /* get output voltage */
670 output_uV = _regulator_get_voltage(rdev);
671 if (output_uV <= 0)
672 return;
673
674 /* get input voltage */
675 input_uV = 0;
676 if (rdev->supply)
677 input_uV = regulator_get_voltage(rdev->supply);
678 if (input_uV <= 0)
679 input_uV = rdev->constraints->input_uV;
680 if (input_uV <= 0)
681 return;
682
683 /* calc total requested load */
684 list_for_each_entry(sibling, &rdev->consumer_list, list)
685 current_uA += sibling->uA_load;
686
687 /* now get the optimum mode for our new total regulator load */
688 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
689 output_uV, current_uA);
690
691 /* check the new mode is allowed */
692 err = regulator_mode_constrain(rdev, &mode);
693 if (err == 0)
694 rdev->desc->ops->set_mode(rdev, mode);
695 }
696
697 static int suspend_set_state(struct regulator_dev *rdev,
698 struct regulator_state *rstate)
699 {
700 int ret = 0;
701
702 /* If we have no suspend mode configration don't set anything;
703 * only warn if the driver implements set_suspend_voltage or
704 * set_suspend_mode callback.
705 */
706 if (!rstate->enabled && !rstate->disabled) {
707 if (rdev->desc->ops->set_suspend_voltage ||
708 rdev->desc->ops->set_suspend_mode)
709 rdev_warn(rdev, "No configuration\n");
710 return 0;
711 }
712
713 if (rstate->enabled && rstate->disabled) {
714 rdev_err(rdev, "invalid configuration\n");
715 return -EINVAL;
716 }
717
718 if (rstate->enabled && rdev->desc->ops->set_suspend_enable)
719 ret = rdev->desc->ops->set_suspend_enable(rdev);
720 else if (rstate->disabled && rdev->desc->ops->set_suspend_disable)
721 ret = rdev->desc->ops->set_suspend_disable(rdev);
722 else /* OK if set_suspend_enable or set_suspend_disable is NULL */
723 ret = 0;
724
725 if (ret < 0) {
726 rdev_err(rdev, "failed to enabled/disable\n");
727 return ret;
728 }
729
730 if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
731 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
732 if (ret < 0) {
733 rdev_err(rdev, "failed to set voltage\n");
734 return ret;
735 }
736 }
737
738 if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
739 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
740 if (ret < 0) {
741 rdev_err(rdev, "failed to set mode\n");
742 return ret;
743 }
744 }
745 return ret;
746 }
747
748 /* locks held by caller */
749 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
750 {
751 if (!rdev->constraints)
752 return -EINVAL;
753
754 switch (state) {
755 case PM_SUSPEND_STANDBY:
756 return suspend_set_state(rdev,
757 &rdev->constraints->state_standby);
758 case PM_SUSPEND_MEM:
759 return suspend_set_state(rdev,
760 &rdev->constraints->state_mem);
761 case PM_SUSPEND_MAX:
762 return suspend_set_state(rdev,
763 &rdev->constraints->state_disk);
764 default:
765 return -EINVAL;
766 }
767 }
768
769 static void print_constraints(struct regulator_dev *rdev)
770 {
771 struct regulation_constraints *constraints = rdev->constraints;
772 char buf[160] = "";
773 int count = 0;
774 int ret;
775
776 if (constraints->min_uV && constraints->max_uV) {
777 if (constraints->min_uV == constraints->max_uV)
778 count += sprintf(buf + count, "%d mV ",
779 constraints->min_uV / 1000);
780 else
781 count += sprintf(buf + count, "%d <--> %d mV ",
782 constraints->min_uV / 1000,
783 constraints->max_uV / 1000);
784 }
785
786 if (!constraints->min_uV ||
787 constraints->min_uV != constraints->max_uV) {
788 ret = _regulator_get_voltage(rdev);
789 if (ret > 0)
790 count += sprintf(buf + count, "at %d mV ", ret / 1000);
791 }
792
793 if (constraints->uV_offset)
794 count += sprintf(buf, "%dmV offset ",
795 constraints->uV_offset / 1000);
796
797 if (constraints->min_uA && constraints->max_uA) {
798 if (constraints->min_uA == constraints->max_uA)
799 count += sprintf(buf + count, "%d mA ",
800 constraints->min_uA / 1000);
801 else
802 count += sprintf(buf + count, "%d <--> %d mA ",
803 constraints->min_uA / 1000,
804 constraints->max_uA / 1000);
805 }
806
807 if (!constraints->min_uA ||
808 constraints->min_uA != constraints->max_uA) {
809 ret = _regulator_get_current_limit(rdev);
810 if (ret > 0)
811 count += sprintf(buf + count, "at %d mA ", ret / 1000);
812 }
813
814 if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
815 count += sprintf(buf + count, "fast ");
816 if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
817 count += sprintf(buf + count, "normal ");
818 if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
819 count += sprintf(buf + count, "idle ");
820 if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
821 count += sprintf(buf + count, "standby");
822
823 if (!count)
824 sprintf(buf, "no parameters");
825
826 rdev_info(rdev, "%s\n", buf);
827
828 if ((constraints->min_uV != constraints->max_uV) &&
829 !(constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE))
830 rdev_warn(rdev,
831 "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
832 }
833
834 static int machine_constraints_voltage(struct regulator_dev *rdev,
835 struct regulation_constraints *constraints)
836 {
837 struct regulator_ops *ops = rdev->desc->ops;
838 int ret;
839
840 /* do we need to apply the constraint voltage */
841 if (rdev->constraints->apply_uV &&
842 rdev->constraints->min_uV == rdev->constraints->max_uV) {
843 ret = _regulator_do_set_voltage(rdev,
844 rdev->constraints->min_uV,
845 rdev->constraints->max_uV);
846 if (ret < 0) {
847 rdev_err(rdev, "failed to apply %duV constraint\n",
848 rdev->constraints->min_uV);
849 return ret;
850 }
851 }
852
853 /* constrain machine-level voltage specs to fit
854 * the actual range supported by this regulator.
855 */
856 if (ops->list_voltage && rdev->desc->n_voltages) {
857 int count = rdev->desc->n_voltages;
858 int i;
859 int min_uV = INT_MAX;
860 int max_uV = INT_MIN;
861 int cmin = constraints->min_uV;
862 int cmax = constraints->max_uV;
863
864 /* it's safe to autoconfigure fixed-voltage supplies
865 and the constraints are used by list_voltage. */
866 if (count == 1 && !cmin) {
867 cmin = 1;
868 cmax = INT_MAX;
869 constraints->min_uV = cmin;
870 constraints->max_uV = cmax;
871 }
872
873 /* voltage constraints are optional */
874 if ((cmin == 0) && (cmax == 0))
875 return 0;
876
877 /* else require explicit machine-level constraints */
878 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
879 rdev_err(rdev, "invalid voltage constraints\n");
880 return -EINVAL;
881 }
882
883 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
884 for (i = 0; i < count; i++) {
885 int value;
886
887 value = ops->list_voltage(rdev, i);
888 if (value <= 0)
889 continue;
890
891 /* maybe adjust [min_uV..max_uV] */
892 if (value >= cmin && value < min_uV)
893 min_uV = value;
894 if (value <= cmax && value > max_uV)
895 max_uV = value;
896 }
897
898 /* final: [min_uV..max_uV] valid iff constraints valid */
899 if (max_uV < min_uV) {
900 rdev_err(rdev,
901 "unsupportable voltage constraints %u-%uuV\n",
902 min_uV, max_uV);
903 return -EINVAL;
904 }
905
906 /* use regulator's subset of machine constraints */
907 if (constraints->min_uV < min_uV) {
908 rdev_dbg(rdev, "override min_uV, %d -> %d\n",
909 constraints->min_uV, min_uV);
910 constraints->min_uV = min_uV;
911 }
912 if (constraints->max_uV > max_uV) {
913 rdev_dbg(rdev, "override max_uV, %d -> %d\n",
914 constraints->max_uV, max_uV);
915 constraints->max_uV = max_uV;
916 }
917 }
918
919 return 0;
920 }
921
922 static int _regulator_do_enable(struct regulator_dev *rdev);
923
924 /**
925 * set_machine_constraints - sets regulator constraints
926 * @rdev: regulator source
927 * @constraints: constraints to apply
928 *
929 * Allows platform initialisation code to define and constrain
930 * regulator circuits e.g. valid voltage/current ranges, etc. NOTE:
931 * Constraints *must* be set by platform code in order for some
932 * regulator operations to proceed i.e. set_voltage, set_current_limit,
933 * set_mode.
934 */
935 static int set_machine_constraints(struct regulator_dev *rdev,
936 const struct regulation_constraints *constraints)
937 {
938 int ret = 0;
939 struct regulator_ops *ops = rdev->desc->ops;
940
941 if (constraints)
942 rdev->constraints = kmemdup(constraints, sizeof(*constraints),
943 GFP_KERNEL);
944 else
945 rdev->constraints = kzalloc(sizeof(*constraints),
946 GFP_KERNEL);
947 if (!rdev->constraints)
948 return -ENOMEM;
949
950 ret = machine_constraints_voltage(rdev, rdev->constraints);
951 if (ret != 0)
952 goto out;
953
954 /* do we need to setup our suspend state */
955 if (rdev->constraints->initial_state) {
956 ret = suspend_prepare(rdev, rdev->constraints->initial_state);
957 if (ret < 0) {
958 rdev_err(rdev, "failed to set suspend state\n");
959 goto out;
960 }
961 }
962
963 if (rdev->constraints->initial_mode) {
964 if (!ops->set_mode) {
965 rdev_err(rdev, "no set_mode operation\n");
966 ret = -EINVAL;
967 goto out;
968 }
969
970 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
971 if (ret < 0) {
972 rdev_err(rdev, "failed to set initial mode: %d\n", ret);
973 goto out;
974 }
975 }
976
977 /* If the constraints say the regulator should be on at this point
978 * and we have control then make sure it is enabled.
979 */
980 if (rdev->constraints->always_on || rdev->constraints->boot_on) {
981 ret = _regulator_do_enable(rdev);
982 if (ret < 0 && ret != -EINVAL) {
983 rdev_err(rdev, "failed to enable\n");
984 goto out;
985 }
986 }
987
988 if (rdev->constraints->ramp_delay && ops->set_ramp_delay) {
989 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
990 if (ret < 0) {
991 rdev_err(rdev, "failed to set ramp_delay\n");
992 goto out;
993 }
994 }
995
996 print_constraints(rdev);
997 return 0;
998 out:
999 kfree(rdev->constraints);
1000 rdev->constraints = NULL;
1001 return ret;
1002 }
1003
1004 /**
1005 * set_supply - set regulator supply regulator
1006 * @rdev: regulator name
1007 * @supply_rdev: supply regulator name
1008 *
1009 * Called by platform initialisation code to set the supply regulator for this
1010 * regulator. This ensures that a regulators supply will also be enabled by the
1011 * core if it's child is enabled.
1012 */
1013 static int set_supply(struct regulator_dev *rdev,
1014 struct regulator_dev *supply_rdev)
1015 {
1016 int err;
1017
1018 rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1019
1020 rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1021 if (rdev->supply == NULL) {
1022 err = -ENOMEM;
1023 return err;
1024 }
1025 supply_rdev->open_count++;
1026
1027 return 0;
1028 }
1029
1030 /**
1031 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1032 * @rdev: regulator source
1033 * @consumer_dev_name: dev_name() string for device supply applies to
1034 * @supply: symbolic name for supply
1035 *
1036 * Allows platform initialisation code to map physical regulator
1037 * sources to symbolic names for supplies for use by devices. Devices
1038 * should use these symbolic names to request regulators, avoiding the
1039 * need to provide board-specific regulator names as platform data.
1040 */
1041 static int set_consumer_device_supply(struct regulator_dev *rdev,
1042 const char *consumer_dev_name,
1043 const char *supply)
1044 {
1045 struct regulator_map *node;
1046 int has_dev;
1047
1048 if (supply == NULL)
1049 return -EINVAL;
1050
1051 if (consumer_dev_name != NULL)
1052 has_dev = 1;
1053 else
1054 has_dev = 0;
1055
1056 list_for_each_entry(node, &regulator_map_list, list) {
1057 if (node->dev_name && consumer_dev_name) {
1058 if (strcmp(node->dev_name, consumer_dev_name) != 0)
1059 continue;
1060 } else if (node->dev_name || consumer_dev_name) {
1061 continue;
1062 }
1063
1064 if (strcmp(node->supply, supply) != 0)
1065 continue;
1066
1067 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1068 consumer_dev_name,
1069 dev_name(&node->regulator->dev),
1070 node->regulator->desc->name,
1071 supply,
1072 dev_name(&rdev->dev), rdev_get_name(rdev));
1073 return -EBUSY;
1074 }
1075
1076 node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1077 if (node == NULL)
1078 return -ENOMEM;
1079
1080 node->regulator = rdev;
1081 node->supply = supply;
1082
1083 if (has_dev) {
1084 node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1085 if (node->dev_name == NULL) {
1086 kfree(node);
1087 return -ENOMEM;
1088 }
1089 }
1090
1091 list_add(&node->list, &regulator_map_list);
1092 return 0;
1093 }
1094
1095 static void unset_regulator_supplies(struct regulator_dev *rdev)
1096 {
1097 struct regulator_map *node, *n;
1098
1099 list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1100 if (rdev == node->regulator) {
1101 list_del(&node->list);
1102 kfree(node->dev_name);
1103 kfree(node);
1104 }
1105 }
1106 }
1107
1108 #define REG_STR_SIZE 64
1109
1110 static struct regulator *create_regulator(struct regulator_dev *rdev,
1111 struct device *dev,
1112 const char *supply_name)
1113 {
1114 struct regulator *regulator;
1115 char buf[REG_STR_SIZE];
1116 int err, size;
1117
1118 regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1119 if (regulator == NULL)
1120 return NULL;
1121
1122 mutex_lock(&rdev->mutex);
1123 regulator->rdev = rdev;
1124 list_add(&regulator->list, &rdev->consumer_list);
1125
1126 if (dev) {
1127 regulator->dev = dev;
1128
1129 /* Add a link to the device sysfs entry */
1130 size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1131 dev->kobj.name, supply_name);
1132 if (size >= REG_STR_SIZE)
1133 goto overflow_err;
1134
1135 regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1136 if (regulator->supply_name == NULL)
1137 goto overflow_err;
1138
1139 err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1140 buf);
1141 if (err) {
1142 rdev_warn(rdev, "could not add device link %s err %d\n",
1143 dev->kobj.name, err);
1144 /* non-fatal */
1145 }
1146 } else {
1147 regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
1148 if (regulator->supply_name == NULL)
1149 goto overflow_err;
1150 }
1151
1152 regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1153 rdev->debugfs);
1154 if (!regulator->debugfs) {
1155 rdev_warn(rdev, "Failed to create debugfs directory\n");
1156 } else {
1157 debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1158 &regulator->uA_load);
1159 debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1160 &regulator->min_uV);
1161 debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1162 &regulator->max_uV);
1163 }
1164
1165 /*
1166 * Check now if the regulator is an always on regulator - if
1167 * it is then we don't need to do nearly so much work for
1168 * enable/disable calls.
1169 */
1170 if (!_regulator_can_change_status(rdev) &&
1171 _regulator_is_enabled(rdev))
1172 regulator->always_on = true;
1173
1174 mutex_unlock(&rdev->mutex);
1175 return regulator;
1176 overflow_err:
1177 list_del(&regulator->list);
1178 kfree(regulator);
1179 mutex_unlock(&rdev->mutex);
1180 return NULL;
1181 }
1182
1183 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1184 {
1185 if (!rdev->desc->ops->enable_time)
1186 return rdev->desc->enable_time;
1187 return rdev->desc->ops->enable_time(rdev);
1188 }
1189
1190 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1191 const char *supply,
1192 int *ret)
1193 {
1194 struct regulator_dev *r;
1195 struct device_node *node;
1196 struct regulator_map *map;
1197 const char *devname = NULL;
1198
1199 /* first do a dt based lookup */
1200 if (dev && dev->of_node) {
1201 node = of_get_regulator(dev, supply);
1202 if (node) {
1203 list_for_each_entry(r, &regulator_list, list)
1204 if (r->dev.parent &&
1205 node == r->dev.of_node)
1206 return r;
1207 } else {
1208 /*
1209 * If we couldn't even get the node then it's
1210 * not just that the device didn't register
1211 * yet, there's no node and we'll never
1212 * succeed.
1213 */
1214 *ret = -ENODEV;
1215 }
1216 }
1217
1218 /* if not found, try doing it non-dt way */
1219 if (dev)
1220 devname = dev_name(dev);
1221
1222 list_for_each_entry(r, &regulator_list, list)
1223 if (strcmp(rdev_get_name(r), supply) == 0)
1224 return r;
1225
1226 list_for_each_entry(map, &regulator_map_list, list) {
1227 /* If the mapping has a device set up it must match */
1228 if (map->dev_name &&
1229 (!devname || strcmp(map->dev_name, devname)))
1230 continue;
1231
1232 if (strcmp(map->supply, supply) == 0)
1233 return map->regulator;
1234 }
1235
1236
1237 return NULL;
1238 }
1239
1240 /* Internal regulator request function */
1241 static struct regulator *_regulator_get(struct device *dev, const char *id,
1242 int exclusive)
1243 {
1244 struct regulator_dev *rdev;
1245 struct regulator *regulator = ERR_PTR(-EPROBE_DEFER);
1246 const char *devname = NULL;
1247 int ret = 0;
1248
1249 if (id == NULL) {
1250 pr_err("get() with no identifier\n");
1251 return regulator;
1252 }
1253
1254 if (dev)
1255 devname = dev_name(dev);
1256
1257 mutex_lock(&regulator_list_mutex);
1258
1259 rdev = regulator_dev_lookup(dev, id, &ret);
1260 if (rdev)
1261 goto found;
1262
1263 /*
1264 * If we have return value from dev_lookup fail, we do not expect to
1265 * succeed, so, quit with appropriate error value
1266 */
1267 if (ret) {
1268 regulator = ERR_PTR(ret);
1269 goto out;
1270 }
1271
1272 if (board_wants_dummy_regulator) {
1273 rdev = dummy_regulator_rdev;
1274 goto found;
1275 }
1276
1277 #ifdef CONFIG_REGULATOR_DUMMY
1278 if (!devname)
1279 devname = "deviceless";
1280
1281 /* If the board didn't flag that it was fully constrained then
1282 * substitute in a dummy regulator so consumers can continue.
1283 */
1284 if (!has_full_constraints) {
1285 pr_warn("%s supply %s not found, using dummy regulator\n",
1286 devname, id);
1287 rdev = dummy_regulator_rdev;
1288 goto found;
1289 }
1290 #endif
1291
1292 mutex_unlock(&regulator_list_mutex);
1293 return regulator;
1294
1295 found:
1296 if (rdev->exclusive) {
1297 regulator = ERR_PTR(-EPERM);
1298 goto out;
1299 }
1300
1301 if (exclusive && rdev->open_count) {
1302 regulator = ERR_PTR(-EBUSY);
1303 goto out;
1304 }
1305
1306 if (!try_module_get(rdev->owner))
1307 goto out;
1308
1309 regulator = create_regulator(rdev, dev, id);
1310 if (regulator == NULL) {
1311 regulator = ERR_PTR(-ENOMEM);
1312 module_put(rdev->owner);
1313 goto out;
1314 }
1315
1316 rdev->open_count++;
1317 if (exclusive) {
1318 rdev->exclusive = 1;
1319
1320 ret = _regulator_is_enabled(rdev);
1321 if (ret > 0)
1322 rdev->use_count = 1;
1323 else
1324 rdev->use_count = 0;
1325 }
1326
1327 out:
1328 mutex_unlock(&regulator_list_mutex);
1329
1330 return regulator;
1331 }
1332
1333 /**
1334 * regulator_get - lookup and obtain a reference to a regulator.
1335 * @dev: device for regulator "consumer"
1336 * @id: Supply name or regulator ID.
1337 *
1338 * Returns a struct regulator corresponding to the regulator producer,
1339 * or IS_ERR() condition containing errno.
1340 *
1341 * Use of supply names configured via regulator_set_device_supply() is
1342 * strongly encouraged. It is recommended that the supply name used
1343 * should match the name used for the supply and/or the relevant
1344 * device pins in the datasheet.
1345 */
1346 struct regulator *regulator_get(struct device *dev, const char *id)
1347 {
1348 return _regulator_get(dev, id, 0);
1349 }
1350 EXPORT_SYMBOL_GPL(regulator_get);
1351
1352 static void devm_regulator_release(struct device *dev, void *res)
1353 {
1354 regulator_put(*(struct regulator **)res);
1355 }
1356
1357 /**
1358 * devm_regulator_get - Resource managed regulator_get()
1359 * @dev: device for regulator "consumer"
1360 * @id: Supply name or regulator ID.
1361 *
1362 * Managed regulator_get(). Regulators returned from this function are
1363 * automatically regulator_put() on driver detach. See regulator_get() for more
1364 * information.
1365 */
1366 struct regulator *devm_regulator_get(struct device *dev, const char *id)
1367 {
1368 struct regulator **ptr, *regulator;
1369
1370 ptr = devres_alloc(devm_regulator_release, sizeof(*ptr), GFP_KERNEL);
1371 if (!ptr)
1372 return ERR_PTR(-ENOMEM);
1373
1374 regulator = regulator_get(dev, id);
1375 if (!IS_ERR(regulator)) {
1376 *ptr = regulator;
1377 devres_add(dev, ptr);
1378 } else {
1379 devres_free(ptr);
1380 }
1381
1382 return regulator;
1383 }
1384 EXPORT_SYMBOL_GPL(devm_regulator_get);
1385
1386 /**
1387 * regulator_get_exclusive - obtain exclusive access to a regulator.
1388 * @dev: device for regulator "consumer"
1389 * @id: Supply name or regulator ID.
1390 *
1391 * Returns a struct regulator corresponding to the regulator producer,
1392 * or IS_ERR() condition containing errno. Other consumers will be
1393 * unable to obtain this reference is held and the use count for the
1394 * regulator will be initialised to reflect the current state of the
1395 * regulator.
1396 *
1397 * This is intended for use by consumers which cannot tolerate shared
1398 * use of the regulator such as those which need to force the
1399 * regulator off for correct operation of the hardware they are
1400 * controlling.
1401 *
1402 * Use of supply names configured via regulator_set_device_supply() is
1403 * strongly encouraged. It is recommended that the supply name used
1404 * should match the name used for the supply and/or the relevant
1405 * device pins in the datasheet.
1406 */
1407 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1408 {
1409 return _regulator_get(dev, id, 1);
1410 }
1411 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1412
1413 /* regulator_list_mutex lock held by regulator_put() */
1414 static void _regulator_put(struct regulator *regulator)
1415 {
1416 struct regulator_dev *rdev;
1417
1418 if (regulator == NULL || IS_ERR(regulator))
1419 return;
1420
1421 rdev = regulator->rdev;
1422
1423 debugfs_remove_recursive(regulator->debugfs);
1424
1425 /* remove any sysfs entries */
1426 if (regulator->dev)
1427 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1428 mutex_lock(&rdev->mutex);
1429 kfree(regulator->supply_name);
1430 list_del(&regulator->list);
1431 kfree(regulator);
1432
1433 rdev->open_count--;
1434 rdev->exclusive = 0;
1435 mutex_unlock(&rdev->mutex);
1436
1437 module_put(rdev->owner);
1438 }
1439
1440 /**
1441 * regulator_put - "free" the regulator source
1442 * @regulator: regulator source
1443 *
1444 * Note: drivers must ensure that all regulator_enable calls made on this
1445 * regulator source are balanced by regulator_disable calls prior to calling
1446 * this function.
1447 */
1448 void regulator_put(struct regulator *regulator)
1449 {
1450 mutex_lock(&regulator_list_mutex);
1451 _regulator_put(regulator);
1452 mutex_unlock(&regulator_list_mutex);
1453 }
1454 EXPORT_SYMBOL_GPL(regulator_put);
1455
1456 static int devm_regulator_match(struct device *dev, void *res, void *data)
1457 {
1458 struct regulator **r = res;
1459 if (!r || !*r) {
1460 WARN_ON(!r || !*r);
1461 return 0;
1462 }
1463 return *r == data;
1464 }
1465
1466 /**
1467 * devm_regulator_put - Resource managed regulator_put()
1468 * @regulator: regulator to free
1469 *
1470 * Deallocate a regulator allocated with devm_regulator_get(). Normally
1471 * this function will not need to be called and the resource management
1472 * code will ensure that the resource is freed.
1473 */
1474 void devm_regulator_put(struct regulator *regulator)
1475 {
1476 int rc;
1477
1478 rc = devres_release(regulator->dev, devm_regulator_release,
1479 devm_regulator_match, regulator);
1480 if (rc != 0)
1481 WARN_ON(rc);
1482 }
1483 EXPORT_SYMBOL_GPL(devm_regulator_put);
1484
1485 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
1486 static int regulator_ena_gpio_request(struct regulator_dev *rdev,
1487 const struct regulator_config *config)
1488 {
1489 struct regulator_enable_gpio *pin;
1490 int ret;
1491
1492 list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
1493 if (pin->gpio == config->ena_gpio) {
1494 rdev_dbg(rdev, "GPIO %d is already used\n",
1495 config->ena_gpio);
1496 goto update_ena_gpio_to_rdev;
1497 }
1498 }
1499
1500 ret = gpio_request_one(config->ena_gpio,
1501 GPIOF_DIR_OUT | config->ena_gpio_flags,
1502 rdev_get_name(rdev));
1503 if (ret)
1504 return ret;
1505
1506 pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
1507 if (pin == NULL) {
1508 gpio_free(config->ena_gpio);
1509 return -ENOMEM;
1510 }
1511
1512 pin->gpio = config->ena_gpio;
1513 pin->ena_gpio_invert = config->ena_gpio_invert;
1514 list_add(&pin->list, &regulator_ena_gpio_list);
1515
1516 update_ena_gpio_to_rdev:
1517 pin->request_count++;
1518 rdev->ena_pin = pin;
1519 return 0;
1520 }
1521
1522 static void regulator_ena_gpio_free(struct regulator_dev *rdev)
1523 {
1524 struct regulator_enable_gpio *pin, *n;
1525
1526 if (!rdev->ena_pin)
1527 return;
1528
1529 /* Free the GPIO only in case of no use */
1530 list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
1531 if (pin->gpio == rdev->ena_pin->gpio) {
1532 if (pin->request_count <= 1) {
1533 pin->request_count = 0;
1534 gpio_free(pin->gpio);
1535 list_del(&pin->list);
1536 kfree(pin);
1537 } else {
1538 pin->request_count--;
1539 }
1540 }
1541 }
1542 }
1543
1544 /**
1545 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
1546 * @rdev: regulator_dev structure
1547 * @enable: enable GPIO at initial use?
1548 *
1549 * GPIO is enabled in case of initial use. (enable_count is 0)
1550 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
1551 */
1552 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
1553 {
1554 struct regulator_enable_gpio *pin = rdev->ena_pin;
1555
1556 if (!pin)
1557 return -EINVAL;
1558
1559 if (enable) {
1560 /* Enable GPIO at initial use */
1561 if (pin->enable_count == 0)
1562 gpio_set_value_cansleep(pin->gpio,
1563 !pin->ena_gpio_invert);
1564
1565 pin->enable_count++;
1566 } else {
1567 if (pin->enable_count > 1) {
1568 pin->enable_count--;
1569 return 0;
1570 }
1571
1572 /* Disable GPIO if not used */
1573 if (pin->enable_count <= 1) {
1574 gpio_set_value_cansleep(pin->gpio,
1575 pin->ena_gpio_invert);
1576 pin->enable_count = 0;
1577 }
1578 }
1579
1580 return 0;
1581 }
1582
1583 static int _regulator_do_enable(struct regulator_dev *rdev)
1584 {
1585 int ret, delay;
1586
1587 /* Query before enabling in case configuration dependent. */
1588 ret = _regulator_get_enable_time(rdev);
1589 if (ret >= 0) {
1590 delay = ret;
1591 } else {
1592 rdev_warn(rdev, "enable_time() failed: %d\n", ret);
1593 delay = 0;
1594 }
1595
1596 trace_regulator_enable(rdev_get_name(rdev));
1597
1598 if (rdev->ena_pin) {
1599 if (!rdev->ena_gpio_state) {
1600 ret = regulator_ena_gpio_ctrl(rdev, true);
1601 if (ret < 0)
1602 return ret;
1603 rdev->ena_gpio_state = 1;
1604 }
1605 } else if (rdev->desc->ops->enable) {
1606 ret = rdev->desc->ops->enable(rdev);
1607 if (ret < 0)
1608 return ret;
1609 } else {
1610 return -EINVAL;
1611 }
1612
1613 /* Allow the regulator to ramp; it would be useful to extend
1614 * this for bulk operations so that the regulators can ramp
1615 * together. */
1616 trace_regulator_enable_delay(rdev_get_name(rdev));
1617
1618 if (delay >= 1000) {
1619 mdelay(delay / 1000);
1620 udelay(delay % 1000);
1621 } else if (delay) {
1622 udelay(delay);
1623 }
1624
1625 trace_regulator_enable_complete(rdev_get_name(rdev));
1626
1627 return 0;
1628 }
1629
1630 /* locks held by regulator_enable() */
1631 static int _regulator_enable(struct regulator_dev *rdev)
1632 {
1633 int ret;
1634
1635 /* check voltage and requested load before enabling */
1636 if (rdev->constraints &&
1637 (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1638 drms_uA_update(rdev);
1639
1640 if (rdev->use_count == 0) {
1641 /* The regulator may on if it's not switchable or left on */
1642 ret = _regulator_is_enabled(rdev);
1643 if (ret == -EINVAL || ret == 0) {
1644 if (!_regulator_can_change_status(rdev))
1645 return -EPERM;
1646
1647 ret = _regulator_do_enable(rdev);
1648 if (ret < 0)
1649 return ret;
1650
1651 } else if (ret < 0) {
1652 rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1653 return ret;
1654 }
1655 /* Fallthrough on positive return values - already enabled */
1656 }
1657
1658 rdev->use_count++;
1659
1660 return 0;
1661 }
1662
1663 /**
1664 * regulator_enable - enable regulator output
1665 * @regulator: regulator source
1666 *
1667 * Request that the regulator be enabled with the regulator output at
1668 * the predefined voltage or current value. Calls to regulator_enable()
1669 * must be balanced with calls to regulator_disable().
1670 *
1671 * NOTE: the output value can be set by other drivers, boot loader or may be
1672 * hardwired in the regulator.
1673 */
1674 int regulator_enable(struct regulator *regulator)
1675 {
1676 struct regulator_dev *rdev = regulator->rdev;
1677 int ret = 0;
1678
1679 if (regulator->always_on)
1680 return 0;
1681
1682 if (rdev->supply) {
1683 ret = regulator_enable(rdev->supply);
1684 if (ret != 0)
1685 return ret;
1686 }
1687
1688 mutex_lock(&rdev->mutex);
1689 ret = _regulator_enable(rdev);
1690 mutex_unlock(&rdev->mutex);
1691
1692 if (ret != 0 && rdev->supply)
1693 regulator_disable(rdev->supply);
1694
1695 return ret;
1696 }
1697 EXPORT_SYMBOL_GPL(regulator_enable);
1698
1699 static int _regulator_do_disable(struct regulator_dev *rdev)
1700 {
1701 int ret;
1702
1703 trace_regulator_disable(rdev_get_name(rdev));
1704
1705 if (rdev->ena_pin) {
1706 if (rdev->ena_gpio_state) {
1707 ret = regulator_ena_gpio_ctrl(rdev, false);
1708 if (ret < 0)
1709 return ret;
1710 rdev->ena_gpio_state = 0;
1711 }
1712
1713 } else if (rdev->desc->ops->disable) {
1714 ret = rdev->desc->ops->disable(rdev);
1715 if (ret != 0)
1716 return ret;
1717 }
1718
1719 trace_regulator_disable_complete(rdev_get_name(rdev));
1720
1721 return 0;
1722 }
1723
1724 /* locks held by regulator_disable() */
1725 static int _regulator_disable(struct regulator_dev *rdev)
1726 {
1727 int ret = 0;
1728
1729 if (WARN(rdev->use_count <= 0,
1730 "unbalanced disables for %s\n", rdev_get_name(rdev)))
1731 return -EIO;
1732
1733 /* are we the last user and permitted to disable ? */
1734 if (rdev->use_count == 1 &&
1735 (rdev->constraints && !rdev->constraints->always_on)) {
1736
1737 /* we are last user */
1738 if (_regulator_can_change_status(rdev)) {
1739 ret = _regulator_do_disable(rdev);
1740 if (ret < 0) {
1741 rdev_err(rdev, "failed to disable\n");
1742 return ret;
1743 }
1744 _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
1745 NULL);
1746 }
1747
1748 rdev->use_count = 0;
1749 } else if (rdev->use_count > 1) {
1750
1751 if (rdev->constraints &&
1752 (rdev->constraints->valid_ops_mask &
1753 REGULATOR_CHANGE_DRMS))
1754 drms_uA_update(rdev);
1755
1756 rdev->use_count--;
1757 }
1758
1759 return ret;
1760 }
1761
1762 /**
1763 * regulator_disable - disable regulator output
1764 * @regulator: regulator source
1765 *
1766 * Disable the regulator output voltage or current. Calls to
1767 * regulator_enable() must be balanced with calls to
1768 * regulator_disable().
1769 *
1770 * NOTE: this will only disable the regulator output if no other consumer
1771 * devices have it enabled, the regulator device supports disabling and
1772 * machine constraints permit this operation.
1773 */
1774 int regulator_disable(struct regulator *regulator)
1775 {
1776 struct regulator_dev *rdev = regulator->rdev;
1777 int ret = 0;
1778
1779 if (regulator->always_on)
1780 return 0;
1781
1782 mutex_lock(&rdev->mutex);
1783 ret = _regulator_disable(rdev);
1784 mutex_unlock(&rdev->mutex);
1785
1786 if (ret == 0 && rdev->supply)
1787 regulator_disable(rdev->supply);
1788
1789 return ret;
1790 }
1791 EXPORT_SYMBOL_GPL(regulator_disable);
1792
1793 /* locks held by regulator_force_disable() */
1794 static int _regulator_force_disable(struct regulator_dev *rdev)
1795 {
1796 int ret = 0;
1797
1798 ret = _regulator_do_disable(rdev);
1799 if (ret < 0) {
1800 rdev_err(rdev, "failed to force disable\n");
1801 return ret;
1802 }
1803
1804 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
1805 REGULATOR_EVENT_DISABLE, NULL);
1806
1807 return 0;
1808 }
1809
1810 /**
1811 * regulator_force_disable - force disable regulator output
1812 * @regulator: regulator source
1813 *
1814 * Forcibly disable the regulator output voltage or current.
1815 * NOTE: this *will* disable the regulator output even if other consumer
1816 * devices have it enabled. This should be used for situations when device
1817 * damage will likely occur if the regulator is not disabled (e.g. over temp).
1818 */
1819 int regulator_force_disable(struct regulator *regulator)
1820 {
1821 struct regulator_dev *rdev = regulator->rdev;
1822 int ret;
1823
1824 mutex_lock(&rdev->mutex);
1825 regulator->uA_load = 0;
1826 ret = _regulator_force_disable(regulator->rdev);
1827 mutex_unlock(&rdev->mutex);
1828
1829 if (rdev->supply)
1830 while (rdev->open_count--)
1831 regulator_disable(rdev->supply);
1832
1833 return ret;
1834 }
1835 EXPORT_SYMBOL_GPL(regulator_force_disable);
1836
1837 static void regulator_disable_work(struct work_struct *work)
1838 {
1839 struct regulator_dev *rdev = container_of(work, struct regulator_dev,
1840 disable_work.work);
1841 int count, i, ret;
1842
1843 mutex_lock(&rdev->mutex);
1844
1845 BUG_ON(!rdev->deferred_disables);
1846
1847 count = rdev->deferred_disables;
1848 rdev->deferred_disables = 0;
1849
1850 for (i = 0; i < count; i++) {
1851 ret = _regulator_disable(rdev);
1852 if (ret != 0)
1853 rdev_err(rdev, "Deferred disable failed: %d\n", ret);
1854 }
1855
1856 mutex_unlock(&rdev->mutex);
1857
1858 if (rdev->supply) {
1859 for (i = 0; i < count; i++) {
1860 ret = regulator_disable(rdev->supply);
1861 if (ret != 0) {
1862 rdev_err(rdev,
1863 "Supply disable failed: %d\n", ret);
1864 }
1865 }
1866 }
1867 }
1868
1869 /**
1870 * regulator_disable_deferred - disable regulator output with delay
1871 * @regulator: regulator source
1872 * @ms: miliseconds until the regulator is disabled
1873 *
1874 * Execute regulator_disable() on the regulator after a delay. This
1875 * is intended for use with devices that require some time to quiesce.
1876 *
1877 * NOTE: this will only disable the regulator output if no other consumer
1878 * devices have it enabled, the regulator device supports disabling and
1879 * machine constraints permit this operation.
1880 */
1881 int regulator_disable_deferred(struct regulator *regulator, int ms)
1882 {
1883 struct regulator_dev *rdev = regulator->rdev;
1884 int ret;
1885
1886 if (regulator->always_on)
1887 return 0;
1888
1889 if (!ms)
1890 return regulator_disable(regulator);
1891
1892 mutex_lock(&rdev->mutex);
1893 rdev->deferred_disables++;
1894 mutex_unlock(&rdev->mutex);
1895
1896 ret = schedule_delayed_work(&rdev->disable_work,
1897 msecs_to_jiffies(ms));
1898 if (ret < 0)
1899 return ret;
1900 else
1901 return 0;
1902 }
1903 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
1904
1905 /**
1906 * regulator_is_enabled_regmap - standard is_enabled() for regmap users
1907 *
1908 * @rdev: regulator to operate on
1909 *
1910 * Regulators that use regmap for their register I/O can set the
1911 * enable_reg and enable_mask fields in their descriptor and then use
1912 * this as their is_enabled operation, saving some code.
1913 */
1914 int regulator_is_enabled_regmap(struct regulator_dev *rdev)
1915 {
1916 unsigned int val;
1917 int ret;
1918
1919 ret = regmap_read(rdev->regmap, rdev->desc->enable_reg, &val);
1920 if (ret != 0)
1921 return ret;
1922
1923 if (rdev->desc->enable_is_inverted)
1924 return (val & rdev->desc->enable_mask) == 0;
1925 else
1926 return (val & rdev->desc->enable_mask) != 0;
1927 }
1928 EXPORT_SYMBOL_GPL(regulator_is_enabled_regmap);
1929
1930 /**
1931 * regulator_enable_regmap - standard enable() for regmap users
1932 *
1933 * @rdev: regulator to operate on
1934 *
1935 * Regulators that use regmap for their register I/O can set the
1936 * enable_reg and enable_mask fields in their descriptor and then use
1937 * this as their enable() operation, saving some code.
1938 */
1939 int regulator_enable_regmap(struct regulator_dev *rdev)
1940 {
1941 unsigned int val;
1942
1943 if (rdev->desc->enable_is_inverted)
1944 val = 0;
1945 else
1946 val = rdev->desc->enable_mask;
1947
1948 return regmap_update_bits(rdev->regmap, rdev->desc->enable_reg,
1949 rdev->desc->enable_mask, val);
1950 }
1951 EXPORT_SYMBOL_GPL(regulator_enable_regmap);
1952
1953 /**
1954 * regulator_disable_regmap - standard disable() for regmap users
1955 *
1956 * @rdev: regulator to operate on
1957 *
1958 * Regulators that use regmap for their register I/O can set the
1959 * enable_reg and enable_mask fields in their descriptor and then use
1960 * this as their disable() operation, saving some code.
1961 */
1962 int regulator_disable_regmap(struct regulator_dev *rdev)
1963 {
1964 unsigned int val;
1965
1966 if (rdev->desc->enable_is_inverted)
1967 val = rdev->desc->enable_mask;
1968 else
1969 val = 0;
1970
1971 return regmap_update_bits(rdev->regmap, rdev->desc->enable_reg,
1972 rdev->desc->enable_mask, val);
1973 }
1974 EXPORT_SYMBOL_GPL(regulator_disable_regmap);
1975
1976 static int _regulator_is_enabled(struct regulator_dev *rdev)
1977 {
1978 /* A GPIO control always takes precedence */
1979 if (rdev->ena_pin)
1980 return rdev->ena_gpio_state;
1981
1982 /* If we don't know then assume that the regulator is always on */
1983 if (!rdev->desc->ops->is_enabled)
1984 return 1;
1985
1986 return rdev->desc->ops->is_enabled(rdev);
1987 }
1988
1989 /**
1990 * regulator_is_enabled - is the regulator output enabled
1991 * @regulator: regulator source
1992 *
1993 * Returns positive if the regulator driver backing the source/client
1994 * has requested that the device be enabled, zero if it hasn't, else a
1995 * negative errno code.
1996 *
1997 * Note that the device backing this regulator handle can have multiple
1998 * users, so it might be enabled even if regulator_enable() was never
1999 * called for this particular source.
2000 */
2001 int regulator_is_enabled(struct regulator *regulator)
2002 {
2003 int ret;
2004
2005 if (regulator->always_on)
2006 return 1;
2007
2008 mutex_lock(&regulator->rdev->mutex);
2009 ret = _regulator_is_enabled(regulator->rdev);
2010 mutex_unlock(&regulator->rdev->mutex);
2011
2012 return ret;
2013 }
2014 EXPORT_SYMBOL_GPL(regulator_is_enabled);
2015
2016 /**
2017 * regulator_can_change_voltage - check if regulator can change voltage
2018 * @regulator: regulator source
2019 *
2020 * Returns positive if the regulator driver backing the source/client
2021 * can change its voltage, false otherwise. Usefull for detecting fixed
2022 * or dummy regulators and disabling voltage change logic in the client
2023 * driver.
2024 */
2025 int regulator_can_change_voltage(struct regulator *regulator)
2026 {
2027 struct regulator_dev *rdev = regulator->rdev;
2028
2029 if (rdev->constraints &&
2030 (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2031 if (rdev->desc->n_voltages - rdev->desc->linear_min_sel > 1)
2032 return 1;
2033
2034 if (rdev->desc->continuous_voltage_range &&
2035 rdev->constraints->min_uV && rdev->constraints->max_uV &&
2036 rdev->constraints->min_uV != rdev->constraints->max_uV)
2037 return 1;
2038 }
2039
2040 return 0;
2041 }
2042 EXPORT_SYMBOL_GPL(regulator_can_change_voltage);
2043
2044 /**
2045 * regulator_count_voltages - count regulator_list_voltage() selectors
2046 * @regulator: regulator source
2047 *
2048 * Returns number of selectors, or negative errno. Selectors are
2049 * numbered starting at zero, and typically correspond to bitfields
2050 * in hardware registers.
2051 */
2052 int regulator_count_voltages(struct regulator *regulator)
2053 {
2054 struct regulator_dev *rdev = regulator->rdev;
2055
2056 return rdev->desc->n_voltages ? : -EINVAL;
2057 }
2058 EXPORT_SYMBOL_GPL(regulator_count_voltages);
2059
2060 /**
2061 * regulator_list_voltage_linear - List voltages with simple calculation
2062 *
2063 * @rdev: Regulator device
2064 * @selector: Selector to convert into a voltage
2065 *
2066 * Regulators with a simple linear mapping between voltages and
2067 * selectors can set min_uV and uV_step in the regulator descriptor
2068 * and then use this function as their list_voltage() operation,
2069 */
2070 int regulator_list_voltage_linear(struct regulator_dev *rdev,
2071 unsigned int selector)
2072 {
2073 if (selector >= rdev->desc->n_voltages)
2074 return -EINVAL;
2075 if (selector < rdev->desc->linear_min_sel)
2076 return 0;
2077
2078 selector -= rdev->desc->linear_min_sel;
2079
2080 return rdev->desc->min_uV + (rdev->desc->uV_step * selector);
2081 }
2082 EXPORT_SYMBOL_GPL(regulator_list_voltage_linear);
2083
2084 /**
2085 * regulator_list_voltage_table - List voltages with table based mapping
2086 *
2087 * @rdev: Regulator device
2088 * @selector: Selector to convert into a voltage
2089 *
2090 * Regulators with table based mapping between voltages and
2091 * selectors can set volt_table in the regulator descriptor
2092 * and then use this function as their list_voltage() operation.
2093 */
2094 int regulator_list_voltage_table(struct regulator_dev *rdev,
2095 unsigned int selector)
2096 {
2097 if (!rdev->desc->volt_table) {
2098 BUG_ON(!rdev->desc->volt_table);
2099 return -EINVAL;
2100 }
2101
2102 if (selector >= rdev->desc->n_voltages)
2103 return -EINVAL;
2104
2105 return rdev->desc->volt_table[selector];
2106 }
2107 EXPORT_SYMBOL_GPL(regulator_list_voltage_table);
2108
2109 /**
2110 * regulator_list_voltage - enumerate supported voltages
2111 * @regulator: regulator source
2112 * @selector: identify voltage to list
2113 * Context: can sleep
2114 *
2115 * Returns a voltage that can be passed to @regulator_set_voltage(),
2116 * zero if this selector code can't be used on this system, or a
2117 * negative errno.
2118 */
2119 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
2120 {
2121 struct regulator_dev *rdev = regulator->rdev;
2122 struct regulator_ops *ops = rdev->desc->ops;
2123 int ret;
2124
2125 if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
2126 return -EINVAL;
2127
2128 mutex_lock(&rdev->mutex);
2129 ret = ops->list_voltage(rdev, selector);
2130 mutex_unlock(&rdev->mutex);
2131
2132 if (ret > 0) {
2133 if (ret < rdev->constraints->min_uV)
2134 ret = 0;
2135 else if (ret > rdev->constraints->max_uV)
2136 ret = 0;
2137 }
2138
2139 return ret;
2140 }
2141 EXPORT_SYMBOL_GPL(regulator_list_voltage);
2142
2143 /**
2144 * regulator_is_supported_voltage - check if a voltage range can be supported
2145 *
2146 * @regulator: Regulator to check.
2147 * @min_uV: Minimum required voltage in uV.
2148 * @max_uV: Maximum required voltage in uV.
2149 *
2150 * Returns a boolean or a negative error code.
2151 */
2152 int regulator_is_supported_voltage(struct regulator *regulator,
2153 int min_uV, int max_uV)
2154 {
2155 struct regulator_dev *rdev = regulator->rdev;
2156 int i, voltages, ret;
2157
2158 /* If we can't change voltage check the current voltage */
2159 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2160 ret = regulator_get_voltage(regulator);
2161 if (ret >= 0)
2162 return (min_uV <= ret && ret <= max_uV);
2163 else
2164 return ret;
2165 }
2166
2167 /* Any voltage within constrains range is fine? */
2168 if (rdev->desc->continuous_voltage_range)
2169 return min_uV >= rdev->constraints->min_uV &&
2170 max_uV <= rdev->constraints->max_uV;
2171
2172 ret = regulator_count_voltages(regulator);
2173 if (ret < 0)
2174 return ret;
2175 voltages = ret;
2176
2177 for (i = 0; i < voltages; i++) {
2178 ret = regulator_list_voltage(regulator, i);
2179
2180 if (ret >= min_uV && ret <= max_uV)
2181 return 1;
2182 }
2183
2184 return 0;
2185 }
2186 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
2187
2188 /**
2189 * regulator_get_voltage_sel_regmap - standard get_voltage_sel for regmap users
2190 *
2191 * @rdev: regulator to operate on
2192 *
2193 * Regulators that use regmap for their register I/O can set the
2194 * vsel_reg and vsel_mask fields in their descriptor and then use this
2195 * as their get_voltage_vsel operation, saving some code.
2196 */
2197 int regulator_get_voltage_sel_regmap(struct regulator_dev *rdev)
2198 {
2199 unsigned int val;
2200 int ret;
2201
2202 ret = regmap_read(rdev->regmap, rdev->desc->vsel_reg, &val);
2203 if (ret != 0)
2204 return ret;
2205
2206 val &= rdev->desc->vsel_mask;
2207 val >>= ffs(rdev->desc->vsel_mask) - 1;
2208
2209 return val;
2210 }
2211 EXPORT_SYMBOL_GPL(regulator_get_voltage_sel_regmap);
2212
2213 /**
2214 * regulator_set_voltage_sel_regmap - standard set_voltage_sel for regmap users
2215 *
2216 * @rdev: regulator to operate on
2217 * @sel: Selector to set
2218 *
2219 * Regulators that use regmap for their register I/O can set the
2220 * vsel_reg and vsel_mask fields in their descriptor and then use this
2221 * as their set_voltage_vsel operation, saving some code.
2222 */
2223 int regulator_set_voltage_sel_regmap(struct regulator_dev *rdev, unsigned sel)
2224 {
2225 int ret;
2226
2227 sel <<= ffs(rdev->desc->vsel_mask) - 1;
2228
2229 ret = regmap_update_bits(rdev->regmap, rdev->desc->vsel_reg,
2230 rdev->desc->vsel_mask, sel);
2231 if (ret)
2232 return ret;
2233
2234 if (rdev->desc->apply_bit)
2235 ret = regmap_update_bits(rdev->regmap, rdev->desc->apply_reg,
2236 rdev->desc->apply_bit,
2237 rdev->desc->apply_bit);
2238 return ret;
2239 }
2240 EXPORT_SYMBOL_GPL(regulator_set_voltage_sel_regmap);
2241
2242 /**
2243 * regulator_map_voltage_iterate - map_voltage() based on list_voltage()
2244 *
2245 * @rdev: Regulator to operate on
2246 * @min_uV: Lower bound for voltage
2247 * @max_uV: Upper bound for voltage
2248 *
2249 * Drivers implementing set_voltage_sel() and list_voltage() can use
2250 * this as their map_voltage() operation. It will find a suitable
2251 * voltage by calling list_voltage() until it gets something in bounds
2252 * for the requested voltages.
2253 */
2254 int regulator_map_voltage_iterate(struct regulator_dev *rdev,
2255 int min_uV, int max_uV)
2256 {
2257 int best_val = INT_MAX;
2258 int selector = 0;
2259 int i, ret;
2260
2261 /* Find the smallest voltage that falls within the specified
2262 * range.
2263 */
2264 for (i = 0; i < rdev->desc->n_voltages; i++) {
2265 ret = rdev->desc->ops->list_voltage(rdev, i);
2266 if (ret < 0)
2267 continue;
2268
2269 if (ret < best_val && ret >= min_uV && ret <= max_uV) {
2270 best_val = ret;
2271 selector = i;
2272 }
2273 }
2274
2275 if (best_val != INT_MAX)
2276 return selector;
2277 else
2278 return -EINVAL;
2279 }
2280 EXPORT_SYMBOL_GPL(regulator_map_voltage_iterate);
2281
2282 /**
2283 * regulator_map_voltage_ascend - map_voltage() for ascendant voltage list
2284 *
2285 * @rdev: Regulator to operate on
2286 * @min_uV: Lower bound for voltage
2287 * @max_uV: Upper bound for voltage
2288 *
2289 * Drivers that have ascendant voltage list can use this as their
2290 * map_voltage() operation.
2291 */
2292 int regulator_map_voltage_ascend(struct regulator_dev *rdev,
2293 int min_uV, int max_uV)
2294 {
2295 int i, ret;
2296
2297 for (i = 0; i < rdev->desc->n_voltages; i++) {
2298 ret = rdev->desc->ops->list_voltage(rdev, i);
2299 if (ret < 0)
2300 continue;
2301
2302 if (ret > max_uV)
2303 break;
2304
2305 if (ret >= min_uV && ret <= max_uV)
2306 return i;
2307 }
2308
2309 return -EINVAL;
2310 }
2311 EXPORT_SYMBOL_GPL(regulator_map_voltage_ascend);
2312
2313 /**
2314 * regulator_map_voltage_linear - map_voltage() for simple linear mappings
2315 *
2316 * @rdev: Regulator to operate on
2317 * @min_uV: Lower bound for voltage
2318 * @max_uV: Upper bound for voltage
2319 *
2320 * Drivers providing min_uV and uV_step in their regulator_desc can
2321 * use this as their map_voltage() operation.
2322 */
2323 int regulator_map_voltage_linear(struct regulator_dev *rdev,
2324 int min_uV, int max_uV)
2325 {
2326 int ret, voltage;
2327
2328 /* Allow uV_step to be 0 for fixed voltage */
2329 if (rdev->desc->n_voltages == 1 && rdev->desc->uV_step == 0) {
2330 if (min_uV <= rdev->desc->min_uV && rdev->desc->min_uV <= max_uV)
2331 return 0;
2332 else
2333 return -EINVAL;
2334 }
2335
2336 if (!rdev->desc->uV_step) {
2337 BUG_ON(!rdev->desc->uV_step);
2338 return -EINVAL;
2339 }
2340
2341 if (min_uV < rdev->desc->min_uV)
2342 min_uV = rdev->desc->min_uV;
2343
2344 ret = DIV_ROUND_UP(min_uV - rdev->desc->min_uV, rdev->desc->uV_step);
2345 if (ret < 0)
2346 return ret;
2347
2348 ret += rdev->desc->linear_min_sel;
2349
2350 /* Map back into a voltage to verify we're still in bounds */
2351 voltage = rdev->desc->ops->list_voltage(rdev, ret);
2352 if (voltage < min_uV || voltage > max_uV)
2353 return -EINVAL;
2354
2355 return ret;
2356 }
2357 EXPORT_SYMBOL_GPL(regulator_map_voltage_linear);
2358
2359 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
2360 int min_uV, int max_uV)
2361 {
2362 int ret;
2363 int delay = 0;
2364 int best_val = 0;
2365 unsigned int selector;
2366 int old_selector = -1;
2367
2368 trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
2369
2370 min_uV += rdev->constraints->uV_offset;
2371 max_uV += rdev->constraints->uV_offset;
2372
2373 /*
2374 * If we can't obtain the old selector there is not enough
2375 * info to call set_voltage_time_sel().
2376 */
2377 if (_regulator_is_enabled(rdev) &&
2378 rdev->desc->ops->set_voltage_time_sel &&
2379 rdev->desc->ops->get_voltage_sel) {
2380 old_selector = rdev->desc->ops->get_voltage_sel(rdev);
2381 if (old_selector < 0)
2382 return old_selector;
2383 }
2384
2385 if (rdev->desc->ops->set_voltage) {
2386 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV,
2387 &selector);
2388
2389 if (ret >= 0) {
2390 if (rdev->desc->ops->list_voltage)
2391 best_val = rdev->desc->ops->list_voltage(rdev,
2392 selector);
2393 else
2394 best_val = _regulator_get_voltage(rdev);
2395 }
2396
2397 } else if (rdev->desc->ops->set_voltage_sel) {
2398 if (rdev->desc->ops->map_voltage) {
2399 ret = rdev->desc->ops->map_voltage(rdev, min_uV,
2400 max_uV);
2401 } else {
2402 if (rdev->desc->ops->list_voltage ==
2403 regulator_list_voltage_linear)
2404 ret = regulator_map_voltage_linear(rdev,
2405 min_uV, max_uV);
2406 else
2407 ret = regulator_map_voltage_iterate(rdev,
2408 min_uV, max_uV);
2409 }
2410
2411 if (ret >= 0) {
2412 best_val = rdev->desc->ops->list_voltage(rdev, ret);
2413 if (min_uV <= best_val && max_uV >= best_val) {
2414 selector = ret;
2415 if (old_selector == selector)
2416 ret = 0;
2417 else
2418 ret = rdev->desc->ops->set_voltage_sel(
2419 rdev, ret);
2420 } else {
2421 ret = -EINVAL;
2422 }
2423 }
2424 } else {
2425 ret = -EINVAL;
2426 }
2427
2428 /* Call set_voltage_time_sel if successfully obtained old_selector */
2429 if (ret == 0 && _regulator_is_enabled(rdev) && old_selector >= 0 &&
2430 old_selector != selector && rdev->desc->ops->set_voltage_time_sel) {
2431
2432 delay = rdev->desc->ops->set_voltage_time_sel(rdev,
2433 old_selector, selector);
2434 if (delay < 0) {
2435 rdev_warn(rdev, "set_voltage_time_sel() failed: %d\n",
2436 delay);
2437 delay = 0;
2438 }
2439
2440 /* Insert any necessary delays */
2441 if (delay >= 1000) {
2442 mdelay(delay / 1000);
2443 udelay(delay % 1000);
2444 } else if (delay) {
2445 udelay(delay);
2446 }
2447 }
2448
2449 if (ret == 0 && best_val >= 0) {
2450 unsigned long data = best_val;
2451
2452 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2453 (void *)data);
2454 }
2455
2456 trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2457
2458 return ret;
2459 }
2460
2461 /**
2462 * regulator_set_voltage - set regulator output voltage
2463 * @regulator: regulator source
2464 * @min_uV: Minimum required voltage in uV
2465 * @max_uV: Maximum acceptable voltage in uV
2466 *
2467 * Sets a voltage regulator to the desired output voltage. This can be set
2468 * during any regulator state. IOW, regulator can be disabled or enabled.
2469 *
2470 * If the regulator is enabled then the voltage will change to the new value
2471 * immediately otherwise if the regulator is disabled the regulator will
2472 * output at the new voltage when enabled.
2473 *
2474 * NOTE: If the regulator is shared between several devices then the lowest
2475 * request voltage that meets the system constraints will be used.
2476 * Regulator system constraints must be set for this regulator before
2477 * calling this function otherwise this call will fail.
2478 */
2479 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
2480 {
2481 struct regulator_dev *rdev = regulator->rdev;
2482 int ret = 0;
2483 int old_min_uV, old_max_uV;
2484
2485 mutex_lock(&rdev->mutex);
2486
2487 /* If we're setting the same range as last time the change
2488 * should be a noop (some cpufreq implementations use the same
2489 * voltage for multiple frequencies, for example).
2490 */
2491 if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
2492 goto out;
2493
2494 /* sanity check */
2495 if (!rdev->desc->ops->set_voltage &&
2496 !rdev->desc->ops->set_voltage_sel) {
2497 ret = -EINVAL;
2498 goto out;
2499 }
2500
2501 /* constraints check */
2502 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2503 if (ret < 0)
2504 goto out;
2505
2506 /* restore original values in case of error */
2507 old_min_uV = regulator->min_uV;
2508 old_max_uV = regulator->max_uV;
2509 regulator->min_uV = min_uV;
2510 regulator->max_uV = max_uV;
2511
2512 ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2513 if (ret < 0)
2514 goto out2;
2515
2516 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2517 if (ret < 0)
2518 goto out2;
2519
2520 out:
2521 mutex_unlock(&rdev->mutex);
2522 return ret;
2523 out2:
2524 regulator->min_uV = old_min_uV;
2525 regulator->max_uV = old_max_uV;
2526 mutex_unlock(&rdev->mutex);
2527 return ret;
2528 }
2529 EXPORT_SYMBOL_GPL(regulator_set_voltage);
2530
2531 /**
2532 * regulator_set_voltage_time - get raise/fall time
2533 * @regulator: regulator source
2534 * @old_uV: starting voltage in microvolts
2535 * @new_uV: target voltage in microvolts
2536 *
2537 * Provided with the starting and ending voltage, this function attempts to
2538 * calculate the time in microseconds required to rise or fall to this new
2539 * voltage.
2540 */
2541 int regulator_set_voltage_time(struct regulator *regulator,
2542 int old_uV, int new_uV)
2543 {
2544 struct regulator_dev *rdev = regulator->rdev;
2545 struct regulator_ops *ops = rdev->desc->ops;
2546 int old_sel = -1;
2547 int new_sel = -1;
2548 int voltage;
2549 int i;
2550
2551 /* Currently requires operations to do this */
2552 if (!ops->list_voltage || !ops->set_voltage_time_sel
2553 || !rdev->desc->n_voltages)
2554 return -EINVAL;
2555
2556 for (i = 0; i < rdev->desc->n_voltages; i++) {
2557 /* We only look for exact voltage matches here */
2558 voltage = regulator_list_voltage(regulator, i);
2559 if (voltage < 0)
2560 return -EINVAL;
2561 if (voltage == 0)
2562 continue;
2563 if (voltage == old_uV)
2564 old_sel = i;
2565 if (voltage == new_uV)
2566 new_sel = i;
2567 }
2568
2569 if (old_sel < 0 || new_sel < 0)
2570 return -EINVAL;
2571
2572 return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
2573 }
2574 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
2575
2576 /**
2577 * regulator_set_voltage_time_sel - get raise/fall time
2578 * @rdev: regulator source device
2579 * @old_selector: selector for starting voltage
2580 * @new_selector: selector for target voltage
2581 *
2582 * Provided with the starting and target voltage selectors, this function
2583 * returns time in microseconds required to rise or fall to this new voltage
2584 *
2585 * Drivers providing ramp_delay in regulation_constraints can use this as their
2586 * set_voltage_time_sel() operation.
2587 */
2588 int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
2589 unsigned int old_selector,
2590 unsigned int new_selector)
2591 {
2592 unsigned int ramp_delay = 0;
2593 int old_volt, new_volt;
2594
2595 if (rdev->constraints->ramp_delay)
2596 ramp_delay = rdev->constraints->ramp_delay;
2597 else if (rdev->desc->ramp_delay)
2598 ramp_delay = rdev->desc->ramp_delay;
2599
2600 if (ramp_delay == 0) {
2601 rdev_warn(rdev, "ramp_delay not set\n");
2602 return 0;
2603 }
2604
2605 /* sanity check */
2606 if (!rdev->desc->ops->list_voltage)
2607 return -EINVAL;
2608
2609 old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
2610 new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
2611
2612 return DIV_ROUND_UP(abs(new_volt - old_volt), ramp_delay);
2613 }
2614 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
2615
2616 /**
2617 * regulator_sync_voltage - re-apply last regulator output voltage
2618 * @regulator: regulator source
2619 *
2620 * Re-apply the last configured voltage. This is intended to be used
2621 * where some external control source the consumer is cooperating with
2622 * has caused the configured voltage to change.
2623 */
2624 int regulator_sync_voltage(struct regulator *regulator)
2625 {
2626 struct regulator_dev *rdev = regulator->rdev;
2627 int ret, min_uV, max_uV;
2628
2629 mutex_lock(&rdev->mutex);
2630
2631 if (!rdev->desc->ops->set_voltage &&
2632 !rdev->desc->ops->set_voltage_sel) {
2633 ret = -EINVAL;
2634 goto out;
2635 }
2636
2637 /* This is only going to work if we've had a voltage configured. */
2638 if (!regulator->min_uV && !regulator->max_uV) {
2639 ret = -EINVAL;
2640 goto out;
2641 }
2642
2643 min_uV = regulator->min_uV;
2644 max_uV = regulator->max_uV;
2645
2646 /* This should be a paranoia check... */
2647 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2648 if (ret < 0)
2649 goto out;
2650
2651 ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2652 if (ret < 0)
2653 goto out;
2654
2655 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2656
2657 out:
2658 mutex_unlock(&rdev->mutex);
2659 return ret;
2660 }
2661 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
2662
2663 static int _regulator_get_voltage(struct regulator_dev *rdev)
2664 {
2665 int sel, ret;
2666
2667 if (rdev->desc->ops->get_voltage_sel) {
2668 sel = rdev->desc->ops->get_voltage_sel(rdev);
2669 if (sel < 0)
2670 return sel;
2671 ret = rdev->desc->ops->list_voltage(rdev, sel);
2672 } else if (rdev->desc->ops->get_voltage) {
2673 ret = rdev->desc->ops->get_voltage(rdev);
2674 } else if (rdev->desc->ops->list_voltage) {
2675 ret = rdev->desc->ops->list_voltage(rdev, 0);
2676 } else {
2677 return -EINVAL;
2678 }
2679
2680 if (ret < 0)
2681 return ret;
2682 return ret - rdev->constraints->uV_offset;
2683 }
2684
2685 /**
2686 * regulator_get_voltage - get regulator output voltage
2687 * @regulator: regulator source
2688 *
2689 * This returns the current regulator voltage in uV.
2690 *
2691 * NOTE: If the regulator is disabled it will return the voltage value. This
2692 * function should not be used to determine regulator state.
2693 */
2694 int regulator_get_voltage(struct regulator *regulator)
2695 {
2696 int ret;
2697
2698 mutex_lock(&regulator->rdev->mutex);
2699
2700 ret = _regulator_get_voltage(regulator->rdev);
2701
2702 mutex_unlock(&regulator->rdev->mutex);
2703
2704 return ret;
2705 }
2706 EXPORT_SYMBOL_GPL(regulator_get_voltage);
2707
2708 /**
2709 * regulator_set_current_limit - set regulator output current limit
2710 * @regulator: regulator source
2711 * @min_uA: Minimum supported current in uA
2712 * @max_uA: Maximum supported current in uA
2713 *
2714 * Sets current sink to the desired output current. This can be set during
2715 * any regulator state. IOW, regulator can be disabled or enabled.
2716 *
2717 * If the regulator is enabled then the current will change to the new value
2718 * immediately otherwise if the regulator is disabled the regulator will
2719 * output at the new current when enabled.
2720 *
2721 * NOTE: Regulator system constraints must be set for this regulator before
2722 * calling this function otherwise this call will fail.
2723 */
2724 int regulator_set_current_limit(struct regulator *regulator,
2725 int min_uA, int max_uA)
2726 {
2727 struct regulator_dev *rdev = regulator->rdev;
2728 int ret;
2729
2730 mutex_lock(&rdev->mutex);
2731
2732 /* sanity check */
2733 if (!rdev->desc->ops->set_current_limit) {
2734 ret = -EINVAL;
2735 goto out;
2736 }
2737
2738 /* constraints check */
2739 ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
2740 if (ret < 0)
2741 goto out;
2742
2743 ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
2744 out:
2745 mutex_unlock(&rdev->mutex);
2746 return ret;
2747 }
2748 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
2749
2750 static int _regulator_get_current_limit(struct regulator_dev *rdev)
2751 {
2752 int ret;
2753
2754 mutex_lock(&rdev->mutex);
2755
2756 /* sanity check */
2757 if (!rdev->desc->ops->get_current_limit) {
2758 ret = -EINVAL;
2759 goto out;
2760 }
2761
2762 ret = rdev->desc->ops->get_current_limit(rdev);
2763 out:
2764 mutex_unlock(&rdev->mutex);
2765 return ret;
2766 }
2767
2768 /**
2769 * regulator_get_current_limit - get regulator output current
2770 * @regulator: regulator source
2771 *
2772 * This returns the current supplied by the specified current sink in uA.
2773 *
2774 * NOTE: If the regulator is disabled it will return the current value. This
2775 * function should not be used to determine regulator state.
2776 */
2777 int regulator_get_current_limit(struct regulator *regulator)
2778 {
2779 return _regulator_get_current_limit(regulator->rdev);
2780 }
2781 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
2782
2783 /**
2784 * regulator_set_mode - set regulator operating mode
2785 * @regulator: regulator source
2786 * @mode: operating mode - one of the REGULATOR_MODE constants
2787 *
2788 * Set regulator operating mode to increase regulator efficiency or improve
2789 * regulation performance.
2790 *
2791 * NOTE: Regulator system constraints must be set for this regulator before
2792 * calling this function otherwise this call will fail.
2793 */
2794 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
2795 {
2796 struct regulator_dev *rdev = regulator->rdev;
2797 int ret;
2798 int regulator_curr_mode;
2799
2800 mutex_lock(&rdev->mutex);
2801
2802 /* sanity check */
2803 if (!rdev->desc->ops->set_mode) {
2804 ret = -EINVAL;
2805 goto out;
2806 }
2807
2808 /* return if the same mode is requested */
2809 if (rdev->desc->ops->get_mode) {
2810 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
2811 if (regulator_curr_mode == mode) {
2812 ret = 0;
2813 goto out;
2814 }
2815 }
2816
2817 /* constraints check */
2818 ret = regulator_mode_constrain(rdev, &mode);
2819 if (ret < 0)
2820 goto out;
2821
2822 ret = rdev->desc->ops->set_mode(rdev, mode);
2823 out:
2824 mutex_unlock(&rdev->mutex);
2825 return ret;
2826 }
2827 EXPORT_SYMBOL_GPL(regulator_set_mode);
2828
2829 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
2830 {
2831 int ret;
2832
2833 mutex_lock(&rdev->mutex);
2834
2835 /* sanity check */
2836 if (!rdev->desc->ops->get_mode) {
2837 ret = -EINVAL;
2838 goto out;
2839 }
2840
2841 ret = rdev->desc->ops->get_mode(rdev);
2842 out:
2843 mutex_unlock(&rdev->mutex);
2844 return ret;
2845 }
2846
2847 /**
2848 * regulator_get_mode - get regulator operating mode
2849 * @regulator: regulator source
2850 *
2851 * Get the current regulator operating mode.
2852 */
2853 unsigned int regulator_get_mode(struct regulator *regulator)
2854 {
2855 return _regulator_get_mode(regulator->rdev);
2856 }
2857 EXPORT_SYMBOL_GPL(regulator_get_mode);
2858
2859 /**
2860 * regulator_set_optimum_mode - set regulator optimum operating mode
2861 * @regulator: regulator source
2862 * @uA_load: load current
2863 *
2864 * Notifies the regulator core of a new device load. This is then used by
2865 * DRMS (if enabled by constraints) to set the most efficient regulator
2866 * operating mode for the new regulator loading.
2867 *
2868 * Consumer devices notify their supply regulator of the maximum power
2869 * they will require (can be taken from device datasheet in the power
2870 * consumption tables) when they change operational status and hence power
2871 * state. Examples of operational state changes that can affect power
2872 * consumption are :-
2873 *
2874 * o Device is opened / closed.
2875 * o Device I/O is about to begin or has just finished.
2876 * o Device is idling in between work.
2877 *
2878 * This information is also exported via sysfs to userspace.
2879 *
2880 * DRMS will sum the total requested load on the regulator and change
2881 * to the most efficient operating mode if platform constraints allow.
2882 *
2883 * Returns the new regulator mode or error.
2884 */
2885 int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
2886 {
2887 struct regulator_dev *rdev = regulator->rdev;
2888 struct regulator *consumer;
2889 int ret, output_uV, input_uV = 0, total_uA_load = 0;
2890 unsigned int mode;
2891
2892 if (rdev->supply)
2893 input_uV = regulator_get_voltage(rdev->supply);
2894
2895 mutex_lock(&rdev->mutex);
2896
2897 /*
2898 * first check to see if we can set modes at all, otherwise just
2899 * tell the consumer everything is OK.
2900 */
2901 regulator->uA_load = uA_load;
2902 ret = regulator_check_drms(rdev);
2903 if (ret < 0) {
2904 ret = 0;
2905 goto out;
2906 }
2907
2908 if (!rdev->desc->ops->get_optimum_mode)
2909 goto out;
2910
2911 /*
2912 * we can actually do this so any errors are indicators of
2913 * potential real failure.
2914 */
2915 ret = -EINVAL;
2916
2917 if (!rdev->desc->ops->set_mode)
2918 goto out;
2919
2920 /* get output voltage */
2921 output_uV = _regulator_get_voltage(rdev);
2922 if (output_uV <= 0) {
2923 rdev_err(rdev, "invalid output voltage found\n");
2924 goto out;
2925 }
2926
2927 /* No supply? Use constraint voltage */
2928 if (input_uV <= 0)
2929 input_uV = rdev->constraints->input_uV;
2930 if (input_uV <= 0) {
2931 rdev_err(rdev, "invalid input voltage found\n");
2932 goto out;
2933 }
2934
2935 /* calc total requested load for this regulator */
2936 list_for_each_entry(consumer, &rdev->consumer_list, list)
2937 total_uA_load += consumer->uA_load;
2938
2939 mode = rdev->desc->ops->get_optimum_mode(rdev,
2940 input_uV, output_uV,
2941 total_uA_load);
2942 ret = regulator_mode_constrain(rdev, &mode);
2943 if (ret < 0) {
2944 rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
2945 total_uA_load, input_uV, output_uV);
2946 goto out;
2947 }
2948
2949 ret = rdev->desc->ops->set_mode(rdev, mode);
2950 if (ret < 0) {
2951 rdev_err(rdev, "failed to set optimum mode %x\n", mode);
2952 goto out;
2953 }
2954 ret = mode;
2955 out:
2956 mutex_unlock(&rdev->mutex);
2957 return ret;
2958 }
2959 EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
2960
2961 /**
2962 * regulator_set_bypass_regmap - Default set_bypass() using regmap
2963 *
2964 * @rdev: device to operate on.
2965 * @enable: state to set.
2966 */
2967 int regulator_set_bypass_regmap(struct regulator_dev *rdev, bool enable)
2968 {
2969 unsigned int val;
2970
2971 if (enable)
2972 val = rdev->desc->bypass_mask;
2973 else
2974 val = 0;
2975
2976 return regmap_update_bits(rdev->regmap, rdev->desc->bypass_reg,
2977 rdev->desc->bypass_mask, val);
2978 }
2979 EXPORT_SYMBOL_GPL(regulator_set_bypass_regmap);
2980
2981 /**
2982 * regulator_get_bypass_regmap - Default get_bypass() using regmap
2983 *
2984 * @rdev: device to operate on.
2985 * @enable: current state.
2986 */
2987 int regulator_get_bypass_regmap(struct regulator_dev *rdev, bool *enable)
2988 {
2989 unsigned int val;
2990 int ret;
2991
2992 ret = regmap_read(rdev->regmap, rdev->desc->bypass_reg, &val);
2993 if (ret != 0)
2994 return ret;
2995
2996 *enable = val & rdev->desc->bypass_mask;
2997
2998 return 0;
2999 }
3000 EXPORT_SYMBOL_GPL(regulator_get_bypass_regmap);
3001
3002 /**
3003 * regulator_allow_bypass - allow the regulator to go into bypass mode
3004 *
3005 * @regulator: Regulator to configure
3006 * @enable: enable or disable bypass mode
3007 *
3008 * Allow the regulator to go into bypass mode if all other consumers
3009 * for the regulator also enable bypass mode and the machine
3010 * constraints allow this. Bypass mode means that the regulator is
3011 * simply passing the input directly to the output with no regulation.
3012 */
3013 int regulator_allow_bypass(struct regulator *regulator, bool enable)
3014 {
3015 struct regulator_dev *rdev = regulator->rdev;
3016 int ret = 0;
3017
3018 if (!rdev->desc->ops->set_bypass)
3019 return 0;
3020
3021 if (rdev->constraints &&
3022 !(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_BYPASS))
3023 return 0;
3024
3025 mutex_lock(&rdev->mutex);
3026
3027 if (enable && !regulator->bypass) {
3028 rdev->bypass_count++;
3029
3030 if (rdev->bypass_count == rdev->open_count) {
3031 ret = rdev->desc->ops->set_bypass(rdev, enable);
3032 if (ret != 0)
3033 rdev->bypass_count--;
3034 }
3035
3036 } else if (!enable && regulator->bypass) {
3037 rdev->bypass_count--;
3038
3039 if (rdev->bypass_count != rdev->open_count) {
3040 ret = rdev->desc->ops->set_bypass(rdev, enable);
3041 if (ret != 0)
3042 rdev->bypass_count++;
3043 }
3044 }
3045
3046 if (ret == 0)
3047 regulator->bypass = enable;
3048
3049 mutex_unlock(&rdev->mutex);
3050
3051 return ret;
3052 }
3053 EXPORT_SYMBOL_GPL(regulator_allow_bypass);
3054
3055 /**
3056 * regulator_register_notifier - register regulator event notifier
3057 * @regulator: regulator source
3058 * @nb: notifier block
3059 *
3060 * Register notifier block to receive regulator events.
3061 */
3062 int regulator_register_notifier(struct regulator *regulator,
3063 struct notifier_block *nb)
3064 {
3065 return blocking_notifier_chain_register(&regulator->rdev->notifier,
3066 nb);
3067 }
3068 EXPORT_SYMBOL_GPL(regulator_register_notifier);
3069
3070 /**
3071 * regulator_unregister_notifier - unregister regulator event notifier
3072 * @regulator: regulator source
3073 * @nb: notifier block
3074 *
3075 * Unregister regulator event notifier block.
3076 */
3077 int regulator_unregister_notifier(struct regulator *regulator,
3078 struct notifier_block *nb)
3079 {
3080 return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
3081 nb);
3082 }
3083 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
3084
3085 /* notify regulator consumers and downstream regulator consumers.
3086 * Note mutex must be held by caller.
3087 */
3088 static void _notifier_call_chain(struct regulator_dev *rdev,
3089 unsigned long event, void *data)
3090 {
3091 /* call rdev chain first */
3092 blocking_notifier_call_chain(&rdev->notifier, event, data);
3093 }
3094
3095 /**
3096 * regulator_bulk_get - get multiple regulator consumers
3097 *
3098 * @dev: Device to supply
3099 * @num_consumers: Number of consumers to register
3100 * @consumers: Configuration of consumers; clients are stored here.
3101 *
3102 * @return 0 on success, an errno on failure.
3103 *
3104 * This helper function allows drivers to get several regulator
3105 * consumers in one operation. If any of the regulators cannot be
3106 * acquired then any regulators that were allocated will be freed
3107 * before returning to the caller.
3108 */
3109 int regulator_bulk_get(struct device *dev, int num_consumers,
3110 struct regulator_bulk_data *consumers)
3111 {
3112 int i;
3113 int ret;
3114
3115 for (i = 0; i < num_consumers; i++)
3116 consumers[i].consumer = NULL;
3117
3118 for (i = 0; i < num_consumers; i++) {
3119 consumers[i].consumer = regulator_get(dev,
3120 consumers[i].supply);
3121 if (IS_ERR(consumers[i].consumer)) {
3122 ret = PTR_ERR(consumers[i].consumer);
3123 dev_err(dev, "Failed to get supply '%s': %d\n",
3124 consumers[i].supply, ret);
3125 consumers[i].consumer = NULL;
3126 goto err;
3127 }
3128 }
3129
3130 return 0;
3131
3132 err:
3133 while (--i >= 0)
3134 regulator_put(consumers[i].consumer);
3135
3136 return ret;
3137 }
3138 EXPORT_SYMBOL_GPL(regulator_bulk_get);
3139
3140 /**
3141 * devm_regulator_bulk_get - managed get multiple regulator consumers
3142 *
3143 * @dev: Device to supply
3144 * @num_consumers: Number of consumers to register
3145 * @consumers: Configuration of consumers; clients are stored here.
3146 *
3147 * @return 0 on success, an errno on failure.
3148 *
3149 * This helper function allows drivers to get several regulator
3150 * consumers in one operation with management, the regulators will
3151 * automatically be freed when the device is unbound. If any of the
3152 * regulators cannot be acquired then any regulators that were
3153 * allocated will be freed before returning to the caller.
3154 */
3155 int devm_regulator_bulk_get(struct device *dev, int num_consumers,
3156 struct regulator_bulk_data *consumers)
3157 {
3158 int i;
3159 int ret;
3160
3161 for (i = 0; i < num_consumers; i++)
3162 consumers[i].consumer = NULL;
3163
3164 for (i = 0; i < num_consumers; i++) {
3165 consumers[i].consumer = devm_regulator_get(dev,
3166 consumers[i].supply);
3167 if (IS_ERR(consumers[i].consumer)) {
3168 ret = PTR_ERR(consumers[i].consumer);
3169 dev_err(dev, "Failed to get supply '%s': %d\n",
3170 consumers[i].supply, ret);
3171 consumers[i].consumer = NULL;
3172 goto err;
3173 }
3174 }
3175
3176 return 0;
3177
3178 err:
3179 for (i = 0; i < num_consumers && consumers[i].consumer; i++)
3180 devm_regulator_put(consumers[i].consumer);
3181
3182 return ret;
3183 }
3184 EXPORT_SYMBOL_GPL(devm_regulator_bulk_get);
3185
3186 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
3187 {
3188 struct regulator_bulk_data *bulk = data;
3189
3190 bulk->ret = regulator_enable(bulk->consumer);
3191 }
3192
3193 /**
3194 * regulator_bulk_enable - enable multiple regulator consumers
3195 *
3196 * @num_consumers: Number of consumers
3197 * @consumers: Consumer data; clients are stored here.
3198 * @return 0 on success, an errno on failure
3199 *
3200 * This convenience API allows consumers to enable multiple regulator
3201 * clients in a single API call. If any consumers cannot be enabled
3202 * then any others that were enabled will be disabled again prior to
3203 * return.
3204 */
3205 int regulator_bulk_enable(int num_consumers,
3206 struct regulator_bulk_data *consumers)
3207 {
3208 ASYNC_DOMAIN_EXCLUSIVE(async_domain);
3209 int i;
3210 int ret = 0;
3211
3212 for (i = 0; i < num_consumers; i++) {
3213 if (consumers[i].consumer->always_on)
3214 consumers[i].ret = 0;
3215 else
3216 async_schedule_domain(regulator_bulk_enable_async,
3217 &consumers[i], &async_domain);
3218 }
3219
3220 async_synchronize_full_domain(&async_domain);
3221
3222 /* If any consumer failed we need to unwind any that succeeded */
3223 for (i = 0; i < num_consumers; i++) {
3224 if (consumers[i].ret != 0) {
3225 ret = consumers[i].ret;
3226 goto err;
3227 }
3228 }
3229
3230 return 0;
3231
3232 err:
3233 for (i = 0; i < num_consumers; i++) {
3234 if (consumers[i].ret < 0)
3235 pr_err("Failed to enable %s: %d\n", consumers[i].supply,
3236 consumers[i].ret);
3237 else
3238 regulator_disable(consumers[i].consumer);
3239 }
3240
3241 return ret;
3242 }
3243 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
3244
3245 /**
3246 * regulator_bulk_disable - disable multiple regulator consumers
3247 *
3248 * @num_consumers: Number of consumers
3249 * @consumers: Consumer data; clients are stored here.
3250 * @return 0 on success, an errno on failure
3251 *
3252 * This convenience API allows consumers to disable multiple regulator
3253 * clients in a single API call. If any consumers cannot be disabled
3254 * then any others that were disabled will be enabled again prior to
3255 * return.
3256 */
3257 int regulator_bulk_disable(int num_consumers,
3258 struct regulator_bulk_data *consumers)
3259 {
3260 int i;
3261 int ret, r;
3262
3263 for (i = num_consumers - 1; i >= 0; --i) {
3264 ret = regulator_disable(consumers[i].consumer);
3265 if (ret != 0)
3266 goto err;
3267 }
3268
3269 return 0;
3270
3271 err:
3272 pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
3273 for (++i; i < num_consumers; ++i) {
3274 r = regulator_enable(consumers[i].consumer);
3275 if (r != 0)
3276 pr_err("Failed to reename %s: %d\n",
3277 consumers[i].supply, r);
3278 }
3279
3280 return ret;
3281 }
3282 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
3283
3284 /**
3285 * regulator_bulk_force_disable - force disable multiple regulator consumers
3286 *
3287 * @num_consumers: Number of consumers
3288 * @consumers: Consumer data; clients are stored here.
3289 * @return 0 on success, an errno on failure
3290 *
3291 * This convenience API allows consumers to forcibly disable multiple regulator
3292 * clients in a single API call.
3293 * NOTE: This should be used for situations when device damage will
3294 * likely occur if the regulators are not disabled (e.g. over temp).
3295 * Although regulator_force_disable function call for some consumers can
3296 * return error numbers, the function is called for all consumers.
3297 */
3298 int regulator_bulk_force_disable(int num_consumers,
3299 struct regulator_bulk_data *consumers)
3300 {
3301 int i;
3302 int ret;
3303
3304 for (i = 0; i < num_consumers; i++)
3305 consumers[i].ret =
3306 regulator_force_disable(consumers[i].consumer);
3307
3308 for (i = 0; i < num_consumers; i++) {
3309 if (consumers[i].ret != 0) {
3310 ret = consumers[i].ret;
3311 goto out;
3312 }
3313 }
3314
3315 return 0;
3316 out:
3317 return ret;
3318 }
3319 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
3320
3321 /**
3322 * regulator_bulk_free - free multiple regulator consumers
3323 *
3324 * @num_consumers: Number of consumers
3325 * @consumers: Consumer data; clients are stored here.
3326 *
3327 * This convenience API allows consumers to free multiple regulator
3328 * clients in a single API call.
3329 */
3330 void regulator_bulk_free(int num_consumers,
3331 struct regulator_bulk_data *consumers)
3332 {
3333 int i;
3334
3335 for (i = 0; i < num_consumers; i++) {
3336 regulator_put(consumers[i].consumer);
3337 consumers[i].consumer = NULL;
3338 }
3339 }
3340 EXPORT_SYMBOL_GPL(regulator_bulk_free);
3341
3342 /**
3343 * regulator_notifier_call_chain - call regulator event notifier
3344 * @rdev: regulator source
3345 * @event: notifier block
3346 * @data: callback-specific data.
3347 *
3348 * Called by regulator drivers to notify clients a regulator event has
3349 * occurred. We also notify regulator clients downstream.
3350 * Note lock must be held by caller.
3351 */
3352 int regulator_notifier_call_chain(struct regulator_dev *rdev,
3353 unsigned long event, void *data)
3354 {
3355 _notifier_call_chain(rdev, event, data);
3356 return NOTIFY_DONE;
3357
3358 }
3359 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
3360
3361 /**
3362 * regulator_mode_to_status - convert a regulator mode into a status
3363 *
3364 * @mode: Mode to convert
3365 *
3366 * Convert a regulator mode into a status.
3367 */
3368 int regulator_mode_to_status(unsigned int mode)
3369 {
3370 switch (mode) {
3371 case REGULATOR_MODE_FAST:
3372 return REGULATOR_STATUS_FAST;
3373 case REGULATOR_MODE_NORMAL:
3374 return REGULATOR_STATUS_NORMAL;
3375 case REGULATOR_MODE_IDLE:
3376 return REGULATOR_STATUS_IDLE;
3377 case REGULATOR_MODE_STANDBY:
3378 return REGULATOR_STATUS_STANDBY;
3379 default:
3380 return REGULATOR_STATUS_UNDEFINED;
3381 }
3382 }
3383 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
3384
3385 /*
3386 * To avoid cluttering sysfs (and memory) with useless state, only
3387 * create attributes that can be meaningfully displayed.
3388 */
3389 static int add_regulator_attributes(struct regulator_dev *rdev)
3390 {
3391 struct device *dev = &rdev->dev;
3392 struct regulator_ops *ops = rdev->desc->ops;
3393 int status = 0;
3394
3395 /* some attributes need specific methods to be displayed */
3396 if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
3397 (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
3398 (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0)) {
3399 status = device_create_file(dev, &dev_attr_microvolts);
3400 if (status < 0)
3401 return status;
3402 }
3403 if (ops->get_current_limit) {
3404 status = device_create_file(dev, &dev_attr_microamps);
3405 if (status < 0)
3406 return status;
3407 }
3408 if (ops->get_mode) {
3409 status = device_create_file(dev, &dev_attr_opmode);
3410 if (status < 0)
3411 return status;
3412 }
3413 if (rdev->ena_pin || ops->is_enabled) {
3414 status = device_create_file(dev, &dev_attr_state);
3415 if (status < 0)
3416 return status;
3417 }
3418 if (ops->get_status) {
3419 status = device_create_file(dev, &dev_attr_status);
3420 if (status < 0)
3421 return status;
3422 }
3423 if (ops->get_bypass) {
3424 status = device_create_file(dev, &dev_attr_bypass);
3425 if (status < 0)
3426 return status;
3427 }
3428
3429 /* some attributes are type-specific */
3430 if (rdev->desc->type == REGULATOR_CURRENT) {
3431 status = device_create_file(dev, &dev_attr_requested_microamps);
3432 if (status < 0)
3433 return status;
3434 }
3435
3436 /* all the other attributes exist to support constraints;
3437 * don't show them if there are no constraints, or if the
3438 * relevant supporting methods are missing.
3439 */
3440 if (!rdev->constraints)
3441 return status;
3442
3443 /* constraints need specific supporting methods */
3444 if (ops->set_voltage || ops->set_voltage_sel) {
3445 status = device_create_file(dev, &dev_attr_min_microvolts);
3446 if (status < 0)
3447 return status;
3448 status = device_create_file(dev, &dev_attr_max_microvolts);
3449 if (status < 0)
3450 return status;
3451 }
3452 if (ops->set_current_limit) {
3453 status = device_create_file(dev, &dev_attr_min_microamps);
3454 if (status < 0)
3455 return status;
3456 status = device_create_file(dev, &dev_attr_max_microamps);
3457 if (status < 0)
3458 return status;
3459 }
3460
3461 status = device_create_file(dev, &dev_attr_suspend_standby_state);
3462 if (status < 0)
3463 return status;
3464 status = device_create_file(dev, &dev_attr_suspend_mem_state);
3465 if (status < 0)
3466 return status;
3467 status = device_create_file(dev, &dev_attr_suspend_disk_state);
3468 if (status < 0)
3469 return status;
3470
3471 if (ops->set_suspend_voltage) {
3472 status = device_create_file(dev,
3473 &dev_attr_suspend_standby_microvolts);
3474 if (status < 0)
3475 return status;
3476 status = device_create_file(dev,
3477 &dev_attr_suspend_mem_microvolts);
3478 if (status < 0)
3479 return status;
3480 status = device_create_file(dev,
3481 &dev_attr_suspend_disk_microvolts);
3482 if (status < 0)
3483 return status;
3484 }
3485
3486 if (ops->set_suspend_mode) {
3487 status = device_create_file(dev,
3488 &dev_attr_suspend_standby_mode);
3489 if (status < 0)
3490 return status;
3491 status = device_create_file(dev,
3492 &dev_attr_suspend_mem_mode);
3493 if (status < 0)
3494 return status;
3495 status = device_create_file(dev,
3496 &dev_attr_suspend_disk_mode);
3497 if (status < 0)
3498 return status;
3499 }
3500
3501 return status;
3502 }
3503
3504 static void rdev_init_debugfs(struct regulator_dev *rdev)
3505 {
3506 rdev->debugfs = debugfs_create_dir(rdev_get_name(rdev), debugfs_root);
3507 if (!rdev->debugfs) {
3508 rdev_warn(rdev, "Failed to create debugfs directory\n");
3509 return;
3510 }
3511
3512 debugfs_create_u32("use_count", 0444, rdev->debugfs,
3513 &rdev->use_count);
3514 debugfs_create_u32("open_count", 0444, rdev->debugfs,
3515 &rdev->open_count);
3516 debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
3517 &rdev->bypass_count);
3518 }
3519
3520 /**
3521 * regulator_register - register regulator
3522 * @regulator_desc: regulator to register
3523 * @config: runtime configuration for regulator
3524 *
3525 * Called by regulator drivers to register a regulator.
3526 * Returns a valid pointer to struct regulator_dev on success
3527 * or an ERR_PTR() on error.
3528 */
3529 struct regulator_dev *
3530 regulator_register(const struct regulator_desc *regulator_desc,
3531 const struct regulator_config *config)
3532 {
3533 const struct regulation_constraints *constraints = NULL;
3534 const struct regulator_init_data *init_data;
3535 static atomic_t regulator_no = ATOMIC_INIT(0);
3536 struct regulator_dev *rdev;
3537 struct device *dev;
3538 int ret, i;
3539 const char *supply = NULL;
3540
3541 if (regulator_desc == NULL || config == NULL)
3542 return ERR_PTR(-EINVAL);
3543
3544 dev = config->dev;
3545 WARN_ON(!dev);
3546
3547 if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
3548 return ERR_PTR(-EINVAL);
3549
3550 if (regulator_desc->type != REGULATOR_VOLTAGE &&
3551 regulator_desc->type != REGULATOR_CURRENT)
3552 return ERR_PTR(-EINVAL);
3553
3554 /* Only one of each should be implemented */
3555 WARN_ON(regulator_desc->ops->get_voltage &&
3556 regulator_desc->ops->get_voltage_sel);
3557 WARN_ON(regulator_desc->ops->set_voltage &&
3558 regulator_desc->ops->set_voltage_sel);
3559
3560 /* If we're using selectors we must implement list_voltage. */
3561 if (regulator_desc->ops->get_voltage_sel &&
3562 !regulator_desc->ops->list_voltage) {
3563 return ERR_PTR(-EINVAL);
3564 }
3565 if (regulator_desc->ops->set_voltage_sel &&
3566 !regulator_desc->ops->list_voltage) {
3567 return ERR_PTR(-EINVAL);
3568 }
3569
3570 init_data = config->init_data;
3571
3572 rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
3573 if (rdev == NULL)
3574 return ERR_PTR(-ENOMEM);
3575
3576 mutex_lock(&regulator_list_mutex);
3577
3578 mutex_init(&rdev->mutex);
3579 rdev->reg_data = config->driver_data;
3580 rdev->owner = regulator_desc->owner;
3581 rdev->desc = regulator_desc;
3582 if (config->regmap)
3583 rdev->regmap = config->regmap;
3584 else if (dev_get_regmap(dev, NULL))
3585 rdev->regmap = dev_get_regmap(dev, NULL);
3586 else if (dev->parent)
3587 rdev->regmap = dev_get_regmap(dev->parent, NULL);
3588 INIT_LIST_HEAD(&rdev->consumer_list);
3589 INIT_LIST_HEAD(&rdev->list);
3590 BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
3591 INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
3592
3593 /* preform any regulator specific init */
3594 if (init_data && init_data->regulator_init) {
3595 ret = init_data->regulator_init(rdev->reg_data);
3596 if (ret < 0)
3597 goto clean;
3598 }
3599
3600 /* register with sysfs */
3601 rdev->dev.class = &regulator_class;
3602 rdev->dev.of_node = config->of_node;
3603 rdev->dev.parent = dev;
3604 dev_set_name(&rdev->dev, "regulator.%d",
3605 atomic_inc_return(&regulator_no) - 1);
3606 ret = device_register(&rdev->dev);
3607 if (ret != 0) {
3608 put_device(&rdev->dev);
3609 goto clean;
3610 }
3611
3612 dev_set_drvdata(&rdev->dev, rdev);
3613
3614 if (config->ena_gpio && gpio_is_valid(config->ena_gpio)) {
3615 ret = regulator_ena_gpio_request(rdev, config);
3616 if (ret != 0) {
3617 rdev_err(rdev, "Failed to request enable GPIO%d: %d\n",
3618 config->ena_gpio, ret);
3619 goto wash;
3620 }
3621 }
3622
3623 /* set regulator constraints */
3624 if (init_data)
3625 constraints = &init_data->constraints;
3626
3627 ret = set_machine_constraints(rdev, constraints);
3628 if (ret < 0)
3629 goto scrub;
3630
3631 /* add attributes supported by this regulator */
3632 ret = add_regulator_attributes(rdev);
3633 if (ret < 0)
3634 goto scrub;
3635
3636 if (init_data && init_data->supply_regulator)
3637 supply = init_data->supply_regulator;
3638 else if (regulator_desc->supply_name)
3639 supply = regulator_desc->supply_name;
3640
3641 if (supply) {
3642 struct regulator_dev *r;
3643
3644 r = regulator_dev_lookup(dev, supply, &ret);
3645
3646 if (ret == -ENODEV) {
3647 /*
3648 * No supply was specified for this regulator and
3649 * there will never be one.
3650 */
3651 ret = 0;
3652 goto add_dev;
3653 } else if (!r) {
3654 dev_err(dev, "Failed to find supply %s\n", supply);
3655 ret = -EPROBE_DEFER;
3656 goto scrub;
3657 }
3658
3659 ret = set_supply(rdev, r);
3660 if (ret < 0)
3661 goto scrub;
3662
3663 /* Enable supply if rail is enabled */
3664 if (_regulator_is_enabled(rdev)) {
3665 ret = regulator_enable(rdev->supply);
3666 if (ret < 0)
3667 goto scrub;
3668 }
3669 }
3670
3671 add_dev:
3672 /* add consumers devices */
3673 if (init_data) {
3674 for (i = 0; i < init_data->num_consumer_supplies; i++) {
3675 ret = set_consumer_device_supply(rdev,
3676 init_data->consumer_supplies[i].dev_name,
3677 init_data->consumer_supplies[i].supply);
3678 if (ret < 0) {
3679 dev_err(dev, "Failed to set supply %s\n",
3680 init_data->consumer_supplies[i].supply);
3681 goto unset_supplies;
3682 }
3683 }
3684 }
3685
3686 list_add(&rdev->list, &regulator_list);
3687
3688 rdev_init_debugfs(rdev);
3689 out:
3690 mutex_unlock(&regulator_list_mutex);
3691 return rdev;
3692
3693 unset_supplies:
3694 unset_regulator_supplies(rdev);
3695
3696 scrub:
3697 if (rdev->supply)
3698 _regulator_put(rdev->supply);
3699 regulator_ena_gpio_free(rdev);
3700 kfree(rdev->constraints);
3701 wash:
3702 device_unregister(&rdev->dev);
3703 /* device core frees rdev */
3704 rdev = ERR_PTR(ret);
3705 goto out;
3706
3707 clean:
3708 kfree(rdev);
3709 rdev = ERR_PTR(ret);
3710 goto out;
3711 }
3712 EXPORT_SYMBOL_GPL(regulator_register);
3713
3714 /**
3715 * regulator_unregister - unregister regulator
3716 * @rdev: regulator to unregister
3717 *
3718 * Called by regulator drivers to unregister a regulator.
3719 */
3720 void regulator_unregister(struct regulator_dev *rdev)
3721 {
3722 if (rdev == NULL)
3723 return;
3724
3725 if (rdev->supply)
3726 regulator_put(rdev->supply);
3727 mutex_lock(&regulator_list_mutex);
3728 debugfs_remove_recursive(rdev->debugfs);
3729 flush_work(&rdev->disable_work.work);
3730 WARN_ON(rdev->open_count);
3731 unset_regulator_supplies(rdev);
3732 list_del(&rdev->list);
3733 kfree(rdev->constraints);
3734 regulator_ena_gpio_free(rdev);
3735 device_unregister(&rdev->dev);
3736 mutex_unlock(&regulator_list_mutex);
3737 }
3738 EXPORT_SYMBOL_GPL(regulator_unregister);
3739
3740 /**
3741 * regulator_suspend_prepare - prepare regulators for system wide suspend
3742 * @state: system suspend state
3743 *
3744 * Configure each regulator with it's suspend operating parameters for state.
3745 * This will usually be called by machine suspend code prior to supending.
3746 */
3747 int regulator_suspend_prepare(suspend_state_t state)
3748 {
3749 struct regulator_dev *rdev;
3750 int ret = 0;
3751
3752 /* ON is handled by regulator active state */
3753 if (state == PM_SUSPEND_ON)
3754 return -EINVAL;
3755
3756 mutex_lock(&regulator_list_mutex);
3757 list_for_each_entry(rdev, &regulator_list, list) {
3758
3759 mutex_lock(&rdev->mutex);
3760 ret = suspend_prepare(rdev, state);
3761 mutex_unlock(&rdev->mutex);
3762
3763 if (ret < 0) {
3764 rdev_err(rdev, "failed to prepare\n");
3765 goto out;
3766 }
3767 }
3768 out:
3769 mutex_unlock(&regulator_list_mutex);
3770 return ret;
3771 }
3772 EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
3773
3774 /**
3775 * regulator_suspend_finish - resume regulators from system wide suspend
3776 *
3777 * Turn on regulators that might be turned off by regulator_suspend_prepare
3778 * and that should be turned on according to the regulators properties.
3779 */
3780 int regulator_suspend_finish(void)
3781 {
3782 struct regulator_dev *rdev;
3783 int ret = 0, error;
3784
3785 mutex_lock(&regulator_list_mutex);
3786 list_for_each_entry(rdev, &regulator_list, list) {
3787 mutex_lock(&rdev->mutex);
3788 if (rdev->use_count > 0 || rdev->constraints->always_on) {
3789 if (!_regulator_is_enabled(rdev)) {
3790 error = _regulator_do_enable(rdev);
3791 if (error)
3792 ret = error;
3793 }
3794 } else {
3795 if (!has_full_constraints)
3796 goto unlock;
3797 if (!_regulator_is_enabled(rdev))
3798 goto unlock;
3799
3800 error = _regulator_do_disable(rdev);
3801 if (error)
3802 ret = error;
3803 }
3804 unlock:
3805 mutex_unlock(&rdev->mutex);
3806 }
3807 mutex_unlock(&regulator_list_mutex);
3808 return ret;
3809 }
3810 EXPORT_SYMBOL_GPL(regulator_suspend_finish);
3811
3812 /**
3813 * regulator_has_full_constraints - the system has fully specified constraints
3814 *
3815 * Calling this function will cause the regulator API to disable all
3816 * regulators which have a zero use count and don't have an always_on
3817 * constraint in a late_initcall.
3818 *
3819 * The intention is that this will become the default behaviour in a
3820 * future kernel release so users are encouraged to use this facility
3821 * now.
3822 */
3823 void regulator_has_full_constraints(void)
3824 {
3825 has_full_constraints = 1;
3826 }
3827 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
3828
3829 /**
3830 * regulator_use_dummy_regulator - Provide a dummy regulator when none is found
3831 *
3832 * Calling this function will cause the regulator API to provide a
3833 * dummy regulator to consumers if no physical regulator is found,
3834 * allowing most consumers to proceed as though a regulator were
3835 * configured. This allows systems such as those with software
3836 * controllable regulators for the CPU core only to be brought up more
3837 * readily.
3838 */
3839 void regulator_use_dummy_regulator(void)
3840 {
3841 board_wants_dummy_regulator = true;
3842 }
3843 EXPORT_SYMBOL_GPL(regulator_use_dummy_regulator);
3844
3845 /**
3846 * rdev_get_drvdata - get rdev regulator driver data
3847 * @rdev: regulator
3848 *
3849 * Get rdev regulator driver private data. This call can be used in the
3850 * regulator driver context.
3851 */
3852 void *rdev_get_drvdata(struct regulator_dev *rdev)
3853 {
3854 return rdev->reg_data;
3855 }
3856 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
3857
3858 /**
3859 * regulator_get_drvdata - get regulator driver data
3860 * @regulator: regulator
3861 *
3862 * Get regulator driver private data. This call can be used in the consumer
3863 * driver context when non API regulator specific functions need to be called.
3864 */
3865 void *regulator_get_drvdata(struct regulator *regulator)
3866 {
3867 return regulator->rdev->reg_data;
3868 }
3869 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
3870
3871 /**
3872 * regulator_set_drvdata - set regulator driver data
3873 * @regulator: regulator
3874 * @data: data
3875 */
3876 void regulator_set_drvdata(struct regulator *regulator, void *data)
3877 {
3878 regulator->rdev->reg_data = data;
3879 }
3880 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
3881
3882 /**
3883 * regulator_get_id - get regulator ID
3884 * @rdev: regulator
3885 */
3886 int rdev_get_id(struct regulator_dev *rdev)
3887 {
3888 return rdev->desc->id;
3889 }
3890 EXPORT_SYMBOL_GPL(rdev_get_id);
3891
3892 struct device *rdev_get_dev(struct regulator_dev *rdev)
3893 {
3894 return &rdev->dev;
3895 }
3896 EXPORT_SYMBOL_GPL(rdev_get_dev);
3897
3898 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
3899 {
3900 return reg_init_data->driver_data;
3901 }
3902 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
3903
3904 #ifdef CONFIG_DEBUG_FS
3905 static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
3906 size_t count, loff_t *ppos)
3907 {
3908 char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
3909 ssize_t len, ret = 0;
3910 struct regulator_map *map;
3911
3912 if (!buf)
3913 return -ENOMEM;
3914
3915 list_for_each_entry(map, &regulator_map_list, list) {
3916 len = snprintf(buf + ret, PAGE_SIZE - ret,
3917 "%s -> %s.%s\n",
3918 rdev_get_name(map->regulator), map->dev_name,
3919 map->supply);
3920 if (len >= 0)
3921 ret += len;
3922 if (ret > PAGE_SIZE) {
3923 ret = PAGE_SIZE;
3924 break;
3925 }
3926 }
3927
3928 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
3929
3930 kfree(buf);
3931
3932 return ret;
3933 }
3934 #endif
3935
3936 static const struct file_operations supply_map_fops = {
3937 #ifdef CONFIG_DEBUG_FS
3938 .read = supply_map_read_file,
3939 .llseek = default_llseek,
3940 #endif
3941 };
3942
3943 static int __init regulator_init(void)
3944 {
3945 int ret;
3946
3947 ret = class_register(&regulator_class);
3948
3949 debugfs_root = debugfs_create_dir("regulator", NULL);
3950 if (!debugfs_root)
3951 pr_warn("regulator: Failed to create debugfs directory\n");
3952
3953 debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
3954 &supply_map_fops);
3955
3956 regulator_dummy_init();
3957
3958 return ret;
3959 }
3960
3961 /* init early to allow our consumers to complete system booting */
3962 core_initcall(regulator_init);
3963
3964 static int __init regulator_init_complete(void)
3965 {
3966 struct regulator_dev *rdev;
3967 struct regulator_ops *ops;
3968 struct regulation_constraints *c;
3969 int enabled, ret;
3970
3971 /*
3972 * Since DT doesn't provide an idiomatic mechanism for
3973 * enabling full constraints and since it's much more natural
3974 * with DT to provide them just assume that a DT enabled
3975 * system has full constraints.
3976 */
3977 if (of_have_populated_dt())
3978 has_full_constraints = true;
3979
3980 mutex_lock(&regulator_list_mutex);
3981
3982 /* If we have a full configuration then disable any regulators
3983 * which are not in use or always_on. This will become the
3984 * default behaviour in the future.
3985 */
3986 list_for_each_entry(rdev, &regulator_list, list) {
3987 ops = rdev->desc->ops;
3988 c = rdev->constraints;
3989
3990 if (c && c->always_on)
3991 continue;
3992
3993 mutex_lock(&rdev->mutex);
3994
3995 if (rdev->use_count)
3996 goto unlock;
3997
3998 /* If we can't read the status assume it's on. */
3999 if (ops->is_enabled)
4000 enabled = ops->is_enabled(rdev);
4001 else
4002 enabled = 1;
4003
4004 if (!enabled)
4005 goto unlock;
4006
4007 if (has_full_constraints) {
4008 /* We log since this may kill the system if it
4009 * goes wrong. */
4010 rdev_info(rdev, "disabling\n");
4011 ret = _regulator_do_disable(rdev);
4012 if (ret != 0) {
4013 rdev_err(rdev, "couldn't disable: %d\n", ret);
4014 }
4015 } else {
4016 /* The intention is that in future we will
4017 * assume that full constraints are provided
4018 * so warn even if we aren't going to do
4019 * anything here.
4020 */
4021 rdev_warn(rdev, "incomplete constraints, leaving on\n");
4022 }
4023
4024 unlock:
4025 mutex_unlock(&rdev->mutex);
4026 }
4027
4028 mutex_unlock(&regulator_list_mutex);
4029
4030 return 0;
4031 }
4032 late_initcall(regulator_init_complete);