regulator: remove use of __devexit_p
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / regulator / core.c
1 /*
2 * core.c -- Voltage/Current Regulator framework.
3 *
4 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5 * Copyright 2008 SlimLogic Ltd.
6 *
7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8 *
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2 of the License, or (at your
12 * option) any later version.
13 *
14 */
15
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/debugfs.h>
19 #include <linux/device.h>
20 #include <linux/slab.h>
21 #include <linux/async.h>
22 #include <linux/err.h>
23 #include <linux/mutex.h>
24 #include <linux/suspend.h>
25 #include <linux/delay.h>
26 #include <linux/gpio.h>
27 #include <linux/of.h>
28 #include <linux/regmap.h>
29 #include <linux/regulator/of_regulator.h>
30 #include <linux/regulator/consumer.h>
31 #include <linux/regulator/driver.h>
32 #include <linux/regulator/machine.h>
33 #include <linux/module.h>
34
35 #define CREATE_TRACE_POINTS
36 #include <trace/events/regulator.h>
37
38 #include "dummy.h"
39
40 #define rdev_crit(rdev, fmt, ...) \
41 pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
42 #define rdev_err(rdev, fmt, ...) \
43 pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44 #define rdev_warn(rdev, fmt, ...) \
45 pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
46 #define rdev_info(rdev, fmt, ...) \
47 pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
48 #define rdev_dbg(rdev, fmt, ...) \
49 pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
50
51 static DEFINE_MUTEX(regulator_list_mutex);
52 static LIST_HEAD(regulator_list);
53 static LIST_HEAD(regulator_map_list);
54 static bool has_full_constraints;
55 static bool board_wants_dummy_regulator;
56
57 static struct dentry *debugfs_root;
58
59 /*
60 * struct regulator_map
61 *
62 * Used to provide symbolic supply names to devices.
63 */
64 struct regulator_map {
65 struct list_head list;
66 const char *dev_name; /* The dev_name() for the consumer */
67 const char *supply;
68 struct regulator_dev *regulator;
69 };
70
71 /*
72 * struct regulator
73 *
74 * One for each consumer device.
75 */
76 struct regulator {
77 struct device *dev;
78 struct list_head list;
79 unsigned int always_on:1;
80 unsigned int bypass:1;
81 int uA_load;
82 int min_uV;
83 int max_uV;
84 char *supply_name;
85 struct device_attribute dev_attr;
86 struct regulator_dev *rdev;
87 struct dentry *debugfs;
88 };
89
90 static int _regulator_is_enabled(struct regulator_dev *rdev);
91 static int _regulator_disable(struct regulator_dev *rdev);
92 static int _regulator_get_voltage(struct regulator_dev *rdev);
93 static int _regulator_get_current_limit(struct regulator_dev *rdev);
94 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
95 static void _notifier_call_chain(struct regulator_dev *rdev,
96 unsigned long event, void *data);
97 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
98 int min_uV, int max_uV);
99 static struct regulator *create_regulator(struct regulator_dev *rdev,
100 struct device *dev,
101 const char *supply_name);
102
103 static const char *rdev_get_name(struct regulator_dev *rdev)
104 {
105 if (rdev->constraints && rdev->constraints->name)
106 return rdev->constraints->name;
107 else if (rdev->desc->name)
108 return rdev->desc->name;
109 else
110 return "";
111 }
112
113 /**
114 * of_get_regulator - get a regulator device node based on supply name
115 * @dev: Device pointer for the consumer (of regulator) device
116 * @supply: regulator supply name
117 *
118 * Extract the regulator device node corresponding to the supply name.
119 * retruns the device node corresponding to the regulator if found, else
120 * returns NULL.
121 */
122 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
123 {
124 struct device_node *regnode = NULL;
125 char prop_name[32]; /* 32 is max size of property name */
126
127 dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
128
129 snprintf(prop_name, 32, "%s-supply", supply);
130 regnode = of_parse_phandle(dev->of_node, prop_name, 0);
131
132 if (!regnode) {
133 dev_dbg(dev, "Looking up %s property in node %s failed",
134 prop_name, dev->of_node->full_name);
135 return NULL;
136 }
137 return regnode;
138 }
139
140 static int _regulator_can_change_status(struct regulator_dev *rdev)
141 {
142 if (!rdev->constraints)
143 return 0;
144
145 if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
146 return 1;
147 else
148 return 0;
149 }
150
151 /* Platform voltage constraint check */
152 static int regulator_check_voltage(struct regulator_dev *rdev,
153 int *min_uV, int *max_uV)
154 {
155 BUG_ON(*min_uV > *max_uV);
156
157 if (!rdev->constraints) {
158 rdev_err(rdev, "no constraints\n");
159 return -ENODEV;
160 }
161 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
162 rdev_err(rdev, "operation not allowed\n");
163 return -EPERM;
164 }
165
166 if (*max_uV > rdev->constraints->max_uV)
167 *max_uV = rdev->constraints->max_uV;
168 if (*min_uV < rdev->constraints->min_uV)
169 *min_uV = rdev->constraints->min_uV;
170
171 if (*min_uV > *max_uV) {
172 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
173 *min_uV, *max_uV);
174 return -EINVAL;
175 }
176
177 return 0;
178 }
179
180 /* Make sure we select a voltage that suits the needs of all
181 * regulator consumers
182 */
183 static int regulator_check_consumers(struct regulator_dev *rdev,
184 int *min_uV, int *max_uV)
185 {
186 struct regulator *regulator;
187
188 list_for_each_entry(regulator, &rdev->consumer_list, list) {
189 /*
190 * Assume consumers that didn't say anything are OK
191 * with anything in the constraint range.
192 */
193 if (!regulator->min_uV && !regulator->max_uV)
194 continue;
195
196 if (*max_uV > regulator->max_uV)
197 *max_uV = regulator->max_uV;
198 if (*min_uV < regulator->min_uV)
199 *min_uV = regulator->min_uV;
200 }
201
202 if (*min_uV > *max_uV)
203 return -EINVAL;
204
205 return 0;
206 }
207
208 /* current constraint check */
209 static int regulator_check_current_limit(struct regulator_dev *rdev,
210 int *min_uA, int *max_uA)
211 {
212 BUG_ON(*min_uA > *max_uA);
213
214 if (!rdev->constraints) {
215 rdev_err(rdev, "no constraints\n");
216 return -ENODEV;
217 }
218 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
219 rdev_err(rdev, "operation not allowed\n");
220 return -EPERM;
221 }
222
223 if (*max_uA > rdev->constraints->max_uA)
224 *max_uA = rdev->constraints->max_uA;
225 if (*min_uA < rdev->constraints->min_uA)
226 *min_uA = rdev->constraints->min_uA;
227
228 if (*min_uA > *max_uA) {
229 rdev_err(rdev, "unsupportable current range: %d-%duA\n",
230 *min_uA, *max_uA);
231 return -EINVAL;
232 }
233
234 return 0;
235 }
236
237 /* operating mode constraint check */
238 static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
239 {
240 switch (*mode) {
241 case REGULATOR_MODE_FAST:
242 case REGULATOR_MODE_NORMAL:
243 case REGULATOR_MODE_IDLE:
244 case REGULATOR_MODE_STANDBY:
245 break;
246 default:
247 rdev_err(rdev, "invalid mode %x specified\n", *mode);
248 return -EINVAL;
249 }
250
251 if (!rdev->constraints) {
252 rdev_err(rdev, "no constraints\n");
253 return -ENODEV;
254 }
255 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
256 rdev_err(rdev, "operation not allowed\n");
257 return -EPERM;
258 }
259
260 /* The modes are bitmasks, the most power hungry modes having
261 * the lowest values. If the requested mode isn't supported
262 * try higher modes. */
263 while (*mode) {
264 if (rdev->constraints->valid_modes_mask & *mode)
265 return 0;
266 *mode /= 2;
267 }
268
269 return -EINVAL;
270 }
271
272 /* dynamic regulator mode switching constraint check */
273 static int regulator_check_drms(struct regulator_dev *rdev)
274 {
275 if (!rdev->constraints) {
276 rdev_err(rdev, "no constraints\n");
277 return -ENODEV;
278 }
279 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
280 rdev_err(rdev, "operation not allowed\n");
281 return -EPERM;
282 }
283 return 0;
284 }
285
286 static ssize_t regulator_uV_show(struct device *dev,
287 struct device_attribute *attr, char *buf)
288 {
289 struct regulator_dev *rdev = dev_get_drvdata(dev);
290 ssize_t ret;
291
292 mutex_lock(&rdev->mutex);
293 ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
294 mutex_unlock(&rdev->mutex);
295
296 return ret;
297 }
298 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
299
300 static ssize_t regulator_uA_show(struct device *dev,
301 struct device_attribute *attr, char *buf)
302 {
303 struct regulator_dev *rdev = dev_get_drvdata(dev);
304
305 return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
306 }
307 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
308
309 static ssize_t regulator_name_show(struct device *dev,
310 struct device_attribute *attr, char *buf)
311 {
312 struct regulator_dev *rdev = dev_get_drvdata(dev);
313
314 return sprintf(buf, "%s\n", rdev_get_name(rdev));
315 }
316
317 static ssize_t regulator_print_opmode(char *buf, int mode)
318 {
319 switch (mode) {
320 case REGULATOR_MODE_FAST:
321 return sprintf(buf, "fast\n");
322 case REGULATOR_MODE_NORMAL:
323 return sprintf(buf, "normal\n");
324 case REGULATOR_MODE_IDLE:
325 return sprintf(buf, "idle\n");
326 case REGULATOR_MODE_STANDBY:
327 return sprintf(buf, "standby\n");
328 }
329 return sprintf(buf, "unknown\n");
330 }
331
332 static ssize_t regulator_opmode_show(struct device *dev,
333 struct device_attribute *attr, char *buf)
334 {
335 struct regulator_dev *rdev = dev_get_drvdata(dev);
336
337 return regulator_print_opmode(buf, _regulator_get_mode(rdev));
338 }
339 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
340
341 static ssize_t regulator_print_state(char *buf, int state)
342 {
343 if (state > 0)
344 return sprintf(buf, "enabled\n");
345 else if (state == 0)
346 return sprintf(buf, "disabled\n");
347 else
348 return sprintf(buf, "unknown\n");
349 }
350
351 static ssize_t regulator_state_show(struct device *dev,
352 struct device_attribute *attr, char *buf)
353 {
354 struct regulator_dev *rdev = dev_get_drvdata(dev);
355 ssize_t ret;
356
357 mutex_lock(&rdev->mutex);
358 ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
359 mutex_unlock(&rdev->mutex);
360
361 return ret;
362 }
363 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
364
365 static ssize_t regulator_status_show(struct device *dev,
366 struct device_attribute *attr, char *buf)
367 {
368 struct regulator_dev *rdev = dev_get_drvdata(dev);
369 int status;
370 char *label;
371
372 status = rdev->desc->ops->get_status(rdev);
373 if (status < 0)
374 return status;
375
376 switch (status) {
377 case REGULATOR_STATUS_OFF:
378 label = "off";
379 break;
380 case REGULATOR_STATUS_ON:
381 label = "on";
382 break;
383 case REGULATOR_STATUS_ERROR:
384 label = "error";
385 break;
386 case REGULATOR_STATUS_FAST:
387 label = "fast";
388 break;
389 case REGULATOR_STATUS_NORMAL:
390 label = "normal";
391 break;
392 case REGULATOR_STATUS_IDLE:
393 label = "idle";
394 break;
395 case REGULATOR_STATUS_STANDBY:
396 label = "standby";
397 break;
398 case REGULATOR_STATUS_BYPASS:
399 label = "bypass";
400 break;
401 case REGULATOR_STATUS_UNDEFINED:
402 label = "undefined";
403 break;
404 default:
405 return -ERANGE;
406 }
407
408 return sprintf(buf, "%s\n", label);
409 }
410 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
411
412 static ssize_t regulator_min_uA_show(struct device *dev,
413 struct device_attribute *attr, char *buf)
414 {
415 struct regulator_dev *rdev = dev_get_drvdata(dev);
416
417 if (!rdev->constraints)
418 return sprintf(buf, "constraint not defined\n");
419
420 return sprintf(buf, "%d\n", rdev->constraints->min_uA);
421 }
422 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
423
424 static ssize_t regulator_max_uA_show(struct device *dev,
425 struct device_attribute *attr, char *buf)
426 {
427 struct regulator_dev *rdev = dev_get_drvdata(dev);
428
429 if (!rdev->constraints)
430 return sprintf(buf, "constraint not defined\n");
431
432 return sprintf(buf, "%d\n", rdev->constraints->max_uA);
433 }
434 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
435
436 static ssize_t regulator_min_uV_show(struct device *dev,
437 struct device_attribute *attr, char *buf)
438 {
439 struct regulator_dev *rdev = dev_get_drvdata(dev);
440
441 if (!rdev->constraints)
442 return sprintf(buf, "constraint not defined\n");
443
444 return sprintf(buf, "%d\n", rdev->constraints->min_uV);
445 }
446 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
447
448 static ssize_t regulator_max_uV_show(struct device *dev,
449 struct device_attribute *attr, char *buf)
450 {
451 struct regulator_dev *rdev = dev_get_drvdata(dev);
452
453 if (!rdev->constraints)
454 return sprintf(buf, "constraint not defined\n");
455
456 return sprintf(buf, "%d\n", rdev->constraints->max_uV);
457 }
458 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
459
460 static ssize_t regulator_total_uA_show(struct device *dev,
461 struct device_attribute *attr, char *buf)
462 {
463 struct regulator_dev *rdev = dev_get_drvdata(dev);
464 struct regulator *regulator;
465 int uA = 0;
466
467 mutex_lock(&rdev->mutex);
468 list_for_each_entry(regulator, &rdev->consumer_list, list)
469 uA += regulator->uA_load;
470 mutex_unlock(&rdev->mutex);
471 return sprintf(buf, "%d\n", uA);
472 }
473 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
474
475 static ssize_t regulator_num_users_show(struct device *dev,
476 struct device_attribute *attr, char *buf)
477 {
478 struct regulator_dev *rdev = dev_get_drvdata(dev);
479 return sprintf(buf, "%d\n", rdev->use_count);
480 }
481
482 static ssize_t regulator_type_show(struct device *dev,
483 struct device_attribute *attr, char *buf)
484 {
485 struct regulator_dev *rdev = dev_get_drvdata(dev);
486
487 switch (rdev->desc->type) {
488 case REGULATOR_VOLTAGE:
489 return sprintf(buf, "voltage\n");
490 case REGULATOR_CURRENT:
491 return sprintf(buf, "current\n");
492 }
493 return sprintf(buf, "unknown\n");
494 }
495
496 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
497 struct device_attribute *attr, char *buf)
498 {
499 struct regulator_dev *rdev = dev_get_drvdata(dev);
500
501 return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
502 }
503 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
504 regulator_suspend_mem_uV_show, NULL);
505
506 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
507 struct device_attribute *attr, char *buf)
508 {
509 struct regulator_dev *rdev = dev_get_drvdata(dev);
510
511 return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
512 }
513 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
514 regulator_suspend_disk_uV_show, NULL);
515
516 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
517 struct device_attribute *attr, char *buf)
518 {
519 struct regulator_dev *rdev = dev_get_drvdata(dev);
520
521 return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
522 }
523 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
524 regulator_suspend_standby_uV_show, NULL);
525
526 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
527 struct device_attribute *attr, char *buf)
528 {
529 struct regulator_dev *rdev = dev_get_drvdata(dev);
530
531 return regulator_print_opmode(buf,
532 rdev->constraints->state_mem.mode);
533 }
534 static DEVICE_ATTR(suspend_mem_mode, 0444,
535 regulator_suspend_mem_mode_show, NULL);
536
537 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
538 struct device_attribute *attr, char *buf)
539 {
540 struct regulator_dev *rdev = dev_get_drvdata(dev);
541
542 return regulator_print_opmode(buf,
543 rdev->constraints->state_disk.mode);
544 }
545 static DEVICE_ATTR(suspend_disk_mode, 0444,
546 regulator_suspend_disk_mode_show, NULL);
547
548 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
549 struct device_attribute *attr, char *buf)
550 {
551 struct regulator_dev *rdev = dev_get_drvdata(dev);
552
553 return regulator_print_opmode(buf,
554 rdev->constraints->state_standby.mode);
555 }
556 static DEVICE_ATTR(suspend_standby_mode, 0444,
557 regulator_suspend_standby_mode_show, NULL);
558
559 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
560 struct device_attribute *attr, char *buf)
561 {
562 struct regulator_dev *rdev = dev_get_drvdata(dev);
563
564 return regulator_print_state(buf,
565 rdev->constraints->state_mem.enabled);
566 }
567 static DEVICE_ATTR(suspend_mem_state, 0444,
568 regulator_suspend_mem_state_show, NULL);
569
570 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
571 struct device_attribute *attr, char *buf)
572 {
573 struct regulator_dev *rdev = dev_get_drvdata(dev);
574
575 return regulator_print_state(buf,
576 rdev->constraints->state_disk.enabled);
577 }
578 static DEVICE_ATTR(suspend_disk_state, 0444,
579 regulator_suspend_disk_state_show, NULL);
580
581 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
582 struct device_attribute *attr, char *buf)
583 {
584 struct regulator_dev *rdev = dev_get_drvdata(dev);
585
586 return regulator_print_state(buf,
587 rdev->constraints->state_standby.enabled);
588 }
589 static DEVICE_ATTR(suspend_standby_state, 0444,
590 regulator_suspend_standby_state_show, NULL);
591
592 static ssize_t regulator_bypass_show(struct device *dev,
593 struct device_attribute *attr, char *buf)
594 {
595 struct regulator_dev *rdev = dev_get_drvdata(dev);
596 const char *report;
597 bool bypass;
598 int ret;
599
600 ret = rdev->desc->ops->get_bypass(rdev, &bypass);
601
602 if (ret != 0)
603 report = "unknown";
604 else if (bypass)
605 report = "enabled";
606 else
607 report = "disabled";
608
609 return sprintf(buf, "%s\n", report);
610 }
611 static DEVICE_ATTR(bypass, 0444,
612 regulator_bypass_show, NULL);
613
614 /*
615 * These are the only attributes are present for all regulators.
616 * Other attributes are a function of regulator functionality.
617 */
618 static struct device_attribute regulator_dev_attrs[] = {
619 __ATTR(name, 0444, regulator_name_show, NULL),
620 __ATTR(num_users, 0444, regulator_num_users_show, NULL),
621 __ATTR(type, 0444, regulator_type_show, NULL),
622 __ATTR_NULL,
623 };
624
625 static void regulator_dev_release(struct device *dev)
626 {
627 struct regulator_dev *rdev = dev_get_drvdata(dev);
628 kfree(rdev);
629 }
630
631 static struct class regulator_class = {
632 .name = "regulator",
633 .dev_release = regulator_dev_release,
634 .dev_attrs = regulator_dev_attrs,
635 };
636
637 /* Calculate the new optimum regulator operating mode based on the new total
638 * consumer load. All locks held by caller */
639 static void drms_uA_update(struct regulator_dev *rdev)
640 {
641 struct regulator *sibling;
642 int current_uA = 0, output_uV, input_uV, err;
643 unsigned int mode;
644
645 err = regulator_check_drms(rdev);
646 if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
647 (!rdev->desc->ops->get_voltage &&
648 !rdev->desc->ops->get_voltage_sel) ||
649 !rdev->desc->ops->set_mode)
650 return;
651
652 /* get output voltage */
653 output_uV = _regulator_get_voltage(rdev);
654 if (output_uV <= 0)
655 return;
656
657 /* get input voltage */
658 input_uV = 0;
659 if (rdev->supply)
660 input_uV = regulator_get_voltage(rdev->supply);
661 if (input_uV <= 0)
662 input_uV = rdev->constraints->input_uV;
663 if (input_uV <= 0)
664 return;
665
666 /* calc total requested load */
667 list_for_each_entry(sibling, &rdev->consumer_list, list)
668 current_uA += sibling->uA_load;
669
670 /* now get the optimum mode for our new total regulator load */
671 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
672 output_uV, current_uA);
673
674 /* check the new mode is allowed */
675 err = regulator_mode_constrain(rdev, &mode);
676 if (err == 0)
677 rdev->desc->ops->set_mode(rdev, mode);
678 }
679
680 static int suspend_set_state(struct regulator_dev *rdev,
681 struct regulator_state *rstate)
682 {
683 int ret = 0;
684
685 /* If we have no suspend mode configration don't set anything;
686 * only warn if the driver implements set_suspend_voltage or
687 * set_suspend_mode callback.
688 */
689 if (!rstate->enabled && !rstate->disabled) {
690 if (rdev->desc->ops->set_suspend_voltage ||
691 rdev->desc->ops->set_suspend_mode)
692 rdev_warn(rdev, "No configuration\n");
693 return 0;
694 }
695
696 if (rstate->enabled && rstate->disabled) {
697 rdev_err(rdev, "invalid configuration\n");
698 return -EINVAL;
699 }
700
701 if (rstate->enabled && rdev->desc->ops->set_suspend_enable)
702 ret = rdev->desc->ops->set_suspend_enable(rdev);
703 else if (rstate->disabled && rdev->desc->ops->set_suspend_disable)
704 ret = rdev->desc->ops->set_suspend_disable(rdev);
705 else /* OK if set_suspend_enable or set_suspend_disable is NULL */
706 ret = 0;
707
708 if (ret < 0) {
709 rdev_err(rdev, "failed to enabled/disable\n");
710 return ret;
711 }
712
713 if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
714 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
715 if (ret < 0) {
716 rdev_err(rdev, "failed to set voltage\n");
717 return ret;
718 }
719 }
720
721 if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
722 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
723 if (ret < 0) {
724 rdev_err(rdev, "failed to set mode\n");
725 return ret;
726 }
727 }
728 return ret;
729 }
730
731 /* locks held by caller */
732 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
733 {
734 if (!rdev->constraints)
735 return -EINVAL;
736
737 switch (state) {
738 case PM_SUSPEND_STANDBY:
739 return suspend_set_state(rdev,
740 &rdev->constraints->state_standby);
741 case PM_SUSPEND_MEM:
742 return suspend_set_state(rdev,
743 &rdev->constraints->state_mem);
744 case PM_SUSPEND_MAX:
745 return suspend_set_state(rdev,
746 &rdev->constraints->state_disk);
747 default:
748 return -EINVAL;
749 }
750 }
751
752 static void print_constraints(struct regulator_dev *rdev)
753 {
754 struct regulation_constraints *constraints = rdev->constraints;
755 char buf[80] = "";
756 int count = 0;
757 int ret;
758
759 if (constraints->min_uV && constraints->max_uV) {
760 if (constraints->min_uV == constraints->max_uV)
761 count += sprintf(buf + count, "%d mV ",
762 constraints->min_uV / 1000);
763 else
764 count += sprintf(buf + count, "%d <--> %d mV ",
765 constraints->min_uV / 1000,
766 constraints->max_uV / 1000);
767 }
768
769 if (!constraints->min_uV ||
770 constraints->min_uV != constraints->max_uV) {
771 ret = _regulator_get_voltage(rdev);
772 if (ret > 0)
773 count += sprintf(buf + count, "at %d mV ", ret / 1000);
774 }
775
776 if (constraints->uV_offset)
777 count += sprintf(buf, "%dmV offset ",
778 constraints->uV_offset / 1000);
779
780 if (constraints->min_uA && constraints->max_uA) {
781 if (constraints->min_uA == constraints->max_uA)
782 count += sprintf(buf + count, "%d mA ",
783 constraints->min_uA / 1000);
784 else
785 count += sprintf(buf + count, "%d <--> %d mA ",
786 constraints->min_uA / 1000,
787 constraints->max_uA / 1000);
788 }
789
790 if (!constraints->min_uA ||
791 constraints->min_uA != constraints->max_uA) {
792 ret = _regulator_get_current_limit(rdev);
793 if (ret > 0)
794 count += sprintf(buf + count, "at %d mA ", ret / 1000);
795 }
796
797 if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
798 count += sprintf(buf + count, "fast ");
799 if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
800 count += sprintf(buf + count, "normal ");
801 if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
802 count += sprintf(buf + count, "idle ");
803 if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
804 count += sprintf(buf + count, "standby");
805
806 if (!count)
807 sprintf(buf, "no parameters");
808
809 rdev_info(rdev, "%s\n", buf);
810
811 if ((constraints->min_uV != constraints->max_uV) &&
812 !(constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE))
813 rdev_warn(rdev,
814 "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
815 }
816
817 static int machine_constraints_voltage(struct regulator_dev *rdev,
818 struct regulation_constraints *constraints)
819 {
820 struct regulator_ops *ops = rdev->desc->ops;
821 int ret;
822
823 /* do we need to apply the constraint voltage */
824 if (rdev->constraints->apply_uV &&
825 rdev->constraints->min_uV == rdev->constraints->max_uV) {
826 ret = _regulator_do_set_voltage(rdev,
827 rdev->constraints->min_uV,
828 rdev->constraints->max_uV);
829 if (ret < 0) {
830 rdev_err(rdev, "failed to apply %duV constraint\n",
831 rdev->constraints->min_uV);
832 return ret;
833 }
834 }
835
836 /* constrain machine-level voltage specs to fit
837 * the actual range supported by this regulator.
838 */
839 if (ops->list_voltage && rdev->desc->n_voltages) {
840 int count = rdev->desc->n_voltages;
841 int i;
842 int min_uV = INT_MAX;
843 int max_uV = INT_MIN;
844 int cmin = constraints->min_uV;
845 int cmax = constraints->max_uV;
846
847 /* it's safe to autoconfigure fixed-voltage supplies
848 and the constraints are used by list_voltage. */
849 if (count == 1 && !cmin) {
850 cmin = 1;
851 cmax = INT_MAX;
852 constraints->min_uV = cmin;
853 constraints->max_uV = cmax;
854 }
855
856 /* voltage constraints are optional */
857 if ((cmin == 0) && (cmax == 0))
858 return 0;
859
860 /* else require explicit machine-level constraints */
861 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
862 rdev_err(rdev, "invalid voltage constraints\n");
863 return -EINVAL;
864 }
865
866 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
867 for (i = 0; i < count; i++) {
868 int value;
869
870 value = ops->list_voltage(rdev, i);
871 if (value <= 0)
872 continue;
873
874 /* maybe adjust [min_uV..max_uV] */
875 if (value >= cmin && value < min_uV)
876 min_uV = value;
877 if (value <= cmax && value > max_uV)
878 max_uV = value;
879 }
880
881 /* final: [min_uV..max_uV] valid iff constraints valid */
882 if (max_uV < min_uV) {
883 rdev_err(rdev, "unsupportable voltage constraints\n");
884 return -EINVAL;
885 }
886
887 /* use regulator's subset of machine constraints */
888 if (constraints->min_uV < min_uV) {
889 rdev_dbg(rdev, "override min_uV, %d -> %d\n",
890 constraints->min_uV, min_uV);
891 constraints->min_uV = min_uV;
892 }
893 if (constraints->max_uV > max_uV) {
894 rdev_dbg(rdev, "override max_uV, %d -> %d\n",
895 constraints->max_uV, max_uV);
896 constraints->max_uV = max_uV;
897 }
898 }
899
900 return 0;
901 }
902
903 /**
904 * set_machine_constraints - sets regulator constraints
905 * @rdev: regulator source
906 * @constraints: constraints to apply
907 *
908 * Allows platform initialisation code to define and constrain
909 * regulator circuits e.g. valid voltage/current ranges, etc. NOTE:
910 * Constraints *must* be set by platform code in order for some
911 * regulator operations to proceed i.e. set_voltage, set_current_limit,
912 * set_mode.
913 */
914 static int set_machine_constraints(struct regulator_dev *rdev,
915 const struct regulation_constraints *constraints)
916 {
917 int ret = 0;
918 struct regulator_ops *ops = rdev->desc->ops;
919
920 if (constraints)
921 rdev->constraints = kmemdup(constraints, sizeof(*constraints),
922 GFP_KERNEL);
923 else
924 rdev->constraints = kzalloc(sizeof(*constraints),
925 GFP_KERNEL);
926 if (!rdev->constraints)
927 return -ENOMEM;
928
929 ret = machine_constraints_voltage(rdev, rdev->constraints);
930 if (ret != 0)
931 goto out;
932
933 /* do we need to setup our suspend state */
934 if (rdev->constraints->initial_state) {
935 ret = suspend_prepare(rdev, rdev->constraints->initial_state);
936 if (ret < 0) {
937 rdev_err(rdev, "failed to set suspend state\n");
938 goto out;
939 }
940 }
941
942 if (rdev->constraints->initial_mode) {
943 if (!ops->set_mode) {
944 rdev_err(rdev, "no set_mode operation\n");
945 ret = -EINVAL;
946 goto out;
947 }
948
949 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
950 if (ret < 0) {
951 rdev_err(rdev, "failed to set initial mode: %d\n", ret);
952 goto out;
953 }
954 }
955
956 /* If the constraints say the regulator should be on at this point
957 * and we have control then make sure it is enabled.
958 */
959 if ((rdev->constraints->always_on || rdev->constraints->boot_on) &&
960 ops->enable) {
961 ret = ops->enable(rdev);
962 if (ret < 0) {
963 rdev_err(rdev, "failed to enable\n");
964 goto out;
965 }
966 }
967
968 if (rdev->constraints->ramp_delay && ops->set_ramp_delay) {
969 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
970 if (ret < 0) {
971 rdev_err(rdev, "failed to set ramp_delay\n");
972 goto out;
973 }
974 }
975
976 print_constraints(rdev);
977 return 0;
978 out:
979 kfree(rdev->constraints);
980 rdev->constraints = NULL;
981 return ret;
982 }
983
984 /**
985 * set_supply - set regulator supply regulator
986 * @rdev: regulator name
987 * @supply_rdev: supply regulator name
988 *
989 * Called by platform initialisation code to set the supply regulator for this
990 * regulator. This ensures that a regulators supply will also be enabled by the
991 * core if it's child is enabled.
992 */
993 static int set_supply(struct regulator_dev *rdev,
994 struct regulator_dev *supply_rdev)
995 {
996 int err;
997
998 rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
999
1000 rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1001 if (rdev->supply == NULL) {
1002 err = -ENOMEM;
1003 return err;
1004 }
1005 supply_rdev->open_count++;
1006
1007 return 0;
1008 }
1009
1010 /**
1011 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1012 * @rdev: regulator source
1013 * @consumer_dev_name: dev_name() string for device supply applies to
1014 * @supply: symbolic name for supply
1015 *
1016 * Allows platform initialisation code to map physical regulator
1017 * sources to symbolic names for supplies for use by devices. Devices
1018 * should use these symbolic names to request regulators, avoiding the
1019 * need to provide board-specific regulator names as platform data.
1020 */
1021 static int set_consumer_device_supply(struct regulator_dev *rdev,
1022 const char *consumer_dev_name,
1023 const char *supply)
1024 {
1025 struct regulator_map *node;
1026 int has_dev;
1027
1028 if (supply == NULL)
1029 return -EINVAL;
1030
1031 if (consumer_dev_name != NULL)
1032 has_dev = 1;
1033 else
1034 has_dev = 0;
1035
1036 list_for_each_entry(node, &regulator_map_list, list) {
1037 if (node->dev_name && consumer_dev_name) {
1038 if (strcmp(node->dev_name, consumer_dev_name) != 0)
1039 continue;
1040 } else if (node->dev_name || consumer_dev_name) {
1041 continue;
1042 }
1043
1044 if (strcmp(node->supply, supply) != 0)
1045 continue;
1046
1047 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1048 consumer_dev_name,
1049 dev_name(&node->regulator->dev),
1050 node->regulator->desc->name,
1051 supply,
1052 dev_name(&rdev->dev), rdev_get_name(rdev));
1053 return -EBUSY;
1054 }
1055
1056 node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1057 if (node == NULL)
1058 return -ENOMEM;
1059
1060 node->regulator = rdev;
1061 node->supply = supply;
1062
1063 if (has_dev) {
1064 node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1065 if (node->dev_name == NULL) {
1066 kfree(node);
1067 return -ENOMEM;
1068 }
1069 }
1070
1071 list_add(&node->list, &regulator_map_list);
1072 return 0;
1073 }
1074
1075 static void unset_regulator_supplies(struct regulator_dev *rdev)
1076 {
1077 struct regulator_map *node, *n;
1078
1079 list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1080 if (rdev == node->regulator) {
1081 list_del(&node->list);
1082 kfree(node->dev_name);
1083 kfree(node);
1084 }
1085 }
1086 }
1087
1088 #define REG_STR_SIZE 64
1089
1090 static struct regulator *create_regulator(struct regulator_dev *rdev,
1091 struct device *dev,
1092 const char *supply_name)
1093 {
1094 struct regulator *regulator;
1095 char buf[REG_STR_SIZE];
1096 int err, size;
1097
1098 regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1099 if (regulator == NULL)
1100 return NULL;
1101
1102 mutex_lock(&rdev->mutex);
1103 regulator->rdev = rdev;
1104 list_add(&regulator->list, &rdev->consumer_list);
1105
1106 if (dev) {
1107 regulator->dev = dev;
1108
1109 /* Add a link to the device sysfs entry */
1110 size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1111 dev->kobj.name, supply_name);
1112 if (size >= REG_STR_SIZE)
1113 goto overflow_err;
1114
1115 regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1116 if (regulator->supply_name == NULL)
1117 goto overflow_err;
1118
1119 err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1120 buf);
1121 if (err) {
1122 rdev_warn(rdev, "could not add device link %s err %d\n",
1123 dev->kobj.name, err);
1124 /* non-fatal */
1125 }
1126 } else {
1127 regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
1128 if (regulator->supply_name == NULL)
1129 goto overflow_err;
1130 }
1131
1132 regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1133 rdev->debugfs);
1134 if (!regulator->debugfs) {
1135 rdev_warn(rdev, "Failed to create debugfs directory\n");
1136 } else {
1137 debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1138 &regulator->uA_load);
1139 debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1140 &regulator->min_uV);
1141 debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1142 &regulator->max_uV);
1143 }
1144
1145 /*
1146 * Check now if the regulator is an always on regulator - if
1147 * it is then we don't need to do nearly so much work for
1148 * enable/disable calls.
1149 */
1150 if (!_regulator_can_change_status(rdev) &&
1151 _regulator_is_enabled(rdev))
1152 regulator->always_on = true;
1153
1154 mutex_unlock(&rdev->mutex);
1155 return regulator;
1156 overflow_err:
1157 list_del(&regulator->list);
1158 kfree(regulator);
1159 mutex_unlock(&rdev->mutex);
1160 return NULL;
1161 }
1162
1163 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1164 {
1165 if (!rdev->desc->ops->enable_time)
1166 return rdev->desc->enable_time;
1167 return rdev->desc->ops->enable_time(rdev);
1168 }
1169
1170 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1171 const char *supply,
1172 int *ret)
1173 {
1174 struct regulator_dev *r;
1175 struct device_node *node;
1176 struct regulator_map *map;
1177 const char *devname = NULL;
1178
1179 /* first do a dt based lookup */
1180 if (dev && dev->of_node) {
1181 node = of_get_regulator(dev, supply);
1182 if (node) {
1183 list_for_each_entry(r, &regulator_list, list)
1184 if (r->dev.parent &&
1185 node == r->dev.of_node)
1186 return r;
1187 } else {
1188 /*
1189 * If we couldn't even get the node then it's
1190 * not just that the device didn't register
1191 * yet, there's no node and we'll never
1192 * succeed.
1193 */
1194 *ret = -ENODEV;
1195 }
1196 }
1197
1198 /* if not found, try doing it non-dt way */
1199 if (dev)
1200 devname = dev_name(dev);
1201
1202 list_for_each_entry(r, &regulator_list, list)
1203 if (strcmp(rdev_get_name(r), supply) == 0)
1204 return r;
1205
1206 list_for_each_entry(map, &regulator_map_list, list) {
1207 /* If the mapping has a device set up it must match */
1208 if (map->dev_name &&
1209 (!devname || strcmp(map->dev_name, devname)))
1210 continue;
1211
1212 if (strcmp(map->supply, supply) == 0)
1213 return map->regulator;
1214 }
1215
1216
1217 return NULL;
1218 }
1219
1220 /* Internal regulator request function */
1221 static struct regulator *_regulator_get(struct device *dev, const char *id,
1222 int exclusive)
1223 {
1224 struct regulator_dev *rdev;
1225 struct regulator *regulator = ERR_PTR(-EPROBE_DEFER);
1226 const char *devname = NULL;
1227 int ret;
1228
1229 if (id == NULL) {
1230 pr_err("get() with no identifier\n");
1231 return regulator;
1232 }
1233
1234 if (dev)
1235 devname = dev_name(dev);
1236
1237 mutex_lock(&regulator_list_mutex);
1238
1239 rdev = regulator_dev_lookup(dev, id, &ret);
1240 if (rdev)
1241 goto found;
1242
1243 if (board_wants_dummy_regulator) {
1244 rdev = dummy_regulator_rdev;
1245 goto found;
1246 }
1247
1248 #ifdef CONFIG_REGULATOR_DUMMY
1249 if (!devname)
1250 devname = "deviceless";
1251
1252 /* If the board didn't flag that it was fully constrained then
1253 * substitute in a dummy regulator so consumers can continue.
1254 */
1255 if (!has_full_constraints) {
1256 pr_warn("%s supply %s not found, using dummy regulator\n",
1257 devname, id);
1258 rdev = dummy_regulator_rdev;
1259 goto found;
1260 }
1261 #endif
1262
1263 mutex_unlock(&regulator_list_mutex);
1264 return regulator;
1265
1266 found:
1267 if (rdev->exclusive) {
1268 regulator = ERR_PTR(-EPERM);
1269 goto out;
1270 }
1271
1272 if (exclusive && rdev->open_count) {
1273 regulator = ERR_PTR(-EBUSY);
1274 goto out;
1275 }
1276
1277 if (!try_module_get(rdev->owner))
1278 goto out;
1279
1280 regulator = create_regulator(rdev, dev, id);
1281 if (regulator == NULL) {
1282 regulator = ERR_PTR(-ENOMEM);
1283 module_put(rdev->owner);
1284 goto out;
1285 }
1286
1287 rdev->open_count++;
1288 if (exclusive) {
1289 rdev->exclusive = 1;
1290
1291 ret = _regulator_is_enabled(rdev);
1292 if (ret > 0)
1293 rdev->use_count = 1;
1294 else
1295 rdev->use_count = 0;
1296 }
1297
1298 out:
1299 mutex_unlock(&regulator_list_mutex);
1300
1301 return regulator;
1302 }
1303
1304 /**
1305 * regulator_get - lookup and obtain a reference to a regulator.
1306 * @dev: device for regulator "consumer"
1307 * @id: Supply name or regulator ID.
1308 *
1309 * Returns a struct regulator corresponding to the regulator producer,
1310 * or IS_ERR() condition containing errno.
1311 *
1312 * Use of supply names configured via regulator_set_device_supply() is
1313 * strongly encouraged. It is recommended that the supply name used
1314 * should match the name used for the supply and/or the relevant
1315 * device pins in the datasheet.
1316 */
1317 struct regulator *regulator_get(struct device *dev, const char *id)
1318 {
1319 return _regulator_get(dev, id, 0);
1320 }
1321 EXPORT_SYMBOL_GPL(regulator_get);
1322
1323 static void devm_regulator_release(struct device *dev, void *res)
1324 {
1325 regulator_put(*(struct regulator **)res);
1326 }
1327
1328 /**
1329 * devm_regulator_get - Resource managed regulator_get()
1330 * @dev: device for regulator "consumer"
1331 * @id: Supply name or regulator ID.
1332 *
1333 * Managed regulator_get(). Regulators returned from this function are
1334 * automatically regulator_put() on driver detach. See regulator_get() for more
1335 * information.
1336 */
1337 struct regulator *devm_regulator_get(struct device *dev, const char *id)
1338 {
1339 struct regulator **ptr, *regulator;
1340
1341 ptr = devres_alloc(devm_regulator_release, sizeof(*ptr), GFP_KERNEL);
1342 if (!ptr)
1343 return ERR_PTR(-ENOMEM);
1344
1345 regulator = regulator_get(dev, id);
1346 if (!IS_ERR(regulator)) {
1347 *ptr = regulator;
1348 devres_add(dev, ptr);
1349 } else {
1350 devres_free(ptr);
1351 }
1352
1353 return regulator;
1354 }
1355 EXPORT_SYMBOL_GPL(devm_regulator_get);
1356
1357 /**
1358 * regulator_get_exclusive - obtain exclusive access to a regulator.
1359 * @dev: device for regulator "consumer"
1360 * @id: Supply name or regulator ID.
1361 *
1362 * Returns a struct regulator corresponding to the regulator producer,
1363 * or IS_ERR() condition containing errno. Other consumers will be
1364 * unable to obtain this reference is held and the use count for the
1365 * regulator will be initialised to reflect the current state of the
1366 * regulator.
1367 *
1368 * This is intended for use by consumers which cannot tolerate shared
1369 * use of the regulator such as those which need to force the
1370 * regulator off for correct operation of the hardware they are
1371 * controlling.
1372 *
1373 * Use of supply names configured via regulator_set_device_supply() is
1374 * strongly encouraged. It is recommended that the supply name used
1375 * should match the name used for the supply and/or the relevant
1376 * device pins in the datasheet.
1377 */
1378 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1379 {
1380 return _regulator_get(dev, id, 1);
1381 }
1382 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1383
1384 /* Locks held by regulator_put() */
1385 static void _regulator_put(struct regulator *regulator)
1386 {
1387 struct regulator_dev *rdev;
1388
1389 if (regulator == NULL || IS_ERR(regulator))
1390 return;
1391
1392 rdev = regulator->rdev;
1393
1394 debugfs_remove_recursive(regulator->debugfs);
1395
1396 /* remove any sysfs entries */
1397 if (regulator->dev)
1398 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1399 kfree(regulator->supply_name);
1400 list_del(&regulator->list);
1401 kfree(regulator);
1402
1403 rdev->open_count--;
1404 rdev->exclusive = 0;
1405
1406 module_put(rdev->owner);
1407 }
1408
1409 /**
1410 * regulator_put - "free" the regulator source
1411 * @regulator: regulator source
1412 *
1413 * Note: drivers must ensure that all regulator_enable calls made on this
1414 * regulator source are balanced by regulator_disable calls prior to calling
1415 * this function.
1416 */
1417 void regulator_put(struct regulator *regulator)
1418 {
1419 mutex_lock(&regulator_list_mutex);
1420 _regulator_put(regulator);
1421 mutex_unlock(&regulator_list_mutex);
1422 }
1423 EXPORT_SYMBOL_GPL(regulator_put);
1424
1425 static int devm_regulator_match(struct device *dev, void *res, void *data)
1426 {
1427 struct regulator **r = res;
1428 if (!r || !*r) {
1429 WARN_ON(!r || !*r);
1430 return 0;
1431 }
1432 return *r == data;
1433 }
1434
1435 /**
1436 * devm_regulator_put - Resource managed regulator_put()
1437 * @regulator: regulator to free
1438 *
1439 * Deallocate a regulator allocated with devm_regulator_get(). Normally
1440 * this function will not need to be called and the resource management
1441 * code will ensure that the resource is freed.
1442 */
1443 void devm_regulator_put(struct regulator *regulator)
1444 {
1445 int rc;
1446
1447 rc = devres_release(regulator->dev, devm_regulator_release,
1448 devm_regulator_match, regulator);
1449 if (rc != 0)
1450 WARN_ON(rc);
1451 }
1452 EXPORT_SYMBOL_GPL(devm_regulator_put);
1453
1454 static int _regulator_do_enable(struct regulator_dev *rdev)
1455 {
1456 int ret, delay;
1457
1458 /* Query before enabling in case configuration dependent. */
1459 ret = _regulator_get_enable_time(rdev);
1460 if (ret >= 0) {
1461 delay = ret;
1462 } else {
1463 rdev_warn(rdev, "enable_time() failed: %d\n", ret);
1464 delay = 0;
1465 }
1466
1467 trace_regulator_enable(rdev_get_name(rdev));
1468
1469 if (rdev->ena_gpio) {
1470 gpio_set_value_cansleep(rdev->ena_gpio,
1471 !rdev->ena_gpio_invert);
1472 rdev->ena_gpio_state = 1;
1473 } else if (rdev->desc->ops->enable) {
1474 ret = rdev->desc->ops->enable(rdev);
1475 if (ret < 0)
1476 return ret;
1477 } else {
1478 return -EINVAL;
1479 }
1480
1481 /* Allow the regulator to ramp; it would be useful to extend
1482 * this for bulk operations so that the regulators can ramp
1483 * together. */
1484 trace_regulator_enable_delay(rdev_get_name(rdev));
1485
1486 if (delay >= 1000) {
1487 mdelay(delay / 1000);
1488 udelay(delay % 1000);
1489 } else if (delay) {
1490 udelay(delay);
1491 }
1492
1493 trace_regulator_enable_complete(rdev_get_name(rdev));
1494
1495 return 0;
1496 }
1497
1498 /* locks held by regulator_enable() */
1499 static int _regulator_enable(struct regulator_dev *rdev)
1500 {
1501 int ret;
1502
1503 /* check voltage and requested load before enabling */
1504 if (rdev->constraints &&
1505 (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1506 drms_uA_update(rdev);
1507
1508 if (rdev->use_count == 0) {
1509 /* The regulator may on if it's not switchable or left on */
1510 ret = _regulator_is_enabled(rdev);
1511 if (ret == -EINVAL || ret == 0) {
1512 if (!_regulator_can_change_status(rdev))
1513 return -EPERM;
1514
1515 ret = _regulator_do_enable(rdev);
1516 if (ret < 0)
1517 return ret;
1518
1519 } else if (ret < 0) {
1520 rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1521 return ret;
1522 }
1523 /* Fallthrough on positive return values - already enabled */
1524 }
1525
1526 rdev->use_count++;
1527
1528 return 0;
1529 }
1530
1531 /**
1532 * regulator_enable - enable regulator output
1533 * @regulator: regulator source
1534 *
1535 * Request that the regulator be enabled with the regulator output at
1536 * the predefined voltage or current value. Calls to regulator_enable()
1537 * must be balanced with calls to regulator_disable().
1538 *
1539 * NOTE: the output value can be set by other drivers, boot loader or may be
1540 * hardwired in the regulator.
1541 */
1542 int regulator_enable(struct regulator *regulator)
1543 {
1544 struct regulator_dev *rdev = regulator->rdev;
1545 int ret = 0;
1546
1547 if (regulator->always_on)
1548 return 0;
1549
1550 if (rdev->supply) {
1551 ret = regulator_enable(rdev->supply);
1552 if (ret != 0)
1553 return ret;
1554 }
1555
1556 mutex_lock(&rdev->mutex);
1557 ret = _regulator_enable(rdev);
1558 mutex_unlock(&rdev->mutex);
1559
1560 if (ret != 0 && rdev->supply)
1561 regulator_disable(rdev->supply);
1562
1563 return ret;
1564 }
1565 EXPORT_SYMBOL_GPL(regulator_enable);
1566
1567 static int _regulator_do_disable(struct regulator_dev *rdev)
1568 {
1569 int ret;
1570
1571 trace_regulator_disable(rdev_get_name(rdev));
1572
1573 if (rdev->ena_gpio) {
1574 gpio_set_value_cansleep(rdev->ena_gpio,
1575 rdev->ena_gpio_invert);
1576 rdev->ena_gpio_state = 0;
1577
1578 } else if (rdev->desc->ops->disable) {
1579 ret = rdev->desc->ops->disable(rdev);
1580 if (ret != 0)
1581 return ret;
1582 }
1583
1584 trace_regulator_disable_complete(rdev_get_name(rdev));
1585
1586 _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
1587 NULL);
1588 return 0;
1589 }
1590
1591 /* locks held by regulator_disable() */
1592 static int _regulator_disable(struct regulator_dev *rdev)
1593 {
1594 int ret = 0;
1595
1596 if (WARN(rdev->use_count <= 0,
1597 "unbalanced disables for %s\n", rdev_get_name(rdev)))
1598 return -EIO;
1599
1600 /* are we the last user and permitted to disable ? */
1601 if (rdev->use_count == 1 &&
1602 (rdev->constraints && !rdev->constraints->always_on)) {
1603
1604 /* we are last user */
1605 if (_regulator_can_change_status(rdev)) {
1606 ret = _regulator_do_disable(rdev);
1607 if (ret < 0) {
1608 rdev_err(rdev, "failed to disable\n");
1609 return ret;
1610 }
1611 }
1612
1613 rdev->use_count = 0;
1614 } else if (rdev->use_count > 1) {
1615
1616 if (rdev->constraints &&
1617 (rdev->constraints->valid_ops_mask &
1618 REGULATOR_CHANGE_DRMS))
1619 drms_uA_update(rdev);
1620
1621 rdev->use_count--;
1622 }
1623
1624 return ret;
1625 }
1626
1627 /**
1628 * regulator_disable - disable regulator output
1629 * @regulator: regulator source
1630 *
1631 * Disable the regulator output voltage or current. Calls to
1632 * regulator_enable() must be balanced with calls to
1633 * regulator_disable().
1634 *
1635 * NOTE: this will only disable the regulator output if no other consumer
1636 * devices have it enabled, the regulator device supports disabling and
1637 * machine constraints permit this operation.
1638 */
1639 int regulator_disable(struct regulator *regulator)
1640 {
1641 struct regulator_dev *rdev = regulator->rdev;
1642 int ret = 0;
1643
1644 if (regulator->always_on)
1645 return 0;
1646
1647 mutex_lock(&rdev->mutex);
1648 ret = _regulator_disable(rdev);
1649 mutex_unlock(&rdev->mutex);
1650
1651 if (ret == 0 && rdev->supply)
1652 regulator_disable(rdev->supply);
1653
1654 return ret;
1655 }
1656 EXPORT_SYMBOL_GPL(regulator_disable);
1657
1658 /* locks held by regulator_force_disable() */
1659 static int _regulator_force_disable(struct regulator_dev *rdev)
1660 {
1661 int ret = 0;
1662
1663 /* force disable */
1664 if (rdev->desc->ops->disable) {
1665 /* ah well, who wants to live forever... */
1666 ret = rdev->desc->ops->disable(rdev);
1667 if (ret < 0) {
1668 rdev_err(rdev, "failed to force disable\n");
1669 return ret;
1670 }
1671 /* notify other consumers that power has been forced off */
1672 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
1673 REGULATOR_EVENT_DISABLE, NULL);
1674 }
1675
1676 return ret;
1677 }
1678
1679 /**
1680 * regulator_force_disable - force disable regulator output
1681 * @regulator: regulator source
1682 *
1683 * Forcibly disable the regulator output voltage or current.
1684 * NOTE: this *will* disable the regulator output even if other consumer
1685 * devices have it enabled. This should be used for situations when device
1686 * damage will likely occur if the regulator is not disabled (e.g. over temp).
1687 */
1688 int regulator_force_disable(struct regulator *regulator)
1689 {
1690 struct regulator_dev *rdev = regulator->rdev;
1691 int ret;
1692
1693 mutex_lock(&rdev->mutex);
1694 regulator->uA_load = 0;
1695 ret = _regulator_force_disable(regulator->rdev);
1696 mutex_unlock(&rdev->mutex);
1697
1698 if (rdev->supply)
1699 while (rdev->open_count--)
1700 regulator_disable(rdev->supply);
1701
1702 return ret;
1703 }
1704 EXPORT_SYMBOL_GPL(regulator_force_disable);
1705
1706 static void regulator_disable_work(struct work_struct *work)
1707 {
1708 struct regulator_dev *rdev = container_of(work, struct regulator_dev,
1709 disable_work.work);
1710 int count, i, ret;
1711
1712 mutex_lock(&rdev->mutex);
1713
1714 BUG_ON(!rdev->deferred_disables);
1715
1716 count = rdev->deferred_disables;
1717 rdev->deferred_disables = 0;
1718
1719 for (i = 0; i < count; i++) {
1720 ret = _regulator_disable(rdev);
1721 if (ret != 0)
1722 rdev_err(rdev, "Deferred disable failed: %d\n", ret);
1723 }
1724
1725 mutex_unlock(&rdev->mutex);
1726
1727 if (rdev->supply) {
1728 for (i = 0; i < count; i++) {
1729 ret = regulator_disable(rdev->supply);
1730 if (ret != 0) {
1731 rdev_err(rdev,
1732 "Supply disable failed: %d\n", ret);
1733 }
1734 }
1735 }
1736 }
1737
1738 /**
1739 * regulator_disable_deferred - disable regulator output with delay
1740 * @regulator: regulator source
1741 * @ms: miliseconds until the regulator is disabled
1742 *
1743 * Execute regulator_disable() on the regulator after a delay. This
1744 * is intended for use with devices that require some time to quiesce.
1745 *
1746 * NOTE: this will only disable the regulator output if no other consumer
1747 * devices have it enabled, the regulator device supports disabling and
1748 * machine constraints permit this operation.
1749 */
1750 int regulator_disable_deferred(struct regulator *regulator, int ms)
1751 {
1752 struct regulator_dev *rdev = regulator->rdev;
1753 int ret;
1754
1755 if (regulator->always_on)
1756 return 0;
1757
1758 if (!ms)
1759 return regulator_disable(regulator);
1760
1761 mutex_lock(&rdev->mutex);
1762 rdev->deferred_disables++;
1763 mutex_unlock(&rdev->mutex);
1764
1765 ret = schedule_delayed_work(&rdev->disable_work,
1766 msecs_to_jiffies(ms));
1767 if (ret < 0)
1768 return ret;
1769 else
1770 return 0;
1771 }
1772 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
1773
1774 /**
1775 * regulator_is_enabled_regmap - standard is_enabled() for regmap users
1776 *
1777 * @rdev: regulator to operate on
1778 *
1779 * Regulators that use regmap for their register I/O can set the
1780 * enable_reg and enable_mask fields in their descriptor and then use
1781 * this as their is_enabled operation, saving some code.
1782 */
1783 int regulator_is_enabled_regmap(struct regulator_dev *rdev)
1784 {
1785 unsigned int val;
1786 int ret;
1787
1788 ret = regmap_read(rdev->regmap, rdev->desc->enable_reg, &val);
1789 if (ret != 0)
1790 return ret;
1791
1792 return (val & rdev->desc->enable_mask) != 0;
1793 }
1794 EXPORT_SYMBOL_GPL(regulator_is_enabled_regmap);
1795
1796 /**
1797 * regulator_enable_regmap - standard enable() for regmap users
1798 *
1799 * @rdev: regulator to operate on
1800 *
1801 * Regulators that use regmap for their register I/O can set the
1802 * enable_reg and enable_mask fields in their descriptor and then use
1803 * this as their enable() operation, saving some code.
1804 */
1805 int regulator_enable_regmap(struct regulator_dev *rdev)
1806 {
1807 return regmap_update_bits(rdev->regmap, rdev->desc->enable_reg,
1808 rdev->desc->enable_mask,
1809 rdev->desc->enable_mask);
1810 }
1811 EXPORT_SYMBOL_GPL(regulator_enable_regmap);
1812
1813 /**
1814 * regulator_disable_regmap - standard disable() for regmap users
1815 *
1816 * @rdev: regulator to operate on
1817 *
1818 * Regulators that use regmap for their register I/O can set the
1819 * enable_reg and enable_mask fields in their descriptor and then use
1820 * this as their disable() operation, saving some code.
1821 */
1822 int regulator_disable_regmap(struct regulator_dev *rdev)
1823 {
1824 return regmap_update_bits(rdev->regmap, rdev->desc->enable_reg,
1825 rdev->desc->enable_mask, 0);
1826 }
1827 EXPORT_SYMBOL_GPL(regulator_disable_regmap);
1828
1829 static int _regulator_is_enabled(struct regulator_dev *rdev)
1830 {
1831 /* A GPIO control always takes precedence */
1832 if (rdev->ena_gpio)
1833 return rdev->ena_gpio_state;
1834
1835 /* If we don't know then assume that the regulator is always on */
1836 if (!rdev->desc->ops->is_enabled)
1837 return 1;
1838
1839 return rdev->desc->ops->is_enabled(rdev);
1840 }
1841
1842 /**
1843 * regulator_is_enabled - is the regulator output enabled
1844 * @regulator: regulator source
1845 *
1846 * Returns positive if the regulator driver backing the source/client
1847 * has requested that the device be enabled, zero if it hasn't, else a
1848 * negative errno code.
1849 *
1850 * Note that the device backing this regulator handle can have multiple
1851 * users, so it might be enabled even if regulator_enable() was never
1852 * called for this particular source.
1853 */
1854 int regulator_is_enabled(struct regulator *regulator)
1855 {
1856 int ret;
1857
1858 if (regulator->always_on)
1859 return 1;
1860
1861 mutex_lock(&regulator->rdev->mutex);
1862 ret = _regulator_is_enabled(regulator->rdev);
1863 mutex_unlock(&regulator->rdev->mutex);
1864
1865 return ret;
1866 }
1867 EXPORT_SYMBOL_GPL(regulator_is_enabled);
1868
1869 /**
1870 * regulator_count_voltages - count regulator_list_voltage() selectors
1871 * @regulator: regulator source
1872 *
1873 * Returns number of selectors, or negative errno. Selectors are
1874 * numbered starting at zero, and typically correspond to bitfields
1875 * in hardware registers.
1876 */
1877 int regulator_count_voltages(struct regulator *regulator)
1878 {
1879 struct regulator_dev *rdev = regulator->rdev;
1880
1881 return rdev->desc->n_voltages ? : -EINVAL;
1882 }
1883 EXPORT_SYMBOL_GPL(regulator_count_voltages);
1884
1885 /**
1886 * regulator_list_voltage_linear - List voltages with simple calculation
1887 *
1888 * @rdev: Regulator device
1889 * @selector: Selector to convert into a voltage
1890 *
1891 * Regulators with a simple linear mapping between voltages and
1892 * selectors can set min_uV and uV_step in the regulator descriptor
1893 * and then use this function as their list_voltage() operation,
1894 */
1895 int regulator_list_voltage_linear(struct regulator_dev *rdev,
1896 unsigned int selector)
1897 {
1898 if (selector >= rdev->desc->n_voltages)
1899 return -EINVAL;
1900
1901 return rdev->desc->min_uV + (rdev->desc->uV_step * selector);
1902 }
1903 EXPORT_SYMBOL_GPL(regulator_list_voltage_linear);
1904
1905 /**
1906 * regulator_list_voltage_table - List voltages with table based mapping
1907 *
1908 * @rdev: Regulator device
1909 * @selector: Selector to convert into a voltage
1910 *
1911 * Regulators with table based mapping between voltages and
1912 * selectors can set volt_table in the regulator descriptor
1913 * and then use this function as their list_voltage() operation.
1914 */
1915 int regulator_list_voltage_table(struct regulator_dev *rdev,
1916 unsigned int selector)
1917 {
1918 if (!rdev->desc->volt_table) {
1919 BUG_ON(!rdev->desc->volt_table);
1920 return -EINVAL;
1921 }
1922
1923 if (selector >= rdev->desc->n_voltages)
1924 return -EINVAL;
1925
1926 return rdev->desc->volt_table[selector];
1927 }
1928 EXPORT_SYMBOL_GPL(regulator_list_voltage_table);
1929
1930 /**
1931 * regulator_list_voltage - enumerate supported voltages
1932 * @regulator: regulator source
1933 * @selector: identify voltage to list
1934 * Context: can sleep
1935 *
1936 * Returns a voltage that can be passed to @regulator_set_voltage(),
1937 * zero if this selector code can't be used on this system, or a
1938 * negative errno.
1939 */
1940 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
1941 {
1942 struct regulator_dev *rdev = regulator->rdev;
1943 struct regulator_ops *ops = rdev->desc->ops;
1944 int ret;
1945
1946 if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
1947 return -EINVAL;
1948
1949 mutex_lock(&rdev->mutex);
1950 ret = ops->list_voltage(rdev, selector);
1951 mutex_unlock(&rdev->mutex);
1952
1953 if (ret > 0) {
1954 if (ret < rdev->constraints->min_uV)
1955 ret = 0;
1956 else if (ret > rdev->constraints->max_uV)
1957 ret = 0;
1958 }
1959
1960 return ret;
1961 }
1962 EXPORT_SYMBOL_GPL(regulator_list_voltage);
1963
1964 /**
1965 * regulator_is_supported_voltage - check if a voltage range can be supported
1966 *
1967 * @regulator: Regulator to check.
1968 * @min_uV: Minimum required voltage in uV.
1969 * @max_uV: Maximum required voltage in uV.
1970 *
1971 * Returns a boolean or a negative error code.
1972 */
1973 int regulator_is_supported_voltage(struct regulator *regulator,
1974 int min_uV, int max_uV)
1975 {
1976 struct regulator_dev *rdev = regulator->rdev;
1977 int i, voltages, ret;
1978
1979 /* If we can't change voltage check the current voltage */
1980 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
1981 ret = regulator_get_voltage(regulator);
1982 if (ret >= 0)
1983 return (min_uV <= ret && ret <= max_uV);
1984 else
1985 return ret;
1986 }
1987
1988 /* Any voltage within constrains range is fine? */
1989 if (rdev->desc->continuous_voltage_range)
1990 return min_uV >= rdev->constraints->min_uV &&
1991 max_uV <= rdev->constraints->max_uV;
1992
1993 ret = regulator_count_voltages(regulator);
1994 if (ret < 0)
1995 return ret;
1996 voltages = ret;
1997
1998 for (i = 0; i < voltages; i++) {
1999 ret = regulator_list_voltage(regulator, i);
2000
2001 if (ret >= min_uV && ret <= max_uV)
2002 return 1;
2003 }
2004
2005 return 0;
2006 }
2007 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
2008
2009 /**
2010 * regulator_get_voltage_sel_regmap - standard get_voltage_sel for regmap users
2011 *
2012 * @rdev: regulator to operate on
2013 *
2014 * Regulators that use regmap for their register I/O can set the
2015 * vsel_reg and vsel_mask fields in their descriptor and then use this
2016 * as their get_voltage_vsel operation, saving some code.
2017 */
2018 int regulator_get_voltage_sel_regmap(struct regulator_dev *rdev)
2019 {
2020 unsigned int val;
2021 int ret;
2022
2023 ret = regmap_read(rdev->regmap, rdev->desc->vsel_reg, &val);
2024 if (ret != 0)
2025 return ret;
2026
2027 val &= rdev->desc->vsel_mask;
2028 val >>= ffs(rdev->desc->vsel_mask) - 1;
2029
2030 return val;
2031 }
2032 EXPORT_SYMBOL_GPL(regulator_get_voltage_sel_regmap);
2033
2034 /**
2035 * regulator_set_voltage_sel_regmap - standard set_voltage_sel for regmap users
2036 *
2037 * @rdev: regulator to operate on
2038 * @sel: Selector to set
2039 *
2040 * Regulators that use regmap for their register I/O can set the
2041 * vsel_reg and vsel_mask fields in their descriptor and then use this
2042 * as their set_voltage_vsel operation, saving some code.
2043 */
2044 int regulator_set_voltage_sel_regmap(struct regulator_dev *rdev, unsigned sel)
2045 {
2046 sel <<= ffs(rdev->desc->vsel_mask) - 1;
2047
2048 return regmap_update_bits(rdev->regmap, rdev->desc->vsel_reg,
2049 rdev->desc->vsel_mask, sel);
2050 }
2051 EXPORT_SYMBOL_GPL(regulator_set_voltage_sel_regmap);
2052
2053 /**
2054 * regulator_map_voltage_iterate - map_voltage() based on list_voltage()
2055 *
2056 * @rdev: Regulator to operate on
2057 * @min_uV: Lower bound for voltage
2058 * @max_uV: Upper bound for voltage
2059 *
2060 * Drivers implementing set_voltage_sel() and list_voltage() can use
2061 * this as their map_voltage() operation. It will find a suitable
2062 * voltage by calling list_voltage() until it gets something in bounds
2063 * for the requested voltages.
2064 */
2065 int regulator_map_voltage_iterate(struct regulator_dev *rdev,
2066 int min_uV, int max_uV)
2067 {
2068 int best_val = INT_MAX;
2069 int selector = 0;
2070 int i, ret;
2071
2072 /* Find the smallest voltage that falls within the specified
2073 * range.
2074 */
2075 for (i = 0; i < rdev->desc->n_voltages; i++) {
2076 ret = rdev->desc->ops->list_voltage(rdev, i);
2077 if (ret < 0)
2078 continue;
2079
2080 if (ret < best_val && ret >= min_uV && ret <= max_uV) {
2081 best_val = ret;
2082 selector = i;
2083 }
2084 }
2085
2086 if (best_val != INT_MAX)
2087 return selector;
2088 else
2089 return -EINVAL;
2090 }
2091 EXPORT_SYMBOL_GPL(regulator_map_voltage_iterate);
2092
2093 /**
2094 * regulator_map_voltage_linear - map_voltage() for simple linear mappings
2095 *
2096 * @rdev: Regulator to operate on
2097 * @min_uV: Lower bound for voltage
2098 * @max_uV: Upper bound for voltage
2099 *
2100 * Drivers providing min_uV and uV_step in their regulator_desc can
2101 * use this as their map_voltage() operation.
2102 */
2103 int regulator_map_voltage_linear(struct regulator_dev *rdev,
2104 int min_uV, int max_uV)
2105 {
2106 int ret, voltage;
2107
2108 /* Allow uV_step to be 0 for fixed voltage */
2109 if (rdev->desc->n_voltages == 1 && rdev->desc->uV_step == 0) {
2110 if (min_uV <= rdev->desc->min_uV && rdev->desc->min_uV <= max_uV)
2111 return 0;
2112 else
2113 return -EINVAL;
2114 }
2115
2116 if (!rdev->desc->uV_step) {
2117 BUG_ON(!rdev->desc->uV_step);
2118 return -EINVAL;
2119 }
2120
2121 if (min_uV < rdev->desc->min_uV)
2122 min_uV = rdev->desc->min_uV;
2123
2124 ret = DIV_ROUND_UP(min_uV - rdev->desc->min_uV, rdev->desc->uV_step);
2125 if (ret < 0)
2126 return ret;
2127
2128 /* Map back into a voltage to verify we're still in bounds */
2129 voltage = rdev->desc->ops->list_voltage(rdev, ret);
2130 if (voltage < min_uV || voltage > max_uV)
2131 return -EINVAL;
2132
2133 return ret;
2134 }
2135 EXPORT_SYMBOL_GPL(regulator_map_voltage_linear);
2136
2137 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
2138 int min_uV, int max_uV)
2139 {
2140 int ret;
2141 int delay = 0;
2142 int best_val = 0;
2143 unsigned int selector;
2144 int old_selector = -1;
2145
2146 trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
2147
2148 min_uV += rdev->constraints->uV_offset;
2149 max_uV += rdev->constraints->uV_offset;
2150
2151 /*
2152 * If we can't obtain the old selector there is not enough
2153 * info to call set_voltage_time_sel().
2154 */
2155 if (_regulator_is_enabled(rdev) &&
2156 rdev->desc->ops->set_voltage_time_sel &&
2157 rdev->desc->ops->get_voltage_sel) {
2158 old_selector = rdev->desc->ops->get_voltage_sel(rdev);
2159 if (old_selector < 0)
2160 return old_selector;
2161 }
2162
2163 if (rdev->desc->ops->set_voltage) {
2164 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV,
2165 &selector);
2166
2167 if (ret >= 0) {
2168 if (rdev->desc->ops->list_voltage)
2169 best_val = rdev->desc->ops->list_voltage(rdev,
2170 selector);
2171 else
2172 best_val = _regulator_get_voltage(rdev);
2173 }
2174
2175 } else if (rdev->desc->ops->set_voltage_sel) {
2176 if (rdev->desc->ops->map_voltage) {
2177 ret = rdev->desc->ops->map_voltage(rdev, min_uV,
2178 max_uV);
2179 } else {
2180 if (rdev->desc->ops->list_voltage ==
2181 regulator_list_voltage_linear)
2182 ret = regulator_map_voltage_linear(rdev,
2183 min_uV, max_uV);
2184 else
2185 ret = regulator_map_voltage_iterate(rdev,
2186 min_uV, max_uV);
2187 }
2188
2189 if (ret >= 0) {
2190 best_val = rdev->desc->ops->list_voltage(rdev, ret);
2191 if (min_uV <= best_val && max_uV >= best_val) {
2192 selector = ret;
2193 ret = rdev->desc->ops->set_voltage_sel(rdev,
2194 ret);
2195 } else {
2196 ret = -EINVAL;
2197 }
2198 }
2199 } else {
2200 ret = -EINVAL;
2201 }
2202
2203 /* Call set_voltage_time_sel if successfully obtained old_selector */
2204 if (ret == 0 && _regulator_is_enabled(rdev) && old_selector >= 0 &&
2205 rdev->desc->ops->set_voltage_time_sel) {
2206
2207 delay = rdev->desc->ops->set_voltage_time_sel(rdev,
2208 old_selector, selector);
2209 if (delay < 0) {
2210 rdev_warn(rdev, "set_voltage_time_sel() failed: %d\n",
2211 delay);
2212 delay = 0;
2213 }
2214
2215 /* Insert any necessary delays */
2216 if (delay >= 1000) {
2217 mdelay(delay / 1000);
2218 udelay(delay % 1000);
2219 } else if (delay) {
2220 udelay(delay);
2221 }
2222 }
2223
2224 if (ret == 0 && best_val >= 0) {
2225 unsigned long data = best_val;
2226
2227 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2228 (void *)data);
2229 }
2230
2231 trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2232
2233 return ret;
2234 }
2235
2236 /**
2237 * regulator_set_voltage - set regulator output voltage
2238 * @regulator: regulator source
2239 * @min_uV: Minimum required voltage in uV
2240 * @max_uV: Maximum acceptable voltage in uV
2241 *
2242 * Sets a voltage regulator to the desired output voltage. This can be set
2243 * during any regulator state. IOW, regulator can be disabled or enabled.
2244 *
2245 * If the regulator is enabled then the voltage will change to the new value
2246 * immediately otherwise if the regulator is disabled the regulator will
2247 * output at the new voltage when enabled.
2248 *
2249 * NOTE: If the regulator is shared between several devices then the lowest
2250 * request voltage that meets the system constraints will be used.
2251 * Regulator system constraints must be set for this regulator before
2252 * calling this function otherwise this call will fail.
2253 */
2254 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
2255 {
2256 struct regulator_dev *rdev = regulator->rdev;
2257 int ret = 0;
2258
2259 mutex_lock(&rdev->mutex);
2260
2261 /* If we're setting the same range as last time the change
2262 * should be a noop (some cpufreq implementations use the same
2263 * voltage for multiple frequencies, for example).
2264 */
2265 if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
2266 goto out;
2267
2268 /* sanity check */
2269 if (!rdev->desc->ops->set_voltage &&
2270 !rdev->desc->ops->set_voltage_sel) {
2271 ret = -EINVAL;
2272 goto out;
2273 }
2274
2275 /* constraints check */
2276 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2277 if (ret < 0)
2278 goto out;
2279 regulator->min_uV = min_uV;
2280 regulator->max_uV = max_uV;
2281
2282 ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2283 if (ret < 0)
2284 goto out;
2285
2286 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2287
2288 out:
2289 mutex_unlock(&rdev->mutex);
2290 return ret;
2291 }
2292 EXPORT_SYMBOL_GPL(regulator_set_voltage);
2293
2294 /**
2295 * regulator_set_voltage_time - get raise/fall time
2296 * @regulator: regulator source
2297 * @old_uV: starting voltage in microvolts
2298 * @new_uV: target voltage in microvolts
2299 *
2300 * Provided with the starting and ending voltage, this function attempts to
2301 * calculate the time in microseconds required to rise or fall to this new
2302 * voltage.
2303 */
2304 int regulator_set_voltage_time(struct regulator *regulator,
2305 int old_uV, int new_uV)
2306 {
2307 struct regulator_dev *rdev = regulator->rdev;
2308 struct regulator_ops *ops = rdev->desc->ops;
2309 int old_sel = -1;
2310 int new_sel = -1;
2311 int voltage;
2312 int i;
2313
2314 /* Currently requires operations to do this */
2315 if (!ops->list_voltage || !ops->set_voltage_time_sel
2316 || !rdev->desc->n_voltages)
2317 return -EINVAL;
2318
2319 for (i = 0; i < rdev->desc->n_voltages; i++) {
2320 /* We only look for exact voltage matches here */
2321 voltage = regulator_list_voltage(regulator, i);
2322 if (voltage < 0)
2323 return -EINVAL;
2324 if (voltage == 0)
2325 continue;
2326 if (voltage == old_uV)
2327 old_sel = i;
2328 if (voltage == new_uV)
2329 new_sel = i;
2330 }
2331
2332 if (old_sel < 0 || new_sel < 0)
2333 return -EINVAL;
2334
2335 return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
2336 }
2337 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
2338
2339 /**
2340 * regulator_set_voltage_time_sel - get raise/fall time
2341 * @rdev: regulator source device
2342 * @old_selector: selector for starting voltage
2343 * @new_selector: selector for target voltage
2344 *
2345 * Provided with the starting and target voltage selectors, this function
2346 * returns time in microseconds required to rise or fall to this new voltage
2347 *
2348 * Drivers providing ramp_delay in regulation_constraints can use this as their
2349 * set_voltage_time_sel() operation.
2350 */
2351 int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
2352 unsigned int old_selector,
2353 unsigned int new_selector)
2354 {
2355 unsigned int ramp_delay = 0;
2356 int old_volt, new_volt;
2357
2358 if (rdev->constraints->ramp_delay)
2359 ramp_delay = rdev->constraints->ramp_delay;
2360 else if (rdev->desc->ramp_delay)
2361 ramp_delay = rdev->desc->ramp_delay;
2362
2363 if (ramp_delay == 0) {
2364 rdev_warn(rdev, "ramp_delay not set\n");
2365 return 0;
2366 }
2367
2368 /* sanity check */
2369 if (!rdev->desc->ops->list_voltage)
2370 return -EINVAL;
2371
2372 old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
2373 new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
2374
2375 return DIV_ROUND_UP(abs(new_volt - old_volt), ramp_delay);
2376 }
2377 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
2378
2379 /**
2380 * regulator_sync_voltage - re-apply last regulator output voltage
2381 * @regulator: regulator source
2382 *
2383 * Re-apply the last configured voltage. This is intended to be used
2384 * where some external control source the consumer is cooperating with
2385 * has caused the configured voltage to change.
2386 */
2387 int regulator_sync_voltage(struct regulator *regulator)
2388 {
2389 struct regulator_dev *rdev = regulator->rdev;
2390 int ret, min_uV, max_uV;
2391
2392 mutex_lock(&rdev->mutex);
2393
2394 if (!rdev->desc->ops->set_voltage &&
2395 !rdev->desc->ops->set_voltage_sel) {
2396 ret = -EINVAL;
2397 goto out;
2398 }
2399
2400 /* This is only going to work if we've had a voltage configured. */
2401 if (!regulator->min_uV && !regulator->max_uV) {
2402 ret = -EINVAL;
2403 goto out;
2404 }
2405
2406 min_uV = regulator->min_uV;
2407 max_uV = regulator->max_uV;
2408
2409 /* This should be a paranoia check... */
2410 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2411 if (ret < 0)
2412 goto out;
2413
2414 ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2415 if (ret < 0)
2416 goto out;
2417
2418 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2419
2420 out:
2421 mutex_unlock(&rdev->mutex);
2422 return ret;
2423 }
2424 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
2425
2426 static int _regulator_get_voltage(struct regulator_dev *rdev)
2427 {
2428 int sel, ret;
2429
2430 if (rdev->desc->ops->get_voltage_sel) {
2431 sel = rdev->desc->ops->get_voltage_sel(rdev);
2432 if (sel < 0)
2433 return sel;
2434 ret = rdev->desc->ops->list_voltage(rdev, sel);
2435 } else if (rdev->desc->ops->get_voltage) {
2436 ret = rdev->desc->ops->get_voltage(rdev);
2437 } else if (rdev->desc->ops->list_voltage) {
2438 ret = rdev->desc->ops->list_voltage(rdev, 0);
2439 } else {
2440 return -EINVAL;
2441 }
2442
2443 if (ret < 0)
2444 return ret;
2445 return ret - rdev->constraints->uV_offset;
2446 }
2447
2448 /**
2449 * regulator_get_voltage - get regulator output voltage
2450 * @regulator: regulator source
2451 *
2452 * This returns the current regulator voltage in uV.
2453 *
2454 * NOTE: If the regulator is disabled it will return the voltage value. This
2455 * function should not be used to determine regulator state.
2456 */
2457 int regulator_get_voltage(struct regulator *regulator)
2458 {
2459 int ret;
2460
2461 mutex_lock(&regulator->rdev->mutex);
2462
2463 ret = _regulator_get_voltage(regulator->rdev);
2464
2465 mutex_unlock(&regulator->rdev->mutex);
2466
2467 return ret;
2468 }
2469 EXPORT_SYMBOL_GPL(regulator_get_voltage);
2470
2471 /**
2472 * regulator_set_current_limit - set regulator output current limit
2473 * @regulator: regulator source
2474 * @min_uA: Minimuum supported current in uA
2475 * @max_uA: Maximum supported current in uA
2476 *
2477 * Sets current sink to the desired output current. This can be set during
2478 * any regulator state. IOW, regulator can be disabled or enabled.
2479 *
2480 * If the regulator is enabled then the current will change to the new value
2481 * immediately otherwise if the regulator is disabled the regulator will
2482 * output at the new current when enabled.
2483 *
2484 * NOTE: Regulator system constraints must be set for this regulator before
2485 * calling this function otherwise this call will fail.
2486 */
2487 int regulator_set_current_limit(struct regulator *regulator,
2488 int min_uA, int max_uA)
2489 {
2490 struct regulator_dev *rdev = regulator->rdev;
2491 int ret;
2492
2493 mutex_lock(&rdev->mutex);
2494
2495 /* sanity check */
2496 if (!rdev->desc->ops->set_current_limit) {
2497 ret = -EINVAL;
2498 goto out;
2499 }
2500
2501 /* constraints check */
2502 ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
2503 if (ret < 0)
2504 goto out;
2505
2506 ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
2507 out:
2508 mutex_unlock(&rdev->mutex);
2509 return ret;
2510 }
2511 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
2512
2513 static int _regulator_get_current_limit(struct regulator_dev *rdev)
2514 {
2515 int ret;
2516
2517 mutex_lock(&rdev->mutex);
2518
2519 /* sanity check */
2520 if (!rdev->desc->ops->get_current_limit) {
2521 ret = -EINVAL;
2522 goto out;
2523 }
2524
2525 ret = rdev->desc->ops->get_current_limit(rdev);
2526 out:
2527 mutex_unlock(&rdev->mutex);
2528 return ret;
2529 }
2530
2531 /**
2532 * regulator_get_current_limit - get regulator output current
2533 * @regulator: regulator source
2534 *
2535 * This returns the current supplied by the specified current sink in uA.
2536 *
2537 * NOTE: If the regulator is disabled it will return the current value. This
2538 * function should not be used to determine regulator state.
2539 */
2540 int regulator_get_current_limit(struct regulator *regulator)
2541 {
2542 return _regulator_get_current_limit(regulator->rdev);
2543 }
2544 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
2545
2546 /**
2547 * regulator_set_mode - set regulator operating mode
2548 * @regulator: regulator source
2549 * @mode: operating mode - one of the REGULATOR_MODE constants
2550 *
2551 * Set regulator operating mode to increase regulator efficiency or improve
2552 * regulation performance.
2553 *
2554 * NOTE: Regulator system constraints must be set for this regulator before
2555 * calling this function otherwise this call will fail.
2556 */
2557 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
2558 {
2559 struct regulator_dev *rdev = regulator->rdev;
2560 int ret;
2561 int regulator_curr_mode;
2562
2563 mutex_lock(&rdev->mutex);
2564
2565 /* sanity check */
2566 if (!rdev->desc->ops->set_mode) {
2567 ret = -EINVAL;
2568 goto out;
2569 }
2570
2571 /* return if the same mode is requested */
2572 if (rdev->desc->ops->get_mode) {
2573 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
2574 if (regulator_curr_mode == mode) {
2575 ret = 0;
2576 goto out;
2577 }
2578 }
2579
2580 /* constraints check */
2581 ret = regulator_mode_constrain(rdev, &mode);
2582 if (ret < 0)
2583 goto out;
2584
2585 ret = rdev->desc->ops->set_mode(rdev, mode);
2586 out:
2587 mutex_unlock(&rdev->mutex);
2588 return ret;
2589 }
2590 EXPORT_SYMBOL_GPL(regulator_set_mode);
2591
2592 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
2593 {
2594 int ret;
2595
2596 mutex_lock(&rdev->mutex);
2597
2598 /* sanity check */
2599 if (!rdev->desc->ops->get_mode) {
2600 ret = -EINVAL;
2601 goto out;
2602 }
2603
2604 ret = rdev->desc->ops->get_mode(rdev);
2605 out:
2606 mutex_unlock(&rdev->mutex);
2607 return ret;
2608 }
2609
2610 /**
2611 * regulator_get_mode - get regulator operating mode
2612 * @regulator: regulator source
2613 *
2614 * Get the current regulator operating mode.
2615 */
2616 unsigned int regulator_get_mode(struct regulator *regulator)
2617 {
2618 return _regulator_get_mode(regulator->rdev);
2619 }
2620 EXPORT_SYMBOL_GPL(regulator_get_mode);
2621
2622 /**
2623 * regulator_set_optimum_mode - set regulator optimum operating mode
2624 * @regulator: regulator source
2625 * @uA_load: load current
2626 *
2627 * Notifies the regulator core of a new device load. This is then used by
2628 * DRMS (if enabled by constraints) to set the most efficient regulator
2629 * operating mode for the new regulator loading.
2630 *
2631 * Consumer devices notify their supply regulator of the maximum power
2632 * they will require (can be taken from device datasheet in the power
2633 * consumption tables) when they change operational status and hence power
2634 * state. Examples of operational state changes that can affect power
2635 * consumption are :-
2636 *
2637 * o Device is opened / closed.
2638 * o Device I/O is about to begin or has just finished.
2639 * o Device is idling in between work.
2640 *
2641 * This information is also exported via sysfs to userspace.
2642 *
2643 * DRMS will sum the total requested load on the regulator and change
2644 * to the most efficient operating mode if platform constraints allow.
2645 *
2646 * Returns the new regulator mode or error.
2647 */
2648 int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
2649 {
2650 struct regulator_dev *rdev = regulator->rdev;
2651 struct regulator *consumer;
2652 int ret, output_uV, input_uV = 0, total_uA_load = 0;
2653 unsigned int mode;
2654
2655 if (rdev->supply)
2656 input_uV = regulator_get_voltage(rdev->supply);
2657
2658 mutex_lock(&rdev->mutex);
2659
2660 /*
2661 * first check to see if we can set modes at all, otherwise just
2662 * tell the consumer everything is OK.
2663 */
2664 regulator->uA_load = uA_load;
2665 ret = regulator_check_drms(rdev);
2666 if (ret < 0) {
2667 ret = 0;
2668 goto out;
2669 }
2670
2671 if (!rdev->desc->ops->get_optimum_mode)
2672 goto out;
2673
2674 /*
2675 * we can actually do this so any errors are indicators of
2676 * potential real failure.
2677 */
2678 ret = -EINVAL;
2679
2680 if (!rdev->desc->ops->set_mode)
2681 goto out;
2682
2683 /* get output voltage */
2684 output_uV = _regulator_get_voltage(rdev);
2685 if (output_uV <= 0) {
2686 rdev_err(rdev, "invalid output voltage found\n");
2687 goto out;
2688 }
2689
2690 /* No supply? Use constraint voltage */
2691 if (input_uV <= 0)
2692 input_uV = rdev->constraints->input_uV;
2693 if (input_uV <= 0) {
2694 rdev_err(rdev, "invalid input voltage found\n");
2695 goto out;
2696 }
2697
2698 /* calc total requested load for this regulator */
2699 list_for_each_entry(consumer, &rdev->consumer_list, list)
2700 total_uA_load += consumer->uA_load;
2701
2702 mode = rdev->desc->ops->get_optimum_mode(rdev,
2703 input_uV, output_uV,
2704 total_uA_load);
2705 ret = regulator_mode_constrain(rdev, &mode);
2706 if (ret < 0) {
2707 rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
2708 total_uA_load, input_uV, output_uV);
2709 goto out;
2710 }
2711
2712 ret = rdev->desc->ops->set_mode(rdev, mode);
2713 if (ret < 0) {
2714 rdev_err(rdev, "failed to set optimum mode %x\n", mode);
2715 goto out;
2716 }
2717 ret = mode;
2718 out:
2719 mutex_unlock(&rdev->mutex);
2720 return ret;
2721 }
2722 EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
2723
2724 /**
2725 * regulator_set_bypass_regmap - Default set_bypass() using regmap
2726 *
2727 * @rdev: device to operate on.
2728 * @enable: state to set.
2729 */
2730 int regulator_set_bypass_regmap(struct regulator_dev *rdev, bool enable)
2731 {
2732 unsigned int val;
2733
2734 if (enable)
2735 val = rdev->desc->bypass_mask;
2736 else
2737 val = 0;
2738
2739 return regmap_update_bits(rdev->regmap, rdev->desc->bypass_reg,
2740 rdev->desc->bypass_mask, val);
2741 }
2742 EXPORT_SYMBOL_GPL(regulator_set_bypass_regmap);
2743
2744 /**
2745 * regulator_get_bypass_regmap - Default get_bypass() using regmap
2746 *
2747 * @rdev: device to operate on.
2748 * @enable: current state.
2749 */
2750 int regulator_get_bypass_regmap(struct regulator_dev *rdev, bool *enable)
2751 {
2752 unsigned int val;
2753 int ret;
2754
2755 ret = regmap_read(rdev->regmap, rdev->desc->bypass_reg, &val);
2756 if (ret != 0)
2757 return ret;
2758
2759 *enable = val & rdev->desc->bypass_mask;
2760
2761 return 0;
2762 }
2763 EXPORT_SYMBOL_GPL(regulator_get_bypass_regmap);
2764
2765 /**
2766 * regulator_allow_bypass - allow the regulator to go into bypass mode
2767 *
2768 * @regulator: Regulator to configure
2769 * @allow: enable or disable bypass mode
2770 *
2771 * Allow the regulator to go into bypass mode if all other consumers
2772 * for the regulator also enable bypass mode and the machine
2773 * constraints allow this. Bypass mode means that the regulator is
2774 * simply passing the input directly to the output with no regulation.
2775 */
2776 int regulator_allow_bypass(struct regulator *regulator, bool enable)
2777 {
2778 struct regulator_dev *rdev = regulator->rdev;
2779 int ret = 0;
2780
2781 if (!rdev->desc->ops->set_bypass)
2782 return 0;
2783
2784 if (rdev->constraints &&
2785 !(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_BYPASS))
2786 return 0;
2787
2788 mutex_lock(&rdev->mutex);
2789
2790 if (enable && !regulator->bypass) {
2791 rdev->bypass_count++;
2792
2793 if (rdev->bypass_count == rdev->open_count) {
2794 ret = rdev->desc->ops->set_bypass(rdev, enable);
2795 if (ret != 0)
2796 rdev->bypass_count--;
2797 }
2798
2799 } else if (!enable && regulator->bypass) {
2800 rdev->bypass_count--;
2801
2802 if (rdev->bypass_count != rdev->open_count) {
2803 ret = rdev->desc->ops->set_bypass(rdev, enable);
2804 if (ret != 0)
2805 rdev->bypass_count++;
2806 }
2807 }
2808
2809 if (ret == 0)
2810 regulator->bypass = enable;
2811
2812 mutex_unlock(&rdev->mutex);
2813
2814 return ret;
2815 }
2816 EXPORT_SYMBOL_GPL(regulator_allow_bypass);
2817
2818 /**
2819 * regulator_register_notifier - register regulator event notifier
2820 * @regulator: regulator source
2821 * @nb: notifier block
2822 *
2823 * Register notifier block to receive regulator events.
2824 */
2825 int regulator_register_notifier(struct regulator *regulator,
2826 struct notifier_block *nb)
2827 {
2828 return blocking_notifier_chain_register(&regulator->rdev->notifier,
2829 nb);
2830 }
2831 EXPORT_SYMBOL_GPL(regulator_register_notifier);
2832
2833 /**
2834 * regulator_unregister_notifier - unregister regulator event notifier
2835 * @regulator: regulator source
2836 * @nb: notifier block
2837 *
2838 * Unregister regulator event notifier block.
2839 */
2840 int regulator_unregister_notifier(struct regulator *regulator,
2841 struct notifier_block *nb)
2842 {
2843 return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
2844 nb);
2845 }
2846 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
2847
2848 /* notify regulator consumers and downstream regulator consumers.
2849 * Note mutex must be held by caller.
2850 */
2851 static void _notifier_call_chain(struct regulator_dev *rdev,
2852 unsigned long event, void *data)
2853 {
2854 /* call rdev chain first */
2855 blocking_notifier_call_chain(&rdev->notifier, event, data);
2856 }
2857
2858 /**
2859 * regulator_bulk_get - get multiple regulator consumers
2860 *
2861 * @dev: Device to supply
2862 * @num_consumers: Number of consumers to register
2863 * @consumers: Configuration of consumers; clients are stored here.
2864 *
2865 * @return 0 on success, an errno on failure.
2866 *
2867 * This helper function allows drivers to get several regulator
2868 * consumers in one operation. If any of the regulators cannot be
2869 * acquired then any regulators that were allocated will be freed
2870 * before returning to the caller.
2871 */
2872 int regulator_bulk_get(struct device *dev, int num_consumers,
2873 struct regulator_bulk_data *consumers)
2874 {
2875 int i;
2876 int ret;
2877
2878 for (i = 0; i < num_consumers; i++)
2879 consumers[i].consumer = NULL;
2880
2881 for (i = 0; i < num_consumers; i++) {
2882 consumers[i].consumer = regulator_get(dev,
2883 consumers[i].supply);
2884 if (IS_ERR(consumers[i].consumer)) {
2885 ret = PTR_ERR(consumers[i].consumer);
2886 dev_err(dev, "Failed to get supply '%s': %d\n",
2887 consumers[i].supply, ret);
2888 consumers[i].consumer = NULL;
2889 goto err;
2890 }
2891 }
2892
2893 return 0;
2894
2895 err:
2896 while (--i >= 0)
2897 regulator_put(consumers[i].consumer);
2898
2899 return ret;
2900 }
2901 EXPORT_SYMBOL_GPL(regulator_bulk_get);
2902
2903 /**
2904 * devm_regulator_bulk_get - managed get multiple regulator consumers
2905 *
2906 * @dev: Device to supply
2907 * @num_consumers: Number of consumers to register
2908 * @consumers: Configuration of consumers; clients are stored here.
2909 *
2910 * @return 0 on success, an errno on failure.
2911 *
2912 * This helper function allows drivers to get several regulator
2913 * consumers in one operation with management, the regulators will
2914 * automatically be freed when the device is unbound. If any of the
2915 * regulators cannot be acquired then any regulators that were
2916 * allocated will be freed before returning to the caller.
2917 */
2918 int devm_regulator_bulk_get(struct device *dev, int num_consumers,
2919 struct regulator_bulk_data *consumers)
2920 {
2921 int i;
2922 int ret;
2923
2924 for (i = 0; i < num_consumers; i++)
2925 consumers[i].consumer = NULL;
2926
2927 for (i = 0; i < num_consumers; i++) {
2928 consumers[i].consumer = devm_regulator_get(dev,
2929 consumers[i].supply);
2930 if (IS_ERR(consumers[i].consumer)) {
2931 ret = PTR_ERR(consumers[i].consumer);
2932 dev_err(dev, "Failed to get supply '%s': %d\n",
2933 consumers[i].supply, ret);
2934 consumers[i].consumer = NULL;
2935 goto err;
2936 }
2937 }
2938
2939 return 0;
2940
2941 err:
2942 for (i = 0; i < num_consumers && consumers[i].consumer; i++)
2943 devm_regulator_put(consumers[i].consumer);
2944
2945 return ret;
2946 }
2947 EXPORT_SYMBOL_GPL(devm_regulator_bulk_get);
2948
2949 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
2950 {
2951 struct regulator_bulk_data *bulk = data;
2952
2953 bulk->ret = regulator_enable(bulk->consumer);
2954 }
2955
2956 /**
2957 * regulator_bulk_enable - enable multiple regulator consumers
2958 *
2959 * @num_consumers: Number of consumers
2960 * @consumers: Consumer data; clients are stored here.
2961 * @return 0 on success, an errno on failure
2962 *
2963 * This convenience API allows consumers to enable multiple regulator
2964 * clients in a single API call. If any consumers cannot be enabled
2965 * then any others that were enabled will be disabled again prior to
2966 * return.
2967 */
2968 int regulator_bulk_enable(int num_consumers,
2969 struct regulator_bulk_data *consumers)
2970 {
2971 ASYNC_DOMAIN_EXCLUSIVE(async_domain);
2972 int i;
2973 int ret = 0;
2974
2975 for (i = 0; i < num_consumers; i++) {
2976 if (consumers[i].consumer->always_on)
2977 consumers[i].ret = 0;
2978 else
2979 async_schedule_domain(regulator_bulk_enable_async,
2980 &consumers[i], &async_domain);
2981 }
2982
2983 async_synchronize_full_domain(&async_domain);
2984
2985 /* If any consumer failed we need to unwind any that succeeded */
2986 for (i = 0; i < num_consumers; i++) {
2987 if (consumers[i].ret != 0) {
2988 ret = consumers[i].ret;
2989 goto err;
2990 }
2991 }
2992
2993 return 0;
2994
2995 err:
2996 pr_err("Failed to enable %s: %d\n", consumers[i].supply, ret);
2997 while (--i >= 0)
2998 regulator_disable(consumers[i].consumer);
2999
3000 return ret;
3001 }
3002 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
3003
3004 /**
3005 * regulator_bulk_disable - disable multiple regulator consumers
3006 *
3007 * @num_consumers: Number of consumers
3008 * @consumers: Consumer data; clients are stored here.
3009 * @return 0 on success, an errno on failure
3010 *
3011 * This convenience API allows consumers to disable multiple regulator
3012 * clients in a single API call. If any consumers cannot be disabled
3013 * then any others that were disabled will be enabled again prior to
3014 * return.
3015 */
3016 int regulator_bulk_disable(int num_consumers,
3017 struct regulator_bulk_data *consumers)
3018 {
3019 int i;
3020 int ret, r;
3021
3022 for (i = num_consumers - 1; i >= 0; --i) {
3023 ret = regulator_disable(consumers[i].consumer);
3024 if (ret != 0)
3025 goto err;
3026 }
3027
3028 return 0;
3029
3030 err:
3031 pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
3032 for (++i; i < num_consumers; ++i) {
3033 r = regulator_enable(consumers[i].consumer);
3034 if (r != 0)
3035 pr_err("Failed to reename %s: %d\n",
3036 consumers[i].supply, r);
3037 }
3038
3039 return ret;
3040 }
3041 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
3042
3043 /**
3044 * regulator_bulk_force_disable - force disable multiple regulator consumers
3045 *
3046 * @num_consumers: Number of consumers
3047 * @consumers: Consumer data; clients are stored here.
3048 * @return 0 on success, an errno on failure
3049 *
3050 * This convenience API allows consumers to forcibly disable multiple regulator
3051 * clients in a single API call.
3052 * NOTE: This should be used for situations when device damage will
3053 * likely occur if the regulators are not disabled (e.g. over temp).
3054 * Although regulator_force_disable function call for some consumers can
3055 * return error numbers, the function is called for all consumers.
3056 */
3057 int regulator_bulk_force_disable(int num_consumers,
3058 struct regulator_bulk_data *consumers)
3059 {
3060 int i;
3061 int ret;
3062
3063 for (i = 0; i < num_consumers; i++)
3064 consumers[i].ret =
3065 regulator_force_disable(consumers[i].consumer);
3066
3067 for (i = 0; i < num_consumers; i++) {
3068 if (consumers[i].ret != 0) {
3069 ret = consumers[i].ret;
3070 goto out;
3071 }
3072 }
3073
3074 return 0;
3075 out:
3076 return ret;
3077 }
3078 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
3079
3080 /**
3081 * regulator_bulk_free - free multiple regulator consumers
3082 *
3083 * @num_consumers: Number of consumers
3084 * @consumers: Consumer data; clients are stored here.
3085 *
3086 * This convenience API allows consumers to free multiple regulator
3087 * clients in a single API call.
3088 */
3089 void regulator_bulk_free(int num_consumers,
3090 struct regulator_bulk_data *consumers)
3091 {
3092 int i;
3093
3094 for (i = 0; i < num_consumers; i++) {
3095 regulator_put(consumers[i].consumer);
3096 consumers[i].consumer = NULL;
3097 }
3098 }
3099 EXPORT_SYMBOL_GPL(regulator_bulk_free);
3100
3101 /**
3102 * regulator_notifier_call_chain - call regulator event notifier
3103 * @rdev: regulator source
3104 * @event: notifier block
3105 * @data: callback-specific data.
3106 *
3107 * Called by regulator drivers to notify clients a regulator event has
3108 * occurred. We also notify regulator clients downstream.
3109 * Note lock must be held by caller.
3110 */
3111 int regulator_notifier_call_chain(struct regulator_dev *rdev,
3112 unsigned long event, void *data)
3113 {
3114 _notifier_call_chain(rdev, event, data);
3115 return NOTIFY_DONE;
3116
3117 }
3118 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
3119
3120 /**
3121 * regulator_mode_to_status - convert a regulator mode into a status
3122 *
3123 * @mode: Mode to convert
3124 *
3125 * Convert a regulator mode into a status.
3126 */
3127 int regulator_mode_to_status(unsigned int mode)
3128 {
3129 switch (mode) {
3130 case REGULATOR_MODE_FAST:
3131 return REGULATOR_STATUS_FAST;
3132 case REGULATOR_MODE_NORMAL:
3133 return REGULATOR_STATUS_NORMAL;
3134 case REGULATOR_MODE_IDLE:
3135 return REGULATOR_STATUS_IDLE;
3136 case REGULATOR_MODE_STANDBY:
3137 return REGULATOR_STATUS_STANDBY;
3138 default:
3139 return REGULATOR_STATUS_UNDEFINED;
3140 }
3141 }
3142 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
3143
3144 /*
3145 * To avoid cluttering sysfs (and memory) with useless state, only
3146 * create attributes that can be meaningfully displayed.
3147 */
3148 static int add_regulator_attributes(struct regulator_dev *rdev)
3149 {
3150 struct device *dev = &rdev->dev;
3151 struct regulator_ops *ops = rdev->desc->ops;
3152 int status = 0;
3153
3154 /* some attributes need specific methods to be displayed */
3155 if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
3156 (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
3157 (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0)) {
3158 status = device_create_file(dev, &dev_attr_microvolts);
3159 if (status < 0)
3160 return status;
3161 }
3162 if (ops->get_current_limit) {
3163 status = device_create_file(dev, &dev_attr_microamps);
3164 if (status < 0)
3165 return status;
3166 }
3167 if (ops->get_mode) {
3168 status = device_create_file(dev, &dev_attr_opmode);
3169 if (status < 0)
3170 return status;
3171 }
3172 if (ops->is_enabled) {
3173 status = device_create_file(dev, &dev_attr_state);
3174 if (status < 0)
3175 return status;
3176 }
3177 if (ops->get_status) {
3178 status = device_create_file(dev, &dev_attr_status);
3179 if (status < 0)
3180 return status;
3181 }
3182 if (ops->get_bypass) {
3183 status = device_create_file(dev, &dev_attr_bypass);
3184 if (status < 0)
3185 return status;
3186 }
3187
3188 /* some attributes are type-specific */
3189 if (rdev->desc->type == REGULATOR_CURRENT) {
3190 status = device_create_file(dev, &dev_attr_requested_microamps);
3191 if (status < 0)
3192 return status;
3193 }
3194
3195 /* all the other attributes exist to support constraints;
3196 * don't show them if there are no constraints, or if the
3197 * relevant supporting methods are missing.
3198 */
3199 if (!rdev->constraints)
3200 return status;
3201
3202 /* constraints need specific supporting methods */
3203 if (ops->set_voltage || ops->set_voltage_sel) {
3204 status = device_create_file(dev, &dev_attr_min_microvolts);
3205 if (status < 0)
3206 return status;
3207 status = device_create_file(dev, &dev_attr_max_microvolts);
3208 if (status < 0)
3209 return status;
3210 }
3211 if (ops->set_current_limit) {
3212 status = device_create_file(dev, &dev_attr_min_microamps);
3213 if (status < 0)
3214 return status;
3215 status = device_create_file(dev, &dev_attr_max_microamps);
3216 if (status < 0)
3217 return status;
3218 }
3219
3220 status = device_create_file(dev, &dev_attr_suspend_standby_state);
3221 if (status < 0)
3222 return status;
3223 status = device_create_file(dev, &dev_attr_suspend_mem_state);
3224 if (status < 0)
3225 return status;
3226 status = device_create_file(dev, &dev_attr_suspend_disk_state);
3227 if (status < 0)
3228 return status;
3229
3230 if (ops->set_suspend_voltage) {
3231 status = device_create_file(dev,
3232 &dev_attr_suspend_standby_microvolts);
3233 if (status < 0)
3234 return status;
3235 status = device_create_file(dev,
3236 &dev_attr_suspend_mem_microvolts);
3237 if (status < 0)
3238 return status;
3239 status = device_create_file(dev,
3240 &dev_attr_suspend_disk_microvolts);
3241 if (status < 0)
3242 return status;
3243 }
3244
3245 if (ops->set_suspend_mode) {
3246 status = device_create_file(dev,
3247 &dev_attr_suspend_standby_mode);
3248 if (status < 0)
3249 return status;
3250 status = device_create_file(dev,
3251 &dev_attr_suspend_mem_mode);
3252 if (status < 0)
3253 return status;
3254 status = device_create_file(dev,
3255 &dev_attr_suspend_disk_mode);
3256 if (status < 0)
3257 return status;
3258 }
3259
3260 return status;
3261 }
3262
3263 static void rdev_init_debugfs(struct regulator_dev *rdev)
3264 {
3265 rdev->debugfs = debugfs_create_dir(rdev_get_name(rdev), debugfs_root);
3266 if (!rdev->debugfs) {
3267 rdev_warn(rdev, "Failed to create debugfs directory\n");
3268 return;
3269 }
3270
3271 debugfs_create_u32("use_count", 0444, rdev->debugfs,
3272 &rdev->use_count);
3273 debugfs_create_u32("open_count", 0444, rdev->debugfs,
3274 &rdev->open_count);
3275 debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
3276 &rdev->bypass_count);
3277 }
3278
3279 /**
3280 * regulator_register - register regulator
3281 * @regulator_desc: regulator to register
3282 * @config: runtime configuration for regulator
3283 *
3284 * Called by regulator drivers to register a regulator.
3285 * Returns 0 on success.
3286 */
3287 struct regulator_dev *
3288 regulator_register(const struct regulator_desc *regulator_desc,
3289 const struct regulator_config *config)
3290 {
3291 const struct regulation_constraints *constraints = NULL;
3292 const struct regulator_init_data *init_data;
3293 static atomic_t regulator_no = ATOMIC_INIT(0);
3294 struct regulator_dev *rdev;
3295 struct device *dev;
3296 int ret, i;
3297 const char *supply = NULL;
3298
3299 if (regulator_desc == NULL || config == NULL)
3300 return ERR_PTR(-EINVAL);
3301
3302 dev = config->dev;
3303 WARN_ON(!dev);
3304
3305 if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
3306 return ERR_PTR(-EINVAL);
3307
3308 if (regulator_desc->type != REGULATOR_VOLTAGE &&
3309 regulator_desc->type != REGULATOR_CURRENT)
3310 return ERR_PTR(-EINVAL);
3311
3312 /* Only one of each should be implemented */
3313 WARN_ON(regulator_desc->ops->get_voltage &&
3314 regulator_desc->ops->get_voltage_sel);
3315 WARN_ON(regulator_desc->ops->set_voltage &&
3316 regulator_desc->ops->set_voltage_sel);
3317
3318 /* If we're using selectors we must implement list_voltage. */
3319 if (regulator_desc->ops->get_voltage_sel &&
3320 !regulator_desc->ops->list_voltage) {
3321 return ERR_PTR(-EINVAL);
3322 }
3323 if (regulator_desc->ops->set_voltage_sel &&
3324 !regulator_desc->ops->list_voltage) {
3325 return ERR_PTR(-EINVAL);
3326 }
3327
3328 init_data = config->init_data;
3329
3330 rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
3331 if (rdev == NULL)
3332 return ERR_PTR(-ENOMEM);
3333
3334 mutex_lock(&regulator_list_mutex);
3335
3336 mutex_init(&rdev->mutex);
3337 rdev->reg_data = config->driver_data;
3338 rdev->owner = regulator_desc->owner;
3339 rdev->desc = regulator_desc;
3340 if (config->regmap)
3341 rdev->regmap = config->regmap;
3342 else if (dev_get_regmap(dev, NULL))
3343 rdev->regmap = dev_get_regmap(dev, NULL);
3344 else if (dev->parent)
3345 rdev->regmap = dev_get_regmap(dev->parent, NULL);
3346 INIT_LIST_HEAD(&rdev->consumer_list);
3347 INIT_LIST_HEAD(&rdev->list);
3348 BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
3349 INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
3350
3351 /* preform any regulator specific init */
3352 if (init_data && init_data->regulator_init) {
3353 ret = init_data->regulator_init(rdev->reg_data);
3354 if (ret < 0)
3355 goto clean;
3356 }
3357
3358 /* register with sysfs */
3359 rdev->dev.class = &regulator_class;
3360 rdev->dev.of_node = config->of_node;
3361 rdev->dev.parent = dev;
3362 dev_set_name(&rdev->dev, "regulator.%d",
3363 atomic_inc_return(&regulator_no) - 1);
3364 ret = device_register(&rdev->dev);
3365 if (ret != 0) {
3366 put_device(&rdev->dev);
3367 goto clean;
3368 }
3369
3370 dev_set_drvdata(&rdev->dev, rdev);
3371
3372 if (config->ena_gpio && gpio_is_valid(config->ena_gpio)) {
3373 ret = gpio_request_one(config->ena_gpio,
3374 GPIOF_DIR_OUT | config->ena_gpio_flags,
3375 rdev_get_name(rdev));
3376 if (ret != 0) {
3377 rdev_err(rdev, "Failed to request enable GPIO%d: %d\n",
3378 config->ena_gpio, ret);
3379 goto wash;
3380 }
3381
3382 rdev->ena_gpio = config->ena_gpio;
3383 rdev->ena_gpio_invert = config->ena_gpio_invert;
3384
3385 if (config->ena_gpio_flags & GPIOF_OUT_INIT_HIGH)
3386 rdev->ena_gpio_state = 1;
3387
3388 if (rdev->ena_gpio_invert)
3389 rdev->ena_gpio_state = !rdev->ena_gpio_state;
3390 }
3391
3392 /* set regulator constraints */
3393 if (init_data)
3394 constraints = &init_data->constraints;
3395
3396 ret = set_machine_constraints(rdev, constraints);
3397 if (ret < 0)
3398 goto scrub;
3399
3400 /* add attributes supported by this regulator */
3401 ret = add_regulator_attributes(rdev);
3402 if (ret < 0)
3403 goto scrub;
3404
3405 if (init_data && init_data->supply_regulator)
3406 supply = init_data->supply_regulator;
3407 else if (regulator_desc->supply_name)
3408 supply = regulator_desc->supply_name;
3409
3410 if (supply) {
3411 struct regulator_dev *r;
3412
3413 r = regulator_dev_lookup(dev, supply, &ret);
3414
3415 if (!r) {
3416 dev_err(dev, "Failed to find supply %s\n", supply);
3417 ret = -EPROBE_DEFER;
3418 goto scrub;
3419 }
3420
3421 ret = set_supply(rdev, r);
3422 if (ret < 0)
3423 goto scrub;
3424
3425 /* Enable supply if rail is enabled */
3426 if (_regulator_is_enabled(rdev)) {
3427 ret = regulator_enable(rdev->supply);
3428 if (ret < 0)
3429 goto scrub;
3430 }
3431 }
3432
3433 /* add consumers devices */
3434 if (init_data) {
3435 for (i = 0; i < init_data->num_consumer_supplies; i++) {
3436 ret = set_consumer_device_supply(rdev,
3437 init_data->consumer_supplies[i].dev_name,
3438 init_data->consumer_supplies[i].supply);
3439 if (ret < 0) {
3440 dev_err(dev, "Failed to set supply %s\n",
3441 init_data->consumer_supplies[i].supply);
3442 goto unset_supplies;
3443 }
3444 }
3445 }
3446
3447 list_add(&rdev->list, &regulator_list);
3448
3449 rdev_init_debugfs(rdev);
3450 out:
3451 mutex_unlock(&regulator_list_mutex);
3452 return rdev;
3453
3454 unset_supplies:
3455 unset_regulator_supplies(rdev);
3456
3457 scrub:
3458 if (rdev->supply)
3459 _regulator_put(rdev->supply);
3460 if (rdev->ena_gpio)
3461 gpio_free(rdev->ena_gpio);
3462 kfree(rdev->constraints);
3463 wash:
3464 device_unregister(&rdev->dev);
3465 /* device core frees rdev */
3466 rdev = ERR_PTR(ret);
3467 goto out;
3468
3469 clean:
3470 kfree(rdev);
3471 rdev = ERR_PTR(ret);
3472 goto out;
3473 }
3474 EXPORT_SYMBOL_GPL(regulator_register);
3475
3476 /**
3477 * regulator_unregister - unregister regulator
3478 * @rdev: regulator to unregister
3479 *
3480 * Called by regulator drivers to unregister a regulator.
3481 */
3482 void regulator_unregister(struct regulator_dev *rdev)
3483 {
3484 if (rdev == NULL)
3485 return;
3486
3487 if (rdev->supply)
3488 regulator_put(rdev->supply);
3489 mutex_lock(&regulator_list_mutex);
3490 debugfs_remove_recursive(rdev->debugfs);
3491 flush_work(&rdev->disable_work.work);
3492 WARN_ON(rdev->open_count);
3493 unset_regulator_supplies(rdev);
3494 list_del(&rdev->list);
3495 kfree(rdev->constraints);
3496 if (rdev->ena_gpio)
3497 gpio_free(rdev->ena_gpio);
3498 device_unregister(&rdev->dev);
3499 mutex_unlock(&regulator_list_mutex);
3500 }
3501 EXPORT_SYMBOL_GPL(regulator_unregister);
3502
3503 /**
3504 * regulator_suspend_prepare - prepare regulators for system wide suspend
3505 * @state: system suspend state
3506 *
3507 * Configure each regulator with it's suspend operating parameters for state.
3508 * This will usually be called by machine suspend code prior to supending.
3509 */
3510 int regulator_suspend_prepare(suspend_state_t state)
3511 {
3512 struct regulator_dev *rdev;
3513 int ret = 0;
3514
3515 /* ON is handled by regulator active state */
3516 if (state == PM_SUSPEND_ON)
3517 return -EINVAL;
3518
3519 mutex_lock(&regulator_list_mutex);
3520 list_for_each_entry(rdev, &regulator_list, list) {
3521
3522 mutex_lock(&rdev->mutex);
3523 ret = suspend_prepare(rdev, state);
3524 mutex_unlock(&rdev->mutex);
3525
3526 if (ret < 0) {
3527 rdev_err(rdev, "failed to prepare\n");
3528 goto out;
3529 }
3530 }
3531 out:
3532 mutex_unlock(&regulator_list_mutex);
3533 return ret;
3534 }
3535 EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
3536
3537 /**
3538 * regulator_suspend_finish - resume regulators from system wide suspend
3539 *
3540 * Turn on regulators that might be turned off by regulator_suspend_prepare
3541 * and that should be turned on according to the regulators properties.
3542 */
3543 int regulator_suspend_finish(void)
3544 {
3545 struct regulator_dev *rdev;
3546 int ret = 0, error;
3547
3548 mutex_lock(&regulator_list_mutex);
3549 list_for_each_entry(rdev, &regulator_list, list) {
3550 struct regulator_ops *ops = rdev->desc->ops;
3551
3552 mutex_lock(&rdev->mutex);
3553 if ((rdev->use_count > 0 || rdev->constraints->always_on) &&
3554 ops->enable) {
3555 error = ops->enable(rdev);
3556 if (error)
3557 ret = error;
3558 } else {
3559 if (!has_full_constraints)
3560 goto unlock;
3561 if (!ops->disable)
3562 goto unlock;
3563 if (!_regulator_is_enabled(rdev))
3564 goto unlock;
3565
3566 error = ops->disable(rdev);
3567 if (error)
3568 ret = error;
3569 }
3570 unlock:
3571 mutex_unlock(&rdev->mutex);
3572 }
3573 mutex_unlock(&regulator_list_mutex);
3574 return ret;
3575 }
3576 EXPORT_SYMBOL_GPL(regulator_suspend_finish);
3577
3578 /**
3579 * regulator_has_full_constraints - the system has fully specified constraints
3580 *
3581 * Calling this function will cause the regulator API to disable all
3582 * regulators which have a zero use count and don't have an always_on
3583 * constraint in a late_initcall.
3584 *
3585 * The intention is that this will become the default behaviour in a
3586 * future kernel release so users are encouraged to use this facility
3587 * now.
3588 */
3589 void regulator_has_full_constraints(void)
3590 {
3591 has_full_constraints = 1;
3592 }
3593 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
3594
3595 /**
3596 * regulator_use_dummy_regulator - Provide a dummy regulator when none is found
3597 *
3598 * Calling this function will cause the regulator API to provide a
3599 * dummy regulator to consumers if no physical regulator is found,
3600 * allowing most consumers to proceed as though a regulator were
3601 * configured. This allows systems such as those with software
3602 * controllable regulators for the CPU core only to be brought up more
3603 * readily.
3604 */
3605 void regulator_use_dummy_regulator(void)
3606 {
3607 board_wants_dummy_regulator = true;
3608 }
3609 EXPORT_SYMBOL_GPL(regulator_use_dummy_regulator);
3610
3611 /**
3612 * rdev_get_drvdata - get rdev regulator driver data
3613 * @rdev: regulator
3614 *
3615 * Get rdev regulator driver private data. This call can be used in the
3616 * regulator driver context.
3617 */
3618 void *rdev_get_drvdata(struct regulator_dev *rdev)
3619 {
3620 return rdev->reg_data;
3621 }
3622 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
3623
3624 /**
3625 * regulator_get_drvdata - get regulator driver data
3626 * @regulator: regulator
3627 *
3628 * Get regulator driver private data. This call can be used in the consumer
3629 * driver context when non API regulator specific functions need to be called.
3630 */
3631 void *regulator_get_drvdata(struct regulator *regulator)
3632 {
3633 return regulator->rdev->reg_data;
3634 }
3635 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
3636
3637 /**
3638 * regulator_set_drvdata - set regulator driver data
3639 * @regulator: regulator
3640 * @data: data
3641 */
3642 void regulator_set_drvdata(struct regulator *regulator, void *data)
3643 {
3644 regulator->rdev->reg_data = data;
3645 }
3646 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
3647
3648 /**
3649 * regulator_get_id - get regulator ID
3650 * @rdev: regulator
3651 */
3652 int rdev_get_id(struct regulator_dev *rdev)
3653 {
3654 return rdev->desc->id;
3655 }
3656 EXPORT_SYMBOL_GPL(rdev_get_id);
3657
3658 struct device *rdev_get_dev(struct regulator_dev *rdev)
3659 {
3660 return &rdev->dev;
3661 }
3662 EXPORT_SYMBOL_GPL(rdev_get_dev);
3663
3664 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
3665 {
3666 return reg_init_data->driver_data;
3667 }
3668 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
3669
3670 #ifdef CONFIG_DEBUG_FS
3671 static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
3672 size_t count, loff_t *ppos)
3673 {
3674 char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
3675 ssize_t len, ret = 0;
3676 struct regulator_map *map;
3677
3678 if (!buf)
3679 return -ENOMEM;
3680
3681 list_for_each_entry(map, &regulator_map_list, list) {
3682 len = snprintf(buf + ret, PAGE_SIZE - ret,
3683 "%s -> %s.%s\n",
3684 rdev_get_name(map->regulator), map->dev_name,
3685 map->supply);
3686 if (len >= 0)
3687 ret += len;
3688 if (ret > PAGE_SIZE) {
3689 ret = PAGE_SIZE;
3690 break;
3691 }
3692 }
3693
3694 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
3695
3696 kfree(buf);
3697
3698 return ret;
3699 }
3700 #endif
3701
3702 static const struct file_operations supply_map_fops = {
3703 #ifdef CONFIG_DEBUG_FS
3704 .read = supply_map_read_file,
3705 .llseek = default_llseek,
3706 #endif
3707 };
3708
3709 static int __init regulator_init(void)
3710 {
3711 int ret;
3712
3713 ret = class_register(&regulator_class);
3714
3715 debugfs_root = debugfs_create_dir("regulator", NULL);
3716 if (!debugfs_root)
3717 pr_warn("regulator: Failed to create debugfs directory\n");
3718
3719 debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
3720 &supply_map_fops);
3721
3722 regulator_dummy_init();
3723
3724 return ret;
3725 }
3726
3727 /* init early to allow our consumers to complete system booting */
3728 core_initcall(regulator_init);
3729
3730 static int __init regulator_init_complete(void)
3731 {
3732 struct regulator_dev *rdev;
3733 struct regulator_ops *ops;
3734 struct regulation_constraints *c;
3735 int enabled, ret;
3736
3737 /*
3738 * Since DT doesn't provide an idiomatic mechanism for
3739 * enabling full constraints and since it's much more natural
3740 * with DT to provide them just assume that a DT enabled
3741 * system has full constraints.
3742 */
3743 if (of_have_populated_dt())
3744 has_full_constraints = true;
3745
3746 mutex_lock(&regulator_list_mutex);
3747
3748 /* If we have a full configuration then disable any regulators
3749 * which are not in use or always_on. This will become the
3750 * default behaviour in the future.
3751 */
3752 list_for_each_entry(rdev, &regulator_list, list) {
3753 ops = rdev->desc->ops;
3754 c = rdev->constraints;
3755
3756 if (!ops->disable || (c && c->always_on))
3757 continue;
3758
3759 mutex_lock(&rdev->mutex);
3760
3761 if (rdev->use_count)
3762 goto unlock;
3763
3764 /* If we can't read the status assume it's on. */
3765 if (ops->is_enabled)
3766 enabled = ops->is_enabled(rdev);
3767 else
3768 enabled = 1;
3769
3770 if (!enabled)
3771 goto unlock;
3772
3773 if (has_full_constraints) {
3774 /* We log since this may kill the system if it
3775 * goes wrong. */
3776 rdev_info(rdev, "disabling\n");
3777 ret = ops->disable(rdev);
3778 if (ret != 0) {
3779 rdev_err(rdev, "couldn't disable: %d\n", ret);
3780 }
3781 } else {
3782 /* The intention is that in future we will
3783 * assume that full constraints are provided
3784 * so warn even if we aren't going to do
3785 * anything here.
3786 */
3787 rdev_warn(rdev, "incomplete constraints, leaving on\n");
3788 }
3789
3790 unlock:
3791 mutex_unlock(&rdev->mutex);
3792 }
3793
3794 mutex_unlock(&regulator_list_mutex);
3795
3796 return 0;
3797 }
3798 late_initcall(regulator_init_complete);