Merge branch 'for-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/bluetoot...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / power / ab8500_fg.c
1 /*
2 * Copyright (C) ST-Ericsson AB 2012
3 *
4 * Main and Back-up battery management driver.
5 *
6 * Note: Backup battery management is required in case of Li-Ion battery and not
7 * for capacitive battery. HREF boards have capacitive battery and hence backup
8 * battery management is not used and the supported code is available in this
9 * driver.
10 *
11 * License Terms: GNU General Public License v2
12 * Author:
13 * Johan Palsson <johan.palsson@stericsson.com>
14 * Karl Komierowski <karl.komierowski@stericsson.com>
15 * Arun R Murthy <arun.murthy@stericsson.com>
16 */
17
18 #include <linux/init.h>
19 #include <linux/module.h>
20 #include <linux/device.h>
21 #include <linux/interrupt.h>
22 #include <linux/platform_device.h>
23 #include <linux/power_supply.h>
24 #include <linux/kobject.h>
25 #include <linux/slab.h>
26 #include <linux/delay.h>
27 #include <linux/time.h>
28 #include <linux/of.h>
29 #include <linux/completion.h>
30 #include <linux/mfd/core.h>
31 #include <linux/mfd/abx500.h>
32 #include <linux/mfd/abx500/ab8500.h>
33 #include <linux/mfd/abx500/ab8500-bm.h>
34 #include <linux/mfd/abx500/ab8500-gpadc.h>
35 #include <linux/kernel.h>
36
37 #define MILLI_TO_MICRO 1000
38 #define FG_LSB_IN_MA 1627
39 #define QLSB_NANO_AMP_HOURS_X10 1129
40 #define INS_CURR_TIMEOUT (3 * HZ)
41
42 #define SEC_TO_SAMPLE(S) (S * 4)
43
44 #define NBR_AVG_SAMPLES 20
45
46 #define LOW_BAT_CHECK_INTERVAL (HZ / 16) /* 62.5 ms */
47
48 #define VALID_CAPACITY_SEC (45 * 60) /* 45 minutes */
49 #define BATT_OK_MIN 2360 /* mV */
50 #define BATT_OK_INCREMENT 50 /* mV */
51 #define BATT_OK_MAX_NR_INCREMENTS 0xE
52
53 /* FG constants */
54 #define BATT_OVV 0x01
55
56 #define interpolate(x, x1, y1, x2, y2) \
57 ((y1) + ((((y2) - (y1)) * ((x) - (x1))) / ((x2) - (x1))));
58
59 #define to_ab8500_fg_device_info(x) container_of((x), \
60 struct ab8500_fg, fg_psy);
61
62 /**
63 * struct ab8500_fg_interrupts - ab8500 fg interupts
64 * @name: name of the interrupt
65 * @isr function pointer to the isr
66 */
67 struct ab8500_fg_interrupts {
68 char *name;
69 irqreturn_t (*isr)(int irq, void *data);
70 };
71
72 enum ab8500_fg_discharge_state {
73 AB8500_FG_DISCHARGE_INIT,
74 AB8500_FG_DISCHARGE_INITMEASURING,
75 AB8500_FG_DISCHARGE_INIT_RECOVERY,
76 AB8500_FG_DISCHARGE_RECOVERY,
77 AB8500_FG_DISCHARGE_READOUT_INIT,
78 AB8500_FG_DISCHARGE_READOUT,
79 AB8500_FG_DISCHARGE_WAKEUP,
80 };
81
82 static char *discharge_state[] = {
83 "DISCHARGE_INIT",
84 "DISCHARGE_INITMEASURING",
85 "DISCHARGE_INIT_RECOVERY",
86 "DISCHARGE_RECOVERY",
87 "DISCHARGE_READOUT_INIT",
88 "DISCHARGE_READOUT",
89 "DISCHARGE_WAKEUP",
90 };
91
92 enum ab8500_fg_charge_state {
93 AB8500_FG_CHARGE_INIT,
94 AB8500_FG_CHARGE_READOUT,
95 };
96
97 static char *charge_state[] = {
98 "CHARGE_INIT",
99 "CHARGE_READOUT",
100 };
101
102 enum ab8500_fg_calibration_state {
103 AB8500_FG_CALIB_INIT,
104 AB8500_FG_CALIB_WAIT,
105 AB8500_FG_CALIB_END,
106 };
107
108 struct ab8500_fg_avg_cap {
109 int avg;
110 int samples[NBR_AVG_SAMPLES];
111 __kernel_time_t time_stamps[NBR_AVG_SAMPLES];
112 int pos;
113 int nbr_samples;
114 int sum;
115 };
116
117 struct ab8500_fg_cap_scaling {
118 bool enable;
119 int cap_to_scale[2];
120 int disable_cap_level;
121 int scaled_cap;
122 };
123
124 struct ab8500_fg_battery_capacity {
125 int max_mah_design;
126 int max_mah;
127 int mah;
128 int permille;
129 int level;
130 int prev_mah;
131 int prev_percent;
132 int prev_level;
133 int user_mah;
134 struct ab8500_fg_cap_scaling cap_scale;
135 };
136
137 struct ab8500_fg_flags {
138 bool fg_enabled;
139 bool conv_done;
140 bool charging;
141 bool fully_charged;
142 bool force_full;
143 bool low_bat_delay;
144 bool low_bat;
145 bool bat_ovv;
146 bool batt_unknown;
147 bool calibrate;
148 bool user_cap;
149 bool batt_id_received;
150 };
151
152 struct inst_curr_result_list {
153 struct list_head list;
154 int *result;
155 };
156
157 /**
158 * struct ab8500_fg - ab8500 FG device information
159 * @dev: Pointer to the structure device
160 * @node: a list of AB8500 FGs, hence prepared for reentrance
161 * @irq holds the CCEOC interrupt number
162 * @vbat: Battery voltage in mV
163 * @vbat_nom: Nominal battery voltage in mV
164 * @inst_curr: Instantenous battery current in mA
165 * @avg_curr: Average battery current in mA
166 * @bat_temp battery temperature
167 * @fg_samples: Number of samples used in the FG accumulation
168 * @accu_charge: Accumulated charge from the last conversion
169 * @recovery_cnt: Counter for recovery mode
170 * @high_curr_cnt: Counter for high current mode
171 * @init_cnt: Counter for init mode
172 * @low_bat_cnt Counter for number of consecutive low battery measures
173 * @nbr_cceoc_irq_cnt Counter for number of CCEOC irqs received since enabled
174 * @recovery_needed: Indicate if recovery is needed
175 * @high_curr_mode: Indicate if we're in high current mode
176 * @init_capacity: Indicate if initial capacity measuring should be done
177 * @turn_off_fg: True if fg was off before current measurement
178 * @calib_state State during offset calibration
179 * @discharge_state: Current discharge state
180 * @charge_state: Current charge state
181 * @ab8500_fg_started Completion struct used for the instant current start
182 * @ab8500_fg_complete Completion struct used for the instant current reading
183 * @flags: Structure for information about events triggered
184 * @bat_cap: Structure for battery capacity specific parameters
185 * @avg_cap: Average capacity filter
186 * @parent: Pointer to the struct ab8500
187 * @gpadc: Pointer to the struct gpadc
188 * @bm: Platform specific battery management information
189 * @fg_psy: Structure that holds the FG specific battery properties
190 * @fg_wq: Work queue for running the FG algorithm
191 * @fg_periodic_work: Work to run the FG algorithm periodically
192 * @fg_low_bat_work: Work to check low bat condition
193 * @fg_reinit_work Work used to reset and reinitialise the FG algorithm
194 * @fg_work: Work to run the FG algorithm instantly
195 * @fg_acc_cur_work: Work to read the FG accumulator
196 * @fg_check_hw_failure_work: Work for checking HW state
197 * @cc_lock: Mutex for locking the CC
198 * @fg_kobject: Structure of type kobject
199 */
200 struct ab8500_fg {
201 struct device *dev;
202 struct list_head node;
203 int irq;
204 int vbat;
205 int vbat_nom;
206 int inst_curr;
207 int avg_curr;
208 int bat_temp;
209 int fg_samples;
210 int accu_charge;
211 int recovery_cnt;
212 int high_curr_cnt;
213 int init_cnt;
214 int low_bat_cnt;
215 int nbr_cceoc_irq_cnt;
216 bool recovery_needed;
217 bool high_curr_mode;
218 bool init_capacity;
219 bool turn_off_fg;
220 enum ab8500_fg_calibration_state calib_state;
221 enum ab8500_fg_discharge_state discharge_state;
222 enum ab8500_fg_charge_state charge_state;
223 struct completion ab8500_fg_started;
224 struct completion ab8500_fg_complete;
225 struct ab8500_fg_flags flags;
226 struct ab8500_fg_battery_capacity bat_cap;
227 struct ab8500_fg_avg_cap avg_cap;
228 struct ab8500 *parent;
229 struct ab8500_gpadc *gpadc;
230 struct abx500_bm_data *bm;
231 struct power_supply fg_psy;
232 struct workqueue_struct *fg_wq;
233 struct delayed_work fg_periodic_work;
234 struct delayed_work fg_low_bat_work;
235 struct delayed_work fg_reinit_work;
236 struct work_struct fg_work;
237 struct work_struct fg_acc_cur_work;
238 struct delayed_work fg_check_hw_failure_work;
239 struct mutex cc_lock;
240 struct kobject fg_kobject;
241 };
242 static LIST_HEAD(ab8500_fg_list);
243
244 /**
245 * ab8500_fg_get() - returns a reference to the primary AB8500 fuel gauge
246 * (i.e. the first fuel gauge in the instance list)
247 */
248 struct ab8500_fg *ab8500_fg_get(void)
249 {
250 struct ab8500_fg *fg;
251
252 if (list_empty(&ab8500_fg_list))
253 return NULL;
254
255 fg = list_first_entry(&ab8500_fg_list, struct ab8500_fg, node);
256 return fg;
257 }
258
259 /* Main battery properties */
260 static enum power_supply_property ab8500_fg_props[] = {
261 POWER_SUPPLY_PROP_VOLTAGE_NOW,
262 POWER_SUPPLY_PROP_CURRENT_NOW,
263 POWER_SUPPLY_PROP_CURRENT_AVG,
264 POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN,
265 POWER_SUPPLY_PROP_ENERGY_FULL,
266 POWER_SUPPLY_PROP_ENERGY_NOW,
267 POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN,
268 POWER_SUPPLY_PROP_CHARGE_FULL,
269 POWER_SUPPLY_PROP_CHARGE_NOW,
270 POWER_SUPPLY_PROP_CAPACITY,
271 POWER_SUPPLY_PROP_CAPACITY_LEVEL,
272 };
273
274 /*
275 * This array maps the raw hex value to lowbat voltage used by the AB8500
276 * Values taken from the UM0836
277 */
278 static int ab8500_fg_lowbat_voltage_map[] = {
279 2300 ,
280 2325 ,
281 2350 ,
282 2375 ,
283 2400 ,
284 2425 ,
285 2450 ,
286 2475 ,
287 2500 ,
288 2525 ,
289 2550 ,
290 2575 ,
291 2600 ,
292 2625 ,
293 2650 ,
294 2675 ,
295 2700 ,
296 2725 ,
297 2750 ,
298 2775 ,
299 2800 ,
300 2825 ,
301 2850 ,
302 2875 ,
303 2900 ,
304 2925 ,
305 2950 ,
306 2975 ,
307 3000 ,
308 3025 ,
309 3050 ,
310 3075 ,
311 3100 ,
312 3125 ,
313 3150 ,
314 3175 ,
315 3200 ,
316 3225 ,
317 3250 ,
318 3275 ,
319 3300 ,
320 3325 ,
321 3350 ,
322 3375 ,
323 3400 ,
324 3425 ,
325 3450 ,
326 3475 ,
327 3500 ,
328 3525 ,
329 3550 ,
330 3575 ,
331 3600 ,
332 3625 ,
333 3650 ,
334 3675 ,
335 3700 ,
336 3725 ,
337 3750 ,
338 3775 ,
339 3800 ,
340 3825 ,
341 3850 ,
342 3850 ,
343 };
344
345 static u8 ab8500_volt_to_regval(int voltage)
346 {
347 int i;
348
349 if (voltage < ab8500_fg_lowbat_voltage_map[0])
350 return 0;
351
352 for (i = 0; i < ARRAY_SIZE(ab8500_fg_lowbat_voltage_map); i++) {
353 if (voltage < ab8500_fg_lowbat_voltage_map[i])
354 return (u8) i - 1;
355 }
356
357 /* If not captured above, return index of last element */
358 return (u8) ARRAY_SIZE(ab8500_fg_lowbat_voltage_map) - 1;
359 }
360
361 /**
362 * ab8500_fg_is_low_curr() - Low or high current mode
363 * @di: pointer to the ab8500_fg structure
364 * @curr: the current to base or our decision on
365 *
366 * Low current mode if the current consumption is below a certain threshold
367 */
368 static int ab8500_fg_is_low_curr(struct ab8500_fg *di, int curr)
369 {
370 /*
371 * We want to know if we're in low current mode
372 */
373 if (curr > -di->bm->fg_params->high_curr_threshold)
374 return true;
375 else
376 return false;
377 }
378
379 /**
380 * ab8500_fg_add_cap_sample() - Add capacity to average filter
381 * @di: pointer to the ab8500_fg structure
382 * @sample: the capacity in mAh to add to the filter
383 *
384 * A capacity is added to the filter and a new mean capacity is calculated and
385 * returned
386 */
387 static int ab8500_fg_add_cap_sample(struct ab8500_fg *di, int sample)
388 {
389 struct timespec ts;
390 struct ab8500_fg_avg_cap *avg = &di->avg_cap;
391
392 getnstimeofday(&ts);
393
394 do {
395 avg->sum += sample - avg->samples[avg->pos];
396 avg->samples[avg->pos] = sample;
397 avg->time_stamps[avg->pos] = ts.tv_sec;
398 avg->pos++;
399
400 if (avg->pos == NBR_AVG_SAMPLES)
401 avg->pos = 0;
402
403 if (avg->nbr_samples < NBR_AVG_SAMPLES)
404 avg->nbr_samples++;
405
406 /*
407 * Check the time stamp for each sample. If too old,
408 * replace with latest sample
409 */
410 } while (ts.tv_sec - VALID_CAPACITY_SEC > avg->time_stamps[avg->pos]);
411
412 avg->avg = avg->sum / avg->nbr_samples;
413
414 return avg->avg;
415 }
416
417 /**
418 * ab8500_fg_clear_cap_samples() - Clear average filter
419 * @di: pointer to the ab8500_fg structure
420 *
421 * The capacity filter is is reset to zero.
422 */
423 static void ab8500_fg_clear_cap_samples(struct ab8500_fg *di)
424 {
425 int i;
426 struct ab8500_fg_avg_cap *avg = &di->avg_cap;
427
428 avg->pos = 0;
429 avg->nbr_samples = 0;
430 avg->sum = 0;
431 avg->avg = 0;
432
433 for (i = 0; i < NBR_AVG_SAMPLES; i++) {
434 avg->samples[i] = 0;
435 avg->time_stamps[i] = 0;
436 }
437 }
438
439 /**
440 * ab8500_fg_fill_cap_sample() - Fill average filter
441 * @di: pointer to the ab8500_fg structure
442 * @sample: the capacity in mAh to fill the filter with
443 *
444 * The capacity filter is filled with a capacity in mAh
445 */
446 static void ab8500_fg_fill_cap_sample(struct ab8500_fg *di, int sample)
447 {
448 int i;
449 struct timespec ts;
450 struct ab8500_fg_avg_cap *avg = &di->avg_cap;
451
452 getnstimeofday(&ts);
453
454 for (i = 0; i < NBR_AVG_SAMPLES; i++) {
455 avg->samples[i] = sample;
456 avg->time_stamps[i] = ts.tv_sec;
457 }
458
459 avg->pos = 0;
460 avg->nbr_samples = NBR_AVG_SAMPLES;
461 avg->sum = sample * NBR_AVG_SAMPLES;
462 avg->avg = sample;
463 }
464
465 /**
466 * ab8500_fg_coulomb_counter() - enable coulomb counter
467 * @di: pointer to the ab8500_fg structure
468 * @enable: enable/disable
469 *
470 * Enable/Disable coulomb counter.
471 * On failure returns negative value.
472 */
473 static int ab8500_fg_coulomb_counter(struct ab8500_fg *di, bool enable)
474 {
475 int ret = 0;
476 mutex_lock(&di->cc_lock);
477 if (enable) {
478 /* To be able to reprogram the number of samples, we have to
479 * first stop the CC and then enable it again */
480 ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
481 AB8500_RTC_CC_CONF_REG, 0x00);
482 if (ret)
483 goto cc_err;
484
485 /* Program the samples */
486 ret = abx500_set_register_interruptible(di->dev,
487 AB8500_GAS_GAUGE, AB8500_GASG_CC_NCOV_ACCU,
488 di->fg_samples);
489 if (ret)
490 goto cc_err;
491
492 /* Start the CC */
493 ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
494 AB8500_RTC_CC_CONF_REG,
495 (CC_DEEP_SLEEP_ENA | CC_PWR_UP_ENA));
496 if (ret)
497 goto cc_err;
498
499 di->flags.fg_enabled = true;
500 } else {
501 /* Clear any pending read requests */
502 ret = abx500_mask_and_set_register_interruptible(di->dev,
503 AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG,
504 (RESET_ACCU | READ_REQ), 0);
505 if (ret)
506 goto cc_err;
507
508 ret = abx500_set_register_interruptible(di->dev,
509 AB8500_GAS_GAUGE, AB8500_GASG_CC_NCOV_ACCU_CTRL, 0);
510 if (ret)
511 goto cc_err;
512
513 /* Stop the CC */
514 ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
515 AB8500_RTC_CC_CONF_REG, 0);
516 if (ret)
517 goto cc_err;
518
519 di->flags.fg_enabled = false;
520
521 }
522 dev_dbg(di->dev, " CC enabled: %d Samples: %d\n",
523 enable, di->fg_samples);
524
525 mutex_unlock(&di->cc_lock);
526
527 return ret;
528 cc_err:
529 dev_err(di->dev, "%s Enabling coulomb counter failed\n", __func__);
530 mutex_unlock(&di->cc_lock);
531 return ret;
532 }
533
534 /**
535 * ab8500_fg_inst_curr_start() - start battery instantaneous current
536 * @di: pointer to the ab8500_fg structure
537 *
538 * Returns 0 or error code
539 * Note: This is part "one" and has to be called before
540 * ab8500_fg_inst_curr_finalize()
541 */
542 int ab8500_fg_inst_curr_start(struct ab8500_fg *di)
543 {
544 u8 reg_val;
545 int ret;
546
547 mutex_lock(&di->cc_lock);
548
549 di->nbr_cceoc_irq_cnt = 0;
550 ret = abx500_get_register_interruptible(di->dev, AB8500_RTC,
551 AB8500_RTC_CC_CONF_REG, &reg_val);
552 if (ret < 0)
553 goto fail;
554
555 if (!(reg_val & CC_PWR_UP_ENA)) {
556 dev_dbg(di->dev, "%s Enable FG\n", __func__);
557 di->turn_off_fg = true;
558
559 /* Program the samples */
560 ret = abx500_set_register_interruptible(di->dev,
561 AB8500_GAS_GAUGE, AB8500_GASG_CC_NCOV_ACCU,
562 SEC_TO_SAMPLE(10));
563 if (ret)
564 goto fail;
565
566 /* Start the CC */
567 ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
568 AB8500_RTC_CC_CONF_REG,
569 (CC_DEEP_SLEEP_ENA | CC_PWR_UP_ENA));
570 if (ret)
571 goto fail;
572 } else {
573 di->turn_off_fg = false;
574 }
575
576 /* Return and WFI */
577 INIT_COMPLETION(di->ab8500_fg_started);
578 INIT_COMPLETION(di->ab8500_fg_complete);
579 enable_irq(di->irq);
580
581 /* Note: cc_lock is still locked */
582 return 0;
583 fail:
584 mutex_unlock(&di->cc_lock);
585 return ret;
586 }
587
588 /**
589 * ab8500_fg_inst_curr_started() - check if fg conversion has started
590 * @di: pointer to the ab8500_fg structure
591 *
592 * Returns 1 if conversion started, 0 if still waiting
593 */
594 int ab8500_fg_inst_curr_started(struct ab8500_fg *di)
595 {
596 return completion_done(&di->ab8500_fg_started);
597 }
598
599 /**
600 * ab8500_fg_inst_curr_done() - check if fg conversion is done
601 * @di: pointer to the ab8500_fg structure
602 *
603 * Returns 1 if conversion done, 0 if still waiting
604 */
605 int ab8500_fg_inst_curr_done(struct ab8500_fg *di)
606 {
607 return completion_done(&di->ab8500_fg_complete);
608 }
609
610 /**
611 * ab8500_fg_inst_curr_finalize() - battery instantaneous current
612 * @di: pointer to the ab8500_fg structure
613 * @res: battery instantenous current(on success)
614 *
615 * Returns 0 or an error code
616 * Note: This is part "two" and has to be called at earliest 250 ms
617 * after ab8500_fg_inst_curr_start()
618 */
619 int ab8500_fg_inst_curr_finalize(struct ab8500_fg *di, int *res)
620 {
621 u8 low, high;
622 int val;
623 int ret;
624 int timeout;
625
626 if (!completion_done(&di->ab8500_fg_complete)) {
627 timeout = wait_for_completion_timeout(
628 &di->ab8500_fg_complete,
629 INS_CURR_TIMEOUT);
630 dev_dbg(di->dev, "Finalize time: %d ms\n",
631 ((INS_CURR_TIMEOUT - timeout) * 1000) / HZ);
632 if (!timeout) {
633 ret = -ETIME;
634 disable_irq(di->irq);
635 di->nbr_cceoc_irq_cnt = 0;
636 dev_err(di->dev, "completion timed out [%d]\n",
637 __LINE__);
638 goto fail;
639 }
640 }
641
642 disable_irq(di->irq);
643 di->nbr_cceoc_irq_cnt = 0;
644
645 ret = abx500_mask_and_set_register_interruptible(di->dev,
646 AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG,
647 READ_REQ, READ_REQ);
648
649 /* 100uS between read request and read is needed */
650 usleep_range(100, 100);
651
652 /* Read CC Sample conversion value Low and high */
653 ret = abx500_get_register_interruptible(di->dev, AB8500_GAS_GAUGE,
654 AB8500_GASG_CC_SMPL_CNVL_REG, &low);
655 if (ret < 0)
656 goto fail;
657
658 ret = abx500_get_register_interruptible(di->dev, AB8500_GAS_GAUGE,
659 AB8500_GASG_CC_SMPL_CNVH_REG, &high);
660 if (ret < 0)
661 goto fail;
662
663 /*
664 * negative value for Discharging
665 * convert 2's compliment into decimal
666 */
667 if (high & 0x10)
668 val = (low | (high << 8) | 0xFFFFE000);
669 else
670 val = (low | (high << 8));
671
672 /*
673 * Convert to unit value in mA
674 * Full scale input voltage is
675 * 66.660mV => LSB = 66.660mV/(4096*res) = 1.627mA
676 * Given a 250ms conversion cycle time the LSB corresponds
677 * to 112.9 nAh. Convert to current by dividing by the conversion
678 * time in hours (250ms = 1 / (3600 * 4)h)
679 * 112.9nAh assumes 10mOhm, but fg_res is in 0.1mOhm
680 */
681 val = (val * QLSB_NANO_AMP_HOURS_X10 * 36 * 4) /
682 (1000 * di->bm->fg_res);
683
684 if (di->turn_off_fg) {
685 dev_dbg(di->dev, "%s Disable FG\n", __func__);
686
687 /* Clear any pending read requests */
688 ret = abx500_set_register_interruptible(di->dev,
689 AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG, 0);
690 if (ret)
691 goto fail;
692
693 /* Stop the CC */
694 ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
695 AB8500_RTC_CC_CONF_REG, 0);
696 if (ret)
697 goto fail;
698 }
699 mutex_unlock(&di->cc_lock);
700 (*res) = val;
701
702 return 0;
703 fail:
704 mutex_unlock(&di->cc_lock);
705 return ret;
706 }
707
708 /**
709 * ab8500_fg_inst_curr_blocking() - battery instantaneous current
710 * @di: pointer to the ab8500_fg structure
711 * @res: battery instantenous current(on success)
712 *
713 * Returns 0 else error code
714 */
715 int ab8500_fg_inst_curr_blocking(struct ab8500_fg *di)
716 {
717 int ret;
718 int timeout;
719 int res = 0;
720
721 ret = ab8500_fg_inst_curr_start(di);
722 if (ret) {
723 dev_err(di->dev, "Failed to initialize fg_inst\n");
724 return 0;
725 }
726
727 /* Wait for CC to actually start */
728 if (!completion_done(&di->ab8500_fg_started)) {
729 timeout = wait_for_completion_timeout(
730 &di->ab8500_fg_started,
731 INS_CURR_TIMEOUT);
732 dev_dbg(di->dev, "Start time: %d ms\n",
733 ((INS_CURR_TIMEOUT - timeout) * 1000) / HZ);
734 if (!timeout) {
735 ret = -ETIME;
736 dev_err(di->dev, "completion timed out [%d]\n",
737 __LINE__);
738 goto fail;
739 }
740 }
741
742 ret = ab8500_fg_inst_curr_finalize(di, &res);
743 if (ret) {
744 dev_err(di->dev, "Failed to finalize fg_inst\n");
745 return 0;
746 }
747
748 dev_dbg(di->dev, "%s instant current: %d", __func__, res);
749 return res;
750 fail:
751 disable_irq(di->irq);
752 mutex_unlock(&di->cc_lock);
753 return ret;
754 }
755
756 /**
757 * ab8500_fg_acc_cur_work() - average battery current
758 * @work: pointer to the work_struct structure
759 *
760 * Updated the average battery current obtained from the
761 * coulomb counter.
762 */
763 static void ab8500_fg_acc_cur_work(struct work_struct *work)
764 {
765 int val;
766 int ret;
767 u8 low, med, high;
768
769 struct ab8500_fg *di = container_of(work,
770 struct ab8500_fg, fg_acc_cur_work);
771
772 mutex_lock(&di->cc_lock);
773 ret = abx500_set_register_interruptible(di->dev, AB8500_GAS_GAUGE,
774 AB8500_GASG_CC_NCOV_ACCU_CTRL, RD_NCONV_ACCU_REQ);
775 if (ret)
776 goto exit;
777
778 ret = abx500_get_register_interruptible(di->dev, AB8500_GAS_GAUGE,
779 AB8500_GASG_CC_NCOV_ACCU_LOW, &low);
780 if (ret < 0)
781 goto exit;
782
783 ret = abx500_get_register_interruptible(di->dev, AB8500_GAS_GAUGE,
784 AB8500_GASG_CC_NCOV_ACCU_MED, &med);
785 if (ret < 0)
786 goto exit;
787
788 ret = abx500_get_register_interruptible(di->dev, AB8500_GAS_GAUGE,
789 AB8500_GASG_CC_NCOV_ACCU_HIGH, &high);
790 if (ret < 0)
791 goto exit;
792
793 /* Check for sign bit in case of negative value, 2's compliment */
794 if (high & 0x10)
795 val = (low | (med << 8) | (high << 16) | 0xFFE00000);
796 else
797 val = (low | (med << 8) | (high << 16));
798
799 /*
800 * Convert to uAh
801 * Given a 250ms conversion cycle time the LSB corresponds
802 * to 112.9 nAh.
803 * 112.9nAh assumes 10mOhm, but fg_res is in 0.1mOhm
804 */
805 di->accu_charge = (val * QLSB_NANO_AMP_HOURS_X10) /
806 (100 * di->bm->fg_res);
807
808 /*
809 * Convert to unit value in mA
810 * by dividing by the conversion
811 * time in hours (= samples / (3600 * 4)h)
812 * and multiply with 1000
813 */
814 di->avg_curr = (val * QLSB_NANO_AMP_HOURS_X10 * 36) /
815 (1000 * di->bm->fg_res * (di->fg_samples / 4));
816
817 di->flags.conv_done = true;
818
819 mutex_unlock(&di->cc_lock);
820
821 queue_work(di->fg_wq, &di->fg_work);
822
823 dev_dbg(di->dev, "fg_res: %d, fg_samples: %d, gasg: %d, accu_charge: %d \n",
824 di->bm->fg_res, di->fg_samples, val, di->accu_charge);
825 return;
826 exit:
827 dev_err(di->dev,
828 "Failed to read or write gas gauge registers\n");
829 mutex_unlock(&di->cc_lock);
830 queue_work(di->fg_wq, &di->fg_work);
831 }
832
833 /**
834 * ab8500_fg_bat_voltage() - get battery voltage
835 * @di: pointer to the ab8500_fg structure
836 *
837 * Returns battery voltage(on success) else error code
838 */
839 static int ab8500_fg_bat_voltage(struct ab8500_fg *di)
840 {
841 int vbat;
842 static int prev;
843
844 vbat = ab8500_gpadc_convert(di->gpadc, MAIN_BAT_V);
845 if (vbat < 0) {
846 dev_err(di->dev,
847 "%s gpadc conversion failed, using previous value\n",
848 __func__);
849 return prev;
850 }
851
852 prev = vbat;
853 return vbat;
854 }
855
856 /**
857 * ab8500_fg_volt_to_capacity() - Voltage based capacity
858 * @di: pointer to the ab8500_fg structure
859 * @voltage: The voltage to convert to a capacity
860 *
861 * Returns battery capacity in per mille based on voltage
862 */
863 static int ab8500_fg_volt_to_capacity(struct ab8500_fg *di, int voltage)
864 {
865 int i, tbl_size;
866 struct abx500_v_to_cap *tbl;
867 int cap = 0;
868
869 tbl = di->bm->bat_type[di->bm->batt_id].v_to_cap_tbl,
870 tbl_size = di->bm->bat_type[di->bm->batt_id].n_v_cap_tbl_elements;
871
872 for (i = 0; i < tbl_size; ++i) {
873 if (voltage > tbl[i].voltage)
874 break;
875 }
876
877 if ((i > 0) && (i < tbl_size)) {
878 cap = interpolate(voltage,
879 tbl[i].voltage,
880 tbl[i].capacity * 10,
881 tbl[i-1].voltage,
882 tbl[i-1].capacity * 10);
883 } else if (i == 0) {
884 cap = 1000;
885 } else {
886 cap = 0;
887 }
888
889 dev_dbg(di->dev, "%s Vbat: %d, Cap: %d per mille",
890 __func__, voltage, cap);
891
892 return cap;
893 }
894
895 /**
896 * ab8500_fg_uncomp_volt_to_capacity() - Uncompensated voltage based capacity
897 * @di: pointer to the ab8500_fg structure
898 *
899 * Returns battery capacity based on battery voltage that is not compensated
900 * for the voltage drop due to the load
901 */
902 static int ab8500_fg_uncomp_volt_to_capacity(struct ab8500_fg *di)
903 {
904 di->vbat = ab8500_fg_bat_voltage(di);
905 return ab8500_fg_volt_to_capacity(di, di->vbat);
906 }
907
908 /**
909 * ab8500_fg_battery_resistance() - Returns the battery inner resistance
910 * @di: pointer to the ab8500_fg structure
911 *
912 * Returns battery inner resistance added with the fuel gauge resistor value
913 * to get the total resistance in the whole link from gnd to bat+ node.
914 */
915 static int ab8500_fg_battery_resistance(struct ab8500_fg *di)
916 {
917 int i, tbl_size;
918 struct batres_vs_temp *tbl;
919 int resist = 0;
920
921 tbl = di->bm->bat_type[di->bm->batt_id].batres_tbl;
922 tbl_size = di->bm->bat_type[di->bm->batt_id].n_batres_tbl_elements;
923
924 for (i = 0; i < tbl_size; ++i) {
925 if (di->bat_temp / 10 > tbl[i].temp)
926 break;
927 }
928
929 if ((i > 0) && (i < tbl_size)) {
930 resist = interpolate(di->bat_temp / 10,
931 tbl[i].temp,
932 tbl[i].resist,
933 tbl[i-1].temp,
934 tbl[i-1].resist);
935 } else if (i == 0) {
936 resist = tbl[0].resist;
937 } else {
938 resist = tbl[tbl_size - 1].resist;
939 }
940
941 dev_dbg(di->dev, "%s Temp: %d battery internal resistance: %d"
942 " fg resistance %d, total: %d (mOhm)\n",
943 __func__, di->bat_temp, resist, di->bm->fg_res / 10,
944 (di->bm->fg_res / 10) + resist);
945
946 /* fg_res variable is in 0.1mOhm */
947 resist += di->bm->fg_res / 10;
948
949 return resist;
950 }
951
952 /**
953 * ab8500_fg_load_comp_volt_to_capacity() - Load compensated voltage based capacity
954 * @di: pointer to the ab8500_fg structure
955 *
956 * Returns battery capacity based on battery voltage that is load compensated
957 * for the voltage drop
958 */
959 static int ab8500_fg_load_comp_volt_to_capacity(struct ab8500_fg *di)
960 {
961 int vbat_comp, res;
962 int i = 0;
963 int vbat = 0;
964
965 ab8500_fg_inst_curr_start(di);
966
967 do {
968 vbat += ab8500_fg_bat_voltage(di);
969 i++;
970 usleep_range(5000, 6000);
971 } while (!ab8500_fg_inst_curr_done(di));
972
973 ab8500_fg_inst_curr_finalize(di, &di->inst_curr);
974
975 di->vbat = vbat / i;
976 res = ab8500_fg_battery_resistance(di);
977
978 /* Use Ohms law to get the load compensated voltage */
979 vbat_comp = di->vbat - (di->inst_curr * res) / 1000;
980
981 dev_dbg(di->dev, "%s Measured Vbat: %dmV,Compensated Vbat %dmV, "
982 "R: %dmOhm, Current: %dmA Vbat Samples: %d\n",
983 __func__, di->vbat, vbat_comp, res, di->inst_curr, i);
984
985 return ab8500_fg_volt_to_capacity(di, vbat_comp);
986 }
987
988 /**
989 * ab8500_fg_convert_mah_to_permille() - Capacity in mAh to permille
990 * @di: pointer to the ab8500_fg structure
991 * @cap_mah: capacity in mAh
992 *
993 * Converts capacity in mAh to capacity in permille
994 */
995 static int ab8500_fg_convert_mah_to_permille(struct ab8500_fg *di, int cap_mah)
996 {
997 return (cap_mah * 1000) / di->bat_cap.max_mah_design;
998 }
999
1000 /**
1001 * ab8500_fg_convert_permille_to_mah() - Capacity in permille to mAh
1002 * @di: pointer to the ab8500_fg structure
1003 * @cap_pm: capacity in permille
1004 *
1005 * Converts capacity in permille to capacity in mAh
1006 */
1007 static int ab8500_fg_convert_permille_to_mah(struct ab8500_fg *di, int cap_pm)
1008 {
1009 return cap_pm * di->bat_cap.max_mah_design / 1000;
1010 }
1011
1012 /**
1013 * ab8500_fg_convert_mah_to_uwh() - Capacity in mAh to uWh
1014 * @di: pointer to the ab8500_fg structure
1015 * @cap_mah: capacity in mAh
1016 *
1017 * Converts capacity in mAh to capacity in uWh
1018 */
1019 static int ab8500_fg_convert_mah_to_uwh(struct ab8500_fg *di, int cap_mah)
1020 {
1021 u64 div_res;
1022 u32 div_rem;
1023
1024 div_res = ((u64) cap_mah) * ((u64) di->vbat_nom);
1025 div_rem = do_div(div_res, 1000);
1026
1027 /* Make sure to round upwards if necessary */
1028 if (div_rem >= 1000 / 2)
1029 div_res++;
1030
1031 return (int) div_res;
1032 }
1033
1034 /**
1035 * ab8500_fg_calc_cap_charging() - Calculate remaining capacity while charging
1036 * @di: pointer to the ab8500_fg structure
1037 *
1038 * Return the capacity in mAh based on previous calculated capcity and the FG
1039 * accumulator register value. The filter is filled with this capacity
1040 */
1041 static int ab8500_fg_calc_cap_charging(struct ab8500_fg *di)
1042 {
1043 dev_dbg(di->dev, "%s cap_mah %d accu_charge %d\n",
1044 __func__,
1045 di->bat_cap.mah,
1046 di->accu_charge);
1047
1048 /* Capacity should not be less than 0 */
1049 if (di->bat_cap.mah + di->accu_charge > 0)
1050 di->bat_cap.mah += di->accu_charge;
1051 else
1052 di->bat_cap.mah = 0;
1053 /*
1054 * We force capacity to 100% once when the algorithm
1055 * reports that it's full.
1056 */
1057 if (di->bat_cap.mah >= di->bat_cap.max_mah_design ||
1058 di->flags.force_full) {
1059 di->bat_cap.mah = di->bat_cap.max_mah_design;
1060 }
1061
1062 ab8500_fg_fill_cap_sample(di, di->bat_cap.mah);
1063 di->bat_cap.permille =
1064 ab8500_fg_convert_mah_to_permille(di, di->bat_cap.mah);
1065
1066 /* We need to update battery voltage and inst current when charging */
1067 di->vbat = ab8500_fg_bat_voltage(di);
1068 di->inst_curr = ab8500_fg_inst_curr_blocking(di);
1069
1070 return di->bat_cap.mah;
1071 }
1072
1073 /**
1074 * ab8500_fg_calc_cap_discharge_voltage() - Capacity in discharge with voltage
1075 * @di: pointer to the ab8500_fg structure
1076 * @comp: if voltage should be load compensated before capacity calc
1077 *
1078 * Return the capacity in mAh based on the battery voltage. The voltage can
1079 * either be load compensated or not. This value is added to the filter and a
1080 * new mean value is calculated and returned.
1081 */
1082 static int ab8500_fg_calc_cap_discharge_voltage(struct ab8500_fg *di, bool comp)
1083 {
1084 int permille, mah;
1085
1086 if (comp)
1087 permille = ab8500_fg_load_comp_volt_to_capacity(di);
1088 else
1089 permille = ab8500_fg_uncomp_volt_to_capacity(di);
1090
1091 mah = ab8500_fg_convert_permille_to_mah(di, permille);
1092
1093 di->bat_cap.mah = ab8500_fg_add_cap_sample(di, mah);
1094 di->bat_cap.permille =
1095 ab8500_fg_convert_mah_to_permille(di, di->bat_cap.mah);
1096
1097 return di->bat_cap.mah;
1098 }
1099
1100 /**
1101 * ab8500_fg_calc_cap_discharge_fg() - Capacity in discharge with FG
1102 * @di: pointer to the ab8500_fg structure
1103 *
1104 * Return the capacity in mAh based on previous calculated capcity and the FG
1105 * accumulator register value. This value is added to the filter and a
1106 * new mean value is calculated and returned.
1107 */
1108 static int ab8500_fg_calc_cap_discharge_fg(struct ab8500_fg *di)
1109 {
1110 int permille_volt, permille;
1111
1112 dev_dbg(di->dev, "%s cap_mah %d accu_charge %d\n",
1113 __func__,
1114 di->bat_cap.mah,
1115 di->accu_charge);
1116
1117 /* Capacity should not be less than 0 */
1118 if (di->bat_cap.mah + di->accu_charge > 0)
1119 di->bat_cap.mah += di->accu_charge;
1120 else
1121 di->bat_cap.mah = 0;
1122
1123 if (di->bat_cap.mah >= di->bat_cap.max_mah_design)
1124 di->bat_cap.mah = di->bat_cap.max_mah_design;
1125
1126 /*
1127 * Check against voltage based capacity. It can not be lower
1128 * than what the uncompensated voltage says
1129 */
1130 permille = ab8500_fg_convert_mah_to_permille(di, di->bat_cap.mah);
1131 permille_volt = ab8500_fg_uncomp_volt_to_capacity(di);
1132
1133 if (permille < permille_volt) {
1134 di->bat_cap.permille = permille_volt;
1135 di->bat_cap.mah = ab8500_fg_convert_permille_to_mah(di,
1136 di->bat_cap.permille);
1137
1138 dev_dbg(di->dev, "%s voltage based: perm %d perm_volt %d\n",
1139 __func__,
1140 permille,
1141 permille_volt);
1142
1143 ab8500_fg_fill_cap_sample(di, di->bat_cap.mah);
1144 } else {
1145 ab8500_fg_fill_cap_sample(di, di->bat_cap.mah);
1146 di->bat_cap.permille =
1147 ab8500_fg_convert_mah_to_permille(di, di->bat_cap.mah);
1148 }
1149
1150 return di->bat_cap.mah;
1151 }
1152
1153 /**
1154 * ab8500_fg_capacity_level() - Get the battery capacity level
1155 * @di: pointer to the ab8500_fg structure
1156 *
1157 * Get the battery capacity level based on the capacity in percent
1158 */
1159 static int ab8500_fg_capacity_level(struct ab8500_fg *di)
1160 {
1161 int ret, percent;
1162
1163 percent = DIV_ROUND_CLOSEST(di->bat_cap.permille, 10);
1164
1165 if (percent <= di->bm->cap_levels->critical ||
1166 di->flags.low_bat)
1167 ret = POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL;
1168 else if (percent <= di->bm->cap_levels->low)
1169 ret = POWER_SUPPLY_CAPACITY_LEVEL_LOW;
1170 else if (percent <= di->bm->cap_levels->normal)
1171 ret = POWER_SUPPLY_CAPACITY_LEVEL_NORMAL;
1172 else if (percent <= di->bm->cap_levels->high)
1173 ret = POWER_SUPPLY_CAPACITY_LEVEL_HIGH;
1174 else
1175 ret = POWER_SUPPLY_CAPACITY_LEVEL_FULL;
1176
1177 return ret;
1178 }
1179
1180 /**
1181 * ab8500_fg_calculate_scaled_capacity() - Capacity scaling
1182 * @di: pointer to the ab8500_fg structure
1183 *
1184 * Calculates the capacity to be shown to upper layers. Scales the capacity
1185 * to have 100% as a reference from the actual capacity upon removal of charger
1186 * when charging is in maintenance mode.
1187 */
1188 static int ab8500_fg_calculate_scaled_capacity(struct ab8500_fg *di)
1189 {
1190 struct ab8500_fg_cap_scaling *cs = &di->bat_cap.cap_scale;
1191 int capacity = di->bat_cap.prev_percent;
1192
1193 if (!cs->enable)
1194 return capacity;
1195
1196 /*
1197 * As long as we are in fully charge mode scale the capacity
1198 * to show 100%.
1199 */
1200 if (di->flags.fully_charged) {
1201 cs->cap_to_scale[0] = 100;
1202 cs->cap_to_scale[1] =
1203 max(capacity, di->bm->fg_params->maint_thres);
1204 dev_dbg(di->dev, "Scale cap with %d/%d\n",
1205 cs->cap_to_scale[0], cs->cap_to_scale[1]);
1206 }
1207
1208 /* Calculates the scaled capacity. */
1209 if ((cs->cap_to_scale[0] != cs->cap_to_scale[1])
1210 && (cs->cap_to_scale[1] > 0))
1211 capacity = min(100,
1212 DIV_ROUND_CLOSEST(di->bat_cap.prev_percent *
1213 cs->cap_to_scale[0],
1214 cs->cap_to_scale[1]));
1215
1216 if (di->flags.charging) {
1217 if (capacity < cs->disable_cap_level) {
1218 cs->disable_cap_level = capacity;
1219 dev_dbg(di->dev, "Cap to stop scale lowered %d%%\n",
1220 cs->disable_cap_level);
1221 } else if (!di->flags.fully_charged) {
1222 if (di->bat_cap.prev_percent >=
1223 cs->disable_cap_level) {
1224 dev_dbg(di->dev, "Disabling scaled capacity\n");
1225 cs->enable = false;
1226 capacity = di->bat_cap.prev_percent;
1227 } else {
1228 dev_dbg(di->dev,
1229 "Waiting in cap to level %d%%\n",
1230 cs->disable_cap_level);
1231 capacity = cs->disable_cap_level;
1232 }
1233 }
1234 }
1235
1236 return capacity;
1237 }
1238
1239 /**
1240 * ab8500_fg_update_cap_scalers() - Capacity scaling
1241 * @di: pointer to the ab8500_fg structure
1242 *
1243 * To be called when state change from charge<->discharge to update
1244 * the capacity scalers.
1245 */
1246 static void ab8500_fg_update_cap_scalers(struct ab8500_fg *di)
1247 {
1248 struct ab8500_fg_cap_scaling *cs = &di->bat_cap.cap_scale;
1249
1250 if (!cs->enable)
1251 return;
1252 if (di->flags.charging) {
1253 di->bat_cap.cap_scale.disable_cap_level =
1254 di->bat_cap.cap_scale.scaled_cap;
1255 dev_dbg(di->dev, "Cap to stop scale at charge %d%%\n",
1256 di->bat_cap.cap_scale.disable_cap_level);
1257 } else {
1258 if (cs->scaled_cap != 100) {
1259 cs->cap_to_scale[0] = cs->scaled_cap;
1260 cs->cap_to_scale[1] = di->bat_cap.prev_percent;
1261 } else {
1262 cs->cap_to_scale[0] = 100;
1263 cs->cap_to_scale[1] =
1264 max(di->bat_cap.prev_percent,
1265 di->bm->fg_params->maint_thres);
1266 }
1267
1268 dev_dbg(di->dev, "Cap to scale at discharge %d/%d\n",
1269 cs->cap_to_scale[0], cs->cap_to_scale[1]);
1270 }
1271 }
1272
1273 /**
1274 * ab8500_fg_check_capacity_limits() - Check if capacity has changed
1275 * @di: pointer to the ab8500_fg structure
1276 * @init: capacity is allowed to go up in init mode
1277 *
1278 * Check if capacity or capacity limit has changed and notify the system
1279 * about it using the power_supply framework
1280 */
1281 static void ab8500_fg_check_capacity_limits(struct ab8500_fg *di, bool init)
1282 {
1283 bool changed = false;
1284 int percent = DIV_ROUND_CLOSEST(di->bat_cap.permille, 10);
1285
1286 di->bat_cap.level = ab8500_fg_capacity_level(di);
1287
1288 if (di->bat_cap.level != di->bat_cap.prev_level) {
1289 /*
1290 * We do not allow reported capacity level to go up
1291 * unless we're charging or if we're in init
1292 */
1293 if (!(!di->flags.charging && di->bat_cap.level >
1294 di->bat_cap.prev_level) || init) {
1295 dev_dbg(di->dev, "level changed from %d to %d\n",
1296 di->bat_cap.prev_level,
1297 di->bat_cap.level);
1298 di->bat_cap.prev_level = di->bat_cap.level;
1299 changed = true;
1300 } else {
1301 dev_dbg(di->dev, "level not allowed to go up "
1302 "since no charger is connected: %d to %d\n",
1303 di->bat_cap.prev_level,
1304 di->bat_cap.level);
1305 }
1306 }
1307
1308 /*
1309 * If we have received the LOW_BAT IRQ, set capacity to 0 to initiate
1310 * shutdown
1311 */
1312 if (di->flags.low_bat) {
1313 dev_dbg(di->dev, "Battery low, set capacity to 0\n");
1314 di->bat_cap.prev_percent = 0;
1315 di->bat_cap.permille = 0;
1316 percent = 0;
1317 di->bat_cap.prev_mah = 0;
1318 di->bat_cap.mah = 0;
1319 changed = true;
1320 } else if (di->flags.fully_charged) {
1321 /*
1322 * We report 100% if algorithm reported fully charged
1323 * and show 100% during maintenance charging (scaling).
1324 */
1325 if (di->flags.force_full) {
1326 di->bat_cap.prev_percent = percent;
1327 di->bat_cap.prev_mah = di->bat_cap.mah;
1328
1329 changed = true;
1330
1331 if (!di->bat_cap.cap_scale.enable &&
1332 di->bm->capacity_scaling) {
1333 di->bat_cap.cap_scale.enable = true;
1334 di->bat_cap.cap_scale.cap_to_scale[0] = 100;
1335 di->bat_cap.cap_scale.cap_to_scale[1] =
1336 di->bat_cap.prev_percent;
1337 di->bat_cap.cap_scale.disable_cap_level = 100;
1338 }
1339 } else if (di->bat_cap.prev_percent != percent) {
1340 dev_dbg(di->dev,
1341 "battery reported full "
1342 "but capacity dropping: %d\n",
1343 percent);
1344 di->bat_cap.prev_percent = percent;
1345 di->bat_cap.prev_mah = di->bat_cap.mah;
1346
1347 changed = true;
1348 }
1349 } else if (di->bat_cap.prev_percent != percent) {
1350 if (percent == 0) {
1351 /*
1352 * We will not report 0% unless we've got
1353 * the LOW_BAT IRQ, no matter what the FG
1354 * algorithm says.
1355 */
1356 di->bat_cap.prev_percent = 1;
1357 di->bat_cap.permille = 1;
1358 di->bat_cap.prev_mah = 1;
1359 di->bat_cap.mah = 1;
1360 percent = 1;
1361
1362 changed = true;
1363 } else if (!(!di->flags.charging &&
1364 percent > di->bat_cap.prev_percent) || init) {
1365 /*
1366 * We do not allow reported capacity to go up
1367 * unless we're charging or if we're in init
1368 */
1369 dev_dbg(di->dev,
1370 "capacity changed from %d to %d (%d)\n",
1371 di->bat_cap.prev_percent,
1372 percent,
1373 di->bat_cap.permille);
1374 di->bat_cap.prev_percent = percent;
1375 di->bat_cap.prev_mah = di->bat_cap.mah;
1376
1377 changed = true;
1378 } else {
1379 dev_dbg(di->dev, "capacity not allowed to go up since "
1380 "no charger is connected: %d to %d (%d)\n",
1381 di->bat_cap.prev_percent,
1382 percent,
1383 di->bat_cap.permille);
1384 }
1385 }
1386
1387 if (changed) {
1388 if (di->bm->capacity_scaling) {
1389 di->bat_cap.cap_scale.scaled_cap =
1390 ab8500_fg_calculate_scaled_capacity(di);
1391
1392 dev_info(di->dev, "capacity=%d (%d)\n",
1393 di->bat_cap.prev_percent,
1394 di->bat_cap.cap_scale.scaled_cap);
1395 }
1396 power_supply_changed(&di->fg_psy);
1397 if (di->flags.fully_charged && di->flags.force_full) {
1398 dev_dbg(di->dev, "Battery full, notifying.\n");
1399 di->flags.force_full = false;
1400 sysfs_notify(&di->fg_kobject, NULL, "charge_full");
1401 }
1402 sysfs_notify(&di->fg_kobject, NULL, "charge_now");
1403 }
1404 }
1405
1406 static void ab8500_fg_charge_state_to(struct ab8500_fg *di,
1407 enum ab8500_fg_charge_state new_state)
1408 {
1409 dev_dbg(di->dev, "Charge state from %d [%s] to %d [%s]\n",
1410 di->charge_state,
1411 charge_state[di->charge_state],
1412 new_state,
1413 charge_state[new_state]);
1414
1415 di->charge_state = new_state;
1416 }
1417
1418 static void ab8500_fg_discharge_state_to(struct ab8500_fg *di,
1419 enum ab8500_fg_discharge_state new_state)
1420 {
1421 dev_dbg(di->dev, "Disharge state from %d [%s] to %d [%s]\n",
1422 di->discharge_state,
1423 discharge_state[di->discharge_state],
1424 new_state,
1425 discharge_state[new_state]);
1426
1427 di->discharge_state = new_state;
1428 }
1429
1430 /**
1431 * ab8500_fg_algorithm_charging() - FG algorithm for when charging
1432 * @di: pointer to the ab8500_fg structure
1433 *
1434 * Battery capacity calculation state machine for when we're charging
1435 */
1436 static void ab8500_fg_algorithm_charging(struct ab8500_fg *di)
1437 {
1438 /*
1439 * If we change to discharge mode
1440 * we should start with recovery
1441 */
1442 if (di->discharge_state != AB8500_FG_DISCHARGE_INIT_RECOVERY)
1443 ab8500_fg_discharge_state_to(di,
1444 AB8500_FG_DISCHARGE_INIT_RECOVERY);
1445
1446 switch (di->charge_state) {
1447 case AB8500_FG_CHARGE_INIT:
1448 di->fg_samples = SEC_TO_SAMPLE(
1449 di->bm->fg_params->accu_charging);
1450
1451 ab8500_fg_coulomb_counter(di, true);
1452 ab8500_fg_charge_state_to(di, AB8500_FG_CHARGE_READOUT);
1453
1454 break;
1455
1456 case AB8500_FG_CHARGE_READOUT:
1457 /*
1458 * Read the FG and calculate the new capacity
1459 */
1460 mutex_lock(&di->cc_lock);
1461 if (!di->flags.conv_done && !di->flags.force_full) {
1462 /* Wasn't the CC IRQ that got us here */
1463 mutex_unlock(&di->cc_lock);
1464 dev_dbg(di->dev, "%s CC conv not done\n",
1465 __func__);
1466
1467 break;
1468 }
1469 di->flags.conv_done = false;
1470 mutex_unlock(&di->cc_lock);
1471
1472 ab8500_fg_calc_cap_charging(di);
1473
1474 break;
1475
1476 default:
1477 break;
1478 }
1479
1480 /* Check capacity limits */
1481 ab8500_fg_check_capacity_limits(di, false);
1482 }
1483
1484 static void force_capacity(struct ab8500_fg *di)
1485 {
1486 int cap;
1487
1488 ab8500_fg_clear_cap_samples(di);
1489 cap = di->bat_cap.user_mah;
1490 if (cap > di->bat_cap.max_mah_design) {
1491 dev_dbg(di->dev, "Remaining cap %d can't be bigger than total"
1492 " %d\n", cap, di->bat_cap.max_mah_design);
1493 cap = di->bat_cap.max_mah_design;
1494 }
1495 ab8500_fg_fill_cap_sample(di, di->bat_cap.user_mah);
1496 di->bat_cap.permille = ab8500_fg_convert_mah_to_permille(di, cap);
1497 di->bat_cap.mah = cap;
1498 ab8500_fg_check_capacity_limits(di, true);
1499 }
1500
1501 static bool check_sysfs_capacity(struct ab8500_fg *di)
1502 {
1503 int cap, lower, upper;
1504 int cap_permille;
1505
1506 cap = di->bat_cap.user_mah;
1507
1508 cap_permille = ab8500_fg_convert_mah_to_permille(di,
1509 di->bat_cap.user_mah);
1510
1511 lower = di->bat_cap.permille - di->bm->fg_params->user_cap_limit * 10;
1512 upper = di->bat_cap.permille + di->bm->fg_params->user_cap_limit * 10;
1513
1514 if (lower < 0)
1515 lower = 0;
1516 /* 1000 is permille, -> 100 percent */
1517 if (upper > 1000)
1518 upper = 1000;
1519
1520 dev_dbg(di->dev, "Capacity limits:"
1521 " (Lower: %d User: %d Upper: %d) [user: %d, was: %d]\n",
1522 lower, cap_permille, upper, cap, di->bat_cap.mah);
1523
1524 /* If within limits, use the saved capacity and exit estimation...*/
1525 if (cap_permille > lower && cap_permille < upper) {
1526 dev_dbg(di->dev, "OK! Using users cap %d uAh now\n", cap);
1527 force_capacity(di);
1528 return true;
1529 }
1530 dev_dbg(di->dev, "Capacity from user out of limits, ignoring");
1531 return false;
1532 }
1533
1534 /**
1535 * ab8500_fg_algorithm_discharging() - FG algorithm for when discharging
1536 * @di: pointer to the ab8500_fg structure
1537 *
1538 * Battery capacity calculation state machine for when we're discharging
1539 */
1540 static void ab8500_fg_algorithm_discharging(struct ab8500_fg *di)
1541 {
1542 int sleep_time;
1543
1544 /* If we change to charge mode we should start with init */
1545 if (di->charge_state != AB8500_FG_CHARGE_INIT)
1546 ab8500_fg_charge_state_to(di, AB8500_FG_CHARGE_INIT);
1547
1548 switch (di->discharge_state) {
1549 case AB8500_FG_DISCHARGE_INIT:
1550 /* We use the FG IRQ to work on */
1551 di->init_cnt = 0;
1552 di->fg_samples = SEC_TO_SAMPLE(di->bm->fg_params->init_timer);
1553 ab8500_fg_coulomb_counter(di, true);
1554 ab8500_fg_discharge_state_to(di,
1555 AB8500_FG_DISCHARGE_INITMEASURING);
1556
1557 /* Intentional fallthrough */
1558 case AB8500_FG_DISCHARGE_INITMEASURING:
1559 /*
1560 * Discard a number of samples during startup.
1561 * After that, use compensated voltage for a few
1562 * samples to get an initial capacity.
1563 * Then go to READOUT
1564 */
1565 sleep_time = di->bm->fg_params->init_timer;
1566
1567 /* Discard the first [x] seconds */
1568 if (di->init_cnt > di->bm->fg_params->init_discard_time) {
1569 ab8500_fg_calc_cap_discharge_voltage(di, true);
1570
1571 ab8500_fg_check_capacity_limits(di, true);
1572 }
1573
1574 di->init_cnt += sleep_time;
1575 if (di->init_cnt > di->bm->fg_params->init_total_time)
1576 ab8500_fg_discharge_state_to(di,
1577 AB8500_FG_DISCHARGE_READOUT_INIT);
1578
1579 break;
1580
1581 case AB8500_FG_DISCHARGE_INIT_RECOVERY:
1582 di->recovery_cnt = 0;
1583 di->recovery_needed = true;
1584 ab8500_fg_discharge_state_to(di,
1585 AB8500_FG_DISCHARGE_RECOVERY);
1586
1587 /* Intentional fallthrough */
1588
1589 case AB8500_FG_DISCHARGE_RECOVERY:
1590 sleep_time = di->bm->fg_params->recovery_sleep_timer;
1591
1592 /*
1593 * We should check the power consumption
1594 * If low, go to READOUT (after x min) or
1595 * RECOVERY_SLEEP if time left.
1596 * If high, go to READOUT
1597 */
1598 di->inst_curr = ab8500_fg_inst_curr_blocking(di);
1599
1600 if (ab8500_fg_is_low_curr(di, di->inst_curr)) {
1601 if (di->recovery_cnt >
1602 di->bm->fg_params->recovery_total_time) {
1603 di->fg_samples = SEC_TO_SAMPLE(
1604 di->bm->fg_params->accu_high_curr);
1605 ab8500_fg_coulomb_counter(di, true);
1606 ab8500_fg_discharge_state_to(di,
1607 AB8500_FG_DISCHARGE_READOUT);
1608 di->recovery_needed = false;
1609 } else {
1610 queue_delayed_work(di->fg_wq,
1611 &di->fg_periodic_work,
1612 sleep_time * HZ);
1613 }
1614 di->recovery_cnt += sleep_time;
1615 } else {
1616 di->fg_samples = SEC_TO_SAMPLE(
1617 di->bm->fg_params->accu_high_curr);
1618 ab8500_fg_coulomb_counter(di, true);
1619 ab8500_fg_discharge_state_to(di,
1620 AB8500_FG_DISCHARGE_READOUT);
1621 }
1622 break;
1623
1624 case AB8500_FG_DISCHARGE_READOUT_INIT:
1625 di->fg_samples = SEC_TO_SAMPLE(
1626 di->bm->fg_params->accu_high_curr);
1627 ab8500_fg_coulomb_counter(di, true);
1628 ab8500_fg_discharge_state_to(di,
1629 AB8500_FG_DISCHARGE_READOUT);
1630 break;
1631
1632 case AB8500_FG_DISCHARGE_READOUT:
1633 di->inst_curr = ab8500_fg_inst_curr_blocking(di);
1634
1635 if (ab8500_fg_is_low_curr(di, di->inst_curr)) {
1636 /* Detect mode change */
1637 if (di->high_curr_mode) {
1638 di->high_curr_mode = false;
1639 di->high_curr_cnt = 0;
1640 }
1641
1642 if (di->recovery_needed) {
1643 ab8500_fg_discharge_state_to(di,
1644 AB8500_FG_DISCHARGE_INIT_RECOVERY);
1645
1646 queue_delayed_work(di->fg_wq,
1647 &di->fg_periodic_work, 0);
1648
1649 break;
1650 }
1651
1652 ab8500_fg_calc_cap_discharge_voltage(di, true);
1653 } else {
1654 mutex_lock(&di->cc_lock);
1655 if (!di->flags.conv_done) {
1656 /* Wasn't the CC IRQ that got us here */
1657 mutex_unlock(&di->cc_lock);
1658 dev_dbg(di->dev, "%s CC conv not done\n",
1659 __func__);
1660
1661 break;
1662 }
1663 di->flags.conv_done = false;
1664 mutex_unlock(&di->cc_lock);
1665
1666 /* Detect mode change */
1667 if (!di->high_curr_mode) {
1668 di->high_curr_mode = true;
1669 di->high_curr_cnt = 0;
1670 }
1671
1672 di->high_curr_cnt +=
1673 di->bm->fg_params->accu_high_curr;
1674 if (di->high_curr_cnt >
1675 di->bm->fg_params->high_curr_time)
1676 di->recovery_needed = true;
1677
1678 ab8500_fg_calc_cap_discharge_fg(di);
1679 }
1680
1681 ab8500_fg_check_capacity_limits(di, false);
1682
1683 break;
1684
1685 case AB8500_FG_DISCHARGE_WAKEUP:
1686 ab8500_fg_coulomb_counter(di, true);
1687 ab8500_fg_calc_cap_discharge_voltage(di, true);
1688
1689 di->fg_samples = SEC_TO_SAMPLE(
1690 di->bm->fg_params->accu_high_curr);
1691 ab8500_fg_coulomb_counter(di, true);
1692 ab8500_fg_discharge_state_to(di,
1693 AB8500_FG_DISCHARGE_READOUT);
1694
1695 ab8500_fg_check_capacity_limits(di, false);
1696
1697 break;
1698
1699 default:
1700 break;
1701 }
1702 }
1703
1704 /**
1705 * ab8500_fg_algorithm_calibrate() - Internal columb counter offset calibration
1706 * @di: pointer to the ab8500_fg structure
1707 *
1708 */
1709 static void ab8500_fg_algorithm_calibrate(struct ab8500_fg *di)
1710 {
1711 int ret;
1712
1713 switch (di->calib_state) {
1714 case AB8500_FG_CALIB_INIT:
1715 dev_dbg(di->dev, "Calibration ongoing...\n");
1716
1717 ret = abx500_mask_and_set_register_interruptible(di->dev,
1718 AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG,
1719 CC_INT_CAL_N_AVG_MASK, CC_INT_CAL_SAMPLES_8);
1720 if (ret < 0)
1721 goto err;
1722
1723 ret = abx500_mask_and_set_register_interruptible(di->dev,
1724 AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG,
1725 CC_INTAVGOFFSET_ENA, CC_INTAVGOFFSET_ENA);
1726 if (ret < 0)
1727 goto err;
1728 di->calib_state = AB8500_FG_CALIB_WAIT;
1729 break;
1730 case AB8500_FG_CALIB_END:
1731 ret = abx500_mask_and_set_register_interruptible(di->dev,
1732 AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG,
1733 CC_MUXOFFSET, CC_MUXOFFSET);
1734 if (ret < 0)
1735 goto err;
1736 di->flags.calibrate = false;
1737 dev_dbg(di->dev, "Calibration done...\n");
1738 queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
1739 break;
1740 case AB8500_FG_CALIB_WAIT:
1741 dev_dbg(di->dev, "Calibration WFI\n");
1742 default:
1743 break;
1744 }
1745 return;
1746 err:
1747 /* Something went wrong, don't calibrate then */
1748 dev_err(di->dev, "failed to calibrate the CC\n");
1749 di->flags.calibrate = false;
1750 di->calib_state = AB8500_FG_CALIB_INIT;
1751 queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
1752 }
1753
1754 /**
1755 * ab8500_fg_algorithm() - Entry point for the FG algorithm
1756 * @di: pointer to the ab8500_fg structure
1757 *
1758 * Entry point for the battery capacity calculation state machine
1759 */
1760 static void ab8500_fg_algorithm(struct ab8500_fg *di)
1761 {
1762 if (di->flags.calibrate)
1763 ab8500_fg_algorithm_calibrate(di);
1764 else {
1765 if (di->flags.charging)
1766 ab8500_fg_algorithm_charging(di);
1767 else
1768 ab8500_fg_algorithm_discharging(di);
1769 }
1770
1771 dev_dbg(di->dev, "[FG_DATA] %d %d %d %d %d %d %d %d %d "
1772 "%d %d %d %d %d %d %d\n",
1773 di->bat_cap.max_mah_design,
1774 di->bat_cap.mah,
1775 di->bat_cap.permille,
1776 di->bat_cap.level,
1777 di->bat_cap.prev_mah,
1778 di->bat_cap.prev_percent,
1779 di->bat_cap.prev_level,
1780 di->vbat,
1781 di->inst_curr,
1782 di->avg_curr,
1783 di->accu_charge,
1784 di->flags.charging,
1785 di->charge_state,
1786 di->discharge_state,
1787 di->high_curr_mode,
1788 di->recovery_needed);
1789 }
1790
1791 /**
1792 * ab8500_fg_periodic_work() - Run the FG state machine periodically
1793 * @work: pointer to the work_struct structure
1794 *
1795 * Work queue function for periodic work
1796 */
1797 static void ab8500_fg_periodic_work(struct work_struct *work)
1798 {
1799 struct ab8500_fg *di = container_of(work, struct ab8500_fg,
1800 fg_periodic_work.work);
1801
1802 if (di->init_capacity) {
1803 /* Get an initial capacity calculation */
1804 ab8500_fg_calc_cap_discharge_voltage(di, true);
1805 ab8500_fg_check_capacity_limits(di, true);
1806 di->init_capacity = false;
1807
1808 queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
1809 } else if (di->flags.user_cap) {
1810 if (check_sysfs_capacity(di)) {
1811 ab8500_fg_check_capacity_limits(di, true);
1812 if (di->flags.charging)
1813 ab8500_fg_charge_state_to(di,
1814 AB8500_FG_CHARGE_INIT);
1815 else
1816 ab8500_fg_discharge_state_to(di,
1817 AB8500_FG_DISCHARGE_READOUT_INIT);
1818 }
1819 di->flags.user_cap = false;
1820 queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
1821 } else
1822 ab8500_fg_algorithm(di);
1823
1824 }
1825
1826 /**
1827 * ab8500_fg_check_hw_failure_work() - Check OVV_BAT condition
1828 * @work: pointer to the work_struct structure
1829 *
1830 * Work queue function for checking the OVV_BAT condition
1831 */
1832 static void ab8500_fg_check_hw_failure_work(struct work_struct *work)
1833 {
1834 int ret;
1835 u8 reg_value;
1836
1837 struct ab8500_fg *di = container_of(work, struct ab8500_fg,
1838 fg_check_hw_failure_work.work);
1839
1840 /*
1841 * If we have had a battery over-voltage situation,
1842 * check ovv-bit to see if it should be reset.
1843 */
1844 ret = abx500_get_register_interruptible(di->dev,
1845 AB8500_CHARGER, AB8500_CH_STAT_REG,
1846 &reg_value);
1847 if (ret < 0) {
1848 dev_err(di->dev, "%s ab8500 read failed\n", __func__);
1849 return;
1850 }
1851 if ((reg_value & BATT_OVV) == BATT_OVV) {
1852 if (!di->flags.bat_ovv) {
1853 dev_dbg(di->dev, "Battery OVV\n");
1854 di->flags.bat_ovv = true;
1855 power_supply_changed(&di->fg_psy);
1856 }
1857 /* Not yet recovered from ovv, reschedule this test */
1858 queue_delayed_work(di->fg_wq, &di->fg_check_hw_failure_work,
1859 HZ);
1860 } else {
1861 dev_dbg(di->dev, "Battery recovered from OVV\n");
1862 di->flags.bat_ovv = false;
1863 power_supply_changed(&di->fg_psy);
1864 }
1865 }
1866
1867 /**
1868 * ab8500_fg_low_bat_work() - Check LOW_BAT condition
1869 * @work: pointer to the work_struct structure
1870 *
1871 * Work queue function for checking the LOW_BAT condition
1872 */
1873 static void ab8500_fg_low_bat_work(struct work_struct *work)
1874 {
1875 int vbat;
1876
1877 struct ab8500_fg *di = container_of(work, struct ab8500_fg,
1878 fg_low_bat_work.work);
1879
1880 vbat = ab8500_fg_bat_voltage(di);
1881
1882 /* Check if LOW_BAT still fulfilled */
1883 if (vbat < di->bm->fg_params->lowbat_threshold) {
1884 /* Is it time to shut down? */
1885 if (di->low_bat_cnt < 1) {
1886 di->flags.low_bat = true;
1887 dev_warn(di->dev, "Shut down pending...\n");
1888 } else {
1889 /*
1890 * Else we need to re-schedule this check to be able to detect
1891 * if the voltage increases again during charging or
1892 * due to decreasing load.
1893 */
1894 di->low_bat_cnt--;
1895 dev_warn(di->dev, "Battery voltage still LOW\n");
1896 queue_delayed_work(di->fg_wq, &di->fg_low_bat_work,
1897 round_jiffies(LOW_BAT_CHECK_INTERVAL));
1898 }
1899 } else {
1900 di->flags.low_bat_delay = false;
1901 di->low_bat_cnt = 10;
1902 dev_warn(di->dev, "Battery voltage OK again\n");
1903 }
1904
1905 /* This is needed to dispatch LOW_BAT */
1906 ab8500_fg_check_capacity_limits(di, false);
1907 }
1908
1909 /**
1910 * ab8500_fg_battok_calc - calculate the bit pattern corresponding
1911 * to the target voltage.
1912 * @di: pointer to the ab8500_fg structure
1913 * @target target voltage
1914 *
1915 * Returns bit pattern closest to the target voltage
1916 * valid return values are 0-14. (0-BATT_OK_MAX_NR_INCREMENTS)
1917 */
1918
1919 static int ab8500_fg_battok_calc(struct ab8500_fg *di, int target)
1920 {
1921 if (target > BATT_OK_MIN +
1922 (BATT_OK_INCREMENT * BATT_OK_MAX_NR_INCREMENTS))
1923 return BATT_OK_MAX_NR_INCREMENTS;
1924 if (target < BATT_OK_MIN)
1925 return 0;
1926 return (target - BATT_OK_MIN) / BATT_OK_INCREMENT;
1927 }
1928
1929 /**
1930 * ab8500_fg_battok_init_hw_register - init battok levels
1931 * @di: pointer to the ab8500_fg structure
1932 *
1933 */
1934
1935 static int ab8500_fg_battok_init_hw_register(struct ab8500_fg *di)
1936 {
1937 int selected;
1938 int sel0;
1939 int sel1;
1940 int cbp_sel0;
1941 int cbp_sel1;
1942 int ret;
1943 int new_val;
1944
1945 sel0 = di->bm->fg_params->battok_falling_th_sel0;
1946 sel1 = di->bm->fg_params->battok_raising_th_sel1;
1947
1948 cbp_sel0 = ab8500_fg_battok_calc(di, sel0);
1949 cbp_sel1 = ab8500_fg_battok_calc(di, sel1);
1950
1951 selected = BATT_OK_MIN + cbp_sel0 * BATT_OK_INCREMENT;
1952
1953 if (selected != sel0)
1954 dev_warn(di->dev, "Invalid voltage step:%d, using %d %d\n",
1955 sel0, selected, cbp_sel0);
1956
1957 selected = BATT_OK_MIN + cbp_sel1 * BATT_OK_INCREMENT;
1958
1959 if (selected != sel1)
1960 dev_warn(di->dev, "Invalid voltage step:%d, using %d %d\n",
1961 sel1, selected, cbp_sel1);
1962
1963 new_val = cbp_sel0 | (cbp_sel1 << 4);
1964
1965 dev_dbg(di->dev, "using: %x %d %d\n", new_val, cbp_sel0, cbp_sel1);
1966 ret = abx500_set_register_interruptible(di->dev, AB8500_SYS_CTRL2_BLOCK,
1967 AB8500_BATT_OK_REG, new_val);
1968 return ret;
1969 }
1970
1971 /**
1972 * ab8500_fg_instant_work() - Run the FG state machine instantly
1973 * @work: pointer to the work_struct structure
1974 *
1975 * Work queue function for instant work
1976 */
1977 static void ab8500_fg_instant_work(struct work_struct *work)
1978 {
1979 struct ab8500_fg *di = container_of(work, struct ab8500_fg, fg_work);
1980
1981 ab8500_fg_algorithm(di);
1982 }
1983
1984 /**
1985 * ab8500_fg_cc_data_end_handler() - isr to get battery avg current.
1986 * @irq: interrupt number
1987 * @_di: pointer to the ab8500_fg structure
1988 *
1989 * Returns IRQ status(IRQ_HANDLED)
1990 */
1991 static irqreturn_t ab8500_fg_cc_data_end_handler(int irq, void *_di)
1992 {
1993 struct ab8500_fg *di = _di;
1994 if (!di->nbr_cceoc_irq_cnt) {
1995 di->nbr_cceoc_irq_cnt++;
1996 complete(&di->ab8500_fg_started);
1997 } else {
1998 di->nbr_cceoc_irq_cnt = 0;
1999 complete(&di->ab8500_fg_complete);
2000 }
2001 return IRQ_HANDLED;
2002 }
2003
2004 /**
2005 * ab8500_fg_cc_convend_handler() - isr to get battery avg current.
2006 * @irq: interrupt number
2007 * @_di: pointer to the ab8500_fg structure
2008 *
2009 * Returns IRQ status(IRQ_HANDLED)
2010 */
2011 static irqreturn_t ab8500_fg_cc_int_calib_handler(int irq, void *_di)
2012 {
2013 struct ab8500_fg *di = _di;
2014 di->calib_state = AB8500_FG_CALIB_END;
2015 queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
2016 return IRQ_HANDLED;
2017 }
2018
2019 /**
2020 * ab8500_fg_cc_convend_handler() - isr to get battery avg current.
2021 * @irq: interrupt number
2022 * @_di: pointer to the ab8500_fg structure
2023 *
2024 * Returns IRQ status(IRQ_HANDLED)
2025 */
2026 static irqreturn_t ab8500_fg_cc_convend_handler(int irq, void *_di)
2027 {
2028 struct ab8500_fg *di = _di;
2029
2030 queue_work(di->fg_wq, &di->fg_acc_cur_work);
2031
2032 return IRQ_HANDLED;
2033 }
2034
2035 /**
2036 * ab8500_fg_batt_ovv_handler() - Battery OVV occured
2037 * @irq: interrupt number
2038 * @_di: pointer to the ab8500_fg structure
2039 *
2040 * Returns IRQ status(IRQ_HANDLED)
2041 */
2042 static irqreturn_t ab8500_fg_batt_ovv_handler(int irq, void *_di)
2043 {
2044 struct ab8500_fg *di = _di;
2045
2046 dev_dbg(di->dev, "Battery OVV\n");
2047
2048 /* Schedule a new HW failure check */
2049 queue_delayed_work(di->fg_wq, &di->fg_check_hw_failure_work, 0);
2050
2051 return IRQ_HANDLED;
2052 }
2053
2054 /**
2055 * ab8500_fg_lowbatf_handler() - Battery voltage is below LOW threshold
2056 * @irq: interrupt number
2057 * @_di: pointer to the ab8500_fg structure
2058 *
2059 * Returns IRQ status(IRQ_HANDLED)
2060 */
2061 static irqreturn_t ab8500_fg_lowbatf_handler(int irq, void *_di)
2062 {
2063 struct ab8500_fg *di = _di;
2064
2065 /* Initiate handling in ab8500_fg_low_bat_work() if not already initiated. */
2066 if (!di->flags.low_bat_delay) {
2067 dev_warn(di->dev, "Battery voltage is below LOW threshold\n");
2068 di->flags.low_bat_delay = true;
2069 /*
2070 * Start a timer to check LOW_BAT again after some time
2071 * This is done to avoid shutdown on single voltage dips
2072 */
2073 queue_delayed_work(di->fg_wq, &di->fg_low_bat_work,
2074 round_jiffies(LOW_BAT_CHECK_INTERVAL));
2075 }
2076 return IRQ_HANDLED;
2077 }
2078
2079 /**
2080 * ab8500_fg_get_property() - get the fg properties
2081 * @psy: pointer to the power_supply structure
2082 * @psp: pointer to the power_supply_property structure
2083 * @val: pointer to the power_supply_propval union
2084 *
2085 * This function gets called when an application tries to get the
2086 * fg properties by reading the sysfs files.
2087 * voltage_now: battery voltage
2088 * current_now: battery instant current
2089 * current_avg: battery average current
2090 * charge_full_design: capacity where battery is considered full
2091 * charge_now: battery capacity in nAh
2092 * capacity: capacity in percent
2093 * capacity_level: capacity level
2094 *
2095 * Returns error code in case of failure else 0 on success
2096 */
2097 static int ab8500_fg_get_property(struct power_supply *psy,
2098 enum power_supply_property psp,
2099 union power_supply_propval *val)
2100 {
2101 struct ab8500_fg *di;
2102
2103 di = to_ab8500_fg_device_info(psy);
2104
2105 /*
2106 * If battery is identified as unknown and charging of unknown
2107 * batteries is disabled, we always report 100% capacity and
2108 * capacity level UNKNOWN, since we can't calculate
2109 * remaining capacity
2110 */
2111
2112 switch (psp) {
2113 case POWER_SUPPLY_PROP_VOLTAGE_NOW:
2114 if (di->flags.bat_ovv)
2115 val->intval = BATT_OVV_VALUE * 1000;
2116 else
2117 val->intval = di->vbat * 1000;
2118 break;
2119 case POWER_SUPPLY_PROP_CURRENT_NOW:
2120 val->intval = di->inst_curr * 1000;
2121 break;
2122 case POWER_SUPPLY_PROP_CURRENT_AVG:
2123 val->intval = di->avg_curr * 1000;
2124 break;
2125 case POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN:
2126 val->intval = ab8500_fg_convert_mah_to_uwh(di,
2127 di->bat_cap.max_mah_design);
2128 break;
2129 case POWER_SUPPLY_PROP_ENERGY_FULL:
2130 val->intval = ab8500_fg_convert_mah_to_uwh(di,
2131 di->bat_cap.max_mah);
2132 break;
2133 case POWER_SUPPLY_PROP_ENERGY_NOW:
2134 if (di->flags.batt_unknown && !di->bm->chg_unknown_bat &&
2135 di->flags.batt_id_received)
2136 val->intval = ab8500_fg_convert_mah_to_uwh(di,
2137 di->bat_cap.max_mah);
2138 else
2139 val->intval = ab8500_fg_convert_mah_to_uwh(di,
2140 di->bat_cap.prev_mah);
2141 break;
2142 case POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN:
2143 val->intval = di->bat_cap.max_mah_design;
2144 break;
2145 case POWER_SUPPLY_PROP_CHARGE_FULL:
2146 val->intval = di->bat_cap.max_mah;
2147 break;
2148 case POWER_SUPPLY_PROP_CHARGE_NOW:
2149 if (di->flags.batt_unknown && !di->bm->chg_unknown_bat &&
2150 di->flags.batt_id_received)
2151 val->intval = di->bat_cap.max_mah;
2152 else
2153 val->intval = di->bat_cap.prev_mah;
2154 break;
2155 case POWER_SUPPLY_PROP_CAPACITY:
2156 if (di->bm->capacity_scaling)
2157 val->intval = di->bat_cap.cap_scale.scaled_cap;
2158 else if (di->flags.batt_unknown && !di->bm->chg_unknown_bat &&
2159 di->flags.batt_id_received)
2160 val->intval = 100;
2161 else
2162 val->intval = di->bat_cap.prev_percent;
2163 break;
2164 case POWER_SUPPLY_PROP_CAPACITY_LEVEL:
2165 if (di->flags.batt_unknown && !di->bm->chg_unknown_bat &&
2166 di->flags.batt_id_received)
2167 val->intval = POWER_SUPPLY_CAPACITY_LEVEL_UNKNOWN;
2168 else
2169 val->intval = di->bat_cap.prev_level;
2170 break;
2171 default:
2172 return -EINVAL;
2173 }
2174 return 0;
2175 }
2176
2177 static int ab8500_fg_get_ext_psy_data(struct device *dev, void *data)
2178 {
2179 struct power_supply *psy;
2180 struct power_supply *ext;
2181 struct ab8500_fg *di;
2182 union power_supply_propval ret;
2183 int i, j;
2184 bool psy_found = false;
2185
2186 psy = (struct power_supply *)data;
2187 ext = dev_get_drvdata(dev);
2188 di = to_ab8500_fg_device_info(psy);
2189
2190 /*
2191 * For all psy where the name of your driver
2192 * appears in any supplied_to
2193 */
2194 for (i = 0; i < ext->num_supplicants; i++) {
2195 if (!strcmp(ext->supplied_to[i], psy->name))
2196 psy_found = true;
2197 }
2198
2199 if (!psy_found)
2200 return 0;
2201
2202 /* Go through all properties for the psy */
2203 for (j = 0; j < ext->num_properties; j++) {
2204 enum power_supply_property prop;
2205 prop = ext->properties[j];
2206
2207 if (ext->get_property(ext, prop, &ret))
2208 continue;
2209
2210 switch (prop) {
2211 case POWER_SUPPLY_PROP_STATUS:
2212 switch (ext->type) {
2213 case POWER_SUPPLY_TYPE_BATTERY:
2214 switch (ret.intval) {
2215 case POWER_SUPPLY_STATUS_UNKNOWN:
2216 case POWER_SUPPLY_STATUS_DISCHARGING:
2217 case POWER_SUPPLY_STATUS_NOT_CHARGING:
2218 if (!di->flags.charging)
2219 break;
2220 di->flags.charging = false;
2221 di->flags.fully_charged = false;
2222 if (di->bm->capacity_scaling)
2223 ab8500_fg_update_cap_scalers(di);
2224 queue_work(di->fg_wq, &di->fg_work);
2225 break;
2226 case POWER_SUPPLY_STATUS_FULL:
2227 if (di->flags.fully_charged)
2228 break;
2229 di->flags.fully_charged = true;
2230 di->flags.force_full = true;
2231 /* Save current capacity as maximum */
2232 di->bat_cap.max_mah = di->bat_cap.mah;
2233 queue_work(di->fg_wq, &di->fg_work);
2234 break;
2235 case POWER_SUPPLY_STATUS_CHARGING:
2236 if (di->flags.charging &&
2237 !di->flags.fully_charged)
2238 break;
2239 di->flags.charging = true;
2240 di->flags.fully_charged = false;
2241 if (di->bm->capacity_scaling)
2242 ab8500_fg_update_cap_scalers(di);
2243 queue_work(di->fg_wq, &di->fg_work);
2244 break;
2245 };
2246 default:
2247 break;
2248 };
2249 break;
2250 case POWER_SUPPLY_PROP_TECHNOLOGY:
2251 switch (ext->type) {
2252 case POWER_SUPPLY_TYPE_BATTERY:
2253 if (!di->flags.batt_id_received &&
2254 di->bm->batt_id != BATTERY_UNKNOWN) {
2255 const struct abx500_battery_type *b;
2256
2257 b = &(di->bm->bat_type[di->bm->batt_id]);
2258
2259 di->flags.batt_id_received = true;
2260
2261 di->bat_cap.max_mah_design =
2262 MILLI_TO_MICRO *
2263 b->charge_full_design;
2264
2265 di->bat_cap.max_mah =
2266 di->bat_cap.max_mah_design;
2267
2268 di->vbat_nom = b->nominal_voltage;
2269 }
2270
2271 if (ret.intval)
2272 di->flags.batt_unknown = false;
2273 else
2274 di->flags.batt_unknown = true;
2275 break;
2276 default:
2277 break;
2278 }
2279 break;
2280 case POWER_SUPPLY_PROP_TEMP:
2281 switch (ext->type) {
2282 case POWER_SUPPLY_TYPE_BATTERY:
2283 if (di->flags.batt_id_received)
2284 di->bat_temp = ret.intval;
2285 break;
2286 default:
2287 break;
2288 }
2289 break;
2290 default:
2291 break;
2292 }
2293 }
2294 return 0;
2295 }
2296
2297 /**
2298 * ab8500_fg_init_hw_registers() - Set up FG related registers
2299 * @di: pointer to the ab8500_fg structure
2300 *
2301 * Set up battery OVV, low battery voltage registers
2302 */
2303 static int ab8500_fg_init_hw_registers(struct ab8500_fg *di)
2304 {
2305 int ret;
2306
2307 /* Set VBAT OVV threshold */
2308 ret = abx500_mask_and_set_register_interruptible(di->dev,
2309 AB8500_CHARGER,
2310 AB8500_BATT_OVV,
2311 BATT_OVV_TH_4P75,
2312 BATT_OVV_TH_4P75);
2313 if (ret) {
2314 dev_err(di->dev, "failed to set BATT_OVV\n");
2315 goto out;
2316 }
2317
2318 /* Enable VBAT OVV detection */
2319 ret = abx500_mask_and_set_register_interruptible(di->dev,
2320 AB8500_CHARGER,
2321 AB8500_BATT_OVV,
2322 BATT_OVV_ENA,
2323 BATT_OVV_ENA);
2324 if (ret) {
2325 dev_err(di->dev, "failed to enable BATT_OVV\n");
2326 goto out;
2327 }
2328
2329 /* Low Battery Voltage */
2330 ret = abx500_set_register_interruptible(di->dev,
2331 AB8500_SYS_CTRL2_BLOCK,
2332 AB8500_LOW_BAT_REG,
2333 ab8500_volt_to_regval(
2334 di->bm->fg_params->lowbat_threshold) << 1 |
2335 LOW_BAT_ENABLE);
2336 if (ret) {
2337 dev_err(di->dev, "%s write failed\n", __func__);
2338 goto out;
2339 }
2340
2341 /* Battery OK threshold */
2342 ret = ab8500_fg_battok_init_hw_register(di);
2343 if (ret) {
2344 dev_err(di->dev, "BattOk init write failed.\n");
2345 goto out;
2346 }
2347 out:
2348 return ret;
2349 }
2350
2351 /**
2352 * ab8500_fg_external_power_changed() - callback for power supply changes
2353 * @psy: pointer to the structure power_supply
2354 *
2355 * This function is the entry point of the pointer external_power_changed
2356 * of the structure power_supply.
2357 * This function gets executed when there is a change in any external power
2358 * supply that this driver needs to be notified of.
2359 */
2360 static void ab8500_fg_external_power_changed(struct power_supply *psy)
2361 {
2362 struct ab8500_fg *di = to_ab8500_fg_device_info(psy);
2363
2364 class_for_each_device(power_supply_class, NULL,
2365 &di->fg_psy, ab8500_fg_get_ext_psy_data);
2366 }
2367
2368 /**
2369 * abab8500_fg_reinit_work() - work to reset the FG algorithm
2370 * @work: pointer to the work_struct structure
2371 *
2372 * Used to reset the current battery capacity to be able to
2373 * retrigger a new voltage base capacity calculation. For
2374 * test and verification purpose.
2375 */
2376 static void ab8500_fg_reinit_work(struct work_struct *work)
2377 {
2378 struct ab8500_fg *di = container_of(work, struct ab8500_fg,
2379 fg_reinit_work.work);
2380
2381 if (di->flags.calibrate == false) {
2382 dev_dbg(di->dev, "Resetting FG state machine to init.\n");
2383 ab8500_fg_clear_cap_samples(di);
2384 ab8500_fg_calc_cap_discharge_voltage(di, true);
2385 ab8500_fg_charge_state_to(di, AB8500_FG_CHARGE_INIT);
2386 ab8500_fg_discharge_state_to(di, AB8500_FG_DISCHARGE_INIT);
2387 queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
2388
2389 } else {
2390 dev_err(di->dev, "Residual offset calibration ongoing "
2391 "retrying..\n");
2392 /* Wait one second until next try*/
2393 queue_delayed_work(di->fg_wq, &di->fg_reinit_work,
2394 round_jiffies(1));
2395 }
2396 }
2397
2398 /**
2399 * ab8500_fg_reinit() - forces FG algorithm to reinitialize with current values
2400 *
2401 * This function can be used to force the FG algorithm to recalculate a new
2402 * voltage based battery capacity.
2403 */
2404 void ab8500_fg_reinit(void)
2405 {
2406 struct ab8500_fg *di = ab8500_fg_get();
2407 /* User won't be notified if a null pointer returned. */
2408 if (di != NULL)
2409 queue_delayed_work(di->fg_wq, &di->fg_reinit_work, 0);
2410 }
2411
2412 /* Exposure to the sysfs interface */
2413
2414 struct ab8500_fg_sysfs_entry {
2415 struct attribute attr;
2416 ssize_t (*show)(struct ab8500_fg *, char *);
2417 ssize_t (*store)(struct ab8500_fg *, const char *, size_t);
2418 };
2419
2420 static ssize_t charge_full_show(struct ab8500_fg *di, char *buf)
2421 {
2422 return sprintf(buf, "%d\n", di->bat_cap.max_mah);
2423 }
2424
2425 static ssize_t charge_full_store(struct ab8500_fg *di, const char *buf,
2426 size_t count)
2427 {
2428 unsigned long charge_full;
2429 ssize_t ret = -EINVAL;
2430
2431 ret = strict_strtoul(buf, 10, &charge_full);
2432
2433 dev_dbg(di->dev, "Ret %zd charge_full %lu", ret, charge_full);
2434
2435 if (!ret) {
2436 di->bat_cap.max_mah = (int) charge_full;
2437 ret = count;
2438 }
2439 return ret;
2440 }
2441
2442 static ssize_t charge_now_show(struct ab8500_fg *di, char *buf)
2443 {
2444 return sprintf(buf, "%d\n", di->bat_cap.prev_mah);
2445 }
2446
2447 static ssize_t charge_now_store(struct ab8500_fg *di, const char *buf,
2448 size_t count)
2449 {
2450 unsigned long charge_now;
2451 ssize_t ret;
2452
2453 ret = strict_strtoul(buf, 10, &charge_now);
2454
2455 dev_dbg(di->dev, "Ret %zd charge_now %lu was %d",
2456 ret, charge_now, di->bat_cap.prev_mah);
2457
2458 if (!ret) {
2459 di->bat_cap.user_mah = (int) charge_now;
2460 di->flags.user_cap = true;
2461 ret = count;
2462 queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
2463 }
2464 return ret;
2465 }
2466
2467 static struct ab8500_fg_sysfs_entry charge_full_attr =
2468 __ATTR(charge_full, 0644, charge_full_show, charge_full_store);
2469
2470 static struct ab8500_fg_sysfs_entry charge_now_attr =
2471 __ATTR(charge_now, 0644, charge_now_show, charge_now_store);
2472
2473 static ssize_t
2474 ab8500_fg_show(struct kobject *kobj, struct attribute *attr, char *buf)
2475 {
2476 struct ab8500_fg_sysfs_entry *entry;
2477 struct ab8500_fg *di;
2478
2479 entry = container_of(attr, struct ab8500_fg_sysfs_entry, attr);
2480 di = container_of(kobj, struct ab8500_fg, fg_kobject);
2481
2482 if (!entry->show)
2483 return -EIO;
2484
2485 return entry->show(di, buf);
2486 }
2487 static ssize_t
2488 ab8500_fg_store(struct kobject *kobj, struct attribute *attr, const char *buf,
2489 size_t count)
2490 {
2491 struct ab8500_fg_sysfs_entry *entry;
2492 struct ab8500_fg *di;
2493
2494 entry = container_of(attr, struct ab8500_fg_sysfs_entry, attr);
2495 di = container_of(kobj, struct ab8500_fg, fg_kobject);
2496
2497 if (!entry->store)
2498 return -EIO;
2499
2500 return entry->store(di, buf, count);
2501 }
2502
2503 static const struct sysfs_ops ab8500_fg_sysfs_ops = {
2504 .show = ab8500_fg_show,
2505 .store = ab8500_fg_store,
2506 };
2507
2508 static struct attribute *ab8500_fg_attrs[] = {
2509 &charge_full_attr.attr,
2510 &charge_now_attr.attr,
2511 NULL,
2512 };
2513
2514 static struct kobj_type ab8500_fg_ktype = {
2515 .sysfs_ops = &ab8500_fg_sysfs_ops,
2516 .default_attrs = ab8500_fg_attrs,
2517 };
2518
2519 /**
2520 * ab8500_chargalg_sysfs_exit() - de-init of sysfs entry
2521 * @di: pointer to the struct ab8500_chargalg
2522 *
2523 * This function removes the entry in sysfs.
2524 */
2525 static void ab8500_fg_sysfs_exit(struct ab8500_fg *di)
2526 {
2527 kobject_del(&di->fg_kobject);
2528 }
2529
2530 /**
2531 * ab8500_chargalg_sysfs_init() - init of sysfs entry
2532 * @di: pointer to the struct ab8500_chargalg
2533 *
2534 * This function adds an entry in sysfs.
2535 * Returns error code in case of failure else 0(on success)
2536 */
2537 static int ab8500_fg_sysfs_init(struct ab8500_fg *di)
2538 {
2539 int ret = 0;
2540
2541 ret = kobject_init_and_add(&di->fg_kobject,
2542 &ab8500_fg_ktype,
2543 NULL, "battery");
2544 if (ret < 0)
2545 dev_err(di->dev, "failed to create sysfs entry\n");
2546
2547 return ret;
2548 }
2549 /* Exposure to the sysfs interface <<END>> */
2550
2551 #if defined(CONFIG_PM)
2552 static int ab8500_fg_resume(struct platform_device *pdev)
2553 {
2554 struct ab8500_fg *di = platform_get_drvdata(pdev);
2555
2556 /*
2557 * Change state if we're not charging. If we're charging we will wake
2558 * up on the FG IRQ
2559 */
2560 if (!di->flags.charging) {
2561 ab8500_fg_discharge_state_to(di, AB8500_FG_DISCHARGE_WAKEUP);
2562 queue_work(di->fg_wq, &di->fg_work);
2563 }
2564
2565 return 0;
2566 }
2567
2568 static int ab8500_fg_suspend(struct platform_device *pdev,
2569 pm_message_t state)
2570 {
2571 struct ab8500_fg *di = platform_get_drvdata(pdev);
2572
2573 flush_delayed_work(&di->fg_periodic_work);
2574 flush_work(&di->fg_work);
2575 flush_work(&di->fg_acc_cur_work);
2576 flush_delayed_work(&di->fg_reinit_work);
2577 flush_delayed_work(&di->fg_low_bat_work);
2578 flush_delayed_work(&di->fg_check_hw_failure_work);
2579
2580 /*
2581 * If the FG is enabled we will disable it before going to suspend
2582 * only if we're not charging
2583 */
2584 if (di->flags.fg_enabled && !di->flags.charging)
2585 ab8500_fg_coulomb_counter(di, false);
2586
2587 return 0;
2588 }
2589 #else
2590 #define ab8500_fg_suspend NULL
2591 #define ab8500_fg_resume NULL
2592 #endif
2593
2594 static int ab8500_fg_remove(struct platform_device *pdev)
2595 {
2596 int ret = 0;
2597 struct ab8500_fg *di = platform_get_drvdata(pdev);
2598
2599 list_del(&di->node);
2600
2601 /* Disable coulomb counter */
2602 ret = ab8500_fg_coulomb_counter(di, false);
2603 if (ret)
2604 dev_err(di->dev, "failed to disable coulomb counter\n");
2605
2606 destroy_workqueue(di->fg_wq);
2607 ab8500_fg_sysfs_exit(di);
2608
2609 flush_scheduled_work();
2610 power_supply_unregister(&di->fg_psy);
2611 platform_set_drvdata(pdev, NULL);
2612 return ret;
2613 }
2614
2615 /* ab8500 fg driver interrupts and their respective isr */
2616 static struct ab8500_fg_interrupts ab8500_fg_irq[] = {
2617 {"NCONV_ACCU", ab8500_fg_cc_convend_handler},
2618 {"BATT_OVV", ab8500_fg_batt_ovv_handler},
2619 {"LOW_BAT_F", ab8500_fg_lowbatf_handler},
2620 {"CC_INT_CALIB", ab8500_fg_cc_int_calib_handler},
2621 {"CCEOC", ab8500_fg_cc_data_end_handler},
2622 };
2623
2624 static char *supply_interface[] = {
2625 "ab8500_chargalg",
2626 "ab8500_usb",
2627 };
2628
2629 static int ab8500_fg_probe(struct platform_device *pdev)
2630 {
2631 struct device_node *np = pdev->dev.of_node;
2632 struct abx500_bm_data *plat = pdev->dev.platform_data;
2633 struct ab8500_fg *di;
2634 int i, irq;
2635 int ret = 0;
2636
2637 di = devm_kzalloc(&pdev->dev, sizeof(*di), GFP_KERNEL);
2638 if (!di) {
2639 dev_err(&pdev->dev, "%s no mem for ab8500_fg\n", __func__);
2640 return -ENOMEM;
2641 }
2642
2643 if (!plat) {
2644 dev_err(&pdev->dev, "no battery management data supplied\n");
2645 return -EINVAL;
2646 }
2647 di->bm = plat;
2648
2649 if (np) {
2650 ret = ab8500_bm_of_probe(&pdev->dev, np, di->bm);
2651 if (ret) {
2652 dev_err(&pdev->dev, "failed to get battery information\n");
2653 return ret;
2654 }
2655 }
2656
2657 mutex_init(&di->cc_lock);
2658
2659 /* get parent data */
2660 di->dev = &pdev->dev;
2661 di->parent = dev_get_drvdata(pdev->dev.parent);
2662 di->gpadc = ab8500_gpadc_get("ab8500-gpadc.0");
2663
2664 di->fg_psy.name = "ab8500_fg";
2665 di->fg_psy.type = POWER_SUPPLY_TYPE_BATTERY;
2666 di->fg_psy.properties = ab8500_fg_props;
2667 di->fg_psy.num_properties = ARRAY_SIZE(ab8500_fg_props);
2668 di->fg_psy.get_property = ab8500_fg_get_property;
2669 di->fg_psy.supplied_to = supply_interface;
2670 di->fg_psy.num_supplicants = ARRAY_SIZE(supply_interface),
2671 di->fg_psy.external_power_changed = ab8500_fg_external_power_changed;
2672
2673 di->bat_cap.max_mah_design = MILLI_TO_MICRO *
2674 di->bm->bat_type[di->bm->batt_id].charge_full_design;
2675
2676 di->bat_cap.max_mah = di->bat_cap.max_mah_design;
2677
2678 di->vbat_nom = di->bm->bat_type[di->bm->batt_id].nominal_voltage;
2679
2680 di->init_capacity = true;
2681
2682 ab8500_fg_charge_state_to(di, AB8500_FG_CHARGE_INIT);
2683 ab8500_fg_discharge_state_to(di, AB8500_FG_DISCHARGE_INIT);
2684
2685 /* Create a work queue for running the FG algorithm */
2686 di->fg_wq = create_singlethread_workqueue("ab8500_fg_wq");
2687 if (di->fg_wq == NULL) {
2688 dev_err(di->dev, "failed to create work queue\n");
2689 return -ENOMEM;
2690 }
2691
2692 /* Init work for running the fg algorithm instantly */
2693 INIT_WORK(&di->fg_work, ab8500_fg_instant_work);
2694
2695 /* Init work for getting the battery accumulated current */
2696 INIT_WORK(&di->fg_acc_cur_work, ab8500_fg_acc_cur_work);
2697
2698 /* Init work for reinitialising the fg algorithm */
2699 INIT_DEFERRABLE_WORK(&di->fg_reinit_work,
2700 ab8500_fg_reinit_work);
2701
2702 /* Work delayed Queue to run the state machine */
2703 INIT_DEFERRABLE_WORK(&di->fg_periodic_work,
2704 ab8500_fg_periodic_work);
2705
2706 /* Work to check low battery condition */
2707 INIT_DEFERRABLE_WORK(&di->fg_low_bat_work,
2708 ab8500_fg_low_bat_work);
2709
2710 /* Init work for HW failure check */
2711 INIT_DEFERRABLE_WORK(&di->fg_check_hw_failure_work,
2712 ab8500_fg_check_hw_failure_work);
2713
2714 /* Reset battery low voltage flag */
2715 di->flags.low_bat = false;
2716
2717 /* Initialize low battery counter */
2718 di->low_bat_cnt = 10;
2719
2720 /* Initialize OVV, and other registers */
2721 ret = ab8500_fg_init_hw_registers(di);
2722 if (ret) {
2723 dev_err(di->dev, "failed to initialize registers\n");
2724 goto free_inst_curr_wq;
2725 }
2726
2727 /* Consider battery unknown until we're informed otherwise */
2728 di->flags.batt_unknown = true;
2729 di->flags.batt_id_received = false;
2730
2731 /* Register FG power supply class */
2732 ret = power_supply_register(di->dev, &di->fg_psy);
2733 if (ret) {
2734 dev_err(di->dev, "failed to register FG psy\n");
2735 goto free_inst_curr_wq;
2736 }
2737
2738 di->fg_samples = SEC_TO_SAMPLE(di->bm->fg_params->init_timer);
2739 ab8500_fg_coulomb_counter(di, true);
2740
2741 /*
2742 * Initialize completion used to notify completion and start
2743 * of inst current
2744 */
2745 init_completion(&di->ab8500_fg_started);
2746 init_completion(&di->ab8500_fg_complete);
2747
2748 /* Register interrupts */
2749 for (i = 0; i < ARRAY_SIZE(ab8500_fg_irq); i++) {
2750 irq = platform_get_irq_byname(pdev, ab8500_fg_irq[i].name);
2751 ret = request_threaded_irq(irq, NULL, ab8500_fg_irq[i].isr,
2752 IRQF_SHARED | IRQF_NO_SUSPEND,
2753 ab8500_fg_irq[i].name, di);
2754
2755 if (ret != 0) {
2756 dev_err(di->dev, "failed to request %s IRQ %d: %d\n"
2757 , ab8500_fg_irq[i].name, irq, ret);
2758 goto free_irq;
2759 }
2760 dev_dbg(di->dev, "Requested %s IRQ %d: %d\n",
2761 ab8500_fg_irq[i].name, irq, ret);
2762 }
2763 di->irq = platform_get_irq_byname(pdev, "CCEOC");
2764 disable_irq(di->irq);
2765 di->nbr_cceoc_irq_cnt = 0;
2766
2767 platform_set_drvdata(pdev, di);
2768
2769 ret = ab8500_fg_sysfs_init(di);
2770 if (ret) {
2771 dev_err(di->dev, "failed to create sysfs entry\n");
2772 goto free_irq;
2773 }
2774
2775 /* Calibrate the fg first time */
2776 di->flags.calibrate = true;
2777 di->calib_state = AB8500_FG_CALIB_INIT;
2778
2779 /* Use room temp as default value until we get an update from driver. */
2780 di->bat_temp = 210;
2781
2782 /* Run the FG algorithm */
2783 queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
2784
2785 list_add_tail(&di->node, &ab8500_fg_list);
2786
2787 return ret;
2788
2789 free_irq:
2790 power_supply_unregister(&di->fg_psy);
2791
2792 /* We also have to free all successfully registered irqs */
2793 for (i = i - 1; i >= 0; i--) {
2794 irq = platform_get_irq_byname(pdev, ab8500_fg_irq[i].name);
2795 free_irq(irq, di);
2796 }
2797 free_inst_curr_wq:
2798 destroy_workqueue(di->fg_wq);
2799 return ret;
2800 }
2801
2802 static const struct of_device_id ab8500_fg_match[] = {
2803 { .compatible = "stericsson,ab8500-fg", },
2804 { },
2805 };
2806
2807 static struct platform_driver ab8500_fg_driver = {
2808 .probe = ab8500_fg_probe,
2809 .remove = ab8500_fg_remove,
2810 .suspend = ab8500_fg_suspend,
2811 .resume = ab8500_fg_resume,
2812 .driver = {
2813 .name = "ab8500-fg",
2814 .owner = THIS_MODULE,
2815 .of_match_table = ab8500_fg_match,
2816 },
2817 };
2818
2819 static int __init ab8500_fg_init(void)
2820 {
2821 return platform_driver_register(&ab8500_fg_driver);
2822 }
2823
2824 static void __exit ab8500_fg_exit(void)
2825 {
2826 platform_driver_unregister(&ab8500_fg_driver);
2827 }
2828
2829 subsys_initcall_sync(ab8500_fg_init);
2830 module_exit(ab8500_fg_exit);
2831
2832 MODULE_LICENSE("GPL v2");
2833 MODULE_AUTHOR("Johan Palsson, Karl Komierowski");
2834 MODULE_ALIAS("platform:ab8500-fg");
2835 MODULE_DESCRIPTION("AB8500 Fuel Gauge driver");