Merge tag 'f2fs-for-v3.10' of git://git.kernel.org/pub/scm/linux/kernel/git/jaegeuk...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / pci / pci.c
1 /*
2 * PCI Bus Services, see include/linux/pci.h for further explanation.
3 *
4 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
5 * David Mosberger-Tang
6 *
7 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
8 */
9
10 #include <linux/kernel.h>
11 #include <linux/delay.h>
12 #include <linux/init.h>
13 #include <linux/pci.h>
14 #include <linux/pm.h>
15 #include <linux/slab.h>
16 #include <linux/module.h>
17 #include <linux/spinlock.h>
18 #include <linux/string.h>
19 #include <linux/log2.h>
20 #include <linux/pci-aspm.h>
21 #include <linux/pm_wakeup.h>
22 #include <linux/interrupt.h>
23 #include <linux/device.h>
24 #include <linux/pm_runtime.h>
25 #include <asm-generic/pci-bridge.h>
26 #include <asm/setup.h>
27 #include "pci.h"
28
29 const char *pci_power_names[] = {
30 "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
31 };
32 EXPORT_SYMBOL_GPL(pci_power_names);
33
34 int isa_dma_bridge_buggy;
35 EXPORT_SYMBOL(isa_dma_bridge_buggy);
36
37 int pci_pci_problems;
38 EXPORT_SYMBOL(pci_pci_problems);
39
40 unsigned int pci_pm_d3_delay;
41
42 static void pci_pme_list_scan(struct work_struct *work);
43
44 static LIST_HEAD(pci_pme_list);
45 static DEFINE_MUTEX(pci_pme_list_mutex);
46 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
47
48 struct pci_pme_device {
49 struct list_head list;
50 struct pci_dev *dev;
51 };
52
53 #define PME_TIMEOUT 1000 /* How long between PME checks */
54
55 static void pci_dev_d3_sleep(struct pci_dev *dev)
56 {
57 unsigned int delay = dev->d3_delay;
58
59 if (delay < pci_pm_d3_delay)
60 delay = pci_pm_d3_delay;
61
62 msleep(delay);
63 }
64
65 #ifdef CONFIG_PCI_DOMAINS
66 int pci_domains_supported = 1;
67 #endif
68
69 #define DEFAULT_CARDBUS_IO_SIZE (256)
70 #define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024)
71 /* pci=cbmemsize=nnM,cbiosize=nn can override this */
72 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
73 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
74
75 #define DEFAULT_HOTPLUG_IO_SIZE (256)
76 #define DEFAULT_HOTPLUG_MEM_SIZE (2*1024*1024)
77 /* pci=hpmemsize=nnM,hpiosize=nn can override this */
78 unsigned long pci_hotplug_io_size = DEFAULT_HOTPLUG_IO_SIZE;
79 unsigned long pci_hotplug_mem_size = DEFAULT_HOTPLUG_MEM_SIZE;
80
81 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_TUNE_OFF;
82
83 /*
84 * The default CLS is used if arch didn't set CLS explicitly and not
85 * all pci devices agree on the same value. Arch can override either
86 * the dfl or actual value as it sees fit. Don't forget this is
87 * measured in 32-bit words, not bytes.
88 */
89 u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2;
90 u8 pci_cache_line_size;
91
92 /*
93 * If we set up a device for bus mastering, we need to check the latency
94 * timer as certain BIOSes forget to set it properly.
95 */
96 unsigned int pcibios_max_latency = 255;
97
98 /* If set, the PCIe ARI capability will not be used. */
99 static bool pcie_ari_disabled;
100
101 /**
102 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
103 * @bus: pointer to PCI bus structure to search
104 *
105 * Given a PCI bus, returns the highest PCI bus number present in the set
106 * including the given PCI bus and its list of child PCI buses.
107 */
108 unsigned char pci_bus_max_busnr(struct pci_bus* bus)
109 {
110 struct list_head *tmp;
111 unsigned char max, n;
112
113 max = bus->busn_res.end;
114 list_for_each(tmp, &bus->children) {
115 n = pci_bus_max_busnr(pci_bus_b(tmp));
116 if(n > max)
117 max = n;
118 }
119 return max;
120 }
121 EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
122
123 #ifdef CONFIG_HAS_IOMEM
124 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
125 {
126 /*
127 * Make sure the BAR is actually a memory resource, not an IO resource
128 */
129 if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) {
130 WARN_ON(1);
131 return NULL;
132 }
133 return ioremap_nocache(pci_resource_start(pdev, bar),
134 pci_resource_len(pdev, bar));
135 }
136 EXPORT_SYMBOL_GPL(pci_ioremap_bar);
137 #endif
138
139 #define PCI_FIND_CAP_TTL 48
140
141 static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
142 u8 pos, int cap, int *ttl)
143 {
144 u8 id;
145
146 while ((*ttl)--) {
147 pci_bus_read_config_byte(bus, devfn, pos, &pos);
148 if (pos < 0x40)
149 break;
150 pos &= ~3;
151 pci_bus_read_config_byte(bus, devfn, pos + PCI_CAP_LIST_ID,
152 &id);
153 if (id == 0xff)
154 break;
155 if (id == cap)
156 return pos;
157 pos += PCI_CAP_LIST_NEXT;
158 }
159 return 0;
160 }
161
162 static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
163 u8 pos, int cap)
164 {
165 int ttl = PCI_FIND_CAP_TTL;
166
167 return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
168 }
169
170 int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
171 {
172 return __pci_find_next_cap(dev->bus, dev->devfn,
173 pos + PCI_CAP_LIST_NEXT, cap);
174 }
175 EXPORT_SYMBOL_GPL(pci_find_next_capability);
176
177 static int __pci_bus_find_cap_start(struct pci_bus *bus,
178 unsigned int devfn, u8 hdr_type)
179 {
180 u16 status;
181
182 pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
183 if (!(status & PCI_STATUS_CAP_LIST))
184 return 0;
185
186 switch (hdr_type) {
187 case PCI_HEADER_TYPE_NORMAL:
188 case PCI_HEADER_TYPE_BRIDGE:
189 return PCI_CAPABILITY_LIST;
190 case PCI_HEADER_TYPE_CARDBUS:
191 return PCI_CB_CAPABILITY_LIST;
192 default:
193 return 0;
194 }
195
196 return 0;
197 }
198
199 /**
200 * pci_find_capability - query for devices' capabilities
201 * @dev: PCI device to query
202 * @cap: capability code
203 *
204 * Tell if a device supports a given PCI capability.
205 * Returns the address of the requested capability structure within the
206 * device's PCI configuration space or 0 in case the device does not
207 * support it. Possible values for @cap:
208 *
209 * %PCI_CAP_ID_PM Power Management
210 * %PCI_CAP_ID_AGP Accelerated Graphics Port
211 * %PCI_CAP_ID_VPD Vital Product Data
212 * %PCI_CAP_ID_SLOTID Slot Identification
213 * %PCI_CAP_ID_MSI Message Signalled Interrupts
214 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap
215 * %PCI_CAP_ID_PCIX PCI-X
216 * %PCI_CAP_ID_EXP PCI Express
217 */
218 int pci_find_capability(struct pci_dev *dev, int cap)
219 {
220 int pos;
221
222 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
223 if (pos)
224 pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
225
226 return pos;
227 }
228
229 /**
230 * pci_bus_find_capability - query for devices' capabilities
231 * @bus: the PCI bus to query
232 * @devfn: PCI device to query
233 * @cap: capability code
234 *
235 * Like pci_find_capability() but works for pci devices that do not have a
236 * pci_dev structure set up yet.
237 *
238 * Returns the address of the requested capability structure within the
239 * device's PCI configuration space or 0 in case the device does not
240 * support it.
241 */
242 int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
243 {
244 int pos;
245 u8 hdr_type;
246
247 pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
248
249 pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
250 if (pos)
251 pos = __pci_find_next_cap(bus, devfn, pos, cap);
252
253 return pos;
254 }
255
256 /**
257 * pci_find_next_ext_capability - Find an extended capability
258 * @dev: PCI device to query
259 * @start: address at which to start looking (0 to start at beginning of list)
260 * @cap: capability code
261 *
262 * Returns the address of the next matching extended capability structure
263 * within the device's PCI configuration space or 0 if the device does
264 * not support it. Some capabilities can occur several times, e.g., the
265 * vendor-specific capability, and this provides a way to find them all.
266 */
267 int pci_find_next_ext_capability(struct pci_dev *dev, int start, int cap)
268 {
269 u32 header;
270 int ttl;
271 int pos = PCI_CFG_SPACE_SIZE;
272
273 /* minimum 8 bytes per capability */
274 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
275
276 if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
277 return 0;
278
279 if (start)
280 pos = start;
281
282 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
283 return 0;
284
285 /*
286 * If we have no capabilities, this is indicated by cap ID,
287 * cap version and next pointer all being 0.
288 */
289 if (header == 0)
290 return 0;
291
292 while (ttl-- > 0) {
293 if (PCI_EXT_CAP_ID(header) == cap && pos != start)
294 return pos;
295
296 pos = PCI_EXT_CAP_NEXT(header);
297 if (pos < PCI_CFG_SPACE_SIZE)
298 break;
299
300 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
301 break;
302 }
303
304 return 0;
305 }
306 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
307
308 /**
309 * pci_find_ext_capability - Find an extended capability
310 * @dev: PCI device to query
311 * @cap: capability code
312 *
313 * Returns the address of the requested extended capability structure
314 * within the device's PCI configuration space or 0 if the device does
315 * not support it. Possible values for @cap:
316 *
317 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting
318 * %PCI_EXT_CAP_ID_VC Virtual Channel
319 * %PCI_EXT_CAP_ID_DSN Device Serial Number
320 * %PCI_EXT_CAP_ID_PWR Power Budgeting
321 */
322 int pci_find_ext_capability(struct pci_dev *dev, int cap)
323 {
324 return pci_find_next_ext_capability(dev, 0, cap);
325 }
326 EXPORT_SYMBOL_GPL(pci_find_ext_capability);
327
328 static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap)
329 {
330 int rc, ttl = PCI_FIND_CAP_TTL;
331 u8 cap, mask;
332
333 if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
334 mask = HT_3BIT_CAP_MASK;
335 else
336 mask = HT_5BIT_CAP_MASK;
337
338 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
339 PCI_CAP_ID_HT, &ttl);
340 while (pos) {
341 rc = pci_read_config_byte(dev, pos + 3, &cap);
342 if (rc != PCIBIOS_SUCCESSFUL)
343 return 0;
344
345 if ((cap & mask) == ht_cap)
346 return pos;
347
348 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
349 pos + PCI_CAP_LIST_NEXT,
350 PCI_CAP_ID_HT, &ttl);
351 }
352
353 return 0;
354 }
355 /**
356 * pci_find_next_ht_capability - query a device's Hypertransport capabilities
357 * @dev: PCI device to query
358 * @pos: Position from which to continue searching
359 * @ht_cap: Hypertransport capability code
360 *
361 * To be used in conjunction with pci_find_ht_capability() to search for
362 * all capabilities matching @ht_cap. @pos should always be a value returned
363 * from pci_find_ht_capability().
364 *
365 * NB. To be 100% safe against broken PCI devices, the caller should take
366 * steps to avoid an infinite loop.
367 */
368 int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap)
369 {
370 return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
371 }
372 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
373
374 /**
375 * pci_find_ht_capability - query a device's Hypertransport capabilities
376 * @dev: PCI device to query
377 * @ht_cap: Hypertransport capability code
378 *
379 * Tell if a device supports a given Hypertransport capability.
380 * Returns an address within the device's PCI configuration space
381 * or 0 in case the device does not support the request capability.
382 * The address points to the PCI capability, of type PCI_CAP_ID_HT,
383 * which has a Hypertransport capability matching @ht_cap.
384 */
385 int pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
386 {
387 int pos;
388
389 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
390 if (pos)
391 pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
392
393 return pos;
394 }
395 EXPORT_SYMBOL_GPL(pci_find_ht_capability);
396
397 /**
398 * pci_find_parent_resource - return resource region of parent bus of given region
399 * @dev: PCI device structure contains resources to be searched
400 * @res: child resource record for which parent is sought
401 *
402 * For given resource region of given device, return the resource
403 * region of parent bus the given region is contained in or where
404 * it should be allocated from.
405 */
406 struct resource *
407 pci_find_parent_resource(const struct pci_dev *dev, struct resource *res)
408 {
409 const struct pci_bus *bus = dev->bus;
410 int i;
411 struct resource *best = NULL, *r;
412
413 pci_bus_for_each_resource(bus, r, i) {
414 if (!r)
415 continue;
416 if (res->start && !(res->start >= r->start && res->end <= r->end))
417 continue; /* Not contained */
418 if ((res->flags ^ r->flags) & (IORESOURCE_IO | IORESOURCE_MEM))
419 continue; /* Wrong type */
420 if (!((res->flags ^ r->flags) & IORESOURCE_PREFETCH))
421 return r; /* Exact match */
422 /* We can't insert a non-prefetch resource inside a prefetchable parent .. */
423 if (r->flags & IORESOURCE_PREFETCH)
424 continue;
425 /* .. but we can put a prefetchable resource inside a non-prefetchable one */
426 if (!best)
427 best = r;
428 }
429 return best;
430 }
431
432 /**
433 * pci_restore_bars - restore a devices BAR values (e.g. after wake-up)
434 * @dev: PCI device to have its BARs restored
435 *
436 * Restore the BAR values for a given device, so as to make it
437 * accessible by its driver.
438 */
439 static void
440 pci_restore_bars(struct pci_dev *dev)
441 {
442 int i;
443
444 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
445 pci_update_resource(dev, i);
446 }
447
448 static struct pci_platform_pm_ops *pci_platform_pm;
449
450 int pci_set_platform_pm(struct pci_platform_pm_ops *ops)
451 {
452 if (!ops->is_manageable || !ops->set_state || !ops->choose_state
453 || !ops->sleep_wake)
454 return -EINVAL;
455 pci_platform_pm = ops;
456 return 0;
457 }
458
459 static inline bool platform_pci_power_manageable(struct pci_dev *dev)
460 {
461 return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false;
462 }
463
464 static inline int platform_pci_set_power_state(struct pci_dev *dev,
465 pci_power_t t)
466 {
467 return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS;
468 }
469
470 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
471 {
472 return pci_platform_pm ?
473 pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR;
474 }
475
476 static inline int platform_pci_sleep_wake(struct pci_dev *dev, bool enable)
477 {
478 return pci_platform_pm ?
479 pci_platform_pm->sleep_wake(dev, enable) : -ENODEV;
480 }
481
482 static inline int platform_pci_run_wake(struct pci_dev *dev, bool enable)
483 {
484 return pci_platform_pm ?
485 pci_platform_pm->run_wake(dev, enable) : -ENODEV;
486 }
487
488 /**
489 * pci_raw_set_power_state - Use PCI PM registers to set the power state of
490 * given PCI device
491 * @dev: PCI device to handle.
492 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
493 *
494 * RETURN VALUE:
495 * -EINVAL if the requested state is invalid.
496 * -EIO if device does not support PCI PM or its PM capabilities register has a
497 * wrong version, or device doesn't support the requested state.
498 * 0 if device already is in the requested state.
499 * 0 if device's power state has been successfully changed.
500 */
501 static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state)
502 {
503 u16 pmcsr;
504 bool need_restore = false;
505
506 /* Check if we're already there */
507 if (dev->current_state == state)
508 return 0;
509
510 if (!dev->pm_cap)
511 return -EIO;
512
513 if (state < PCI_D0 || state > PCI_D3hot)
514 return -EINVAL;
515
516 /* Validate current state:
517 * Can enter D0 from any state, but if we can only go deeper
518 * to sleep if we're already in a low power state
519 */
520 if (state != PCI_D0 && dev->current_state <= PCI_D3cold
521 && dev->current_state > state) {
522 dev_err(&dev->dev, "invalid power transition "
523 "(from state %d to %d)\n", dev->current_state, state);
524 return -EINVAL;
525 }
526
527 /* check if this device supports the desired state */
528 if ((state == PCI_D1 && !dev->d1_support)
529 || (state == PCI_D2 && !dev->d2_support))
530 return -EIO;
531
532 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
533
534 /* If we're (effectively) in D3, force entire word to 0.
535 * This doesn't affect PME_Status, disables PME_En, and
536 * sets PowerState to 0.
537 */
538 switch (dev->current_state) {
539 case PCI_D0:
540 case PCI_D1:
541 case PCI_D2:
542 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
543 pmcsr |= state;
544 break;
545 case PCI_D3hot:
546 case PCI_D3cold:
547 case PCI_UNKNOWN: /* Boot-up */
548 if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot
549 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET))
550 need_restore = true;
551 /* Fall-through: force to D0 */
552 default:
553 pmcsr = 0;
554 break;
555 }
556
557 /* enter specified state */
558 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
559
560 /* Mandatory power management transition delays */
561 /* see PCI PM 1.1 5.6.1 table 18 */
562 if (state == PCI_D3hot || dev->current_state == PCI_D3hot)
563 pci_dev_d3_sleep(dev);
564 else if (state == PCI_D2 || dev->current_state == PCI_D2)
565 udelay(PCI_PM_D2_DELAY);
566
567 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
568 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
569 if (dev->current_state != state && printk_ratelimit())
570 dev_info(&dev->dev, "Refused to change power state, "
571 "currently in D%d\n", dev->current_state);
572
573 /*
574 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
575 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
576 * from D3hot to D0 _may_ perform an internal reset, thereby
577 * going to "D0 Uninitialized" rather than "D0 Initialized".
578 * For example, at least some versions of the 3c905B and the
579 * 3c556B exhibit this behaviour.
580 *
581 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
582 * devices in a D3hot state at boot. Consequently, we need to
583 * restore at least the BARs so that the device will be
584 * accessible to its driver.
585 */
586 if (need_restore)
587 pci_restore_bars(dev);
588
589 if (dev->bus->self)
590 pcie_aspm_pm_state_change(dev->bus->self);
591
592 return 0;
593 }
594
595 /**
596 * pci_update_current_state - Read PCI power state of given device from its
597 * PCI PM registers and cache it
598 * @dev: PCI device to handle.
599 * @state: State to cache in case the device doesn't have the PM capability
600 */
601 void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
602 {
603 if (dev->pm_cap) {
604 u16 pmcsr;
605
606 /*
607 * Configuration space is not accessible for device in
608 * D3cold, so just keep or set D3cold for safety
609 */
610 if (dev->current_state == PCI_D3cold)
611 return;
612 if (state == PCI_D3cold) {
613 dev->current_state = PCI_D3cold;
614 return;
615 }
616 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
617 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
618 } else {
619 dev->current_state = state;
620 }
621 }
622
623 /**
624 * pci_power_up - Put the given device into D0 forcibly
625 * @dev: PCI device to power up
626 */
627 void pci_power_up(struct pci_dev *dev)
628 {
629 if (platform_pci_power_manageable(dev))
630 platform_pci_set_power_state(dev, PCI_D0);
631
632 pci_raw_set_power_state(dev, PCI_D0);
633 pci_update_current_state(dev, PCI_D0);
634 }
635
636 /**
637 * pci_platform_power_transition - Use platform to change device power state
638 * @dev: PCI device to handle.
639 * @state: State to put the device into.
640 */
641 static int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
642 {
643 int error;
644
645 if (platform_pci_power_manageable(dev)) {
646 error = platform_pci_set_power_state(dev, state);
647 if (!error)
648 pci_update_current_state(dev, state);
649 } else
650 error = -ENODEV;
651
652 if (error && !dev->pm_cap) /* Fall back to PCI_D0 */
653 dev->current_state = PCI_D0;
654
655 return error;
656 }
657
658 /**
659 * __pci_start_power_transition - Start power transition of a PCI device
660 * @dev: PCI device to handle.
661 * @state: State to put the device into.
662 */
663 static void __pci_start_power_transition(struct pci_dev *dev, pci_power_t state)
664 {
665 if (state == PCI_D0) {
666 pci_platform_power_transition(dev, PCI_D0);
667 /*
668 * Mandatory power management transition delays, see
669 * PCI Express Base Specification Revision 2.0 Section
670 * 6.6.1: Conventional Reset. Do not delay for
671 * devices powered on/off by corresponding bridge,
672 * because have already delayed for the bridge.
673 */
674 if (dev->runtime_d3cold) {
675 msleep(dev->d3cold_delay);
676 /*
677 * When powering on a bridge from D3cold, the
678 * whole hierarchy may be powered on into
679 * D0uninitialized state, resume them to give
680 * them a chance to suspend again
681 */
682 pci_wakeup_bus(dev->subordinate);
683 }
684 }
685 }
686
687 /**
688 * __pci_dev_set_current_state - Set current state of a PCI device
689 * @dev: Device to handle
690 * @data: pointer to state to be set
691 */
692 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
693 {
694 pci_power_t state = *(pci_power_t *)data;
695
696 dev->current_state = state;
697 return 0;
698 }
699
700 /**
701 * __pci_bus_set_current_state - Walk given bus and set current state of devices
702 * @bus: Top bus of the subtree to walk.
703 * @state: state to be set
704 */
705 static void __pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
706 {
707 if (bus)
708 pci_walk_bus(bus, __pci_dev_set_current_state, &state);
709 }
710
711 /**
712 * __pci_complete_power_transition - Complete power transition of a PCI device
713 * @dev: PCI device to handle.
714 * @state: State to put the device into.
715 *
716 * This function should not be called directly by device drivers.
717 */
718 int __pci_complete_power_transition(struct pci_dev *dev, pci_power_t state)
719 {
720 int ret;
721
722 if (state <= PCI_D0)
723 return -EINVAL;
724 ret = pci_platform_power_transition(dev, state);
725 /* Power off the bridge may power off the whole hierarchy */
726 if (!ret && state == PCI_D3cold)
727 __pci_bus_set_current_state(dev->subordinate, PCI_D3cold);
728 return ret;
729 }
730 EXPORT_SYMBOL_GPL(__pci_complete_power_transition);
731
732 /**
733 * pci_set_power_state - Set the power state of a PCI device
734 * @dev: PCI device to handle.
735 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
736 *
737 * Transition a device to a new power state, using the platform firmware and/or
738 * the device's PCI PM registers.
739 *
740 * RETURN VALUE:
741 * -EINVAL if the requested state is invalid.
742 * -EIO if device does not support PCI PM or its PM capabilities register has a
743 * wrong version, or device doesn't support the requested state.
744 * 0 if device already is in the requested state.
745 * 0 if device's power state has been successfully changed.
746 */
747 int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
748 {
749 int error;
750
751 /* bound the state we're entering */
752 if (state > PCI_D3cold)
753 state = PCI_D3cold;
754 else if (state < PCI_D0)
755 state = PCI_D0;
756 else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
757 /*
758 * If the device or the parent bridge do not support PCI PM,
759 * ignore the request if we're doing anything other than putting
760 * it into D0 (which would only happen on boot).
761 */
762 return 0;
763
764 /* Check if we're already there */
765 if (dev->current_state == state)
766 return 0;
767
768 __pci_start_power_transition(dev, state);
769
770 /* This device is quirked not to be put into D3, so
771 don't put it in D3 */
772 if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
773 return 0;
774
775 /*
776 * To put device in D3cold, we put device into D3hot in native
777 * way, then put device into D3cold with platform ops
778 */
779 error = pci_raw_set_power_state(dev, state > PCI_D3hot ?
780 PCI_D3hot : state);
781
782 if (!__pci_complete_power_transition(dev, state))
783 error = 0;
784 /*
785 * When aspm_policy is "powersave" this call ensures
786 * that ASPM is configured.
787 */
788 if (!error && dev->bus->self)
789 pcie_aspm_powersave_config_link(dev->bus->self);
790
791 return error;
792 }
793
794 /**
795 * pci_choose_state - Choose the power state of a PCI device
796 * @dev: PCI device to be suspended
797 * @state: target sleep state for the whole system. This is the value
798 * that is passed to suspend() function.
799 *
800 * Returns PCI power state suitable for given device and given system
801 * message.
802 */
803
804 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
805 {
806 pci_power_t ret;
807
808 if (!pci_find_capability(dev, PCI_CAP_ID_PM))
809 return PCI_D0;
810
811 ret = platform_pci_choose_state(dev);
812 if (ret != PCI_POWER_ERROR)
813 return ret;
814
815 switch (state.event) {
816 case PM_EVENT_ON:
817 return PCI_D0;
818 case PM_EVENT_FREEZE:
819 case PM_EVENT_PRETHAW:
820 /* REVISIT both freeze and pre-thaw "should" use D0 */
821 case PM_EVENT_SUSPEND:
822 case PM_EVENT_HIBERNATE:
823 return PCI_D3hot;
824 default:
825 dev_info(&dev->dev, "unrecognized suspend event %d\n",
826 state.event);
827 BUG();
828 }
829 return PCI_D0;
830 }
831
832 EXPORT_SYMBOL(pci_choose_state);
833
834 #define PCI_EXP_SAVE_REGS 7
835
836
837 static struct pci_cap_saved_state *pci_find_saved_cap(
838 struct pci_dev *pci_dev, char cap)
839 {
840 struct pci_cap_saved_state *tmp;
841
842 hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
843 if (tmp->cap.cap_nr == cap)
844 return tmp;
845 }
846 return NULL;
847 }
848
849 static int pci_save_pcie_state(struct pci_dev *dev)
850 {
851 int i = 0;
852 struct pci_cap_saved_state *save_state;
853 u16 *cap;
854
855 if (!pci_is_pcie(dev))
856 return 0;
857
858 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
859 if (!save_state) {
860 dev_err(&dev->dev, "buffer not found in %s\n", __func__);
861 return -ENOMEM;
862 }
863
864 cap = (u16 *)&save_state->cap.data[0];
865 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
866 pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
867 pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
868 pcie_capability_read_word(dev, PCI_EXP_RTCTL, &cap[i++]);
869 pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
870 pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
871 pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
872
873 return 0;
874 }
875
876 static void pci_restore_pcie_state(struct pci_dev *dev)
877 {
878 int i = 0;
879 struct pci_cap_saved_state *save_state;
880 u16 *cap;
881
882 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
883 if (!save_state)
884 return;
885
886 cap = (u16 *)&save_state->cap.data[0];
887 pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
888 pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
889 pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
890 pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
891 pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
892 pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
893 pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
894 }
895
896
897 static int pci_save_pcix_state(struct pci_dev *dev)
898 {
899 int pos;
900 struct pci_cap_saved_state *save_state;
901
902 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
903 if (pos <= 0)
904 return 0;
905
906 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
907 if (!save_state) {
908 dev_err(&dev->dev, "buffer not found in %s\n", __func__);
909 return -ENOMEM;
910 }
911
912 pci_read_config_word(dev, pos + PCI_X_CMD,
913 (u16 *)save_state->cap.data);
914
915 return 0;
916 }
917
918 static void pci_restore_pcix_state(struct pci_dev *dev)
919 {
920 int i = 0, pos;
921 struct pci_cap_saved_state *save_state;
922 u16 *cap;
923
924 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
925 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
926 if (!save_state || pos <= 0)
927 return;
928 cap = (u16 *)&save_state->cap.data[0];
929
930 pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
931 }
932
933
934 /**
935 * pci_save_state - save the PCI configuration space of a device before suspending
936 * @dev: - PCI device that we're dealing with
937 */
938 int
939 pci_save_state(struct pci_dev *dev)
940 {
941 int i;
942 /* XXX: 100% dword access ok here? */
943 for (i = 0; i < 16; i++)
944 pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
945 dev->state_saved = true;
946 if ((i = pci_save_pcie_state(dev)) != 0)
947 return i;
948 if ((i = pci_save_pcix_state(dev)) != 0)
949 return i;
950 return 0;
951 }
952
953 static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
954 u32 saved_val, int retry)
955 {
956 u32 val;
957
958 pci_read_config_dword(pdev, offset, &val);
959 if (val == saved_val)
960 return;
961
962 for (;;) {
963 dev_dbg(&pdev->dev, "restoring config space at offset "
964 "%#x (was %#x, writing %#x)\n", offset, val, saved_val);
965 pci_write_config_dword(pdev, offset, saved_val);
966 if (retry-- <= 0)
967 return;
968
969 pci_read_config_dword(pdev, offset, &val);
970 if (val == saved_val)
971 return;
972
973 mdelay(1);
974 }
975 }
976
977 static void pci_restore_config_space_range(struct pci_dev *pdev,
978 int start, int end, int retry)
979 {
980 int index;
981
982 for (index = end; index >= start; index--)
983 pci_restore_config_dword(pdev, 4 * index,
984 pdev->saved_config_space[index],
985 retry);
986 }
987
988 static void pci_restore_config_space(struct pci_dev *pdev)
989 {
990 if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
991 pci_restore_config_space_range(pdev, 10, 15, 0);
992 /* Restore BARs before the command register. */
993 pci_restore_config_space_range(pdev, 4, 9, 10);
994 pci_restore_config_space_range(pdev, 0, 3, 0);
995 } else {
996 pci_restore_config_space_range(pdev, 0, 15, 0);
997 }
998 }
999
1000 /**
1001 * pci_restore_state - Restore the saved state of a PCI device
1002 * @dev: - PCI device that we're dealing with
1003 */
1004 void pci_restore_state(struct pci_dev *dev)
1005 {
1006 if (!dev->state_saved)
1007 return;
1008
1009 /* PCI Express register must be restored first */
1010 pci_restore_pcie_state(dev);
1011 pci_restore_ats_state(dev);
1012
1013 pci_restore_config_space(dev);
1014
1015 pci_restore_pcix_state(dev);
1016 pci_restore_msi_state(dev);
1017 pci_restore_iov_state(dev);
1018
1019 dev->state_saved = false;
1020 }
1021
1022 struct pci_saved_state {
1023 u32 config_space[16];
1024 struct pci_cap_saved_data cap[0];
1025 };
1026
1027 /**
1028 * pci_store_saved_state - Allocate and return an opaque struct containing
1029 * the device saved state.
1030 * @dev: PCI device that we're dealing with
1031 *
1032 * Rerturn NULL if no state or error.
1033 */
1034 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1035 {
1036 struct pci_saved_state *state;
1037 struct pci_cap_saved_state *tmp;
1038 struct pci_cap_saved_data *cap;
1039 size_t size;
1040
1041 if (!dev->state_saved)
1042 return NULL;
1043
1044 size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1045
1046 hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
1047 size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1048
1049 state = kzalloc(size, GFP_KERNEL);
1050 if (!state)
1051 return NULL;
1052
1053 memcpy(state->config_space, dev->saved_config_space,
1054 sizeof(state->config_space));
1055
1056 cap = state->cap;
1057 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
1058 size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1059 memcpy(cap, &tmp->cap, len);
1060 cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1061 }
1062 /* Empty cap_save terminates list */
1063
1064 return state;
1065 }
1066 EXPORT_SYMBOL_GPL(pci_store_saved_state);
1067
1068 /**
1069 * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1070 * @dev: PCI device that we're dealing with
1071 * @state: Saved state returned from pci_store_saved_state()
1072 */
1073 int pci_load_saved_state(struct pci_dev *dev, struct pci_saved_state *state)
1074 {
1075 struct pci_cap_saved_data *cap;
1076
1077 dev->state_saved = false;
1078
1079 if (!state)
1080 return 0;
1081
1082 memcpy(dev->saved_config_space, state->config_space,
1083 sizeof(state->config_space));
1084
1085 cap = state->cap;
1086 while (cap->size) {
1087 struct pci_cap_saved_state *tmp;
1088
1089 tmp = pci_find_saved_cap(dev, cap->cap_nr);
1090 if (!tmp || tmp->cap.size != cap->size)
1091 return -EINVAL;
1092
1093 memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1094 cap = (struct pci_cap_saved_data *)((u8 *)cap +
1095 sizeof(struct pci_cap_saved_data) + cap->size);
1096 }
1097
1098 dev->state_saved = true;
1099 return 0;
1100 }
1101 EXPORT_SYMBOL_GPL(pci_load_saved_state);
1102
1103 /**
1104 * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1105 * and free the memory allocated for it.
1106 * @dev: PCI device that we're dealing with
1107 * @state: Pointer to saved state returned from pci_store_saved_state()
1108 */
1109 int pci_load_and_free_saved_state(struct pci_dev *dev,
1110 struct pci_saved_state **state)
1111 {
1112 int ret = pci_load_saved_state(dev, *state);
1113 kfree(*state);
1114 *state = NULL;
1115 return ret;
1116 }
1117 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
1118
1119 static int do_pci_enable_device(struct pci_dev *dev, int bars)
1120 {
1121 int err;
1122
1123 err = pci_set_power_state(dev, PCI_D0);
1124 if (err < 0 && err != -EIO)
1125 return err;
1126 err = pcibios_enable_device(dev, bars);
1127 if (err < 0)
1128 return err;
1129 pci_fixup_device(pci_fixup_enable, dev);
1130
1131 return 0;
1132 }
1133
1134 /**
1135 * pci_reenable_device - Resume abandoned device
1136 * @dev: PCI device to be resumed
1137 *
1138 * Note this function is a backend of pci_default_resume and is not supposed
1139 * to be called by normal code, write proper resume handler and use it instead.
1140 */
1141 int pci_reenable_device(struct pci_dev *dev)
1142 {
1143 if (pci_is_enabled(dev))
1144 return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
1145 return 0;
1146 }
1147
1148 static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
1149 {
1150 int err;
1151 int i, bars = 0;
1152
1153 /*
1154 * Power state could be unknown at this point, either due to a fresh
1155 * boot or a device removal call. So get the current power state
1156 * so that things like MSI message writing will behave as expected
1157 * (e.g. if the device really is in D0 at enable time).
1158 */
1159 if (dev->pm_cap) {
1160 u16 pmcsr;
1161 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1162 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1163 }
1164
1165 if (atomic_inc_return(&dev->enable_cnt) > 1)
1166 return 0; /* already enabled */
1167
1168 /* only skip sriov related */
1169 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
1170 if (dev->resource[i].flags & flags)
1171 bars |= (1 << i);
1172 for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
1173 if (dev->resource[i].flags & flags)
1174 bars |= (1 << i);
1175
1176 err = do_pci_enable_device(dev, bars);
1177 if (err < 0)
1178 atomic_dec(&dev->enable_cnt);
1179 return err;
1180 }
1181
1182 /**
1183 * pci_enable_device_io - Initialize a device for use with IO space
1184 * @dev: PCI device to be initialized
1185 *
1186 * Initialize device before it's used by a driver. Ask low-level code
1187 * to enable I/O resources. Wake up the device if it was suspended.
1188 * Beware, this function can fail.
1189 */
1190 int pci_enable_device_io(struct pci_dev *dev)
1191 {
1192 return pci_enable_device_flags(dev, IORESOURCE_IO);
1193 }
1194
1195 /**
1196 * pci_enable_device_mem - Initialize a device for use with Memory space
1197 * @dev: PCI device to be initialized
1198 *
1199 * Initialize device before it's used by a driver. Ask low-level code
1200 * to enable Memory resources. Wake up the device if it was suspended.
1201 * Beware, this function can fail.
1202 */
1203 int pci_enable_device_mem(struct pci_dev *dev)
1204 {
1205 return pci_enable_device_flags(dev, IORESOURCE_MEM);
1206 }
1207
1208 /**
1209 * pci_enable_device - Initialize device before it's used by a driver.
1210 * @dev: PCI device to be initialized
1211 *
1212 * Initialize device before it's used by a driver. Ask low-level code
1213 * to enable I/O and memory. Wake up the device if it was suspended.
1214 * Beware, this function can fail.
1215 *
1216 * Note we don't actually enable the device many times if we call
1217 * this function repeatedly (we just increment the count).
1218 */
1219 int pci_enable_device(struct pci_dev *dev)
1220 {
1221 return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
1222 }
1223
1224 /*
1225 * Managed PCI resources. This manages device on/off, intx/msi/msix
1226 * on/off and BAR regions. pci_dev itself records msi/msix status, so
1227 * there's no need to track it separately. pci_devres is initialized
1228 * when a device is enabled using managed PCI device enable interface.
1229 */
1230 struct pci_devres {
1231 unsigned int enabled:1;
1232 unsigned int pinned:1;
1233 unsigned int orig_intx:1;
1234 unsigned int restore_intx:1;
1235 u32 region_mask;
1236 };
1237
1238 static void pcim_release(struct device *gendev, void *res)
1239 {
1240 struct pci_dev *dev = container_of(gendev, struct pci_dev, dev);
1241 struct pci_devres *this = res;
1242 int i;
1243
1244 if (dev->msi_enabled)
1245 pci_disable_msi(dev);
1246 if (dev->msix_enabled)
1247 pci_disable_msix(dev);
1248
1249 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
1250 if (this->region_mask & (1 << i))
1251 pci_release_region(dev, i);
1252
1253 if (this->restore_intx)
1254 pci_intx(dev, this->orig_intx);
1255
1256 if (this->enabled && !this->pinned)
1257 pci_disable_device(dev);
1258 }
1259
1260 static struct pci_devres * get_pci_dr(struct pci_dev *pdev)
1261 {
1262 struct pci_devres *dr, *new_dr;
1263
1264 dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
1265 if (dr)
1266 return dr;
1267
1268 new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
1269 if (!new_dr)
1270 return NULL;
1271 return devres_get(&pdev->dev, new_dr, NULL, NULL);
1272 }
1273
1274 static struct pci_devres * find_pci_dr(struct pci_dev *pdev)
1275 {
1276 if (pci_is_managed(pdev))
1277 return devres_find(&pdev->dev, pcim_release, NULL, NULL);
1278 return NULL;
1279 }
1280
1281 /**
1282 * pcim_enable_device - Managed pci_enable_device()
1283 * @pdev: PCI device to be initialized
1284 *
1285 * Managed pci_enable_device().
1286 */
1287 int pcim_enable_device(struct pci_dev *pdev)
1288 {
1289 struct pci_devres *dr;
1290 int rc;
1291
1292 dr = get_pci_dr(pdev);
1293 if (unlikely(!dr))
1294 return -ENOMEM;
1295 if (dr->enabled)
1296 return 0;
1297
1298 rc = pci_enable_device(pdev);
1299 if (!rc) {
1300 pdev->is_managed = 1;
1301 dr->enabled = 1;
1302 }
1303 return rc;
1304 }
1305
1306 /**
1307 * pcim_pin_device - Pin managed PCI device
1308 * @pdev: PCI device to pin
1309 *
1310 * Pin managed PCI device @pdev. Pinned device won't be disabled on
1311 * driver detach. @pdev must have been enabled with
1312 * pcim_enable_device().
1313 */
1314 void pcim_pin_device(struct pci_dev *pdev)
1315 {
1316 struct pci_devres *dr;
1317
1318 dr = find_pci_dr(pdev);
1319 WARN_ON(!dr || !dr->enabled);
1320 if (dr)
1321 dr->pinned = 1;
1322 }
1323
1324 /*
1325 * pcibios_add_device - provide arch specific hooks when adding device dev
1326 * @dev: the PCI device being added
1327 *
1328 * Permits the platform to provide architecture specific functionality when
1329 * devices are added. This is the default implementation. Architecture
1330 * implementations can override this.
1331 */
1332 int __weak pcibios_add_device (struct pci_dev *dev)
1333 {
1334 return 0;
1335 }
1336
1337 /**
1338 * pcibios_disable_device - disable arch specific PCI resources for device dev
1339 * @dev: the PCI device to disable
1340 *
1341 * Disables architecture specific PCI resources for the device. This
1342 * is the default implementation. Architecture implementations can
1343 * override this.
1344 */
1345 void __weak pcibios_disable_device (struct pci_dev *dev) {}
1346
1347 static void do_pci_disable_device(struct pci_dev *dev)
1348 {
1349 u16 pci_command;
1350
1351 pci_read_config_word(dev, PCI_COMMAND, &pci_command);
1352 if (pci_command & PCI_COMMAND_MASTER) {
1353 pci_command &= ~PCI_COMMAND_MASTER;
1354 pci_write_config_word(dev, PCI_COMMAND, pci_command);
1355 }
1356
1357 pcibios_disable_device(dev);
1358 }
1359
1360 /**
1361 * pci_disable_enabled_device - Disable device without updating enable_cnt
1362 * @dev: PCI device to disable
1363 *
1364 * NOTE: This function is a backend of PCI power management routines and is
1365 * not supposed to be called drivers.
1366 */
1367 void pci_disable_enabled_device(struct pci_dev *dev)
1368 {
1369 if (pci_is_enabled(dev))
1370 do_pci_disable_device(dev);
1371 }
1372
1373 /**
1374 * pci_disable_device - Disable PCI device after use
1375 * @dev: PCI device to be disabled
1376 *
1377 * Signal to the system that the PCI device is not in use by the system
1378 * anymore. This only involves disabling PCI bus-mastering, if active.
1379 *
1380 * Note we don't actually disable the device until all callers of
1381 * pci_enable_device() have called pci_disable_device().
1382 */
1383 void
1384 pci_disable_device(struct pci_dev *dev)
1385 {
1386 struct pci_devres *dr;
1387
1388 dr = find_pci_dr(dev);
1389 if (dr)
1390 dr->enabled = 0;
1391
1392 dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
1393 "disabling already-disabled device");
1394
1395 if (atomic_dec_return(&dev->enable_cnt) != 0)
1396 return;
1397
1398 do_pci_disable_device(dev);
1399
1400 dev->is_busmaster = 0;
1401 }
1402
1403 /**
1404 * pcibios_set_pcie_reset_state - set reset state for device dev
1405 * @dev: the PCIe device reset
1406 * @state: Reset state to enter into
1407 *
1408 *
1409 * Sets the PCIe reset state for the device. This is the default
1410 * implementation. Architecture implementations can override this.
1411 */
1412 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
1413 enum pcie_reset_state state)
1414 {
1415 return -EINVAL;
1416 }
1417
1418 /**
1419 * pci_set_pcie_reset_state - set reset state for device dev
1420 * @dev: the PCIe device reset
1421 * @state: Reset state to enter into
1422 *
1423 *
1424 * Sets the PCI reset state for the device.
1425 */
1426 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
1427 {
1428 return pcibios_set_pcie_reset_state(dev, state);
1429 }
1430
1431 /**
1432 * pci_check_pme_status - Check if given device has generated PME.
1433 * @dev: Device to check.
1434 *
1435 * Check the PME status of the device and if set, clear it and clear PME enable
1436 * (if set). Return 'true' if PME status and PME enable were both set or
1437 * 'false' otherwise.
1438 */
1439 bool pci_check_pme_status(struct pci_dev *dev)
1440 {
1441 int pmcsr_pos;
1442 u16 pmcsr;
1443 bool ret = false;
1444
1445 if (!dev->pm_cap)
1446 return false;
1447
1448 pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
1449 pci_read_config_word(dev, pmcsr_pos, &pmcsr);
1450 if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
1451 return false;
1452
1453 /* Clear PME status. */
1454 pmcsr |= PCI_PM_CTRL_PME_STATUS;
1455 if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
1456 /* Disable PME to avoid interrupt flood. */
1457 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1458 ret = true;
1459 }
1460
1461 pci_write_config_word(dev, pmcsr_pos, pmcsr);
1462
1463 return ret;
1464 }
1465
1466 /**
1467 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
1468 * @dev: Device to handle.
1469 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
1470 *
1471 * Check if @dev has generated PME and queue a resume request for it in that
1472 * case.
1473 */
1474 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
1475 {
1476 if (pme_poll_reset && dev->pme_poll)
1477 dev->pme_poll = false;
1478
1479 if (pci_check_pme_status(dev)) {
1480 pci_wakeup_event(dev);
1481 pm_request_resume(&dev->dev);
1482 }
1483 return 0;
1484 }
1485
1486 /**
1487 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
1488 * @bus: Top bus of the subtree to walk.
1489 */
1490 void pci_pme_wakeup_bus(struct pci_bus *bus)
1491 {
1492 if (bus)
1493 pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
1494 }
1495
1496 /**
1497 * pci_wakeup - Wake up a PCI device
1498 * @pci_dev: Device to handle.
1499 * @ign: ignored parameter
1500 */
1501 static int pci_wakeup(struct pci_dev *pci_dev, void *ign)
1502 {
1503 pci_wakeup_event(pci_dev);
1504 pm_request_resume(&pci_dev->dev);
1505 return 0;
1506 }
1507
1508 /**
1509 * pci_wakeup_bus - Walk given bus and wake up devices on it
1510 * @bus: Top bus of the subtree to walk.
1511 */
1512 void pci_wakeup_bus(struct pci_bus *bus)
1513 {
1514 if (bus)
1515 pci_walk_bus(bus, pci_wakeup, NULL);
1516 }
1517
1518 /**
1519 * pci_pme_capable - check the capability of PCI device to generate PME#
1520 * @dev: PCI device to handle.
1521 * @state: PCI state from which device will issue PME#.
1522 */
1523 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
1524 {
1525 if (!dev->pm_cap)
1526 return false;
1527
1528 return !!(dev->pme_support & (1 << state));
1529 }
1530
1531 static void pci_pme_list_scan(struct work_struct *work)
1532 {
1533 struct pci_pme_device *pme_dev, *n;
1534
1535 mutex_lock(&pci_pme_list_mutex);
1536 if (!list_empty(&pci_pme_list)) {
1537 list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
1538 if (pme_dev->dev->pme_poll) {
1539 struct pci_dev *bridge;
1540
1541 bridge = pme_dev->dev->bus->self;
1542 /*
1543 * If bridge is in low power state, the
1544 * configuration space of subordinate devices
1545 * may be not accessible
1546 */
1547 if (bridge && bridge->current_state != PCI_D0)
1548 continue;
1549 pci_pme_wakeup(pme_dev->dev, NULL);
1550 } else {
1551 list_del(&pme_dev->list);
1552 kfree(pme_dev);
1553 }
1554 }
1555 if (!list_empty(&pci_pme_list))
1556 schedule_delayed_work(&pci_pme_work,
1557 msecs_to_jiffies(PME_TIMEOUT));
1558 }
1559 mutex_unlock(&pci_pme_list_mutex);
1560 }
1561
1562 /**
1563 * pci_pme_active - enable or disable PCI device's PME# function
1564 * @dev: PCI device to handle.
1565 * @enable: 'true' to enable PME# generation; 'false' to disable it.
1566 *
1567 * The caller must verify that the device is capable of generating PME# before
1568 * calling this function with @enable equal to 'true'.
1569 */
1570 void pci_pme_active(struct pci_dev *dev, bool enable)
1571 {
1572 u16 pmcsr;
1573
1574 if (!dev->pme_support)
1575 return;
1576
1577 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1578 /* Clear PME_Status by writing 1 to it and enable PME# */
1579 pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
1580 if (!enable)
1581 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1582
1583 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1584
1585 /*
1586 * PCI (as opposed to PCIe) PME requires that the device have
1587 * its PME# line hooked up correctly. Not all hardware vendors
1588 * do this, so the PME never gets delivered and the device
1589 * remains asleep. The easiest way around this is to
1590 * periodically walk the list of suspended devices and check
1591 * whether any have their PME flag set. The assumption is that
1592 * we'll wake up often enough anyway that this won't be a huge
1593 * hit, and the power savings from the devices will still be a
1594 * win.
1595 *
1596 * Although PCIe uses in-band PME message instead of PME# line
1597 * to report PME, PME does not work for some PCIe devices in
1598 * reality. For example, there are devices that set their PME
1599 * status bits, but don't really bother to send a PME message;
1600 * there are PCI Express Root Ports that don't bother to
1601 * trigger interrupts when they receive PME messages from the
1602 * devices below. So PME poll is used for PCIe devices too.
1603 */
1604
1605 if (dev->pme_poll) {
1606 struct pci_pme_device *pme_dev;
1607 if (enable) {
1608 pme_dev = kmalloc(sizeof(struct pci_pme_device),
1609 GFP_KERNEL);
1610 if (!pme_dev)
1611 goto out;
1612 pme_dev->dev = dev;
1613 mutex_lock(&pci_pme_list_mutex);
1614 list_add(&pme_dev->list, &pci_pme_list);
1615 if (list_is_singular(&pci_pme_list))
1616 schedule_delayed_work(&pci_pme_work,
1617 msecs_to_jiffies(PME_TIMEOUT));
1618 mutex_unlock(&pci_pme_list_mutex);
1619 } else {
1620 mutex_lock(&pci_pme_list_mutex);
1621 list_for_each_entry(pme_dev, &pci_pme_list, list) {
1622 if (pme_dev->dev == dev) {
1623 list_del(&pme_dev->list);
1624 kfree(pme_dev);
1625 break;
1626 }
1627 }
1628 mutex_unlock(&pci_pme_list_mutex);
1629 }
1630 }
1631
1632 out:
1633 dev_dbg(&dev->dev, "PME# %s\n", enable ? "enabled" : "disabled");
1634 }
1635
1636 /**
1637 * __pci_enable_wake - enable PCI device as wakeup event source
1638 * @dev: PCI device affected
1639 * @state: PCI state from which device will issue wakeup events
1640 * @runtime: True if the events are to be generated at run time
1641 * @enable: True to enable event generation; false to disable
1642 *
1643 * This enables the device as a wakeup event source, or disables it.
1644 * When such events involves platform-specific hooks, those hooks are
1645 * called automatically by this routine.
1646 *
1647 * Devices with legacy power management (no standard PCI PM capabilities)
1648 * always require such platform hooks.
1649 *
1650 * RETURN VALUE:
1651 * 0 is returned on success
1652 * -EINVAL is returned if device is not supposed to wake up the system
1653 * Error code depending on the platform is returned if both the platform and
1654 * the native mechanism fail to enable the generation of wake-up events
1655 */
1656 int __pci_enable_wake(struct pci_dev *dev, pci_power_t state,
1657 bool runtime, bool enable)
1658 {
1659 int ret = 0;
1660
1661 if (enable && !runtime && !device_may_wakeup(&dev->dev))
1662 return -EINVAL;
1663
1664 /* Don't do the same thing twice in a row for one device. */
1665 if (!!enable == !!dev->wakeup_prepared)
1666 return 0;
1667
1668 /*
1669 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
1670 * Anderson we should be doing PME# wake enable followed by ACPI wake
1671 * enable. To disable wake-up we call the platform first, for symmetry.
1672 */
1673
1674 if (enable) {
1675 int error;
1676
1677 if (pci_pme_capable(dev, state))
1678 pci_pme_active(dev, true);
1679 else
1680 ret = 1;
1681 error = runtime ? platform_pci_run_wake(dev, true) :
1682 platform_pci_sleep_wake(dev, true);
1683 if (ret)
1684 ret = error;
1685 if (!ret)
1686 dev->wakeup_prepared = true;
1687 } else {
1688 if (runtime)
1689 platform_pci_run_wake(dev, false);
1690 else
1691 platform_pci_sleep_wake(dev, false);
1692 pci_pme_active(dev, false);
1693 dev->wakeup_prepared = false;
1694 }
1695
1696 return ret;
1697 }
1698 EXPORT_SYMBOL(__pci_enable_wake);
1699
1700 /**
1701 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
1702 * @dev: PCI device to prepare
1703 * @enable: True to enable wake-up event generation; false to disable
1704 *
1705 * Many drivers want the device to wake up the system from D3_hot or D3_cold
1706 * and this function allows them to set that up cleanly - pci_enable_wake()
1707 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
1708 * ordering constraints.
1709 *
1710 * This function only returns error code if the device is not capable of
1711 * generating PME# from both D3_hot and D3_cold, and the platform is unable to
1712 * enable wake-up power for it.
1713 */
1714 int pci_wake_from_d3(struct pci_dev *dev, bool enable)
1715 {
1716 return pci_pme_capable(dev, PCI_D3cold) ?
1717 pci_enable_wake(dev, PCI_D3cold, enable) :
1718 pci_enable_wake(dev, PCI_D3hot, enable);
1719 }
1720
1721 /**
1722 * pci_target_state - find an appropriate low power state for a given PCI dev
1723 * @dev: PCI device
1724 *
1725 * Use underlying platform code to find a supported low power state for @dev.
1726 * If the platform can't manage @dev, return the deepest state from which it
1727 * can generate wake events, based on any available PME info.
1728 */
1729 pci_power_t pci_target_state(struct pci_dev *dev)
1730 {
1731 pci_power_t target_state = PCI_D3hot;
1732
1733 if (platform_pci_power_manageable(dev)) {
1734 /*
1735 * Call the platform to choose the target state of the device
1736 * and enable wake-up from this state if supported.
1737 */
1738 pci_power_t state = platform_pci_choose_state(dev);
1739
1740 switch (state) {
1741 case PCI_POWER_ERROR:
1742 case PCI_UNKNOWN:
1743 break;
1744 case PCI_D1:
1745 case PCI_D2:
1746 if (pci_no_d1d2(dev))
1747 break;
1748 default:
1749 target_state = state;
1750 }
1751 } else if (!dev->pm_cap) {
1752 target_state = PCI_D0;
1753 } else if (device_may_wakeup(&dev->dev)) {
1754 /*
1755 * Find the deepest state from which the device can generate
1756 * wake-up events, make it the target state and enable device
1757 * to generate PME#.
1758 */
1759 if (dev->pme_support) {
1760 while (target_state
1761 && !(dev->pme_support & (1 << target_state)))
1762 target_state--;
1763 }
1764 }
1765
1766 return target_state;
1767 }
1768
1769 /**
1770 * pci_prepare_to_sleep - prepare PCI device for system-wide transition into a sleep state
1771 * @dev: Device to handle.
1772 *
1773 * Choose the power state appropriate for the device depending on whether
1774 * it can wake up the system and/or is power manageable by the platform
1775 * (PCI_D3hot is the default) and put the device into that state.
1776 */
1777 int pci_prepare_to_sleep(struct pci_dev *dev)
1778 {
1779 pci_power_t target_state = pci_target_state(dev);
1780 int error;
1781
1782 if (target_state == PCI_POWER_ERROR)
1783 return -EIO;
1784
1785 /* D3cold during system suspend/hibernate is not supported */
1786 if (target_state > PCI_D3hot)
1787 target_state = PCI_D3hot;
1788
1789 pci_enable_wake(dev, target_state, device_may_wakeup(&dev->dev));
1790
1791 error = pci_set_power_state(dev, target_state);
1792
1793 if (error)
1794 pci_enable_wake(dev, target_state, false);
1795
1796 return error;
1797 }
1798
1799 /**
1800 * pci_back_from_sleep - turn PCI device on during system-wide transition into working state
1801 * @dev: Device to handle.
1802 *
1803 * Disable device's system wake-up capability and put it into D0.
1804 */
1805 int pci_back_from_sleep(struct pci_dev *dev)
1806 {
1807 pci_enable_wake(dev, PCI_D0, false);
1808 return pci_set_power_state(dev, PCI_D0);
1809 }
1810
1811 /**
1812 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
1813 * @dev: PCI device being suspended.
1814 *
1815 * Prepare @dev to generate wake-up events at run time and put it into a low
1816 * power state.
1817 */
1818 int pci_finish_runtime_suspend(struct pci_dev *dev)
1819 {
1820 pci_power_t target_state = pci_target_state(dev);
1821 int error;
1822
1823 if (target_state == PCI_POWER_ERROR)
1824 return -EIO;
1825
1826 dev->runtime_d3cold = target_state == PCI_D3cold;
1827
1828 __pci_enable_wake(dev, target_state, true, pci_dev_run_wake(dev));
1829
1830 error = pci_set_power_state(dev, target_state);
1831
1832 if (error) {
1833 __pci_enable_wake(dev, target_state, true, false);
1834 dev->runtime_d3cold = false;
1835 }
1836
1837 return error;
1838 }
1839
1840 /**
1841 * pci_dev_run_wake - Check if device can generate run-time wake-up events.
1842 * @dev: Device to check.
1843 *
1844 * Return true if the device itself is cabable of generating wake-up events
1845 * (through the platform or using the native PCIe PME) or if the device supports
1846 * PME and one of its upstream bridges can generate wake-up events.
1847 */
1848 bool pci_dev_run_wake(struct pci_dev *dev)
1849 {
1850 struct pci_bus *bus = dev->bus;
1851
1852 if (device_run_wake(&dev->dev))
1853 return true;
1854
1855 if (!dev->pme_support)
1856 return false;
1857
1858 while (bus->parent) {
1859 struct pci_dev *bridge = bus->self;
1860
1861 if (device_run_wake(&bridge->dev))
1862 return true;
1863
1864 bus = bus->parent;
1865 }
1866
1867 /* We have reached the root bus. */
1868 if (bus->bridge)
1869 return device_run_wake(bus->bridge);
1870
1871 return false;
1872 }
1873 EXPORT_SYMBOL_GPL(pci_dev_run_wake);
1874
1875 void pci_config_pm_runtime_get(struct pci_dev *pdev)
1876 {
1877 struct device *dev = &pdev->dev;
1878 struct device *parent = dev->parent;
1879
1880 if (parent)
1881 pm_runtime_get_sync(parent);
1882 pm_runtime_get_noresume(dev);
1883 /*
1884 * pdev->current_state is set to PCI_D3cold during suspending,
1885 * so wait until suspending completes
1886 */
1887 pm_runtime_barrier(dev);
1888 /*
1889 * Only need to resume devices in D3cold, because config
1890 * registers are still accessible for devices suspended but
1891 * not in D3cold.
1892 */
1893 if (pdev->current_state == PCI_D3cold)
1894 pm_runtime_resume(dev);
1895 }
1896
1897 void pci_config_pm_runtime_put(struct pci_dev *pdev)
1898 {
1899 struct device *dev = &pdev->dev;
1900 struct device *parent = dev->parent;
1901
1902 pm_runtime_put(dev);
1903 if (parent)
1904 pm_runtime_put_sync(parent);
1905 }
1906
1907 /**
1908 * pci_pm_init - Initialize PM functions of given PCI device
1909 * @dev: PCI device to handle.
1910 */
1911 void pci_pm_init(struct pci_dev *dev)
1912 {
1913 int pm;
1914 u16 pmc;
1915
1916 pm_runtime_forbid(&dev->dev);
1917 pm_runtime_set_active(&dev->dev);
1918 pm_runtime_enable(&dev->dev);
1919 device_enable_async_suspend(&dev->dev);
1920 dev->wakeup_prepared = false;
1921
1922 dev->pm_cap = 0;
1923 dev->pme_support = 0;
1924
1925 /* find PCI PM capability in list */
1926 pm = pci_find_capability(dev, PCI_CAP_ID_PM);
1927 if (!pm)
1928 return;
1929 /* Check device's ability to generate PME# */
1930 pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
1931
1932 if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
1933 dev_err(&dev->dev, "unsupported PM cap regs version (%u)\n",
1934 pmc & PCI_PM_CAP_VER_MASK);
1935 return;
1936 }
1937
1938 dev->pm_cap = pm;
1939 dev->d3_delay = PCI_PM_D3_WAIT;
1940 dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
1941 dev->d3cold_allowed = true;
1942
1943 dev->d1_support = false;
1944 dev->d2_support = false;
1945 if (!pci_no_d1d2(dev)) {
1946 if (pmc & PCI_PM_CAP_D1)
1947 dev->d1_support = true;
1948 if (pmc & PCI_PM_CAP_D2)
1949 dev->d2_support = true;
1950
1951 if (dev->d1_support || dev->d2_support)
1952 dev_printk(KERN_DEBUG, &dev->dev, "supports%s%s\n",
1953 dev->d1_support ? " D1" : "",
1954 dev->d2_support ? " D2" : "");
1955 }
1956
1957 pmc &= PCI_PM_CAP_PME_MASK;
1958 if (pmc) {
1959 dev_printk(KERN_DEBUG, &dev->dev,
1960 "PME# supported from%s%s%s%s%s\n",
1961 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
1962 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
1963 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
1964 (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "",
1965 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
1966 dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
1967 dev->pme_poll = true;
1968 /*
1969 * Make device's PM flags reflect the wake-up capability, but
1970 * let the user space enable it to wake up the system as needed.
1971 */
1972 device_set_wakeup_capable(&dev->dev, true);
1973 /* Disable the PME# generation functionality */
1974 pci_pme_active(dev, false);
1975 }
1976 }
1977
1978 static void pci_add_saved_cap(struct pci_dev *pci_dev,
1979 struct pci_cap_saved_state *new_cap)
1980 {
1981 hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
1982 }
1983
1984 /**
1985 * pci_add_save_buffer - allocate buffer for saving given capability registers
1986 * @dev: the PCI device
1987 * @cap: the capability to allocate the buffer for
1988 * @size: requested size of the buffer
1989 */
1990 static int pci_add_cap_save_buffer(
1991 struct pci_dev *dev, char cap, unsigned int size)
1992 {
1993 int pos;
1994 struct pci_cap_saved_state *save_state;
1995
1996 pos = pci_find_capability(dev, cap);
1997 if (pos <= 0)
1998 return 0;
1999
2000 save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
2001 if (!save_state)
2002 return -ENOMEM;
2003
2004 save_state->cap.cap_nr = cap;
2005 save_state->cap.size = size;
2006 pci_add_saved_cap(dev, save_state);
2007
2008 return 0;
2009 }
2010
2011 /**
2012 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
2013 * @dev: the PCI device
2014 */
2015 void pci_allocate_cap_save_buffers(struct pci_dev *dev)
2016 {
2017 int error;
2018
2019 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
2020 PCI_EXP_SAVE_REGS * sizeof(u16));
2021 if (error)
2022 dev_err(&dev->dev,
2023 "unable to preallocate PCI Express save buffer\n");
2024
2025 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
2026 if (error)
2027 dev_err(&dev->dev,
2028 "unable to preallocate PCI-X save buffer\n");
2029 }
2030
2031 void pci_free_cap_save_buffers(struct pci_dev *dev)
2032 {
2033 struct pci_cap_saved_state *tmp;
2034 struct hlist_node *n;
2035
2036 hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
2037 kfree(tmp);
2038 }
2039
2040 /**
2041 * pci_configure_ari - enable or disable ARI forwarding
2042 * @dev: the PCI device
2043 *
2044 * If @dev and its upstream bridge both support ARI, enable ARI in the
2045 * bridge. Otherwise, disable ARI in the bridge.
2046 */
2047 void pci_configure_ari(struct pci_dev *dev)
2048 {
2049 u32 cap;
2050 struct pci_dev *bridge;
2051
2052 if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
2053 return;
2054
2055 bridge = dev->bus->self;
2056 if (!bridge)
2057 return;
2058
2059 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
2060 if (!(cap & PCI_EXP_DEVCAP2_ARI))
2061 return;
2062
2063 if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
2064 pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
2065 PCI_EXP_DEVCTL2_ARI);
2066 bridge->ari_enabled = 1;
2067 } else {
2068 pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
2069 PCI_EXP_DEVCTL2_ARI);
2070 bridge->ari_enabled = 0;
2071 }
2072 }
2073
2074 /**
2075 * pci_enable_ido - enable ID-based Ordering on a device
2076 * @dev: the PCI device
2077 * @type: which types of IDO to enable
2078 *
2079 * Enable ID-based ordering on @dev. @type can contain the bits
2080 * %PCI_EXP_IDO_REQUEST and/or %PCI_EXP_IDO_COMPLETION to indicate
2081 * which types of transactions are allowed to be re-ordered.
2082 */
2083 void pci_enable_ido(struct pci_dev *dev, unsigned long type)
2084 {
2085 u16 ctrl = 0;
2086
2087 if (type & PCI_EXP_IDO_REQUEST)
2088 ctrl |= PCI_EXP_IDO_REQ_EN;
2089 if (type & PCI_EXP_IDO_COMPLETION)
2090 ctrl |= PCI_EXP_IDO_CMP_EN;
2091 if (ctrl)
2092 pcie_capability_set_word(dev, PCI_EXP_DEVCTL2, ctrl);
2093 }
2094 EXPORT_SYMBOL(pci_enable_ido);
2095
2096 /**
2097 * pci_disable_ido - disable ID-based ordering on a device
2098 * @dev: the PCI device
2099 * @type: which types of IDO to disable
2100 */
2101 void pci_disable_ido(struct pci_dev *dev, unsigned long type)
2102 {
2103 u16 ctrl = 0;
2104
2105 if (type & PCI_EXP_IDO_REQUEST)
2106 ctrl |= PCI_EXP_IDO_REQ_EN;
2107 if (type & PCI_EXP_IDO_COMPLETION)
2108 ctrl |= PCI_EXP_IDO_CMP_EN;
2109 if (ctrl)
2110 pcie_capability_clear_word(dev, PCI_EXP_DEVCTL2, ctrl);
2111 }
2112 EXPORT_SYMBOL(pci_disable_ido);
2113
2114 /**
2115 * pci_enable_obff - enable optimized buffer flush/fill
2116 * @dev: PCI device
2117 * @type: type of signaling to use
2118 *
2119 * Try to enable @type OBFF signaling on @dev. It will try using WAKE#
2120 * signaling if possible, falling back to message signaling only if
2121 * WAKE# isn't supported. @type should indicate whether the PCIe link
2122 * be brought out of L0s or L1 to send the message. It should be either
2123 * %PCI_EXP_OBFF_SIGNAL_ALWAYS or %PCI_OBFF_SIGNAL_L0.
2124 *
2125 * If your device can benefit from receiving all messages, even at the
2126 * power cost of bringing the link back up from a low power state, use
2127 * %PCI_EXP_OBFF_SIGNAL_ALWAYS. Otherwise, use %PCI_OBFF_SIGNAL_L0 (the
2128 * preferred type).
2129 *
2130 * RETURNS:
2131 * Zero on success, appropriate error number on failure.
2132 */
2133 int pci_enable_obff(struct pci_dev *dev, enum pci_obff_signal_type type)
2134 {
2135 u32 cap;
2136 u16 ctrl;
2137 int ret;
2138
2139 pcie_capability_read_dword(dev, PCI_EXP_DEVCAP2, &cap);
2140 if (!(cap & PCI_EXP_OBFF_MASK))
2141 return -ENOTSUPP; /* no OBFF support at all */
2142
2143 /* Make sure the topology supports OBFF as well */
2144 if (dev->bus->self) {
2145 ret = pci_enable_obff(dev->bus->self, type);
2146 if (ret)
2147 return ret;
2148 }
2149
2150 pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &ctrl);
2151 if (cap & PCI_EXP_OBFF_WAKE)
2152 ctrl |= PCI_EXP_OBFF_WAKE_EN;
2153 else {
2154 switch (type) {
2155 case PCI_EXP_OBFF_SIGNAL_L0:
2156 if (!(ctrl & PCI_EXP_OBFF_WAKE_EN))
2157 ctrl |= PCI_EXP_OBFF_MSGA_EN;
2158 break;
2159 case PCI_EXP_OBFF_SIGNAL_ALWAYS:
2160 ctrl &= ~PCI_EXP_OBFF_WAKE_EN;
2161 ctrl |= PCI_EXP_OBFF_MSGB_EN;
2162 break;
2163 default:
2164 WARN(1, "bad OBFF signal type\n");
2165 return -ENOTSUPP;
2166 }
2167 }
2168 pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, ctrl);
2169
2170 return 0;
2171 }
2172 EXPORT_SYMBOL(pci_enable_obff);
2173
2174 /**
2175 * pci_disable_obff - disable optimized buffer flush/fill
2176 * @dev: PCI device
2177 *
2178 * Disable OBFF on @dev.
2179 */
2180 void pci_disable_obff(struct pci_dev *dev)
2181 {
2182 pcie_capability_clear_word(dev, PCI_EXP_DEVCTL2, PCI_EXP_OBFF_WAKE_EN);
2183 }
2184 EXPORT_SYMBOL(pci_disable_obff);
2185
2186 /**
2187 * pci_ltr_supported - check whether a device supports LTR
2188 * @dev: PCI device
2189 *
2190 * RETURNS:
2191 * True if @dev supports latency tolerance reporting, false otherwise.
2192 */
2193 static bool pci_ltr_supported(struct pci_dev *dev)
2194 {
2195 u32 cap;
2196
2197 pcie_capability_read_dword(dev, PCI_EXP_DEVCAP2, &cap);
2198
2199 return cap & PCI_EXP_DEVCAP2_LTR;
2200 }
2201
2202 /**
2203 * pci_enable_ltr - enable latency tolerance reporting
2204 * @dev: PCI device
2205 *
2206 * Enable LTR on @dev if possible, which means enabling it first on
2207 * upstream ports.
2208 *
2209 * RETURNS:
2210 * Zero on success, errno on failure.
2211 */
2212 int pci_enable_ltr(struct pci_dev *dev)
2213 {
2214 int ret;
2215
2216 /* Only primary function can enable/disable LTR */
2217 if (PCI_FUNC(dev->devfn) != 0)
2218 return -EINVAL;
2219
2220 if (!pci_ltr_supported(dev))
2221 return -ENOTSUPP;
2222
2223 /* Enable upstream ports first */
2224 if (dev->bus->self) {
2225 ret = pci_enable_ltr(dev->bus->self);
2226 if (ret)
2227 return ret;
2228 }
2229
2230 return pcie_capability_set_word(dev, PCI_EXP_DEVCTL2, PCI_EXP_LTR_EN);
2231 }
2232 EXPORT_SYMBOL(pci_enable_ltr);
2233
2234 /**
2235 * pci_disable_ltr - disable latency tolerance reporting
2236 * @dev: PCI device
2237 */
2238 void pci_disable_ltr(struct pci_dev *dev)
2239 {
2240 /* Only primary function can enable/disable LTR */
2241 if (PCI_FUNC(dev->devfn) != 0)
2242 return;
2243
2244 if (!pci_ltr_supported(dev))
2245 return;
2246
2247 pcie_capability_clear_word(dev, PCI_EXP_DEVCTL2, PCI_EXP_LTR_EN);
2248 }
2249 EXPORT_SYMBOL(pci_disable_ltr);
2250
2251 static int __pci_ltr_scale(int *val)
2252 {
2253 int scale = 0;
2254
2255 while (*val > 1023) {
2256 *val = (*val + 31) / 32;
2257 scale++;
2258 }
2259 return scale;
2260 }
2261
2262 /**
2263 * pci_set_ltr - set LTR latency values
2264 * @dev: PCI device
2265 * @snoop_lat_ns: snoop latency in nanoseconds
2266 * @nosnoop_lat_ns: nosnoop latency in nanoseconds
2267 *
2268 * Figure out the scale and set the LTR values accordingly.
2269 */
2270 int pci_set_ltr(struct pci_dev *dev, int snoop_lat_ns, int nosnoop_lat_ns)
2271 {
2272 int pos, ret, snoop_scale, nosnoop_scale;
2273 u16 val;
2274
2275 if (!pci_ltr_supported(dev))
2276 return -ENOTSUPP;
2277
2278 snoop_scale = __pci_ltr_scale(&snoop_lat_ns);
2279 nosnoop_scale = __pci_ltr_scale(&nosnoop_lat_ns);
2280
2281 if (snoop_lat_ns > PCI_LTR_VALUE_MASK ||
2282 nosnoop_lat_ns > PCI_LTR_VALUE_MASK)
2283 return -EINVAL;
2284
2285 if ((snoop_scale > (PCI_LTR_SCALE_MASK >> PCI_LTR_SCALE_SHIFT)) ||
2286 (nosnoop_scale > (PCI_LTR_SCALE_MASK >> PCI_LTR_SCALE_SHIFT)))
2287 return -EINVAL;
2288
2289 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
2290 if (!pos)
2291 return -ENOTSUPP;
2292
2293 val = (snoop_scale << PCI_LTR_SCALE_SHIFT) | snoop_lat_ns;
2294 ret = pci_write_config_word(dev, pos + PCI_LTR_MAX_SNOOP_LAT, val);
2295 if (ret != 4)
2296 return -EIO;
2297
2298 val = (nosnoop_scale << PCI_LTR_SCALE_SHIFT) | nosnoop_lat_ns;
2299 ret = pci_write_config_word(dev, pos + PCI_LTR_MAX_NOSNOOP_LAT, val);
2300 if (ret != 4)
2301 return -EIO;
2302
2303 return 0;
2304 }
2305 EXPORT_SYMBOL(pci_set_ltr);
2306
2307 static int pci_acs_enable;
2308
2309 /**
2310 * pci_request_acs - ask for ACS to be enabled if supported
2311 */
2312 void pci_request_acs(void)
2313 {
2314 pci_acs_enable = 1;
2315 }
2316
2317 /**
2318 * pci_enable_acs - enable ACS if hardware support it
2319 * @dev: the PCI device
2320 */
2321 void pci_enable_acs(struct pci_dev *dev)
2322 {
2323 int pos;
2324 u16 cap;
2325 u16 ctrl;
2326
2327 if (!pci_acs_enable)
2328 return;
2329
2330 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
2331 if (!pos)
2332 return;
2333
2334 pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
2335 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
2336
2337 /* Source Validation */
2338 ctrl |= (cap & PCI_ACS_SV);
2339
2340 /* P2P Request Redirect */
2341 ctrl |= (cap & PCI_ACS_RR);
2342
2343 /* P2P Completion Redirect */
2344 ctrl |= (cap & PCI_ACS_CR);
2345
2346 /* Upstream Forwarding */
2347 ctrl |= (cap & PCI_ACS_UF);
2348
2349 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
2350 }
2351
2352 /**
2353 * pci_acs_enabled - test ACS against required flags for a given device
2354 * @pdev: device to test
2355 * @acs_flags: required PCI ACS flags
2356 *
2357 * Return true if the device supports the provided flags. Automatically
2358 * filters out flags that are not implemented on multifunction devices.
2359 */
2360 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
2361 {
2362 int pos, ret;
2363 u16 ctrl;
2364
2365 ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
2366 if (ret >= 0)
2367 return ret > 0;
2368
2369 if (!pci_is_pcie(pdev))
2370 return false;
2371
2372 /* Filter out flags not applicable to multifunction */
2373 if (pdev->multifunction)
2374 acs_flags &= (PCI_ACS_RR | PCI_ACS_CR |
2375 PCI_ACS_EC | PCI_ACS_DT);
2376
2377 if (pci_pcie_type(pdev) == PCI_EXP_TYPE_DOWNSTREAM ||
2378 pci_pcie_type(pdev) == PCI_EXP_TYPE_ROOT_PORT ||
2379 pdev->multifunction) {
2380 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ACS);
2381 if (!pos)
2382 return false;
2383
2384 pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
2385 if ((ctrl & acs_flags) != acs_flags)
2386 return false;
2387 }
2388
2389 return true;
2390 }
2391
2392 /**
2393 * pci_acs_path_enable - test ACS flags from start to end in a hierarchy
2394 * @start: starting downstream device
2395 * @end: ending upstream device or NULL to search to the root bus
2396 * @acs_flags: required flags
2397 *
2398 * Walk up a device tree from start to end testing PCI ACS support. If
2399 * any step along the way does not support the required flags, return false.
2400 */
2401 bool pci_acs_path_enabled(struct pci_dev *start,
2402 struct pci_dev *end, u16 acs_flags)
2403 {
2404 struct pci_dev *pdev, *parent = start;
2405
2406 do {
2407 pdev = parent;
2408
2409 if (!pci_acs_enabled(pdev, acs_flags))
2410 return false;
2411
2412 if (pci_is_root_bus(pdev->bus))
2413 return (end == NULL);
2414
2415 parent = pdev->bus->self;
2416 } while (pdev != end);
2417
2418 return true;
2419 }
2420
2421 /**
2422 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
2423 * @dev: the PCI device
2424 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTD, 4=INTD)
2425 *
2426 * Perform INTx swizzling for a device behind one level of bridge. This is
2427 * required by section 9.1 of the PCI-to-PCI bridge specification for devices
2428 * behind bridges on add-in cards. For devices with ARI enabled, the slot
2429 * number is always 0 (see the Implementation Note in section 2.2.8.1 of
2430 * the PCI Express Base Specification, Revision 2.1)
2431 */
2432 u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin)
2433 {
2434 int slot;
2435
2436 if (pci_ari_enabled(dev->bus))
2437 slot = 0;
2438 else
2439 slot = PCI_SLOT(dev->devfn);
2440
2441 return (((pin - 1) + slot) % 4) + 1;
2442 }
2443
2444 int
2445 pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
2446 {
2447 u8 pin;
2448
2449 pin = dev->pin;
2450 if (!pin)
2451 return -1;
2452
2453 while (!pci_is_root_bus(dev->bus)) {
2454 pin = pci_swizzle_interrupt_pin(dev, pin);
2455 dev = dev->bus->self;
2456 }
2457 *bridge = dev;
2458 return pin;
2459 }
2460
2461 /**
2462 * pci_common_swizzle - swizzle INTx all the way to root bridge
2463 * @dev: the PCI device
2464 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
2465 *
2466 * Perform INTx swizzling for a device. This traverses through all PCI-to-PCI
2467 * bridges all the way up to a PCI root bus.
2468 */
2469 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
2470 {
2471 u8 pin = *pinp;
2472
2473 while (!pci_is_root_bus(dev->bus)) {
2474 pin = pci_swizzle_interrupt_pin(dev, pin);
2475 dev = dev->bus->self;
2476 }
2477 *pinp = pin;
2478 return PCI_SLOT(dev->devfn);
2479 }
2480
2481 /**
2482 * pci_release_region - Release a PCI bar
2483 * @pdev: PCI device whose resources were previously reserved by pci_request_region
2484 * @bar: BAR to release
2485 *
2486 * Releases the PCI I/O and memory resources previously reserved by a
2487 * successful call to pci_request_region. Call this function only
2488 * after all use of the PCI regions has ceased.
2489 */
2490 void pci_release_region(struct pci_dev *pdev, int bar)
2491 {
2492 struct pci_devres *dr;
2493
2494 if (pci_resource_len(pdev, bar) == 0)
2495 return;
2496 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
2497 release_region(pci_resource_start(pdev, bar),
2498 pci_resource_len(pdev, bar));
2499 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
2500 release_mem_region(pci_resource_start(pdev, bar),
2501 pci_resource_len(pdev, bar));
2502
2503 dr = find_pci_dr(pdev);
2504 if (dr)
2505 dr->region_mask &= ~(1 << bar);
2506 }
2507
2508 /**
2509 * __pci_request_region - Reserved PCI I/O and memory resource
2510 * @pdev: PCI device whose resources are to be reserved
2511 * @bar: BAR to be reserved
2512 * @res_name: Name to be associated with resource.
2513 * @exclusive: whether the region access is exclusive or not
2514 *
2515 * Mark the PCI region associated with PCI device @pdev BR @bar as
2516 * being reserved by owner @res_name. Do not access any
2517 * address inside the PCI regions unless this call returns
2518 * successfully.
2519 *
2520 * If @exclusive is set, then the region is marked so that userspace
2521 * is explicitly not allowed to map the resource via /dev/mem or
2522 * sysfs MMIO access.
2523 *
2524 * Returns 0 on success, or %EBUSY on error. A warning
2525 * message is also printed on failure.
2526 */
2527 static int __pci_request_region(struct pci_dev *pdev, int bar, const char *res_name,
2528 int exclusive)
2529 {
2530 struct pci_devres *dr;
2531
2532 if (pci_resource_len(pdev, bar) == 0)
2533 return 0;
2534
2535 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
2536 if (!request_region(pci_resource_start(pdev, bar),
2537 pci_resource_len(pdev, bar), res_name))
2538 goto err_out;
2539 }
2540 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
2541 if (!__request_mem_region(pci_resource_start(pdev, bar),
2542 pci_resource_len(pdev, bar), res_name,
2543 exclusive))
2544 goto err_out;
2545 }
2546
2547 dr = find_pci_dr(pdev);
2548 if (dr)
2549 dr->region_mask |= 1 << bar;
2550
2551 return 0;
2552
2553 err_out:
2554 dev_warn(&pdev->dev, "BAR %d: can't reserve %pR\n", bar,
2555 &pdev->resource[bar]);
2556 return -EBUSY;
2557 }
2558
2559 /**
2560 * pci_request_region - Reserve PCI I/O and memory resource
2561 * @pdev: PCI device whose resources are to be reserved
2562 * @bar: BAR to be reserved
2563 * @res_name: Name to be associated with resource
2564 *
2565 * Mark the PCI region associated with PCI device @pdev BAR @bar as
2566 * being reserved by owner @res_name. Do not access any
2567 * address inside the PCI regions unless this call returns
2568 * successfully.
2569 *
2570 * Returns 0 on success, or %EBUSY on error. A warning
2571 * message is also printed on failure.
2572 */
2573 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
2574 {
2575 return __pci_request_region(pdev, bar, res_name, 0);
2576 }
2577
2578 /**
2579 * pci_request_region_exclusive - Reserved PCI I/O and memory resource
2580 * @pdev: PCI device whose resources are to be reserved
2581 * @bar: BAR to be reserved
2582 * @res_name: Name to be associated with resource.
2583 *
2584 * Mark the PCI region associated with PCI device @pdev BR @bar as
2585 * being reserved by owner @res_name. Do not access any
2586 * address inside the PCI regions unless this call returns
2587 * successfully.
2588 *
2589 * Returns 0 on success, or %EBUSY on error. A warning
2590 * message is also printed on failure.
2591 *
2592 * The key difference that _exclusive makes it that userspace is
2593 * explicitly not allowed to map the resource via /dev/mem or
2594 * sysfs.
2595 */
2596 int pci_request_region_exclusive(struct pci_dev *pdev, int bar, const char *res_name)
2597 {
2598 return __pci_request_region(pdev, bar, res_name, IORESOURCE_EXCLUSIVE);
2599 }
2600 /**
2601 * pci_release_selected_regions - Release selected PCI I/O and memory resources
2602 * @pdev: PCI device whose resources were previously reserved
2603 * @bars: Bitmask of BARs to be released
2604 *
2605 * Release selected PCI I/O and memory resources previously reserved.
2606 * Call this function only after all use of the PCI regions has ceased.
2607 */
2608 void pci_release_selected_regions(struct pci_dev *pdev, int bars)
2609 {
2610 int i;
2611
2612 for (i = 0; i < 6; i++)
2613 if (bars & (1 << i))
2614 pci_release_region(pdev, i);
2615 }
2616
2617 static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
2618 const char *res_name, int excl)
2619 {
2620 int i;
2621
2622 for (i = 0; i < 6; i++)
2623 if (bars & (1 << i))
2624 if (__pci_request_region(pdev, i, res_name, excl))
2625 goto err_out;
2626 return 0;
2627
2628 err_out:
2629 while(--i >= 0)
2630 if (bars & (1 << i))
2631 pci_release_region(pdev, i);
2632
2633 return -EBUSY;
2634 }
2635
2636
2637 /**
2638 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
2639 * @pdev: PCI device whose resources are to be reserved
2640 * @bars: Bitmask of BARs to be requested
2641 * @res_name: Name to be associated with resource
2642 */
2643 int pci_request_selected_regions(struct pci_dev *pdev, int bars,
2644 const char *res_name)
2645 {
2646 return __pci_request_selected_regions(pdev, bars, res_name, 0);
2647 }
2648
2649 int pci_request_selected_regions_exclusive(struct pci_dev *pdev,
2650 int bars, const char *res_name)
2651 {
2652 return __pci_request_selected_regions(pdev, bars, res_name,
2653 IORESOURCE_EXCLUSIVE);
2654 }
2655
2656 /**
2657 * pci_release_regions - Release reserved PCI I/O and memory resources
2658 * @pdev: PCI device whose resources were previously reserved by pci_request_regions
2659 *
2660 * Releases all PCI I/O and memory resources previously reserved by a
2661 * successful call to pci_request_regions. Call this function only
2662 * after all use of the PCI regions has ceased.
2663 */
2664
2665 void pci_release_regions(struct pci_dev *pdev)
2666 {
2667 pci_release_selected_regions(pdev, (1 << 6) - 1);
2668 }
2669
2670 /**
2671 * pci_request_regions - Reserved PCI I/O and memory resources
2672 * @pdev: PCI device whose resources are to be reserved
2673 * @res_name: Name to be associated with resource.
2674 *
2675 * Mark all PCI regions associated with PCI device @pdev as
2676 * being reserved by owner @res_name. Do not access any
2677 * address inside the PCI regions unless this call returns
2678 * successfully.
2679 *
2680 * Returns 0 on success, or %EBUSY on error. A warning
2681 * message is also printed on failure.
2682 */
2683 int pci_request_regions(struct pci_dev *pdev, const char *res_name)
2684 {
2685 return pci_request_selected_regions(pdev, ((1 << 6) - 1), res_name);
2686 }
2687
2688 /**
2689 * pci_request_regions_exclusive - Reserved PCI I/O and memory resources
2690 * @pdev: PCI device whose resources are to be reserved
2691 * @res_name: Name to be associated with resource.
2692 *
2693 * Mark all PCI regions associated with PCI device @pdev as
2694 * being reserved by owner @res_name. Do not access any
2695 * address inside the PCI regions unless this call returns
2696 * successfully.
2697 *
2698 * pci_request_regions_exclusive() will mark the region so that
2699 * /dev/mem and the sysfs MMIO access will not be allowed.
2700 *
2701 * Returns 0 on success, or %EBUSY on error. A warning
2702 * message is also printed on failure.
2703 */
2704 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
2705 {
2706 return pci_request_selected_regions_exclusive(pdev,
2707 ((1 << 6) - 1), res_name);
2708 }
2709
2710 static void __pci_set_master(struct pci_dev *dev, bool enable)
2711 {
2712 u16 old_cmd, cmd;
2713
2714 pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
2715 if (enable)
2716 cmd = old_cmd | PCI_COMMAND_MASTER;
2717 else
2718 cmd = old_cmd & ~PCI_COMMAND_MASTER;
2719 if (cmd != old_cmd) {
2720 dev_dbg(&dev->dev, "%s bus mastering\n",
2721 enable ? "enabling" : "disabling");
2722 pci_write_config_word(dev, PCI_COMMAND, cmd);
2723 }
2724 dev->is_busmaster = enable;
2725 }
2726
2727 /**
2728 * pcibios_setup - process "pci=" kernel boot arguments
2729 * @str: string used to pass in "pci=" kernel boot arguments
2730 *
2731 * Process kernel boot arguments. This is the default implementation.
2732 * Architecture specific implementations can override this as necessary.
2733 */
2734 char * __weak __init pcibios_setup(char *str)
2735 {
2736 return str;
2737 }
2738
2739 /**
2740 * pcibios_set_master - enable PCI bus-mastering for device dev
2741 * @dev: the PCI device to enable
2742 *
2743 * Enables PCI bus-mastering for the device. This is the default
2744 * implementation. Architecture specific implementations can override
2745 * this if necessary.
2746 */
2747 void __weak pcibios_set_master(struct pci_dev *dev)
2748 {
2749 u8 lat;
2750
2751 /* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
2752 if (pci_is_pcie(dev))
2753 return;
2754
2755 pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
2756 if (lat < 16)
2757 lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
2758 else if (lat > pcibios_max_latency)
2759 lat = pcibios_max_latency;
2760 else
2761 return;
2762 dev_printk(KERN_DEBUG, &dev->dev, "setting latency timer to %d\n", lat);
2763 pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
2764 }
2765
2766 /**
2767 * pci_set_master - enables bus-mastering for device dev
2768 * @dev: the PCI device to enable
2769 *
2770 * Enables bus-mastering on the device and calls pcibios_set_master()
2771 * to do the needed arch specific settings.
2772 */
2773 void pci_set_master(struct pci_dev *dev)
2774 {
2775 __pci_set_master(dev, true);
2776 pcibios_set_master(dev);
2777 }
2778
2779 /**
2780 * pci_clear_master - disables bus-mastering for device dev
2781 * @dev: the PCI device to disable
2782 */
2783 void pci_clear_master(struct pci_dev *dev)
2784 {
2785 __pci_set_master(dev, false);
2786 }
2787
2788 /**
2789 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
2790 * @dev: the PCI device for which MWI is to be enabled
2791 *
2792 * Helper function for pci_set_mwi.
2793 * Originally copied from drivers/net/acenic.c.
2794 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
2795 *
2796 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2797 */
2798 int pci_set_cacheline_size(struct pci_dev *dev)
2799 {
2800 u8 cacheline_size;
2801
2802 if (!pci_cache_line_size)
2803 return -EINVAL;
2804
2805 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be
2806 equal to or multiple of the right value. */
2807 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
2808 if (cacheline_size >= pci_cache_line_size &&
2809 (cacheline_size % pci_cache_line_size) == 0)
2810 return 0;
2811
2812 /* Write the correct value. */
2813 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
2814 /* Read it back. */
2815 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
2816 if (cacheline_size == pci_cache_line_size)
2817 return 0;
2818
2819 dev_printk(KERN_DEBUG, &dev->dev, "cache line size of %d is not "
2820 "supported\n", pci_cache_line_size << 2);
2821
2822 return -EINVAL;
2823 }
2824 EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
2825
2826 #ifdef PCI_DISABLE_MWI
2827 int pci_set_mwi(struct pci_dev *dev)
2828 {
2829 return 0;
2830 }
2831
2832 int pci_try_set_mwi(struct pci_dev *dev)
2833 {
2834 return 0;
2835 }
2836
2837 void pci_clear_mwi(struct pci_dev *dev)
2838 {
2839 }
2840
2841 #else
2842
2843 /**
2844 * pci_set_mwi - enables memory-write-invalidate PCI transaction
2845 * @dev: the PCI device for which MWI is enabled
2846 *
2847 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
2848 *
2849 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2850 */
2851 int
2852 pci_set_mwi(struct pci_dev *dev)
2853 {
2854 int rc;
2855 u16 cmd;
2856
2857 rc = pci_set_cacheline_size(dev);
2858 if (rc)
2859 return rc;
2860
2861 pci_read_config_word(dev, PCI_COMMAND, &cmd);
2862 if (! (cmd & PCI_COMMAND_INVALIDATE)) {
2863 dev_dbg(&dev->dev, "enabling Mem-Wr-Inval\n");
2864 cmd |= PCI_COMMAND_INVALIDATE;
2865 pci_write_config_word(dev, PCI_COMMAND, cmd);
2866 }
2867
2868 return 0;
2869 }
2870
2871 /**
2872 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
2873 * @dev: the PCI device for which MWI is enabled
2874 *
2875 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
2876 * Callers are not required to check the return value.
2877 *
2878 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2879 */
2880 int pci_try_set_mwi(struct pci_dev *dev)
2881 {
2882 int rc = pci_set_mwi(dev);
2883 return rc;
2884 }
2885
2886 /**
2887 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
2888 * @dev: the PCI device to disable
2889 *
2890 * Disables PCI Memory-Write-Invalidate transaction on the device
2891 */
2892 void
2893 pci_clear_mwi(struct pci_dev *dev)
2894 {
2895 u16 cmd;
2896
2897 pci_read_config_word(dev, PCI_COMMAND, &cmd);
2898 if (cmd & PCI_COMMAND_INVALIDATE) {
2899 cmd &= ~PCI_COMMAND_INVALIDATE;
2900 pci_write_config_word(dev, PCI_COMMAND, cmd);
2901 }
2902 }
2903 #endif /* ! PCI_DISABLE_MWI */
2904
2905 /**
2906 * pci_intx - enables/disables PCI INTx for device dev
2907 * @pdev: the PCI device to operate on
2908 * @enable: boolean: whether to enable or disable PCI INTx
2909 *
2910 * Enables/disables PCI INTx for device dev
2911 */
2912 void
2913 pci_intx(struct pci_dev *pdev, int enable)
2914 {
2915 u16 pci_command, new;
2916
2917 pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
2918
2919 if (enable) {
2920 new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
2921 } else {
2922 new = pci_command | PCI_COMMAND_INTX_DISABLE;
2923 }
2924
2925 if (new != pci_command) {
2926 struct pci_devres *dr;
2927
2928 pci_write_config_word(pdev, PCI_COMMAND, new);
2929
2930 dr = find_pci_dr(pdev);
2931 if (dr && !dr->restore_intx) {
2932 dr->restore_intx = 1;
2933 dr->orig_intx = !enable;
2934 }
2935 }
2936 }
2937
2938 /**
2939 * pci_intx_mask_supported - probe for INTx masking support
2940 * @dev: the PCI device to operate on
2941 *
2942 * Check if the device dev support INTx masking via the config space
2943 * command word.
2944 */
2945 bool pci_intx_mask_supported(struct pci_dev *dev)
2946 {
2947 bool mask_supported = false;
2948 u16 orig, new;
2949
2950 if (dev->broken_intx_masking)
2951 return false;
2952
2953 pci_cfg_access_lock(dev);
2954
2955 pci_read_config_word(dev, PCI_COMMAND, &orig);
2956 pci_write_config_word(dev, PCI_COMMAND,
2957 orig ^ PCI_COMMAND_INTX_DISABLE);
2958 pci_read_config_word(dev, PCI_COMMAND, &new);
2959
2960 /*
2961 * There's no way to protect against hardware bugs or detect them
2962 * reliably, but as long as we know what the value should be, let's
2963 * go ahead and check it.
2964 */
2965 if ((new ^ orig) & ~PCI_COMMAND_INTX_DISABLE) {
2966 dev_err(&dev->dev, "Command register changed from "
2967 "0x%x to 0x%x: driver or hardware bug?\n", orig, new);
2968 } else if ((new ^ orig) & PCI_COMMAND_INTX_DISABLE) {
2969 mask_supported = true;
2970 pci_write_config_word(dev, PCI_COMMAND, orig);
2971 }
2972
2973 pci_cfg_access_unlock(dev);
2974 return mask_supported;
2975 }
2976 EXPORT_SYMBOL_GPL(pci_intx_mask_supported);
2977
2978 static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask)
2979 {
2980 struct pci_bus *bus = dev->bus;
2981 bool mask_updated = true;
2982 u32 cmd_status_dword;
2983 u16 origcmd, newcmd;
2984 unsigned long flags;
2985 bool irq_pending;
2986
2987 /*
2988 * We do a single dword read to retrieve both command and status.
2989 * Document assumptions that make this possible.
2990 */
2991 BUILD_BUG_ON(PCI_COMMAND % 4);
2992 BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS);
2993
2994 raw_spin_lock_irqsave(&pci_lock, flags);
2995
2996 bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword);
2997
2998 irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT;
2999
3000 /*
3001 * Check interrupt status register to see whether our device
3002 * triggered the interrupt (when masking) or the next IRQ is
3003 * already pending (when unmasking).
3004 */
3005 if (mask != irq_pending) {
3006 mask_updated = false;
3007 goto done;
3008 }
3009
3010 origcmd = cmd_status_dword;
3011 newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE;
3012 if (mask)
3013 newcmd |= PCI_COMMAND_INTX_DISABLE;
3014 if (newcmd != origcmd)
3015 bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd);
3016
3017 done:
3018 raw_spin_unlock_irqrestore(&pci_lock, flags);
3019
3020 return mask_updated;
3021 }
3022
3023 /**
3024 * pci_check_and_mask_intx - mask INTx on pending interrupt
3025 * @dev: the PCI device to operate on
3026 *
3027 * Check if the device dev has its INTx line asserted, mask it and
3028 * return true in that case. False is returned if not interrupt was
3029 * pending.
3030 */
3031 bool pci_check_and_mask_intx(struct pci_dev *dev)
3032 {
3033 return pci_check_and_set_intx_mask(dev, true);
3034 }
3035 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx);
3036
3037 /**
3038 * pci_check_and_mask_intx - unmask INTx of no interrupt is pending
3039 * @dev: the PCI device to operate on
3040 *
3041 * Check if the device dev has its INTx line asserted, unmask it if not
3042 * and return true. False is returned and the mask remains active if
3043 * there was still an interrupt pending.
3044 */
3045 bool pci_check_and_unmask_intx(struct pci_dev *dev)
3046 {
3047 return pci_check_and_set_intx_mask(dev, false);
3048 }
3049 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx);
3050
3051 /**
3052 * pci_msi_off - disables any msi or msix capabilities
3053 * @dev: the PCI device to operate on
3054 *
3055 * If you want to use msi see pci_enable_msi and friends.
3056 * This is a lower level primitive that allows us to disable
3057 * msi operation at the device level.
3058 */
3059 void pci_msi_off(struct pci_dev *dev)
3060 {
3061 int pos;
3062 u16 control;
3063
3064 pos = pci_find_capability(dev, PCI_CAP_ID_MSI);
3065 if (pos) {
3066 pci_read_config_word(dev, pos + PCI_MSI_FLAGS, &control);
3067 control &= ~PCI_MSI_FLAGS_ENABLE;
3068 pci_write_config_word(dev, pos + PCI_MSI_FLAGS, control);
3069 }
3070 pos = pci_find_capability(dev, PCI_CAP_ID_MSIX);
3071 if (pos) {
3072 pci_read_config_word(dev, pos + PCI_MSIX_FLAGS, &control);
3073 control &= ~PCI_MSIX_FLAGS_ENABLE;
3074 pci_write_config_word(dev, pos + PCI_MSIX_FLAGS, control);
3075 }
3076 }
3077 EXPORT_SYMBOL_GPL(pci_msi_off);
3078
3079 int pci_set_dma_max_seg_size(struct pci_dev *dev, unsigned int size)
3080 {
3081 return dma_set_max_seg_size(&dev->dev, size);
3082 }
3083 EXPORT_SYMBOL(pci_set_dma_max_seg_size);
3084
3085 int pci_set_dma_seg_boundary(struct pci_dev *dev, unsigned long mask)
3086 {
3087 return dma_set_seg_boundary(&dev->dev, mask);
3088 }
3089 EXPORT_SYMBOL(pci_set_dma_seg_boundary);
3090
3091 static int pcie_flr(struct pci_dev *dev, int probe)
3092 {
3093 int i;
3094 u32 cap;
3095 u16 status;
3096
3097 pcie_capability_read_dword(dev, PCI_EXP_DEVCAP, &cap);
3098 if (!(cap & PCI_EXP_DEVCAP_FLR))
3099 return -ENOTTY;
3100
3101 if (probe)
3102 return 0;
3103
3104 /* Wait for Transaction Pending bit clean */
3105 for (i = 0; i < 4; i++) {
3106 if (i)
3107 msleep((1 << (i - 1)) * 100);
3108
3109 pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &status);
3110 if (!(status & PCI_EXP_DEVSTA_TRPND))
3111 goto clear;
3112 }
3113
3114 dev_err(&dev->dev, "transaction is not cleared; "
3115 "proceeding with reset anyway\n");
3116
3117 clear:
3118 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
3119
3120 msleep(100);
3121
3122 return 0;
3123 }
3124
3125 static int pci_af_flr(struct pci_dev *dev, int probe)
3126 {
3127 int i;
3128 int pos;
3129 u8 cap;
3130 u8 status;
3131
3132 pos = pci_find_capability(dev, PCI_CAP_ID_AF);
3133 if (!pos)
3134 return -ENOTTY;
3135
3136 pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
3137 if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
3138 return -ENOTTY;
3139
3140 if (probe)
3141 return 0;
3142
3143 /* Wait for Transaction Pending bit clean */
3144 for (i = 0; i < 4; i++) {
3145 if (i)
3146 msleep((1 << (i - 1)) * 100);
3147
3148 pci_read_config_byte(dev, pos + PCI_AF_STATUS, &status);
3149 if (!(status & PCI_AF_STATUS_TP))
3150 goto clear;
3151 }
3152
3153 dev_err(&dev->dev, "transaction is not cleared; "
3154 "proceeding with reset anyway\n");
3155
3156 clear:
3157 pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
3158 msleep(100);
3159
3160 return 0;
3161 }
3162
3163 /**
3164 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
3165 * @dev: Device to reset.
3166 * @probe: If set, only check if the device can be reset this way.
3167 *
3168 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
3169 * unset, it will be reinitialized internally when going from PCI_D3hot to
3170 * PCI_D0. If that's the case and the device is not in a low-power state
3171 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
3172 *
3173 * NOTE: This causes the caller to sleep for twice the device power transition
3174 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
3175 * by devault (i.e. unless the @dev's d3_delay field has a different value).
3176 * Moreover, only devices in D0 can be reset by this function.
3177 */
3178 static int pci_pm_reset(struct pci_dev *dev, int probe)
3179 {
3180 u16 csr;
3181
3182 if (!dev->pm_cap)
3183 return -ENOTTY;
3184
3185 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
3186 if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
3187 return -ENOTTY;
3188
3189 if (probe)
3190 return 0;
3191
3192 if (dev->current_state != PCI_D0)
3193 return -EINVAL;
3194
3195 csr &= ~PCI_PM_CTRL_STATE_MASK;
3196 csr |= PCI_D3hot;
3197 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
3198 pci_dev_d3_sleep(dev);
3199
3200 csr &= ~PCI_PM_CTRL_STATE_MASK;
3201 csr |= PCI_D0;
3202 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
3203 pci_dev_d3_sleep(dev);
3204
3205 return 0;
3206 }
3207
3208 static int pci_parent_bus_reset(struct pci_dev *dev, int probe)
3209 {
3210 u16 ctrl;
3211 struct pci_dev *pdev;
3212
3213 if (pci_is_root_bus(dev->bus) || dev->subordinate || !dev->bus->self)
3214 return -ENOTTY;
3215
3216 list_for_each_entry(pdev, &dev->bus->devices, bus_list)
3217 if (pdev != dev)
3218 return -ENOTTY;
3219
3220 if (probe)
3221 return 0;
3222
3223 pci_read_config_word(dev->bus->self, PCI_BRIDGE_CONTROL, &ctrl);
3224 ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
3225 pci_write_config_word(dev->bus->self, PCI_BRIDGE_CONTROL, ctrl);
3226 msleep(100);
3227
3228 ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
3229 pci_write_config_word(dev->bus->self, PCI_BRIDGE_CONTROL, ctrl);
3230 msleep(100);
3231
3232 return 0;
3233 }
3234
3235 static int __pci_dev_reset(struct pci_dev *dev, int probe)
3236 {
3237 int rc;
3238
3239 might_sleep();
3240
3241 rc = pci_dev_specific_reset(dev, probe);
3242 if (rc != -ENOTTY)
3243 goto done;
3244
3245 rc = pcie_flr(dev, probe);
3246 if (rc != -ENOTTY)
3247 goto done;
3248
3249 rc = pci_af_flr(dev, probe);
3250 if (rc != -ENOTTY)
3251 goto done;
3252
3253 rc = pci_pm_reset(dev, probe);
3254 if (rc != -ENOTTY)
3255 goto done;
3256
3257 rc = pci_parent_bus_reset(dev, probe);
3258 done:
3259 return rc;
3260 }
3261
3262 static int pci_dev_reset(struct pci_dev *dev, int probe)
3263 {
3264 int rc;
3265
3266 if (!probe) {
3267 pci_cfg_access_lock(dev);
3268 /* block PM suspend, driver probe, etc. */
3269 device_lock(&dev->dev);
3270 }
3271
3272 rc = __pci_dev_reset(dev, probe);
3273
3274 if (!probe) {
3275 device_unlock(&dev->dev);
3276 pci_cfg_access_unlock(dev);
3277 }
3278 return rc;
3279 }
3280 /**
3281 * __pci_reset_function - reset a PCI device function
3282 * @dev: PCI device to reset
3283 *
3284 * Some devices allow an individual function to be reset without affecting
3285 * other functions in the same device. The PCI device must be responsive
3286 * to PCI config space in order to use this function.
3287 *
3288 * The device function is presumed to be unused when this function is called.
3289 * Resetting the device will make the contents of PCI configuration space
3290 * random, so any caller of this must be prepared to reinitialise the
3291 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
3292 * etc.
3293 *
3294 * Returns 0 if the device function was successfully reset or negative if the
3295 * device doesn't support resetting a single function.
3296 */
3297 int __pci_reset_function(struct pci_dev *dev)
3298 {
3299 return pci_dev_reset(dev, 0);
3300 }
3301 EXPORT_SYMBOL_GPL(__pci_reset_function);
3302
3303 /**
3304 * __pci_reset_function_locked - reset a PCI device function while holding
3305 * the @dev mutex lock.
3306 * @dev: PCI device to reset
3307 *
3308 * Some devices allow an individual function to be reset without affecting
3309 * other functions in the same device. The PCI device must be responsive
3310 * to PCI config space in order to use this function.
3311 *
3312 * The device function is presumed to be unused and the caller is holding
3313 * the device mutex lock when this function is called.
3314 * Resetting the device will make the contents of PCI configuration space
3315 * random, so any caller of this must be prepared to reinitialise the
3316 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
3317 * etc.
3318 *
3319 * Returns 0 if the device function was successfully reset or negative if the
3320 * device doesn't support resetting a single function.
3321 */
3322 int __pci_reset_function_locked(struct pci_dev *dev)
3323 {
3324 return __pci_dev_reset(dev, 0);
3325 }
3326 EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
3327
3328 /**
3329 * pci_probe_reset_function - check whether the device can be safely reset
3330 * @dev: PCI device to reset
3331 *
3332 * Some devices allow an individual function to be reset without affecting
3333 * other functions in the same device. The PCI device must be responsive
3334 * to PCI config space in order to use this function.
3335 *
3336 * Returns 0 if the device function can be reset or negative if the
3337 * device doesn't support resetting a single function.
3338 */
3339 int pci_probe_reset_function(struct pci_dev *dev)
3340 {
3341 return pci_dev_reset(dev, 1);
3342 }
3343
3344 /**
3345 * pci_reset_function - quiesce and reset a PCI device function
3346 * @dev: PCI device to reset
3347 *
3348 * Some devices allow an individual function to be reset without affecting
3349 * other functions in the same device. The PCI device must be responsive
3350 * to PCI config space in order to use this function.
3351 *
3352 * This function does not just reset the PCI portion of a device, but
3353 * clears all the state associated with the device. This function differs
3354 * from __pci_reset_function in that it saves and restores device state
3355 * over the reset.
3356 *
3357 * Returns 0 if the device function was successfully reset or negative if the
3358 * device doesn't support resetting a single function.
3359 */
3360 int pci_reset_function(struct pci_dev *dev)
3361 {
3362 int rc;
3363
3364 rc = pci_dev_reset(dev, 1);
3365 if (rc)
3366 return rc;
3367
3368 pci_save_state(dev);
3369
3370 /*
3371 * both INTx and MSI are disabled after the Interrupt Disable bit
3372 * is set and the Bus Master bit is cleared.
3373 */
3374 pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
3375
3376 rc = pci_dev_reset(dev, 0);
3377
3378 pci_restore_state(dev);
3379
3380 return rc;
3381 }
3382 EXPORT_SYMBOL_GPL(pci_reset_function);
3383
3384 /**
3385 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
3386 * @dev: PCI device to query
3387 *
3388 * Returns mmrbc: maximum designed memory read count in bytes
3389 * or appropriate error value.
3390 */
3391 int pcix_get_max_mmrbc(struct pci_dev *dev)
3392 {
3393 int cap;
3394 u32 stat;
3395
3396 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
3397 if (!cap)
3398 return -EINVAL;
3399
3400 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
3401 return -EINVAL;
3402
3403 return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21);
3404 }
3405 EXPORT_SYMBOL(pcix_get_max_mmrbc);
3406
3407 /**
3408 * pcix_get_mmrbc - get PCI-X maximum memory read byte count
3409 * @dev: PCI device to query
3410 *
3411 * Returns mmrbc: maximum memory read count in bytes
3412 * or appropriate error value.
3413 */
3414 int pcix_get_mmrbc(struct pci_dev *dev)
3415 {
3416 int cap;
3417 u16 cmd;
3418
3419 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
3420 if (!cap)
3421 return -EINVAL;
3422
3423 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
3424 return -EINVAL;
3425
3426 return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
3427 }
3428 EXPORT_SYMBOL(pcix_get_mmrbc);
3429
3430 /**
3431 * pcix_set_mmrbc - set PCI-X maximum memory read byte count
3432 * @dev: PCI device to query
3433 * @mmrbc: maximum memory read count in bytes
3434 * valid values are 512, 1024, 2048, 4096
3435 *
3436 * If possible sets maximum memory read byte count, some bridges have erratas
3437 * that prevent this.
3438 */
3439 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
3440 {
3441 int cap;
3442 u32 stat, v, o;
3443 u16 cmd;
3444
3445 if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
3446 return -EINVAL;
3447
3448 v = ffs(mmrbc) - 10;
3449
3450 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
3451 if (!cap)
3452 return -EINVAL;
3453
3454 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
3455 return -EINVAL;
3456
3457 if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
3458 return -E2BIG;
3459
3460 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
3461 return -EINVAL;
3462
3463 o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
3464 if (o != v) {
3465 if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
3466 return -EIO;
3467
3468 cmd &= ~PCI_X_CMD_MAX_READ;
3469 cmd |= v << 2;
3470 if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
3471 return -EIO;
3472 }
3473 return 0;
3474 }
3475 EXPORT_SYMBOL(pcix_set_mmrbc);
3476
3477 /**
3478 * pcie_get_readrq - get PCI Express read request size
3479 * @dev: PCI device to query
3480 *
3481 * Returns maximum memory read request in bytes
3482 * or appropriate error value.
3483 */
3484 int pcie_get_readrq(struct pci_dev *dev)
3485 {
3486 u16 ctl;
3487
3488 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
3489
3490 return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
3491 }
3492 EXPORT_SYMBOL(pcie_get_readrq);
3493
3494 /**
3495 * pcie_set_readrq - set PCI Express maximum memory read request
3496 * @dev: PCI device to query
3497 * @rq: maximum memory read count in bytes
3498 * valid values are 128, 256, 512, 1024, 2048, 4096
3499 *
3500 * If possible sets maximum memory read request in bytes
3501 */
3502 int pcie_set_readrq(struct pci_dev *dev, int rq)
3503 {
3504 u16 v;
3505
3506 if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
3507 return -EINVAL;
3508
3509 /*
3510 * If using the "performance" PCIe config, we clamp the
3511 * read rq size to the max packet size to prevent the
3512 * host bridge generating requests larger than we can
3513 * cope with
3514 */
3515 if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
3516 int mps = pcie_get_mps(dev);
3517
3518 if (mps < 0)
3519 return mps;
3520 if (mps < rq)
3521 rq = mps;
3522 }
3523
3524 v = (ffs(rq) - 8) << 12;
3525
3526 return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
3527 PCI_EXP_DEVCTL_READRQ, v);
3528 }
3529 EXPORT_SYMBOL(pcie_set_readrq);
3530
3531 /**
3532 * pcie_get_mps - get PCI Express maximum payload size
3533 * @dev: PCI device to query
3534 *
3535 * Returns maximum payload size in bytes
3536 * or appropriate error value.
3537 */
3538 int pcie_get_mps(struct pci_dev *dev)
3539 {
3540 u16 ctl;
3541
3542 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
3543
3544 return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
3545 }
3546
3547 /**
3548 * pcie_set_mps - set PCI Express maximum payload size
3549 * @dev: PCI device to query
3550 * @mps: maximum payload size in bytes
3551 * valid values are 128, 256, 512, 1024, 2048, 4096
3552 *
3553 * If possible sets maximum payload size
3554 */
3555 int pcie_set_mps(struct pci_dev *dev, int mps)
3556 {
3557 u16 v;
3558
3559 if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
3560 return -EINVAL;
3561
3562 v = ffs(mps) - 8;
3563 if (v > dev->pcie_mpss)
3564 return -EINVAL;
3565 v <<= 5;
3566
3567 return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
3568 PCI_EXP_DEVCTL_PAYLOAD, v);
3569 }
3570
3571 /**
3572 * pci_select_bars - Make BAR mask from the type of resource
3573 * @dev: the PCI device for which BAR mask is made
3574 * @flags: resource type mask to be selected
3575 *
3576 * This helper routine makes bar mask from the type of resource.
3577 */
3578 int pci_select_bars(struct pci_dev *dev, unsigned long flags)
3579 {
3580 int i, bars = 0;
3581 for (i = 0; i < PCI_NUM_RESOURCES; i++)
3582 if (pci_resource_flags(dev, i) & flags)
3583 bars |= (1 << i);
3584 return bars;
3585 }
3586
3587 /**
3588 * pci_resource_bar - get position of the BAR associated with a resource
3589 * @dev: the PCI device
3590 * @resno: the resource number
3591 * @type: the BAR type to be filled in
3592 *
3593 * Returns BAR position in config space, or 0 if the BAR is invalid.
3594 */
3595 int pci_resource_bar(struct pci_dev *dev, int resno, enum pci_bar_type *type)
3596 {
3597 int reg;
3598
3599 if (resno < PCI_ROM_RESOURCE) {
3600 *type = pci_bar_unknown;
3601 return PCI_BASE_ADDRESS_0 + 4 * resno;
3602 } else if (resno == PCI_ROM_RESOURCE) {
3603 *type = pci_bar_mem32;
3604 return dev->rom_base_reg;
3605 } else if (resno < PCI_BRIDGE_RESOURCES) {
3606 /* device specific resource */
3607 reg = pci_iov_resource_bar(dev, resno, type);
3608 if (reg)
3609 return reg;
3610 }
3611
3612 dev_err(&dev->dev, "BAR %d: invalid resource\n", resno);
3613 return 0;
3614 }
3615
3616 /* Some architectures require additional programming to enable VGA */
3617 static arch_set_vga_state_t arch_set_vga_state;
3618
3619 void __init pci_register_set_vga_state(arch_set_vga_state_t func)
3620 {
3621 arch_set_vga_state = func; /* NULL disables */
3622 }
3623
3624 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
3625 unsigned int command_bits, u32 flags)
3626 {
3627 if (arch_set_vga_state)
3628 return arch_set_vga_state(dev, decode, command_bits,
3629 flags);
3630 return 0;
3631 }
3632
3633 /**
3634 * pci_set_vga_state - set VGA decode state on device and parents if requested
3635 * @dev: the PCI device
3636 * @decode: true = enable decoding, false = disable decoding
3637 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
3638 * @flags: traverse ancestors and change bridges
3639 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
3640 */
3641 int pci_set_vga_state(struct pci_dev *dev, bool decode,
3642 unsigned int command_bits, u32 flags)
3643 {
3644 struct pci_bus *bus;
3645 struct pci_dev *bridge;
3646 u16 cmd;
3647 int rc;
3648
3649 WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) & (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
3650
3651 /* ARCH specific VGA enables */
3652 rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
3653 if (rc)
3654 return rc;
3655
3656 if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
3657 pci_read_config_word(dev, PCI_COMMAND, &cmd);
3658 if (decode == true)
3659 cmd |= command_bits;
3660 else
3661 cmd &= ~command_bits;
3662 pci_write_config_word(dev, PCI_COMMAND, cmd);
3663 }
3664
3665 if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
3666 return 0;
3667
3668 bus = dev->bus;
3669 while (bus) {
3670 bridge = bus->self;
3671 if (bridge) {
3672 pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
3673 &cmd);
3674 if (decode == true)
3675 cmd |= PCI_BRIDGE_CTL_VGA;
3676 else
3677 cmd &= ~PCI_BRIDGE_CTL_VGA;
3678 pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
3679 cmd);
3680 }
3681 bus = bus->parent;
3682 }
3683 return 0;
3684 }
3685
3686 #define RESOURCE_ALIGNMENT_PARAM_SIZE COMMAND_LINE_SIZE
3687 static char resource_alignment_param[RESOURCE_ALIGNMENT_PARAM_SIZE] = {0};
3688 static DEFINE_SPINLOCK(resource_alignment_lock);
3689
3690 /**
3691 * pci_specified_resource_alignment - get resource alignment specified by user.
3692 * @dev: the PCI device to get
3693 *
3694 * RETURNS: Resource alignment if it is specified.
3695 * Zero if it is not specified.
3696 */
3697 static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev)
3698 {
3699 int seg, bus, slot, func, align_order, count;
3700 resource_size_t align = 0;
3701 char *p;
3702
3703 spin_lock(&resource_alignment_lock);
3704 p = resource_alignment_param;
3705 while (*p) {
3706 count = 0;
3707 if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
3708 p[count] == '@') {
3709 p += count + 1;
3710 } else {
3711 align_order = -1;
3712 }
3713 if (sscanf(p, "%x:%x:%x.%x%n",
3714 &seg, &bus, &slot, &func, &count) != 4) {
3715 seg = 0;
3716 if (sscanf(p, "%x:%x.%x%n",
3717 &bus, &slot, &func, &count) != 3) {
3718 /* Invalid format */
3719 printk(KERN_ERR "PCI: Can't parse resource_alignment parameter: %s\n",
3720 p);
3721 break;
3722 }
3723 }
3724 p += count;
3725 if (seg == pci_domain_nr(dev->bus) &&
3726 bus == dev->bus->number &&
3727 slot == PCI_SLOT(dev->devfn) &&
3728 func == PCI_FUNC(dev->devfn)) {
3729 if (align_order == -1) {
3730 align = PAGE_SIZE;
3731 } else {
3732 align = 1 << align_order;
3733 }
3734 /* Found */
3735 break;
3736 }
3737 if (*p != ';' && *p != ',') {
3738 /* End of param or invalid format */
3739 break;
3740 }
3741 p++;
3742 }
3743 spin_unlock(&resource_alignment_lock);
3744 return align;
3745 }
3746
3747 /*
3748 * This function disables memory decoding and releases memory resources
3749 * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
3750 * It also rounds up size to specified alignment.
3751 * Later on, the kernel will assign page-aligned memory resource back
3752 * to the device.
3753 */
3754 void pci_reassigndev_resource_alignment(struct pci_dev *dev)
3755 {
3756 int i;
3757 struct resource *r;
3758 resource_size_t align, size;
3759 u16 command;
3760
3761 /* check if specified PCI is target device to reassign */
3762 align = pci_specified_resource_alignment(dev);
3763 if (!align)
3764 return;
3765
3766 if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
3767 (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
3768 dev_warn(&dev->dev,
3769 "Can't reassign resources to host bridge.\n");
3770 return;
3771 }
3772
3773 dev_info(&dev->dev,
3774 "Disabling memory decoding and releasing memory resources.\n");
3775 pci_read_config_word(dev, PCI_COMMAND, &command);
3776 command &= ~PCI_COMMAND_MEMORY;
3777 pci_write_config_word(dev, PCI_COMMAND, command);
3778
3779 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++) {
3780 r = &dev->resource[i];
3781 if (!(r->flags & IORESOURCE_MEM))
3782 continue;
3783 size = resource_size(r);
3784 if (size < align) {
3785 size = align;
3786 dev_info(&dev->dev,
3787 "Rounding up size of resource #%d to %#llx.\n",
3788 i, (unsigned long long)size);
3789 }
3790 r->end = size - 1;
3791 r->start = 0;
3792 }
3793 /* Need to disable bridge's resource window,
3794 * to enable the kernel to reassign new resource
3795 * window later on.
3796 */
3797 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE &&
3798 (dev->class >> 8) == PCI_CLASS_BRIDGE_PCI) {
3799 for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
3800 r = &dev->resource[i];
3801 if (!(r->flags & IORESOURCE_MEM))
3802 continue;
3803 r->end = resource_size(r) - 1;
3804 r->start = 0;
3805 }
3806 pci_disable_bridge_window(dev);
3807 }
3808 }
3809
3810 static ssize_t pci_set_resource_alignment_param(const char *buf, size_t count)
3811 {
3812 if (count > RESOURCE_ALIGNMENT_PARAM_SIZE - 1)
3813 count = RESOURCE_ALIGNMENT_PARAM_SIZE - 1;
3814 spin_lock(&resource_alignment_lock);
3815 strncpy(resource_alignment_param, buf, count);
3816 resource_alignment_param[count] = '\0';
3817 spin_unlock(&resource_alignment_lock);
3818 return count;
3819 }
3820
3821 static ssize_t pci_get_resource_alignment_param(char *buf, size_t size)
3822 {
3823 size_t count;
3824 spin_lock(&resource_alignment_lock);
3825 count = snprintf(buf, size, "%s", resource_alignment_param);
3826 spin_unlock(&resource_alignment_lock);
3827 return count;
3828 }
3829
3830 static ssize_t pci_resource_alignment_show(struct bus_type *bus, char *buf)
3831 {
3832 return pci_get_resource_alignment_param(buf, PAGE_SIZE);
3833 }
3834
3835 static ssize_t pci_resource_alignment_store(struct bus_type *bus,
3836 const char *buf, size_t count)
3837 {
3838 return pci_set_resource_alignment_param(buf, count);
3839 }
3840
3841 BUS_ATTR(resource_alignment, 0644, pci_resource_alignment_show,
3842 pci_resource_alignment_store);
3843
3844 static int __init pci_resource_alignment_sysfs_init(void)
3845 {
3846 return bus_create_file(&pci_bus_type,
3847 &bus_attr_resource_alignment);
3848 }
3849
3850 late_initcall(pci_resource_alignment_sysfs_init);
3851
3852 static void pci_no_domains(void)
3853 {
3854 #ifdef CONFIG_PCI_DOMAINS
3855 pci_domains_supported = 0;
3856 #endif
3857 }
3858
3859 /**
3860 * pci_ext_cfg_avail - can we access extended PCI config space?
3861 *
3862 * Returns 1 if we can access PCI extended config space (offsets
3863 * greater than 0xff). This is the default implementation. Architecture
3864 * implementations can override this.
3865 */
3866 int __weak pci_ext_cfg_avail(void)
3867 {
3868 return 1;
3869 }
3870
3871 void __weak pci_fixup_cardbus(struct pci_bus *bus)
3872 {
3873 }
3874 EXPORT_SYMBOL(pci_fixup_cardbus);
3875
3876 static int __init pci_setup(char *str)
3877 {
3878 while (str) {
3879 char *k = strchr(str, ',');
3880 if (k)
3881 *k++ = 0;
3882 if (*str && (str = pcibios_setup(str)) && *str) {
3883 if (!strcmp(str, "nomsi")) {
3884 pci_no_msi();
3885 } else if (!strcmp(str, "noaer")) {
3886 pci_no_aer();
3887 } else if (!strncmp(str, "realloc=", 8)) {
3888 pci_realloc_get_opt(str + 8);
3889 } else if (!strncmp(str, "realloc", 7)) {
3890 pci_realloc_get_opt("on");
3891 } else if (!strcmp(str, "nodomains")) {
3892 pci_no_domains();
3893 } else if (!strncmp(str, "noari", 5)) {
3894 pcie_ari_disabled = true;
3895 } else if (!strncmp(str, "cbiosize=", 9)) {
3896 pci_cardbus_io_size = memparse(str + 9, &str);
3897 } else if (!strncmp(str, "cbmemsize=", 10)) {
3898 pci_cardbus_mem_size = memparse(str + 10, &str);
3899 } else if (!strncmp(str, "resource_alignment=", 19)) {
3900 pci_set_resource_alignment_param(str + 19,
3901 strlen(str + 19));
3902 } else if (!strncmp(str, "ecrc=", 5)) {
3903 pcie_ecrc_get_policy(str + 5);
3904 } else if (!strncmp(str, "hpiosize=", 9)) {
3905 pci_hotplug_io_size = memparse(str + 9, &str);
3906 } else if (!strncmp(str, "hpmemsize=", 10)) {
3907 pci_hotplug_mem_size = memparse(str + 10, &str);
3908 } else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
3909 pcie_bus_config = PCIE_BUS_TUNE_OFF;
3910 } else if (!strncmp(str, "pcie_bus_safe", 13)) {
3911 pcie_bus_config = PCIE_BUS_SAFE;
3912 } else if (!strncmp(str, "pcie_bus_perf", 13)) {
3913 pcie_bus_config = PCIE_BUS_PERFORMANCE;
3914 } else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
3915 pcie_bus_config = PCIE_BUS_PEER2PEER;
3916 } else if (!strncmp(str, "pcie_scan_all", 13)) {
3917 pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
3918 } else {
3919 printk(KERN_ERR "PCI: Unknown option `%s'\n",
3920 str);
3921 }
3922 }
3923 str = k;
3924 }
3925 return 0;
3926 }
3927 early_param("pci", pci_setup);
3928
3929 EXPORT_SYMBOL(pci_reenable_device);
3930 EXPORT_SYMBOL(pci_enable_device_io);
3931 EXPORT_SYMBOL(pci_enable_device_mem);
3932 EXPORT_SYMBOL(pci_enable_device);
3933 EXPORT_SYMBOL(pcim_enable_device);
3934 EXPORT_SYMBOL(pcim_pin_device);
3935 EXPORT_SYMBOL(pci_disable_device);
3936 EXPORT_SYMBOL(pci_find_capability);
3937 EXPORT_SYMBOL(pci_bus_find_capability);
3938 EXPORT_SYMBOL(pci_release_regions);
3939 EXPORT_SYMBOL(pci_request_regions);
3940 EXPORT_SYMBOL(pci_request_regions_exclusive);
3941 EXPORT_SYMBOL(pci_release_region);
3942 EXPORT_SYMBOL(pci_request_region);
3943 EXPORT_SYMBOL(pci_request_region_exclusive);
3944 EXPORT_SYMBOL(pci_release_selected_regions);
3945 EXPORT_SYMBOL(pci_request_selected_regions);
3946 EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
3947 EXPORT_SYMBOL(pci_set_master);
3948 EXPORT_SYMBOL(pci_clear_master);
3949 EXPORT_SYMBOL(pci_set_mwi);
3950 EXPORT_SYMBOL(pci_try_set_mwi);
3951 EXPORT_SYMBOL(pci_clear_mwi);
3952 EXPORT_SYMBOL_GPL(pci_intx);
3953 EXPORT_SYMBOL(pci_assign_resource);
3954 EXPORT_SYMBOL(pci_find_parent_resource);
3955 EXPORT_SYMBOL(pci_select_bars);
3956
3957 EXPORT_SYMBOL(pci_set_power_state);
3958 EXPORT_SYMBOL(pci_save_state);
3959 EXPORT_SYMBOL(pci_restore_state);
3960 EXPORT_SYMBOL(pci_pme_capable);
3961 EXPORT_SYMBOL(pci_pme_active);
3962 EXPORT_SYMBOL(pci_wake_from_d3);
3963 EXPORT_SYMBOL(pci_target_state);
3964 EXPORT_SYMBOL(pci_prepare_to_sleep);
3965 EXPORT_SYMBOL(pci_back_from_sleep);
3966 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);