Merge branch 'master' into next
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / pci / intel-iommu.c
1 /*
2 * Copyright (c) 2006, Intel Corporation.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
12 *
13 * You should have received a copy of the GNU General Public License along with
14 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
15 * Place - Suite 330, Boston, MA 02111-1307 USA.
16 *
17 * Copyright (C) 2006-2008 Intel Corporation
18 * Author: Ashok Raj <ashok.raj@intel.com>
19 * Author: Shaohua Li <shaohua.li@intel.com>
20 * Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
21 * Author: Fenghua Yu <fenghua.yu@intel.com>
22 */
23
24 #include <linux/init.h>
25 #include <linux/bitmap.h>
26 #include <linux/debugfs.h>
27 #include <linux/slab.h>
28 #include <linux/irq.h>
29 #include <linux/interrupt.h>
30 #include <linux/spinlock.h>
31 #include <linux/pci.h>
32 #include <linux/dmar.h>
33 #include <linux/dma-mapping.h>
34 #include <linux/mempool.h>
35 #include <linux/timer.h>
36 #include <linux/iova.h>
37 #include <linux/iommu.h>
38 #include <linux/intel-iommu.h>
39 #include <linux/syscore_ops.h>
40 #include <linux/tboot.h>
41 #include <linux/dmi.h>
42 #include <asm/cacheflush.h>
43 #include <asm/iommu.h>
44 #include "pci.h"
45
46 #define ROOT_SIZE VTD_PAGE_SIZE
47 #define CONTEXT_SIZE VTD_PAGE_SIZE
48
49 #define IS_GFX_DEVICE(pdev) ((pdev->class >> 16) == PCI_BASE_CLASS_DISPLAY)
50 #define IS_ISA_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA)
51 #define IS_AZALIA(pdev) ((pdev)->vendor == 0x8086 && (pdev)->device == 0x3a3e)
52
53 #define IOAPIC_RANGE_START (0xfee00000)
54 #define IOAPIC_RANGE_END (0xfeefffff)
55 #define IOVA_START_ADDR (0x1000)
56
57 #define DEFAULT_DOMAIN_ADDRESS_WIDTH 48
58
59 #define MAX_AGAW_WIDTH 64
60
61 #define __DOMAIN_MAX_PFN(gaw) ((((uint64_t)1) << (gaw-VTD_PAGE_SHIFT)) - 1)
62 #define __DOMAIN_MAX_ADDR(gaw) ((((uint64_t)1) << gaw) - 1)
63
64 /* We limit DOMAIN_MAX_PFN to fit in an unsigned long, and DOMAIN_MAX_ADDR
65 to match. That way, we can use 'unsigned long' for PFNs with impunity. */
66 #define DOMAIN_MAX_PFN(gaw) ((unsigned long) min_t(uint64_t, \
67 __DOMAIN_MAX_PFN(gaw), (unsigned long)-1))
68 #define DOMAIN_MAX_ADDR(gaw) (((uint64_t)__DOMAIN_MAX_PFN(gaw)) << VTD_PAGE_SHIFT)
69
70 #define IOVA_PFN(addr) ((addr) >> PAGE_SHIFT)
71 #define DMA_32BIT_PFN IOVA_PFN(DMA_BIT_MASK(32))
72 #define DMA_64BIT_PFN IOVA_PFN(DMA_BIT_MASK(64))
73
74 /* page table handling */
75 #define LEVEL_STRIDE (9)
76 #define LEVEL_MASK (((u64)1 << LEVEL_STRIDE) - 1)
77
78 static inline int agaw_to_level(int agaw)
79 {
80 return agaw + 2;
81 }
82
83 static inline int agaw_to_width(int agaw)
84 {
85 return 30 + agaw * LEVEL_STRIDE;
86 }
87
88 static inline int width_to_agaw(int width)
89 {
90 return (width - 30) / LEVEL_STRIDE;
91 }
92
93 static inline unsigned int level_to_offset_bits(int level)
94 {
95 return (level - 1) * LEVEL_STRIDE;
96 }
97
98 static inline int pfn_level_offset(unsigned long pfn, int level)
99 {
100 return (pfn >> level_to_offset_bits(level)) & LEVEL_MASK;
101 }
102
103 static inline unsigned long level_mask(int level)
104 {
105 return -1UL << level_to_offset_bits(level);
106 }
107
108 static inline unsigned long level_size(int level)
109 {
110 return 1UL << level_to_offset_bits(level);
111 }
112
113 static inline unsigned long align_to_level(unsigned long pfn, int level)
114 {
115 return (pfn + level_size(level) - 1) & level_mask(level);
116 }
117
118 /* VT-d pages must always be _smaller_ than MM pages. Otherwise things
119 are never going to work. */
120 static inline unsigned long dma_to_mm_pfn(unsigned long dma_pfn)
121 {
122 return dma_pfn >> (PAGE_SHIFT - VTD_PAGE_SHIFT);
123 }
124
125 static inline unsigned long mm_to_dma_pfn(unsigned long mm_pfn)
126 {
127 return mm_pfn << (PAGE_SHIFT - VTD_PAGE_SHIFT);
128 }
129 static inline unsigned long page_to_dma_pfn(struct page *pg)
130 {
131 return mm_to_dma_pfn(page_to_pfn(pg));
132 }
133 static inline unsigned long virt_to_dma_pfn(void *p)
134 {
135 return page_to_dma_pfn(virt_to_page(p));
136 }
137
138 /* global iommu list, set NULL for ignored DMAR units */
139 static struct intel_iommu **g_iommus;
140
141 static void __init check_tylersburg_isoch(void);
142 static int rwbf_quirk;
143
144 /*
145 * 0: Present
146 * 1-11: Reserved
147 * 12-63: Context Ptr (12 - (haw-1))
148 * 64-127: Reserved
149 */
150 struct root_entry {
151 u64 val;
152 u64 rsvd1;
153 };
154 #define ROOT_ENTRY_NR (VTD_PAGE_SIZE/sizeof(struct root_entry))
155 static inline bool root_present(struct root_entry *root)
156 {
157 return (root->val & 1);
158 }
159 static inline void set_root_present(struct root_entry *root)
160 {
161 root->val |= 1;
162 }
163 static inline void set_root_value(struct root_entry *root, unsigned long value)
164 {
165 root->val |= value & VTD_PAGE_MASK;
166 }
167
168 static inline struct context_entry *
169 get_context_addr_from_root(struct root_entry *root)
170 {
171 return (struct context_entry *)
172 (root_present(root)?phys_to_virt(
173 root->val & VTD_PAGE_MASK) :
174 NULL);
175 }
176
177 /*
178 * low 64 bits:
179 * 0: present
180 * 1: fault processing disable
181 * 2-3: translation type
182 * 12-63: address space root
183 * high 64 bits:
184 * 0-2: address width
185 * 3-6: aval
186 * 8-23: domain id
187 */
188 struct context_entry {
189 u64 lo;
190 u64 hi;
191 };
192
193 static inline bool context_present(struct context_entry *context)
194 {
195 return (context->lo & 1);
196 }
197 static inline void context_set_present(struct context_entry *context)
198 {
199 context->lo |= 1;
200 }
201
202 static inline void context_set_fault_enable(struct context_entry *context)
203 {
204 context->lo &= (((u64)-1) << 2) | 1;
205 }
206
207 static inline void context_set_translation_type(struct context_entry *context,
208 unsigned long value)
209 {
210 context->lo &= (((u64)-1) << 4) | 3;
211 context->lo |= (value & 3) << 2;
212 }
213
214 static inline void context_set_address_root(struct context_entry *context,
215 unsigned long value)
216 {
217 context->lo |= value & VTD_PAGE_MASK;
218 }
219
220 static inline void context_set_address_width(struct context_entry *context,
221 unsigned long value)
222 {
223 context->hi |= value & 7;
224 }
225
226 static inline void context_set_domain_id(struct context_entry *context,
227 unsigned long value)
228 {
229 context->hi |= (value & ((1 << 16) - 1)) << 8;
230 }
231
232 static inline void context_clear_entry(struct context_entry *context)
233 {
234 context->lo = 0;
235 context->hi = 0;
236 }
237
238 /*
239 * 0: readable
240 * 1: writable
241 * 2-6: reserved
242 * 7: super page
243 * 8-10: available
244 * 11: snoop behavior
245 * 12-63: Host physcial address
246 */
247 struct dma_pte {
248 u64 val;
249 };
250
251 static inline void dma_clear_pte(struct dma_pte *pte)
252 {
253 pte->val = 0;
254 }
255
256 static inline void dma_set_pte_readable(struct dma_pte *pte)
257 {
258 pte->val |= DMA_PTE_READ;
259 }
260
261 static inline void dma_set_pte_writable(struct dma_pte *pte)
262 {
263 pte->val |= DMA_PTE_WRITE;
264 }
265
266 static inline void dma_set_pte_snp(struct dma_pte *pte)
267 {
268 pte->val |= DMA_PTE_SNP;
269 }
270
271 static inline void dma_set_pte_prot(struct dma_pte *pte, unsigned long prot)
272 {
273 pte->val = (pte->val & ~3) | (prot & 3);
274 }
275
276 static inline u64 dma_pte_addr(struct dma_pte *pte)
277 {
278 #ifdef CONFIG_64BIT
279 return pte->val & VTD_PAGE_MASK;
280 #else
281 /* Must have a full atomic 64-bit read */
282 return __cmpxchg64(&pte->val, 0ULL, 0ULL) & VTD_PAGE_MASK;
283 #endif
284 }
285
286 static inline void dma_set_pte_pfn(struct dma_pte *pte, unsigned long pfn)
287 {
288 pte->val |= (uint64_t)pfn << VTD_PAGE_SHIFT;
289 }
290
291 static inline bool dma_pte_present(struct dma_pte *pte)
292 {
293 return (pte->val & 3) != 0;
294 }
295
296 static inline int first_pte_in_page(struct dma_pte *pte)
297 {
298 return !((unsigned long)pte & ~VTD_PAGE_MASK);
299 }
300
301 /*
302 * This domain is a statically identity mapping domain.
303 * 1. This domain creats a static 1:1 mapping to all usable memory.
304 * 2. It maps to each iommu if successful.
305 * 3. Each iommu mapps to this domain if successful.
306 */
307 static struct dmar_domain *si_domain;
308 static int hw_pass_through = 1;
309
310 /* devices under the same p2p bridge are owned in one domain */
311 #define DOMAIN_FLAG_P2P_MULTIPLE_DEVICES (1 << 0)
312
313 /* domain represents a virtual machine, more than one devices
314 * across iommus may be owned in one domain, e.g. kvm guest.
315 */
316 #define DOMAIN_FLAG_VIRTUAL_MACHINE (1 << 1)
317
318 /* si_domain contains mulitple devices */
319 #define DOMAIN_FLAG_STATIC_IDENTITY (1 << 2)
320
321 struct dmar_domain {
322 int id; /* domain id */
323 int nid; /* node id */
324 unsigned long iommu_bmp; /* bitmap of iommus this domain uses*/
325
326 struct list_head devices; /* all devices' list */
327 struct iova_domain iovad; /* iova's that belong to this domain */
328
329 struct dma_pte *pgd; /* virtual address */
330 int gaw; /* max guest address width */
331
332 /* adjusted guest address width, 0 is level 2 30-bit */
333 int agaw;
334
335 int flags; /* flags to find out type of domain */
336
337 int iommu_coherency;/* indicate coherency of iommu access */
338 int iommu_snooping; /* indicate snooping control feature*/
339 int iommu_count; /* reference count of iommu */
340 spinlock_t iommu_lock; /* protect iommu set in domain */
341 u64 max_addr; /* maximum mapped address */
342 };
343
344 /* PCI domain-device relationship */
345 struct device_domain_info {
346 struct list_head link; /* link to domain siblings */
347 struct list_head global; /* link to global list */
348 int segment; /* PCI domain */
349 u8 bus; /* PCI bus number */
350 u8 devfn; /* PCI devfn number */
351 struct pci_dev *dev; /* it's NULL for PCIe-to-PCI bridge */
352 struct intel_iommu *iommu; /* IOMMU used by this device */
353 struct dmar_domain *domain; /* pointer to domain */
354 };
355
356 static void flush_unmaps_timeout(unsigned long data);
357
358 DEFINE_TIMER(unmap_timer, flush_unmaps_timeout, 0, 0);
359
360 #define HIGH_WATER_MARK 250
361 struct deferred_flush_tables {
362 int next;
363 struct iova *iova[HIGH_WATER_MARK];
364 struct dmar_domain *domain[HIGH_WATER_MARK];
365 };
366
367 static struct deferred_flush_tables *deferred_flush;
368
369 /* bitmap for indexing intel_iommus */
370 static int g_num_of_iommus;
371
372 static DEFINE_SPINLOCK(async_umap_flush_lock);
373 static LIST_HEAD(unmaps_to_do);
374
375 static int timer_on;
376 static long list_size;
377
378 static void domain_remove_dev_info(struct dmar_domain *domain);
379
380 #ifdef CONFIG_DMAR_DEFAULT_ON
381 int dmar_disabled = 0;
382 #else
383 int dmar_disabled = 1;
384 #endif /*CONFIG_DMAR_DEFAULT_ON*/
385
386 static int dmar_map_gfx = 1;
387 static int dmar_forcedac;
388 static int intel_iommu_strict;
389
390 #define DUMMY_DEVICE_DOMAIN_INFO ((struct device_domain_info *)(-1))
391 static DEFINE_SPINLOCK(device_domain_lock);
392 static LIST_HEAD(device_domain_list);
393
394 static struct iommu_ops intel_iommu_ops;
395
396 static int __init intel_iommu_setup(char *str)
397 {
398 if (!str)
399 return -EINVAL;
400 while (*str) {
401 if (!strncmp(str, "on", 2)) {
402 dmar_disabled = 0;
403 printk(KERN_INFO "Intel-IOMMU: enabled\n");
404 } else if (!strncmp(str, "off", 3)) {
405 dmar_disabled = 1;
406 printk(KERN_INFO "Intel-IOMMU: disabled\n");
407 } else if (!strncmp(str, "igfx_off", 8)) {
408 dmar_map_gfx = 0;
409 printk(KERN_INFO
410 "Intel-IOMMU: disable GFX device mapping\n");
411 } else if (!strncmp(str, "forcedac", 8)) {
412 printk(KERN_INFO
413 "Intel-IOMMU: Forcing DAC for PCI devices\n");
414 dmar_forcedac = 1;
415 } else if (!strncmp(str, "strict", 6)) {
416 printk(KERN_INFO
417 "Intel-IOMMU: disable batched IOTLB flush\n");
418 intel_iommu_strict = 1;
419 }
420
421 str += strcspn(str, ",");
422 while (*str == ',')
423 str++;
424 }
425 return 0;
426 }
427 __setup("intel_iommu=", intel_iommu_setup);
428
429 static struct kmem_cache *iommu_domain_cache;
430 static struct kmem_cache *iommu_devinfo_cache;
431 static struct kmem_cache *iommu_iova_cache;
432
433 static inline void *alloc_pgtable_page(int node)
434 {
435 struct page *page;
436 void *vaddr = NULL;
437
438 page = alloc_pages_node(node, GFP_ATOMIC | __GFP_ZERO, 0);
439 if (page)
440 vaddr = page_address(page);
441 return vaddr;
442 }
443
444 static inline void free_pgtable_page(void *vaddr)
445 {
446 free_page((unsigned long)vaddr);
447 }
448
449 static inline void *alloc_domain_mem(void)
450 {
451 return kmem_cache_alloc(iommu_domain_cache, GFP_ATOMIC);
452 }
453
454 static void free_domain_mem(void *vaddr)
455 {
456 kmem_cache_free(iommu_domain_cache, vaddr);
457 }
458
459 static inline void * alloc_devinfo_mem(void)
460 {
461 return kmem_cache_alloc(iommu_devinfo_cache, GFP_ATOMIC);
462 }
463
464 static inline void free_devinfo_mem(void *vaddr)
465 {
466 kmem_cache_free(iommu_devinfo_cache, vaddr);
467 }
468
469 struct iova *alloc_iova_mem(void)
470 {
471 return kmem_cache_alloc(iommu_iova_cache, GFP_ATOMIC);
472 }
473
474 void free_iova_mem(struct iova *iova)
475 {
476 kmem_cache_free(iommu_iova_cache, iova);
477 }
478
479
480 static int __iommu_calculate_agaw(struct intel_iommu *iommu, int max_gaw)
481 {
482 unsigned long sagaw;
483 int agaw = -1;
484
485 sagaw = cap_sagaw(iommu->cap);
486 for (agaw = width_to_agaw(max_gaw);
487 agaw >= 0; agaw--) {
488 if (test_bit(agaw, &sagaw))
489 break;
490 }
491
492 return agaw;
493 }
494
495 /*
496 * Calculate max SAGAW for each iommu.
497 */
498 int iommu_calculate_max_sagaw(struct intel_iommu *iommu)
499 {
500 return __iommu_calculate_agaw(iommu, MAX_AGAW_WIDTH);
501 }
502
503 /*
504 * calculate agaw for each iommu.
505 * "SAGAW" may be different across iommus, use a default agaw, and
506 * get a supported less agaw for iommus that don't support the default agaw.
507 */
508 int iommu_calculate_agaw(struct intel_iommu *iommu)
509 {
510 return __iommu_calculate_agaw(iommu, DEFAULT_DOMAIN_ADDRESS_WIDTH);
511 }
512
513 /* This functionin only returns single iommu in a domain */
514 static struct intel_iommu *domain_get_iommu(struct dmar_domain *domain)
515 {
516 int iommu_id;
517
518 /* si_domain and vm domain should not get here. */
519 BUG_ON(domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE);
520 BUG_ON(domain->flags & DOMAIN_FLAG_STATIC_IDENTITY);
521
522 iommu_id = find_first_bit(&domain->iommu_bmp, g_num_of_iommus);
523 if (iommu_id < 0 || iommu_id >= g_num_of_iommus)
524 return NULL;
525
526 return g_iommus[iommu_id];
527 }
528
529 static void domain_update_iommu_coherency(struct dmar_domain *domain)
530 {
531 int i;
532
533 domain->iommu_coherency = 1;
534
535 for_each_set_bit(i, &domain->iommu_bmp, g_num_of_iommus) {
536 if (!ecap_coherent(g_iommus[i]->ecap)) {
537 domain->iommu_coherency = 0;
538 break;
539 }
540 }
541 }
542
543 static void domain_update_iommu_snooping(struct dmar_domain *domain)
544 {
545 int i;
546
547 domain->iommu_snooping = 1;
548
549 for_each_set_bit(i, &domain->iommu_bmp, g_num_of_iommus) {
550 if (!ecap_sc_support(g_iommus[i]->ecap)) {
551 domain->iommu_snooping = 0;
552 break;
553 }
554 }
555 }
556
557 /* Some capabilities may be different across iommus */
558 static void domain_update_iommu_cap(struct dmar_domain *domain)
559 {
560 domain_update_iommu_coherency(domain);
561 domain_update_iommu_snooping(domain);
562 }
563
564 static struct intel_iommu *device_to_iommu(int segment, u8 bus, u8 devfn)
565 {
566 struct dmar_drhd_unit *drhd = NULL;
567 int i;
568
569 for_each_drhd_unit(drhd) {
570 if (drhd->ignored)
571 continue;
572 if (segment != drhd->segment)
573 continue;
574
575 for (i = 0; i < drhd->devices_cnt; i++) {
576 if (drhd->devices[i] &&
577 drhd->devices[i]->bus->number == bus &&
578 drhd->devices[i]->devfn == devfn)
579 return drhd->iommu;
580 if (drhd->devices[i] &&
581 drhd->devices[i]->subordinate &&
582 drhd->devices[i]->subordinate->number <= bus &&
583 drhd->devices[i]->subordinate->subordinate >= bus)
584 return drhd->iommu;
585 }
586
587 if (drhd->include_all)
588 return drhd->iommu;
589 }
590
591 return NULL;
592 }
593
594 static void domain_flush_cache(struct dmar_domain *domain,
595 void *addr, int size)
596 {
597 if (!domain->iommu_coherency)
598 clflush_cache_range(addr, size);
599 }
600
601 /* Gets context entry for a given bus and devfn */
602 static struct context_entry * device_to_context_entry(struct intel_iommu *iommu,
603 u8 bus, u8 devfn)
604 {
605 struct root_entry *root;
606 struct context_entry *context;
607 unsigned long phy_addr;
608 unsigned long flags;
609
610 spin_lock_irqsave(&iommu->lock, flags);
611 root = &iommu->root_entry[bus];
612 context = get_context_addr_from_root(root);
613 if (!context) {
614 context = (struct context_entry *)
615 alloc_pgtable_page(iommu->node);
616 if (!context) {
617 spin_unlock_irqrestore(&iommu->lock, flags);
618 return NULL;
619 }
620 __iommu_flush_cache(iommu, (void *)context, CONTEXT_SIZE);
621 phy_addr = virt_to_phys((void *)context);
622 set_root_value(root, phy_addr);
623 set_root_present(root);
624 __iommu_flush_cache(iommu, root, sizeof(*root));
625 }
626 spin_unlock_irqrestore(&iommu->lock, flags);
627 return &context[devfn];
628 }
629
630 static int device_context_mapped(struct intel_iommu *iommu, u8 bus, u8 devfn)
631 {
632 struct root_entry *root;
633 struct context_entry *context;
634 int ret;
635 unsigned long flags;
636
637 spin_lock_irqsave(&iommu->lock, flags);
638 root = &iommu->root_entry[bus];
639 context = get_context_addr_from_root(root);
640 if (!context) {
641 ret = 0;
642 goto out;
643 }
644 ret = context_present(&context[devfn]);
645 out:
646 spin_unlock_irqrestore(&iommu->lock, flags);
647 return ret;
648 }
649
650 static void clear_context_table(struct intel_iommu *iommu, u8 bus, u8 devfn)
651 {
652 struct root_entry *root;
653 struct context_entry *context;
654 unsigned long flags;
655
656 spin_lock_irqsave(&iommu->lock, flags);
657 root = &iommu->root_entry[bus];
658 context = get_context_addr_from_root(root);
659 if (context) {
660 context_clear_entry(&context[devfn]);
661 __iommu_flush_cache(iommu, &context[devfn], \
662 sizeof(*context));
663 }
664 spin_unlock_irqrestore(&iommu->lock, flags);
665 }
666
667 static void free_context_table(struct intel_iommu *iommu)
668 {
669 struct root_entry *root;
670 int i;
671 unsigned long flags;
672 struct context_entry *context;
673
674 spin_lock_irqsave(&iommu->lock, flags);
675 if (!iommu->root_entry) {
676 goto out;
677 }
678 for (i = 0; i < ROOT_ENTRY_NR; i++) {
679 root = &iommu->root_entry[i];
680 context = get_context_addr_from_root(root);
681 if (context)
682 free_pgtable_page(context);
683 }
684 free_pgtable_page(iommu->root_entry);
685 iommu->root_entry = NULL;
686 out:
687 spin_unlock_irqrestore(&iommu->lock, flags);
688 }
689
690 static struct dma_pte *pfn_to_dma_pte(struct dmar_domain *domain,
691 unsigned long pfn)
692 {
693 int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
694 struct dma_pte *parent, *pte = NULL;
695 int level = agaw_to_level(domain->agaw);
696 int offset;
697
698 BUG_ON(!domain->pgd);
699 BUG_ON(addr_width < BITS_PER_LONG && pfn >> addr_width);
700 parent = domain->pgd;
701
702 while (level > 0) {
703 void *tmp_page;
704
705 offset = pfn_level_offset(pfn, level);
706 pte = &parent[offset];
707 if (level == 1)
708 break;
709
710 if (!dma_pte_present(pte)) {
711 uint64_t pteval;
712
713 tmp_page = alloc_pgtable_page(domain->nid);
714
715 if (!tmp_page)
716 return NULL;
717
718 domain_flush_cache(domain, tmp_page, VTD_PAGE_SIZE);
719 pteval = ((uint64_t)virt_to_dma_pfn(tmp_page) << VTD_PAGE_SHIFT) | DMA_PTE_READ | DMA_PTE_WRITE;
720 if (cmpxchg64(&pte->val, 0ULL, pteval)) {
721 /* Someone else set it while we were thinking; use theirs. */
722 free_pgtable_page(tmp_page);
723 } else {
724 dma_pte_addr(pte);
725 domain_flush_cache(domain, pte, sizeof(*pte));
726 }
727 }
728 parent = phys_to_virt(dma_pte_addr(pte));
729 level--;
730 }
731
732 return pte;
733 }
734
735 /* return address's pte at specific level */
736 static struct dma_pte *dma_pfn_level_pte(struct dmar_domain *domain,
737 unsigned long pfn,
738 int level)
739 {
740 struct dma_pte *parent, *pte = NULL;
741 int total = agaw_to_level(domain->agaw);
742 int offset;
743
744 parent = domain->pgd;
745 while (level <= total) {
746 offset = pfn_level_offset(pfn, total);
747 pte = &parent[offset];
748 if (level == total)
749 return pte;
750
751 if (!dma_pte_present(pte))
752 break;
753 parent = phys_to_virt(dma_pte_addr(pte));
754 total--;
755 }
756 return NULL;
757 }
758
759 /* clear last level pte, a tlb flush should be followed */
760 static void dma_pte_clear_range(struct dmar_domain *domain,
761 unsigned long start_pfn,
762 unsigned long last_pfn)
763 {
764 int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
765 struct dma_pte *first_pte, *pte;
766
767 BUG_ON(addr_width < BITS_PER_LONG && start_pfn >> addr_width);
768 BUG_ON(addr_width < BITS_PER_LONG && last_pfn >> addr_width);
769 BUG_ON(start_pfn > last_pfn);
770
771 /* we don't need lock here; nobody else touches the iova range */
772 do {
773 first_pte = pte = dma_pfn_level_pte(domain, start_pfn, 1);
774 if (!pte) {
775 start_pfn = align_to_level(start_pfn + 1, 2);
776 continue;
777 }
778 do {
779 dma_clear_pte(pte);
780 start_pfn++;
781 pte++;
782 } while (start_pfn <= last_pfn && !first_pte_in_page(pte));
783
784 domain_flush_cache(domain, first_pte,
785 (void *)pte - (void *)first_pte);
786
787 } while (start_pfn && start_pfn <= last_pfn);
788 }
789
790 /* free page table pages. last level pte should already be cleared */
791 static void dma_pte_free_pagetable(struct dmar_domain *domain,
792 unsigned long start_pfn,
793 unsigned long last_pfn)
794 {
795 int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
796 struct dma_pte *first_pte, *pte;
797 int total = agaw_to_level(domain->agaw);
798 int level;
799 unsigned long tmp;
800
801 BUG_ON(addr_width < BITS_PER_LONG && start_pfn >> addr_width);
802 BUG_ON(addr_width < BITS_PER_LONG && last_pfn >> addr_width);
803 BUG_ON(start_pfn > last_pfn);
804
805 /* We don't need lock here; nobody else touches the iova range */
806 level = 2;
807 while (level <= total) {
808 tmp = align_to_level(start_pfn, level);
809
810 /* If we can't even clear one PTE at this level, we're done */
811 if (tmp + level_size(level) - 1 > last_pfn)
812 return;
813
814 do {
815 first_pte = pte = dma_pfn_level_pte(domain, tmp, level);
816 if (!pte) {
817 tmp = align_to_level(tmp + 1, level + 1);
818 continue;
819 }
820 do {
821 if (dma_pte_present(pte)) {
822 free_pgtable_page(phys_to_virt(dma_pte_addr(pte)));
823 dma_clear_pte(pte);
824 }
825 pte++;
826 tmp += level_size(level);
827 } while (!first_pte_in_page(pte) &&
828 tmp + level_size(level) - 1 <= last_pfn);
829
830 domain_flush_cache(domain, first_pte,
831 (void *)pte - (void *)first_pte);
832
833 } while (tmp && tmp + level_size(level) - 1 <= last_pfn);
834 level++;
835 }
836 /* free pgd */
837 if (start_pfn == 0 && last_pfn == DOMAIN_MAX_PFN(domain->gaw)) {
838 free_pgtable_page(domain->pgd);
839 domain->pgd = NULL;
840 }
841 }
842
843 /* iommu handling */
844 static int iommu_alloc_root_entry(struct intel_iommu *iommu)
845 {
846 struct root_entry *root;
847 unsigned long flags;
848
849 root = (struct root_entry *)alloc_pgtable_page(iommu->node);
850 if (!root)
851 return -ENOMEM;
852
853 __iommu_flush_cache(iommu, root, ROOT_SIZE);
854
855 spin_lock_irqsave(&iommu->lock, flags);
856 iommu->root_entry = root;
857 spin_unlock_irqrestore(&iommu->lock, flags);
858
859 return 0;
860 }
861
862 static void iommu_set_root_entry(struct intel_iommu *iommu)
863 {
864 void *addr;
865 u32 sts;
866 unsigned long flag;
867
868 addr = iommu->root_entry;
869
870 spin_lock_irqsave(&iommu->register_lock, flag);
871 dmar_writeq(iommu->reg + DMAR_RTADDR_REG, virt_to_phys(addr));
872
873 writel(iommu->gcmd | DMA_GCMD_SRTP, iommu->reg + DMAR_GCMD_REG);
874
875 /* Make sure hardware complete it */
876 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
877 readl, (sts & DMA_GSTS_RTPS), sts);
878
879 spin_unlock_irqrestore(&iommu->register_lock, flag);
880 }
881
882 static void iommu_flush_write_buffer(struct intel_iommu *iommu)
883 {
884 u32 val;
885 unsigned long flag;
886
887 if (!rwbf_quirk && !cap_rwbf(iommu->cap))
888 return;
889
890 spin_lock_irqsave(&iommu->register_lock, flag);
891 writel(iommu->gcmd | DMA_GCMD_WBF, iommu->reg + DMAR_GCMD_REG);
892
893 /* Make sure hardware complete it */
894 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
895 readl, (!(val & DMA_GSTS_WBFS)), val);
896
897 spin_unlock_irqrestore(&iommu->register_lock, flag);
898 }
899
900 /* return value determine if we need a write buffer flush */
901 static void __iommu_flush_context(struct intel_iommu *iommu,
902 u16 did, u16 source_id, u8 function_mask,
903 u64 type)
904 {
905 u64 val = 0;
906 unsigned long flag;
907
908 switch (type) {
909 case DMA_CCMD_GLOBAL_INVL:
910 val = DMA_CCMD_GLOBAL_INVL;
911 break;
912 case DMA_CCMD_DOMAIN_INVL:
913 val = DMA_CCMD_DOMAIN_INVL|DMA_CCMD_DID(did);
914 break;
915 case DMA_CCMD_DEVICE_INVL:
916 val = DMA_CCMD_DEVICE_INVL|DMA_CCMD_DID(did)
917 | DMA_CCMD_SID(source_id) | DMA_CCMD_FM(function_mask);
918 break;
919 default:
920 BUG();
921 }
922 val |= DMA_CCMD_ICC;
923
924 spin_lock_irqsave(&iommu->register_lock, flag);
925 dmar_writeq(iommu->reg + DMAR_CCMD_REG, val);
926
927 /* Make sure hardware complete it */
928 IOMMU_WAIT_OP(iommu, DMAR_CCMD_REG,
929 dmar_readq, (!(val & DMA_CCMD_ICC)), val);
930
931 spin_unlock_irqrestore(&iommu->register_lock, flag);
932 }
933
934 /* return value determine if we need a write buffer flush */
935 static void __iommu_flush_iotlb(struct intel_iommu *iommu, u16 did,
936 u64 addr, unsigned int size_order, u64 type)
937 {
938 int tlb_offset = ecap_iotlb_offset(iommu->ecap);
939 u64 val = 0, val_iva = 0;
940 unsigned long flag;
941
942 switch (type) {
943 case DMA_TLB_GLOBAL_FLUSH:
944 /* global flush doesn't need set IVA_REG */
945 val = DMA_TLB_GLOBAL_FLUSH|DMA_TLB_IVT;
946 break;
947 case DMA_TLB_DSI_FLUSH:
948 val = DMA_TLB_DSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
949 break;
950 case DMA_TLB_PSI_FLUSH:
951 val = DMA_TLB_PSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
952 /* Note: always flush non-leaf currently */
953 val_iva = size_order | addr;
954 break;
955 default:
956 BUG();
957 }
958 /* Note: set drain read/write */
959 #if 0
960 /*
961 * This is probably to be super secure.. Looks like we can
962 * ignore it without any impact.
963 */
964 if (cap_read_drain(iommu->cap))
965 val |= DMA_TLB_READ_DRAIN;
966 #endif
967 if (cap_write_drain(iommu->cap))
968 val |= DMA_TLB_WRITE_DRAIN;
969
970 spin_lock_irqsave(&iommu->register_lock, flag);
971 /* Note: Only uses first TLB reg currently */
972 if (val_iva)
973 dmar_writeq(iommu->reg + tlb_offset, val_iva);
974 dmar_writeq(iommu->reg + tlb_offset + 8, val);
975
976 /* Make sure hardware complete it */
977 IOMMU_WAIT_OP(iommu, tlb_offset + 8,
978 dmar_readq, (!(val & DMA_TLB_IVT)), val);
979
980 spin_unlock_irqrestore(&iommu->register_lock, flag);
981
982 /* check IOTLB invalidation granularity */
983 if (DMA_TLB_IAIG(val) == 0)
984 printk(KERN_ERR"IOMMU: flush IOTLB failed\n");
985 if (DMA_TLB_IAIG(val) != DMA_TLB_IIRG(type))
986 pr_debug("IOMMU: tlb flush request %Lx, actual %Lx\n",
987 (unsigned long long)DMA_TLB_IIRG(type),
988 (unsigned long long)DMA_TLB_IAIG(val));
989 }
990
991 static struct device_domain_info *iommu_support_dev_iotlb(
992 struct dmar_domain *domain, int segment, u8 bus, u8 devfn)
993 {
994 int found = 0;
995 unsigned long flags;
996 struct device_domain_info *info;
997 struct intel_iommu *iommu = device_to_iommu(segment, bus, devfn);
998
999 if (!ecap_dev_iotlb_support(iommu->ecap))
1000 return NULL;
1001
1002 if (!iommu->qi)
1003 return NULL;
1004
1005 spin_lock_irqsave(&device_domain_lock, flags);
1006 list_for_each_entry(info, &domain->devices, link)
1007 if (info->bus == bus && info->devfn == devfn) {
1008 found = 1;
1009 break;
1010 }
1011 spin_unlock_irqrestore(&device_domain_lock, flags);
1012
1013 if (!found || !info->dev)
1014 return NULL;
1015
1016 if (!pci_find_ext_capability(info->dev, PCI_EXT_CAP_ID_ATS))
1017 return NULL;
1018
1019 if (!dmar_find_matched_atsr_unit(info->dev))
1020 return NULL;
1021
1022 info->iommu = iommu;
1023
1024 return info;
1025 }
1026
1027 static void iommu_enable_dev_iotlb(struct device_domain_info *info)
1028 {
1029 if (!info)
1030 return;
1031
1032 pci_enable_ats(info->dev, VTD_PAGE_SHIFT);
1033 }
1034
1035 static void iommu_disable_dev_iotlb(struct device_domain_info *info)
1036 {
1037 if (!info->dev || !pci_ats_enabled(info->dev))
1038 return;
1039
1040 pci_disable_ats(info->dev);
1041 }
1042
1043 static void iommu_flush_dev_iotlb(struct dmar_domain *domain,
1044 u64 addr, unsigned mask)
1045 {
1046 u16 sid, qdep;
1047 unsigned long flags;
1048 struct device_domain_info *info;
1049
1050 spin_lock_irqsave(&device_domain_lock, flags);
1051 list_for_each_entry(info, &domain->devices, link) {
1052 if (!info->dev || !pci_ats_enabled(info->dev))
1053 continue;
1054
1055 sid = info->bus << 8 | info->devfn;
1056 qdep = pci_ats_queue_depth(info->dev);
1057 qi_flush_dev_iotlb(info->iommu, sid, qdep, addr, mask);
1058 }
1059 spin_unlock_irqrestore(&device_domain_lock, flags);
1060 }
1061
1062 static void iommu_flush_iotlb_psi(struct intel_iommu *iommu, u16 did,
1063 unsigned long pfn, unsigned int pages, int map)
1064 {
1065 unsigned int mask = ilog2(__roundup_pow_of_two(pages));
1066 uint64_t addr = (uint64_t)pfn << VTD_PAGE_SHIFT;
1067
1068 BUG_ON(pages == 0);
1069
1070 /*
1071 * Fallback to domain selective flush if no PSI support or the size is
1072 * too big.
1073 * PSI requires page size to be 2 ^ x, and the base address is naturally
1074 * aligned to the size
1075 */
1076 if (!cap_pgsel_inv(iommu->cap) || mask > cap_max_amask_val(iommu->cap))
1077 iommu->flush.flush_iotlb(iommu, did, 0, 0,
1078 DMA_TLB_DSI_FLUSH);
1079 else
1080 iommu->flush.flush_iotlb(iommu, did, addr, mask,
1081 DMA_TLB_PSI_FLUSH);
1082
1083 /*
1084 * In caching mode, changes of pages from non-present to present require
1085 * flush. However, device IOTLB doesn't need to be flushed in this case.
1086 */
1087 if (!cap_caching_mode(iommu->cap) || !map)
1088 iommu_flush_dev_iotlb(iommu->domains[did], addr, mask);
1089 }
1090
1091 static void iommu_disable_protect_mem_regions(struct intel_iommu *iommu)
1092 {
1093 u32 pmen;
1094 unsigned long flags;
1095
1096 spin_lock_irqsave(&iommu->register_lock, flags);
1097 pmen = readl(iommu->reg + DMAR_PMEN_REG);
1098 pmen &= ~DMA_PMEN_EPM;
1099 writel(pmen, iommu->reg + DMAR_PMEN_REG);
1100
1101 /* wait for the protected region status bit to clear */
1102 IOMMU_WAIT_OP(iommu, DMAR_PMEN_REG,
1103 readl, !(pmen & DMA_PMEN_PRS), pmen);
1104
1105 spin_unlock_irqrestore(&iommu->register_lock, flags);
1106 }
1107
1108 static int iommu_enable_translation(struct intel_iommu *iommu)
1109 {
1110 u32 sts;
1111 unsigned long flags;
1112
1113 spin_lock_irqsave(&iommu->register_lock, flags);
1114 iommu->gcmd |= DMA_GCMD_TE;
1115 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1116
1117 /* Make sure hardware complete it */
1118 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1119 readl, (sts & DMA_GSTS_TES), sts);
1120
1121 spin_unlock_irqrestore(&iommu->register_lock, flags);
1122 return 0;
1123 }
1124
1125 static int iommu_disable_translation(struct intel_iommu *iommu)
1126 {
1127 u32 sts;
1128 unsigned long flag;
1129
1130 spin_lock_irqsave(&iommu->register_lock, flag);
1131 iommu->gcmd &= ~DMA_GCMD_TE;
1132 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1133
1134 /* Make sure hardware complete it */
1135 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1136 readl, (!(sts & DMA_GSTS_TES)), sts);
1137
1138 spin_unlock_irqrestore(&iommu->register_lock, flag);
1139 return 0;
1140 }
1141
1142
1143 static int iommu_init_domains(struct intel_iommu *iommu)
1144 {
1145 unsigned long ndomains;
1146 unsigned long nlongs;
1147
1148 ndomains = cap_ndoms(iommu->cap);
1149 pr_debug("IOMMU %d: Number of Domains supportd <%ld>\n", iommu->seq_id,
1150 ndomains);
1151 nlongs = BITS_TO_LONGS(ndomains);
1152
1153 spin_lock_init(&iommu->lock);
1154
1155 /* TBD: there might be 64K domains,
1156 * consider other allocation for future chip
1157 */
1158 iommu->domain_ids = kcalloc(nlongs, sizeof(unsigned long), GFP_KERNEL);
1159 if (!iommu->domain_ids) {
1160 printk(KERN_ERR "Allocating domain id array failed\n");
1161 return -ENOMEM;
1162 }
1163 iommu->domains = kcalloc(ndomains, sizeof(struct dmar_domain *),
1164 GFP_KERNEL);
1165 if (!iommu->domains) {
1166 printk(KERN_ERR "Allocating domain array failed\n");
1167 return -ENOMEM;
1168 }
1169
1170 /*
1171 * if Caching mode is set, then invalid translations are tagged
1172 * with domainid 0. Hence we need to pre-allocate it.
1173 */
1174 if (cap_caching_mode(iommu->cap))
1175 set_bit(0, iommu->domain_ids);
1176 return 0;
1177 }
1178
1179
1180 static void domain_exit(struct dmar_domain *domain);
1181 static void vm_domain_exit(struct dmar_domain *domain);
1182
1183 void free_dmar_iommu(struct intel_iommu *iommu)
1184 {
1185 struct dmar_domain *domain;
1186 int i;
1187 unsigned long flags;
1188
1189 if ((iommu->domains) && (iommu->domain_ids)) {
1190 for_each_set_bit(i, iommu->domain_ids, cap_ndoms(iommu->cap)) {
1191 domain = iommu->domains[i];
1192 clear_bit(i, iommu->domain_ids);
1193
1194 spin_lock_irqsave(&domain->iommu_lock, flags);
1195 if (--domain->iommu_count == 0) {
1196 if (domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE)
1197 vm_domain_exit(domain);
1198 else
1199 domain_exit(domain);
1200 }
1201 spin_unlock_irqrestore(&domain->iommu_lock, flags);
1202 }
1203 }
1204
1205 if (iommu->gcmd & DMA_GCMD_TE)
1206 iommu_disable_translation(iommu);
1207
1208 if (iommu->irq) {
1209 irq_set_handler_data(iommu->irq, NULL);
1210 /* This will mask the irq */
1211 free_irq(iommu->irq, iommu);
1212 destroy_irq(iommu->irq);
1213 }
1214
1215 kfree(iommu->domains);
1216 kfree(iommu->domain_ids);
1217
1218 g_iommus[iommu->seq_id] = NULL;
1219
1220 /* if all iommus are freed, free g_iommus */
1221 for (i = 0; i < g_num_of_iommus; i++) {
1222 if (g_iommus[i])
1223 break;
1224 }
1225
1226 if (i == g_num_of_iommus)
1227 kfree(g_iommus);
1228
1229 /* free context mapping */
1230 free_context_table(iommu);
1231 }
1232
1233 static struct dmar_domain *alloc_domain(void)
1234 {
1235 struct dmar_domain *domain;
1236
1237 domain = alloc_domain_mem();
1238 if (!domain)
1239 return NULL;
1240
1241 domain->nid = -1;
1242 memset(&domain->iommu_bmp, 0, sizeof(unsigned long));
1243 domain->flags = 0;
1244
1245 return domain;
1246 }
1247
1248 static int iommu_attach_domain(struct dmar_domain *domain,
1249 struct intel_iommu *iommu)
1250 {
1251 int num;
1252 unsigned long ndomains;
1253 unsigned long flags;
1254
1255 ndomains = cap_ndoms(iommu->cap);
1256
1257 spin_lock_irqsave(&iommu->lock, flags);
1258
1259 num = find_first_zero_bit(iommu->domain_ids, ndomains);
1260 if (num >= ndomains) {
1261 spin_unlock_irqrestore(&iommu->lock, flags);
1262 printk(KERN_ERR "IOMMU: no free domain ids\n");
1263 return -ENOMEM;
1264 }
1265
1266 domain->id = num;
1267 set_bit(num, iommu->domain_ids);
1268 set_bit(iommu->seq_id, &domain->iommu_bmp);
1269 iommu->domains[num] = domain;
1270 spin_unlock_irqrestore(&iommu->lock, flags);
1271
1272 return 0;
1273 }
1274
1275 static void iommu_detach_domain(struct dmar_domain *domain,
1276 struct intel_iommu *iommu)
1277 {
1278 unsigned long flags;
1279 int num, ndomains;
1280 int found = 0;
1281
1282 spin_lock_irqsave(&iommu->lock, flags);
1283 ndomains = cap_ndoms(iommu->cap);
1284 for_each_set_bit(num, iommu->domain_ids, ndomains) {
1285 if (iommu->domains[num] == domain) {
1286 found = 1;
1287 break;
1288 }
1289 }
1290
1291 if (found) {
1292 clear_bit(num, iommu->domain_ids);
1293 clear_bit(iommu->seq_id, &domain->iommu_bmp);
1294 iommu->domains[num] = NULL;
1295 }
1296 spin_unlock_irqrestore(&iommu->lock, flags);
1297 }
1298
1299 static struct iova_domain reserved_iova_list;
1300 static struct lock_class_key reserved_rbtree_key;
1301
1302 static int dmar_init_reserved_ranges(void)
1303 {
1304 struct pci_dev *pdev = NULL;
1305 struct iova *iova;
1306 int i;
1307
1308 init_iova_domain(&reserved_iova_list, DMA_32BIT_PFN);
1309
1310 lockdep_set_class(&reserved_iova_list.iova_rbtree_lock,
1311 &reserved_rbtree_key);
1312
1313 /* IOAPIC ranges shouldn't be accessed by DMA */
1314 iova = reserve_iova(&reserved_iova_list, IOVA_PFN(IOAPIC_RANGE_START),
1315 IOVA_PFN(IOAPIC_RANGE_END));
1316 if (!iova) {
1317 printk(KERN_ERR "Reserve IOAPIC range failed\n");
1318 return -ENODEV;
1319 }
1320
1321 /* Reserve all PCI MMIO to avoid peer-to-peer access */
1322 for_each_pci_dev(pdev) {
1323 struct resource *r;
1324
1325 for (i = 0; i < PCI_NUM_RESOURCES; i++) {
1326 r = &pdev->resource[i];
1327 if (!r->flags || !(r->flags & IORESOURCE_MEM))
1328 continue;
1329 iova = reserve_iova(&reserved_iova_list,
1330 IOVA_PFN(r->start),
1331 IOVA_PFN(r->end));
1332 if (!iova) {
1333 printk(KERN_ERR "Reserve iova failed\n");
1334 return -ENODEV;
1335 }
1336 }
1337 }
1338 return 0;
1339 }
1340
1341 static void domain_reserve_special_ranges(struct dmar_domain *domain)
1342 {
1343 copy_reserved_iova(&reserved_iova_list, &domain->iovad);
1344 }
1345
1346 static inline int guestwidth_to_adjustwidth(int gaw)
1347 {
1348 int agaw;
1349 int r = (gaw - 12) % 9;
1350
1351 if (r == 0)
1352 agaw = gaw;
1353 else
1354 agaw = gaw + 9 - r;
1355 if (agaw > 64)
1356 agaw = 64;
1357 return agaw;
1358 }
1359
1360 static int domain_init(struct dmar_domain *domain, int guest_width)
1361 {
1362 struct intel_iommu *iommu;
1363 int adjust_width, agaw;
1364 unsigned long sagaw;
1365
1366 init_iova_domain(&domain->iovad, DMA_32BIT_PFN);
1367 spin_lock_init(&domain->iommu_lock);
1368
1369 domain_reserve_special_ranges(domain);
1370
1371 /* calculate AGAW */
1372 iommu = domain_get_iommu(domain);
1373 if (guest_width > cap_mgaw(iommu->cap))
1374 guest_width = cap_mgaw(iommu->cap);
1375 domain->gaw = guest_width;
1376 adjust_width = guestwidth_to_adjustwidth(guest_width);
1377 agaw = width_to_agaw(adjust_width);
1378 sagaw = cap_sagaw(iommu->cap);
1379 if (!test_bit(agaw, &sagaw)) {
1380 /* hardware doesn't support it, choose a bigger one */
1381 pr_debug("IOMMU: hardware doesn't support agaw %d\n", agaw);
1382 agaw = find_next_bit(&sagaw, 5, agaw);
1383 if (agaw >= 5)
1384 return -ENODEV;
1385 }
1386 domain->agaw = agaw;
1387 INIT_LIST_HEAD(&domain->devices);
1388
1389 if (ecap_coherent(iommu->ecap))
1390 domain->iommu_coherency = 1;
1391 else
1392 domain->iommu_coherency = 0;
1393
1394 if (ecap_sc_support(iommu->ecap))
1395 domain->iommu_snooping = 1;
1396 else
1397 domain->iommu_snooping = 0;
1398
1399 domain->iommu_count = 1;
1400 domain->nid = iommu->node;
1401
1402 /* always allocate the top pgd */
1403 domain->pgd = (struct dma_pte *)alloc_pgtable_page(domain->nid);
1404 if (!domain->pgd)
1405 return -ENOMEM;
1406 __iommu_flush_cache(iommu, domain->pgd, PAGE_SIZE);
1407 return 0;
1408 }
1409
1410 static void domain_exit(struct dmar_domain *domain)
1411 {
1412 struct dmar_drhd_unit *drhd;
1413 struct intel_iommu *iommu;
1414
1415 /* Domain 0 is reserved, so dont process it */
1416 if (!domain)
1417 return;
1418
1419 domain_remove_dev_info(domain);
1420 /* destroy iovas */
1421 put_iova_domain(&domain->iovad);
1422
1423 /* clear ptes */
1424 dma_pte_clear_range(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
1425
1426 /* free page tables */
1427 dma_pte_free_pagetable(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
1428
1429 for_each_active_iommu(iommu, drhd)
1430 if (test_bit(iommu->seq_id, &domain->iommu_bmp))
1431 iommu_detach_domain(domain, iommu);
1432
1433 free_domain_mem(domain);
1434 }
1435
1436 static int domain_context_mapping_one(struct dmar_domain *domain, int segment,
1437 u8 bus, u8 devfn, int translation)
1438 {
1439 struct context_entry *context;
1440 unsigned long flags;
1441 struct intel_iommu *iommu;
1442 struct dma_pte *pgd;
1443 unsigned long num;
1444 unsigned long ndomains;
1445 int id;
1446 int agaw;
1447 struct device_domain_info *info = NULL;
1448
1449 pr_debug("Set context mapping for %02x:%02x.%d\n",
1450 bus, PCI_SLOT(devfn), PCI_FUNC(devfn));
1451
1452 BUG_ON(!domain->pgd);
1453 BUG_ON(translation != CONTEXT_TT_PASS_THROUGH &&
1454 translation != CONTEXT_TT_MULTI_LEVEL);
1455
1456 iommu = device_to_iommu(segment, bus, devfn);
1457 if (!iommu)
1458 return -ENODEV;
1459
1460 context = device_to_context_entry(iommu, bus, devfn);
1461 if (!context)
1462 return -ENOMEM;
1463 spin_lock_irqsave(&iommu->lock, flags);
1464 if (context_present(context)) {
1465 spin_unlock_irqrestore(&iommu->lock, flags);
1466 return 0;
1467 }
1468
1469 id = domain->id;
1470 pgd = domain->pgd;
1471
1472 if (domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE ||
1473 domain->flags & DOMAIN_FLAG_STATIC_IDENTITY) {
1474 int found = 0;
1475
1476 /* find an available domain id for this device in iommu */
1477 ndomains = cap_ndoms(iommu->cap);
1478 for_each_set_bit(num, iommu->domain_ids, ndomains) {
1479 if (iommu->domains[num] == domain) {
1480 id = num;
1481 found = 1;
1482 break;
1483 }
1484 }
1485
1486 if (found == 0) {
1487 num = find_first_zero_bit(iommu->domain_ids, ndomains);
1488 if (num >= ndomains) {
1489 spin_unlock_irqrestore(&iommu->lock, flags);
1490 printk(KERN_ERR "IOMMU: no free domain ids\n");
1491 return -EFAULT;
1492 }
1493
1494 set_bit(num, iommu->domain_ids);
1495 iommu->domains[num] = domain;
1496 id = num;
1497 }
1498
1499 /* Skip top levels of page tables for
1500 * iommu which has less agaw than default.
1501 * Unnecessary for PT mode.
1502 */
1503 if (translation != CONTEXT_TT_PASS_THROUGH) {
1504 for (agaw = domain->agaw; agaw != iommu->agaw; agaw--) {
1505 pgd = phys_to_virt(dma_pte_addr(pgd));
1506 if (!dma_pte_present(pgd)) {
1507 spin_unlock_irqrestore(&iommu->lock, flags);
1508 return -ENOMEM;
1509 }
1510 }
1511 }
1512 }
1513
1514 context_set_domain_id(context, id);
1515
1516 if (translation != CONTEXT_TT_PASS_THROUGH) {
1517 info = iommu_support_dev_iotlb(domain, segment, bus, devfn);
1518 translation = info ? CONTEXT_TT_DEV_IOTLB :
1519 CONTEXT_TT_MULTI_LEVEL;
1520 }
1521 /*
1522 * In pass through mode, AW must be programmed to indicate the largest
1523 * AGAW value supported by hardware. And ASR is ignored by hardware.
1524 */
1525 if (unlikely(translation == CONTEXT_TT_PASS_THROUGH))
1526 context_set_address_width(context, iommu->msagaw);
1527 else {
1528 context_set_address_root(context, virt_to_phys(pgd));
1529 context_set_address_width(context, iommu->agaw);
1530 }
1531
1532 context_set_translation_type(context, translation);
1533 context_set_fault_enable(context);
1534 context_set_present(context);
1535 domain_flush_cache(domain, context, sizeof(*context));
1536
1537 /*
1538 * It's a non-present to present mapping. If hardware doesn't cache
1539 * non-present entry we only need to flush the write-buffer. If the
1540 * _does_ cache non-present entries, then it does so in the special
1541 * domain #0, which we have to flush:
1542 */
1543 if (cap_caching_mode(iommu->cap)) {
1544 iommu->flush.flush_context(iommu, 0,
1545 (((u16)bus) << 8) | devfn,
1546 DMA_CCMD_MASK_NOBIT,
1547 DMA_CCMD_DEVICE_INVL);
1548 iommu->flush.flush_iotlb(iommu, domain->id, 0, 0, DMA_TLB_DSI_FLUSH);
1549 } else {
1550 iommu_flush_write_buffer(iommu);
1551 }
1552 iommu_enable_dev_iotlb(info);
1553 spin_unlock_irqrestore(&iommu->lock, flags);
1554
1555 spin_lock_irqsave(&domain->iommu_lock, flags);
1556 if (!test_and_set_bit(iommu->seq_id, &domain->iommu_bmp)) {
1557 domain->iommu_count++;
1558 if (domain->iommu_count == 1)
1559 domain->nid = iommu->node;
1560 domain_update_iommu_cap(domain);
1561 }
1562 spin_unlock_irqrestore(&domain->iommu_lock, flags);
1563 return 0;
1564 }
1565
1566 static int
1567 domain_context_mapping(struct dmar_domain *domain, struct pci_dev *pdev,
1568 int translation)
1569 {
1570 int ret;
1571 struct pci_dev *tmp, *parent;
1572
1573 ret = domain_context_mapping_one(domain, pci_domain_nr(pdev->bus),
1574 pdev->bus->number, pdev->devfn,
1575 translation);
1576 if (ret)
1577 return ret;
1578
1579 /* dependent device mapping */
1580 tmp = pci_find_upstream_pcie_bridge(pdev);
1581 if (!tmp)
1582 return 0;
1583 /* Secondary interface's bus number and devfn 0 */
1584 parent = pdev->bus->self;
1585 while (parent != tmp) {
1586 ret = domain_context_mapping_one(domain,
1587 pci_domain_nr(parent->bus),
1588 parent->bus->number,
1589 parent->devfn, translation);
1590 if (ret)
1591 return ret;
1592 parent = parent->bus->self;
1593 }
1594 if (pci_is_pcie(tmp)) /* this is a PCIe-to-PCI bridge */
1595 return domain_context_mapping_one(domain,
1596 pci_domain_nr(tmp->subordinate),
1597 tmp->subordinate->number, 0,
1598 translation);
1599 else /* this is a legacy PCI bridge */
1600 return domain_context_mapping_one(domain,
1601 pci_domain_nr(tmp->bus),
1602 tmp->bus->number,
1603 tmp->devfn,
1604 translation);
1605 }
1606
1607 static int domain_context_mapped(struct pci_dev *pdev)
1608 {
1609 int ret;
1610 struct pci_dev *tmp, *parent;
1611 struct intel_iommu *iommu;
1612
1613 iommu = device_to_iommu(pci_domain_nr(pdev->bus), pdev->bus->number,
1614 pdev->devfn);
1615 if (!iommu)
1616 return -ENODEV;
1617
1618 ret = device_context_mapped(iommu, pdev->bus->number, pdev->devfn);
1619 if (!ret)
1620 return ret;
1621 /* dependent device mapping */
1622 tmp = pci_find_upstream_pcie_bridge(pdev);
1623 if (!tmp)
1624 return ret;
1625 /* Secondary interface's bus number and devfn 0 */
1626 parent = pdev->bus->self;
1627 while (parent != tmp) {
1628 ret = device_context_mapped(iommu, parent->bus->number,
1629 parent->devfn);
1630 if (!ret)
1631 return ret;
1632 parent = parent->bus->self;
1633 }
1634 if (pci_is_pcie(tmp))
1635 return device_context_mapped(iommu, tmp->subordinate->number,
1636 0);
1637 else
1638 return device_context_mapped(iommu, tmp->bus->number,
1639 tmp->devfn);
1640 }
1641
1642 /* Returns a number of VTD pages, but aligned to MM page size */
1643 static inline unsigned long aligned_nrpages(unsigned long host_addr,
1644 size_t size)
1645 {
1646 host_addr &= ~PAGE_MASK;
1647 return PAGE_ALIGN(host_addr + size) >> VTD_PAGE_SHIFT;
1648 }
1649
1650 static int __domain_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
1651 struct scatterlist *sg, unsigned long phys_pfn,
1652 unsigned long nr_pages, int prot)
1653 {
1654 struct dma_pte *first_pte = NULL, *pte = NULL;
1655 phys_addr_t uninitialized_var(pteval);
1656 int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
1657 unsigned long sg_res;
1658
1659 BUG_ON(addr_width < BITS_PER_LONG && (iov_pfn + nr_pages - 1) >> addr_width);
1660
1661 if ((prot & (DMA_PTE_READ|DMA_PTE_WRITE)) == 0)
1662 return -EINVAL;
1663
1664 prot &= DMA_PTE_READ | DMA_PTE_WRITE | DMA_PTE_SNP;
1665
1666 if (sg)
1667 sg_res = 0;
1668 else {
1669 sg_res = nr_pages + 1;
1670 pteval = ((phys_addr_t)phys_pfn << VTD_PAGE_SHIFT) | prot;
1671 }
1672
1673 while (nr_pages--) {
1674 uint64_t tmp;
1675
1676 if (!sg_res) {
1677 sg_res = aligned_nrpages(sg->offset, sg->length);
1678 sg->dma_address = ((dma_addr_t)iov_pfn << VTD_PAGE_SHIFT) + sg->offset;
1679 sg->dma_length = sg->length;
1680 pteval = page_to_phys(sg_page(sg)) | prot;
1681 }
1682 if (!pte) {
1683 first_pte = pte = pfn_to_dma_pte(domain, iov_pfn);
1684 if (!pte)
1685 return -ENOMEM;
1686 }
1687 /* We don't need lock here, nobody else
1688 * touches the iova range
1689 */
1690 tmp = cmpxchg64_local(&pte->val, 0ULL, pteval);
1691 if (tmp) {
1692 static int dumps = 5;
1693 printk(KERN_CRIT "ERROR: DMA PTE for vPFN 0x%lx already set (to %llx not %llx)\n",
1694 iov_pfn, tmp, (unsigned long long)pteval);
1695 if (dumps) {
1696 dumps--;
1697 debug_dma_dump_mappings(NULL);
1698 }
1699 WARN_ON(1);
1700 }
1701 pte++;
1702 if (!nr_pages || first_pte_in_page(pte)) {
1703 domain_flush_cache(domain, first_pte,
1704 (void *)pte - (void *)first_pte);
1705 pte = NULL;
1706 }
1707 iov_pfn++;
1708 pteval += VTD_PAGE_SIZE;
1709 sg_res--;
1710 if (!sg_res)
1711 sg = sg_next(sg);
1712 }
1713 return 0;
1714 }
1715
1716 static inline int domain_sg_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
1717 struct scatterlist *sg, unsigned long nr_pages,
1718 int prot)
1719 {
1720 return __domain_mapping(domain, iov_pfn, sg, 0, nr_pages, prot);
1721 }
1722
1723 static inline int domain_pfn_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
1724 unsigned long phys_pfn, unsigned long nr_pages,
1725 int prot)
1726 {
1727 return __domain_mapping(domain, iov_pfn, NULL, phys_pfn, nr_pages, prot);
1728 }
1729
1730 static void iommu_detach_dev(struct intel_iommu *iommu, u8 bus, u8 devfn)
1731 {
1732 if (!iommu)
1733 return;
1734
1735 clear_context_table(iommu, bus, devfn);
1736 iommu->flush.flush_context(iommu, 0, 0, 0,
1737 DMA_CCMD_GLOBAL_INVL);
1738 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
1739 }
1740
1741 static void domain_remove_dev_info(struct dmar_domain *domain)
1742 {
1743 struct device_domain_info *info;
1744 unsigned long flags;
1745 struct intel_iommu *iommu;
1746
1747 spin_lock_irqsave(&device_domain_lock, flags);
1748 while (!list_empty(&domain->devices)) {
1749 info = list_entry(domain->devices.next,
1750 struct device_domain_info, link);
1751 list_del(&info->link);
1752 list_del(&info->global);
1753 if (info->dev)
1754 info->dev->dev.archdata.iommu = NULL;
1755 spin_unlock_irqrestore(&device_domain_lock, flags);
1756
1757 iommu_disable_dev_iotlb(info);
1758 iommu = device_to_iommu(info->segment, info->bus, info->devfn);
1759 iommu_detach_dev(iommu, info->bus, info->devfn);
1760 free_devinfo_mem(info);
1761
1762 spin_lock_irqsave(&device_domain_lock, flags);
1763 }
1764 spin_unlock_irqrestore(&device_domain_lock, flags);
1765 }
1766
1767 /*
1768 * find_domain
1769 * Note: we use struct pci_dev->dev.archdata.iommu stores the info
1770 */
1771 static struct dmar_domain *
1772 find_domain(struct pci_dev *pdev)
1773 {
1774 struct device_domain_info *info;
1775
1776 /* No lock here, assumes no domain exit in normal case */
1777 info = pdev->dev.archdata.iommu;
1778 if (info)
1779 return info->domain;
1780 return NULL;
1781 }
1782
1783 /* domain is initialized */
1784 static struct dmar_domain *get_domain_for_dev(struct pci_dev *pdev, int gaw)
1785 {
1786 struct dmar_domain *domain, *found = NULL;
1787 struct intel_iommu *iommu;
1788 struct dmar_drhd_unit *drhd;
1789 struct device_domain_info *info, *tmp;
1790 struct pci_dev *dev_tmp;
1791 unsigned long flags;
1792 int bus = 0, devfn = 0;
1793 int segment;
1794 int ret;
1795
1796 domain = find_domain(pdev);
1797 if (domain)
1798 return domain;
1799
1800 segment = pci_domain_nr(pdev->bus);
1801
1802 dev_tmp = pci_find_upstream_pcie_bridge(pdev);
1803 if (dev_tmp) {
1804 if (pci_is_pcie(dev_tmp)) {
1805 bus = dev_tmp->subordinate->number;
1806 devfn = 0;
1807 } else {
1808 bus = dev_tmp->bus->number;
1809 devfn = dev_tmp->devfn;
1810 }
1811 spin_lock_irqsave(&device_domain_lock, flags);
1812 list_for_each_entry(info, &device_domain_list, global) {
1813 if (info->segment == segment &&
1814 info->bus == bus && info->devfn == devfn) {
1815 found = info->domain;
1816 break;
1817 }
1818 }
1819 spin_unlock_irqrestore(&device_domain_lock, flags);
1820 /* pcie-pci bridge already has a domain, uses it */
1821 if (found) {
1822 domain = found;
1823 goto found_domain;
1824 }
1825 }
1826
1827 domain = alloc_domain();
1828 if (!domain)
1829 goto error;
1830
1831 /* Allocate new domain for the device */
1832 drhd = dmar_find_matched_drhd_unit(pdev);
1833 if (!drhd) {
1834 printk(KERN_ERR "IOMMU: can't find DMAR for device %s\n",
1835 pci_name(pdev));
1836 return NULL;
1837 }
1838 iommu = drhd->iommu;
1839
1840 ret = iommu_attach_domain(domain, iommu);
1841 if (ret) {
1842 free_domain_mem(domain);
1843 goto error;
1844 }
1845
1846 if (domain_init(domain, gaw)) {
1847 domain_exit(domain);
1848 goto error;
1849 }
1850
1851 /* register pcie-to-pci device */
1852 if (dev_tmp) {
1853 info = alloc_devinfo_mem();
1854 if (!info) {
1855 domain_exit(domain);
1856 goto error;
1857 }
1858 info->segment = segment;
1859 info->bus = bus;
1860 info->devfn = devfn;
1861 info->dev = NULL;
1862 info->domain = domain;
1863 /* This domain is shared by devices under p2p bridge */
1864 domain->flags |= DOMAIN_FLAG_P2P_MULTIPLE_DEVICES;
1865
1866 /* pcie-to-pci bridge already has a domain, uses it */
1867 found = NULL;
1868 spin_lock_irqsave(&device_domain_lock, flags);
1869 list_for_each_entry(tmp, &device_domain_list, global) {
1870 if (tmp->segment == segment &&
1871 tmp->bus == bus && tmp->devfn == devfn) {
1872 found = tmp->domain;
1873 break;
1874 }
1875 }
1876 if (found) {
1877 spin_unlock_irqrestore(&device_domain_lock, flags);
1878 free_devinfo_mem(info);
1879 domain_exit(domain);
1880 domain = found;
1881 } else {
1882 list_add(&info->link, &domain->devices);
1883 list_add(&info->global, &device_domain_list);
1884 spin_unlock_irqrestore(&device_domain_lock, flags);
1885 }
1886 }
1887
1888 found_domain:
1889 info = alloc_devinfo_mem();
1890 if (!info)
1891 goto error;
1892 info->segment = segment;
1893 info->bus = pdev->bus->number;
1894 info->devfn = pdev->devfn;
1895 info->dev = pdev;
1896 info->domain = domain;
1897 spin_lock_irqsave(&device_domain_lock, flags);
1898 /* somebody is fast */
1899 found = find_domain(pdev);
1900 if (found != NULL) {
1901 spin_unlock_irqrestore(&device_domain_lock, flags);
1902 if (found != domain) {
1903 domain_exit(domain);
1904 domain = found;
1905 }
1906 free_devinfo_mem(info);
1907 return domain;
1908 }
1909 list_add(&info->link, &domain->devices);
1910 list_add(&info->global, &device_domain_list);
1911 pdev->dev.archdata.iommu = info;
1912 spin_unlock_irqrestore(&device_domain_lock, flags);
1913 return domain;
1914 error:
1915 /* recheck it here, maybe others set it */
1916 return find_domain(pdev);
1917 }
1918
1919 static int iommu_identity_mapping;
1920 #define IDENTMAP_ALL 1
1921 #define IDENTMAP_GFX 2
1922 #define IDENTMAP_AZALIA 4
1923
1924 static int iommu_domain_identity_map(struct dmar_domain *domain,
1925 unsigned long long start,
1926 unsigned long long end)
1927 {
1928 unsigned long first_vpfn = start >> VTD_PAGE_SHIFT;
1929 unsigned long last_vpfn = end >> VTD_PAGE_SHIFT;
1930
1931 if (!reserve_iova(&domain->iovad, dma_to_mm_pfn(first_vpfn),
1932 dma_to_mm_pfn(last_vpfn))) {
1933 printk(KERN_ERR "IOMMU: reserve iova failed\n");
1934 return -ENOMEM;
1935 }
1936
1937 pr_debug("Mapping reserved region %llx-%llx for domain %d\n",
1938 start, end, domain->id);
1939 /*
1940 * RMRR range might have overlap with physical memory range,
1941 * clear it first
1942 */
1943 dma_pte_clear_range(domain, first_vpfn, last_vpfn);
1944
1945 return domain_pfn_mapping(domain, first_vpfn, first_vpfn,
1946 last_vpfn - first_vpfn + 1,
1947 DMA_PTE_READ|DMA_PTE_WRITE);
1948 }
1949
1950 static int iommu_prepare_identity_map(struct pci_dev *pdev,
1951 unsigned long long start,
1952 unsigned long long end)
1953 {
1954 struct dmar_domain *domain;
1955 int ret;
1956
1957 domain = get_domain_for_dev(pdev, DEFAULT_DOMAIN_ADDRESS_WIDTH);
1958 if (!domain)
1959 return -ENOMEM;
1960
1961 /* For _hardware_ passthrough, don't bother. But for software
1962 passthrough, we do it anyway -- it may indicate a memory
1963 range which is reserved in E820, so which didn't get set
1964 up to start with in si_domain */
1965 if (domain == si_domain && hw_pass_through) {
1966 printk("Ignoring identity map for HW passthrough device %s [0x%Lx - 0x%Lx]\n",
1967 pci_name(pdev), start, end);
1968 return 0;
1969 }
1970
1971 printk(KERN_INFO
1972 "IOMMU: Setting identity map for device %s [0x%Lx - 0x%Lx]\n",
1973 pci_name(pdev), start, end);
1974
1975 if (end < start) {
1976 WARN(1, "Your BIOS is broken; RMRR ends before it starts!\n"
1977 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
1978 dmi_get_system_info(DMI_BIOS_VENDOR),
1979 dmi_get_system_info(DMI_BIOS_VERSION),
1980 dmi_get_system_info(DMI_PRODUCT_VERSION));
1981 ret = -EIO;
1982 goto error;
1983 }
1984
1985 if (end >> agaw_to_width(domain->agaw)) {
1986 WARN(1, "Your BIOS is broken; RMRR exceeds permitted address width (%d bits)\n"
1987 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
1988 agaw_to_width(domain->agaw),
1989 dmi_get_system_info(DMI_BIOS_VENDOR),
1990 dmi_get_system_info(DMI_BIOS_VERSION),
1991 dmi_get_system_info(DMI_PRODUCT_VERSION));
1992 ret = -EIO;
1993 goto error;
1994 }
1995
1996 ret = iommu_domain_identity_map(domain, start, end);
1997 if (ret)
1998 goto error;
1999
2000 /* context entry init */
2001 ret = domain_context_mapping(domain, pdev, CONTEXT_TT_MULTI_LEVEL);
2002 if (ret)
2003 goto error;
2004
2005 return 0;
2006
2007 error:
2008 domain_exit(domain);
2009 return ret;
2010 }
2011
2012 static inline int iommu_prepare_rmrr_dev(struct dmar_rmrr_unit *rmrr,
2013 struct pci_dev *pdev)
2014 {
2015 if (pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO)
2016 return 0;
2017 return iommu_prepare_identity_map(pdev, rmrr->base_address,
2018 rmrr->end_address + 1);
2019 }
2020
2021 #ifdef CONFIG_DMAR_FLOPPY_WA
2022 static inline void iommu_prepare_isa(void)
2023 {
2024 struct pci_dev *pdev;
2025 int ret;
2026
2027 pdev = pci_get_class(PCI_CLASS_BRIDGE_ISA << 8, NULL);
2028 if (!pdev)
2029 return;
2030
2031 printk(KERN_INFO "IOMMU: Prepare 0-16MiB unity mapping for LPC\n");
2032 ret = iommu_prepare_identity_map(pdev, 0, 16*1024*1024);
2033
2034 if (ret)
2035 printk(KERN_ERR "IOMMU: Failed to create 0-16MiB identity map; "
2036 "floppy might not work\n");
2037
2038 }
2039 #else
2040 static inline void iommu_prepare_isa(void)
2041 {
2042 return;
2043 }
2044 #endif /* !CONFIG_DMAR_FLPY_WA */
2045
2046 static int md_domain_init(struct dmar_domain *domain, int guest_width);
2047
2048 static int __init si_domain_work_fn(unsigned long start_pfn,
2049 unsigned long end_pfn, void *datax)
2050 {
2051 int *ret = datax;
2052
2053 *ret = iommu_domain_identity_map(si_domain,
2054 (uint64_t)start_pfn << PAGE_SHIFT,
2055 (uint64_t)end_pfn << PAGE_SHIFT);
2056 return *ret;
2057
2058 }
2059
2060 static int __init si_domain_init(int hw)
2061 {
2062 struct dmar_drhd_unit *drhd;
2063 struct intel_iommu *iommu;
2064 int nid, ret = 0;
2065
2066 si_domain = alloc_domain();
2067 if (!si_domain)
2068 return -EFAULT;
2069
2070 pr_debug("Identity mapping domain is domain %d\n", si_domain->id);
2071
2072 for_each_active_iommu(iommu, drhd) {
2073 ret = iommu_attach_domain(si_domain, iommu);
2074 if (ret) {
2075 domain_exit(si_domain);
2076 return -EFAULT;
2077 }
2078 }
2079
2080 if (md_domain_init(si_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
2081 domain_exit(si_domain);
2082 return -EFAULT;
2083 }
2084
2085 si_domain->flags = DOMAIN_FLAG_STATIC_IDENTITY;
2086
2087 if (hw)
2088 return 0;
2089
2090 for_each_online_node(nid) {
2091 work_with_active_regions(nid, si_domain_work_fn, &ret);
2092 if (ret)
2093 return ret;
2094 }
2095
2096 return 0;
2097 }
2098
2099 static void domain_remove_one_dev_info(struct dmar_domain *domain,
2100 struct pci_dev *pdev);
2101 static int identity_mapping(struct pci_dev *pdev)
2102 {
2103 struct device_domain_info *info;
2104
2105 if (likely(!iommu_identity_mapping))
2106 return 0;
2107
2108
2109 list_for_each_entry(info, &si_domain->devices, link)
2110 if (info->dev == pdev)
2111 return 1;
2112 return 0;
2113 }
2114
2115 static int domain_add_dev_info(struct dmar_domain *domain,
2116 struct pci_dev *pdev,
2117 int translation)
2118 {
2119 struct device_domain_info *info;
2120 unsigned long flags;
2121 int ret;
2122
2123 info = alloc_devinfo_mem();
2124 if (!info)
2125 return -ENOMEM;
2126
2127 ret = domain_context_mapping(domain, pdev, translation);
2128 if (ret) {
2129 free_devinfo_mem(info);
2130 return ret;
2131 }
2132
2133 info->segment = pci_domain_nr(pdev->bus);
2134 info->bus = pdev->bus->number;
2135 info->devfn = pdev->devfn;
2136 info->dev = pdev;
2137 info->domain = domain;
2138
2139 spin_lock_irqsave(&device_domain_lock, flags);
2140 list_add(&info->link, &domain->devices);
2141 list_add(&info->global, &device_domain_list);
2142 pdev->dev.archdata.iommu = info;
2143 spin_unlock_irqrestore(&device_domain_lock, flags);
2144
2145 return 0;
2146 }
2147
2148 static int iommu_should_identity_map(struct pci_dev *pdev, int startup)
2149 {
2150 if ((iommu_identity_mapping & IDENTMAP_AZALIA) && IS_AZALIA(pdev))
2151 return 1;
2152
2153 if ((iommu_identity_mapping & IDENTMAP_GFX) && IS_GFX_DEVICE(pdev))
2154 return 1;
2155
2156 if (!(iommu_identity_mapping & IDENTMAP_ALL))
2157 return 0;
2158
2159 /*
2160 * We want to start off with all devices in the 1:1 domain, and
2161 * take them out later if we find they can't access all of memory.
2162 *
2163 * However, we can't do this for PCI devices behind bridges,
2164 * because all PCI devices behind the same bridge will end up
2165 * with the same source-id on their transactions.
2166 *
2167 * Practically speaking, we can't change things around for these
2168 * devices at run-time, because we can't be sure there'll be no
2169 * DMA transactions in flight for any of their siblings.
2170 *
2171 * So PCI devices (unless they're on the root bus) as well as
2172 * their parent PCI-PCI or PCIe-PCI bridges must be left _out_ of
2173 * the 1:1 domain, just in _case_ one of their siblings turns out
2174 * not to be able to map all of memory.
2175 */
2176 if (!pci_is_pcie(pdev)) {
2177 if (!pci_is_root_bus(pdev->bus))
2178 return 0;
2179 if (pdev->class >> 8 == PCI_CLASS_BRIDGE_PCI)
2180 return 0;
2181 } else if (pdev->pcie_type == PCI_EXP_TYPE_PCI_BRIDGE)
2182 return 0;
2183
2184 /*
2185 * At boot time, we don't yet know if devices will be 64-bit capable.
2186 * Assume that they will -- if they turn out not to be, then we can
2187 * take them out of the 1:1 domain later.
2188 */
2189 if (!startup)
2190 return pdev->dma_mask > DMA_BIT_MASK(32);
2191
2192 return 1;
2193 }
2194
2195 static int __init iommu_prepare_static_identity_mapping(int hw)
2196 {
2197 struct pci_dev *pdev = NULL;
2198 int ret;
2199
2200 ret = si_domain_init(hw);
2201 if (ret)
2202 return -EFAULT;
2203
2204 for_each_pci_dev(pdev) {
2205 if (iommu_should_identity_map(pdev, 1)) {
2206 printk(KERN_INFO "IOMMU: %s identity mapping for device %s\n",
2207 hw ? "hardware" : "software", pci_name(pdev));
2208
2209 ret = domain_add_dev_info(si_domain, pdev,
2210 hw ? CONTEXT_TT_PASS_THROUGH :
2211 CONTEXT_TT_MULTI_LEVEL);
2212 if (ret)
2213 return ret;
2214 }
2215 }
2216
2217 return 0;
2218 }
2219
2220 static int __init init_dmars(int force_on)
2221 {
2222 struct dmar_drhd_unit *drhd;
2223 struct dmar_rmrr_unit *rmrr;
2224 struct pci_dev *pdev;
2225 struct intel_iommu *iommu;
2226 int i, ret;
2227
2228 /*
2229 * for each drhd
2230 * allocate root
2231 * initialize and program root entry to not present
2232 * endfor
2233 */
2234 for_each_drhd_unit(drhd) {
2235 g_num_of_iommus++;
2236 /*
2237 * lock not needed as this is only incremented in the single
2238 * threaded kernel __init code path all other access are read
2239 * only
2240 */
2241 }
2242
2243 g_iommus = kcalloc(g_num_of_iommus, sizeof(struct intel_iommu *),
2244 GFP_KERNEL);
2245 if (!g_iommus) {
2246 printk(KERN_ERR "Allocating global iommu array failed\n");
2247 ret = -ENOMEM;
2248 goto error;
2249 }
2250
2251 deferred_flush = kzalloc(g_num_of_iommus *
2252 sizeof(struct deferred_flush_tables), GFP_KERNEL);
2253 if (!deferred_flush) {
2254 ret = -ENOMEM;
2255 goto error;
2256 }
2257
2258 for_each_drhd_unit(drhd) {
2259 if (drhd->ignored)
2260 continue;
2261
2262 iommu = drhd->iommu;
2263 g_iommus[iommu->seq_id] = iommu;
2264
2265 ret = iommu_init_domains(iommu);
2266 if (ret)
2267 goto error;
2268
2269 /*
2270 * TBD:
2271 * we could share the same root & context tables
2272 * among all IOMMU's. Need to Split it later.
2273 */
2274 ret = iommu_alloc_root_entry(iommu);
2275 if (ret) {
2276 printk(KERN_ERR "IOMMU: allocate root entry failed\n");
2277 goto error;
2278 }
2279 if (!ecap_pass_through(iommu->ecap))
2280 hw_pass_through = 0;
2281 }
2282
2283 /*
2284 * Start from the sane iommu hardware state.
2285 */
2286 for_each_drhd_unit(drhd) {
2287 if (drhd->ignored)
2288 continue;
2289
2290 iommu = drhd->iommu;
2291
2292 /*
2293 * If the queued invalidation is already initialized by us
2294 * (for example, while enabling interrupt-remapping) then
2295 * we got the things already rolling from a sane state.
2296 */
2297 if (iommu->qi)
2298 continue;
2299
2300 /*
2301 * Clear any previous faults.
2302 */
2303 dmar_fault(-1, iommu);
2304 /*
2305 * Disable queued invalidation if supported and already enabled
2306 * before OS handover.
2307 */
2308 dmar_disable_qi(iommu);
2309 }
2310
2311 for_each_drhd_unit(drhd) {
2312 if (drhd->ignored)
2313 continue;
2314
2315 iommu = drhd->iommu;
2316
2317 if (dmar_enable_qi(iommu)) {
2318 /*
2319 * Queued Invalidate not enabled, use Register Based
2320 * Invalidate
2321 */
2322 iommu->flush.flush_context = __iommu_flush_context;
2323 iommu->flush.flush_iotlb = __iommu_flush_iotlb;
2324 printk(KERN_INFO "IOMMU %d 0x%Lx: using Register based "
2325 "invalidation\n",
2326 iommu->seq_id,
2327 (unsigned long long)drhd->reg_base_addr);
2328 } else {
2329 iommu->flush.flush_context = qi_flush_context;
2330 iommu->flush.flush_iotlb = qi_flush_iotlb;
2331 printk(KERN_INFO "IOMMU %d 0x%Lx: using Queued "
2332 "invalidation\n",
2333 iommu->seq_id,
2334 (unsigned long long)drhd->reg_base_addr);
2335 }
2336 }
2337
2338 if (iommu_pass_through)
2339 iommu_identity_mapping |= IDENTMAP_ALL;
2340
2341 #ifdef CONFIG_DMAR_BROKEN_GFX_WA
2342 iommu_identity_mapping |= IDENTMAP_GFX;
2343 #endif
2344
2345 check_tylersburg_isoch();
2346
2347 /*
2348 * If pass through is not set or not enabled, setup context entries for
2349 * identity mappings for rmrr, gfx, and isa and may fall back to static
2350 * identity mapping if iommu_identity_mapping is set.
2351 */
2352 if (iommu_identity_mapping) {
2353 ret = iommu_prepare_static_identity_mapping(hw_pass_through);
2354 if (ret) {
2355 printk(KERN_CRIT "Failed to setup IOMMU pass-through\n");
2356 goto error;
2357 }
2358 }
2359 /*
2360 * For each rmrr
2361 * for each dev attached to rmrr
2362 * do
2363 * locate drhd for dev, alloc domain for dev
2364 * allocate free domain
2365 * allocate page table entries for rmrr
2366 * if context not allocated for bus
2367 * allocate and init context
2368 * set present in root table for this bus
2369 * init context with domain, translation etc
2370 * endfor
2371 * endfor
2372 */
2373 printk(KERN_INFO "IOMMU: Setting RMRR:\n");
2374 for_each_rmrr_units(rmrr) {
2375 for (i = 0; i < rmrr->devices_cnt; i++) {
2376 pdev = rmrr->devices[i];
2377 /*
2378 * some BIOS lists non-exist devices in DMAR
2379 * table.
2380 */
2381 if (!pdev)
2382 continue;
2383 ret = iommu_prepare_rmrr_dev(rmrr, pdev);
2384 if (ret)
2385 printk(KERN_ERR
2386 "IOMMU: mapping reserved region failed\n");
2387 }
2388 }
2389
2390 iommu_prepare_isa();
2391
2392 /*
2393 * for each drhd
2394 * enable fault log
2395 * global invalidate context cache
2396 * global invalidate iotlb
2397 * enable translation
2398 */
2399 for_each_drhd_unit(drhd) {
2400 if (drhd->ignored) {
2401 /*
2402 * we always have to disable PMRs or DMA may fail on
2403 * this device
2404 */
2405 if (force_on)
2406 iommu_disable_protect_mem_regions(drhd->iommu);
2407 continue;
2408 }
2409 iommu = drhd->iommu;
2410
2411 iommu_flush_write_buffer(iommu);
2412
2413 ret = dmar_set_interrupt(iommu);
2414 if (ret)
2415 goto error;
2416
2417 iommu_set_root_entry(iommu);
2418
2419 iommu->flush.flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL);
2420 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
2421
2422 ret = iommu_enable_translation(iommu);
2423 if (ret)
2424 goto error;
2425
2426 iommu_disable_protect_mem_regions(iommu);
2427 }
2428
2429 return 0;
2430 error:
2431 for_each_drhd_unit(drhd) {
2432 if (drhd->ignored)
2433 continue;
2434 iommu = drhd->iommu;
2435 free_iommu(iommu);
2436 }
2437 kfree(g_iommus);
2438 return ret;
2439 }
2440
2441 /* This takes a number of _MM_ pages, not VTD pages */
2442 static struct iova *intel_alloc_iova(struct device *dev,
2443 struct dmar_domain *domain,
2444 unsigned long nrpages, uint64_t dma_mask)
2445 {
2446 struct pci_dev *pdev = to_pci_dev(dev);
2447 struct iova *iova = NULL;
2448
2449 /* Restrict dma_mask to the width that the iommu can handle */
2450 dma_mask = min_t(uint64_t, DOMAIN_MAX_ADDR(domain->gaw), dma_mask);
2451
2452 if (!dmar_forcedac && dma_mask > DMA_BIT_MASK(32)) {
2453 /*
2454 * First try to allocate an io virtual address in
2455 * DMA_BIT_MASK(32) and if that fails then try allocating
2456 * from higher range
2457 */
2458 iova = alloc_iova(&domain->iovad, nrpages,
2459 IOVA_PFN(DMA_BIT_MASK(32)), 1);
2460 if (iova)
2461 return iova;
2462 }
2463 iova = alloc_iova(&domain->iovad, nrpages, IOVA_PFN(dma_mask), 1);
2464 if (unlikely(!iova)) {
2465 printk(KERN_ERR "Allocating %ld-page iova for %s failed",
2466 nrpages, pci_name(pdev));
2467 return NULL;
2468 }
2469
2470 return iova;
2471 }
2472
2473 static struct dmar_domain *__get_valid_domain_for_dev(struct pci_dev *pdev)
2474 {
2475 struct dmar_domain *domain;
2476 int ret;
2477
2478 domain = get_domain_for_dev(pdev,
2479 DEFAULT_DOMAIN_ADDRESS_WIDTH);
2480 if (!domain) {
2481 printk(KERN_ERR
2482 "Allocating domain for %s failed", pci_name(pdev));
2483 return NULL;
2484 }
2485
2486 /* make sure context mapping is ok */
2487 if (unlikely(!domain_context_mapped(pdev))) {
2488 ret = domain_context_mapping(domain, pdev,
2489 CONTEXT_TT_MULTI_LEVEL);
2490 if (ret) {
2491 printk(KERN_ERR
2492 "Domain context map for %s failed",
2493 pci_name(pdev));
2494 return NULL;
2495 }
2496 }
2497
2498 return domain;
2499 }
2500
2501 static inline struct dmar_domain *get_valid_domain_for_dev(struct pci_dev *dev)
2502 {
2503 struct device_domain_info *info;
2504
2505 /* No lock here, assumes no domain exit in normal case */
2506 info = dev->dev.archdata.iommu;
2507 if (likely(info))
2508 return info->domain;
2509
2510 return __get_valid_domain_for_dev(dev);
2511 }
2512
2513 static int iommu_dummy(struct pci_dev *pdev)
2514 {
2515 return pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO;
2516 }
2517
2518 /* Check if the pdev needs to go through non-identity map and unmap process.*/
2519 static int iommu_no_mapping(struct device *dev)
2520 {
2521 struct pci_dev *pdev;
2522 int found;
2523
2524 if (unlikely(dev->bus != &pci_bus_type))
2525 return 1;
2526
2527 pdev = to_pci_dev(dev);
2528 if (iommu_dummy(pdev))
2529 return 1;
2530
2531 if (!iommu_identity_mapping)
2532 return 0;
2533
2534 found = identity_mapping(pdev);
2535 if (found) {
2536 if (iommu_should_identity_map(pdev, 0))
2537 return 1;
2538 else {
2539 /*
2540 * 32 bit DMA is removed from si_domain and fall back
2541 * to non-identity mapping.
2542 */
2543 domain_remove_one_dev_info(si_domain, pdev);
2544 printk(KERN_INFO "32bit %s uses non-identity mapping\n",
2545 pci_name(pdev));
2546 return 0;
2547 }
2548 } else {
2549 /*
2550 * In case of a detached 64 bit DMA device from vm, the device
2551 * is put into si_domain for identity mapping.
2552 */
2553 if (iommu_should_identity_map(pdev, 0)) {
2554 int ret;
2555 ret = domain_add_dev_info(si_domain, pdev,
2556 hw_pass_through ?
2557 CONTEXT_TT_PASS_THROUGH :
2558 CONTEXT_TT_MULTI_LEVEL);
2559 if (!ret) {
2560 printk(KERN_INFO "64bit %s uses identity mapping\n",
2561 pci_name(pdev));
2562 return 1;
2563 }
2564 }
2565 }
2566
2567 return 0;
2568 }
2569
2570 static dma_addr_t __intel_map_single(struct device *hwdev, phys_addr_t paddr,
2571 size_t size, int dir, u64 dma_mask)
2572 {
2573 struct pci_dev *pdev = to_pci_dev(hwdev);
2574 struct dmar_domain *domain;
2575 phys_addr_t start_paddr;
2576 struct iova *iova;
2577 int prot = 0;
2578 int ret;
2579 struct intel_iommu *iommu;
2580 unsigned long paddr_pfn = paddr >> PAGE_SHIFT;
2581
2582 BUG_ON(dir == DMA_NONE);
2583
2584 if (iommu_no_mapping(hwdev))
2585 return paddr;
2586
2587 domain = get_valid_domain_for_dev(pdev);
2588 if (!domain)
2589 return 0;
2590
2591 iommu = domain_get_iommu(domain);
2592 size = aligned_nrpages(paddr, size);
2593
2594 iova = intel_alloc_iova(hwdev, domain, dma_to_mm_pfn(size),
2595 pdev->dma_mask);
2596 if (!iova)
2597 goto error;
2598
2599 /*
2600 * Check if DMAR supports zero-length reads on write only
2601 * mappings..
2602 */
2603 if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
2604 !cap_zlr(iommu->cap))
2605 prot |= DMA_PTE_READ;
2606 if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
2607 prot |= DMA_PTE_WRITE;
2608 /*
2609 * paddr - (paddr + size) might be partial page, we should map the whole
2610 * page. Note: if two part of one page are separately mapped, we
2611 * might have two guest_addr mapping to the same host paddr, but this
2612 * is not a big problem
2613 */
2614 ret = domain_pfn_mapping(domain, mm_to_dma_pfn(iova->pfn_lo),
2615 mm_to_dma_pfn(paddr_pfn), size, prot);
2616 if (ret)
2617 goto error;
2618
2619 /* it's a non-present to present mapping. Only flush if caching mode */
2620 if (cap_caching_mode(iommu->cap))
2621 iommu_flush_iotlb_psi(iommu, domain->id, mm_to_dma_pfn(iova->pfn_lo), size, 1);
2622 else
2623 iommu_flush_write_buffer(iommu);
2624
2625 start_paddr = (phys_addr_t)iova->pfn_lo << PAGE_SHIFT;
2626 start_paddr += paddr & ~PAGE_MASK;
2627 return start_paddr;
2628
2629 error:
2630 if (iova)
2631 __free_iova(&domain->iovad, iova);
2632 printk(KERN_ERR"Device %s request: %zx@%llx dir %d --- failed\n",
2633 pci_name(pdev), size, (unsigned long long)paddr, dir);
2634 return 0;
2635 }
2636
2637 static dma_addr_t intel_map_page(struct device *dev, struct page *page,
2638 unsigned long offset, size_t size,
2639 enum dma_data_direction dir,
2640 struct dma_attrs *attrs)
2641 {
2642 return __intel_map_single(dev, page_to_phys(page) + offset, size,
2643 dir, to_pci_dev(dev)->dma_mask);
2644 }
2645
2646 static void flush_unmaps(void)
2647 {
2648 int i, j;
2649
2650 timer_on = 0;
2651
2652 /* just flush them all */
2653 for (i = 0; i < g_num_of_iommus; i++) {
2654 struct intel_iommu *iommu = g_iommus[i];
2655 if (!iommu)
2656 continue;
2657
2658 if (!deferred_flush[i].next)
2659 continue;
2660
2661 /* In caching mode, global flushes turn emulation expensive */
2662 if (!cap_caching_mode(iommu->cap))
2663 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
2664 DMA_TLB_GLOBAL_FLUSH);
2665 for (j = 0; j < deferred_flush[i].next; j++) {
2666 unsigned long mask;
2667 struct iova *iova = deferred_flush[i].iova[j];
2668 struct dmar_domain *domain = deferred_flush[i].domain[j];
2669
2670 /* On real hardware multiple invalidations are expensive */
2671 if (cap_caching_mode(iommu->cap))
2672 iommu_flush_iotlb_psi(iommu, domain->id,
2673 iova->pfn_lo, iova->pfn_hi - iova->pfn_lo + 1, 0);
2674 else {
2675 mask = ilog2(mm_to_dma_pfn(iova->pfn_hi - iova->pfn_lo + 1));
2676 iommu_flush_dev_iotlb(deferred_flush[i].domain[j],
2677 (uint64_t)iova->pfn_lo << PAGE_SHIFT, mask);
2678 }
2679 __free_iova(&deferred_flush[i].domain[j]->iovad, iova);
2680 }
2681 deferred_flush[i].next = 0;
2682 }
2683
2684 list_size = 0;
2685 }
2686
2687 static void flush_unmaps_timeout(unsigned long data)
2688 {
2689 unsigned long flags;
2690
2691 spin_lock_irqsave(&async_umap_flush_lock, flags);
2692 flush_unmaps();
2693 spin_unlock_irqrestore(&async_umap_flush_lock, flags);
2694 }
2695
2696 static void add_unmap(struct dmar_domain *dom, struct iova *iova)
2697 {
2698 unsigned long flags;
2699 int next, iommu_id;
2700 struct intel_iommu *iommu;
2701
2702 spin_lock_irqsave(&async_umap_flush_lock, flags);
2703 if (list_size == HIGH_WATER_MARK)
2704 flush_unmaps();
2705
2706 iommu = domain_get_iommu(dom);
2707 iommu_id = iommu->seq_id;
2708
2709 next = deferred_flush[iommu_id].next;
2710 deferred_flush[iommu_id].domain[next] = dom;
2711 deferred_flush[iommu_id].iova[next] = iova;
2712 deferred_flush[iommu_id].next++;
2713
2714 if (!timer_on) {
2715 mod_timer(&unmap_timer, jiffies + msecs_to_jiffies(10));
2716 timer_on = 1;
2717 }
2718 list_size++;
2719 spin_unlock_irqrestore(&async_umap_flush_lock, flags);
2720 }
2721
2722 static void intel_unmap_page(struct device *dev, dma_addr_t dev_addr,
2723 size_t size, enum dma_data_direction dir,
2724 struct dma_attrs *attrs)
2725 {
2726 struct pci_dev *pdev = to_pci_dev(dev);
2727 struct dmar_domain *domain;
2728 unsigned long start_pfn, last_pfn;
2729 struct iova *iova;
2730 struct intel_iommu *iommu;
2731
2732 if (iommu_no_mapping(dev))
2733 return;
2734
2735 domain = find_domain(pdev);
2736 BUG_ON(!domain);
2737
2738 iommu = domain_get_iommu(domain);
2739
2740 iova = find_iova(&domain->iovad, IOVA_PFN(dev_addr));
2741 if (WARN_ONCE(!iova, "Driver unmaps unmatched page at PFN %llx\n",
2742 (unsigned long long)dev_addr))
2743 return;
2744
2745 start_pfn = mm_to_dma_pfn(iova->pfn_lo);
2746 last_pfn = mm_to_dma_pfn(iova->pfn_hi + 1) - 1;
2747
2748 pr_debug("Device %s unmapping: pfn %lx-%lx\n",
2749 pci_name(pdev), start_pfn, last_pfn);
2750
2751 /* clear the whole page */
2752 dma_pte_clear_range(domain, start_pfn, last_pfn);
2753
2754 /* free page tables */
2755 dma_pte_free_pagetable(domain, start_pfn, last_pfn);
2756
2757 if (intel_iommu_strict) {
2758 iommu_flush_iotlb_psi(iommu, domain->id, start_pfn,
2759 last_pfn - start_pfn + 1, 0);
2760 /* free iova */
2761 __free_iova(&domain->iovad, iova);
2762 } else {
2763 add_unmap(domain, iova);
2764 /*
2765 * queue up the release of the unmap to save the 1/6th of the
2766 * cpu used up by the iotlb flush operation...
2767 */
2768 }
2769 }
2770
2771 static void *intel_alloc_coherent(struct device *hwdev, size_t size,
2772 dma_addr_t *dma_handle, gfp_t flags)
2773 {
2774 void *vaddr;
2775 int order;
2776
2777 size = PAGE_ALIGN(size);
2778 order = get_order(size);
2779
2780 if (!iommu_no_mapping(hwdev))
2781 flags &= ~(GFP_DMA | GFP_DMA32);
2782 else if (hwdev->coherent_dma_mask < dma_get_required_mask(hwdev)) {
2783 if (hwdev->coherent_dma_mask < DMA_BIT_MASK(32))
2784 flags |= GFP_DMA;
2785 else
2786 flags |= GFP_DMA32;
2787 }
2788
2789 vaddr = (void *)__get_free_pages(flags, order);
2790 if (!vaddr)
2791 return NULL;
2792 memset(vaddr, 0, size);
2793
2794 *dma_handle = __intel_map_single(hwdev, virt_to_bus(vaddr), size,
2795 DMA_BIDIRECTIONAL,
2796 hwdev->coherent_dma_mask);
2797 if (*dma_handle)
2798 return vaddr;
2799 free_pages((unsigned long)vaddr, order);
2800 return NULL;
2801 }
2802
2803 static void intel_free_coherent(struct device *hwdev, size_t size, void *vaddr,
2804 dma_addr_t dma_handle)
2805 {
2806 int order;
2807
2808 size = PAGE_ALIGN(size);
2809 order = get_order(size);
2810
2811 intel_unmap_page(hwdev, dma_handle, size, DMA_BIDIRECTIONAL, NULL);
2812 free_pages((unsigned long)vaddr, order);
2813 }
2814
2815 static void intel_unmap_sg(struct device *hwdev, struct scatterlist *sglist,
2816 int nelems, enum dma_data_direction dir,
2817 struct dma_attrs *attrs)
2818 {
2819 struct pci_dev *pdev = to_pci_dev(hwdev);
2820 struct dmar_domain *domain;
2821 unsigned long start_pfn, last_pfn;
2822 struct iova *iova;
2823 struct intel_iommu *iommu;
2824
2825 if (iommu_no_mapping(hwdev))
2826 return;
2827
2828 domain = find_domain(pdev);
2829 BUG_ON(!domain);
2830
2831 iommu = domain_get_iommu(domain);
2832
2833 iova = find_iova(&domain->iovad, IOVA_PFN(sglist[0].dma_address));
2834 if (WARN_ONCE(!iova, "Driver unmaps unmatched sglist at PFN %llx\n",
2835 (unsigned long long)sglist[0].dma_address))
2836 return;
2837
2838 start_pfn = mm_to_dma_pfn(iova->pfn_lo);
2839 last_pfn = mm_to_dma_pfn(iova->pfn_hi + 1) - 1;
2840
2841 /* clear the whole page */
2842 dma_pte_clear_range(domain, start_pfn, last_pfn);
2843
2844 /* free page tables */
2845 dma_pte_free_pagetable(domain, start_pfn, last_pfn);
2846
2847 if (intel_iommu_strict) {
2848 iommu_flush_iotlb_psi(iommu, domain->id, start_pfn,
2849 last_pfn - start_pfn + 1, 0);
2850 /* free iova */
2851 __free_iova(&domain->iovad, iova);
2852 } else {
2853 add_unmap(domain, iova);
2854 /*
2855 * queue up the release of the unmap to save the 1/6th of the
2856 * cpu used up by the iotlb flush operation...
2857 */
2858 }
2859 }
2860
2861 static int intel_nontranslate_map_sg(struct device *hddev,
2862 struct scatterlist *sglist, int nelems, int dir)
2863 {
2864 int i;
2865 struct scatterlist *sg;
2866
2867 for_each_sg(sglist, sg, nelems, i) {
2868 BUG_ON(!sg_page(sg));
2869 sg->dma_address = page_to_phys(sg_page(sg)) + sg->offset;
2870 sg->dma_length = sg->length;
2871 }
2872 return nelems;
2873 }
2874
2875 static int intel_map_sg(struct device *hwdev, struct scatterlist *sglist, int nelems,
2876 enum dma_data_direction dir, struct dma_attrs *attrs)
2877 {
2878 int i;
2879 struct pci_dev *pdev = to_pci_dev(hwdev);
2880 struct dmar_domain *domain;
2881 size_t size = 0;
2882 int prot = 0;
2883 struct iova *iova = NULL;
2884 int ret;
2885 struct scatterlist *sg;
2886 unsigned long start_vpfn;
2887 struct intel_iommu *iommu;
2888
2889 BUG_ON(dir == DMA_NONE);
2890 if (iommu_no_mapping(hwdev))
2891 return intel_nontranslate_map_sg(hwdev, sglist, nelems, dir);
2892
2893 domain = get_valid_domain_for_dev(pdev);
2894 if (!domain)
2895 return 0;
2896
2897 iommu = domain_get_iommu(domain);
2898
2899 for_each_sg(sglist, sg, nelems, i)
2900 size += aligned_nrpages(sg->offset, sg->length);
2901
2902 iova = intel_alloc_iova(hwdev, domain, dma_to_mm_pfn(size),
2903 pdev->dma_mask);
2904 if (!iova) {
2905 sglist->dma_length = 0;
2906 return 0;
2907 }
2908
2909 /*
2910 * Check if DMAR supports zero-length reads on write only
2911 * mappings..
2912 */
2913 if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
2914 !cap_zlr(iommu->cap))
2915 prot |= DMA_PTE_READ;
2916 if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
2917 prot |= DMA_PTE_WRITE;
2918
2919 start_vpfn = mm_to_dma_pfn(iova->pfn_lo);
2920
2921 ret = domain_sg_mapping(domain, start_vpfn, sglist, size, prot);
2922 if (unlikely(ret)) {
2923 /* clear the page */
2924 dma_pte_clear_range(domain, start_vpfn,
2925 start_vpfn + size - 1);
2926 /* free page tables */
2927 dma_pte_free_pagetable(domain, start_vpfn,
2928 start_vpfn + size - 1);
2929 /* free iova */
2930 __free_iova(&domain->iovad, iova);
2931 return 0;
2932 }
2933
2934 /* it's a non-present to present mapping. Only flush if caching mode */
2935 if (cap_caching_mode(iommu->cap))
2936 iommu_flush_iotlb_psi(iommu, domain->id, start_vpfn, size, 1);
2937 else
2938 iommu_flush_write_buffer(iommu);
2939
2940 return nelems;
2941 }
2942
2943 static int intel_mapping_error(struct device *dev, dma_addr_t dma_addr)
2944 {
2945 return !dma_addr;
2946 }
2947
2948 struct dma_map_ops intel_dma_ops = {
2949 .alloc_coherent = intel_alloc_coherent,
2950 .free_coherent = intel_free_coherent,
2951 .map_sg = intel_map_sg,
2952 .unmap_sg = intel_unmap_sg,
2953 .map_page = intel_map_page,
2954 .unmap_page = intel_unmap_page,
2955 .mapping_error = intel_mapping_error,
2956 };
2957
2958 static inline int iommu_domain_cache_init(void)
2959 {
2960 int ret = 0;
2961
2962 iommu_domain_cache = kmem_cache_create("iommu_domain",
2963 sizeof(struct dmar_domain),
2964 0,
2965 SLAB_HWCACHE_ALIGN,
2966
2967 NULL);
2968 if (!iommu_domain_cache) {
2969 printk(KERN_ERR "Couldn't create iommu_domain cache\n");
2970 ret = -ENOMEM;
2971 }
2972
2973 return ret;
2974 }
2975
2976 static inline int iommu_devinfo_cache_init(void)
2977 {
2978 int ret = 0;
2979
2980 iommu_devinfo_cache = kmem_cache_create("iommu_devinfo",
2981 sizeof(struct device_domain_info),
2982 0,
2983 SLAB_HWCACHE_ALIGN,
2984 NULL);
2985 if (!iommu_devinfo_cache) {
2986 printk(KERN_ERR "Couldn't create devinfo cache\n");
2987 ret = -ENOMEM;
2988 }
2989
2990 return ret;
2991 }
2992
2993 static inline int iommu_iova_cache_init(void)
2994 {
2995 int ret = 0;
2996
2997 iommu_iova_cache = kmem_cache_create("iommu_iova",
2998 sizeof(struct iova),
2999 0,
3000 SLAB_HWCACHE_ALIGN,
3001 NULL);
3002 if (!iommu_iova_cache) {
3003 printk(KERN_ERR "Couldn't create iova cache\n");
3004 ret = -ENOMEM;
3005 }
3006
3007 return ret;
3008 }
3009
3010 static int __init iommu_init_mempool(void)
3011 {
3012 int ret;
3013 ret = iommu_iova_cache_init();
3014 if (ret)
3015 return ret;
3016
3017 ret = iommu_domain_cache_init();
3018 if (ret)
3019 goto domain_error;
3020
3021 ret = iommu_devinfo_cache_init();
3022 if (!ret)
3023 return ret;
3024
3025 kmem_cache_destroy(iommu_domain_cache);
3026 domain_error:
3027 kmem_cache_destroy(iommu_iova_cache);
3028
3029 return -ENOMEM;
3030 }
3031
3032 static void __init iommu_exit_mempool(void)
3033 {
3034 kmem_cache_destroy(iommu_devinfo_cache);
3035 kmem_cache_destroy(iommu_domain_cache);
3036 kmem_cache_destroy(iommu_iova_cache);
3037
3038 }
3039
3040 static void quirk_ioat_snb_local_iommu(struct pci_dev *pdev)
3041 {
3042 struct dmar_drhd_unit *drhd;
3043 u32 vtbar;
3044 int rc;
3045
3046 /* We know that this device on this chipset has its own IOMMU.
3047 * If we find it under a different IOMMU, then the BIOS is lying
3048 * to us. Hope that the IOMMU for this device is actually
3049 * disabled, and it needs no translation...
3050 */
3051 rc = pci_bus_read_config_dword(pdev->bus, PCI_DEVFN(0, 0), 0xb0, &vtbar);
3052 if (rc) {
3053 /* "can't" happen */
3054 dev_info(&pdev->dev, "failed to run vt-d quirk\n");
3055 return;
3056 }
3057 vtbar &= 0xffff0000;
3058
3059 /* we know that the this iommu should be at offset 0xa000 from vtbar */
3060 drhd = dmar_find_matched_drhd_unit(pdev);
3061 if (WARN_TAINT_ONCE(!drhd || drhd->reg_base_addr - vtbar != 0xa000,
3062 TAINT_FIRMWARE_WORKAROUND,
3063 "BIOS assigned incorrect VT-d unit for Intel(R) QuickData Technology device\n"))
3064 pdev->dev.archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO;
3065 }
3066 DECLARE_PCI_FIXUP_ENABLE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_IOAT_SNB, quirk_ioat_snb_local_iommu);
3067
3068 static void __init init_no_remapping_devices(void)
3069 {
3070 struct dmar_drhd_unit *drhd;
3071
3072 for_each_drhd_unit(drhd) {
3073 if (!drhd->include_all) {
3074 int i;
3075 for (i = 0; i < drhd->devices_cnt; i++)
3076 if (drhd->devices[i] != NULL)
3077 break;
3078 /* ignore DMAR unit if no pci devices exist */
3079 if (i == drhd->devices_cnt)
3080 drhd->ignored = 1;
3081 }
3082 }
3083
3084 if (dmar_map_gfx)
3085 return;
3086
3087 for_each_drhd_unit(drhd) {
3088 int i;
3089 if (drhd->ignored || drhd->include_all)
3090 continue;
3091
3092 for (i = 0; i < drhd->devices_cnt; i++)
3093 if (drhd->devices[i] &&
3094 !IS_GFX_DEVICE(drhd->devices[i]))
3095 break;
3096
3097 if (i < drhd->devices_cnt)
3098 continue;
3099
3100 /* bypass IOMMU if it is just for gfx devices */
3101 drhd->ignored = 1;
3102 for (i = 0; i < drhd->devices_cnt; i++) {
3103 if (!drhd->devices[i])
3104 continue;
3105 drhd->devices[i]->dev.archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO;
3106 }
3107 }
3108 }
3109
3110 #ifdef CONFIG_SUSPEND
3111 static int init_iommu_hw(void)
3112 {
3113 struct dmar_drhd_unit *drhd;
3114 struct intel_iommu *iommu = NULL;
3115
3116 for_each_active_iommu(iommu, drhd)
3117 if (iommu->qi)
3118 dmar_reenable_qi(iommu);
3119
3120 for_each_active_iommu(iommu, drhd) {
3121 iommu_flush_write_buffer(iommu);
3122
3123 iommu_set_root_entry(iommu);
3124
3125 iommu->flush.flush_context(iommu, 0, 0, 0,
3126 DMA_CCMD_GLOBAL_INVL);
3127 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
3128 DMA_TLB_GLOBAL_FLUSH);
3129 iommu_enable_translation(iommu);
3130 iommu_disable_protect_mem_regions(iommu);
3131 }
3132
3133 return 0;
3134 }
3135
3136 static void iommu_flush_all(void)
3137 {
3138 struct dmar_drhd_unit *drhd;
3139 struct intel_iommu *iommu;
3140
3141 for_each_active_iommu(iommu, drhd) {
3142 iommu->flush.flush_context(iommu, 0, 0, 0,
3143 DMA_CCMD_GLOBAL_INVL);
3144 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
3145 DMA_TLB_GLOBAL_FLUSH);
3146 }
3147 }
3148
3149 static int iommu_suspend(void)
3150 {
3151 struct dmar_drhd_unit *drhd;
3152 struct intel_iommu *iommu = NULL;
3153 unsigned long flag;
3154
3155 for_each_active_iommu(iommu, drhd) {
3156 iommu->iommu_state = kzalloc(sizeof(u32) * MAX_SR_DMAR_REGS,
3157 GFP_ATOMIC);
3158 if (!iommu->iommu_state)
3159 goto nomem;
3160 }
3161
3162 iommu_flush_all();
3163
3164 for_each_active_iommu(iommu, drhd) {
3165 iommu_disable_translation(iommu);
3166
3167 spin_lock_irqsave(&iommu->register_lock, flag);
3168
3169 iommu->iommu_state[SR_DMAR_FECTL_REG] =
3170 readl(iommu->reg + DMAR_FECTL_REG);
3171 iommu->iommu_state[SR_DMAR_FEDATA_REG] =
3172 readl(iommu->reg + DMAR_FEDATA_REG);
3173 iommu->iommu_state[SR_DMAR_FEADDR_REG] =
3174 readl(iommu->reg + DMAR_FEADDR_REG);
3175 iommu->iommu_state[SR_DMAR_FEUADDR_REG] =
3176 readl(iommu->reg + DMAR_FEUADDR_REG);
3177
3178 spin_unlock_irqrestore(&iommu->register_lock, flag);
3179 }
3180 return 0;
3181
3182 nomem:
3183 for_each_active_iommu(iommu, drhd)
3184 kfree(iommu->iommu_state);
3185
3186 return -ENOMEM;
3187 }
3188
3189 static void iommu_resume(void)
3190 {
3191 struct dmar_drhd_unit *drhd;
3192 struct intel_iommu *iommu = NULL;
3193 unsigned long flag;
3194
3195 if (init_iommu_hw()) {
3196 WARN(1, "IOMMU setup failed, DMAR can not resume!\n");
3197 return;
3198 }
3199
3200 for_each_active_iommu(iommu, drhd) {
3201
3202 spin_lock_irqsave(&iommu->register_lock, flag);
3203
3204 writel(iommu->iommu_state[SR_DMAR_FECTL_REG],
3205 iommu->reg + DMAR_FECTL_REG);
3206 writel(iommu->iommu_state[SR_DMAR_FEDATA_REG],
3207 iommu->reg + DMAR_FEDATA_REG);
3208 writel(iommu->iommu_state[SR_DMAR_FEADDR_REG],
3209 iommu->reg + DMAR_FEADDR_REG);
3210 writel(iommu->iommu_state[SR_DMAR_FEUADDR_REG],
3211 iommu->reg + DMAR_FEUADDR_REG);
3212
3213 spin_unlock_irqrestore(&iommu->register_lock, flag);
3214 }
3215
3216 for_each_active_iommu(iommu, drhd)
3217 kfree(iommu->iommu_state);
3218 }
3219
3220 static struct syscore_ops iommu_syscore_ops = {
3221 .resume = iommu_resume,
3222 .suspend = iommu_suspend,
3223 };
3224
3225 static void __init init_iommu_pm_ops(void)
3226 {
3227 register_syscore_ops(&iommu_syscore_ops);
3228 }
3229
3230 #else
3231 static inline int init_iommu_pm_ops(void) { }
3232 #endif /* CONFIG_PM */
3233
3234 /*
3235 * Here we only respond to action of unbound device from driver.
3236 *
3237 * Added device is not attached to its DMAR domain here yet. That will happen
3238 * when mapping the device to iova.
3239 */
3240 static int device_notifier(struct notifier_block *nb,
3241 unsigned long action, void *data)
3242 {
3243 struct device *dev = data;
3244 struct pci_dev *pdev = to_pci_dev(dev);
3245 struct dmar_domain *domain;
3246
3247 if (iommu_no_mapping(dev))
3248 return 0;
3249
3250 domain = find_domain(pdev);
3251 if (!domain)
3252 return 0;
3253
3254 if (action == BUS_NOTIFY_UNBOUND_DRIVER && !iommu_pass_through) {
3255 domain_remove_one_dev_info(domain, pdev);
3256
3257 if (!(domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE) &&
3258 !(domain->flags & DOMAIN_FLAG_STATIC_IDENTITY) &&
3259 list_empty(&domain->devices))
3260 domain_exit(domain);
3261 }
3262
3263 return 0;
3264 }
3265
3266 static struct notifier_block device_nb = {
3267 .notifier_call = device_notifier,
3268 };
3269
3270 int __init intel_iommu_init(void)
3271 {
3272 int ret = 0;
3273 int force_on = 0;
3274
3275 /* VT-d is required for a TXT/tboot launch, so enforce that */
3276 force_on = tboot_force_iommu();
3277
3278 if (dmar_table_init()) {
3279 if (force_on)
3280 panic("tboot: Failed to initialize DMAR table\n");
3281 return -ENODEV;
3282 }
3283
3284 if (dmar_dev_scope_init()) {
3285 if (force_on)
3286 panic("tboot: Failed to initialize DMAR device scope\n");
3287 return -ENODEV;
3288 }
3289
3290 /*
3291 * Check the need for DMA-remapping initialization now.
3292 * Above initialization will also be used by Interrupt-remapping.
3293 */
3294 if (no_iommu || dmar_disabled)
3295 return -ENODEV;
3296
3297 if (iommu_init_mempool()) {
3298 if (force_on)
3299 panic("tboot: Failed to initialize iommu memory\n");
3300 return -ENODEV;
3301 }
3302
3303 if (dmar_init_reserved_ranges()) {
3304 if (force_on)
3305 panic("tboot: Failed to reserve iommu ranges\n");
3306 return -ENODEV;
3307 }
3308
3309 init_no_remapping_devices();
3310
3311 ret = init_dmars(force_on);
3312 if (ret) {
3313 if (force_on)
3314 panic("tboot: Failed to initialize DMARs\n");
3315 printk(KERN_ERR "IOMMU: dmar init failed\n");
3316 put_iova_domain(&reserved_iova_list);
3317 iommu_exit_mempool();
3318 return ret;
3319 }
3320 printk(KERN_INFO
3321 "PCI-DMA: Intel(R) Virtualization Technology for Directed I/O\n");
3322
3323 init_timer(&unmap_timer);
3324 #ifdef CONFIG_SWIOTLB
3325 swiotlb = 0;
3326 #endif
3327 dma_ops = &intel_dma_ops;
3328
3329 init_iommu_pm_ops();
3330
3331 register_iommu(&intel_iommu_ops);
3332
3333 bus_register_notifier(&pci_bus_type, &device_nb);
3334
3335 return 0;
3336 }
3337
3338 static void iommu_detach_dependent_devices(struct intel_iommu *iommu,
3339 struct pci_dev *pdev)
3340 {
3341 struct pci_dev *tmp, *parent;
3342
3343 if (!iommu || !pdev)
3344 return;
3345
3346 /* dependent device detach */
3347 tmp = pci_find_upstream_pcie_bridge(pdev);
3348 /* Secondary interface's bus number and devfn 0 */
3349 if (tmp) {
3350 parent = pdev->bus->self;
3351 while (parent != tmp) {
3352 iommu_detach_dev(iommu, parent->bus->number,
3353 parent->devfn);
3354 parent = parent->bus->self;
3355 }
3356 if (pci_is_pcie(tmp)) /* this is a PCIe-to-PCI bridge */
3357 iommu_detach_dev(iommu,
3358 tmp->subordinate->number, 0);
3359 else /* this is a legacy PCI bridge */
3360 iommu_detach_dev(iommu, tmp->bus->number,
3361 tmp->devfn);
3362 }
3363 }
3364
3365 static void domain_remove_one_dev_info(struct dmar_domain *domain,
3366 struct pci_dev *pdev)
3367 {
3368 struct device_domain_info *info;
3369 struct intel_iommu *iommu;
3370 unsigned long flags;
3371 int found = 0;
3372 struct list_head *entry, *tmp;
3373
3374 iommu = device_to_iommu(pci_domain_nr(pdev->bus), pdev->bus->number,
3375 pdev->devfn);
3376 if (!iommu)
3377 return;
3378
3379 spin_lock_irqsave(&device_domain_lock, flags);
3380 list_for_each_safe(entry, tmp, &domain->devices) {
3381 info = list_entry(entry, struct device_domain_info, link);
3382 /* No need to compare PCI domain; it has to be the same */
3383 if (info->bus == pdev->bus->number &&
3384 info->devfn == pdev->devfn) {
3385 list_del(&info->link);
3386 list_del(&info->global);
3387 if (info->dev)
3388 info->dev->dev.archdata.iommu = NULL;
3389 spin_unlock_irqrestore(&device_domain_lock, flags);
3390
3391 iommu_disable_dev_iotlb(info);
3392 iommu_detach_dev(iommu, info->bus, info->devfn);
3393 iommu_detach_dependent_devices(iommu, pdev);
3394 free_devinfo_mem(info);
3395
3396 spin_lock_irqsave(&device_domain_lock, flags);
3397
3398 if (found)
3399 break;
3400 else
3401 continue;
3402 }
3403
3404 /* if there is no other devices under the same iommu
3405 * owned by this domain, clear this iommu in iommu_bmp
3406 * update iommu count and coherency
3407 */
3408 if (iommu == device_to_iommu(info->segment, info->bus,
3409 info->devfn))
3410 found = 1;
3411 }
3412
3413 if (found == 0) {
3414 unsigned long tmp_flags;
3415 spin_lock_irqsave(&domain->iommu_lock, tmp_flags);
3416 clear_bit(iommu->seq_id, &domain->iommu_bmp);
3417 domain->iommu_count--;
3418 domain_update_iommu_cap(domain);
3419 spin_unlock_irqrestore(&domain->iommu_lock, tmp_flags);
3420
3421 spin_lock_irqsave(&iommu->lock, tmp_flags);
3422 clear_bit(domain->id, iommu->domain_ids);
3423 iommu->domains[domain->id] = NULL;
3424 spin_unlock_irqrestore(&iommu->lock, tmp_flags);
3425 }
3426
3427 spin_unlock_irqrestore(&device_domain_lock, flags);
3428 }
3429
3430 static void vm_domain_remove_all_dev_info(struct dmar_domain *domain)
3431 {
3432 struct device_domain_info *info;
3433 struct intel_iommu *iommu;
3434 unsigned long flags1, flags2;
3435
3436 spin_lock_irqsave(&device_domain_lock, flags1);
3437 while (!list_empty(&domain->devices)) {
3438 info = list_entry(domain->devices.next,
3439 struct device_domain_info, link);
3440 list_del(&info->link);
3441 list_del(&info->global);
3442 if (info->dev)
3443 info->dev->dev.archdata.iommu = NULL;
3444
3445 spin_unlock_irqrestore(&device_domain_lock, flags1);
3446
3447 iommu_disable_dev_iotlb(info);
3448 iommu = device_to_iommu(info->segment, info->bus, info->devfn);
3449 iommu_detach_dev(iommu, info->bus, info->devfn);
3450 iommu_detach_dependent_devices(iommu, info->dev);
3451
3452 /* clear this iommu in iommu_bmp, update iommu count
3453 * and capabilities
3454 */
3455 spin_lock_irqsave(&domain->iommu_lock, flags2);
3456 if (test_and_clear_bit(iommu->seq_id,
3457 &domain->iommu_bmp)) {
3458 domain->iommu_count--;
3459 domain_update_iommu_cap(domain);
3460 }
3461 spin_unlock_irqrestore(&domain->iommu_lock, flags2);
3462
3463 free_devinfo_mem(info);
3464 spin_lock_irqsave(&device_domain_lock, flags1);
3465 }
3466 spin_unlock_irqrestore(&device_domain_lock, flags1);
3467 }
3468
3469 /* domain id for virtual machine, it won't be set in context */
3470 static unsigned long vm_domid;
3471
3472 static struct dmar_domain *iommu_alloc_vm_domain(void)
3473 {
3474 struct dmar_domain *domain;
3475
3476 domain = alloc_domain_mem();
3477 if (!domain)
3478 return NULL;
3479
3480 domain->id = vm_domid++;
3481 domain->nid = -1;
3482 memset(&domain->iommu_bmp, 0, sizeof(unsigned long));
3483 domain->flags = DOMAIN_FLAG_VIRTUAL_MACHINE;
3484
3485 return domain;
3486 }
3487
3488 static int md_domain_init(struct dmar_domain *domain, int guest_width)
3489 {
3490 int adjust_width;
3491
3492 init_iova_domain(&domain->iovad, DMA_32BIT_PFN);
3493 spin_lock_init(&domain->iommu_lock);
3494
3495 domain_reserve_special_ranges(domain);
3496
3497 /* calculate AGAW */
3498 domain->gaw = guest_width;
3499 adjust_width = guestwidth_to_adjustwidth(guest_width);
3500 domain->agaw = width_to_agaw(adjust_width);
3501
3502 INIT_LIST_HEAD(&domain->devices);
3503
3504 domain->iommu_count = 0;
3505 domain->iommu_coherency = 0;
3506 domain->iommu_snooping = 0;
3507 domain->max_addr = 0;
3508 domain->nid = -1;
3509
3510 /* always allocate the top pgd */
3511 domain->pgd = (struct dma_pte *)alloc_pgtable_page(domain->nid);
3512 if (!domain->pgd)
3513 return -ENOMEM;
3514 domain_flush_cache(domain, domain->pgd, PAGE_SIZE);
3515 return 0;
3516 }
3517
3518 static void iommu_free_vm_domain(struct dmar_domain *domain)
3519 {
3520 unsigned long flags;
3521 struct dmar_drhd_unit *drhd;
3522 struct intel_iommu *iommu;
3523 unsigned long i;
3524 unsigned long ndomains;
3525
3526 for_each_drhd_unit(drhd) {
3527 if (drhd->ignored)
3528 continue;
3529 iommu = drhd->iommu;
3530
3531 ndomains = cap_ndoms(iommu->cap);
3532 for_each_set_bit(i, iommu->domain_ids, ndomains) {
3533 if (iommu->domains[i] == domain) {
3534 spin_lock_irqsave(&iommu->lock, flags);
3535 clear_bit(i, iommu->domain_ids);
3536 iommu->domains[i] = NULL;
3537 spin_unlock_irqrestore(&iommu->lock, flags);
3538 break;
3539 }
3540 }
3541 }
3542 }
3543
3544 static void vm_domain_exit(struct dmar_domain *domain)
3545 {
3546 /* Domain 0 is reserved, so dont process it */
3547 if (!domain)
3548 return;
3549
3550 vm_domain_remove_all_dev_info(domain);
3551 /* destroy iovas */
3552 put_iova_domain(&domain->iovad);
3553
3554 /* clear ptes */
3555 dma_pte_clear_range(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
3556
3557 /* free page tables */
3558 dma_pte_free_pagetable(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
3559
3560 iommu_free_vm_domain(domain);
3561 free_domain_mem(domain);
3562 }
3563
3564 static int intel_iommu_domain_init(struct iommu_domain *domain)
3565 {
3566 struct dmar_domain *dmar_domain;
3567
3568 dmar_domain = iommu_alloc_vm_domain();
3569 if (!dmar_domain) {
3570 printk(KERN_ERR
3571 "intel_iommu_domain_init: dmar_domain == NULL\n");
3572 return -ENOMEM;
3573 }
3574 if (md_domain_init(dmar_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
3575 printk(KERN_ERR
3576 "intel_iommu_domain_init() failed\n");
3577 vm_domain_exit(dmar_domain);
3578 return -ENOMEM;
3579 }
3580 domain->priv = dmar_domain;
3581
3582 return 0;
3583 }
3584
3585 static void intel_iommu_domain_destroy(struct iommu_domain *domain)
3586 {
3587 struct dmar_domain *dmar_domain = domain->priv;
3588
3589 domain->priv = NULL;
3590 vm_domain_exit(dmar_domain);
3591 }
3592
3593 static int intel_iommu_attach_device(struct iommu_domain *domain,
3594 struct device *dev)
3595 {
3596 struct dmar_domain *dmar_domain = domain->priv;
3597 struct pci_dev *pdev = to_pci_dev(dev);
3598 struct intel_iommu *iommu;
3599 int addr_width;
3600
3601 /* normally pdev is not mapped */
3602 if (unlikely(domain_context_mapped(pdev))) {
3603 struct dmar_domain *old_domain;
3604
3605 old_domain = find_domain(pdev);
3606 if (old_domain) {
3607 if (dmar_domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE ||
3608 dmar_domain->flags & DOMAIN_FLAG_STATIC_IDENTITY)
3609 domain_remove_one_dev_info(old_domain, pdev);
3610 else
3611 domain_remove_dev_info(old_domain);
3612 }
3613 }
3614
3615 iommu = device_to_iommu(pci_domain_nr(pdev->bus), pdev->bus->number,
3616 pdev->devfn);
3617 if (!iommu)
3618 return -ENODEV;
3619
3620 /* check if this iommu agaw is sufficient for max mapped address */
3621 addr_width = agaw_to_width(iommu->agaw);
3622 if (addr_width > cap_mgaw(iommu->cap))
3623 addr_width = cap_mgaw(iommu->cap);
3624
3625 if (dmar_domain->max_addr > (1LL << addr_width)) {
3626 printk(KERN_ERR "%s: iommu width (%d) is not "
3627 "sufficient for the mapped address (%llx)\n",
3628 __func__, addr_width, dmar_domain->max_addr);
3629 return -EFAULT;
3630 }
3631 dmar_domain->gaw = addr_width;
3632
3633 /*
3634 * Knock out extra levels of page tables if necessary
3635 */
3636 while (iommu->agaw < dmar_domain->agaw) {
3637 struct dma_pte *pte;
3638
3639 pte = dmar_domain->pgd;
3640 if (dma_pte_present(pte)) {
3641 dmar_domain->pgd = (struct dma_pte *)
3642 phys_to_virt(dma_pte_addr(pte));
3643 free_pgtable_page(pte);
3644 }
3645 dmar_domain->agaw--;
3646 }
3647
3648 return domain_add_dev_info(dmar_domain, pdev, CONTEXT_TT_MULTI_LEVEL);
3649 }
3650
3651 static void intel_iommu_detach_device(struct iommu_domain *domain,
3652 struct device *dev)
3653 {
3654 struct dmar_domain *dmar_domain = domain->priv;
3655 struct pci_dev *pdev = to_pci_dev(dev);
3656
3657 domain_remove_one_dev_info(dmar_domain, pdev);
3658 }
3659
3660 static int intel_iommu_map(struct iommu_domain *domain,
3661 unsigned long iova, phys_addr_t hpa,
3662 int gfp_order, int iommu_prot)
3663 {
3664 struct dmar_domain *dmar_domain = domain->priv;
3665 u64 max_addr;
3666 int prot = 0;
3667 size_t size;
3668 int ret;
3669
3670 if (iommu_prot & IOMMU_READ)
3671 prot |= DMA_PTE_READ;
3672 if (iommu_prot & IOMMU_WRITE)
3673 prot |= DMA_PTE_WRITE;
3674 if ((iommu_prot & IOMMU_CACHE) && dmar_domain->iommu_snooping)
3675 prot |= DMA_PTE_SNP;
3676
3677 size = PAGE_SIZE << gfp_order;
3678 max_addr = iova + size;
3679 if (dmar_domain->max_addr < max_addr) {
3680 u64 end;
3681
3682 /* check if minimum agaw is sufficient for mapped address */
3683 end = __DOMAIN_MAX_ADDR(dmar_domain->gaw) + 1;
3684 if (end < max_addr) {
3685 printk(KERN_ERR "%s: iommu width (%d) is not "
3686 "sufficient for the mapped address (%llx)\n",
3687 __func__, dmar_domain->gaw, max_addr);
3688 return -EFAULT;
3689 }
3690 dmar_domain->max_addr = max_addr;
3691 }
3692 /* Round up size to next multiple of PAGE_SIZE, if it and
3693 the low bits of hpa would take us onto the next page */
3694 size = aligned_nrpages(hpa, size);
3695 ret = domain_pfn_mapping(dmar_domain, iova >> VTD_PAGE_SHIFT,
3696 hpa >> VTD_PAGE_SHIFT, size, prot);
3697 return ret;
3698 }
3699
3700 static int intel_iommu_unmap(struct iommu_domain *domain,
3701 unsigned long iova, int gfp_order)
3702 {
3703 struct dmar_domain *dmar_domain = domain->priv;
3704 size_t size = PAGE_SIZE << gfp_order;
3705
3706 dma_pte_clear_range(dmar_domain, iova >> VTD_PAGE_SHIFT,
3707 (iova + size - 1) >> VTD_PAGE_SHIFT);
3708
3709 if (dmar_domain->max_addr == iova + size)
3710 dmar_domain->max_addr = iova;
3711
3712 return gfp_order;
3713 }
3714
3715 static phys_addr_t intel_iommu_iova_to_phys(struct iommu_domain *domain,
3716 unsigned long iova)
3717 {
3718 struct dmar_domain *dmar_domain = domain->priv;
3719 struct dma_pte *pte;
3720 u64 phys = 0;
3721
3722 pte = pfn_to_dma_pte(dmar_domain, iova >> VTD_PAGE_SHIFT);
3723 if (pte)
3724 phys = dma_pte_addr(pte);
3725
3726 return phys;
3727 }
3728
3729 static int intel_iommu_domain_has_cap(struct iommu_domain *domain,
3730 unsigned long cap)
3731 {
3732 struct dmar_domain *dmar_domain = domain->priv;
3733
3734 if (cap == IOMMU_CAP_CACHE_COHERENCY)
3735 return dmar_domain->iommu_snooping;
3736 if (cap == IOMMU_CAP_INTR_REMAP)
3737 return intr_remapping_enabled;
3738
3739 return 0;
3740 }
3741
3742 static struct iommu_ops intel_iommu_ops = {
3743 .domain_init = intel_iommu_domain_init,
3744 .domain_destroy = intel_iommu_domain_destroy,
3745 .attach_dev = intel_iommu_attach_device,
3746 .detach_dev = intel_iommu_detach_device,
3747 .map = intel_iommu_map,
3748 .unmap = intel_iommu_unmap,
3749 .iova_to_phys = intel_iommu_iova_to_phys,
3750 .domain_has_cap = intel_iommu_domain_has_cap,
3751 };
3752
3753 static void __devinit quirk_iommu_rwbf(struct pci_dev *dev)
3754 {
3755 /*
3756 * Mobile 4 Series Chipset neglects to set RWBF capability,
3757 * but needs it:
3758 */
3759 printk(KERN_INFO "DMAR: Forcing write-buffer flush capability\n");
3760 rwbf_quirk = 1;
3761
3762 /* https://bugzilla.redhat.com/show_bug.cgi?id=538163 */
3763 if (dev->revision == 0x07) {
3764 printk(KERN_INFO "DMAR: Disabling IOMMU for graphics on this chipset\n");
3765 dmar_map_gfx = 0;
3766 }
3767 }
3768
3769 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_rwbf);
3770
3771 #define GGC 0x52
3772 #define GGC_MEMORY_SIZE_MASK (0xf << 8)
3773 #define GGC_MEMORY_SIZE_NONE (0x0 << 8)
3774 #define GGC_MEMORY_SIZE_1M (0x1 << 8)
3775 #define GGC_MEMORY_SIZE_2M (0x3 << 8)
3776 #define GGC_MEMORY_VT_ENABLED (0x8 << 8)
3777 #define GGC_MEMORY_SIZE_2M_VT (0x9 << 8)
3778 #define GGC_MEMORY_SIZE_3M_VT (0xa << 8)
3779 #define GGC_MEMORY_SIZE_4M_VT (0xb << 8)
3780
3781 static void __devinit quirk_calpella_no_shadow_gtt(struct pci_dev *dev)
3782 {
3783 unsigned short ggc;
3784
3785 if (pci_read_config_word(dev, GGC, &ggc))
3786 return;
3787
3788 if (!(ggc & GGC_MEMORY_VT_ENABLED)) {
3789 printk(KERN_INFO "DMAR: BIOS has allocated no shadow GTT; disabling IOMMU for graphics\n");
3790 dmar_map_gfx = 0;
3791 }
3792 }
3793 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0040, quirk_calpella_no_shadow_gtt);
3794 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0044, quirk_calpella_no_shadow_gtt);
3795 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0062, quirk_calpella_no_shadow_gtt);
3796 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x006a, quirk_calpella_no_shadow_gtt);
3797
3798 /* On Tylersburg chipsets, some BIOSes have been known to enable the
3799 ISOCH DMAR unit for the Azalia sound device, but not give it any
3800 TLB entries, which causes it to deadlock. Check for that. We do
3801 this in a function called from init_dmars(), instead of in a PCI
3802 quirk, because we don't want to print the obnoxious "BIOS broken"
3803 message if VT-d is actually disabled.
3804 */
3805 static void __init check_tylersburg_isoch(void)
3806 {
3807 struct pci_dev *pdev;
3808 uint32_t vtisochctrl;
3809
3810 /* If there's no Azalia in the system anyway, forget it. */
3811 pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x3a3e, NULL);
3812 if (!pdev)
3813 return;
3814 pci_dev_put(pdev);
3815
3816 /* System Management Registers. Might be hidden, in which case
3817 we can't do the sanity check. But that's OK, because the
3818 known-broken BIOSes _don't_ actually hide it, so far. */
3819 pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x342e, NULL);
3820 if (!pdev)
3821 return;
3822
3823 if (pci_read_config_dword(pdev, 0x188, &vtisochctrl)) {
3824 pci_dev_put(pdev);
3825 return;
3826 }
3827
3828 pci_dev_put(pdev);
3829
3830 /* If Azalia DMA is routed to the non-isoch DMAR unit, fine. */
3831 if (vtisochctrl & 1)
3832 return;
3833
3834 /* Drop all bits other than the number of TLB entries */
3835 vtisochctrl &= 0x1c;
3836
3837 /* If we have the recommended number of TLB entries (16), fine. */
3838 if (vtisochctrl == 0x10)
3839 return;
3840
3841 /* Zero TLB entries? You get to ride the short bus to school. */
3842 if (!vtisochctrl) {
3843 WARN(1, "Your BIOS is broken; DMA routed to ISOCH DMAR unit but no TLB space.\n"
3844 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
3845 dmi_get_system_info(DMI_BIOS_VENDOR),
3846 dmi_get_system_info(DMI_BIOS_VERSION),
3847 dmi_get_system_info(DMI_PRODUCT_VERSION));
3848 iommu_identity_mapping |= IDENTMAP_AZALIA;
3849 return;
3850 }
3851
3852 printk(KERN_WARNING "DMAR: Recommended TLB entries for ISOCH unit is 16; your BIOS set %d\n",
3853 vtisochctrl);
3854 }