PCI: fix coding style issue in pci_save_state()
[GitHub/LineageOS/android_kernel_motorola_exynos9610.git] / drivers / pci / dmar.c
1 /*
2 * Copyright (c) 2006, Intel Corporation.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
12 *
13 * You should have received a copy of the GNU General Public License along with
14 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
15 * Place - Suite 330, Boston, MA 02111-1307 USA.
16 *
17 * Copyright (C) 2006-2008 Intel Corporation
18 * Author: Ashok Raj <ashok.raj@intel.com>
19 * Author: Shaohua Li <shaohua.li@intel.com>
20 * Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
21 *
22 * This file implements early detection/parsing of Remapping Devices
23 * reported to OS through BIOS via DMA remapping reporting (DMAR) ACPI
24 * tables.
25 *
26 * These routines are used by both DMA-remapping and Interrupt-remapping
27 */
28
29 #include <linux/pci.h>
30 #include <linux/dmar.h>
31 #include <linux/iova.h>
32 #include <linux/intel-iommu.h>
33 #include <linux/timer.h>
34 #include <linux/irq.h>
35 #include <linux/interrupt.h>
36 #include <linux/tboot.h>
37 #include <linux/dmi.h>
38
39 #define PREFIX "DMAR: "
40
41 /* No locks are needed as DMA remapping hardware unit
42 * list is constructed at boot time and hotplug of
43 * these units are not supported by the architecture.
44 */
45 LIST_HEAD(dmar_drhd_units);
46
47 static struct acpi_table_header * __initdata dmar_tbl;
48 static acpi_size dmar_tbl_size;
49
50 static void __init dmar_register_drhd_unit(struct dmar_drhd_unit *drhd)
51 {
52 /*
53 * add INCLUDE_ALL at the tail, so scan the list will find it at
54 * the very end.
55 */
56 if (drhd->include_all)
57 list_add_tail(&drhd->list, &dmar_drhd_units);
58 else
59 list_add(&drhd->list, &dmar_drhd_units);
60 }
61
62 static int __init dmar_parse_one_dev_scope(struct acpi_dmar_device_scope *scope,
63 struct pci_dev **dev, u16 segment)
64 {
65 struct pci_bus *bus;
66 struct pci_dev *pdev = NULL;
67 struct acpi_dmar_pci_path *path;
68 int count;
69
70 bus = pci_find_bus(segment, scope->bus);
71 path = (struct acpi_dmar_pci_path *)(scope + 1);
72 count = (scope->length - sizeof(struct acpi_dmar_device_scope))
73 / sizeof(struct acpi_dmar_pci_path);
74
75 while (count) {
76 if (pdev)
77 pci_dev_put(pdev);
78 /*
79 * Some BIOSes list non-exist devices in DMAR table, just
80 * ignore it
81 */
82 if (!bus) {
83 printk(KERN_WARNING
84 PREFIX "Device scope bus [%d] not found\n",
85 scope->bus);
86 break;
87 }
88 pdev = pci_get_slot(bus, PCI_DEVFN(path->dev, path->fn));
89 if (!pdev) {
90 printk(KERN_WARNING PREFIX
91 "Device scope device [%04x:%02x:%02x.%02x] not found\n",
92 segment, bus->number, path->dev, path->fn);
93 break;
94 }
95 path ++;
96 count --;
97 bus = pdev->subordinate;
98 }
99 if (!pdev) {
100 printk(KERN_WARNING PREFIX
101 "Device scope device [%04x:%02x:%02x.%02x] not found\n",
102 segment, scope->bus, path->dev, path->fn);
103 *dev = NULL;
104 return 0;
105 }
106 if ((scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT && \
107 pdev->subordinate) || (scope->entry_type == \
108 ACPI_DMAR_SCOPE_TYPE_BRIDGE && !pdev->subordinate)) {
109 pci_dev_put(pdev);
110 printk(KERN_WARNING PREFIX
111 "Device scope type does not match for %s\n",
112 pci_name(pdev));
113 return -EINVAL;
114 }
115 *dev = pdev;
116 return 0;
117 }
118
119 static int __init dmar_parse_dev_scope(void *start, void *end, int *cnt,
120 struct pci_dev ***devices, u16 segment)
121 {
122 struct acpi_dmar_device_scope *scope;
123 void * tmp = start;
124 int index;
125 int ret;
126
127 *cnt = 0;
128 while (start < end) {
129 scope = start;
130 if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT ||
131 scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE)
132 (*cnt)++;
133 else
134 printk(KERN_WARNING PREFIX
135 "Unsupported device scope\n");
136 start += scope->length;
137 }
138 if (*cnt == 0)
139 return 0;
140
141 *devices = kcalloc(*cnt, sizeof(struct pci_dev *), GFP_KERNEL);
142 if (!*devices)
143 return -ENOMEM;
144
145 start = tmp;
146 index = 0;
147 while (start < end) {
148 scope = start;
149 if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT ||
150 scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE) {
151 ret = dmar_parse_one_dev_scope(scope,
152 &(*devices)[index], segment);
153 if (ret) {
154 kfree(*devices);
155 return ret;
156 }
157 index ++;
158 }
159 start += scope->length;
160 }
161
162 return 0;
163 }
164
165 /**
166 * dmar_parse_one_drhd - parses exactly one DMA remapping hardware definition
167 * structure which uniquely represent one DMA remapping hardware unit
168 * present in the platform
169 */
170 static int __init
171 dmar_parse_one_drhd(struct acpi_dmar_header *header)
172 {
173 struct acpi_dmar_hardware_unit *drhd;
174 struct dmar_drhd_unit *dmaru;
175 int ret = 0;
176
177 drhd = (struct acpi_dmar_hardware_unit *)header;
178 if (!drhd->address) {
179 /* Promote an attitude of violence to a BIOS engineer today */
180 WARN(1, "Your BIOS is broken; DMAR reported at address zero!\n"
181 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
182 dmi_get_system_info(DMI_BIOS_VENDOR),
183 dmi_get_system_info(DMI_BIOS_VERSION),
184 dmi_get_system_info(DMI_PRODUCT_VERSION));
185 return -ENODEV;
186 }
187 dmaru = kzalloc(sizeof(*dmaru), GFP_KERNEL);
188 if (!dmaru)
189 return -ENOMEM;
190
191 dmaru->hdr = header;
192 dmaru->reg_base_addr = drhd->address;
193 dmaru->segment = drhd->segment;
194 dmaru->include_all = drhd->flags & 0x1; /* BIT0: INCLUDE_ALL */
195
196 ret = alloc_iommu(dmaru);
197 if (ret) {
198 kfree(dmaru);
199 return ret;
200 }
201 dmar_register_drhd_unit(dmaru);
202 return 0;
203 }
204
205 static int __init dmar_parse_dev(struct dmar_drhd_unit *dmaru)
206 {
207 struct acpi_dmar_hardware_unit *drhd;
208 int ret = 0;
209
210 drhd = (struct acpi_dmar_hardware_unit *) dmaru->hdr;
211
212 if (dmaru->include_all)
213 return 0;
214
215 ret = dmar_parse_dev_scope((void *)(drhd + 1),
216 ((void *)drhd) + drhd->header.length,
217 &dmaru->devices_cnt, &dmaru->devices,
218 drhd->segment);
219 if (ret) {
220 list_del(&dmaru->list);
221 kfree(dmaru);
222 }
223 return ret;
224 }
225
226 #ifdef CONFIG_DMAR
227 LIST_HEAD(dmar_rmrr_units);
228
229 static void __init dmar_register_rmrr_unit(struct dmar_rmrr_unit *rmrr)
230 {
231 list_add(&rmrr->list, &dmar_rmrr_units);
232 }
233
234
235 static int __init
236 dmar_parse_one_rmrr(struct acpi_dmar_header *header)
237 {
238 struct acpi_dmar_reserved_memory *rmrr;
239 struct dmar_rmrr_unit *rmrru;
240
241 rmrru = kzalloc(sizeof(*rmrru), GFP_KERNEL);
242 if (!rmrru)
243 return -ENOMEM;
244
245 rmrru->hdr = header;
246 rmrr = (struct acpi_dmar_reserved_memory *)header;
247 rmrru->base_address = rmrr->base_address;
248 rmrru->end_address = rmrr->end_address;
249
250 dmar_register_rmrr_unit(rmrru);
251 return 0;
252 }
253
254 static int __init
255 rmrr_parse_dev(struct dmar_rmrr_unit *rmrru)
256 {
257 struct acpi_dmar_reserved_memory *rmrr;
258 int ret;
259
260 rmrr = (struct acpi_dmar_reserved_memory *) rmrru->hdr;
261 ret = dmar_parse_dev_scope((void *)(rmrr + 1),
262 ((void *)rmrr) + rmrr->header.length,
263 &rmrru->devices_cnt, &rmrru->devices, rmrr->segment);
264
265 if (ret || (rmrru->devices_cnt == 0)) {
266 list_del(&rmrru->list);
267 kfree(rmrru);
268 }
269 return ret;
270 }
271
272 static LIST_HEAD(dmar_atsr_units);
273
274 static int __init dmar_parse_one_atsr(struct acpi_dmar_header *hdr)
275 {
276 struct acpi_dmar_atsr *atsr;
277 struct dmar_atsr_unit *atsru;
278
279 atsr = container_of(hdr, struct acpi_dmar_atsr, header);
280 atsru = kzalloc(sizeof(*atsru), GFP_KERNEL);
281 if (!atsru)
282 return -ENOMEM;
283
284 atsru->hdr = hdr;
285 atsru->include_all = atsr->flags & 0x1;
286
287 list_add(&atsru->list, &dmar_atsr_units);
288
289 return 0;
290 }
291
292 static int __init atsr_parse_dev(struct dmar_atsr_unit *atsru)
293 {
294 int rc;
295 struct acpi_dmar_atsr *atsr;
296
297 if (atsru->include_all)
298 return 0;
299
300 atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
301 rc = dmar_parse_dev_scope((void *)(atsr + 1),
302 (void *)atsr + atsr->header.length,
303 &atsru->devices_cnt, &atsru->devices,
304 atsr->segment);
305 if (rc || !atsru->devices_cnt) {
306 list_del(&atsru->list);
307 kfree(atsru);
308 }
309
310 return rc;
311 }
312
313 int dmar_find_matched_atsr_unit(struct pci_dev *dev)
314 {
315 int i;
316 struct pci_bus *bus;
317 struct acpi_dmar_atsr *atsr;
318 struct dmar_atsr_unit *atsru;
319
320 list_for_each_entry(atsru, &dmar_atsr_units, list) {
321 atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
322 if (atsr->segment == pci_domain_nr(dev->bus))
323 goto found;
324 }
325
326 return 0;
327
328 found:
329 for (bus = dev->bus; bus; bus = bus->parent) {
330 struct pci_dev *bridge = bus->self;
331
332 if (!bridge || !pci_is_pcie(bridge) ||
333 bridge->pcie_type == PCI_EXP_TYPE_PCI_BRIDGE)
334 return 0;
335
336 if (bridge->pcie_type == PCI_EXP_TYPE_ROOT_PORT) {
337 for (i = 0; i < atsru->devices_cnt; i++)
338 if (atsru->devices[i] == bridge)
339 return 1;
340 break;
341 }
342 }
343
344 if (atsru->include_all)
345 return 1;
346
347 return 0;
348 }
349 #endif
350
351 static void __init
352 dmar_table_print_dmar_entry(struct acpi_dmar_header *header)
353 {
354 struct acpi_dmar_hardware_unit *drhd;
355 struct acpi_dmar_reserved_memory *rmrr;
356 struct acpi_dmar_atsr *atsr;
357 struct acpi_dmar_rhsa *rhsa;
358
359 switch (header->type) {
360 case ACPI_DMAR_TYPE_HARDWARE_UNIT:
361 drhd = container_of(header, struct acpi_dmar_hardware_unit,
362 header);
363 printk (KERN_INFO PREFIX
364 "DRHD base: %#016Lx flags: %#x\n",
365 (unsigned long long)drhd->address, drhd->flags);
366 break;
367 case ACPI_DMAR_TYPE_RESERVED_MEMORY:
368 rmrr = container_of(header, struct acpi_dmar_reserved_memory,
369 header);
370 printk (KERN_INFO PREFIX
371 "RMRR base: %#016Lx end: %#016Lx\n",
372 (unsigned long long)rmrr->base_address,
373 (unsigned long long)rmrr->end_address);
374 break;
375 case ACPI_DMAR_TYPE_ATSR:
376 atsr = container_of(header, struct acpi_dmar_atsr, header);
377 printk(KERN_INFO PREFIX "ATSR flags: %#x\n", atsr->flags);
378 break;
379 case ACPI_DMAR_HARDWARE_AFFINITY:
380 rhsa = container_of(header, struct acpi_dmar_rhsa, header);
381 printk(KERN_INFO PREFIX "RHSA base: %#016Lx proximity domain: %#x\n",
382 (unsigned long long)rhsa->base_address,
383 rhsa->proximity_domain);
384 break;
385 }
386 }
387
388 /**
389 * dmar_table_detect - checks to see if the platform supports DMAR devices
390 */
391 static int __init dmar_table_detect(void)
392 {
393 acpi_status status = AE_OK;
394
395 /* if we could find DMAR table, then there are DMAR devices */
396 status = acpi_get_table_with_size(ACPI_SIG_DMAR, 0,
397 (struct acpi_table_header **)&dmar_tbl,
398 &dmar_tbl_size);
399
400 if (ACPI_SUCCESS(status) && !dmar_tbl) {
401 printk (KERN_WARNING PREFIX "Unable to map DMAR\n");
402 status = AE_NOT_FOUND;
403 }
404
405 return (ACPI_SUCCESS(status) ? 1 : 0);
406 }
407
408 /**
409 * parse_dmar_table - parses the DMA reporting table
410 */
411 static int __init
412 parse_dmar_table(void)
413 {
414 struct acpi_table_dmar *dmar;
415 struct acpi_dmar_header *entry_header;
416 int ret = 0;
417
418 /*
419 * Do it again, earlier dmar_tbl mapping could be mapped with
420 * fixed map.
421 */
422 dmar_table_detect();
423
424 /*
425 * ACPI tables may not be DMA protected by tboot, so use DMAR copy
426 * SINIT saved in SinitMleData in TXT heap (which is DMA protected)
427 */
428 dmar_tbl = tboot_get_dmar_table(dmar_tbl);
429
430 dmar = (struct acpi_table_dmar *)dmar_tbl;
431 if (!dmar)
432 return -ENODEV;
433
434 if (dmar->width < PAGE_SHIFT - 1) {
435 printk(KERN_WARNING PREFIX "Invalid DMAR haw\n");
436 return -EINVAL;
437 }
438
439 printk (KERN_INFO PREFIX "Host address width %d\n",
440 dmar->width + 1);
441
442 entry_header = (struct acpi_dmar_header *)(dmar + 1);
443 while (((unsigned long)entry_header) <
444 (((unsigned long)dmar) + dmar_tbl->length)) {
445 /* Avoid looping forever on bad ACPI tables */
446 if (entry_header->length == 0) {
447 printk(KERN_WARNING PREFIX
448 "Invalid 0-length structure\n");
449 ret = -EINVAL;
450 break;
451 }
452
453 dmar_table_print_dmar_entry(entry_header);
454
455 switch (entry_header->type) {
456 case ACPI_DMAR_TYPE_HARDWARE_UNIT:
457 ret = dmar_parse_one_drhd(entry_header);
458 break;
459 case ACPI_DMAR_TYPE_RESERVED_MEMORY:
460 #ifdef CONFIG_DMAR
461 ret = dmar_parse_one_rmrr(entry_header);
462 #endif
463 break;
464 case ACPI_DMAR_TYPE_ATSR:
465 #ifdef CONFIG_DMAR
466 ret = dmar_parse_one_atsr(entry_header);
467 #endif
468 break;
469 case ACPI_DMAR_HARDWARE_AFFINITY:
470 /* We don't do anything with RHSA (yet?) */
471 break;
472 default:
473 printk(KERN_WARNING PREFIX
474 "Unknown DMAR structure type %d\n",
475 entry_header->type);
476 ret = 0; /* for forward compatibility */
477 break;
478 }
479 if (ret)
480 break;
481
482 entry_header = ((void *)entry_header + entry_header->length);
483 }
484 return ret;
485 }
486
487 int dmar_pci_device_match(struct pci_dev *devices[], int cnt,
488 struct pci_dev *dev)
489 {
490 int index;
491
492 while (dev) {
493 for (index = 0; index < cnt; index++)
494 if (dev == devices[index])
495 return 1;
496
497 /* Check our parent */
498 dev = dev->bus->self;
499 }
500
501 return 0;
502 }
503
504 struct dmar_drhd_unit *
505 dmar_find_matched_drhd_unit(struct pci_dev *dev)
506 {
507 struct dmar_drhd_unit *dmaru = NULL;
508 struct acpi_dmar_hardware_unit *drhd;
509
510 list_for_each_entry(dmaru, &dmar_drhd_units, list) {
511 drhd = container_of(dmaru->hdr,
512 struct acpi_dmar_hardware_unit,
513 header);
514
515 if (dmaru->include_all &&
516 drhd->segment == pci_domain_nr(dev->bus))
517 return dmaru;
518
519 if (dmar_pci_device_match(dmaru->devices,
520 dmaru->devices_cnt, dev))
521 return dmaru;
522 }
523
524 return NULL;
525 }
526
527 int __init dmar_dev_scope_init(void)
528 {
529 struct dmar_drhd_unit *drhd, *drhd_n;
530 int ret = -ENODEV;
531
532 list_for_each_entry_safe(drhd, drhd_n, &dmar_drhd_units, list) {
533 ret = dmar_parse_dev(drhd);
534 if (ret)
535 return ret;
536 }
537
538 #ifdef CONFIG_DMAR
539 {
540 struct dmar_rmrr_unit *rmrr, *rmrr_n;
541 struct dmar_atsr_unit *atsr, *atsr_n;
542
543 list_for_each_entry_safe(rmrr, rmrr_n, &dmar_rmrr_units, list) {
544 ret = rmrr_parse_dev(rmrr);
545 if (ret)
546 return ret;
547 }
548
549 list_for_each_entry_safe(atsr, atsr_n, &dmar_atsr_units, list) {
550 ret = atsr_parse_dev(atsr);
551 if (ret)
552 return ret;
553 }
554 }
555 #endif
556
557 return ret;
558 }
559
560
561 int __init dmar_table_init(void)
562 {
563 static int dmar_table_initialized;
564 int ret;
565
566 if (dmar_table_initialized)
567 return 0;
568
569 dmar_table_initialized = 1;
570
571 ret = parse_dmar_table();
572 if (ret) {
573 if (ret != -ENODEV)
574 printk(KERN_INFO PREFIX "parse DMAR table failure.\n");
575 return ret;
576 }
577
578 if (list_empty(&dmar_drhd_units)) {
579 printk(KERN_INFO PREFIX "No DMAR devices found\n");
580 return -ENODEV;
581 }
582
583 #ifdef CONFIG_DMAR
584 if (list_empty(&dmar_rmrr_units))
585 printk(KERN_INFO PREFIX "No RMRR found\n");
586
587 if (list_empty(&dmar_atsr_units))
588 printk(KERN_INFO PREFIX "No ATSR found\n");
589 #endif
590
591 return 0;
592 }
593
594 void __init detect_intel_iommu(void)
595 {
596 int ret;
597
598 ret = dmar_table_detect();
599
600 {
601 #ifdef CONFIG_INTR_REMAP
602 struct acpi_table_dmar *dmar;
603 /*
604 * for now we will disable dma-remapping when interrupt
605 * remapping is enabled.
606 * When support for queued invalidation for IOTLB invalidation
607 * is added, we will not need this any more.
608 */
609 dmar = (struct acpi_table_dmar *) dmar_tbl;
610 if (ret && cpu_has_x2apic && dmar->flags & 0x1)
611 printk(KERN_INFO
612 "Queued invalidation will be enabled to support "
613 "x2apic and Intr-remapping.\n");
614 #endif
615 #ifdef CONFIG_DMAR
616 if (ret && !no_iommu && !iommu_detected && !swiotlb &&
617 !dmar_disabled) {
618 iommu_detected = 1;
619 /* Make sure ACS will be enabled */
620 pci_request_acs();
621 }
622 #endif
623 }
624 early_acpi_os_unmap_memory(dmar_tbl, dmar_tbl_size);
625 dmar_tbl = NULL;
626 }
627
628
629 int alloc_iommu(struct dmar_drhd_unit *drhd)
630 {
631 struct intel_iommu *iommu;
632 int map_size;
633 u32 ver;
634 static int iommu_allocated = 0;
635 int agaw = 0;
636 int msagaw = 0;
637
638 iommu = kzalloc(sizeof(*iommu), GFP_KERNEL);
639 if (!iommu)
640 return -ENOMEM;
641
642 iommu->seq_id = iommu_allocated++;
643 sprintf (iommu->name, "dmar%d", iommu->seq_id);
644
645 iommu->reg = ioremap(drhd->reg_base_addr, VTD_PAGE_SIZE);
646 if (!iommu->reg) {
647 printk(KERN_ERR "IOMMU: can't map the region\n");
648 goto error;
649 }
650 iommu->cap = dmar_readq(iommu->reg + DMAR_CAP_REG);
651 iommu->ecap = dmar_readq(iommu->reg + DMAR_ECAP_REG);
652
653 if (iommu->cap == (uint64_t)-1 && iommu->ecap == (uint64_t)-1) {
654 /* Promote an attitude of violence to a BIOS engineer today */
655 WARN(1, "Your BIOS is broken; DMAR reported at address %llx returns all ones!\n"
656 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
657 drhd->reg_base_addr,
658 dmi_get_system_info(DMI_BIOS_VENDOR),
659 dmi_get_system_info(DMI_BIOS_VERSION),
660 dmi_get_system_info(DMI_PRODUCT_VERSION));
661 goto err_unmap;
662 }
663
664 #ifdef CONFIG_DMAR
665 agaw = iommu_calculate_agaw(iommu);
666 if (agaw < 0) {
667 printk(KERN_ERR
668 "Cannot get a valid agaw for iommu (seq_id = %d)\n",
669 iommu->seq_id);
670 goto err_unmap;
671 }
672 msagaw = iommu_calculate_max_sagaw(iommu);
673 if (msagaw < 0) {
674 printk(KERN_ERR
675 "Cannot get a valid max agaw for iommu (seq_id = %d)\n",
676 iommu->seq_id);
677 goto err_unmap;
678 }
679 #endif
680 iommu->agaw = agaw;
681 iommu->msagaw = msagaw;
682
683 /* the registers might be more than one page */
684 map_size = max_t(int, ecap_max_iotlb_offset(iommu->ecap),
685 cap_max_fault_reg_offset(iommu->cap));
686 map_size = VTD_PAGE_ALIGN(map_size);
687 if (map_size > VTD_PAGE_SIZE) {
688 iounmap(iommu->reg);
689 iommu->reg = ioremap(drhd->reg_base_addr, map_size);
690 if (!iommu->reg) {
691 printk(KERN_ERR "IOMMU: can't map the region\n");
692 goto error;
693 }
694 }
695
696 ver = readl(iommu->reg + DMAR_VER_REG);
697 pr_info("IOMMU %llx: ver %d:%d cap %llx ecap %llx\n",
698 (unsigned long long)drhd->reg_base_addr,
699 DMAR_VER_MAJOR(ver), DMAR_VER_MINOR(ver),
700 (unsigned long long)iommu->cap,
701 (unsigned long long)iommu->ecap);
702
703 spin_lock_init(&iommu->register_lock);
704
705 drhd->iommu = iommu;
706 return 0;
707
708 err_unmap:
709 iounmap(iommu->reg);
710 error:
711 kfree(iommu);
712 return -1;
713 }
714
715 void free_iommu(struct intel_iommu *iommu)
716 {
717 if (!iommu)
718 return;
719
720 #ifdef CONFIG_DMAR
721 free_dmar_iommu(iommu);
722 #endif
723
724 if (iommu->reg)
725 iounmap(iommu->reg);
726 kfree(iommu);
727 }
728
729 /*
730 * Reclaim all the submitted descriptors which have completed its work.
731 */
732 static inline void reclaim_free_desc(struct q_inval *qi)
733 {
734 while (qi->desc_status[qi->free_tail] == QI_DONE ||
735 qi->desc_status[qi->free_tail] == QI_ABORT) {
736 qi->desc_status[qi->free_tail] = QI_FREE;
737 qi->free_tail = (qi->free_tail + 1) % QI_LENGTH;
738 qi->free_cnt++;
739 }
740 }
741
742 static int qi_check_fault(struct intel_iommu *iommu, int index)
743 {
744 u32 fault;
745 int head, tail;
746 struct q_inval *qi = iommu->qi;
747 int wait_index = (index + 1) % QI_LENGTH;
748
749 if (qi->desc_status[wait_index] == QI_ABORT)
750 return -EAGAIN;
751
752 fault = readl(iommu->reg + DMAR_FSTS_REG);
753
754 /*
755 * If IQE happens, the head points to the descriptor associated
756 * with the error. No new descriptors are fetched until the IQE
757 * is cleared.
758 */
759 if (fault & DMA_FSTS_IQE) {
760 head = readl(iommu->reg + DMAR_IQH_REG);
761 if ((head >> DMAR_IQ_SHIFT) == index) {
762 printk(KERN_ERR "VT-d detected invalid descriptor: "
763 "low=%llx, high=%llx\n",
764 (unsigned long long)qi->desc[index].low,
765 (unsigned long long)qi->desc[index].high);
766 memcpy(&qi->desc[index], &qi->desc[wait_index],
767 sizeof(struct qi_desc));
768 __iommu_flush_cache(iommu, &qi->desc[index],
769 sizeof(struct qi_desc));
770 writel(DMA_FSTS_IQE, iommu->reg + DMAR_FSTS_REG);
771 return -EINVAL;
772 }
773 }
774
775 /*
776 * If ITE happens, all pending wait_desc commands are aborted.
777 * No new descriptors are fetched until the ITE is cleared.
778 */
779 if (fault & DMA_FSTS_ITE) {
780 head = readl(iommu->reg + DMAR_IQH_REG);
781 head = ((head >> DMAR_IQ_SHIFT) - 1 + QI_LENGTH) % QI_LENGTH;
782 head |= 1;
783 tail = readl(iommu->reg + DMAR_IQT_REG);
784 tail = ((tail >> DMAR_IQ_SHIFT) - 1 + QI_LENGTH) % QI_LENGTH;
785
786 writel(DMA_FSTS_ITE, iommu->reg + DMAR_FSTS_REG);
787
788 do {
789 if (qi->desc_status[head] == QI_IN_USE)
790 qi->desc_status[head] = QI_ABORT;
791 head = (head - 2 + QI_LENGTH) % QI_LENGTH;
792 } while (head != tail);
793
794 if (qi->desc_status[wait_index] == QI_ABORT)
795 return -EAGAIN;
796 }
797
798 if (fault & DMA_FSTS_ICE)
799 writel(DMA_FSTS_ICE, iommu->reg + DMAR_FSTS_REG);
800
801 return 0;
802 }
803
804 /*
805 * Submit the queued invalidation descriptor to the remapping
806 * hardware unit and wait for its completion.
807 */
808 int qi_submit_sync(struct qi_desc *desc, struct intel_iommu *iommu)
809 {
810 int rc;
811 struct q_inval *qi = iommu->qi;
812 struct qi_desc *hw, wait_desc;
813 int wait_index, index;
814 unsigned long flags;
815
816 if (!qi)
817 return 0;
818
819 hw = qi->desc;
820
821 restart:
822 rc = 0;
823
824 spin_lock_irqsave(&qi->q_lock, flags);
825 while (qi->free_cnt < 3) {
826 spin_unlock_irqrestore(&qi->q_lock, flags);
827 cpu_relax();
828 spin_lock_irqsave(&qi->q_lock, flags);
829 }
830
831 index = qi->free_head;
832 wait_index = (index + 1) % QI_LENGTH;
833
834 qi->desc_status[index] = qi->desc_status[wait_index] = QI_IN_USE;
835
836 hw[index] = *desc;
837
838 wait_desc.low = QI_IWD_STATUS_DATA(QI_DONE) |
839 QI_IWD_STATUS_WRITE | QI_IWD_TYPE;
840 wait_desc.high = virt_to_phys(&qi->desc_status[wait_index]);
841
842 hw[wait_index] = wait_desc;
843
844 __iommu_flush_cache(iommu, &hw[index], sizeof(struct qi_desc));
845 __iommu_flush_cache(iommu, &hw[wait_index], sizeof(struct qi_desc));
846
847 qi->free_head = (qi->free_head + 2) % QI_LENGTH;
848 qi->free_cnt -= 2;
849
850 /*
851 * update the HW tail register indicating the presence of
852 * new descriptors.
853 */
854 writel(qi->free_head << DMAR_IQ_SHIFT, iommu->reg + DMAR_IQT_REG);
855
856 while (qi->desc_status[wait_index] != QI_DONE) {
857 /*
858 * We will leave the interrupts disabled, to prevent interrupt
859 * context to queue another cmd while a cmd is already submitted
860 * and waiting for completion on this cpu. This is to avoid
861 * a deadlock where the interrupt context can wait indefinitely
862 * for free slots in the queue.
863 */
864 rc = qi_check_fault(iommu, index);
865 if (rc)
866 break;
867
868 spin_unlock(&qi->q_lock);
869 cpu_relax();
870 spin_lock(&qi->q_lock);
871 }
872
873 qi->desc_status[index] = QI_DONE;
874
875 reclaim_free_desc(qi);
876 spin_unlock_irqrestore(&qi->q_lock, flags);
877
878 if (rc == -EAGAIN)
879 goto restart;
880
881 return rc;
882 }
883
884 /*
885 * Flush the global interrupt entry cache.
886 */
887 void qi_global_iec(struct intel_iommu *iommu)
888 {
889 struct qi_desc desc;
890
891 desc.low = QI_IEC_TYPE;
892 desc.high = 0;
893
894 /* should never fail */
895 qi_submit_sync(&desc, iommu);
896 }
897
898 void qi_flush_context(struct intel_iommu *iommu, u16 did, u16 sid, u8 fm,
899 u64 type)
900 {
901 struct qi_desc desc;
902
903 desc.low = QI_CC_FM(fm) | QI_CC_SID(sid) | QI_CC_DID(did)
904 | QI_CC_GRAN(type) | QI_CC_TYPE;
905 desc.high = 0;
906
907 qi_submit_sync(&desc, iommu);
908 }
909
910 void qi_flush_iotlb(struct intel_iommu *iommu, u16 did, u64 addr,
911 unsigned int size_order, u64 type)
912 {
913 u8 dw = 0, dr = 0;
914
915 struct qi_desc desc;
916 int ih = 0;
917
918 if (cap_write_drain(iommu->cap))
919 dw = 1;
920
921 if (cap_read_drain(iommu->cap))
922 dr = 1;
923
924 desc.low = QI_IOTLB_DID(did) | QI_IOTLB_DR(dr) | QI_IOTLB_DW(dw)
925 | QI_IOTLB_GRAN(type) | QI_IOTLB_TYPE;
926 desc.high = QI_IOTLB_ADDR(addr) | QI_IOTLB_IH(ih)
927 | QI_IOTLB_AM(size_order);
928
929 qi_submit_sync(&desc, iommu);
930 }
931
932 void qi_flush_dev_iotlb(struct intel_iommu *iommu, u16 sid, u16 qdep,
933 u64 addr, unsigned mask)
934 {
935 struct qi_desc desc;
936
937 if (mask) {
938 BUG_ON(addr & ((1 << (VTD_PAGE_SHIFT + mask)) - 1));
939 addr |= (1 << (VTD_PAGE_SHIFT + mask - 1)) - 1;
940 desc.high = QI_DEV_IOTLB_ADDR(addr) | QI_DEV_IOTLB_SIZE;
941 } else
942 desc.high = QI_DEV_IOTLB_ADDR(addr);
943
944 if (qdep >= QI_DEV_IOTLB_MAX_INVS)
945 qdep = 0;
946
947 desc.low = QI_DEV_IOTLB_SID(sid) | QI_DEV_IOTLB_QDEP(qdep) |
948 QI_DIOTLB_TYPE;
949
950 qi_submit_sync(&desc, iommu);
951 }
952
953 /*
954 * Disable Queued Invalidation interface.
955 */
956 void dmar_disable_qi(struct intel_iommu *iommu)
957 {
958 unsigned long flags;
959 u32 sts;
960 cycles_t start_time = get_cycles();
961
962 if (!ecap_qis(iommu->ecap))
963 return;
964
965 spin_lock_irqsave(&iommu->register_lock, flags);
966
967 sts = dmar_readq(iommu->reg + DMAR_GSTS_REG);
968 if (!(sts & DMA_GSTS_QIES))
969 goto end;
970
971 /*
972 * Give a chance to HW to complete the pending invalidation requests.
973 */
974 while ((readl(iommu->reg + DMAR_IQT_REG) !=
975 readl(iommu->reg + DMAR_IQH_REG)) &&
976 (DMAR_OPERATION_TIMEOUT > (get_cycles() - start_time)))
977 cpu_relax();
978
979 iommu->gcmd &= ~DMA_GCMD_QIE;
980 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
981
982 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl,
983 !(sts & DMA_GSTS_QIES), sts);
984 end:
985 spin_unlock_irqrestore(&iommu->register_lock, flags);
986 }
987
988 /*
989 * Enable queued invalidation.
990 */
991 static void __dmar_enable_qi(struct intel_iommu *iommu)
992 {
993 u32 sts;
994 unsigned long flags;
995 struct q_inval *qi = iommu->qi;
996
997 qi->free_head = qi->free_tail = 0;
998 qi->free_cnt = QI_LENGTH;
999
1000 spin_lock_irqsave(&iommu->register_lock, flags);
1001
1002 /* write zero to the tail reg */
1003 writel(0, iommu->reg + DMAR_IQT_REG);
1004
1005 dmar_writeq(iommu->reg + DMAR_IQA_REG, virt_to_phys(qi->desc));
1006
1007 iommu->gcmd |= DMA_GCMD_QIE;
1008 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1009
1010 /* Make sure hardware complete it */
1011 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl, (sts & DMA_GSTS_QIES), sts);
1012
1013 spin_unlock_irqrestore(&iommu->register_lock, flags);
1014 }
1015
1016 /*
1017 * Enable Queued Invalidation interface. This is a must to support
1018 * interrupt-remapping. Also used by DMA-remapping, which replaces
1019 * register based IOTLB invalidation.
1020 */
1021 int dmar_enable_qi(struct intel_iommu *iommu)
1022 {
1023 struct q_inval *qi;
1024
1025 if (!ecap_qis(iommu->ecap))
1026 return -ENOENT;
1027
1028 /*
1029 * queued invalidation is already setup and enabled.
1030 */
1031 if (iommu->qi)
1032 return 0;
1033
1034 iommu->qi = kmalloc(sizeof(*qi), GFP_ATOMIC);
1035 if (!iommu->qi)
1036 return -ENOMEM;
1037
1038 qi = iommu->qi;
1039
1040 qi->desc = (void *)(get_zeroed_page(GFP_ATOMIC));
1041 if (!qi->desc) {
1042 kfree(qi);
1043 iommu->qi = 0;
1044 return -ENOMEM;
1045 }
1046
1047 qi->desc_status = kmalloc(QI_LENGTH * sizeof(int), GFP_ATOMIC);
1048 if (!qi->desc_status) {
1049 free_page((unsigned long) qi->desc);
1050 kfree(qi);
1051 iommu->qi = 0;
1052 return -ENOMEM;
1053 }
1054
1055 qi->free_head = qi->free_tail = 0;
1056 qi->free_cnt = QI_LENGTH;
1057
1058 spin_lock_init(&qi->q_lock);
1059
1060 __dmar_enable_qi(iommu);
1061
1062 return 0;
1063 }
1064
1065 /* iommu interrupt handling. Most stuff are MSI-like. */
1066
1067 enum faulttype {
1068 DMA_REMAP,
1069 INTR_REMAP,
1070 UNKNOWN,
1071 };
1072
1073 static const char *dma_remap_fault_reasons[] =
1074 {
1075 "Software",
1076 "Present bit in root entry is clear",
1077 "Present bit in context entry is clear",
1078 "Invalid context entry",
1079 "Access beyond MGAW",
1080 "PTE Write access is not set",
1081 "PTE Read access is not set",
1082 "Next page table ptr is invalid",
1083 "Root table address invalid",
1084 "Context table ptr is invalid",
1085 "non-zero reserved fields in RTP",
1086 "non-zero reserved fields in CTP",
1087 "non-zero reserved fields in PTE",
1088 };
1089
1090 static const char *intr_remap_fault_reasons[] =
1091 {
1092 "Detected reserved fields in the decoded interrupt-remapped request",
1093 "Interrupt index exceeded the interrupt-remapping table size",
1094 "Present field in the IRTE entry is clear",
1095 "Error accessing interrupt-remapping table pointed by IRTA_REG",
1096 "Detected reserved fields in the IRTE entry",
1097 "Blocked a compatibility format interrupt request",
1098 "Blocked an interrupt request due to source-id verification failure",
1099 };
1100
1101 #define MAX_FAULT_REASON_IDX (ARRAY_SIZE(fault_reason_strings) - 1)
1102
1103 const char *dmar_get_fault_reason(u8 fault_reason, int *fault_type)
1104 {
1105 if (fault_reason >= 0x20 && (fault_reason <= 0x20 +
1106 ARRAY_SIZE(intr_remap_fault_reasons))) {
1107 *fault_type = INTR_REMAP;
1108 return intr_remap_fault_reasons[fault_reason - 0x20];
1109 } else if (fault_reason < ARRAY_SIZE(dma_remap_fault_reasons)) {
1110 *fault_type = DMA_REMAP;
1111 return dma_remap_fault_reasons[fault_reason];
1112 } else {
1113 *fault_type = UNKNOWN;
1114 return "Unknown";
1115 }
1116 }
1117
1118 void dmar_msi_unmask(unsigned int irq)
1119 {
1120 struct intel_iommu *iommu = get_irq_data(irq);
1121 unsigned long flag;
1122
1123 /* unmask it */
1124 spin_lock_irqsave(&iommu->register_lock, flag);
1125 writel(0, iommu->reg + DMAR_FECTL_REG);
1126 /* Read a reg to force flush the post write */
1127 readl(iommu->reg + DMAR_FECTL_REG);
1128 spin_unlock_irqrestore(&iommu->register_lock, flag);
1129 }
1130
1131 void dmar_msi_mask(unsigned int irq)
1132 {
1133 unsigned long flag;
1134 struct intel_iommu *iommu = get_irq_data(irq);
1135
1136 /* mask it */
1137 spin_lock_irqsave(&iommu->register_lock, flag);
1138 writel(DMA_FECTL_IM, iommu->reg + DMAR_FECTL_REG);
1139 /* Read a reg to force flush the post write */
1140 readl(iommu->reg + DMAR_FECTL_REG);
1141 spin_unlock_irqrestore(&iommu->register_lock, flag);
1142 }
1143
1144 void dmar_msi_write(int irq, struct msi_msg *msg)
1145 {
1146 struct intel_iommu *iommu = get_irq_data(irq);
1147 unsigned long flag;
1148
1149 spin_lock_irqsave(&iommu->register_lock, flag);
1150 writel(msg->data, iommu->reg + DMAR_FEDATA_REG);
1151 writel(msg->address_lo, iommu->reg + DMAR_FEADDR_REG);
1152 writel(msg->address_hi, iommu->reg + DMAR_FEUADDR_REG);
1153 spin_unlock_irqrestore(&iommu->register_lock, flag);
1154 }
1155
1156 void dmar_msi_read(int irq, struct msi_msg *msg)
1157 {
1158 struct intel_iommu *iommu = get_irq_data(irq);
1159 unsigned long flag;
1160
1161 spin_lock_irqsave(&iommu->register_lock, flag);
1162 msg->data = readl(iommu->reg + DMAR_FEDATA_REG);
1163 msg->address_lo = readl(iommu->reg + DMAR_FEADDR_REG);
1164 msg->address_hi = readl(iommu->reg + DMAR_FEUADDR_REG);
1165 spin_unlock_irqrestore(&iommu->register_lock, flag);
1166 }
1167
1168 static int dmar_fault_do_one(struct intel_iommu *iommu, int type,
1169 u8 fault_reason, u16 source_id, unsigned long long addr)
1170 {
1171 const char *reason;
1172 int fault_type;
1173
1174 reason = dmar_get_fault_reason(fault_reason, &fault_type);
1175
1176 if (fault_type == INTR_REMAP)
1177 printk(KERN_ERR "INTR-REMAP: Request device [[%02x:%02x.%d] "
1178 "fault index %llx\n"
1179 "INTR-REMAP:[fault reason %02d] %s\n",
1180 (source_id >> 8), PCI_SLOT(source_id & 0xFF),
1181 PCI_FUNC(source_id & 0xFF), addr >> 48,
1182 fault_reason, reason);
1183 else
1184 printk(KERN_ERR
1185 "DMAR:[%s] Request device [%02x:%02x.%d] "
1186 "fault addr %llx \n"
1187 "DMAR:[fault reason %02d] %s\n",
1188 (type ? "DMA Read" : "DMA Write"),
1189 (source_id >> 8), PCI_SLOT(source_id & 0xFF),
1190 PCI_FUNC(source_id & 0xFF), addr, fault_reason, reason);
1191 return 0;
1192 }
1193
1194 #define PRIMARY_FAULT_REG_LEN (16)
1195 irqreturn_t dmar_fault(int irq, void *dev_id)
1196 {
1197 struct intel_iommu *iommu = dev_id;
1198 int reg, fault_index;
1199 u32 fault_status;
1200 unsigned long flag;
1201
1202 spin_lock_irqsave(&iommu->register_lock, flag);
1203 fault_status = readl(iommu->reg + DMAR_FSTS_REG);
1204 if (fault_status)
1205 printk(KERN_ERR "DRHD: handling fault status reg %x\n",
1206 fault_status);
1207
1208 /* TBD: ignore advanced fault log currently */
1209 if (!(fault_status & DMA_FSTS_PPF))
1210 goto clear_rest;
1211
1212 fault_index = dma_fsts_fault_record_index(fault_status);
1213 reg = cap_fault_reg_offset(iommu->cap);
1214 while (1) {
1215 u8 fault_reason;
1216 u16 source_id;
1217 u64 guest_addr;
1218 int type;
1219 u32 data;
1220
1221 /* highest 32 bits */
1222 data = readl(iommu->reg + reg +
1223 fault_index * PRIMARY_FAULT_REG_LEN + 12);
1224 if (!(data & DMA_FRCD_F))
1225 break;
1226
1227 fault_reason = dma_frcd_fault_reason(data);
1228 type = dma_frcd_type(data);
1229
1230 data = readl(iommu->reg + reg +
1231 fault_index * PRIMARY_FAULT_REG_LEN + 8);
1232 source_id = dma_frcd_source_id(data);
1233
1234 guest_addr = dmar_readq(iommu->reg + reg +
1235 fault_index * PRIMARY_FAULT_REG_LEN);
1236 guest_addr = dma_frcd_page_addr(guest_addr);
1237 /* clear the fault */
1238 writel(DMA_FRCD_F, iommu->reg + reg +
1239 fault_index * PRIMARY_FAULT_REG_LEN + 12);
1240
1241 spin_unlock_irqrestore(&iommu->register_lock, flag);
1242
1243 dmar_fault_do_one(iommu, type, fault_reason,
1244 source_id, guest_addr);
1245
1246 fault_index++;
1247 if (fault_index >= cap_num_fault_regs(iommu->cap))
1248 fault_index = 0;
1249 spin_lock_irqsave(&iommu->register_lock, flag);
1250 }
1251 clear_rest:
1252 /* clear all the other faults */
1253 fault_status = readl(iommu->reg + DMAR_FSTS_REG);
1254 writel(fault_status, iommu->reg + DMAR_FSTS_REG);
1255
1256 spin_unlock_irqrestore(&iommu->register_lock, flag);
1257 return IRQ_HANDLED;
1258 }
1259
1260 int dmar_set_interrupt(struct intel_iommu *iommu)
1261 {
1262 int irq, ret;
1263
1264 /*
1265 * Check if the fault interrupt is already initialized.
1266 */
1267 if (iommu->irq)
1268 return 0;
1269
1270 irq = create_irq();
1271 if (!irq) {
1272 printk(KERN_ERR "IOMMU: no free vectors\n");
1273 return -EINVAL;
1274 }
1275
1276 set_irq_data(irq, iommu);
1277 iommu->irq = irq;
1278
1279 ret = arch_setup_dmar_msi(irq);
1280 if (ret) {
1281 set_irq_data(irq, NULL);
1282 iommu->irq = 0;
1283 destroy_irq(irq);
1284 return ret;
1285 }
1286
1287 ret = request_irq(irq, dmar_fault, 0, iommu->name, iommu);
1288 if (ret)
1289 printk(KERN_ERR "IOMMU: can't request irq\n");
1290 return ret;
1291 }
1292
1293 int __init enable_drhd_fault_handling(void)
1294 {
1295 struct dmar_drhd_unit *drhd;
1296
1297 /*
1298 * Enable fault control interrupt.
1299 */
1300 for_each_drhd_unit(drhd) {
1301 int ret;
1302 struct intel_iommu *iommu = drhd->iommu;
1303 ret = dmar_set_interrupt(iommu);
1304
1305 if (ret) {
1306 printk(KERN_ERR "DRHD %Lx: failed to enable fault, "
1307 " interrupt, ret %d\n",
1308 (unsigned long long)drhd->reg_base_addr, ret);
1309 return -1;
1310 }
1311 }
1312
1313 return 0;
1314 }
1315
1316 /*
1317 * Re-enable Queued Invalidation interface.
1318 */
1319 int dmar_reenable_qi(struct intel_iommu *iommu)
1320 {
1321 if (!ecap_qis(iommu->ecap))
1322 return -ENOENT;
1323
1324 if (!iommu->qi)
1325 return -ENOENT;
1326
1327 /*
1328 * First disable queued invalidation.
1329 */
1330 dmar_disable_qi(iommu);
1331 /*
1332 * Then enable queued invalidation again. Since there is no pending
1333 * invalidation requests now, it's safe to re-enable queued
1334 * invalidation.
1335 */
1336 __dmar_enable_qi(iommu);
1337
1338 return 0;
1339 }
1340
1341 /*
1342 * Check interrupt remapping support in DMAR table description.
1343 */
1344 int dmar_ir_support(void)
1345 {
1346 struct acpi_table_dmar *dmar;
1347 dmar = (struct acpi_table_dmar *)dmar_tbl;
1348 return dmar->flags & 0x1;
1349 }