Merge branch 'tracing/urgent' into tracing/core
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / oprofile / buffer_sync.c
1 /**
2 * @file buffer_sync.c
3 *
4 * @remark Copyright 2002-2009 OProfile authors
5 * @remark Read the file COPYING
6 *
7 * @author John Levon <levon@movementarian.org>
8 * @author Barry Kasindorf
9 * @author Robert Richter <robert.richter@amd.com>
10 *
11 * This is the core of the buffer management. Each
12 * CPU buffer is processed and entered into the
13 * global event buffer. Such processing is necessary
14 * in several circumstances, mentioned below.
15 *
16 * The processing does the job of converting the
17 * transitory EIP value into a persistent dentry/offset
18 * value that the profiler can record at its leisure.
19 *
20 * See fs/dcookies.c for a description of the dentry/offset
21 * objects.
22 */
23
24 #include <linux/mm.h>
25 #include <linux/workqueue.h>
26 #include <linux/notifier.h>
27 #include <linux/dcookies.h>
28 #include <linux/profile.h>
29 #include <linux/module.h>
30 #include <linux/fs.h>
31 #include <linux/oprofile.h>
32 #include <linux/sched.h>
33
34 #include "oprofile_stats.h"
35 #include "event_buffer.h"
36 #include "cpu_buffer.h"
37 #include "buffer_sync.h"
38
39 static LIST_HEAD(dying_tasks);
40 static LIST_HEAD(dead_tasks);
41 static cpumask_var_t marked_cpus;
42 static DEFINE_SPINLOCK(task_mortuary);
43 static void process_task_mortuary(void);
44
45 /* Take ownership of the task struct and place it on the
46 * list for processing. Only after two full buffer syncs
47 * does the task eventually get freed, because by then
48 * we are sure we will not reference it again.
49 * Can be invoked from softirq via RCU callback due to
50 * call_rcu() of the task struct, hence the _irqsave.
51 */
52 static int
53 task_free_notify(struct notifier_block *self, unsigned long val, void *data)
54 {
55 unsigned long flags;
56 struct task_struct *task = data;
57 spin_lock_irqsave(&task_mortuary, flags);
58 list_add(&task->tasks, &dying_tasks);
59 spin_unlock_irqrestore(&task_mortuary, flags);
60 return NOTIFY_OK;
61 }
62
63
64 /* The task is on its way out. A sync of the buffer means we can catch
65 * any remaining samples for this task.
66 */
67 static int
68 task_exit_notify(struct notifier_block *self, unsigned long val, void *data)
69 {
70 /* To avoid latency problems, we only process the current CPU,
71 * hoping that most samples for the task are on this CPU
72 */
73 sync_buffer(raw_smp_processor_id());
74 return 0;
75 }
76
77
78 /* The task is about to try a do_munmap(). We peek at what it's going to
79 * do, and if it's an executable region, process the samples first, so
80 * we don't lose any. This does not have to be exact, it's a QoI issue
81 * only.
82 */
83 static int
84 munmap_notify(struct notifier_block *self, unsigned long val, void *data)
85 {
86 unsigned long addr = (unsigned long)data;
87 struct mm_struct *mm = current->mm;
88 struct vm_area_struct *mpnt;
89
90 down_read(&mm->mmap_sem);
91
92 mpnt = find_vma(mm, addr);
93 if (mpnt && mpnt->vm_file && (mpnt->vm_flags & VM_EXEC)) {
94 up_read(&mm->mmap_sem);
95 /* To avoid latency problems, we only process the current CPU,
96 * hoping that most samples for the task are on this CPU
97 */
98 sync_buffer(raw_smp_processor_id());
99 return 0;
100 }
101
102 up_read(&mm->mmap_sem);
103 return 0;
104 }
105
106
107 /* We need to be told about new modules so we don't attribute to a previously
108 * loaded module, or drop the samples on the floor.
109 */
110 static int
111 module_load_notify(struct notifier_block *self, unsigned long val, void *data)
112 {
113 #ifdef CONFIG_MODULES
114 if (val != MODULE_STATE_COMING)
115 return 0;
116
117 /* FIXME: should we process all CPU buffers ? */
118 mutex_lock(&buffer_mutex);
119 add_event_entry(ESCAPE_CODE);
120 add_event_entry(MODULE_LOADED_CODE);
121 mutex_unlock(&buffer_mutex);
122 #endif
123 return 0;
124 }
125
126
127 static struct notifier_block task_free_nb = {
128 .notifier_call = task_free_notify,
129 };
130
131 static struct notifier_block task_exit_nb = {
132 .notifier_call = task_exit_notify,
133 };
134
135 static struct notifier_block munmap_nb = {
136 .notifier_call = munmap_notify,
137 };
138
139 static struct notifier_block module_load_nb = {
140 .notifier_call = module_load_notify,
141 };
142
143
144 static void end_sync(void)
145 {
146 end_cpu_work();
147 /* make sure we don't leak task structs */
148 process_task_mortuary();
149 process_task_mortuary();
150 }
151
152
153 int sync_start(void)
154 {
155 int err;
156
157 if (!zalloc_cpumask_var(&marked_cpus, GFP_KERNEL))
158 return -ENOMEM;
159
160 start_cpu_work();
161
162 err = task_handoff_register(&task_free_nb);
163 if (err)
164 goto out1;
165 err = profile_event_register(PROFILE_TASK_EXIT, &task_exit_nb);
166 if (err)
167 goto out2;
168 err = profile_event_register(PROFILE_MUNMAP, &munmap_nb);
169 if (err)
170 goto out3;
171 err = register_module_notifier(&module_load_nb);
172 if (err)
173 goto out4;
174
175 out:
176 return err;
177 out4:
178 profile_event_unregister(PROFILE_MUNMAP, &munmap_nb);
179 out3:
180 profile_event_unregister(PROFILE_TASK_EXIT, &task_exit_nb);
181 out2:
182 task_handoff_unregister(&task_free_nb);
183 out1:
184 end_sync();
185 free_cpumask_var(marked_cpus);
186 goto out;
187 }
188
189
190 void sync_stop(void)
191 {
192 unregister_module_notifier(&module_load_nb);
193 profile_event_unregister(PROFILE_MUNMAP, &munmap_nb);
194 profile_event_unregister(PROFILE_TASK_EXIT, &task_exit_nb);
195 task_handoff_unregister(&task_free_nb);
196 end_sync();
197 free_cpumask_var(marked_cpus);
198 }
199
200
201 /* Optimisation. We can manage without taking the dcookie sem
202 * because we cannot reach this code without at least one
203 * dcookie user still being registered (namely, the reader
204 * of the event buffer). */
205 static inline unsigned long fast_get_dcookie(struct path *path)
206 {
207 unsigned long cookie;
208
209 if (path->dentry->d_flags & DCACHE_COOKIE)
210 return (unsigned long)path->dentry;
211 get_dcookie(path, &cookie);
212 return cookie;
213 }
214
215
216 /* Look up the dcookie for the task's first VM_EXECUTABLE mapping,
217 * which corresponds loosely to "application name". This is
218 * not strictly necessary but allows oprofile to associate
219 * shared-library samples with particular applications
220 */
221 static unsigned long get_exec_dcookie(struct mm_struct *mm)
222 {
223 unsigned long cookie = NO_COOKIE;
224 struct vm_area_struct *vma;
225
226 if (!mm)
227 goto out;
228
229 for (vma = mm->mmap; vma; vma = vma->vm_next) {
230 if (!vma->vm_file)
231 continue;
232 if (!(vma->vm_flags & VM_EXECUTABLE))
233 continue;
234 cookie = fast_get_dcookie(&vma->vm_file->f_path);
235 break;
236 }
237
238 out:
239 return cookie;
240 }
241
242
243 /* Convert the EIP value of a sample into a persistent dentry/offset
244 * pair that can then be added to the global event buffer. We make
245 * sure to do this lookup before a mm->mmap modification happens so
246 * we don't lose track.
247 */
248 static unsigned long
249 lookup_dcookie(struct mm_struct *mm, unsigned long addr, off_t *offset)
250 {
251 unsigned long cookie = NO_COOKIE;
252 struct vm_area_struct *vma;
253
254 for (vma = find_vma(mm, addr); vma; vma = vma->vm_next) {
255
256 if (addr < vma->vm_start || addr >= vma->vm_end)
257 continue;
258
259 if (vma->vm_file) {
260 cookie = fast_get_dcookie(&vma->vm_file->f_path);
261 *offset = (vma->vm_pgoff << PAGE_SHIFT) + addr -
262 vma->vm_start;
263 } else {
264 /* must be an anonymous map */
265 *offset = addr;
266 }
267
268 break;
269 }
270
271 if (!vma)
272 cookie = INVALID_COOKIE;
273
274 return cookie;
275 }
276
277 static unsigned long last_cookie = INVALID_COOKIE;
278
279 static void add_cpu_switch(int i)
280 {
281 add_event_entry(ESCAPE_CODE);
282 add_event_entry(CPU_SWITCH_CODE);
283 add_event_entry(i);
284 last_cookie = INVALID_COOKIE;
285 }
286
287 static void add_kernel_ctx_switch(unsigned int in_kernel)
288 {
289 add_event_entry(ESCAPE_CODE);
290 if (in_kernel)
291 add_event_entry(KERNEL_ENTER_SWITCH_CODE);
292 else
293 add_event_entry(KERNEL_EXIT_SWITCH_CODE);
294 }
295
296 static void
297 add_user_ctx_switch(struct task_struct const *task, unsigned long cookie)
298 {
299 add_event_entry(ESCAPE_CODE);
300 add_event_entry(CTX_SWITCH_CODE);
301 add_event_entry(task->pid);
302 add_event_entry(cookie);
303 /* Another code for daemon back-compat */
304 add_event_entry(ESCAPE_CODE);
305 add_event_entry(CTX_TGID_CODE);
306 add_event_entry(task->tgid);
307 }
308
309
310 static void add_cookie_switch(unsigned long cookie)
311 {
312 add_event_entry(ESCAPE_CODE);
313 add_event_entry(COOKIE_SWITCH_CODE);
314 add_event_entry(cookie);
315 }
316
317
318 static void add_trace_begin(void)
319 {
320 add_event_entry(ESCAPE_CODE);
321 add_event_entry(TRACE_BEGIN_CODE);
322 }
323
324 static void add_data(struct op_entry *entry, struct mm_struct *mm)
325 {
326 unsigned long code, pc, val;
327 unsigned long cookie;
328 off_t offset;
329
330 if (!op_cpu_buffer_get_data(entry, &code))
331 return;
332 if (!op_cpu_buffer_get_data(entry, &pc))
333 return;
334 if (!op_cpu_buffer_get_size(entry))
335 return;
336
337 if (mm) {
338 cookie = lookup_dcookie(mm, pc, &offset);
339
340 if (cookie == NO_COOKIE)
341 offset = pc;
342 if (cookie == INVALID_COOKIE) {
343 atomic_inc(&oprofile_stats.sample_lost_no_mapping);
344 offset = pc;
345 }
346 if (cookie != last_cookie) {
347 add_cookie_switch(cookie);
348 last_cookie = cookie;
349 }
350 } else
351 offset = pc;
352
353 add_event_entry(ESCAPE_CODE);
354 add_event_entry(code);
355 add_event_entry(offset); /* Offset from Dcookie */
356
357 while (op_cpu_buffer_get_data(entry, &val))
358 add_event_entry(val);
359 }
360
361 static inline void add_sample_entry(unsigned long offset, unsigned long event)
362 {
363 add_event_entry(offset);
364 add_event_entry(event);
365 }
366
367
368 /*
369 * Add a sample to the global event buffer. If possible the
370 * sample is converted into a persistent dentry/offset pair
371 * for later lookup from userspace. Return 0 on failure.
372 */
373 static int
374 add_sample(struct mm_struct *mm, struct op_sample *s, int in_kernel)
375 {
376 unsigned long cookie;
377 off_t offset;
378
379 if (in_kernel) {
380 add_sample_entry(s->eip, s->event);
381 return 1;
382 }
383
384 /* add userspace sample */
385
386 if (!mm) {
387 atomic_inc(&oprofile_stats.sample_lost_no_mm);
388 return 0;
389 }
390
391 cookie = lookup_dcookie(mm, s->eip, &offset);
392
393 if (cookie == INVALID_COOKIE) {
394 atomic_inc(&oprofile_stats.sample_lost_no_mapping);
395 return 0;
396 }
397
398 if (cookie != last_cookie) {
399 add_cookie_switch(cookie);
400 last_cookie = cookie;
401 }
402
403 add_sample_entry(offset, s->event);
404
405 return 1;
406 }
407
408
409 static void release_mm(struct mm_struct *mm)
410 {
411 if (!mm)
412 return;
413 up_read(&mm->mmap_sem);
414 mmput(mm);
415 }
416
417
418 static struct mm_struct *take_tasks_mm(struct task_struct *task)
419 {
420 struct mm_struct *mm = get_task_mm(task);
421 if (mm)
422 down_read(&mm->mmap_sem);
423 return mm;
424 }
425
426
427 static inline int is_code(unsigned long val)
428 {
429 return val == ESCAPE_CODE;
430 }
431
432
433 /* Move tasks along towards death. Any tasks on dead_tasks
434 * will definitely have no remaining references in any
435 * CPU buffers at this point, because we use two lists,
436 * and to have reached the list, it must have gone through
437 * one full sync already.
438 */
439 static void process_task_mortuary(void)
440 {
441 unsigned long flags;
442 LIST_HEAD(local_dead_tasks);
443 struct task_struct *task;
444 struct task_struct *ttask;
445
446 spin_lock_irqsave(&task_mortuary, flags);
447
448 list_splice_init(&dead_tasks, &local_dead_tasks);
449 list_splice_init(&dying_tasks, &dead_tasks);
450
451 spin_unlock_irqrestore(&task_mortuary, flags);
452
453 list_for_each_entry_safe(task, ttask, &local_dead_tasks, tasks) {
454 list_del(&task->tasks);
455 free_task(task);
456 }
457 }
458
459
460 static void mark_done(int cpu)
461 {
462 int i;
463
464 cpumask_set_cpu(cpu, marked_cpus);
465
466 for_each_online_cpu(i) {
467 if (!cpumask_test_cpu(i, marked_cpus))
468 return;
469 }
470
471 /* All CPUs have been processed at least once,
472 * we can process the mortuary once
473 */
474 process_task_mortuary();
475
476 cpumask_clear(marked_cpus);
477 }
478
479
480 /* FIXME: this is not sufficient if we implement syscall barrier backtrace
481 * traversal, the code switch to sb_sample_start at first kernel enter/exit
482 * switch so we need a fifth state and some special handling in sync_buffer()
483 */
484 typedef enum {
485 sb_bt_ignore = -2,
486 sb_buffer_start,
487 sb_bt_start,
488 sb_sample_start,
489 } sync_buffer_state;
490
491 /* Sync one of the CPU's buffers into the global event buffer.
492 * Here we need to go through each batch of samples punctuated
493 * by context switch notes, taking the task's mmap_sem and doing
494 * lookup in task->mm->mmap to convert EIP into dcookie/offset
495 * value.
496 */
497 void sync_buffer(int cpu)
498 {
499 struct mm_struct *mm = NULL;
500 struct mm_struct *oldmm;
501 unsigned long val;
502 struct task_struct *new;
503 unsigned long cookie = 0;
504 int in_kernel = 1;
505 sync_buffer_state state = sb_buffer_start;
506 unsigned int i;
507 unsigned long available;
508 unsigned long flags;
509 struct op_entry entry;
510 struct op_sample *sample;
511
512 mutex_lock(&buffer_mutex);
513
514 add_cpu_switch(cpu);
515
516 op_cpu_buffer_reset(cpu);
517 available = op_cpu_buffer_entries(cpu);
518
519 for (i = 0; i < available; ++i) {
520 sample = op_cpu_buffer_read_entry(&entry, cpu);
521 if (!sample)
522 break;
523
524 if (is_code(sample->eip)) {
525 flags = sample->event;
526 if (flags & TRACE_BEGIN) {
527 state = sb_bt_start;
528 add_trace_begin();
529 }
530 if (flags & KERNEL_CTX_SWITCH) {
531 /* kernel/userspace switch */
532 in_kernel = flags & IS_KERNEL;
533 if (state == sb_buffer_start)
534 state = sb_sample_start;
535 add_kernel_ctx_switch(flags & IS_KERNEL);
536 }
537 if (flags & USER_CTX_SWITCH
538 && op_cpu_buffer_get_data(&entry, &val)) {
539 /* userspace context switch */
540 new = (struct task_struct *)val;
541 oldmm = mm;
542 release_mm(oldmm);
543 mm = take_tasks_mm(new);
544 if (mm != oldmm)
545 cookie = get_exec_dcookie(mm);
546 add_user_ctx_switch(new, cookie);
547 }
548 if (op_cpu_buffer_get_size(&entry))
549 add_data(&entry, mm);
550 continue;
551 }
552
553 if (state < sb_bt_start)
554 /* ignore sample */
555 continue;
556
557 if (add_sample(mm, sample, in_kernel))
558 continue;
559
560 /* ignore backtraces if failed to add a sample */
561 if (state == sb_bt_start) {
562 state = sb_bt_ignore;
563 atomic_inc(&oprofile_stats.bt_lost_no_mapping);
564 }
565 }
566 release_mm(mm);
567
568 mark_done(cpu);
569
570 mutex_unlock(&buffer_mutex);
571 }
572
573 /* The function can be used to add a buffer worth of data directly to
574 * the kernel buffer. The buffer is assumed to be a circular buffer.
575 * Take the entries from index start and end at index end, wrapping
576 * at max_entries.
577 */
578 void oprofile_put_buff(unsigned long *buf, unsigned int start,
579 unsigned int stop, unsigned int max)
580 {
581 int i;
582
583 i = start;
584
585 mutex_lock(&buffer_mutex);
586 while (i != stop) {
587 add_event_entry(buf[i++]);
588
589 if (i >= max)
590 i = 0;
591 }
592
593 mutex_unlock(&buffer_mutex);
594 }
595