oprofile: Free potentially owned tasks in case of errors
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / oprofile / buffer_sync.c
1 /**
2 * @file buffer_sync.c
3 *
4 * @remark Copyright 2002-2009 OProfile authors
5 * @remark Read the file COPYING
6 *
7 * @author John Levon <levon@movementarian.org>
8 * @author Barry Kasindorf
9 * @author Robert Richter <robert.richter@amd.com>
10 *
11 * This is the core of the buffer management. Each
12 * CPU buffer is processed and entered into the
13 * global event buffer. Such processing is necessary
14 * in several circumstances, mentioned below.
15 *
16 * The processing does the job of converting the
17 * transitory EIP value into a persistent dentry/offset
18 * value that the profiler can record at its leisure.
19 *
20 * See fs/dcookies.c for a description of the dentry/offset
21 * objects.
22 */
23
24 #include <linux/mm.h>
25 #include <linux/workqueue.h>
26 #include <linux/notifier.h>
27 #include <linux/dcookies.h>
28 #include <linux/profile.h>
29 #include <linux/module.h>
30 #include <linux/fs.h>
31 #include <linux/oprofile.h>
32 #include <linux/sched.h>
33 #include <linux/gfp.h>
34
35 #include "oprofile_stats.h"
36 #include "event_buffer.h"
37 #include "cpu_buffer.h"
38 #include "buffer_sync.h"
39
40 static LIST_HEAD(dying_tasks);
41 static LIST_HEAD(dead_tasks);
42 static cpumask_var_t marked_cpus;
43 static DEFINE_SPINLOCK(task_mortuary);
44 static void process_task_mortuary(void);
45
46 /* Take ownership of the task struct and place it on the
47 * list for processing. Only after two full buffer syncs
48 * does the task eventually get freed, because by then
49 * we are sure we will not reference it again.
50 * Can be invoked from softirq via RCU callback due to
51 * call_rcu() of the task struct, hence the _irqsave.
52 */
53 static int
54 task_free_notify(struct notifier_block *self, unsigned long val, void *data)
55 {
56 unsigned long flags;
57 struct task_struct *task = data;
58 spin_lock_irqsave(&task_mortuary, flags);
59 list_add(&task->tasks, &dying_tasks);
60 spin_unlock_irqrestore(&task_mortuary, flags);
61 return NOTIFY_OK;
62 }
63
64
65 /* The task is on its way out. A sync of the buffer means we can catch
66 * any remaining samples for this task.
67 */
68 static int
69 task_exit_notify(struct notifier_block *self, unsigned long val, void *data)
70 {
71 /* To avoid latency problems, we only process the current CPU,
72 * hoping that most samples for the task are on this CPU
73 */
74 sync_buffer(raw_smp_processor_id());
75 return 0;
76 }
77
78
79 /* The task is about to try a do_munmap(). We peek at what it's going to
80 * do, and if it's an executable region, process the samples first, so
81 * we don't lose any. This does not have to be exact, it's a QoI issue
82 * only.
83 */
84 static int
85 munmap_notify(struct notifier_block *self, unsigned long val, void *data)
86 {
87 unsigned long addr = (unsigned long)data;
88 struct mm_struct *mm = current->mm;
89 struct vm_area_struct *mpnt;
90
91 down_read(&mm->mmap_sem);
92
93 mpnt = find_vma(mm, addr);
94 if (mpnt && mpnt->vm_file && (mpnt->vm_flags & VM_EXEC)) {
95 up_read(&mm->mmap_sem);
96 /* To avoid latency problems, we only process the current CPU,
97 * hoping that most samples for the task are on this CPU
98 */
99 sync_buffer(raw_smp_processor_id());
100 return 0;
101 }
102
103 up_read(&mm->mmap_sem);
104 return 0;
105 }
106
107
108 /* We need to be told about new modules so we don't attribute to a previously
109 * loaded module, or drop the samples on the floor.
110 */
111 static int
112 module_load_notify(struct notifier_block *self, unsigned long val, void *data)
113 {
114 #ifdef CONFIG_MODULES
115 if (val != MODULE_STATE_COMING)
116 return 0;
117
118 /* FIXME: should we process all CPU buffers ? */
119 mutex_lock(&buffer_mutex);
120 add_event_entry(ESCAPE_CODE);
121 add_event_entry(MODULE_LOADED_CODE);
122 mutex_unlock(&buffer_mutex);
123 #endif
124 return 0;
125 }
126
127
128 static struct notifier_block task_free_nb = {
129 .notifier_call = task_free_notify,
130 };
131
132 static struct notifier_block task_exit_nb = {
133 .notifier_call = task_exit_notify,
134 };
135
136 static struct notifier_block munmap_nb = {
137 .notifier_call = munmap_notify,
138 };
139
140 static struct notifier_block module_load_nb = {
141 .notifier_call = module_load_notify,
142 };
143
144 static void free_all_tasks(void)
145 {
146 /* make sure we don't leak task structs */
147 process_task_mortuary();
148 process_task_mortuary();
149 }
150
151 int sync_start(void)
152 {
153 int err;
154
155 if (!zalloc_cpumask_var(&marked_cpus, GFP_KERNEL))
156 return -ENOMEM;
157
158 mutex_lock(&buffer_mutex);
159
160 err = task_handoff_register(&task_free_nb);
161 if (err)
162 goto out1;
163 err = profile_event_register(PROFILE_TASK_EXIT, &task_exit_nb);
164 if (err)
165 goto out2;
166 err = profile_event_register(PROFILE_MUNMAP, &munmap_nb);
167 if (err)
168 goto out3;
169 err = register_module_notifier(&module_load_nb);
170 if (err)
171 goto out4;
172
173 start_cpu_work();
174
175 out:
176 mutex_unlock(&buffer_mutex);
177 return err;
178 out4:
179 profile_event_unregister(PROFILE_MUNMAP, &munmap_nb);
180 out3:
181 profile_event_unregister(PROFILE_TASK_EXIT, &task_exit_nb);
182 out2:
183 task_handoff_unregister(&task_free_nb);
184 free_all_tasks();
185 out1:
186 free_cpumask_var(marked_cpus);
187 goto out;
188 }
189
190
191 void sync_stop(void)
192 {
193 /* flush buffers */
194 mutex_lock(&buffer_mutex);
195 end_cpu_work();
196 unregister_module_notifier(&module_load_nb);
197 profile_event_unregister(PROFILE_MUNMAP, &munmap_nb);
198 profile_event_unregister(PROFILE_TASK_EXIT, &task_exit_nb);
199 task_handoff_unregister(&task_free_nb);
200 mutex_unlock(&buffer_mutex);
201 flush_cpu_work();
202
203 free_all_tasks();
204 free_cpumask_var(marked_cpus);
205 }
206
207
208 /* Optimisation. We can manage without taking the dcookie sem
209 * because we cannot reach this code without at least one
210 * dcookie user still being registered (namely, the reader
211 * of the event buffer). */
212 static inline unsigned long fast_get_dcookie(struct path *path)
213 {
214 unsigned long cookie;
215
216 if (path->dentry->d_flags & DCACHE_COOKIE)
217 return (unsigned long)path->dentry;
218 get_dcookie(path, &cookie);
219 return cookie;
220 }
221
222
223 /* Look up the dcookie for the task's first VM_EXECUTABLE mapping,
224 * which corresponds loosely to "application name". This is
225 * not strictly necessary but allows oprofile to associate
226 * shared-library samples with particular applications
227 */
228 static unsigned long get_exec_dcookie(struct mm_struct *mm)
229 {
230 unsigned long cookie = NO_COOKIE;
231 struct vm_area_struct *vma;
232
233 if (!mm)
234 goto out;
235
236 for (vma = mm->mmap; vma; vma = vma->vm_next) {
237 if (!vma->vm_file)
238 continue;
239 if (!(vma->vm_flags & VM_EXECUTABLE))
240 continue;
241 cookie = fast_get_dcookie(&vma->vm_file->f_path);
242 break;
243 }
244
245 out:
246 return cookie;
247 }
248
249
250 /* Convert the EIP value of a sample into a persistent dentry/offset
251 * pair that can then be added to the global event buffer. We make
252 * sure to do this lookup before a mm->mmap modification happens so
253 * we don't lose track.
254 */
255 static unsigned long
256 lookup_dcookie(struct mm_struct *mm, unsigned long addr, off_t *offset)
257 {
258 unsigned long cookie = NO_COOKIE;
259 struct vm_area_struct *vma;
260
261 for (vma = find_vma(mm, addr); vma; vma = vma->vm_next) {
262
263 if (addr < vma->vm_start || addr >= vma->vm_end)
264 continue;
265
266 if (vma->vm_file) {
267 cookie = fast_get_dcookie(&vma->vm_file->f_path);
268 *offset = (vma->vm_pgoff << PAGE_SHIFT) + addr -
269 vma->vm_start;
270 } else {
271 /* must be an anonymous map */
272 *offset = addr;
273 }
274
275 break;
276 }
277
278 if (!vma)
279 cookie = INVALID_COOKIE;
280
281 return cookie;
282 }
283
284 static unsigned long last_cookie = INVALID_COOKIE;
285
286 static void add_cpu_switch(int i)
287 {
288 add_event_entry(ESCAPE_CODE);
289 add_event_entry(CPU_SWITCH_CODE);
290 add_event_entry(i);
291 last_cookie = INVALID_COOKIE;
292 }
293
294 static void add_kernel_ctx_switch(unsigned int in_kernel)
295 {
296 add_event_entry(ESCAPE_CODE);
297 if (in_kernel)
298 add_event_entry(KERNEL_ENTER_SWITCH_CODE);
299 else
300 add_event_entry(KERNEL_EXIT_SWITCH_CODE);
301 }
302
303 static void
304 add_user_ctx_switch(struct task_struct const *task, unsigned long cookie)
305 {
306 add_event_entry(ESCAPE_CODE);
307 add_event_entry(CTX_SWITCH_CODE);
308 add_event_entry(task->pid);
309 add_event_entry(cookie);
310 /* Another code for daemon back-compat */
311 add_event_entry(ESCAPE_CODE);
312 add_event_entry(CTX_TGID_CODE);
313 add_event_entry(task->tgid);
314 }
315
316
317 static void add_cookie_switch(unsigned long cookie)
318 {
319 add_event_entry(ESCAPE_CODE);
320 add_event_entry(COOKIE_SWITCH_CODE);
321 add_event_entry(cookie);
322 }
323
324
325 static void add_trace_begin(void)
326 {
327 add_event_entry(ESCAPE_CODE);
328 add_event_entry(TRACE_BEGIN_CODE);
329 }
330
331 static void add_data(struct op_entry *entry, struct mm_struct *mm)
332 {
333 unsigned long code, pc, val;
334 unsigned long cookie;
335 off_t offset;
336
337 if (!op_cpu_buffer_get_data(entry, &code))
338 return;
339 if (!op_cpu_buffer_get_data(entry, &pc))
340 return;
341 if (!op_cpu_buffer_get_size(entry))
342 return;
343
344 if (mm) {
345 cookie = lookup_dcookie(mm, pc, &offset);
346
347 if (cookie == NO_COOKIE)
348 offset = pc;
349 if (cookie == INVALID_COOKIE) {
350 atomic_inc(&oprofile_stats.sample_lost_no_mapping);
351 offset = pc;
352 }
353 if (cookie != last_cookie) {
354 add_cookie_switch(cookie);
355 last_cookie = cookie;
356 }
357 } else
358 offset = pc;
359
360 add_event_entry(ESCAPE_CODE);
361 add_event_entry(code);
362 add_event_entry(offset); /* Offset from Dcookie */
363
364 while (op_cpu_buffer_get_data(entry, &val))
365 add_event_entry(val);
366 }
367
368 static inline void add_sample_entry(unsigned long offset, unsigned long event)
369 {
370 add_event_entry(offset);
371 add_event_entry(event);
372 }
373
374
375 /*
376 * Add a sample to the global event buffer. If possible the
377 * sample is converted into a persistent dentry/offset pair
378 * for later lookup from userspace. Return 0 on failure.
379 */
380 static int
381 add_sample(struct mm_struct *mm, struct op_sample *s, int in_kernel)
382 {
383 unsigned long cookie;
384 off_t offset;
385
386 if (in_kernel) {
387 add_sample_entry(s->eip, s->event);
388 return 1;
389 }
390
391 /* add userspace sample */
392
393 if (!mm) {
394 atomic_inc(&oprofile_stats.sample_lost_no_mm);
395 return 0;
396 }
397
398 cookie = lookup_dcookie(mm, s->eip, &offset);
399
400 if (cookie == INVALID_COOKIE) {
401 atomic_inc(&oprofile_stats.sample_lost_no_mapping);
402 return 0;
403 }
404
405 if (cookie != last_cookie) {
406 add_cookie_switch(cookie);
407 last_cookie = cookie;
408 }
409
410 add_sample_entry(offset, s->event);
411
412 return 1;
413 }
414
415
416 static void release_mm(struct mm_struct *mm)
417 {
418 if (!mm)
419 return;
420 up_read(&mm->mmap_sem);
421 mmput(mm);
422 }
423
424
425 static struct mm_struct *take_tasks_mm(struct task_struct *task)
426 {
427 struct mm_struct *mm = get_task_mm(task);
428 if (mm)
429 down_read(&mm->mmap_sem);
430 return mm;
431 }
432
433
434 static inline int is_code(unsigned long val)
435 {
436 return val == ESCAPE_CODE;
437 }
438
439
440 /* Move tasks along towards death. Any tasks on dead_tasks
441 * will definitely have no remaining references in any
442 * CPU buffers at this point, because we use two lists,
443 * and to have reached the list, it must have gone through
444 * one full sync already.
445 */
446 static void process_task_mortuary(void)
447 {
448 unsigned long flags;
449 LIST_HEAD(local_dead_tasks);
450 struct task_struct *task;
451 struct task_struct *ttask;
452
453 spin_lock_irqsave(&task_mortuary, flags);
454
455 list_splice_init(&dead_tasks, &local_dead_tasks);
456 list_splice_init(&dying_tasks, &dead_tasks);
457
458 spin_unlock_irqrestore(&task_mortuary, flags);
459
460 list_for_each_entry_safe(task, ttask, &local_dead_tasks, tasks) {
461 list_del(&task->tasks);
462 free_task(task);
463 }
464 }
465
466
467 static void mark_done(int cpu)
468 {
469 int i;
470
471 cpumask_set_cpu(cpu, marked_cpus);
472
473 for_each_online_cpu(i) {
474 if (!cpumask_test_cpu(i, marked_cpus))
475 return;
476 }
477
478 /* All CPUs have been processed at least once,
479 * we can process the mortuary once
480 */
481 process_task_mortuary();
482
483 cpumask_clear(marked_cpus);
484 }
485
486
487 /* FIXME: this is not sufficient if we implement syscall barrier backtrace
488 * traversal, the code switch to sb_sample_start at first kernel enter/exit
489 * switch so we need a fifth state and some special handling in sync_buffer()
490 */
491 typedef enum {
492 sb_bt_ignore = -2,
493 sb_buffer_start,
494 sb_bt_start,
495 sb_sample_start,
496 } sync_buffer_state;
497
498 /* Sync one of the CPU's buffers into the global event buffer.
499 * Here we need to go through each batch of samples punctuated
500 * by context switch notes, taking the task's mmap_sem and doing
501 * lookup in task->mm->mmap to convert EIP into dcookie/offset
502 * value.
503 */
504 void sync_buffer(int cpu)
505 {
506 struct mm_struct *mm = NULL;
507 struct mm_struct *oldmm;
508 unsigned long val;
509 struct task_struct *new;
510 unsigned long cookie = 0;
511 int in_kernel = 1;
512 sync_buffer_state state = sb_buffer_start;
513 unsigned int i;
514 unsigned long available;
515 unsigned long flags;
516 struct op_entry entry;
517 struct op_sample *sample;
518
519 mutex_lock(&buffer_mutex);
520
521 add_cpu_switch(cpu);
522
523 op_cpu_buffer_reset(cpu);
524 available = op_cpu_buffer_entries(cpu);
525
526 for (i = 0; i < available; ++i) {
527 sample = op_cpu_buffer_read_entry(&entry, cpu);
528 if (!sample)
529 break;
530
531 if (is_code(sample->eip)) {
532 flags = sample->event;
533 if (flags & TRACE_BEGIN) {
534 state = sb_bt_start;
535 add_trace_begin();
536 }
537 if (flags & KERNEL_CTX_SWITCH) {
538 /* kernel/userspace switch */
539 in_kernel = flags & IS_KERNEL;
540 if (state == sb_buffer_start)
541 state = sb_sample_start;
542 add_kernel_ctx_switch(flags & IS_KERNEL);
543 }
544 if (flags & USER_CTX_SWITCH
545 && op_cpu_buffer_get_data(&entry, &val)) {
546 /* userspace context switch */
547 new = (struct task_struct *)val;
548 oldmm = mm;
549 release_mm(oldmm);
550 mm = take_tasks_mm(new);
551 if (mm != oldmm)
552 cookie = get_exec_dcookie(mm);
553 add_user_ctx_switch(new, cookie);
554 }
555 if (op_cpu_buffer_get_size(&entry))
556 add_data(&entry, mm);
557 continue;
558 }
559
560 if (state < sb_bt_start)
561 /* ignore sample */
562 continue;
563
564 if (add_sample(mm, sample, in_kernel))
565 continue;
566
567 /* ignore backtraces if failed to add a sample */
568 if (state == sb_bt_start) {
569 state = sb_bt_ignore;
570 atomic_inc(&oprofile_stats.bt_lost_no_mapping);
571 }
572 }
573 release_mm(mm);
574
575 mark_done(cpu);
576
577 mutex_unlock(&buffer_mutex);
578 }
579
580 /* The function can be used to add a buffer worth of data directly to
581 * the kernel buffer. The buffer is assumed to be a circular buffer.
582 * Take the entries from index start and end at index end, wrapping
583 * at max_entries.
584 */
585 void oprofile_put_buff(unsigned long *buf, unsigned int start,
586 unsigned int stop, unsigned int max)
587 {
588 int i;
589
590 i = start;
591
592 mutex_lock(&buffer_mutex);
593 while (i != stop) {
594 add_event_entry(buf[i++]);
595
596 if (i >= max)
597 i = 0;
598 }
599
600 mutex_unlock(&buffer_mutex);
601 }
602