Merge tag 'sound-4.14-rc7' of git://git.kernel.org/pub/scm/linux/kernel/git/tiwai...
[GitHub/LineageOS/android_kernel_motorola_exynos9610.git] / drivers / of / base.c
1 /*
2 * Procedures for creating, accessing and interpreting the device tree.
3 *
4 * Paul Mackerras August 1996.
5 * Copyright (C) 1996-2005 Paul Mackerras.
6 *
7 * Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
8 * {engebret|bergner}@us.ibm.com
9 *
10 * Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net
11 *
12 * Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and
13 * Grant Likely.
14 *
15 * This program is free software; you can redistribute it and/or
16 * modify it under the terms of the GNU General Public License
17 * as published by the Free Software Foundation; either version
18 * 2 of the License, or (at your option) any later version.
19 */
20
21 #define pr_fmt(fmt) "OF: " fmt
22
23 #include <linux/console.h>
24 #include <linux/ctype.h>
25 #include <linux/cpu.h>
26 #include <linux/module.h>
27 #include <linux/of.h>
28 #include <linux/of_device.h>
29 #include <linux/of_graph.h>
30 #include <linux/spinlock.h>
31 #include <linux/slab.h>
32 #include <linux/string.h>
33 #include <linux/proc_fs.h>
34
35 #include "of_private.h"
36
37 LIST_HEAD(aliases_lookup);
38
39 struct device_node *of_root;
40 EXPORT_SYMBOL(of_root);
41 struct device_node *of_chosen;
42 struct device_node *of_aliases;
43 struct device_node *of_stdout;
44 static const char *of_stdout_options;
45
46 struct kset *of_kset;
47
48 /*
49 * Used to protect the of_aliases, to hold off addition of nodes to sysfs.
50 * This mutex must be held whenever modifications are being made to the
51 * device tree. The of_{attach,detach}_node() and
52 * of_{add,remove,update}_property() helpers make sure this happens.
53 */
54 DEFINE_MUTEX(of_mutex);
55
56 /* use when traversing tree through the child, sibling,
57 * or parent members of struct device_node.
58 */
59 DEFINE_RAW_SPINLOCK(devtree_lock);
60
61 int of_n_addr_cells(struct device_node *np)
62 {
63 u32 cells;
64
65 do {
66 if (np->parent)
67 np = np->parent;
68 if (!of_property_read_u32(np, "#address-cells", &cells))
69 return cells;
70 } while (np->parent);
71 /* No #address-cells property for the root node */
72 return OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
73 }
74 EXPORT_SYMBOL(of_n_addr_cells);
75
76 int of_n_size_cells(struct device_node *np)
77 {
78 u32 cells;
79
80 do {
81 if (np->parent)
82 np = np->parent;
83 if (!of_property_read_u32(np, "#size-cells", &cells))
84 return cells;
85 } while (np->parent);
86 /* No #size-cells property for the root node */
87 return OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
88 }
89 EXPORT_SYMBOL(of_n_size_cells);
90
91 #ifdef CONFIG_NUMA
92 int __weak of_node_to_nid(struct device_node *np)
93 {
94 return NUMA_NO_NODE;
95 }
96 #endif
97
98 #ifndef CONFIG_OF_DYNAMIC
99 static void of_node_release(struct kobject *kobj)
100 {
101 /* Without CONFIG_OF_DYNAMIC, no nodes gets freed */
102 }
103 #endif /* CONFIG_OF_DYNAMIC */
104
105 struct kobj_type of_node_ktype = {
106 .release = of_node_release,
107 };
108
109 static ssize_t of_node_property_read(struct file *filp, struct kobject *kobj,
110 struct bin_attribute *bin_attr, char *buf,
111 loff_t offset, size_t count)
112 {
113 struct property *pp = container_of(bin_attr, struct property, attr);
114 return memory_read_from_buffer(buf, count, &offset, pp->value, pp->length);
115 }
116
117 /* always return newly allocated name, caller must free after use */
118 static const char *safe_name(struct kobject *kobj, const char *orig_name)
119 {
120 const char *name = orig_name;
121 struct kernfs_node *kn;
122 int i = 0;
123
124 /* don't be a hero. After 16 tries give up */
125 while (i < 16 && (kn = sysfs_get_dirent(kobj->sd, name))) {
126 sysfs_put(kn);
127 if (name != orig_name)
128 kfree(name);
129 name = kasprintf(GFP_KERNEL, "%s#%i", orig_name, ++i);
130 }
131
132 if (name == orig_name) {
133 name = kstrdup(orig_name, GFP_KERNEL);
134 } else {
135 pr_warn("Duplicate name in %s, renamed to \"%s\"\n",
136 kobject_name(kobj), name);
137 }
138 return name;
139 }
140
141 int __of_add_property_sysfs(struct device_node *np, struct property *pp)
142 {
143 int rc;
144
145 /* Important: Don't leak passwords */
146 bool secure = strncmp(pp->name, "security-", 9) == 0;
147
148 if (!IS_ENABLED(CONFIG_SYSFS))
149 return 0;
150
151 if (!of_kset || !of_node_is_attached(np))
152 return 0;
153
154 sysfs_bin_attr_init(&pp->attr);
155 pp->attr.attr.name = safe_name(&np->kobj, pp->name);
156 pp->attr.attr.mode = secure ? 0400 : 0444;
157 pp->attr.size = secure ? 0 : pp->length;
158 pp->attr.read = of_node_property_read;
159
160 rc = sysfs_create_bin_file(&np->kobj, &pp->attr);
161 WARN(rc, "error adding attribute %s to node %pOF\n", pp->name, np);
162 return rc;
163 }
164
165 int __of_attach_node_sysfs(struct device_node *np)
166 {
167 const char *name;
168 struct kobject *parent;
169 struct property *pp;
170 int rc;
171
172 if (!IS_ENABLED(CONFIG_SYSFS))
173 return 0;
174
175 if (!of_kset)
176 return 0;
177
178 np->kobj.kset = of_kset;
179 if (!np->parent) {
180 /* Nodes without parents are new top level trees */
181 name = safe_name(&of_kset->kobj, "base");
182 parent = NULL;
183 } else {
184 name = safe_name(&np->parent->kobj, kbasename(np->full_name));
185 parent = &np->parent->kobj;
186 }
187 if (!name)
188 return -ENOMEM;
189 rc = kobject_add(&np->kobj, parent, "%s", name);
190 kfree(name);
191 if (rc)
192 return rc;
193
194 for_each_property_of_node(np, pp)
195 __of_add_property_sysfs(np, pp);
196
197 return 0;
198 }
199
200 void __init of_core_init(void)
201 {
202 struct device_node *np;
203
204 /* Create the kset, and register existing nodes */
205 mutex_lock(&of_mutex);
206 of_kset = kset_create_and_add("devicetree", NULL, firmware_kobj);
207 if (!of_kset) {
208 mutex_unlock(&of_mutex);
209 pr_err("failed to register existing nodes\n");
210 return;
211 }
212 for_each_of_allnodes(np)
213 __of_attach_node_sysfs(np);
214 mutex_unlock(&of_mutex);
215
216 /* Symlink in /proc as required by userspace ABI */
217 if (of_root)
218 proc_symlink("device-tree", NULL, "/sys/firmware/devicetree/base");
219 }
220
221 static struct property *__of_find_property(const struct device_node *np,
222 const char *name, int *lenp)
223 {
224 struct property *pp;
225
226 if (!np)
227 return NULL;
228
229 for (pp = np->properties; pp; pp = pp->next) {
230 if (of_prop_cmp(pp->name, name) == 0) {
231 if (lenp)
232 *lenp = pp->length;
233 break;
234 }
235 }
236
237 return pp;
238 }
239
240 struct property *of_find_property(const struct device_node *np,
241 const char *name,
242 int *lenp)
243 {
244 struct property *pp;
245 unsigned long flags;
246
247 raw_spin_lock_irqsave(&devtree_lock, flags);
248 pp = __of_find_property(np, name, lenp);
249 raw_spin_unlock_irqrestore(&devtree_lock, flags);
250
251 return pp;
252 }
253 EXPORT_SYMBOL(of_find_property);
254
255 struct device_node *__of_find_all_nodes(struct device_node *prev)
256 {
257 struct device_node *np;
258 if (!prev) {
259 np = of_root;
260 } else if (prev->child) {
261 np = prev->child;
262 } else {
263 /* Walk back up looking for a sibling, or the end of the structure */
264 np = prev;
265 while (np->parent && !np->sibling)
266 np = np->parent;
267 np = np->sibling; /* Might be null at the end of the tree */
268 }
269 return np;
270 }
271
272 /**
273 * of_find_all_nodes - Get next node in global list
274 * @prev: Previous node or NULL to start iteration
275 * of_node_put() will be called on it
276 *
277 * Returns a node pointer with refcount incremented, use
278 * of_node_put() on it when done.
279 */
280 struct device_node *of_find_all_nodes(struct device_node *prev)
281 {
282 struct device_node *np;
283 unsigned long flags;
284
285 raw_spin_lock_irqsave(&devtree_lock, flags);
286 np = __of_find_all_nodes(prev);
287 of_node_get(np);
288 of_node_put(prev);
289 raw_spin_unlock_irqrestore(&devtree_lock, flags);
290 return np;
291 }
292 EXPORT_SYMBOL(of_find_all_nodes);
293
294 /*
295 * Find a property with a given name for a given node
296 * and return the value.
297 */
298 const void *__of_get_property(const struct device_node *np,
299 const char *name, int *lenp)
300 {
301 struct property *pp = __of_find_property(np, name, lenp);
302
303 return pp ? pp->value : NULL;
304 }
305
306 /*
307 * Find a property with a given name for a given node
308 * and return the value.
309 */
310 const void *of_get_property(const struct device_node *np, const char *name,
311 int *lenp)
312 {
313 struct property *pp = of_find_property(np, name, lenp);
314
315 return pp ? pp->value : NULL;
316 }
317 EXPORT_SYMBOL(of_get_property);
318
319 /*
320 * arch_match_cpu_phys_id - Match the given logical CPU and physical id
321 *
322 * @cpu: logical cpu index of a core/thread
323 * @phys_id: physical identifier of a core/thread
324 *
325 * CPU logical to physical index mapping is architecture specific.
326 * However this __weak function provides a default match of physical
327 * id to logical cpu index. phys_id provided here is usually values read
328 * from the device tree which must match the hardware internal registers.
329 *
330 * Returns true if the physical identifier and the logical cpu index
331 * correspond to the same core/thread, false otherwise.
332 */
333 bool __weak arch_match_cpu_phys_id(int cpu, u64 phys_id)
334 {
335 return (u32)phys_id == cpu;
336 }
337
338 /**
339 * Checks if the given "prop_name" property holds the physical id of the
340 * core/thread corresponding to the logical cpu 'cpu'. If 'thread' is not
341 * NULL, local thread number within the core is returned in it.
342 */
343 static bool __of_find_n_match_cpu_property(struct device_node *cpun,
344 const char *prop_name, int cpu, unsigned int *thread)
345 {
346 const __be32 *cell;
347 int ac, prop_len, tid;
348 u64 hwid;
349
350 ac = of_n_addr_cells(cpun);
351 cell = of_get_property(cpun, prop_name, &prop_len);
352 if (!cell || !ac)
353 return false;
354 prop_len /= sizeof(*cell) * ac;
355 for (tid = 0; tid < prop_len; tid++) {
356 hwid = of_read_number(cell, ac);
357 if (arch_match_cpu_phys_id(cpu, hwid)) {
358 if (thread)
359 *thread = tid;
360 return true;
361 }
362 cell += ac;
363 }
364 return false;
365 }
366
367 /*
368 * arch_find_n_match_cpu_physical_id - See if the given device node is
369 * for the cpu corresponding to logical cpu 'cpu'. Return true if so,
370 * else false. If 'thread' is non-NULL, the local thread number within the
371 * core is returned in it.
372 */
373 bool __weak arch_find_n_match_cpu_physical_id(struct device_node *cpun,
374 int cpu, unsigned int *thread)
375 {
376 /* Check for non-standard "ibm,ppc-interrupt-server#s" property
377 * for thread ids on PowerPC. If it doesn't exist fallback to
378 * standard "reg" property.
379 */
380 if (IS_ENABLED(CONFIG_PPC) &&
381 __of_find_n_match_cpu_property(cpun,
382 "ibm,ppc-interrupt-server#s",
383 cpu, thread))
384 return true;
385
386 return __of_find_n_match_cpu_property(cpun, "reg", cpu, thread);
387 }
388
389 /**
390 * of_get_cpu_node - Get device node associated with the given logical CPU
391 *
392 * @cpu: CPU number(logical index) for which device node is required
393 * @thread: if not NULL, local thread number within the physical core is
394 * returned
395 *
396 * The main purpose of this function is to retrieve the device node for the
397 * given logical CPU index. It should be used to initialize the of_node in
398 * cpu device. Once of_node in cpu device is populated, all the further
399 * references can use that instead.
400 *
401 * CPU logical to physical index mapping is architecture specific and is built
402 * before booting secondary cores. This function uses arch_match_cpu_phys_id
403 * which can be overridden by architecture specific implementation.
404 *
405 * Returns a node pointer for the logical cpu with refcount incremented, use
406 * of_node_put() on it when done. Returns NULL if not found.
407 */
408 struct device_node *of_get_cpu_node(int cpu, unsigned int *thread)
409 {
410 struct device_node *cpun;
411
412 for_each_node_by_type(cpun, "cpu") {
413 if (arch_find_n_match_cpu_physical_id(cpun, cpu, thread))
414 return cpun;
415 }
416 return NULL;
417 }
418 EXPORT_SYMBOL(of_get_cpu_node);
419
420 /**
421 * __of_device_is_compatible() - Check if the node matches given constraints
422 * @device: pointer to node
423 * @compat: required compatible string, NULL or "" for any match
424 * @type: required device_type value, NULL or "" for any match
425 * @name: required node name, NULL or "" for any match
426 *
427 * Checks if the given @compat, @type and @name strings match the
428 * properties of the given @device. A constraints can be skipped by
429 * passing NULL or an empty string as the constraint.
430 *
431 * Returns 0 for no match, and a positive integer on match. The return
432 * value is a relative score with larger values indicating better
433 * matches. The score is weighted for the most specific compatible value
434 * to get the highest score. Matching type is next, followed by matching
435 * name. Practically speaking, this results in the following priority
436 * order for matches:
437 *
438 * 1. specific compatible && type && name
439 * 2. specific compatible && type
440 * 3. specific compatible && name
441 * 4. specific compatible
442 * 5. general compatible && type && name
443 * 6. general compatible && type
444 * 7. general compatible && name
445 * 8. general compatible
446 * 9. type && name
447 * 10. type
448 * 11. name
449 */
450 static int __of_device_is_compatible(const struct device_node *device,
451 const char *compat, const char *type, const char *name)
452 {
453 struct property *prop;
454 const char *cp;
455 int index = 0, score = 0;
456
457 /* Compatible match has highest priority */
458 if (compat && compat[0]) {
459 prop = __of_find_property(device, "compatible", NULL);
460 for (cp = of_prop_next_string(prop, NULL); cp;
461 cp = of_prop_next_string(prop, cp), index++) {
462 if (of_compat_cmp(cp, compat, strlen(compat)) == 0) {
463 score = INT_MAX/2 - (index << 2);
464 break;
465 }
466 }
467 if (!score)
468 return 0;
469 }
470
471 /* Matching type is better than matching name */
472 if (type && type[0]) {
473 if (!device->type || of_node_cmp(type, device->type))
474 return 0;
475 score += 2;
476 }
477
478 /* Matching name is a bit better than not */
479 if (name && name[0]) {
480 if (!device->name || of_node_cmp(name, device->name))
481 return 0;
482 score++;
483 }
484
485 return score;
486 }
487
488 /** Checks if the given "compat" string matches one of the strings in
489 * the device's "compatible" property
490 */
491 int of_device_is_compatible(const struct device_node *device,
492 const char *compat)
493 {
494 unsigned long flags;
495 int res;
496
497 raw_spin_lock_irqsave(&devtree_lock, flags);
498 res = __of_device_is_compatible(device, compat, NULL, NULL);
499 raw_spin_unlock_irqrestore(&devtree_lock, flags);
500 return res;
501 }
502 EXPORT_SYMBOL(of_device_is_compatible);
503
504 /** Checks if the device is compatible with any of the entries in
505 * a NULL terminated array of strings. Returns the best match
506 * score or 0.
507 */
508 int of_device_compatible_match(struct device_node *device,
509 const char *const *compat)
510 {
511 unsigned int tmp, score = 0;
512
513 if (!compat)
514 return 0;
515
516 while (*compat) {
517 tmp = of_device_is_compatible(device, *compat);
518 if (tmp > score)
519 score = tmp;
520 compat++;
521 }
522
523 return score;
524 }
525
526 /**
527 * of_machine_is_compatible - Test root of device tree for a given compatible value
528 * @compat: compatible string to look for in root node's compatible property.
529 *
530 * Returns a positive integer if the root node has the given value in its
531 * compatible property.
532 */
533 int of_machine_is_compatible(const char *compat)
534 {
535 struct device_node *root;
536 int rc = 0;
537
538 root = of_find_node_by_path("/");
539 if (root) {
540 rc = of_device_is_compatible(root, compat);
541 of_node_put(root);
542 }
543 return rc;
544 }
545 EXPORT_SYMBOL(of_machine_is_compatible);
546
547 /**
548 * __of_device_is_available - check if a device is available for use
549 *
550 * @device: Node to check for availability, with locks already held
551 *
552 * Returns true if the status property is absent or set to "okay" or "ok",
553 * false otherwise
554 */
555 static bool __of_device_is_available(const struct device_node *device)
556 {
557 const char *status;
558 int statlen;
559
560 if (!device)
561 return false;
562
563 status = __of_get_property(device, "status", &statlen);
564 if (status == NULL)
565 return true;
566
567 if (statlen > 0) {
568 if (!strcmp(status, "okay") || !strcmp(status, "ok"))
569 return true;
570 }
571
572 return false;
573 }
574
575 /**
576 * of_device_is_available - check if a device is available for use
577 *
578 * @device: Node to check for availability
579 *
580 * Returns true if the status property is absent or set to "okay" or "ok",
581 * false otherwise
582 */
583 bool of_device_is_available(const struct device_node *device)
584 {
585 unsigned long flags;
586 bool res;
587
588 raw_spin_lock_irqsave(&devtree_lock, flags);
589 res = __of_device_is_available(device);
590 raw_spin_unlock_irqrestore(&devtree_lock, flags);
591 return res;
592
593 }
594 EXPORT_SYMBOL(of_device_is_available);
595
596 /**
597 * of_device_is_big_endian - check if a device has BE registers
598 *
599 * @device: Node to check for endianness
600 *
601 * Returns true if the device has a "big-endian" property, or if the kernel
602 * was compiled for BE *and* the device has a "native-endian" property.
603 * Returns false otherwise.
604 *
605 * Callers would nominally use ioread32be/iowrite32be if
606 * of_device_is_big_endian() == true, or readl/writel otherwise.
607 */
608 bool of_device_is_big_endian(const struct device_node *device)
609 {
610 if (of_property_read_bool(device, "big-endian"))
611 return true;
612 if (IS_ENABLED(CONFIG_CPU_BIG_ENDIAN) &&
613 of_property_read_bool(device, "native-endian"))
614 return true;
615 return false;
616 }
617 EXPORT_SYMBOL(of_device_is_big_endian);
618
619 /**
620 * of_get_parent - Get a node's parent if any
621 * @node: Node to get parent
622 *
623 * Returns a node pointer with refcount incremented, use
624 * of_node_put() on it when done.
625 */
626 struct device_node *of_get_parent(const struct device_node *node)
627 {
628 struct device_node *np;
629 unsigned long flags;
630
631 if (!node)
632 return NULL;
633
634 raw_spin_lock_irqsave(&devtree_lock, flags);
635 np = of_node_get(node->parent);
636 raw_spin_unlock_irqrestore(&devtree_lock, flags);
637 return np;
638 }
639 EXPORT_SYMBOL(of_get_parent);
640
641 /**
642 * of_get_next_parent - Iterate to a node's parent
643 * @node: Node to get parent of
644 *
645 * This is like of_get_parent() except that it drops the
646 * refcount on the passed node, making it suitable for iterating
647 * through a node's parents.
648 *
649 * Returns a node pointer with refcount incremented, use
650 * of_node_put() on it when done.
651 */
652 struct device_node *of_get_next_parent(struct device_node *node)
653 {
654 struct device_node *parent;
655 unsigned long flags;
656
657 if (!node)
658 return NULL;
659
660 raw_spin_lock_irqsave(&devtree_lock, flags);
661 parent = of_node_get(node->parent);
662 of_node_put(node);
663 raw_spin_unlock_irqrestore(&devtree_lock, flags);
664 return parent;
665 }
666 EXPORT_SYMBOL(of_get_next_parent);
667
668 static struct device_node *__of_get_next_child(const struct device_node *node,
669 struct device_node *prev)
670 {
671 struct device_node *next;
672
673 if (!node)
674 return NULL;
675
676 next = prev ? prev->sibling : node->child;
677 for (; next; next = next->sibling)
678 if (of_node_get(next))
679 break;
680 of_node_put(prev);
681 return next;
682 }
683 #define __for_each_child_of_node(parent, child) \
684 for (child = __of_get_next_child(parent, NULL); child != NULL; \
685 child = __of_get_next_child(parent, child))
686
687 /**
688 * of_get_next_child - Iterate a node childs
689 * @node: parent node
690 * @prev: previous child of the parent node, or NULL to get first
691 *
692 * Returns a node pointer with refcount incremented, use of_node_put() on
693 * it when done. Returns NULL when prev is the last child. Decrements the
694 * refcount of prev.
695 */
696 struct device_node *of_get_next_child(const struct device_node *node,
697 struct device_node *prev)
698 {
699 struct device_node *next;
700 unsigned long flags;
701
702 raw_spin_lock_irqsave(&devtree_lock, flags);
703 next = __of_get_next_child(node, prev);
704 raw_spin_unlock_irqrestore(&devtree_lock, flags);
705 return next;
706 }
707 EXPORT_SYMBOL(of_get_next_child);
708
709 /**
710 * of_get_next_available_child - Find the next available child node
711 * @node: parent node
712 * @prev: previous child of the parent node, or NULL to get first
713 *
714 * This function is like of_get_next_child(), except that it
715 * automatically skips any disabled nodes (i.e. status = "disabled").
716 */
717 struct device_node *of_get_next_available_child(const struct device_node *node,
718 struct device_node *prev)
719 {
720 struct device_node *next;
721 unsigned long flags;
722
723 if (!node)
724 return NULL;
725
726 raw_spin_lock_irqsave(&devtree_lock, flags);
727 next = prev ? prev->sibling : node->child;
728 for (; next; next = next->sibling) {
729 if (!__of_device_is_available(next))
730 continue;
731 if (of_node_get(next))
732 break;
733 }
734 of_node_put(prev);
735 raw_spin_unlock_irqrestore(&devtree_lock, flags);
736 return next;
737 }
738 EXPORT_SYMBOL(of_get_next_available_child);
739
740 /**
741 * of_get_child_by_name - Find the child node by name for a given parent
742 * @node: parent node
743 * @name: child name to look for.
744 *
745 * This function looks for child node for given matching name
746 *
747 * Returns a node pointer if found, with refcount incremented, use
748 * of_node_put() on it when done.
749 * Returns NULL if node is not found.
750 */
751 struct device_node *of_get_child_by_name(const struct device_node *node,
752 const char *name)
753 {
754 struct device_node *child;
755
756 for_each_child_of_node(node, child)
757 if (child->name && (of_node_cmp(child->name, name) == 0))
758 break;
759 return child;
760 }
761 EXPORT_SYMBOL(of_get_child_by_name);
762
763 static struct device_node *__of_find_node_by_path(struct device_node *parent,
764 const char *path)
765 {
766 struct device_node *child;
767 int len;
768
769 len = strcspn(path, "/:");
770 if (!len)
771 return NULL;
772
773 __for_each_child_of_node(parent, child) {
774 const char *name = kbasename(child->full_name);
775 if (strncmp(path, name, len) == 0 && (strlen(name) == len))
776 return child;
777 }
778 return NULL;
779 }
780
781 struct device_node *__of_find_node_by_full_path(struct device_node *node,
782 const char *path)
783 {
784 const char *separator = strchr(path, ':');
785
786 while (node && *path == '/') {
787 struct device_node *tmp = node;
788
789 path++; /* Increment past '/' delimiter */
790 node = __of_find_node_by_path(node, path);
791 of_node_put(tmp);
792 path = strchrnul(path, '/');
793 if (separator && separator < path)
794 break;
795 }
796 return node;
797 }
798
799 /**
800 * of_find_node_opts_by_path - Find a node matching a full OF path
801 * @path: Either the full path to match, or if the path does not
802 * start with '/', the name of a property of the /aliases
803 * node (an alias). In the case of an alias, the node
804 * matching the alias' value will be returned.
805 * @opts: Address of a pointer into which to store the start of
806 * an options string appended to the end of the path with
807 * a ':' separator.
808 *
809 * Valid paths:
810 * /foo/bar Full path
811 * foo Valid alias
812 * foo/bar Valid alias + relative path
813 *
814 * Returns a node pointer with refcount incremented, use
815 * of_node_put() on it when done.
816 */
817 struct device_node *of_find_node_opts_by_path(const char *path, const char **opts)
818 {
819 struct device_node *np = NULL;
820 struct property *pp;
821 unsigned long flags;
822 const char *separator = strchr(path, ':');
823
824 if (opts)
825 *opts = separator ? separator + 1 : NULL;
826
827 if (strcmp(path, "/") == 0)
828 return of_node_get(of_root);
829
830 /* The path could begin with an alias */
831 if (*path != '/') {
832 int len;
833 const char *p = separator;
834
835 if (!p)
836 p = strchrnul(path, '/');
837 len = p - path;
838
839 /* of_aliases must not be NULL */
840 if (!of_aliases)
841 return NULL;
842
843 for_each_property_of_node(of_aliases, pp) {
844 if (strlen(pp->name) == len && !strncmp(pp->name, path, len)) {
845 np = of_find_node_by_path(pp->value);
846 break;
847 }
848 }
849 if (!np)
850 return NULL;
851 path = p;
852 }
853
854 /* Step down the tree matching path components */
855 raw_spin_lock_irqsave(&devtree_lock, flags);
856 if (!np)
857 np = of_node_get(of_root);
858 np = __of_find_node_by_full_path(np, path);
859 raw_spin_unlock_irqrestore(&devtree_lock, flags);
860 return np;
861 }
862 EXPORT_SYMBOL(of_find_node_opts_by_path);
863
864 /**
865 * of_find_node_by_name - Find a node by its "name" property
866 * @from: The node to start searching from or NULL, the node
867 * you pass will not be searched, only the next one
868 * will; typically, you pass what the previous call
869 * returned. of_node_put() will be called on it
870 * @name: The name string to match against
871 *
872 * Returns a node pointer with refcount incremented, use
873 * of_node_put() on it when done.
874 */
875 struct device_node *of_find_node_by_name(struct device_node *from,
876 const char *name)
877 {
878 struct device_node *np;
879 unsigned long flags;
880
881 raw_spin_lock_irqsave(&devtree_lock, flags);
882 for_each_of_allnodes_from(from, np)
883 if (np->name && (of_node_cmp(np->name, name) == 0)
884 && of_node_get(np))
885 break;
886 of_node_put(from);
887 raw_spin_unlock_irqrestore(&devtree_lock, flags);
888 return np;
889 }
890 EXPORT_SYMBOL(of_find_node_by_name);
891
892 /**
893 * of_find_node_by_type - Find a node by its "device_type" property
894 * @from: The node to start searching from, or NULL to start searching
895 * the entire device tree. The node you pass will not be
896 * searched, only the next one will; typically, you pass
897 * what the previous call returned. of_node_put() will be
898 * called on from for you.
899 * @type: The type string to match against
900 *
901 * Returns a node pointer with refcount incremented, use
902 * of_node_put() on it when done.
903 */
904 struct device_node *of_find_node_by_type(struct device_node *from,
905 const char *type)
906 {
907 struct device_node *np;
908 unsigned long flags;
909
910 raw_spin_lock_irqsave(&devtree_lock, flags);
911 for_each_of_allnodes_from(from, np)
912 if (np->type && (of_node_cmp(np->type, type) == 0)
913 && of_node_get(np))
914 break;
915 of_node_put(from);
916 raw_spin_unlock_irqrestore(&devtree_lock, flags);
917 return np;
918 }
919 EXPORT_SYMBOL(of_find_node_by_type);
920
921 /**
922 * of_find_compatible_node - Find a node based on type and one of the
923 * tokens in its "compatible" property
924 * @from: The node to start searching from or NULL, the node
925 * you pass will not be searched, only the next one
926 * will; typically, you pass what the previous call
927 * returned. of_node_put() will be called on it
928 * @type: The type string to match "device_type" or NULL to ignore
929 * @compatible: The string to match to one of the tokens in the device
930 * "compatible" list.
931 *
932 * Returns a node pointer with refcount incremented, use
933 * of_node_put() on it when done.
934 */
935 struct device_node *of_find_compatible_node(struct device_node *from,
936 const char *type, const char *compatible)
937 {
938 struct device_node *np;
939 unsigned long flags;
940
941 raw_spin_lock_irqsave(&devtree_lock, flags);
942 for_each_of_allnodes_from(from, np)
943 if (__of_device_is_compatible(np, compatible, type, NULL) &&
944 of_node_get(np))
945 break;
946 of_node_put(from);
947 raw_spin_unlock_irqrestore(&devtree_lock, flags);
948 return np;
949 }
950 EXPORT_SYMBOL(of_find_compatible_node);
951
952 /**
953 * of_find_node_with_property - Find a node which has a property with
954 * the given name.
955 * @from: The node to start searching from or NULL, the node
956 * you pass will not be searched, only the next one
957 * will; typically, you pass what the previous call
958 * returned. of_node_put() will be called on it
959 * @prop_name: The name of the property to look for.
960 *
961 * Returns a node pointer with refcount incremented, use
962 * of_node_put() on it when done.
963 */
964 struct device_node *of_find_node_with_property(struct device_node *from,
965 const char *prop_name)
966 {
967 struct device_node *np;
968 struct property *pp;
969 unsigned long flags;
970
971 raw_spin_lock_irqsave(&devtree_lock, flags);
972 for_each_of_allnodes_from(from, np) {
973 for (pp = np->properties; pp; pp = pp->next) {
974 if (of_prop_cmp(pp->name, prop_name) == 0) {
975 of_node_get(np);
976 goto out;
977 }
978 }
979 }
980 out:
981 of_node_put(from);
982 raw_spin_unlock_irqrestore(&devtree_lock, flags);
983 return np;
984 }
985 EXPORT_SYMBOL(of_find_node_with_property);
986
987 static
988 const struct of_device_id *__of_match_node(const struct of_device_id *matches,
989 const struct device_node *node)
990 {
991 const struct of_device_id *best_match = NULL;
992 int score, best_score = 0;
993
994 if (!matches)
995 return NULL;
996
997 for (; matches->name[0] || matches->type[0] || matches->compatible[0]; matches++) {
998 score = __of_device_is_compatible(node, matches->compatible,
999 matches->type, matches->name);
1000 if (score > best_score) {
1001 best_match = matches;
1002 best_score = score;
1003 }
1004 }
1005
1006 return best_match;
1007 }
1008
1009 /**
1010 * of_match_node - Tell if a device_node has a matching of_match structure
1011 * @matches: array of of device match structures to search in
1012 * @node: the of device structure to match against
1013 *
1014 * Low level utility function used by device matching.
1015 */
1016 const struct of_device_id *of_match_node(const struct of_device_id *matches,
1017 const struct device_node *node)
1018 {
1019 const struct of_device_id *match;
1020 unsigned long flags;
1021
1022 raw_spin_lock_irqsave(&devtree_lock, flags);
1023 match = __of_match_node(matches, node);
1024 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1025 return match;
1026 }
1027 EXPORT_SYMBOL(of_match_node);
1028
1029 /**
1030 * of_find_matching_node_and_match - Find a node based on an of_device_id
1031 * match table.
1032 * @from: The node to start searching from or NULL, the node
1033 * you pass will not be searched, only the next one
1034 * will; typically, you pass what the previous call
1035 * returned. of_node_put() will be called on it
1036 * @matches: array of of device match structures to search in
1037 * @match Updated to point at the matches entry which matched
1038 *
1039 * Returns a node pointer with refcount incremented, use
1040 * of_node_put() on it when done.
1041 */
1042 struct device_node *of_find_matching_node_and_match(struct device_node *from,
1043 const struct of_device_id *matches,
1044 const struct of_device_id **match)
1045 {
1046 struct device_node *np;
1047 const struct of_device_id *m;
1048 unsigned long flags;
1049
1050 if (match)
1051 *match = NULL;
1052
1053 raw_spin_lock_irqsave(&devtree_lock, flags);
1054 for_each_of_allnodes_from(from, np) {
1055 m = __of_match_node(matches, np);
1056 if (m && of_node_get(np)) {
1057 if (match)
1058 *match = m;
1059 break;
1060 }
1061 }
1062 of_node_put(from);
1063 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1064 return np;
1065 }
1066 EXPORT_SYMBOL(of_find_matching_node_and_match);
1067
1068 /**
1069 * of_modalias_node - Lookup appropriate modalias for a device node
1070 * @node: pointer to a device tree node
1071 * @modalias: Pointer to buffer that modalias value will be copied into
1072 * @len: Length of modalias value
1073 *
1074 * Based on the value of the compatible property, this routine will attempt
1075 * to choose an appropriate modalias value for a particular device tree node.
1076 * It does this by stripping the manufacturer prefix (as delimited by a ',')
1077 * from the first entry in the compatible list property.
1078 *
1079 * This routine returns 0 on success, <0 on failure.
1080 */
1081 int of_modalias_node(struct device_node *node, char *modalias, int len)
1082 {
1083 const char *compatible, *p;
1084 int cplen;
1085
1086 compatible = of_get_property(node, "compatible", &cplen);
1087 if (!compatible || strlen(compatible) > cplen)
1088 return -ENODEV;
1089 p = strchr(compatible, ',');
1090 strlcpy(modalias, p ? p + 1 : compatible, len);
1091 return 0;
1092 }
1093 EXPORT_SYMBOL_GPL(of_modalias_node);
1094
1095 /**
1096 * of_find_node_by_phandle - Find a node given a phandle
1097 * @handle: phandle of the node to find
1098 *
1099 * Returns a node pointer with refcount incremented, use
1100 * of_node_put() on it when done.
1101 */
1102 struct device_node *of_find_node_by_phandle(phandle handle)
1103 {
1104 struct device_node *np;
1105 unsigned long flags;
1106
1107 if (!handle)
1108 return NULL;
1109
1110 raw_spin_lock_irqsave(&devtree_lock, flags);
1111 for_each_of_allnodes(np)
1112 if (np->phandle == handle)
1113 break;
1114 of_node_get(np);
1115 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1116 return np;
1117 }
1118 EXPORT_SYMBOL(of_find_node_by_phandle);
1119
1120 void of_print_phandle_args(const char *msg, const struct of_phandle_args *args)
1121 {
1122 int i;
1123 printk("%s %pOF", msg, args->np);
1124 for (i = 0; i < args->args_count; i++) {
1125 const char delim = i ? ',' : ':';
1126
1127 pr_cont("%c%08x", delim, args->args[i]);
1128 }
1129 pr_cont("\n");
1130 }
1131
1132 int of_phandle_iterator_init(struct of_phandle_iterator *it,
1133 const struct device_node *np,
1134 const char *list_name,
1135 const char *cells_name,
1136 int cell_count)
1137 {
1138 const __be32 *list;
1139 int size;
1140
1141 memset(it, 0, sizeof(*it));
1142
1143 list = of_get_property(np, list_name, &size);
1144 if (!list)
1145 return -ENOENT;
1146
1147 it->cells_name = cells_name;
1148 it->cell_count = cell_count;
1149 it->parent = np;
1150 it->list_end = list + size / sizeof(*list);
1151 it->phandle_end = list;
1152 it->cur = list;
1153
1154 return 0;
1155 }
1156 EXPORT_SYMBOL_GPL(of_phandle_iterator_init);
1157
1158 int of_phandle_iterator_next(struct of_phandle_iterator *it)
1159 {
1160 uint32_t count = 0;
1161
1162 if (it->node) {
1163 of_node_put(it->node);
1164 it->node = NULL;
1165 }
1166
1167 if (!it->cur || it->phandle_end >= it->list_end)
1168 return -ENOENT;
1169
1170 it->cur = it->phandle_end;
1171
1172 /* If phandle is 0, then it is an empty entry with no arguments. */
1173 it->phandle = be32_to_cpup(it->cur++);
1174
1175 if (it->phandle) {
1176
1177 /*
1178 * Find the provider node and parse the #*-cells property to
1179 * determine the argument length.
1180 */
1181 it->node = of_find_node_by_phandle(it->phandle);
1182
1183 if (it->cells_name) {
1184 if (!it->node) {
1185 pr_err("%pOF: could not find phandle\n",
1186 it->parent);
1187 goto err;
1188 }
1189
1190 if (of_property_read_u32(it->node, it->cells_name,
1191 &count)) {
1192 pr_err("%pOF: could not get %s for %pOF\n",
1193 it->parent,
1194 it->cells_name,
1195 it->node);
1196 goto err;
1197 }
1198 } else {
1199 count = it->cell_count;
1200 }
1201
1202 /*
1203 * Make sure that the arguments actually fit in the remaining
1204 * property data length
1205 */
1206 if (it->cur + count > it->list_end) {
1207 pr_err("%pOF: arguments longer than property\n",
1208 it->parent);
1209 goto err;
1210 }
1211 }
1212
1213 it->phandle_end = it->cur + count;
1214 it->cur_count = count;
1215
1216 return 0;
1217
1218 err:
1219 if (it->node) {
1220 of_node_put(it->node);
1221 it->node = NULL;
1222 }
1223
1224 return -EINVAL;
1225 }
1226 EXPORT_SYMBOL_GPL(of_phandle_iterator_next);
1227
1228 int of_phandle_iterator_args(struct of_phandle_iterator *it,
1229 uint32_t *args,
1230 int size)
1231 {
1232 int i, count;
1233
1234 count = it->cur_count;
1235
1236 if (WARN_ON(size < count))
1237 count = size;
1238
1239 for (i = 0; i < count; i++)
1240 args[i] = be32_to_cpup(it->cur++);
1241
1242 return count;
1243 }
1244
1245 static int __of_parse_phandle_with_args(const struct device_node *np,
1246 const char *list_name,
1247 const char *cells_name,
1248 int cell_count, int index,
1249 struct of_phandle_args *out_args)
1250 {
1251 struct of_phandle_iterator it;
1252 int rc, cur_index = 0;
1253
1254 /* Loop over the phandles until all the requested entry is found */
1255 of_for_each_phandle(&it, rc, np, list_name, cells_name, cell_count) {
1256 /*
1257 * All of the error cases bail out of the loop, so at
1258 * this point, the parsing is successful. If the requested
1259 * index matches, then fill the out_args structure and return,
1260 * or return -ENOENT for an empty entry.
1261 */
1262 rc = -ENOENT;
1263 if (cur_index == index) {
1264 if (!it.phandle)
1265 goto err;
1266
1267 if (out_args) {
1268 int c;
1269
1270 c = of_phandle_iterator_args(&it,
1271 out_args->args,
1272 MAX_PHANDLE_ARGS);
1273 out_args->np = it.node;
1274 out_args->args_count = c;
1275 } else {
1276 of_node_put(it.node);
1277 }
1278
1279 /* Found it! return success */
1280 return 0;
1281 }
1282
1283 cur_index++;
1284 }
1285
1286 /*
1287 * Unlock node before returning result; will be one of:
1288 * -ENOENT : index is for empty phandle
1289 * -EINVAL : parsing error on data
1290 */
1291
1292 err:
1293 of_node_put(it.node);
1294 return rc;
1295 }
1296
1297 /**
1298 * of_parse_phandle - Resolve a phandle property to a device_node pointer
1299 * @np: Pointer to device node holding phandle property
1300 * @phandle_name: Name of property holding a phandle value
1301 * @index: For properties holding a table of phandles, this is the index into
1302 * the table
1303 *
1304 * Returns the device_node pointer with refcount incremented. Use
1305 * of_node_put() on it when done.
1306 */
1307 struct device_node *of_parse_phandle(const struct device_node *np,
1308 const char *phandle_name, int index)
1309 {
1310 struct of_phandle_args args;
1311
1312 if (index < 0)
1313 return NULL;
1314
1315 if (__of_parse_phandle_with_args(np, phandle_name, NULL, 0,
1316 index, &args))
1317 return NULL;
1318
1319 return args.np;
1320 }
1321 EXPORT_SYMBOL(of_parse_phandle);
1322
1323 /**
1324 * of_parse_phandle_with_args() - Find a node pointed by phandle in a list
1325 * @np: pointer to a device tree node containing a list
1326 * @list_name: property name that contains a list
1327 * @cells_name: property name that specifies phandles' arguments count
1328 * @index: index of a phandle to parse out
1329 * @out_args: optional pointer to output arguments structure (will be filled)
1330 *
1331 * This function is useful to parse lists of phandles and their arguments.
1332 * Returns 0 on success and fills out_args, on error returns appropriate
1333 * errno value.
1334 *
1335 * Caller is responsible to call of_node_put() on the returned out_args->np
1336 * pointer.
1337 *
1338 * Example:
1339 *
1340 * phandle1: node1 {
1341 * #list-cells = <2>;
1342 * }
1343 *
1344 * phandle2: node2 {
1345 * #list-cells = <1>;
1346 * }
1347 *
1348 * node3 {
1349 * list = <&phandle1 1 2 &phandle2 3>;
1350 * }
1351 *
1352 * To get a device_node of the `node2' node you may call this:
1353 * of_parse_phandle_with_args(node3, "list", "#list-cells", 1, &args);
1354 */
1355 int of_parse_phandle_with_args(const struct device_node *np, const char *list_name,
1356 const char *cells_name, int index,
1357 struct of_phandle_args *out_args)
1358 {
1359 if (index < 0)
1360 return -EINVAL;
1361 return __of_parse_phandle_with_args(np, list_name, cells_name, 0,
1362 index, out_args);
1363 }
1364 EXPORT_SYMBOL(of_parse_phandle_with_args);
1365
1366 /**
1367 * of_parse_phandle_with_fixed_args() - Find a node pointed by phandle in a list
1368 * @np: pointer to a device tree node containing a list
1369 * @list_name: property name that contains a list
1370 * @cell_count: number of argument cells following the phandle
1371 * @index: index of a phandle to parse out
1372 * @out_args: optional pointer to output arguments structure (will be filled)
1373 *
1374 * This function is useful to parse lists of phandles and their arguments.
1375 * Returns 0 on success and fills out_args, on error returns appropriate
1376 * errno value.
1377 *
1378 * Caller is responsible to call of_node_put() on the returned out_args->np
1379 * pointer.
1380 *
1381 * Example:
1382 *
1383 * phandle1: node1 {
1384 * }
1385 *
1386 * phandle2: node2 {
1387 * }
1388 *
1389 * node3 {
1390 * list = <&phandle1 0 2 &phandle2 2 3>;
1391 * }
1392 *
1393 * To get a device_node of the `node2' node you may call this:
1394 * of_parse_phandle_with_fixed_args(node3, "list", 2, 1, &args);
1395 */
1396 int of_parse_phandle_with_fixed_args(const struct device_node *np,
1397 const char *list_name, int cell_count,
1398 int index, struct of_phandle_args *out_args)
1399 {
1400 if (index < 0)
1401 return -EINVAL;
1402 return __of_parse_phandle_with_args(np, list_name, NULL, cell_count,
1403 index, out_args);
1404 }
1405 EXPORT_SYMBOL(of_parse_phandle_with_fixed_args);
1406
1407 /**
1408 * of_count_phandle_with_args() - Find the number of phandles references in a property
1409 * @np: pointer to a device tree node containing a list
1410 * @list_name: property name that contains a list
1411 * @cells_name: property name that specifies phandles' arguments count
1412 *
1413 * Returns the number of phandle + argument tuples within a property. It
1414 * is a typical pattern to encode a list of phandle and variable
1415 * arguments into a single property. The number of arguments is encoded
1416 * by a property in the phandle-target node. For example, a gpios
1417 * property would contain a list of GPIO specifies consisting of a
1418 * phandle and 1 or more arguments. The number of arguments are
1419 * determined by the #gpio-cells property in the node pointed to by the
1420 * phandle.
1421 */
1422 int of_count_phandle_with_args(const struct device_node *np, const char *list_name,
1423 const char *cells_name)
1424 {
1425 struct of_phandle_iterator it;
1426 int rc, cur_index = 0;
1427
1428 rc = of_phandle_iterator_init(&it, np, list_name, cells_name, 0);
1429 if (rc)
1430 return rc;
1431
1432 while ((rc = of_phandle_iterator_next(&it)) == 0)
1433 cur_index += 1;
1434
1435 if (rc != -ENOENT)
1436 return rc;
1437
1438 return cur_index;
1439 }
1440 EXPORT_SYMBOL(of_count_phandle_with_args);
1441
1442 /**
1443 * __of_add_property - Add a property to a node without lock operations
1444 */
1445 int __of_add_property(struct device_node *np, struct property *prop)
1446 {
1447 struct property **next;
1448
1449 prop->next = NULL;
1450 next = &np->properties;
1451 while (*next) {
1452 if (strcmp(prop->name, (*next)->name) == 0)
1453 /* duplicate ! don't insert it */
1454 return -EEXIST;
1455
1456 next = &(*next)->next;
1457 }
1458 *next = prop;
1459
1460 return 0;
1461 }
1462
1463 /**
1464 * of_add_property - Add a property to a node
1465 */
1466 int of_add_property(struct device_node *np, struct property *prop)
1467 {
1468 unsigned long flags;
1469 int rc;
1470
1471 mutex_lock(&of_mutex);
1472
1473 raw_spin_lock_irqsave(&devtree_lock, flags);
1474 rc = __of_add_property(np, prop);
1475 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1476
1477 if (!rc)
1478 __of_add_property_sysfs(np, prop);
1479
1480 mutex_unlock(&of_mutex);
1481
1482 if (!rc)
1483 of_property_notify(OF_RECONFIG_ADD_PROPERTY, np, prop, NULL);
1484
1485 return rc;
1486 }
1487
1488 int __of_remove_property(struct device_node *np, struct property *prop)
1489 {
1490 struct property **next;
1491
1492 for (next = &np->properties; *next; next = &(*next)->next) {
1493 if (*next == prop)
1494 break;
1495 }
1496 if (*next == NULL)
1497 return -ENODEV;
1498
1499 /* found the node */
1500 *next = prop->next;
1501 prop->next = np->deadprops;
1502 np->deadprops = prop;
1503
1504 return 0;
1505 }
1506
1507 void __of_sysfs_remove_bin_file(struct device_node *np, struct property *prop)
1508 {
1509 sysfs_remove_bin_file(&np->kobj, &prop->attr);
1510 kfree(prop->attr.attr.name);
1511 }
1512
1513 void __of_remove_property_sysfs(struct device_node *np, struct property *prop)
1514 {
1515 if (!IS_ENABLED(CONFIG_SYSFS))
1516 return;
1517
1518 /* at early boot, bail here and defer setup to of_init() */
1519 if (of_kset && of_node_is_attached(np))
1520 __of_sysfs_remove_bin_file(np, prop);
1521 }
1522
1523 /**
1524 * of_remove_property - Remove a property from a node.
1525 *
1526 * Note that we don't actually remove it, since we have given out
1527 * who-knows-how-many pointers to the data using get-property.
1528 * Instead we just move the property to the "dead properties"
1529 * list, so it won't be found any more.
1530 */
1531 int of_remove_property(struct device_node *np, struct property *prop)
1532 {
1533 unsigned long flags;
1534 int rc;
1535
1536 if (!prop)
1537 return -ENODEV;
1538
1539 mutex_lock(&of_mutex);
1540
1541 raw_spin_lock_irqsave(&devtree_lock, flags);
1542 rc = __of_remove_property(np, prop);
1543 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1544
1545 if (!rc)
1546 __of_remove_property_sysfs(np, prop);
1547
1548 mutex_unlock(&of_mutex);
1549
1550 if (!rc)
1551 of_property_notify(OF_RECONFIG_REMOVE_PROPERTY, np, prop, NULL);
1552
1553 return rc;
1554 }
1555
1556 int __of_update_property(struct device_node *np, struct property *newprop,
1557 struct property **oldpropp)
1558 {
1559 struct property **next, *oldprop;
1560
1561 for (next = &np->properties; *next; next = &(*next)->next) {
1562 if (of_prop_cmp((*next)->name, newprop->name) == 0)
1563 break;
1564 }
1565 *oldpropp = oldprop = *next;
1566
1567 if (oldprop) {
1568 /* replace the node */
1569 newprop->next = oldprop->next;
1570 *next = newprop;
1571 oldprop->next = np->deadprops;
1572 np->deadprops = oldprop;
1573 } else {
1574 /* new node */
1575 newprop->next = NULL;
1576 *next = newprop;
1577 }
1578
1579 return 0;
1580 }
1581
1582 void __of_update_property_sysfs(struct device_node *np, struct property *newprop,
1583 struct property *oldprop)
1584 {
1585 if (!IS_ENABLED(CONFIG_SYSFS))
1586 return;
1587
1588 /* At early boot, bail out and defer setup to of_init() */
1589 if (!of_kset)
1590 return;
1591
1592 if (oldprop)
1593 __of_sysfs_remove_bin_file(np, oldprop);
1594 __of_add_property_sysfs(np, newprop);
1595 }
1596
1597 /*
1598 * of_update_property - Update a property in a node, if the property does
1599 * not exist, add it.
1600 *
1601 * Note that we don't actually remove it, since we have given out
1602 * who-knows-how-many pointers to the data using get-property.
1603 * Instead we just move the property to the "dead properties" list,
1604 * and add the new property to the property list
1605 */
1606 int of_update_property(struct device_node *np, struct property *newprop)
1607 {
1608 struct property *oldprop;
1609 unsigned long flags;
1610 int rc;
1611
1612 if (!newprop->name)
1613 return -EINVAL;
1614
1615 mutex_lock(&of_mutex);
1616
1617 raw_spin_lock_irqsave(&devtree_lock, flags);
1618 rc = __of_update_property(np, newprop, &oldprop);
1619 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1620
1621 if (!rc)
1622 __of_update_property_sysfs(np, newprop, oldprop);
1623
1624 mutex_unlock(&of_mutex);
1625
1626 if (!rc)
1627 of_property_notify(OF_RECONFIG_UPDATE_PROPERTY, np, newprop, oldprop);
1628
1629 return rc;
1630 }
1631
1632 static void of_alias_add(struct alias_prop *ap, struct device_node *np,
1633 int id, const char *stem, int stem_len)
1634 {
1635 ap->np = np;
1636 ap->id = id;
1637 strncpy(ap->stem, stem, stem_len);
1638 ap->stem[stem_len] = 0;
1639 list_add_tail(&ap->link, &aliases_lookup);
1640 pr_debug("adding DT alias:%s: stem=%s id=%i node=%pOF\n",
1641 ap->alias, ap->stem, ap->id, np);
1642 }
1643
1644 /**
1645 * of_alias_scan - Scan all properties of the 'aliases' node
1646 *
1647 * The function scans all the properties of the 'aliases' node and populates
1648 * the global lookup table with the properties. It returns the
1649 * number of alias properties found, or an error code in case of failure.
1650 *
1651 * @dt_alloc: An allocator that provides a virtual address to memory
1652 * for storing the resulting tree
1653 */
1654 void of_alias_scan(void * (*dt_alloc)(u64 size, u64 align))
1655 {
1656 struct property *pp;
1657
1658 of_aliases = of_find_node_by_path("/aliases");
1659 of_chosen = of_find_node_by_path("/chosen");
1660 if (of_chosen == NULL)
1661 of_chosen = of_find_node_by_path("/chosen@0");
1662
1663 if (of_chosen) {
1664 /* linux,stdout-path and /aliases/stdout are for legacy compatibility */
1665 const char *name = NULL;
1666
1667 if (of_property_read_string(of_chosen, "stdout-path", &name))
1668 of_property_read_string(of_chosen, "linux,stdout-path",
1669 &name);
1670 if (IS_ENABLED(CONFIG_PPC) && !name)
1671 of_property_read_string(of_aliases, "stdout", &name);
1672 if (name)
1673 of_stdout = of_find_node_opts_by_path(name, &of_stdout_options);
1674 }
1675
1676 if (!of_aliases)
1677 return;
1678
1679 for_each_property_of_node(of_aliases, pp) {
1680 const char *start = pp->name;
1681 const char *end = start + strlen(start);
1682 struct device_node *np;
1683 struct alias_prop *ap;
1684 int id, len;
1685
1686 /* Skip those we do not want to proceed */
1687 if (!strcmp(pp->name, "name") ||
1688 !strcmp(pp->name, "phandle") ||
1689 !strcmp(pp->name, "linux,phandle"))
1690 continue;
1691
1692 np = of_find_node_by_path(pp->value);
1693 if (!np)
1694 continue;
1695
1696 /* walk the alias backwards to extract the id and work out
1697 * the 'stem' string */
1698 while (isdigit(*(end-1)) && end > start)
1699 end--;
1700 len = end - start;
1701
1702 if (kstrtoint(end, 10, &id) < 0)
1703 continue;
1704
1705 /* Allocate an alias_prop with enough space for the stem */
1706 ap = dt_alloc(sizeof(*ap) + len + 1, __alignof__(*ap));
1707 if (!ap)
1708 continue;
1709 memset(ap, 0, sizeof(*ap) + len + 1);
1710 ap->alias = start;
1711 of_alias_add(ap, np, id, start, len);
1712 }
1713 }
1714
1715 /**
1716 * of_alias_get_id - Get alias id for the given device_node
1717 * @np: Pointer to the given device_node
1718 * @stem: Alias stem of the given device_node
1719 *
1720 * The function travels the lookup table to get the alias id for the given
1721 * device_node and alias stem. It returns the alias id if found.
1722 */
1723 int of_alias_get_id(struct device_node *np, const char *stem)
1724 {
1725 struct alias_prop *app;
1726 int id = -ENODEV;
1727
1728 mutex_lock(&of_mutex);
1729 list_for_each_entry(app, &aliases_lookup, link) {
1730 if (strcmp(app->stem, stem) != 0)
1731 continue;
1732
1733 if (np == app->np) {
1734 id = app->id;
1735 break;
1736 }
1737 }
1738 mutex_unlock(&of_mutex);
1739
1740 return id;
1741 }
1742 EXPORT_SYMBOL_GPL(of_alias_get_id);
1743
1744 /**
1745 * of_alias_get_highest_id - Get highest alias id for the given stem
1746 * @stem: Alias stem to be examined
1747 *
1748 * The function travels the lookup table to get the highest alias id for the
1749 * given alias stem. It returns the alias id if found.
1750 */
1751 int of_alias_get_highest_id(const char *stem)
1752 {
1753 struct alias_prop *app;
1754 int id = -ENODEV;
1755
1756 mutex_lock(&of_mutex);
1757 list_for_each_entry(app, &aliases_lookup, link) {
1758 if (strcmp(app->stem, stem) != 0)
1759 continue;
1760
1761 if (app->id > id)
1762 id = app->id;
1763 }
1764 mutex_unlock(&of_mutex);
1765
1766 return id;
1767 }
1768 EXPORT_SYMBOL_GPL(of_alias_get_highest_id);
1769
1770 /**
1771 * of_console_check() - Test and setup console for DT setup
1772 * @dn - Pointer to device node
1773 * @name - Name to use for preferred console without index. ex. "ttyS"
1774 * @index - Index to use for preferred console.
1775 *
1776 * Check if the given device node matches the stdout-path property in the
1777 * /chosen node. If it does then register it as the preferred console and return
1778 * TRUE. Otherwise return FALSE.
1779 */
1780 bool of_console_check(struct device_node *dn, char *name, int index)
1781 {
1782 if (!dn || dn != of_stdout || console_set_on_cmdline)
1783 return false;
1784
1785 /*
1786 * XXX: cast `options' to char pointer to suppress complication
1787 * warnings: printk, UART and console drivers expect char pointer.
1788 */
1789 return !add_preferred_console(name, index, (char *)of_stdout_options);
1790 }
1791 EXPORT_SYMBOL_GPL(of_console_check);
1792
1793 /**
1794 * of_find_next_cache_node - Find a node's subsidiary cache
1795 * @np: node of type "cpu" or "cache"
1796 *
1797 * Returns a node pointer with refcount incremented, use
1798 * of_node_put() on it when done. Caller should hold a reference
1799 * to np.
1800 */
1801 struct device_node *of_find_next_cache_node(const struct device_node *np)
1802 {
1803 struct device_node *child, *cache_node;
1804
1805 cache_node = of_parse_phandle(np, "l2-cache", 0);
1806 if (!cache_node)
1807 cache_node = of_parse_phandle(np, "next-level-cache", 0);
1808
1809 if (cache_node)
1810 return cache_node;
1811
1812 /* OF on pmac has nodes instead of properties named "l2-cache"
1813 * beneath CPU nodes.
1814 */
1815 if (!strcmp(np->type, "cpu"))
1816 for_each_child_of_node(np, child)
1817 if (!strcmp(child->type, "cache"))
1818 return child;
1819
1820 return NULL;
1821 }
1822
1823 /**
1824 * of_find_last_cache_level - Find the level at which the last cache is
1825 * present for the given logical cpu
1826 *
1827 * @cpu: cpu number(logical index) for which the last cache level is needed
1828 *
1829 * Returns the the level at which the last cache is present. It is exactly
1830 * same as the total number of cache levels for the given logical cpu.
1831 */
1832 int of_find_last_cache_level(unsigned int cpu)
1833 {
1834 u32 cache_level = 0;
1835 struct device_node *prev = NULL, *np = of_cpu_device_node_get(cpu);
1836
1837 while (np) {
1838 prev = np;
1839 of_node_put(np);
1840 np = of_find_next_cache_node(np);
1841 }
1842
1843 of_property_read_u32(prev, "cache-level", &cache_level);
1844
1845 return cache_level;
1846 }