Merge 4.14.23 into android-4.14
[GitHub/LineageOS/android_kernel_motorola_exynos9610.git] / drivers / nvme / host / core.c
1 /*
2 * NVM Express device driver
3 * Copyright (c) 2011-2014, Intel Corporation.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 */
14
15 #include <linux/blkdev.h>
16 #include <linux/blk-mq.h>
17 #include <linux/delay.h>
18 #include <linux/errno.h>
19 #include <linux/hdreg.h>
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/list_sort.h>
23 #include <linux/slab.h>
24 #include <linux/types.h>
25 #include <linux/pr.h>
26 #include <linux/ptrace.h>
27 #include <linux/nvme_ioctl.h>
28 #include <linux/t10-pi.h>
29 #include <linux/pm_qos.h>
30 #include <asm/unaligned.h>
31
32 #include "nvme.h"
33 #include "fabrics.h"
34
35 #define NVME_MINORS (1U << MINORBITS)
36
37 unsigned char admin_timeout = 60;
38 module_param(admin_timeout, byte, 0644);
39 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
40 EXPORT_SYMBOL_GPL(admin_timeout);
41
42 unsigned char nvme_io_timeout = 30;
43 module_param_named(io_timeout, nvme_io_timeout, byte, 0644);
44 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
45 EXPORT_SYMBOL_GPL(nvme_io_timeout);
46
47 static unsigned char shutdown_timeout = 5;
48 module_param(shutdown_timeout, byte, 0644);
49 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
50
51 static u8 nvme_max_retries = 5;
52 module_param_named(max_retries, nvme_max_retries, byte, 0644);
53 MODULE_PARM_DESC(max_retries, "max number of retries a command may have");
54
55 static int nvme_char_major;
56 module_param(nvme_char_major, int, 0);
57
58 static unsigned long default_ps_max_latency_us = 100000;
59 module_param(default_ps_max_latency_us, ulong, 0644);
60 MODULE_PARM_DESC(default_ps_max_latency_us,
61 "max power saving latency for new devices; use PM QOS to change per device");
62
63 static bool force_apst;
64 module_param(force_apst, bool, 0644);
65 MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off");
66
67 static bool streams;
68 module_param(streams, bool, 0644);
69 MODULE_PARM_DESC(streams, "turn on support for Streams write directives");
70
71 struct workqueue_struct *nvme_wq;
72 EXPORT_SYMBOL_GPL(nvme_wq);
73
74 static LIST_HEAD(nvme_ctrl_list);
75 static DEFINE_SPINLOCK(dev_list_lock);
76
77 static struct class *nvme_class;
78
79 static __le32 nvme_get_log_dw10(u8 lid, size_t size)
80 {
81 return cpu_to_le32((((size / 4) - 1) << 16) | lid);
82 }
83
84 int nvme_reset_ctrl(struct nvme_ctrl *ctrl)
85 {
86 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
87 return -EBUSY;
88 if (!queue_work(nvme_wq, &ctrl->reset_work))
89 return -EBUSY;
90 return 0;
91 }
92 EXPORT_SYMBOL_GPL(nvme_reset_ctrl);
93
94 static int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl)
95 {
96 int ret;
97
98 ret = nvme_reset_ctrl(ctrl);
99 if (!ret)
100 flush_work(&ctrl->reset_work);
101 return ret;
102 }
103
104 static blk_status_t nvme_error_status(struct request *req)
105 {
106 switch (nvme_req(req)->status & 0x7ff) {
107 case NVME_SC_SUCCESS:
108 return BLK_STS_OK;
109 case NVME_SC_CAP_EXCEEDED:
110 return BLK_STS_NOSPC;
111 case NVME_SC_ONCS_NOT_SUPPORTED:
112 return BLK_STS_NOTSUPP;
113 case NVME_SC_WRITE_FAULT:
114 case NVME_SC_READ_ERROR:
115 case NVME_SC_UNWRITTEN_BLOCK:
116 case NVME_SC_ACCESS_DENIED:
117 case NVME_SC_READ_ONLY:
118 return BLK_STS_MEDIUM;
119 case NVME_SC_GUARD_CHECK:
120 case NVME_SC_APPTAG_CHECK:
121 case NVME_SC_REFTAG_CHECK:
122 case NVME_SC_INVALID_PI:
123 return BLK_STS_PROTECTION;
124 case NVME_SC_RESERVATION_CONFLICT:
125 return BLK_STS_NEXUS;
126 default:
127 return BLK_STS_IOERR;
128 }
129 }
130
131 static inline bool nvme_req_needs_retry(struct request *req)
132 {
133 if (blk_noretry_request(req))
134 return false;
135 if (nvme_req(req)->status & NVME_SC_DNR)
136 return false;
137 if (nvme_req(req)->retries >= nvme_max_retries)
138 return false;
139 return true;
140 }
141
142 void nvme_complete_rq(struct request *req)
143 {
144 if (unlikely(nvme_req(req)->status && nvme_req_needs_retry(req))) {
145 nvme_req(req)->retries++;
146 blk_mq_requeue_request(req, true);
147 return;
148 }
149
150 blk_mq_end_request(req, nvme_error_status(req));
151 }
152 EXPORT_SYMBOL_GPL(nvme_complete_rq);
153
154 void nvme_cancel_request(struct request *req, void *data, bool reserved)
155 {
156 int status;
157
158 if (!blk_mq_request_started(req))
159 return;
160
161 dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device,
162 "Cancelling I/O %d", req->tag);
163
164 status = NVME_SC_ABORT_REQ;
165 if (blk_queue_dying(req->q))
166 status |= NVME_SC_DNR;
167 nvme_req(req)->status = status;
168 blk_mq_complete_request(req);
169
170 }
171 EXPORT_SYMBOL_GPL(nvme_cancel_request);
172
173 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl,
174 enum nvme_ctrl_state new_state)
175 {
176 enum nvme_ctrl_state old_state;
177 unsigned long flags;
178 bool changed = false;
179
180 spin_lock_irqsave(&ctrl->lock, flags);
181
182 old_state = ctrl->state;
183 switch (new_state) {
184 case NVME_CTRL_LIVE:
185 switch (old_state) {
186 case NVME_CTRL_NEW:
187 case NVME_CTRL_RESETTING:
188 case NVME_CTRL_RECONNECTING:
189 changed = true;
190 /* FALLTHRU */
191 default:
192 break;
193 }
194 break;
195 case NVME_CTRL_RESETTING:
196 switch (old_state) {
197 case NVME_CTRL_NEW:
198 case NVME_CTRL_LIVE:
199 changed = true;
200 /* FALLTHRU */
201 default:
202 break;
203 }
204 break;
205 case NVME_CTRL_RECONNECTING:
206 switch (old_state) {
207 case NVME_CTRL_LIVE:
208 changed = true;
209 /* FALLTHRU */
210 default:
211 break;
212 }
213 break;
214 case NVME_CTRL_DELETING:
215 switch (old_state) {
216 case NVME_CTRL_LIVE:
217 case NVME_CTRL_RESETTING:
218 case NVME_CTRL_RECONNECTING:
219 changed = true;
220 /* FALLTHRU */
221 default:
222 break;
223 }
224 break;
225 case NVME_CTRL_DEAD:
226 switch (old_state) {
227 case NVME_CTRL_DELETING:
228 changed = true;
229 /* FALLTHRU */
230 default:
231 break;
232 }
233 break;
234 default:
235 break;
236 }
237
238 if (changed)
239 ctrl->state = new_state;
240
241 spin_unlock_irqrestore(&ctrl->lock, flags);
242
243 return changed;
244 }
245 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state);
246
247 static void nvme_free_ns(struct kref *kref)
248 {
249 struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);
250
251 if (ns->ndev)
252 nvme_nvm_unregister(ns);
253
254 if (ns->disk) {
255 spin_lock(&dev_list_lock);
256 ns->disk->private_data = NULL;
257 spin_unlock(&dev_list_lock);
258 }
259
260 put_disk(ns->disk);
261 ida_simple_remove(&ns->ctrl->ns_ida, ns->instance);
262 nvme_put_ctrl(ns->ctrl);
263 kfree(ns);
264 }
265
266 static void nvme_put_ns(struct nvme_ns *ns)
267 {
268 kref_put(&ns->kref, nvme_free_ns);
269 }
270
271 static struct nvme_ns *nvme_get_ns_from_disk(struct gendisk *disk)
272 {
273 struct nvme_ns *ns;
274
275 spin_lock(&dev_list_lock);
276 ns = disk->private_data;
277 if (ns) {
278 if (!kref_get_unless_zero(&ns->kref))
279 goto fail;
280 if (!try_module_get(ns->ctrl->ops->module))
281 goto fail_put_ns;
282 }
283 spin_unlock(&dev_list_lock);
284
285 return ns;
286
287 fail_put_ns:
288 kref_put(&ns->kref, nvme_free_ns);
289 fail:
290 spin_unlock(&dev_list_lock);
291 return NULL;
292 }
293
294 struct request *nvme_alloc_request(struct request_queue *q,
295 struct nvme_command *cmd, unsigned int flags, int qid)
296 {
297 unsigned op = nvme_is_write(cmd) ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN;
298 struct request *req;
299
300 if (qid == NVME_QID_ANY) {
301 req = blk_mq_alloc_request(q, op, flags);
302 } else {
303 req = blk_mq_alloc_request_hctx(q, op, flags,
304 qid ? qid - 1 : 0);
305 }
306 if (IS_ERR(req))
307 return req;
308
309 req->cmd_flags |= REQ_FAILFAST_DRIVER;
310 nvme_req(req)->cmd = cmd;
311
312 return req;
313 }
314 EXPORT_SYMBOL_GPL(nvme_alloc_request);
315
316 static int nvme_toggle_streams(struct nvme_ctrl *ctrl, bool enable)
317 {
318 struct nvme_command c;
319
320 memset(&c, 0, sizeof(c));
321
322 c.directive.opcode = nvme_admin_directive_send;
323 c.directive.nsid = cpu_to_le32(NVME_NSID_ALL);
324 c.directive.doper = NVME_DIR_SND_ID_OP_ENABLE;
325 c.directive.dtype = NVME_DIR_IDENTIFY;
326 c.directive.tdtype = NVME_DIR_STREAMS;
327 c.directive.endir = enable ? NVME_DIR_ENDIR : 0;
328
329 return nvme_submit_sync_cmd(ctrl->admin_q, &c, NULL, 0);
330 }
331
332 static int nvme_disable_streams(struct nvme_ctrl *ctrl)
333 {
334 return nvme_toggle_streams(ctrl, false);
335 }
336
337 static int nvme_enable_streams(struct nvme_ctrl *ctrl)
338 {
339 return nvme_toggle_streams(ctrl, true);
340 }
341
342 static int nvme_get_stream_params(struct nvme_ctrl *ctrl,
343 struct streams_directive_params *s, u32 nsid)
344 {
345 struct nvme_command c;
346
347 memset(&c, 0, sizeof(c));
348 memset(s, 0, sizeof(*s));
349
350 c.directive.opcode = nvme_admin_directive_recv;
351 c.directive.nsid = cpu_to_le32(nsid);
352 c.directive.numd = cpu_to_le32((sizeof(*s) >> 2) - 1);
353 c.directive.doper = NVME_DIR_RCV_ST_OP_PARAM;
354 c.directive.dtype = NVME_DIR_STREAMS;
355
356 return nvme_submit_sync_cmd(ctrl->admin_q, &c, s, sizeof(*s));
357 }
358
359 static int nvme_configure_directives(struct nvme_ctrl *ctrl)
360 {
361 struct streams_directive_params s;
362 int ret;
363
364 if (!(ctrl->oacs & NVME_CTRL_OACS_DIRECTIVES))
365 return 0;
366 if (!streams)
367 return 0;
368
369 ret = nvme_enable_streams(ctrl);
370 if (ret)
371 return ret;
372
373 ret = nvme_get_stream_params(ctrl, &s, NVME_NSID_ALL);
374 if (ret)
375 return ret;
376
377 ctrl->nssa = le16_to_cpu(s.nssa);
378 if (ctrl->nssa < BLK_MAX_WRITE_HINTS - 1) {
379 dev_info(ctrl->device, "too few streams (%u) available\n",
380 ctrl->nssa);
381 nvme_disable_streams(ctrl);
382 return 0;
383 }
384
385 ctrl->nr_streams = min_t(unsigned, ctrl->nssa, BLK_MAX_WRITE_HINTS - 1);
386 dev_info(ctrl->device, "Using %u streams\n", ctrl->nr_streams);
387 return 0;
388 }
389
390 /*
391 * Check if 'req' has a write hint associated with it. If it does, assign
392 * a valid namespace stream to the write.
393 */
394 static void nvme_assign_write_stream(struct nvme_ctrl *ctrl,
395 struct request *req, u16 *control,
396 u32 *dsmgmt)
397 {
398 enum rw_hint streamid = req->write_hint;
399
400 if (streamid == WRITE_LIFE_NOT_SET || streamid == WRITE_LIFE_NONE)
401 streamid = 0;
402 else {
403 streamid--;
404 if (WARN_ON_ONCE(streamid > ctrl->nr_streams))
405 return;
406
407 *control |= NVME_RW_DTYPE_STREAMS;
408 *dsmgmt |= streamid << 16;
409 }
410
411 if (streamid < ARRAY_SIZE(req->q->write_hints))
412 req->q->write_hints[streamid] += blk_rq_bytes(req) >> 9;
413 }
414
415 static inline void nvme_setup_flush(struct nvme_ns *ns,
416 struct nvme_command *cmnd)
417 {
418 memset(cmnd, 0, sizeof(*cmnd));
419 cmnd->common.opcode = nvme_cmd_flush;
420 cmnd->common.nsid = cpu_to_le32(ns->ns_id);
421 }
422
423 static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req,
424 struct nvme_command *cmnd)
425 {
426 unsigned short segments = blk_rq_nr_discard_segments(req), n = 0;
427 struct nvme_dsm_range *range;
428 struct bio *bio;
429
430 range = kmalloc_array(segments, sizeof(*range), GFP_ATOMIC);
431 if (!range)
432 return BLK_STS_RESOURCE;
433
434 __rq_for_each_bio(bio, req) {
435 u64 slba = nvme_block_nr(ns, bio->bi_iter.bi_sector);
436 u32 nlb = bio->bi_iter.bi_size >> ns->lba_shift;
437
438 range[n].cattr = cpu_to_le32(0);
439 range[n].nlb = cpu_to_le32(nlb);
440 range[n].slba = cpu_to_le64(slba);
441 n++;
442 }
443
444 if (WARN_ON_ONCE(n != segments)) {
445 kfree(range);
446 return BLK_STS_IOERR;
447 }
448
449 memset(cmnd, 0, sizeof(*cmnd));
450 cmnd->dsm.opcode = nvme_cmd_dsm;
451 cmnd->dsm.nsid = cpu_to_le32(ns->ns_id);
452 cmnd->dsm.nr = cpu_to_le32(segments - 1);
453 cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
454
455 req->special_vec.bv_page = virt_to_page(range);
456 req->special_vec.bv_offset = offset_in_page(range);
457 req->special_vec.bv_len = sizeof(*range) * segments;
458 req->rq_flags |= RQF_SPECIAL_PAYLOAD;
459
460 return BLK_STS_OK;
461 }
462
463 static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns,
464 struct request *req, struct nvme_command *cmnd)
465 {
466 struct nvme_ctrl *ctrl = ns->ctrl;
467 u16 control = 0;
468 u32 dsmgmt = 0;
469
470 /*
471 * If formated with metadata, require the block layer provide a buffer
472 * unless this namespace is formated such that the metadata can be
473 * stripped/generated by the controller with PRACT=1.
474 */
475 if (ns && ns->ms &&
476 (!ns->pi_type || ns->ms != sizeof(struct t10_pi_tuple)) &&
477 !blk_integrity_rq(req) && !blk_rq_is_passthrough(req))
478 return BLK_STS_NOTSUPP;
479
480 if (req->cmd_flags & REQ_FUA)
481 control |= NVME_RW_FUA;
482 if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
483 control |= NVME_RW_LR;
484
485 if (req->cmd_flags & REQ_RAHEAD)
486 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
487
488 memset(cmnd, 0, sizeof(*cmnd));
489 cmnd->rw.opcode = (rq_data_dir(req) ? nvme_cmd_write : nvme_cmd_read);
490 cmnd->rw.nsid = cpu_to_le32(ns->ns_id);
491 cmnd->rw.slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
492 cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
493
494 if (req_op(req) == REQ_OP_WRITE && ctrl->nr_streams)
495 nvme_assign_write_stream(ctrl, req, &control, &dsmgmt);
496
497 if (ns->ms) {
498 switch (ns->pi_type) {
499 case NVME_NS_DPS_PI_TYPE3:
500 control |= NVME_RW_PRINFO_PRCHK_GUARD;
501 break;
502 case NVME_NS_DPS_PI_TYPE1:
503 case NVME_NS_DPS_PI_TYPE2:
504 control |= NVME_RW_PRINFO_PRCHK_GUARD |
505 NVME_RW_PRINFO_PRCHK_REF;
506 cmnd->rw.reftag = cpu_to_le32(
507 nvme_block_nr(ns, blk_rq_pos(req)));
508 break;
509 }
510 if (!blk_integrity_rq(req))
511 control |= NVME_RW_PRINFO_PRACT;
512 }
513
514 cmnd->rw.control = cpu_to_le16(control);
515 cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
516 return 0;
517 }
518
519 blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req,
520 struct nvme_command *cmd)
521 {
522 blk_status_t ret = BLK_STS_OK;
523
524 if (!(req->rq_flags & RQF_DONTPREP)) {
525 nvme_req(req)->retries = 0;
526 nvme_req(req)->flags = 0;
527 req->rq_flags |= RQF_DONTPREP;
528 }
529
530 switch (req_op(req)) {
531 case REQ_OP_DRV_IN:
532 case REQ_OP_DRV_OUT:
533 memcpy(cmd, nvme_req(req)->cmd, sizeof(*cmd));
534 break;
535 case REQ_OP_FLUSH:
536 nvme_setup_flush(ns, cmd);
537 break;
538 case REQ_OP_WRITE_ZEROES:
539 /* currently only aliased to deallocate for a few ctrls: */
540 case REQ_OP_DISCARD:
541 ret = nvme_setup_discard(ns, req, cmd);
542 break;
543 case REQ_OP_READ:
544 case REQ_OP_WRITE:
545 ret = nvme_setup_rw(ns, req, cmd);
546 break;
547 default:
548 WARN_ON_ONCE(1);
549 return BLK_STS_IOERR;
550 }
551
552 cmd->common.command_id = req->tag;
553 return ret;
554 }
555 EXPORT_SYMBOL_GPL(nvme_setup_cmd);
556
557 /*
558 * Returns 0 on success. If the result is negative, it's a Linux error code;
559 * if the result is positive, it's an NVM Express status code
560 */
561 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
562 union nvme_result *result, void *buffer, unsigned bufflen,
563 unsigned timeout, int qid, int at_head, int flags)
564 {
565 struct request *req;
566 int ret;
567
568 req = nvme_alloc_request(q, cmd, flags, qid);
569 if (IS_ERR(req))
570 return PTR_ERR(req);
571
572 req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
573
574 if (buffer && bufflen) {
575 ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL);
576 if (ret)
577 goto out;
578 }
579
580 blk_execute_rq(req->q, NULL, req, at_head);
581 if (result)
582 *result = nvme_req(req)->result;
583 if (nvme_req(req)->flags & NVME_REQ_CANCELLED)
584 ret = -EINTR;
585 else
586 ret = nvme_req(req)->status;
587 out:
588 blk_mq_free_request(req);
589 return ret;
590 }
591 EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd);
592
593 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
594 void *buffer, unsigned bufflen)
595 {
596 return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen, 0,
597 NVME_QID_ANY, 0, 0);
598 }
599 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd);
600
601 static void *nvme_add_user_metadata(struct bio *bio, void __user *ubuf,
602 unsigned len, u32 seed, bool write)
603 {
604 struct bio_integrity_payload *bip;
605 int ret = -ENOMEM;
606 void *buf;
607
608 buf = kmalloc(len, GFP_KERNEL);
609 if (!buf)
610 goto out;
611
612 ret = -EFAULT;
613 if (write && copy_from_user(buf, ubuf, len))
614 goto out_free_meta;
615
616 bip = bio_integrity_alloc(bio, GFP_KERNEL, 1);
617 if (IS_ERR(bip)) {
618 ret = PTR_ERR(bip);
619 goto out_free_meta;
620 }
621
622 bip->bip_iter.bi_size = len;
623 bip->bip_iter.bi_sector = seed;
624 ret = bio_integrity_add_page(bio, virt_to_page(buf), len,
625 offset_in_page(buf));
626 if (ret == len)
627 return buf;
628 ret = -ENOMEM;
629 out_free_meta:
630 kfree(buf);
631 out:
632 return ERR_PTR(ret);
633 }
634
635 static int nvme_submit_user_cmd(struct request_queue *q,
636 struct nvme_command *cmd, void __user *ubuffer,
637 unsigned bufflen, void __user *meta_buffer, unsigned meta_len,
638 u32 meta_seed, u32 *result, unsigned timeout)
639 {
640 bool write = nvme_is_write(cmd);
641 struct nvme_ns *ns = q->queuedata;
642 struct gendisk *disk = ns ? ns->disk : NULL;
643 struct request *req;
644 struct bio *bio = NULL;
645 void *meta = NULL;
646 int ret;
647
648 req = nvme_alloc_request(q, cmd, 0, NVME_QID_ANY);
649 if (IS_ERR(req))
650 return PTR_ERR(req);
651
652 req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
653
654 if (ubuffer && bufflen) {
655 ret = blk_rq_map_user(q, req, NULL, ubuffer, bufflen,
656 GFP_KERNEL);
657 if (ret)
658 goto out;
659 bio = req->bio;
660 bio->bi_disk = disk;
661 if (disk && meta_buffer && meta_len) {
662 meta = nvme_add_user_metadata(bio, meta_buffer, meta_len,
663 meta_seed, write);
664 if (IS_ERR(meta)) {
665 ret = PTR_ERR(meta);
666 goto out_unmap;
667 }
668 }
669 }
670
671 blk_execute_rq(req->q, disk, req, 0);
672 if (nvme_req(req)->flags & NVME_REQ_CANCELLED)
673 ret = -EINTR;
674 else
675 ret = nvme_req(req)->status;
676 if (result)
677 *result = le32_to_cpu(nvme_req(req)->result.u32);
678 if (meta && !ret && !write) {
679 if (copy_to_user(meta_buffer, meta, meta_len))
680 ret = -EFAULT;
681 }
682 kfree(meta);
683 out_unmap:
684 if (bio)
685 blk_rq_unmap_user(bio);
686 out:
687 blk_mq_free_request(req);
688 return ret;
689 }
690
691 static void nvme_keep_alive_end_io(struct request *rq, blk_status_t status)
692 {
693 struct nvme_ctrl *ctrl = rq->end_io_data;
694
695 blk_mq_free_request(rq);
696
697 if (status) {
698 dev_err(ctrl->device,
699 "failed nvme_keep_alive_end_io error=%d\n",
700 status);
701 return;
702 }
703
704 schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
705 }
706
707 static int nvme_keep_alive(struct nvme_ctrl *ctrl)
708 {
709 struct nvme_command c;
710 struct request *rq;
711
712 memset(&c, 0, sizeof(c));
713 c.common.opcode = nvme_admin_keep_alive;
714
715 rq = nvme_alloc_request(ctrl->admin_q, &c, BLK_MQ_REQ_RESERVED,
716 NVME_QID_ANY);
717 if (IS_ERR(rq))
718 return PTR_ERR(rq);
719
720 rq->timeout = ctrl->kato * HZ;
721 rq->end_io_data = ctrl;
722
723 blk_execute_rq_nowait(rq->q, NULL, rq, 0, nvme_keep_alive_end_io);
724
725 return 0;
726 }
727
728 static void nvme_keep_alive_work(struct work_struct *work)
729 {
730 struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
731 struct nvme_ctrl, ka_work);
732
733 if (nvme_keep_alive(ctrl)) {
734 /* allocation failure, reset the controller */
735 dev_err(ctrl->device, "keep-alive failed\n");
736 nvme_reset_ctrl(ctrl);
737 return;
738 }
739 }
740
741 void nvme_start_keep_alive(struct nvme_ctrl *ctrl)
742 {
743 if (unlikely(ctrl->kato == 0))
744 return;
745
746 INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work);
747 schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
748 }
749 EXPORT_SYMBOL_GPL(nvme_start_keep_alive);
750
751 void nvme_stop_keep_alive(struct nvme_ctrl *ctrl)
752 {
753 if (unlikely(ctrl->kato == 0))
754 return;
755
756 cancel_delayed_work_sync(&ctrl->ka_work);
757 }
758 EXPORT_SYMBOL_GPL(nvme_stop_keep_alive);
759
760 static int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id)
761 {
762 struct nvme_command c = { };
763 int error;
764
765 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
766 c.identify.opcode = nvme_admin_identify;
767 c.identify.cns = NVME_ID_CNS_CTRL;
768
769 *id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
770 if (!*id)
771 return -ENOMEM;
772
773 error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
774 sizeof(struct nvme_id_ctrl));
775 if (error)
776 kfree(*id);
777 return error;
778 }
779
780 static int nvme_identify_ns_descs(struct nvme_ctrl *ctrl, unsigned nsid,
781 u8 *eui64, u8 *nguid, uuid_t *uuid)
782 {
783 struct nvme_command c = { };
784 int status;
785 void *data;
786 int pos;
787 int len;
788
789 c.identify.opcode = nvme_admin_identify;
790 c.identify.nsid = cpu_to_le32(nsid);
791 c.identify.cns = NVME_ID_CNS_NS_DESC_LIST;
792
793 data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
794 if (!data)
795 return -ENOMEM;
796
797 status = nvme_submit_sync_cmd(ctrl->admin_q, &c, data,
798 NVME_IDENTIFY_DATA_SIZE);
799 if (status)
800 goto free_data;
801
802 for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) {
803 struct nvme_ns_id_desc *cur = data + pos;
804
805 if (cur->nidl == 0)
806 break;
807
808 switch (cur->nidt) {
809 case NVME_NIDT_EUI64:
810 if (cur->nidl != NVME_NIDT_EUI64_LEN) {
811 dev_warn(ctrl->device,
812 "ctrl returned bogus length: %d for NVME_NIDT_EUI64\n",
813 cur->nidl);
814 goto free_data;
815 }
816 len = NVME_NIDT_EUI64_LEN;
817 memcpy(eui64, data + pos + sizeof(*cur), len);
818 break;
819 case NVME_NIDT_NGUID:
820 if (cur->nidl != NVME_NIDT_NGUID_LEN) {
821 dev_warn(ctrl->device,
822 "ctrl returned bogus length: %d for NVME_NIDT_NGUID\n",
823 cur->nidl);
824 goto free_data;
825 }
826 len = NVME_NIDT_NGUID_LEN;
827 memcpy(nguid, data + pos + sizeof(*cur), len);
828 break;
829 case NVME_NIDT_UUID:
830 if (cur->nidl != NVME_NIDT_UUID_LEN) {
831 dev_warn(ctrl->device,
832 "ctrl returned bogus length: %d for NVME_NIDT_UUID\n",
833 cur->nidl);
834 goto free_data;
835 }
836 len = NVME_NIDT_UUID_LEN;
837 uuid_copy(uuid, data + pos + sizeof(*cur));
838 break;
839 default:
840 /* Skip unnkown types */
841 len = cur->nidl;
842 break;
843 }
844
845 len += sizeof(*cur);
846 }
847 free_data:
848 kfree(data);
849 return status;
850 }
851
852 static int nvme_identify_ns_list(struct nvme_ctrl *dev, unsigned nsid, __le32 *ns_list)
853 {
854 struct nvme_command c = { };
855
856 c.identify.opcode = nvme_admin_identify;
857 c.identify.cns = NVME_ID_CNS_NS_ACTIVE_LIST;
858 c.identify.nsid = cpu_to_le32(nsid);
859 return nvme_submit_sync_cmd(dev->admin_q, &c, ns_list, 0x1000);
860 }
861
862 static struct nvme_id_ns *nvme_identify_ns(struct nvme_ctrl *ctrl,
863 unsigned nsid)
864 {
865 struct nvme_id_ns *id;
866 struct nvme_command c = { };
867 int error;
868
869 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
870 c.identify.opcode = nvme_admin_identify;
871 c.identify.nsid = cpu_to_le32(nsid);
872 c.identify.cns = NVME_ID_CNS_NS;
873
874 id = kmalloc(sizeof(*id), GFP_KERNEL);
875 if (!id)
876 return NULL;
877
878 error = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id));
879 if (error) {
880 dev_warn(ctrl->device, "Identify namespace failed\n");
881 kfree(id);
882 return NULL;
883 }
884
885 return id;
886 }
887
888 static int nvme_set_features(struct nvme_ctrl *dev, unsigned fid, unsigned dword11,
889 void *buffer, size_t buflen, u32 *result)
890 {
891 struct nvme_command c;
892 union nvme_result res;
893 int ret;
894
895 memset(&c, 0, sizeof(c));
896 c.features.opcode = nvme_admin_set_features;
897 c.features.fid = cpu_to_le32(fid);
898 c.features.dword11 = cpu_to_le32(dword11);
899
900 ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res,
901 buffer, buflen, 0, NVME_QID_ANY, 0, 0);
902 if (ret >= 0 && result)
903 *result = le32_to_cpu(res.u32);
904 return ret;
905 }
906
907 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count)
908 {
909 u32 q_count = (*count - 1) | ((*count - 1) << 16);
910 u32 result;
911 int status, nr_io_queues;
912
913 status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0,
914 &result);
915 if (status < 0)
916 return status;
917
918 /*
919 * Degraded controllers might return an error when setting the queue
920 * count. We still want to be able to bring them online and offer
921 * access to the admin queue, as that might be only way to fix them up.
922 */
923 if (status > 0) {
924 dev_err(ctrl->device, "Could not set queue count (%d)\n", status);
925 *count = 0;
926 } else {
927 nr_io_queues = min(result & 0xffff, result >> 16) + 1;
928 *count = min(*count, nr_io_queues);
929 }
930
931 return 0;
932 }
933 EXPORT_SYMBOL_GPL(nvme_set_queue_count);
934
935 static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
936 {
937 struct nvme_user_io io;
938 struct nvme_command c;
939 unsigned length, meta_len;
940 void __user *metadata;
941
942 if (copy_from_user(&io, uio, sizeof(io)))
943 return -EFAULT;
944 if (io.flags)
945 return -EINVAL;
946
947 switch (io.opcode) {
948 case nvme_cmd_write:
949 case nvme_cmd_read:
950 case nvme_cmd_compare:
951 break;
952 default:
953 return -EINVAL;
954 }
955
956 length = (io.nblocks + 1) << ns->lba_shift;
957 meta_len = (io.nblocks + 1) * ns->ms;
958 metadata = (void __user *)(uintptr_t)io.metadata;
959
960 if (ns->ext) {
961 length += meta_len;
962 meta_len = 0;
963 } else if (meta_len) {
964 if ((io.metadata & 3) || !io.metadata)
965 return -EINVAL;
966 }
967
968 memset(&c, 0, sizeof(c));
969 c.rw.opcode = io.opcode;
970 c.rw.flags = io.flags;
971 c.rw.nsid = cpu_to_le32(ns->ns_id);
972 c.rw.slba = cpu_to_le64(io.slba);
973 c.rw.length = cpu_to_le16(io.nblocks);
974 c.rw.control = cpu_to_le16(io.control);
975 c.rw.dsmgmt = cpu_to_le32(io.dsmgmt);
976 c.rw.reftag = cpu_to_le32(io.reftag);
977 c.rw.apptag = cpu_to_le16(io.apptag);
978 c.rw.appmask = cpu_to_le16(io.appmask);
979
980 return nvme_submit_user_cmd(ns->queue, &c,
981 (void __user *)(uintptr_t)io.addr, length,
982 metadata, meta_len, io.slba, NULL, 0);
983 }
984
985 static int nvme_user_cmd(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
986 struct nvme_passthru_cmd __user *ucmd)
987 {
988 struct nvme_passthru_cmd cmd;
989 struct nvme_command c;
990 unsigned timeout = 0;
991 int status;
992
993 if (!capable(CAP_SYS_ADMIN))
994 return -EACCES;
995 if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
996 return -EFAULT;
997 if (cmd.flags)
998 return -EINVAL;
999
1000 memset(&c, 0, sizeof(c));
1001 c.common.opcode = cmd.opcode;
1002 c.common.flags = cmd.flags;
1003 c.common.nsid = cpu_to_le32(cmd.nsid);
1004 c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
1005 c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
1006 c.common.cdw10[0] = cpu_to_le32(cmd.cdw10);
1007 c.common.cdw10[1] = cpu_to_le32(cmd.cdw11);
1008 c.common.cdw10[2] = cpu_to_le32(cmd.cdw12);
1009 c.common.cdw10[3] = cpu_to_le32(cmd.cdw13);
1010 c.common.cdw10[4] = cpu_to_le32(cmd.cdw14);
1011 c.common.cdw10[5] = cpu_to_le32(cmd.cdw15);
1012
1013 if (cmd.timeout_ms)
1014 timeout = msecs_to_jiffies(cmd.timeout_ms);
1015
1016 status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c,
1017 (void __user *)(uintptr_t)cmd.addr, cmd.data_len,
1018 (void __user *)(uintptr_t)cmd.metadata, cmd.metadata,
1019 0, &cmd.result, timeout);
1020 if (status >= 0) {
1021 if (put_user(cmd.result, &ucmd->result))
1022 return -EFAULT;
1023 }
1024
1025 return status;
1026 }
1027
1028 static int nvme_ioctl(struct block_device *bdev, fmode_t mode,
1029 unsigned int cmd, unsigned long arg)
1030 {
1031 struct nvme_ns *ns = bdev->bd_disk->private_data;
1032
1033 switch (cmd) {
1034 case NVME_IOCTL_ID:
1035 force_successful_syscall_return();
1036 return ns->ns_id;
1037 case NVME_IOCTL_ADMIN_CMD:
1038 return nvme_user_cmd(ns->ctrl, NULL, (void __user *)arg);
1039 case NVME_IOCTL_IO_CMD:
1040 return nvme_user_cmd(ns->ctrl, ns, (void __user *)arg);
1041 case NVME_IOCTL_SUBMIT_IO:
1042 return nvme_submit_io(ns, (void __user *)arg);
1043 default:
1044 #ifdef CONFIG_NVM
1045 if (ns->ndev)
1046 return nvme_nvm_ioctl(ns, cmd, arg);
1047 #endif
1048 if (is_sed_ioctl(cmd))
1049 return sed_ioctl(ns->ctrl->opal_dev, cmd,
1050 (void __user *) arg);
1051 return -ENOTTY;
1052 }
1053 }
1054
1055 #ifdef CONFIG_COMPAT
1056 static int nvme_compat_ioctl(struct block_device *bdev, fmode_t mode,
1057 unsigned int cmd, unsigned long arg)
1058 {
1059 return nvme_ioctl(bdev, mode, cmd, arg);
1060 }
1061 #else
1062 #define nvme_compat_ioctl NULL
1063 #endif
1064
1065 static int nvme_open(struct block_device *bdev, fmode_t mode)
1066 {
1067 return nvme_get_ns_from_disk(bdev->bd_disk) ? 0 : -ENXIO;
1068 }
1069
1070 static void nvme_release(struct gendisk *disk, fmode_t mode)
1071 {
1072 struct nvme_ns *ns = disk->private_data;
1073
1074 module_put(ns->ctrl->ops->module);
1075 nvme_put_ns(ns);
1076 }
1077
1078 static int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1079 {
1080 /* some standard values */
1081 geo->heads = 1 << 6;
1082 geo->sectors = 1 << 5;
1083 geo->cylinders = get_capacity(bdev->bd_disk) >> 11;
1084 return 0;
1085 }
1086
1087 #ifdef CONFIG_BLK_DEV_INTEGRITY
1088 static void nvme_prep_integrity(struct gendisk *disk, struct nvme_id_ns *id,
1089 u16 bs)
1090 {
1091 struct nvme_ns *ns = disk->private_data;
1092 u16 old_ms = ns->ms;
1093 u8 pi_type = 0;
1094
1095 ns->ms = le16_to_cpu(id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ms);
1096 ns->ext = ns->ms && (id->flbas & NVME_NS_FLBAS_META_EXT);
1097
1098 /* PI implementation requires metadata equal t10 pi tuple size */
1099 if (ns->ms == sizeof(struct t10_pi_tuple))
1100 pi_type = id->dps & NVME_NS_DPS_PI_MASK;
1101
1102 if (blk_get_integrity(disk) &&
1103 (ns->pi_type != pi_type || ns->ms != old_ms ||
1104 bs != queue_logical_block_size(disk->queue) ||
1105 (ns->ms && ns->ext)))
1106 blk_integrity_unregister(disk);
1107
1108 ns->pi_type = pi_type;
1109 }
1110
1111 static void nvme_init_integrity(struct nvme_ns *ns)
1112 {
1113 struct blk_integrity integrity;
1114
1115 memset(&integrity, 0, sizeof(integrity));
1116 switch (ns->pi_type) {
1117 case NVME_NS_DPS_PI_TYPE3:
1118 integrity.profile = &t10_pi_type3_crc;
1119 integrity.tag_size = sizeof(u16) + sizeof(u32);
1120 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1121 break;
1122 case NVME_NS_DPS_PI_TYPE1:
1123 case NVME_NS_DPS_PI_TYPE2:
1124 integrity.profile = &t10_pi_type1_crc;
1125 integrity.tag_size = sizeof(u16);
1126 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1127 break;
1128 default:
1129 integrity.profile = NULL;
1130 break;
1131 }
1132 integrity.tuple_size = ns->ms;
1133 blk_integrity_register(ns->disk, &integrity);
1134 blk_queue_max_integrity_segments(ns->queue, 1);
1135 }
1136 #else
1137 static void nvme_prep_integrity(struct gendisk *disk, struct nvme_id_ns *id,
1138 u16 bs)
1139 {
1140 }
1141 static void nvme_init_integrity(struct nvme_ns *ns)
1142 {
1143 }
1144 #endif /* CONFIG_BLK_DEV_INTEGRITY */
1145
1146 static void nvme_set_chunk_size(struct nvme_ns *ns)
1147 {
1148 u32 chunk_size = (((u32)ns->noiob) << (ns->lba_shift - 9));
1149 blk_queue_chunk_sectors(ns->queue, rounddown_pow_of_two(chunk_size));
1150 }
1151
1152 static void nvme_config_discard(struct nvme_ns *ns)
1153 {
1154 struct nvme_ctrl *ctrl = ns->ctrl;
1155 u32 logical_block_size = queue_logical_block_size(ns->queue);
1156
1157 BUILD_BUG_ON(PAGE_SIZE / sizeof(struct nvme_dsm_range) <
1158 NVME_DSM_MAX_RANGES);
1159
1160 if (ctrl->nr_streams && ns->sws && ns->sgs) {
1161 unsigned int sz = logical_block_size * ns->sws * ns->sgs;
1162
1163 ns->queue->limits.discard_alignment = sz;
1164 ns->queue->limits.discard_granularity = sz;
1165 } else {
1166 ns->queue->limits.discard_alignment = logical_block_size;
1167 ns->queue->limits.discard_granularity = logical_block_size;
1168 }
1169 blk_queue_max_discard_sectors(ns->queue, UINT_MAX);
1170 blk_queue_max_discard_segments(ns->queue, NVME_DSM_MAX_RANGES);
1171 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, ns->queue);
1172
1173 if (ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
1174 blk_queue_max_write_zeroes_sectors(ns->queue, UINT_MAX);
1175 }
1176
1177 static void nvme_report_ns_ids(struct nvme_ctrl *ctrl, unsigned int nsid,
1178 struct nvme_id_ns *id, u8 *eui64, u8 *nguid, uuid_t *uuid)
1179 {
1180 if (ctrl->vs >= NVME_VS(1, 1, 0))
1181 memcpy(eui64, id->eui64, sizeof(id->eui64));
1182 if (ctrl->vs >= NVME_VS(1, 2, 0))
1183 memcpy(nguid, id->nguid, sizeof(id->nguid));
1184 if (ctrl->vs >= NVME_VS(1, 3, 0)) {
1185 /* Don't treat error as fatal we potentially
1186 * already have a NGUID or EUI-64
1187 */
1188 if (nvme_identify_ns_descs(ctrl, nsid, eui64, nguid, uuid))
1189 dev_warn(ctrl->device,
1190 "%s: Identify Descriptors failed\n", __func__);
1191 }
1192 }
1193
1194 static void __nvme_revalidate_disk(struct gendisk *disk, struct nvme_id_ns *id)
1195 {
1196 struct nvme_ns *ns = disk->private_data;
1197 struct nvme_ctrl *ctrl = ns->ctrl;
1198 u16 bs;
1199
1200 /*
1201 * If identify namespace failed, use default 512 byte block size so
1202 * block layer can use before failing read/write for 0 capacity.
1203 */
1204 ns->lba_shift = id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ds;
1205 if (ns->lba_shift == 0)
1206 ns->lba_shift = 9;
1207 bs = 1 << ns->lba_shift;
1208 ns->noiob = le16_to_cpu(id->noiob);
1209
1210 blk_mq_freeze_queue(disk->queue);
1211
1212 if (ctrl->ops->flags & NVME_F_METADATA_SUPPORTED)
1213 nvme_prep_integrity(disk, id, bs);
1214 blk_queue_logical_block_size(ns->queue, bs);
1215 if (ns->noiob)
1216 nvme_set_chunk_size(ns);
1217 if (ns->ms && !blk_get_integrity(disk) && !ns->ext)
1218 nvme_init_integrity(ns);
1219 if (ns->ms && !(ns->ms == 8 && ns->pi_type) && !blk_get_integrity(disk))
1220 set_capacity(disk, 0);
1221 else
1222 set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9));
1223
1224 if (ctrl->oncs & NVME_CTRL_ONCS_DSM)
1225 nvme_config_discard(ns);
1226 blk_mq_unfreeze_queue(disk->queue);
1227 }
1228
1229 static int nvme_revalidate_disk(struct gendisk *disk)
1230 {
1231 struct nvme_ns *ns = disk->private_data;
1232 struct nvme_ctrl *ctrl = ns->ctrl;
1233 struct nvme_id_ns *id;
1234 u8 eui64[8] = { 0 }, nguid[16] = { 0 };
1235 uuid_t uuid = uuid_null;
1236 int ret = 0;
1237
1238 if (test_bit(NVME_NS_DEAD, &ns->flags)) {
1239 set_capacity(disk, 0);
1240 return -ENODEV;
1241 }
1242
1243 id = nvme_identify_ns(ctrl, ns->ns_id);
1244 if (!id)
1245 return -ENODEV;
1246
1247 if (id->ncap == 0) {
1248 ret = -ENODEV;
1249 goto out;
1250 }
1251
1252 __nvme_revalidate_disk(disk, id);
1253 nvme_report_ns_ids(ctrl, ns->ns_id, id, eui64, nguid, &uuid);
1254 if (!uuid_equal(&ns->uuid, &uuid) ||
1255 memcmp(&ns->nguid, &nguid, sizeof(ns->nguid)) ||
1256 memcmp(&ns->eui, &eui64, sizeof(ns->eui))) {
1257 dev_err(ctrl->device,
1258 "identifiers changed for nsid %d\n", ns->ns_id);
1259 ret = -ENODEV;
1260 }
1261
1262 out:
1263 kfree(id);
1264 return ret;
1265 }
1266
1267 static char nvme_pr_type(enum pr_type type)
1268 {
1269 switch (type) {
1270 case PR_WRITE_EXCLUSIVE:
1271 return 1;
1272 case PR_EXCLUSIVE_ACCESS:
1273 return 2;
1274 case PR_WRITE_EXCLUSIVE_REG_ONLY:
1275 return 3;
1276 case PR_EXCLUSIVE_ACCESS_REG_ONLY:
1277 return 4;
1278 case PR_WRITE_EXCLUSIVE_ALL_REGS:
1279 return 5;
1280 case PR_EXCLUSIVE_ACCESS_ALL_REGS:
1281 return 6;
1282 default:
1283 return 0;
1284 }
1285 };
1286
1287 static int nvme_pr_command(struct block_device *bdev, u32 cdw10,
1288 u64 key, u64 sa_key, u8 op)
1289 {
1290 struct nvme_ns *ns = bdev->bd_disk->private_data;
1291 struct nvme_command c;
1292 u8 data[16] = { 0, };
1293
1294 put_unaligned_le64(key, &data[0]);
1295 put_unaligned_le64(sa_key, &data[8]);
1296
1297 memset(&c, 0, sizeof(c));
1298 c.common.opcode = op;
1299 c.common.nsid = cpu_to_le32(ns->ns_id);
1300 c.common.cdw10[0] = cpu_to_le32(cdw10);
1301
1302 return nvme_submit_sync_cmd(ns->queue, &c, data, 16);
1303 }
1304
1305 static int nvme_pr_register(struct block_device *bdev, u64 old,
1306 u64 new, unsigned flags)
1307 {
1308 u32 cdw10;
1309
1310 if (flags & ~PR_FL_IGNORE_KEY)
1311 return -EOPNOTSUPP;
1312
1313 cdw10 = old ? 2 : 0;
1314 cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0;
1315 cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */
1316 return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register);
1317 }
1318
1319 static int nvme_pr_reserve(struct block_device *bdev, u64 key,
1320 enum pr_type type, unsigned flags)
1321 {
1322 u32 cdw10;
1323
1324 if (flags & ~PR_FL_IGNORE_KEY)
1325 return -EOPNOTSUPP;
1326
1327 cdw10 = nvme_pr_type(type) << 8;
1328 cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0);
1329 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire);
1330 }
1331
1332 static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new,
1333 enum pr_type type, bool abort)
1334 {
1335 u32 cdw10 = nvme_pr_type(type) << 8 | abort ? 2 : 1;
1336 return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire);
1337 }
1338
1339 static int nvme_pr_clear(struct block_device *bdev, u64 key)
1340 {
1341 u32 cdw10 = 1 | (key ? 1 << 3 : 0);
1342 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_register);
1343 }
1344
1345 static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
1346 {
1347 u32 cdw10 = nvme_pr_type(type) << 8 | key ? 1 << 3 : 0;
1348 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release);
1349 }
1350
1351 static const struct pr_ops nvme_pr_ops = {
1352 .pr_register = nvme_pr_register,
1353 .pr_reserve = nvme_pr_reserve,
1354 .pr_release = nvme_pr_release,
1355 .pr_preempt = nvme_pr_preempt,
1356 .pr_clear = nvme_pr_clear,
1357 };
1358
1359 #ifdef CONFIG_BLK_SED_OPAL
1360 int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len,
1361 bool send)
1362 {
1363 struct nvme_ctrl *ctrl = data;
1364 struct nvme_command cmd;
1365
1366 memset(&cmd, 0, sizeof(cmd));
1367 if (send)
1368 cmd.common.opcode = nvme_admin_security_send;
1369 else
1370 cmd.common.opcode = nvme_admin_security_recv;
1371 cmd.common.nsid = 0;
1372 cmd.common.cdw10[0] = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8);
1373 cmd.common.cdw10[1] = cpu_to_le32(len);
1374
1375 return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len,
1376 ADMIN_TIMEOUT, NVME_QID_ANY, 1, 0);
1377 }
1378 EXPORT_SYMBOL_GPL(nvme_sec_submit);
1379 #endif /* CONFIG_BLK_SED_OPAL */
1380
1381 static const struct block_device_operations nvme_fops = {
1382 .owner = THIS_MODULE,
1383 .ioctl = nvme_ioctl,
1384 .compat_ioctl = nvme_compat_ioctl,
1385 .open = nvme_open,
1386 .release = nvme_release,
1387 .getgeo = nvme_getgeo,
1388 .revalidate_disk= nvme_revalidate_disk,
1389 .pr_ops = &nvme_pr_ops,
1390 };
1391
1392 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u64 cap, bool enabled)
1393 {
1394 unsigned long timeout =
1395 ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
1396 u32 csts, bit = enabled ? NVME_CSTS_RDY : 0;
1397 int ret;
1398
1399 while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
1400 if (csts == ~0)
1401 return -ENODEV;
1402 if ((csts & NVME_CSTS_RDY) == bit)
1403 break;
1404
1405 msleep(100);
1406 if (fatal_signal_pending(current))
1407 return -EINTR;
1408 if (time_after(jiffies, timeout)) {
1409 dev_err(ctrl->device,
1410 "Device not ready; aborting %s\n", enabled ?
1411 "initialisation" : "reset");
1412 return -ENODEV;
1413 }
1414 }
1415
1416 return ret;
1417 }
1418
1419 /*
1420 * If the device has been passed off to us in an enabled state, just clear
1421 * the enabled bit. The spec says we should set the 'shutdown notification
1422 * bits', but doing so may cause the device to complete commands to the
1423 * admin queue ... and we don't know what memory that might be pointing at!
1424 */
1425 int nvme_disable_ctrl(struct nvme_ctrl *ctrl, u64 cap)
1426 {
1427 int ret;
1428
1429 ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
1430 ctrl->ctrl_config &= ~NVME_CC_ENABLE;
1431
1432 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
1433 if (ret)
1434 return ret;
1435
1436 if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY)
1437 msleep(NVME_QUIRK_DELAY_AMOUNT);
1438
1439 return nvme_wait_ready(ctrl, cap, false);
1440 }
1441 EXPORT_SYMBOL_GPL(nvme_disable_ctrl);
1442
1443 int nvme_enable_ctrl(struct nvme_ctrl *ctrl, u64 cap)
1444 {
1445 /*
1446 * Default to a 4K page size, with the intention to update this
1447 * path in the future to accomodate architectures with differing
1448 * kernel and IO page sizes.
1449 */
1450 unsigned dev_page_min = NVME_CAP_MPSMIN(cap) + 12, page_shift = 12;
1451 int ret;
1452
1453 if (page_shift < dev_page_min) {
1454 dev_err(ctrl->device,
1455 "Minimum device page size %u too large for host (%u)\n",
1456 1 << dev_page_min, 1 << page_shift);
1457 return -ENODEV;
1458 }
1459
1460 ctrl->page_size = 1 << page_shift;
1461
1462 ctrl->ctrl_config = NVME_CC_CSS_NVM;
1463 ctrl->ctrl_config |= (page_shift - 12) << NVME_CC_MPS_SHIFT;
1464 ctrl->ctrl_config |= NVME_CC_AMS_RR | NVME_CC_SHN_NONE;
1465 ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
1466 ctrl->ctrl_config |= NVME_CC_ENABLE;
1467
1468 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
1469 if (ret)
1470 return ret;
1471 return nvme_wait_ready(ctrl, cap, true);
1472 }
1473 EXPORT_SYMBOL_GPL(nvme_enable_ctrl);
1474
1475 int nvme_shutdown_ctrl(struct nvme_ctrl *ctrl)
1476 {
1477 unsigned long timeout = jiffies + (ctrl->shutdown_timeout * HZ);
1478 u32 csts;
1479 int ret;
1480
1481 ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
1482 ctrl->ctrl_config |= NVME_CC_SHN_NORMAL;
1483
1484 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
1485 if (ret)
1486 return ret;
1487
1488 while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
1489 if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_CMPLT)
1490 break;
1491
1492 msleep(100);
1493 if (fatal_signal_pending(current))
1494 return -EINTR;
1495 if (time_after(jiffies, timeout)) {
1496 dev_err(ctrl->device,
1497 "Device shutdown incomplete; abort shutdown\n");
1498 return -ENODEV;
1499 }
1500 }
1501
1502 return ret;
1503 }
1504 EXPORT_SYMBOL_GPL(nvme_shutdown_ctrl);
1505
1506 static void nvme_set_queue_limits(struct nvme_ctrl *ctrl,
1507 struct request_queue *q)
1508 {
1509 bool vwc = false;
1510
1511 if (ctrl->max_hw_sectors) {
1512 u32 max_segments =
1513 (ctrl->max_hw_sectors / (ctrl->page_size >> 9)) + 1;
1514
1515 blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors);
1516 blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX));
1517 }
1518 if (ctrl->quirks & NVME_QUIRK_STRIPE_SIZE)
1519 blk_queue_chunk_sectors(q, ctrl->max_hw_sectors);
1520 blk_queue_virt_boundary(q, ctrl->page_size - 1);
1521 if (ctrl->vwc & NVME_CTRL_VWC_PRESENT)
1522 vwc = true;
1523 blk_queue_write_cache(q, vwc, vwc);
1524 }
1525
1526 static int nvme_configure_timestamp(struct nvme_ctrl *ctrl)
1527 {
1528 __le64 ts;
1529 int ret;
1530
1531 if (!(ctrl->oncs & NVME_CTRL_ONCS_TIMESTAMP))
1532 return 0;
1533
1534 ts = cpu_to_le64(ktime_to_ms(ktime_get_real()));
1535 ret = nvme_set_features(ctrl, NVME_FEAT_TIMESTAMP, 0, &ts, sizeof(ts),
1536 NULL);
1537 if (ret)
1538 dev_warn_once(ctrl->device,
1539 "could not set timestamp (%d)\n", ret);
1540 return ret;
1541 }
1542
1543 static int nvme_configure_apst(struct nvme_ctrl *ctrl)
1544 {
1545 /*
1546 * APST (Autonomous Power State Transition) lets us program a
1547 * table of power state transitions that the controller will
1548 * perform automatically. We configure it with a simple
1549 * heuristic: we are willing to spend at most 2% of the time
1550 * transitioning between power states. Therefore, when running
1551 * in any given state, we will enter the next lower-power
1552 * non-operational state after waiting 50 * (enlat + exlat)
1553 * microseconds, as long as that state's exit latency is under
1554 * the requested maximum latency.
1555 *
1556 * We will not autonomously enter any non-operational state for
1557 * which the total latency exceeds ps_max_latency_us. Users
1558 * can set ps_max_latency_us to zero to turn off APST.
1559 */
1560
1561 unsigned apste;
1562 struct nvme_feat_auto_pst *table;
1563 u64 max_lat_us = 0;
1564 int max_ps = -1;
1565 int ret;
1566
1567 /*
1568 * If APST isn't supported or if we haven't been initialized yet,
1569 * then don't do anything.
1570 */
1571 if (!ctrl->apsta)
1572 return 0;
1573
1574 if (ctrl->npss > 31) {
1575 dev_warn(ctrl->device, "NPSS is invalid; not using APST\n");
1576 return 0;
1577 }
1578
1579 table = kzalloc(sizeof(*table), GFP_KERNEL);
1580 if (!table)
1581 return 0;
1582
1583 if (!ctrl->apst_enabled || ctrl->ps_max_latency_us == 0) {
1584 /* Turn off APST. */
1585 apste = 0;
1586 dev_dbg(ctrl->device, "APST disabled\n");
1587 } else {
1588 __le64 target = cpu_to_le64(0);
1589 int state;
1590
1591 /*
1592 * Walk through all states from lowest- to highest-power.
1593 * According to the spec, lower-numbered states use more
1594 * power. NPSS, despite the name, is the index of the
1595 * lowest-power state, not the number of states.
1596 */
1597 for (state = (int)ctrl->npss; state >= 0; state--) {
1598 u64 total_latency_us, exit_latency_us, transition_ms;
1599
1600 if (target)
1601 table->entries[state] = target;
1602
1603 /*
1604 * Don't allow transitions to the deepest state
1605 * if it's quirked off.
1606 */
1607 if (state == ctrl->npss &&
1608 (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS))
1609 continue;
1610
1611 /*
1612 * Is this state a useful non-operational state for
1613 * higher-power states to autonomously transition to?
1614 */
1615 if (!(ctrl->psd[state].flags &
1616 NVME_PS_FLAGS_NON_OP_STATE))
1617 continue;
1618
1619 exit_latency_us =
1620 (u64)le32_to_cpu(ctrl->psd[state].exit_lat);
1621 if (exit_latency_us > ctrl->ps_max_latency_us)
1622 continue;
1623
1624 total_latency_us =
1625 exit_latency_us +
1626 le32_to_cpu(ctrl->psd[state].entry_lat);
1627
1628 /*
1629 * This state is good. Use it as the APST idle
1630 * target for higher power states.
1631 */
1632 transition_ms = total_latency_us + 19;
1633 do_div(transition_ms, 20);
1634 if (transition_ms > (1 << 24) - 1)
1635 transition_ms = (1 << 24) - 1;
1636
1637 target = cpu_to_le64((state << 3) |
1638 (transition_ms << 8));
1639
1640 if (max_ps == -1)
1641 max_ps = state;
1642
1643 if (total_latency_us > max_lat_us)
1644 max_lat_us = total_latency_us;
1645 }
1646
1647 apste = 1;
1648
1649 if (max_ps == -1) {
1650 dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n");
1651 } else {
1652 dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n",
1653 max_ps, max_lat_us, (int)sizeof(*table), table);
1654 }
1655 }
1656
1657 ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste,
1658 table, sizeof(*table), NULL);
1659 if (ret)
1660 dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret);
1661
1662 kfree(table);
1663 return ret;
1664 }
1665
1666 static void nvme_set_latency_tolerance(struct device *dev, s32 val)
1667 {
1668 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
1669 u64 latency;
1670
1671 switch (val) {
1672 case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT:
1673 case PM_QOS_LATENCY_ANY:
1674 latency = U64_MAX;
1675 break;
1676
1677 default:
1678 latency = val;
1679 }
1680
1681 if (ctrl->ps_max_latency_us != latency) {
1682 ctrl->ps_max_latency_us = latency;
1683 nvme_configure_apst(ctrl);
1684 }
1685 }
1686
1687 struct nvme_core_quirk_entry {
1688 /*
1689 * NVMe model and firmware strings are padded with spaces. For
1690 * simplicity, strings in the quirk table are padded with NULLs
1691 * instead.
1692 */
1693 u16 vid;
1694 const char *mn;
1695 const char *fr;
1696 unsigned long quirks;
1697 };
1698
1699 static const struct nvme_core_quirk_entry core_quirks[] = {
1700 {
1701 /*
1702 * This Toshiba device seems to die using any APST states. See:
1703 * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11
1704 */
1705 .vid = 0x1179,
1706 .mn = "THNSF5256GPUK TOSHIBA",
1707 .quirks = NVME_QUIRK_NO_APST,
1708 }
1709 };
1710
1711 /* match is null-terminated but idstr is space-padded. */
1712 static bool string_matches(const char *idstr, const char *match, size_t len)
1713 {
1714 size_t matchlen;
1715
1716 if (!match)
1717 return true;
1718
1719 matchlen = strlen(match);
1720 WARN_ON_ONCE(matchlen > len);
1721
1722 if (memcmp(idstr, match, matchlen))
1723 return false;
1724
1725 for (; matchlen < len; matchlen++)
1726 if (idstr[matchlen] != ' ')
1727 return false;
1728
1729 return true;
1730 }
1731
1732 static bool quirk_matches(const struct nvme_id_ctrl *id,
1733 const struct nvme_core_quirk_entry *q)
1734 {
1735 return q->vid == le16_to_cpu(id->vid) &&
1736 string_matches(id->mn, q->mn, sizeof(id->mn)) &&
1737 string_matches(id->fr, q->fr, sizeof(id->fr));
1738 }
1739
1740 static void nvme_init_subnqn(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
1741 {
1742 size_t nqnlen;
1743 int off;
1744
1745 nqnlen = strnlen(id->subnqn, NVMF_NQN_SIZE);
1746 if (nqnlen > 0 && nqnlen < NVMF_NQN_SIZE) {
1747 strcpy(ctrl->subnqn, id->subnqn);
1748 return;
1749 }
1750
1751 if (ctrl->vs >= NVME_VS(1, 2, 1))
1752 dev_warn(ctrl->device, "missing or invalid SUBNQN field.\n");
1753
1754 /* Generate a "fake" NQN per Figure 254 in NVMe 1.3 + ECN 001 */
1755 off = snprintf(ctrl->subnqn, NVMF_NQN_SIZE,
1756 "nqn.2014.08.org.nvmexpress:%4x%4x",
1757 le16_to_cpu(id->vid), le16_to_cpu(id->ssvid));
1758 memcpy(ctrl->subnqn + off, id->sn, sizeof(id->sn));
1759 off += sizeof(id->sn);
1760 memcpy(ctrl->subnqn + off, id->mn, sizeof(id->mn));
1761 off += sizeof(id->mn);
1762 memset(ctrl->subnqn + off, 0, sizeof(ctrl->subnqn) - off);
1763 }
1764
1765 /*
1766 * Initialize the cached copies of the Identify data and various controller
1767 * register in our nvme_ctrl structure. This should be called as soon as
1768 * the admin queue is fully up and running.
1769 */
1770 int nvme_init_identify(struct nvme_ctrl *ctrl)
1771 {
1772 struct nvme_id_ctrl *id;
1773 u64 cap;
1774 int ret, page_shift;
1775 u32 max_hw_sectors;
1776 bool prev_apst_enabled;
1777
1778 ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs);
1779 if (ret) {
1780 dev_err(ctrl->device, "Reading VS failed (%d)\n", ret);
1781 return ret;
1782 }
1783
1784 ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &cap);
1785 if (ret) {
1786 dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret);
1787 return ret;
1788 }
1789 page_shift = NVME_CAP_MPSMIN(cap) + 12;
1790
1791 if (ctrl->vs >= NVME_VS(1, 1, 0))
1792 ctrl->subsystem = NVME_CAP_NSSRC(cap);
1793
1794 ret = nvme_identify_ctrl(ctrl, &id);
1795 if (ret) {
1796 dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret);
1797 return -EIO;
1798 }
1799
1800 nvme_init_subnqn(ctrl, id);
1801
1802 if (!ctrl->identified) {
1803 /*
1804 * Check for quirks. Quirk can depend on firmware version,
1805 * so, in principle, the set of quirks present can change
1806 * across a reset. As a possible future enhancement, we
1807 * could re-scan for quirks every time we reinitialize
1808 * the device, but we'd have to make sure that the driver
1809 * behaves intelligently if the quirks change.
1810 */
1811
1812 int i;
1813
1814 for (i = 0; i < ARRAY_SIZE(core_quirks); i++) {
1815 if (quirk_matches(id, &core_quirks[i]))
1816 ctrl->quirks |= core_quirks[i].quirks;
1817 }
1818 }
1819
1820 if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) {
1821 dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n");
1822 ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS;
1823 }
1824
1825 ctrl->oacs = le16_to_cpu(id->oacs);
1826 ctrl->vid = le16_to_cpu(id->vid);
1827 ctrl->oncs = le16_to_cpup(&id->oncs);
1828 atomic_set(&ctrl->abort_limit, id->acl + 1);
1829 ctrl->vwc = id->vwc;
1830 ctrl->cntlid = le16_to_cpup(&id->cntlid);
1831 memcpy(ctrl->serial, id->sn, sizeof(id->sn));
1832 memcpy(ctrl->model, id->mn, sizeof(id->mn));
1833 memcpy(ctrl->firmware_rev, id->fr, sizeof(id->fr));
1834 if (id->mdts)
1835 max_hw_sectors = 1 << (id->mdts + page_shift - 9);
1836 else
1837 max_hw_sectors = UINT_MAX;
1838 ctrl->max_hw_sectors =
1839 min_not_zero(ctrl->max_hw_sectors, max_hw_sectors);
1840
1841 nvme_set_queue_limits(ctrl, ctrl->admin_q);
1842 ctrl->sgls = le32_to_cpu(id->sgls);
1843 ctrl->kas = le16_to_cpu(id->kas);
1844
1845 if (id->rtd3e) {
1846 /* us -> s */
1847 u32 transition_time = le32_to_cpu(id->rtd3e) / 1000000;
1848
1849 ctrl->shutdown_timeout = clamp_t(unsigned int, transition_time,
1850 shutdown_timeout, 60);
1851
1852 if (ctrl->shutdown_timeout != shutdown_timeout)
1853 dev_warn(ctrl->device,
1854 "Shutdown timeout set to %u seconds\n",
1855 ctrl->shutdown_timeout);
1856 } else
1857 ctrl->shutdown_timeout = shutdown_timeout;
1858
1859 ctrl->npss = id->npss;
1860 ctrl->apsta = id->apsta;
1861 prev_apst_enabled = ctrl->apst_enabled;
1862 if (ctrl->quirks & NVME_QUIRK_NO_APST) {
1863 if (force_apst && id->apsta) {
1864 dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n");
1865 ctrl->apst_enabled = true;
1866 } else {
1867 ctrl->apst_enabled = false;
1868 }
1869 } else {
1870 ctrl->apst_enabled = id->apsta;
1871 }
1872 memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd));
1873
1874 if (ctrl->ops->flags & NVME_F_FABRICS) {
1875 ctrl->icdoff = le16_to_cpu(id->icdoff);
1876 ctrl->ioccsz = le32_to_cpu(id->ioccsz);
1877 ctrl->iorcsz = le32_to_cpu(id->iorcsz);
1878 ctrl->maxcmd = le16_to_cpu(id->maxcmd);
1879
1880 /*
1881 * In fabrics we need to verify the cntlid matches the
1882 * admin connect
1883 */
1884 if (ctrl->cntlid != le16_to_cpu(id->cntlid)) {
1885 ret = -EINVAL;
1886 goto out_free;
1887 }
1888
1889 if (!ctrl->opts->discovery_nqn && !ctrl->kas) {
1890 dev_err(ctrl->device,
1891 "keep-alive support is mandatory for fabrics\n");
1892 ret = -EINVAL;
1893 goto out_free;
1894 }
1895 } else {
1896 ctrl->cntlid = le16_to_cpu(id->cntlid);
1897 ctrl->hmpre = le32_to_cpu(id->hmpre);
1898 ctrl->hmmin = le32_to_cpu(id->hmmin);
1899 ctrl->hmminds = le32_to_cpu(id->hmminds);
1900 ctrl->hmmaxd = le16_to_cpu(id->hmmaxd);
1901 }
1902
1903 kfree(id);
1904
1905 if (ctrl->apst_enabled && !prev_apst_enabled)
1906 dev_pm_qos_expose_latency_tolerance(ctrl->device);
1907 else if (!ctrl->apst_enabled && prev_apst_enabled)
1908 dev_pm_qos_hide_latency_tolerance(ctrl->device);
1909
1910 ret = nvme_configure_apst(ctrl);
1911 if (ret < 0)
1912 return ret;
1913
1914 ret = nvme_configure_timestamp(ctrl);
1915 if (ret < 0)
1916 return ret;
1917
1918 ret = nvme_configure_directives(ctrl);
1919 if (ret < 0)
1920 return ret;
1921
1922 ctrl->identified = true;
1923
1924 return 0;
1925
1926 out_free:
1927 kfree(id);
1928 return ret;
1929 }
1930 EXPORT_SYMBOL_GPL(nvme_init_identify);
1931
1932 static int nvme_dev_open(struct inode *inode, struct file *file)
1933 {
1934 struct nvme_ctrl *ctrl;
1935 int instance = iminor(inode);
1936 int ret = -ENODEV;
1937
1938 spin_lock(&dev_list_lock);
1939 list_for_each_entry(ctrl, &nvme_ctrl_list, node) {
1940 if (ctrl->instance != instance)
1941 continue;
1942
1943 if (!ctrl->admin_q) {
1944 ret = -EWOULDBLOCK;
1945 break;
1946 }
1947 if (!kref_get_unless_zero(&ctrl->kref))
1948 break;
1949 file->private_data = ctrl;
1950 ret = 0;
1951 break;
1952 }
1953 spin_unlock(&dev_list_lock);
1954
1955 return ret;
1956 }
1957
1958 static int nvme_dev_release(struct inode *inode, struct file *file)
1959 {
1960 nvme_put_ctrl(file->private_data);
1961 return 0;
1962 }
1963
1964 static int nvme_dev_user_cmd(struct nvme_ctrl *ctrl, void __user *argp)
1965 {
1966 struct nvme_ns *ns;
1967 int ret;
1968
1969 mutex_lock(&ctrl->namespaces_mutex);
1970 if (list_empty(&ctrl->namespaces)) {
1971 ret = -ENOTTY;
1972 goto out_unlock;
1973 }
1974
1975 ns = list_first_entry(&ctrl->namespaces, struct nvme_ns, list);
1976 if (ns != list_last_entry(&ctrl->namespaces, struct nvme_ns, list)) {
1977 dev_warn(ctrl->device,
1978 "NVME_IOCTL_IO_CMD not supported when multiple namespaces present!\n");
1979 ret = -EINVAL;
1980 goto out_unlock;
1981 }
1982
1983 dev_warn(ctrl->device,
1984 "using deprecated NVME_IOCTL_IO_CMD ioctl on the char device!\n");
1985 kref_get(&ns->kref);
1986 mutex_unlock(&ctrl->namespaces_mutex);
1987
1988 ret = nvme_user_cmd(ctrl, ns, argp);
1989 nvme_put_ns(ns);
1990 return ret;
1991
1992 out_unlock:
1993 mutex_unlock(&ctrl->namespaces_mutex);
1994 return ret;
1995 }
1996
1997 static long nvme_dev_ioctl(struct file *file, unsigned int cmd,
1998 unsigned long arg)
1999 {
2000 struct nvme_ctrl *ctrl = file->private_data;
2001 void __user *argp = (void __user *)arg;
2002
2003 switch (cmd) {
2004 case NVME_IOCTL_ADMIN_CMD:
2005 return nvme_user_cmd(ctrl, NULL, argp);
2006 case NVME_IOCTL_IO_CMD:
2007 return nvme_dev_user_cmd(ctrl, argp);
2008 case NVME_IOCTL_RESET:
2009 dev_warn(ctrl->device, "resetting controller\n");
2010 return nvme_reset_ctrl_sync(ctrl);
2011 case NVME_IOCTL_SUBSYS_RESET:
2012 return nvme_reset_subsystem(ctrl);
2013 case NVME_IOCTL_RESCAN:
2014 nvme_queue_scan(ctrl);
2015 return 0;
2016 default:
2017 return -ENOTTY;
2018 }
2019 }
2020
2021 static const struct file_operations nvme_dev_fops = {
2022 .owner = THIS_MODULE,
2023 .open = nvme_dev_open,
2024 .release = nvme_dev_release,
2025 .unlocked_ioctl = nvme_dev_ioctl,
2026 .compat_ioctl = nvme_dev_ioctl,
2027 };
2028
2029 static ssize_t nvme_sysfs_reset(struct device *dev,
2030 struct device_attribute *attr, const char *buf,
2031 size_t count)
2032 {
2033 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2034 int ret;
2035
2036 ret = nvme_reset_ctrl_sync(ctrl);
2037 if (ret < 0)
2038 return ret;
2039 return count;
2040 }
2041 static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset);
2042
2043 static ssize_t nvme_sysfs_rescan(struct device *dev,
2044 struct device_attribute *attr, const char *buf,
2045 size_t count)
2046 {
2047 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2048
2049 nvme_queue_scan(ctrl);
2050 return count;
2051 }
2052 static DEVICE_ATTR(rescan_controller, S_IWUSR, NULL, nvme_sysfs_rescan);
2053
2054 static ssize_t wwid_show(struct device *dev, struct device_attribute *attr,
2055 char *buf)
2056 {
2057 struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
2058 struct nvme_ctrl *ctrl = ns->ctrl;
2059 int serial_len = sizeof(ctrl->serial);
2060 int model_len = sizeof(ctrl->model);
2061
2062 if (!uuid_is_null(&ns->uuid))
2063 return sprintf(buf, "uuid.%pU\n", &ns->uuid);
2064
2065 if (memchr_inv(ns->nguid, 0, sizeof(ns->nguid)))
2066 return sprintf(buf, "eui.%16phN\n", ns->nguid);
2067
2068 if (memchr_inv(ns->eui, 0, sizeof(ns->eui)))
2069 return sprintf(buf, "eui.%8phN\n", ns->eui);
2070
2071 while (serial_len > 0 && (ctrl->serial[serial_len - 1] == ' ' ||
2072 ctrl->serial[serial_len - 1] == '\0'))
2073 serial_len--;
2074 while (model_len > 0 && (ctrl->model[model_len - 1] == ' ' ||
2075 ctrl->model[model_len - 1] == '\0'))
2076 model_len--;
2077
2078 return sprintf(buf, "nvme.%04x-%*phN-%*phN-%08x\n", ctrl->vid,
2079 serial_len, ctrl->serial, model_len, ctrl->model, ns->ns_id);
2080 }
2081 static DEVICE_ATTR(wwid, S_IRUGO, wwid_show, NULL);
2082
2083 static ssize_t nguid_show(struct device *dev, struct device_attribute *attr,
2084 char *buf)
2085 {
2086 struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
2087 return sprintf(buf, "%pU\n", ns->nguid);
2088 }
2089 static DEVICE_ATTR(nguid, S_IRUGO, nguid_show, NULL);
2090
2091 static ssize_t uuid_show(struct device *dev, struct device_attribute *attr,
2092 char *buf)
2093 {
2094 struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
2095
2096 /* For backward compatibility expose the NGUID to userspace if
2097 * we have no UUID set
2098 */
2099 if (uuid_is_null(&ns->uuid)) {
2100 printk_ratelimited(KERN_WARNING
2101 "No UUID available providing old NGUID\n");
2102 return sprintf(buf, "%pU\n", ns->nguid);
2103 }
2104 return sprintf(buf, "%pU\n", &ns->uuid);
2105 }
2106 static DEVICE_ATTR(uuid, S_IRUGO, uuid_show, NULL);
2107
2108 static ssize_t eui_show(struct device *dev, struct device_attribute *attr,
2109 char *buf)
2110 {
2111 struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
2112 return sprintf(buf, "%8phd\n", ns->eui);
2113 }
2114 static DEVICE_ATTR(eui, S_IRUGO, eui_show, NULL);
2115
2116 static ssize_t nsid_show(struct device *dev, struct device_attribute *attr,
2117 char *buf)
2118 {
2119 struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
2120 return sprintf(buf, "%d\n", ns->ns_id);
2121 }
2122 static DEVICE_ATTR(nsid, S_IRUGO, nsid_show, NULL);
2123
2124 static struct attribute *nvme_ns_attrs[] = {
2125 &dev_attr_wwid.attr,
2126 &dev_attr_uuid.attr,
2127 &dev_attr_nguid.attr,
2128 &dev_attr_eui.attr,
2129 &dev_attr_nsid.attr,
2130 NULL,
2131 };
2132
2133 static umode_t nvme_ns_attrs_are_visible(struct kobject *kobj,
2134 struct attribute *a, int n)
2135 {
2136 struct device *dev = container_of(kobj, struct device, kobj);
2137 struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
2138
2139 if (a == &dev_attr_uuid.attr) {
2140 if (uuid_is_null(&ns->uuid) &&
2141 !memchr_inv(ns->nguid, 0, sizeof(ns->nguid)))
2142 return 0;
2143 }
2144 if (a == &dev_attr_nguid.attr) {
2145 if (!memchr_inv(ns->nguid, 0, sizeof(ns->nguid)))
2146 return 0;
2147 }
2148 if (a == &dev_attr_eui.attr) {
2149 if (!memchr_inv(ns->eui, 0, sizeof(ns->eui)))
2150 return 0;
2151 }
2152 return a->mode;
2153 }
2154
2155 static const struct attribute_group nvme_ns_attr_group = {
2156 .attrs = nvme_ns_attrs,
2157 .is_visible = nvme_ns_attrs_are_visible,
2158 };
2159
2160 #define nvme_show_str_function(field) \
2161 static ssize_t field##_show(struct device *dev, \
2162 struct device_attribute *attr, char *buf) \
2163 { \
2164 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); \
2165 return sprintf(buf, "%.*s\n", (int)sizeof(ctrl->field), ctrl->field); \
2166 } \
2167 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
2168
2169 #define nvme_show_int_function(field) \
2170 static ssize_t field##_show(struct device *dev, \
2171 struct device_attribute *attr, char *buf) \
2172 { \
2173 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); \
2174 return sprintf(buf, "%d\n", ctrl->field); \
2175 } \
2176 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
2177
2178 nvme_show_str_function(model);
2179 nvme_show_str_function(serial);
2180 nvme_show_str_function(firmware_rev);
2181 nvme_show_int_function(cntlid);
2182
2183 static ssize_t nvme_sysfs_delete(struct device *dev,
2184 struct device_attribute *attr, const char *buf,
2185 size_t count)
2186 {
2187 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2188
2189 if (device_remove_file_self(dev, attr))
2190 ctrl->ops->delete_ctrl(ctrl);
2191 return count;
2192 }
2193 static DEVICE_ATTR(delete_controller, S_IWUSR, NULL, nvme_sysfs_delete);
2194
2195 static ssize_t nvme_sysfs_show_transport(struct device *dev,
2196 struct device_attribute *attr,
2197 char *buf)
2198 {
2199 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2200
2201 return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->ops->name);
2202 }
2203 static DEVICE_ATTR(transport, S_IRUGO, nvme_sysfs_show_transport, NULL);
2204
2205 static ssize_t nvme_sysfs_show_state(struct device *dev,
2206 struct device_attribute *attr,
2207 char *buf)
2208 {
2209 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2210 static const char *const state_name[] = {
2211 [NVME_CTRL_NEW] = "new",
2212 [NVME_CTRL_LIVE] = "live",
2213 [NVME_CTRL_RESETTING] = "resetting",
2214 [NVME_CTRL_RECONNECTING]= "reconnecting",
2215 [NVME_CTRL_DELETING] = "deleting",
2216 [NVME_CTRL_DEAD] = "dead",
2217 };
2218
2219 if ((unsigned)ctrl->state < ARRAY_SIZE(state_name) &&
2220 state_name[ctrl->state])
2221 return sprintf(buf, "%s\n", state_name[ctrl->state]);
2222
2223 return sprintf(buf, "unknown state\n");
2224 }
2225
2226 static DEVICE_ATTR(state, S_IRUGO, nvme_sysfs_show_state, NULL);
2227
2228 static ssize_t nvme_sysfs_show_subsysnqn(struct device *dev,
2229 struct device_attribute *attr,
2230 char *buf)
2231 {
2232 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2233
2234 return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->subnqn);
2235 }
2236 static DEVICE_ATTR(subsysnqn, S_IRUGO, nvme_sysfs_show_subsysnqn, NULL);
2237
2238 static ssize_t nvme_sysfs_show_address(struct device *dev,
2239 struct device_attribute *attr,
2240 char *buf)
2241 {
2242 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2243
2244 return ctrl->ops->get_address(ctrl, buf, PAGE_SIZE);
2245 }
2246 static DEVICE_ATTR(address, S_IRUGO, nvme_sysfs_show_address, NULL);
2247
2248 static struct attribute *nvme_dev_attrs[] = {
2249 &dev_attr_reset_controller.attr,
2250 &dev_attr_rescan_controller.attr,
2251 &dev_attr_model.attr,
2252 &dev_attr_serial.attr,
2253 &dev_attr_firmware_rev.attr,
2254 &dev_attr_cntlid.attr,
2255 &dev_attr_delete_controller.attr,
2256 &dev_attr_transport.attr,
2257 &dev_attr_subsysnqn.attr,
2258 &dev_attr_address.attr,
2259 &dev_attr_state.attr,
2260 NULL
2261 };
2262
2263 static umode_t nvme_dev_attrs_are_visible(struct kobject *kobj,
2264 struct attribute *a, int n)
2265 {
2266 struct device *dev = container_of(kobj, struct device, kobj);
2267 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2268
2269 if (a == &dev_attr_delete_controller.attr && !ctrl->ops->delete_ctrl)
2270 return 0;
2271 if (a == &dev_attr_address.attr && !ctrl->ops->get_address)
2272 return 0;
2273
2274 return a->mode;
2275 }
2276
2277 static struct attribute_group nvme_dev_attrs_group = {
2278 .attrs = nvme_dev_attrs,
2279 .is_visible = nvme_dev_attrs_are_visible,
2280 };
2281
2282 static const struct attribute_group *nvme_dev_attr_groups[] = {
2283 &nvme_dev_attrs_group,
2284 NULL,
2285 };
2286
2287 static int ns_cmp(void *priv, struct list_head *a, struct list_head *b)
2288 {
2289 struct nvme_ns *nsa = container_of(a, struct nvme_ns, list);
2290 struct nvme_ns *nsb = container_of(b, struct nvme_ns, list);
2291
2292 return nsa->ns_id - nsb->ns_id;
2293 }
2294
2295 static struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid)
2296 {
2297 struct nvme_ns *ns, *ret = NULL;
2298
2299 mutex_lock(&ctrl->namespaces_mutex);
2300 list_for_each_entry(ns, &ctrl->namespaces, list) {
2301 if (ns->ns_id == nsid) {
2302 if (!kref_get_unless_zero(&ns->kref))
2303 continue;
2304 ret = ns;
2305 break;
2306 }
2307 if (ns->ns_id > nsid)
2308 break;
2309 }
2310 mutex_unlock(&ctrl->namespaces_mutex);
2311 return ret;
2312 }
2313
2314 static int nvme_setup_streams_ns(struct nvme_ctrl *ctrl, struct nvme_ns *ns)
2315 {
2316 struct streams_directive_params s;
2317 int ret;
2318
2319 if (!ctrl->nr_streams)
2320 return 0;
2321
2322 ret = nvme_get_stream_params(ctrl, &s, ns->ns_id);
2323 if (ret)
2324 return ret;
2325
2326 ns->sws = le32_to_cpu(s.sws);
2327 ns->sgs = le16_to_cpu(s.sgs);
2328
2329 if (ns->sws) {
2330 unsigned int bs = 1 << ns->lba_shift;
2331
2332 blk_queue_io_min(ns->queue, bs * ns->sws);
2333 if (ns->sgs)
2334 blk_queue_io_opt(ns->queue, bs * ns->sws * ns->sgs);
2335 }
2336
2337 return 0;
2338 }
2339
2340 static void nvme_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid)
2341 {
2342 struct nvme_ns *ns;
2343 struct gendisk *disk;
2344 struct nvme_id_ns *id;
2345 char disk_name[DISK_NAME_LEN];
2346 int node = dev_to_node(ctrl->dev);
2347
2348 ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
2349 if (!ns)
2350 return;
2351
2352 ns->instance = ida_simple_get(&ctrl->ns_ida, 1, 0, GFP_KERNEL);
2353 if (ns->instance < 0)
2354 goto out_free_ns;
2355
2356 ns->queue = blk_mq_init_queue(ctrl->tagset);
2357 if (IS_ERR(ns->queue))
2358 goto out_release_instance;
2359 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, ns->queue);
2360 ns->queue->queuedata = ns;
2361 ns->ctrl = ctrl;
2362
2363 kref_init(&ns->kref);
2364 ns->ns_id = nsid;
2365 ns->lba_shift = 9; /* set to a default value for 512 until disk is validated */
2366
2367 blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift);
2368 nvme_set_queue_limits(ctrl, ns->queue);
2369 nvme_setup_streams_ns(ctrl, ns);
2370
2371 sprintf(disk_name, "nvme%dn%d", ctrl->instance, ns->instance);
2372
2373 id = nvme_identify_ns(ctrl, nsid);
2374 if (!id)
2375 goto out_free_queue;
2376
2377 if (id->ncap == 0)
2378 goto out_free_id;
2379
2380 nvme_report_ns_ids(ctrl, ns->ns_id, id, ns->eui, ns->nguid, &ns->uuid);
2381
2382 if ((ctrl->quirks & NVME_QUIRK_LIGHTNVM) && id->vs[0] == 0x1) {
2383 if (nvme_nvm_register(ns, disk_name, node)) {
2384 dev_warn(ctrl->device, "LightNVM init failure\n");
2385 goto out_free_id;
2386 }
2387 }
2388
2389 disk = alloc_disk_node(0, node);
2390 if (!disk)
2391 goto out_free_id;
2392
2393 disk->fops = &nvme_fops;
2394 disk->private_data = ns;
2395 disk->queue = ns->queue;
2396 disk->flags = GENHD_FL_EXT_DEVT;
2397 memcpy(disk->disk_name, disk_name, DISK_NAME_LEN);
2398 ns->disk = disk;
2399
2400 __nvme_revalidate_disk(disk, id);
2401
2402 mutex_lock(&ctrl->namespaces_mutex);
2403 list_add_tail(&ns->list, &ctrl->namespaces);
2404 mutex_unlock(&ctrl->namespaces_mutex);
2405
2406 kref_get(&ctrl->kref);
2407
2408 kfree(id);
2409
2410 device_add_disk(ctrl->device, ns->disk);
2411 if (sysfs_create_group(&disk_to_dev(ns->disk)->kobj,
2412 &nvme_ns_attr_group))
2413 pr_warn("%s: failed to create sysfs group for identification\n",
2414 ns->disk->disk_name);
2415 if (ns->ndev && nvme_nvm_register_sysfs(ns))
2416 pr_warn("%s: failed to register lightnvm sysfs group for identification\n",
2417 ns->disk->disk_name);
2418 return;
2419 out_free_id:
2420 kfree(id);
2421 out_free_queue:
2422 blk_cleanup_queue(ns->queue);
2423 out_release_instance:
2424 ida_simple_remove(&ctrl->ns_ida, ns->instance);
2425 out_free_ns:
2426 kfree(ns);
2427 }
2428
2429 static void nvme_ns_remove(struct nvme_ns *ns)
2430 {
2431 if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags))
2432 return;
2433
2434 if (ns->disk && ns->disk->flags & GENHD_FL_UP) {
2435 if (blk_get_integrity(ns->disk))
2436 blk_integrity_unregister(ns->disk);
2437 sysfs_remove_group(&disk_to_dev(ns->disk)->kobj,
2438 &nvme_ns_attr_group);
2439 if (ns->ndev)
2440 nvme_nvm_unregister_sysfs(ns);
2441 del_gendisk(ns->disk);
2442 blk_cleanup_queue(ns->queue);
2443 }
2444
2445 mutex_lock(&ns->ctrl->namespaces_mutex);
2446 list_del_init(&ns->list);
2447 mutex_unlock(&ns->ctrl->namespaces_mutex);
2448
2449 nvme_put_ns(ns);
2450 }
2451
2452 static void nvme_validate_ns(struct nvme_ctrl *ctrl, unsigned nsid)
2453 {
2454 struct nvme_ns *ns;
2455
2456 ns = nvme_find_get_ns(ctrl, nsid);
2457 if (ns) {
2458 if (ns->disk && revalidate_disk(ns->disk))
2459 nvme_ns_remove(ns);
2460 nvme_put_ns(ns);
2461 } else
2462 nvme_alloc_ns(ctrl, nsid);
2463 }
2464
2465 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
2466 unsigned nsid)
2467 {
2468 struct nvme_ns *ns, *next;
2469
2470 list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) {
2471 if (ns->ns_id > nsid)
2472 nvme_ns_remove(ns);
2473 }
2474 }
2475
2476 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl, unsigned nn)
2477 {
2478 struct nvme_ns *ns;
2479 __le32 *ns_list;
2480 unsigned i, j, nsid, prev = 0, num_lists = DIV_ROUND_UP(nn, 1024);
2481 int ret = 0;
2482
2483 ns_list = kzalloc(0x1000, GFP_KERNEL);
2484 if (!ns_list)
2485 return -ENOMEM;
2486
2487 for (i = 0; i < num_lists; i++) {
2488 ret = nvme_identify_ns_list(ctrl, prev, ns_list);
2489 if (ret)
2490 goto free;
2491
2492 for (j = 0; j < min(nn, 1024U); j++) {
2493 nsid = le32_to_cpu(ns_list[j]);
2494 if (!nsid)
2495 goto out;
2496
2497 nvme_validate_ns(ctrl, nsid);
2498
2499 while (++prev < nsid) {
2500 ns = nvme_find_get_ns(ctrl, prev);
2501 if (ns) {
2502 nvme_ns_remove(ns);
2503 nvme_put_ns(ns);
2504 }
2505 }
2506 }
2507 nn -= j;
2508 }
2509 out:
2510 nvme_remove_invalid_namespaces(ctrl, prev);
2511 free:
2512 kfree(ns_list);
2513 return ret;
2514 }
2515
2516 static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl, unsigned nn)
2517 {
2518 unsigned i;
2519
2520 for (i = 1; i <= nn; i++)
2521 nvme_validate_ns(ctrl, i);
2522
2523 nvme_remove_invalid_namespaces(ctrl, nn);
2524 }
2525
2526 static void nvme_scan_work(struct work_struct *work)
2527 {
2528 struct nvme_ctrl *ctrl =
2529 container_of(work, struct nvme_ctrl, scan_work);
2530 struct nvme_id_ctrl *id;
2531 unsigned nn;
2532
2533 if (ctrl->state != NVME_CTRL_LIVE)
2534 return;
2535
2536 if (nvme_identify_ctrl(ctrl, &id))
2537 return;
2538
2539 nn = le32_to_cpu(id->nn);
2540 if (ctrl->vs >= NVME_VS(1, 1, 0) &&
2541 !(ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)) {
2542 if (!nvme_scan_ns_list(ctrl, nn))
2543 goto done;
2544 }
2545 nvme_scan_ns_sequential(ctrl, nn);
2546 done:
2547 mutex_lock(&ctrl->namespaces_mutex);
2548 list_sort(NULL, &ctrl->namespaces, ns_cmp);
2549 mutex_unlock(&ctrl->namespaces_mutex);
2550 kfree(id);
2551 }
2552
2553 void nvme_queue_scan(struct nvme_ctrl *ctrl)
2554 {
2555 /*
2556 * Do not queue new scan work when a controller is reset during
2557 * removal.
2558 */
2559 if (ctrl->state == NVME_CTRL_LIVE)
2560 queue_work(nvme_wq, &ctrl->scan_work);
2561 }
2562 EXPORT_SYMBOL_GPL(nvme_queue_scan);
2563
2564 /*
2565 * This function iterates the namespace list unlocked to allow recovery from
2566 * controller failure. It is up to the caller to ensure the namespace list is
2567 * not modified by scan work while this function is executing.
2568 */
2569 void nvme_remove_namespaces(struct nvme_ctrl *ctrl)
2570 {
2571 struct nvme_ns *ns, *next;
2572
2573 /*
2574 * The dead states indicates the controller was not gracefully
2575 * disconnected. In that case, we won't be able to flush any data while
2576 * removing the namespaces' disks; fail all the queues now to avoid
2577 * potentially having to clean up the failed sync later.
2578 */
2579 if (ctrl->state == NVME_CTRL_DEAD)
2580 nvme_kill_queues(ctrl);
2581
2582 list_for_each_entry_safe(ns, next, &ctrl->namespaces, list)
2583 nvme_ns_remove(ns);
2584 }
2585 EXPORT_SYMBOL_GPL(nvme_remove_namespaces);
2586
2587 static void nvme_async_event_work(struct work_struct *work)
2588 {
2589 struct nvme_ctrl *ctrl =
2590 container_of(work, struct nvme_ctrl, async_event_work);
2591
2592 spin_lock_irq(&ctrl->lock);
2593 while (ctrl->state == NVME_CTRL_LIVE && ctrl->event_limit > 0) {
2594 int aer_idx = --ctrl->event_limit;
2595
2596 spin_unlock_irq(&ctrl->lock);
2597 ctrl->ops->submit_async_event(ctrl, aer_idx);
2598 spin_lock_irq(&ctrl->lock);
2599 }
2600 spin_unlock_irq(&ctrl->lock);
2601 }
2602
2603 static bool nvme_ctrl_pp_status(struct nvme_ctrl *ctrl)
2604 {
2605
2606 u32 csts;
2607
2608 if (ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts))
2609 return false;
2610
2611 if (csts == ~0)
2612 return false;
2613
2614 return ((ctrl->ctrl_config & NVME_CC_ENABLE) && (csts & NVME_CSTS_PP));
2615 }
2616
2617 static void nvme_get_fw_slot_info(struct nvme_ctrl *ctrl)
2618 {
2619 struct nvme_command c = { };
2620 struct nvme_fw_slot_info_log *log;
2621
2622 log = kmalloc(sizeof(*log), GFP_KERNEL);
2623 if (!log)
2624 return;
2625
2626 c.common.opcode = nvme_admin_get_log_page;
2627 c.common.nsid = cpu_to_le32(NVME_NSID_ALL);
2628 c.common.cdw10[0] = nvme_get_log_dw10(NVME_LOG_FW_SLOT, sizeof(*log));
2629
2630 if (!nvme_submit_sync_cmd(ctrl->admin_q, &c, log, sizeof(*log)))
2631 dev_warn(ctrl->device,
2632 "Get FW SLOT INFO log error\n");
2633 kfree(log);
2634 }
2635
2636 static void nvme_fw_act_work(struct work_struct *work)
2637 {
2638 struct nvme_ctrl *ctrl = container_of(work,
2639 struct nvme_ctrl, fw_act_work);
2640 unsigned long fw_act_timeout;
2641
2642 if (ctrl->mtfa)
2643 fw_act_timeout = jiffies +
2644 msecs_to_jiffies(ctrl->mtfa * 100);
2645 else
2646 fw_act_timeout = jiffies +
2647 msecs_to_jiffies(admin_timeout * 1000);
2648
2649 nvme_stop_queues(ctrl);
2650 while (nvme_ctrl_pp_status(ctrl)) {
2651 if (time_after(jiffies, fw_act_timeout)) {
2652 dev_warn(ctrl->device,
2653 "Fw activation timeout, reset controller\n");
2654 nvme_reset_ctrl(ctrl);
2655 break;
2656 }
2657 msleep(100);
2658 }
2659
2660 if (ctrl->state != NVME_CTRL_LIVE)
2661 return;
2662
2663 nvme_start_queues(ctrl);
2664 /* read FW slot informationi to clear the AER*/
2665 nvme_get_fw_slot_info(ctrl);
2666 }
2667
2668 void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status,
2669 union nvme_result *res)
2670 {
2671 u32 result = le32_to_cpu(res->u32);
2672 bool done = true;
2673
2674 switch (le16_to_cpu(status) >> 1) {
2675 case NVME_SC_SUCCESS:
2676 done = false;
2677 /*FALLTHRU*/
2678 case NVME_SC_ABORT_REQ:
2679 ++ctrl->event_limit;
2680 if (ctrl->state == NVME_CTRL_LIVE)
2681 queue_work(nvme_wq, &ctrl->async_event_work);
2682 break;
2683 default:
2684 break;
2685 }
2686
2687 if (done)
2688 return;
2689
2690 switch (result & 0xff07) {
2691 case NVME_AER_NOTICE_NS_CHANGED:
2692 dev_info(ctrl->device, "rescanning\n");
2693 nvme_queue_scan(ctrl);
2694 break;
2695 case NVME_AER_NOTICE_FW_ACT_STARTING:
2696 queue_work(nvme_wq, &ctrl->fw_act_work);
2697 break;
2698 default:
2699 dev_warn(ctrl->device, "async event result %08x\n", result);
2700 }
2701 }
2702 EXPORT_SYMBOL_GPL(nvme_complete_async_event);
2703
2704 void nvme_queue_async_events(struct nvme_ctrl *ctrl)
2705 {
2706 ctrl->event_limit = NVME_NR_AERS;
2707 queue_work(nvme_wq, &ctrl->async_event_work);
2708 }
2709 EXPORT_SYMBOL_GPL(nvme_queue_async_events);
2710
2711 static DEFINE_IDA(nvme_instance_ida);
2712
2713 static int nvme_set_instance(struct nvme_ctrl *ctrl)
2714 {
2715 int instance, error;
2716
2717 do {
2718 if (!ida_pre_get(&nvme_instance_ida, GFP_KERNEL))
2719 return -ENODEV;
2720
2721 spin_lock(&dev_list_lock);
2722 error = ida_get_new(&nvme_instance_ida, &instance);
2723 spin_unlock(&dev_list_lock);
2724 } while (error == -EAGAIN);
2725
2726 if (error)
2727 return -ENODEV;
2728
2729 ctrl->instance = instance;
2730 return 0;
2731 }
2732
2733 static void nvme_release_instance(struct nvme_ctrl *ctrl)
2734 {
2735 spin_lock(&dev_list_lock);
2736 ida_remove(&nvme_instance_ida, ctrl->instance);
2737 spin_unlock(&dev_list_lock);
2738 }
2739
2740 void nvme_stop_ctrl(struct nvme_ctrl *ctrl)
2741 {
2742 nvme_stop_keep_alive(ctrl);
2743 flush_work(&ctrl->async_event_work);
2744 flush_work(&ctrl->scan_work);
2745 cancel_work_sync(&ctrl->fw_act_work);
2746 }
2747 EXPORT_SYMBOL_GPL(nvme_stop_ctrl);
2748
2749 void nvme_start_ctrl(struct nvme_ctrl *ctrl)
2750 {
2751 if (ctrl->kato)
2752 nvme_start_keep_alive(ctrl);
2753
2754 if (ctrl->queue_count > 1) {
2755 nvme_queue_scan(ctrl);
2756 nvme_queue_async_events(ctrl);
2757 nvme_start_queues(ctrl);
2758 }
2759 }
2760 EXPORT_SYMBOL_GPL(nvme_start_ctrl);
2761
2762 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl)
2763 {
2764 device_destroy(nvme_class, MKDEV(nvme_char_major, ctrl->instance));
2765
2766 spin_lock(&dev_list_lock);
2767 list_del(&ctrl->node);
2768 spin_unlock(&dev_list_lock);
2769 }
2770 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl);
2771
2772 static void nvme_free_ctrl(struct kref *kref)
2773 {
2774 struct nvme_ctrl *ctrl = container_of(kref, struct nvme_ctrl, kref);
2775
2776 put_device(ctrl->device);
2777 nvme_release_instance(ctrl);
2778 ida_destroy(&ctrl->ns_ida);
2779
2780 ctrl->ops->free_ctrl(ctrl);
2781 }
2782
2783 void nvme_put_ctrl(struct nvme_ctrl *ctrl)
2784 {
2785 kref_put(&ctrl->kref, nvme_free_ctrl);
2786 }
2787 EXPORT_SYMBOL_GPL(nvme_put_ctrl);
2788
2789 /*
2790 * Initialize a NVMe controller structures. This needs to be called during
2791 * earliest initialization so that we have the initialized structured around
2792 * during probing.
2793 */
2794 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
2795 const struct nvme_ctrl_ops *ops, unsigned long quirks)
2796 {
2797 int ret;
2798
2799 ctrl->state = NVME_CTRL_NEW;
2800 spin_lock_init(&ctrl->lock);
2801 INIT_LIST_HEAD(&ctrl->namespaces);
2802 mutex_init(&ctrl->namespaces_mutex);
2803 kref_init(&ctrl->kref);
2804 ctrl->dev = dev;
2805 ctrl->ops = ops;
2806 ctrl->quirks = quirks;
2807 INIT_WORK(&ctrl->scan_work, nvme_scan_work);
2808 INIT_WORK(&ctrl->async_event_work, nvme_async_event_work);
2809 INIT_WORK(&ctrl->fw_act_work, nvme_fw_act_work);
2810
2811 ret = nvme_set_instance(ctrl);
2812 if (ret)
2813 goto out;
2814
2815 ctrl->device = device_create_with_groups(nvme_class, ctrl->dev,
2816 MKDEV(nvme_char_major, ctrl->instance),
2817 ctrl, nvme_dev_attr_groups,
2818 "nvme%d", ctrl->instance);
2819 if (IS_ERR(ctrl->device)) {
2820 ret = PTR_ERR(ctrl->device);
2821 goto out_release_instance;
2822 }
2823 get_device(ctrl->device);
2824 ida_init(&ctrl->ns_ida);
2825
2826 spin_lock(&dev_list_lock);
2827 list_add_tail(&ctrl->node, &nvme_ctrl_list);
2828 spin_unlock(&dev_list_lock);
2829
2830 /*
2831 * Initialize latency tolerance controls. The sysfs files won't
2832 * be visible to userspace unless the device actually supports APST.
2833 */
2834 ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance;
2835 dev_pm_qos_update_user_latency_tolerance(ctrl->device,
2836 min(default_ps_max_latency_us, (unsigned long)S32_MAX));
2837
2838 return 0;
2839 out_release_instance:
2840 nvme_release_instance(ctrl);
2841 out:
2842 return ret;
2843 }
2844 EXPORT_SYMBOL_GPL(nvme_init_ctrl);
2845
2846 /**
2847 * nvme_kill_queues(): Ends all namespace queues
2848 * @ctrl: the dead controller that needs to end
2849 *
2850 * Call this function when the driver determines it is unable to get the
2851 * controller in a state capable of servicing IO.
2852 */
2853 void nvme_kill_queues(struct nvme_ctrl *ctrl)
2854 {
2855 struct nvme_ns *ns;
2856
2857 mutex_lock(&ctrl->namespaces_mutex);
2858
2859 /* Forcibly unquiesce queues to avoid blocking dispatch */
2860 if (ctrl->admin_q)
2861 blk_mq_unquiesce_queue(ctrl->admin_q);
2862
2863 list_for_each_entry(ns, &ctrl->namespaces, list) {
2864 /*
2865 * Revalidating a dead namespace sets capacity to 0. This will
2866 * end buffered writers dirtying pages that can't be synced.
2867 */
2868 if (!ns->disk || test_and_set_bit(NVME_NS_DEAD, &ns->flags))
2869 continue;
2870 revalidate_disk(ns->disk);
2871 blk_set_queue_dying(ns->queue);
2872
2873 /* Forcibly unquiesce queues to avoid blocking dispatch */
2874 blk_mq_unquiesce_queue(ns->queue);
2875 }
2876 mutex_unlock(&ctrl->namespaces_mutex);
2877 }
2878 EXPORT_SYMBOL_GPL(nvme_kill_queues);
2879
2880 void nvme_unfreeze(struct nvme_ctrl *ctrl)
2881 {
2882 struct nvme_ns *ns;
2883
2884 mutex_lock(&ctrl->namespaces_mutex);
2885 list_for_each_entry(ns, &ctrl->namespaces, list)
2886 blk_mq_unfreeze_queue(ns->queue);
2887 mutex_unlock(&ctrl->namespaces_mutex);
2888 }
2889 EXPORT_SYMBOL_GPL(nvme_unfreeze);
2890
2891 void nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout)
2892 {
2893 struct nvme_ns *ns;
2894
2895 mutex_lock(&ctrl->namespaces_mutex);
2896 list_for_each_entry(ns, &ctrl->namespaces, list) {
2897 timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout);
2898 if (timeout <= 0)
2899 break;
2900 }
2901 mutex_unlock(&ctrl->namespaces_mutex);
2902 }
2903 EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout);
2904
2905 void nvme_wait_freeze(struct nvme_ctrl *ctrl)
2906 {
2907 struct nvme_ns *ns;
2908
2909 mutex_lock(&ctrl->namespaces_mutex);
2910 list_for_each_entry(ns, &ctrl->namespaces, list)
2911 blk_mq_freeze_queue_wait(ns->queue);
2912 mutex_unlock(&ctrl->namespaces_mutex);
2913 }
2914 EXPORT_SYMBOL_GPL(nvme_wait_freeze);
2915
2916 void nvme_start_freeze(struct nvme_ctrl *ctrl)
2917 {
2918 struct nvme_ns *ns;
2919
2920 mutex_lock(&ctrl->namespaces_mutex);
2921 list_for_each_entry(ns, &ctrl->namespaces, list)
2922 blk_freeze_queue_start(ns->queue);
2923 mutex_unlock(&ctrl->namespaces_mutex);
2924 }
2925 EXPORT_SYMBOL_GPL(nvme_start_freeze);
2926
2927 void nvme_stop_queues(struct nvme_ctrl *ctrl)
2928 {
2929 struct nvme_ns *ns;
2930
2931 mutex_lock(&ctrl->namespaces_mutex);
2932 list_for_each_entry(ns, &ctrl->namespaces, list)
2933 blk_mq_quiesce_queue(ns->queue);
2934 mutex_unlock(&ctrl->namespaces_mutex);
2935 }
2936 EXPORT_SYMBOL_GPL(nvme_stop_queues);
2937
2938 void nvme_start_queues(struct nvme_ctrl *ctrl)
2939 {
2940 struct nvme_ns *ns;
2941
2942 mutex_lock(&ctrl->namespaces_mutex);
2943 list_for_each_entry(ns, &ctrl->namespaces, list)
2944 blk_mq_unquiesce_queue(ns->queue);
2945 mutex_unlock(&ctrl->namespaces_mutex);
2946 }
2947 EXPORT_SYMBOL_GPL(nvme_start_queues);
2948
2949 int __init nvme_core_init(void)
2950 {
2951 int result;
2952
2953 nvme_wq = alloc_workqueue("nvme-wq",
2954 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
2955 if (!nvme_wq)
2956 return -ENOMEM;
2957
2958 result = __register_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme",
2959 &nvme_dev_fops);
2960 if (result < 0)
2961 goto destroy_wq;
2962 else if (result > 0)
2963 nvme_char_major = result;
2964
2965 nvme_class = class_create(THIS_MODULE, "nvme");
2966 if (IS_ERR(nvme_class)) {
2967 result = PTR_ERR(nvme_class);
2968 goto unregister_chrdev;
2969 }
2970
2971 return 0;
2972
2973 unregister_chrdev:
2974 __unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme");
2975 destroy_wq:
2976 destroy_workqueue(nvme_wq);
2977 return result;
2978 }
2979
2980 void nvme_core_exit(void)
2981 {
2982 class_destroy(nvme_class);
2983 __unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme");
2984 destroy_workqueue(nvme_wq);
2985 }
2986
2987 MODULE_LICENSE("GPL");
2988 MODULE_VERSION("1.0");
2989 module_init(nvme_core_init);
2990 module_exit(nvme_core_exit);