IRQ: Maintain regs pointer globally rather than passing to IRQ handlers
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / net / wireless / zd1211rw / zd_usb.c
1 /* zd_usb.c
2 *
3 * This program is free software; you can redistribute it and/or modify
4 * it under the terms of the GNU General Public License as published by
5 * the Free Software Foundation; either version 2 of the License, or
6 * (at your option) any later version.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public License
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
16 */
17
18 #include <asm/unaligned.h>
19 #include <linux/kernel.h>
20 #include <linux/init.h>
21 #include <linux/module.h>
22 #include <linux/firmware.h>
23 #include <linux/device.h>
24 #include <linux/errno.h>
25 #include <linux/skbuff.h>
26 #include <linux/usb.h>
27 #include <linux/workqueue.h>
28 #include <net/ieee80211.h>
29
30 #include "zd_def.h"
31 #include "zd_netdev.h"
32 #include "zd_mac.h"
33 #include "zd_usb.h"
34 #include "zd_util.h"
35
36 static struct usb_device_id usb_ids[] = {
37 /* ZD1211 */
38 { USB_DEVICE(0x0ace, 0x1211), .driver_info = DEVICE_ZD1211 },
39 { USB_DEVICE(0x07b8, 0x6001), .driver_info = DEVICE_ZD1211 },
40 { USB_DEVICE(0x126f, 0xa006), .driver_info = DEVICE_ZD1211 },
41 { USB_DEVICE(0x6891, 0xa727), .driver_info = DEVICE_ZD1211 },
42 { USB_DEVICE(0x0df6, 0x9071), .driver_info = DEVICE_ZD1211 },
43 { USB_DEVICE(0x157e, 0x300b), .driver_info = DEVICE_ZD1211 },
44 { USB_DEVICE(0x079b, 0x004a), .driver_info = DEVICE_ZD1211 },
45 { USB_DEVICE(0x1740, 0x2000), .driver_info = DEVICE_ZD1211 },
46 { USB_DEVICE(0x157e, 0x3204), .driver_info = DEVICE_ZD1211 },
47 { USB_DEVICE(0x0586, 0x3402), .driver_info = DEVICE_ZD1211 },
48 { USB_DEVICE(0x0b3b, 0x5630), .driver_info = DEVICE_ZD1211 },
49 { USB_DEVICE(0x0b05, 0x170c), .driver_info = DEVICE_ZD1211 },
50 /* ZD1211B */
51 { USB_DEVICE(0x0ace, 0x1215), .driver_info = DEVICE_ZD1211B },
52 { USB_DEVICE(0x157e, 0x300d), .driver_info = DEVICE_ZD1211B },
53 { USB_DEVICE(0x079b, 0x0062), .driver_info = DEVICE_ZD1211B },
54 { USB_DEVICE(0x1582, 0x6003), .driver_info = DEVICE_ZD1211B },
55 /* "Driverless" devices that need ejecting */
56 { USB_DEVICE(0x0ace, 0x2011), .driver_info = DEVICE_INSTALLER },
57 {}
58 };
59
60 MODULE_LICENSE("GPL");
61 MODULE_DESCRIPTION("USB driver for devices with the ZD1211 chip.");
62 MODULE_AUTHOR("Ulrich Kunitz");
63 MODULE_AUTHOR("Daniel Drake");
64 MODULE_VERSION("1.0");
65 MODULE_DEVICE_TABLE(usb, usb_ids);
66
67 #define FW_ZD1211_PREFIX "zd1211/zd1211_"
68 #define FW_ZD1211B_PREFIX "zd1211/zd1211b_"
69
70 /* register address handling */
71
72 #ifdef DEBUG
73 static int check_addr(struct zd_usb *usb, zd_addr_t addr)
74 {
75 u32 base = ZD_ADDR_BASE(addr);
76 u32 offset = ZD_OFFSET(addr);
77
78 if ((u32)addr & ADDR_ZERO_MASK)
79 goto invalid_address;
80 switch (base) {
81 case USB_BASE:
82 break;
83 case CR_BASE:
84 if (offset > CR_MAX_OFFSET) {
85 dev_dbg(zd_usb_dev(usb),
86 "CR offset %#010x larger than"
87 " CR_MAX_OFFSET %#10x\n",
88 offset, CR_MAX_OFFSET);
89 goto invalid_address;
90 }
91 if (offset & 1) {
92 dev_dbg(zd_usb_dev(usb),
93 "CR offset %#010x is not a multiple of 2\n",
94 offset);
95 goto invalid_address;
96 }
97 break;
98 case E2P_BASE:
99 if (offset > E2P_MAX_OFFSET) {
100 dev_dbg(zd_usb_dev(usb),
101 "E2P offset %#010x larger than"
102 " E2P_MAX_OFFSET %#010x\n",
103 offset, E2P_MAX_OFFSET);
104 goto invalid_address;
105 }
106 break;
107 case FW_BASE:
108 if (!usb->fw_base_offset) {
109 dev_dbg(zd_usb_dev(usb),
110 "ERROR: fw base offset has not been set\n");
111 return -EAGAIN;
112 }
113 if (offset > FW_MAX_OFFSET) {
114 dev_dbg(zd_usb_dev(usb),
115 "FW offset %#10x is larger than"
116 " FW_MAX_OFFSET %#010x\n",
117 offset, FW_MAX_OFFSET);
118 goto invalid_address;
119 }
120 break;
121 default:
122 dev_dbg(zd_usb_dev(usb),
123 "address has unsupported base %#010x\n", addr);
124 goto invalid_address;
125 }
126
127 return 0;
128 invalid_address:
129 dev_dbg(zd_usb_dev(usb),
130 "ERROR: invalid address: %#010x\n", addr);
131 return -EINVAL;
132 }
133 #endif /* DEBUG */
134
135 static u16 usb_addr(struct zd_usb *usb, zd_addr_t addr)
136 {
137 u32 base;
138 u16 offset;
139
140 base = ZD_ADDR_BASE(addr);
141 offset = ZD_OFFSET(addr);
142
143 ZD_ASSERT(check_addr(usb, addr) == 0);
144
145 switch (base) {
146 case CR_BASE:
147 offset += CR_BASE_OFFSET;
148 break;
149 case E2P_BASE:
150 offset += E2P_BASE_OFFSET;
151 break;
152 case FW_BASE:
153 offset += usb->fw_base_offset;
154 break;
155 }
156
157 return offset;
158 }
159
160 /* USB device initialization */
161
162 static int request_fw_file(
163 const struct firmware **fw, const char *name, struct device *device)
164 {
165 int r;
166
167 dev_dbg_f(device, "fw name %s\n", name);
168
169 r = request_firmware(fw, name, device);
170 if (r)
171 dev_err(device,
172 "Could not load firmware file %s. Error number %d\n",
173 name, r);
174 return r;
175 }
176
177 static inline u16 get_bcdDevice(const struct usb_device *udev)
178 {
179 return le16_to_cpu(udev->descriptor.bcdDevice);
180 }
181
182 enum upload_code_flags {
183 REBOOT = 1,
184 };
185
186 /* Ensures that MAX_TRANSFER_SIZE is even. */
187 #define MAX_TRANSFER_SIZE (USB_MAX_TRANSFER_SIZE & ~1)
188
189 static int upload_code(struct usb_device *udev,
190 const u8 *data, size_t size, u16 code_offset, int flags)
191 {
192 u8 *p;
193 int r;
194
195 /* USB request blocks need "kmalloced" buffers.
196 */
197 p = kmalloc(MAX_TRANSFER_SIZE, GFP_KERNEL);
198 if (!p) {
199 dev_err(&udev->dev, "out of memory\n");
200 r = -ENOMEM;
201 goto error;
202 }
203
204 size &= ~1;
205 while (size > 0) {
206 size_t transfer_size = size <= MAX_TRANSFER_SIZE ?
207 size : MAX_TRANSFER_SIZE;
208
209 dev_dbg_f(&udev->dev, "transfer size %zu\n", transfer_size);
210
211 memcpy(p, data, transfer_size);
212 r = usb_control_msg(udev, usb_sndctrlpipe(udev, 0),
213 USB_REQ_FIRMWARE_DOWNLOAD,
214 USB_DIR_OUT | USB_TYPE_VENDOR,
215 code_offset, 0, p, transfer_size, 1000 /* ms */);
216 if (r < 0) {
217 dev_err(&udev->dev,
218 "USB control request for firmware upload"
219 " failed. Error number %d\n", r);
220 goto error;
221 }
222 transfer_size = r & ~1;
223
224 size -= transfer_size;
225 data += transfer_size;
226 code_offset += transfer_size/sizeof(u16);
227 }
228
229 if (flags & REBOOT) {
230 u8 ret;
231
232 r = usb_control_msg(udev, usb_rcvctrlpipe(udev, 0),
233 USB_REQ_FIRMWARE_CONFIRM,
234 USB_DIR_IN | USB_TYPE_VENDOR,
235 0, 0, &ret, sizeof(ret), 5000 /* ms */);
236 if (r != sizeof(ret)) {
237 dev_err(&udev->dev,
238 "control request firmeware confirmation failed."
239 " Return value %d\n", r);
240 if (r >= 0)
241 r = -ENODEV;
242 goto error;
243 }
244 if (ret & 0x80) {
245 dev_err(&udev->dev,
246 "Internal error while downloading."
247 " Firmware confirm return value %#04x\n",
248 (unsigned int)ret);
249 r = -ENODEV;
250 goto error;
251 }
252 dev_dbg_f(&udev->dev, "firmware confirm return value %#04x\n",
253 (unsigned int)ret);
254 }
255
256 r = 0;
257 error:
258 kfree(p);
259 return r;
260 }
261
262 static u16 get_word(const void *data, u16 offset)
263 {
264 const __le16 *p = data;
265 return le16_to_cpu(p[offset]);
266 }
267
268 static char *get_fw_name(char *buffer, size_t size, u8 device_type,
269 const char* postfix)
270 {
271 scnprintf(buffer, size, "%s%s",
272 device_type == DEVICE_ZD1211B ?
273 FW_ZD1211B_PREFIX : FW_ZD1211_PREFIX,
274 postfix);
275 return buffer;
276 }
277
278 static int handle_version_mismatch(struct usb_device *udev, u8 device_type,
279 const struct firmware *ub_fw)
280 {
281 const struct firmware *ur_fw = NULL;
282 int offset;
283 int r = 0;
284 char fw_name[128];
285
286 r = request_fw_file(&ur_fw,
287 get_fw_name(fw_name, sizeof(fw_name), device_type, "ur"),
288 &udev->dev);
289 if (r)
290 goto error;
291
292 r = upload_code(udev, ur_fw->data, ur_fw->size, FW_START_OFFSET,
293 REBOOT);
294 if (r)
295 goto error;
296
297 offset = ((EEPROM_REGS_OFFSET + EEPROM_REGS_SIZE) * sizeof(u16));
298 r = upload_code(udev, ub_fw->data + offset, ub_fw->size - offset,
299 E2P_BASE_OFFSET + EEPROM_REGS_SIZE, REBOOT);
300
301 /* At this point, the vendor driver downloads the whole firmware
302 * image, hacks around with version IDs, and uploads it again,
303 * completely overwriting the boot code. We do not do this here as
304 * it is not required on any tested devices, and it is suspected to
305 * cause problems. */
306 error:
307 release_firmware(ur_fw);
308 return r;
309 }
310
311 static int upload_firmware(struct usb_device *udev, u8 device_type)
312 {
313 int r;
314 u16 fw_bcdDevice;
315 u16 bcdDevice;
316 const struct firmware *ub_fw = NULL;
317 const struct firmware *uph_fw = NULL;
318 char fw_name[128];
319
320 bcdDevice = get_bcdDevice(udev);
321
322 r = request_fw_file(&ub_fw,
323 get_fw_name(fw_name, sizeof(fw_name), device_type, "ub"),
324 &udev->dev);
325 if (r)
326 goto error;
327
328 fw_bcdDevice = get_word(ub_fw->data, EEPROM_REGS_OFFSET);
329
330 if (fw_bcdDevice != bcdDevice) {
331 dev_info(&udev->dev,
332 "firmware version %#06x and device bootcode version "
333 "%#06x differ\n", fw_bcdDevice, bcdDevice);
334 if (bcdDevice <= 0x4313)
335 dev_warn(&udev->dev, "device has old bootcode, please "
336 "report success or failure\n");
337
338 r = handle_version_mismatch(udev, device_type, ub_fw);
339 if (r)
340 goto error;
341 } else {
342 dev_dbg_f(&udev->dev,
343 "firmware device id %#06x is equal to the "
344 "actual device id\n", fw_bcdDevice);
345 }
346
347
348 r = request_fw_file(&uph_fw,
349 get_fw_name(fw_name, sizeof(fw_name), device_type, "uphr"),
350 &udev->dev);
351 if (r)
352 goto error;
353
354 r = upload_code(udev, uph_fw->data, uph_fw->size, FW_START_OFFSET,
355 REBOOT);
356 if (r) {
357 dev_err(&udev->dev,
358 "Could not upload firmware code uph. Error number %d\n",
359 r);
360 }
361
362 /* FALL-THROUGH */
363 error:
364 release_firmware(ub_fw);
365 release_firmware(uph_fw);
366 return r;
367 }
368
369 static void disable_read_regs_int(struct zd_usb *usb)
370 {
371 struct zd_usb_interrupt *intr = &usb->intr;
372
373 spin_lock(&intr->lock);
374 intr->read_regs_enabled = 0;
375 spin_unlock(&intr->lock);
376 }
377
378 #define urb_dev(urb) (&(urb)->dev->dev)
379
380 static inline void handle_regs_int(struct urb *urb)
381 {
382 struct zd_usb *usb = urb->context;
383 struct zd_usb_interrupt *intr = &usb->intr;
384 int len;
385
386 ZD_ASSERT(in_interrupt());
387 spin_lock(&intr->lock);
388
389 if (intr->read_regs_enabled) {
390 intr->read_regs.length = len = urb->actual_length;
391
392 if (len > sizeof(intr->read_regs.buffer))
393 len = sizeof(intr->read_regs.buffer);
394 memcpy(intr->read_regs.buffer, urb->transfer_buffer, len);
395 intr->read_regs_enabled = 0;
396 complete(&intr->read_regs.completion);
397 goto out;
398 }
399
400 dev_dbg_f(urb_dev(urb), "regs interrupt ignored\n");
401 out:
402 spin_unlock(&intr->lock);
403 }
404
405 static inline void handle_retry_failed_int(struct urb *urb)
406 {
407 dev_dbg_f(urb_dev(urb), "retry failed interrupt\n");
408 }
409
410
411 static void int_urb_complete(struct urb *urb)
412 {
413 int r;
414 struct usb_int_header *hdr;
415
416 switch (urb->status) {
417 case 0:
418 break;
419 case -ESHUTDOWN:
420 case -EINVAL:
421 case -ENODEV:
422 case -ENOENT:
423 case -ECONNRESET:
424 case -EPIPE:
425 goto kfree;
426 default:
427 goto resubmit;
428 }
429
430 if (urb->actual_length < sizeof(hdr)) {
431 dev_dbg_f(urb_dev(urb), "error: urb %p to small\n", urb);
432 goto resubmit;
433 }
434
435 hdr = urb->transfer_buffer;
436 if (hdr->type != USB_INT_TYPE) {
437 dev_dbg_f(urb_dev(urb), "error: urb %p wrong type\n", urb);
438 goto resubmit;
439 }
440
441 switch (hdr->id) {
442 case USB_INT_ID_REGS:
443 handle_regs_int(urb);
444 break;
445 case USB_INT_ID_RETRY_FAILED:
446 handle_retry_failed_int(urb);
447 break;
448 default:
449 dev_dbg_f(urb_dev(urb), "error: urb %p unknown id %x\n", urb,
450 (unsigned int)hdr->id);
451 goto resubmit;
452 }
453
454 resubmit:
455 r = usb_submit_urb(urb, GFP_ATOMIC);
456 if (r) {
457 dev_dbg_f(urb_dev(urb), "resubmit urb %p\n", urb);
458 goto kfree;
459 }
460 return;
461 kfree:
462 kfree(urb->transfer_buffer);
463 }
464
465 static inline int int_urb_interval(struct usb_device *udev)
466 {
467 switch (udev->speed) {
468 case USB_SPEED_HIGH:
469 return 4;
470 case USB_SPEED_LOW:
471 return 10;
472 case USB_SPEED_FULL:
473 default:
474 return 1;
475 }
476 }
477
478 static inline int usb_int_enabled(struct zd_usb *usb)
479 {
480 unsigned long flags;
481 struct zd_usb_interrupt *intr = &usb->intr;
482 struct urb *urb;
483
484 spin_lock_irqsave(&intr->lock, flags);
485 urb = intr->urb;
486 spin_unlock_irqrestore(&intr->lock, flags);
487 return urb != NULL;
488 }
489
490 int zd_usb_enable_int(struct zd_usb *usb)
491 {
492 int r;
493 struct usb_device *udev;
494 struct zd_usb_interrupt *intr = &usb->intr;
495 void *transfer_buffer = NULL;
496 struct urb *urb;
497
498 dev_dbg_f(zd_usb_dev(usb), "\n");
499
500 urb = usb_alloc_urb(0, GFP_NOFS);
501 if (!urb) {
502 r = -ENOMEM;
503 goto out;
504 }
505
506 ZD_ASSERT(!irqs_disabled());
507 spin_lock_irq(&intr->lock);
508 if (intr->urb) {
509 spin_unlock_irq(&intr->lock);
510 r = 0;
511 goto error_free_urb;
512 }
513 intr->urb = urb;
514 spin_unlock_irq(&intr->lock);
515
516 /* TODO: make it a DMA buffer */
517 r = -ENOMEM;
518 transfer_buffer = kmalloc(USB_MAX_EP_INT_BUFFER, GFP_NOFS);
519 if (!transfer_buffer) {
520 dev_dbg_f(zd_usb_dev(usb),
521 "couldn't allocate transfer_buffer\n");
522 goto error_set_urb_null;
523 }
524
525 udev = zd_usb_to_usbdev(usb);
526 usb_fill_int_urb(urb, udev, usb_rcvintpipe(udev, EP_INT_IN),
527 transfer_buffer, USB_MAX_EP_INT_BUFFER,
528 int_urb_complete, usb,
529 intr->interval);
530
531 dev_dbg_f(zd_usb_dev(usb), "submit urb %p\n", intr->urb);
532 r = usb_submit_urb(urb, GFP_NOFS);
533 if (r) {
534 dev_dbg_f(zd_usb_dev(usb),
535 "Couldn't submit urb. Error number %d\n", r);
536 goto error;
537 }
538
539 return 0;
540 error:
541 kfree(transfer_buffer);
542 error_set_urb_null:
543 spin_lock_irq(&intr->lock);
544 intr->urb = NULL;
545 spin_unlock_irq(&intr->lock);
546 error_free_urb:
547 usb_free_urb(urb);
548 out:
549 return r;
550 }
551
552 void zd_usb_disable_int(struct zd_usb *usb)
553 {
554 unsigned long flags;
555 struct zd_usb_interrupt *intr = &usb->intr;
556 struct urb *urb;
557
558 spin_lock_irqsave(&intr->lock, flags);
559 urb = intr->urb;
560 if (!urb) {
561 spin_unlock_irqrestore(&intr->lock, flags);
562 return;
563 }
564 intr->urb = NULL;
565 spin_unlock_irqrestore(&intr->lock, flags);
566
567 usb_kill_urb(urb);
568 dev_dbg_f(zd_usb_dev(usb), "urb %p killed\n", urb);
569 usb_free_urb(urb);
570 }
571
572 static void handle_rx_packet(struct zd_usb *usb, const u8 *buffer,
573 unsigned int length)
574 {
575 int i;
576 struct zd_mac *mac = zd_usb_to_mac(usb);
577 const struct rx_length_info *length_info;
578
579 if (length < sizeof(struct rx_length_info)) {
580 /* It's not a complete packet anyhow. */
581 return;
582 }
583 length_info = (struct rx_length_info *)
584 (buffer + length - sizeof(struct rx_length_info));
585
586 /* It might be that three frames are merged into a single URB
587 * transaction. We have to check for the length info tag.
588 *
589 * While testing we discovered that length_info might be unaligned,
590 * because if USB transactions are merged, the last packet will not
591 * be padded. Unaligned access might also happen if the length_info
592 * structure is not present.
593 */
594 if (get_unaligned(&length_info->tag) == cpu_to_le16(RX_LENGTH_INFO_TAG))
595 {
596 unsigned int l, k, n;
597 for (i = 0, l = 0;; i++) {
598 k = le16_to_cpu(get_unaligned(&length_info->length[i]));
599 n = l+k;
600 if (n > length)
601 return;
602 zd_mac_rx(mac, buffer+l, k);
603 if (i >= 2)
604 return;
605 l = (n+3) & ~3;
606 }
607 } else {
608 zd_mac_rx(mac, buffer, length);
609 }
610 }
611
612 static void rx_urb_complete(struct urb *urb)
613 {
614 struct zd_usb *usb;
615 struct zd_usb_rx *rx;
616 const u8 *buffer;
617 unsigned int length;
618
619 switch (urb->status) {
620 case 0:
621 break;
622 case -ESHUTDOWN:
623 case -EINVAL:
624 case -ENODEV:
625 case -ENOENT:
626 case -ECONNRESET:
627 case -EPIPE:
628 return;
629 default:
630 dev_dbg_f(urb_dev(urb), "urb %p error %d\n", urb, urb->status);
631 goto resubmit;
632 }
633
634 buffer = urb->transfer_buffer;
635 length = urb->actual_length;
636 usb = urb->context;
637 rx = &usb->rx;
638
639 if (length%rx->usb_packet_size > rx->usb_packet_size-4) {
640 /* If there is an old first fragment, we don't care. */
641 dev_dbg_f(urb_dev(urb), "*** first fragment ***\n");
642 ZD_ASSERT(length <= ARRAY_SIZE(rx->fragment));
643 spin_lock(&rx->lock);
644 memcpy(rx->fragment, buffer, length);
645 rx->fragment_length = length;
646 spin_unlock(&rx->lock);
647 goto resubmit;
648 }
649
650 spin_lock(&rx->lock);
651 if (rx->fragment_length > 0) {
652 /* We are on a second fragment, we believe */
653 ZD_ASSERT(length + rx->fragment_length <=
654 ARRAY_SIZE(rx->fragment));
655 dev_dbg_f(urb_dev(urb), "*** second fragment ***\n");
656 memcpy(rx->fragment+rx->fragment_length, buffer, length);
657 handle_rx_packet(usb, rx->fragment,
658 rx->fragment_length + length);
659 rx->fragment_length = 0;
660 spin_unlock(&rx->lock);
661 } else {
662 spin_unlock(&rx->lock);
663 handle_rx_packet(usb, buffer, length);
664 }
665
666 resubmit:
667 usb_submit_urb(urb, GFP_ATOMIC);
668 }
669
670 static struct urb *alloc_urb(struct zd_usb *usb)
671 {
672 struct usb_device *udev = zd_usb_to_usbdev(usb);
673 struct urb *urb;
674 void *buffer;
675
676 urb = usb_alloc_urb(0, GFP_NOFS);
677 if (!urb)
678 return NULL;
679 buffer = usb_buffer_alloc(udev, USB_MAX_RX_SIZE, GFP_NOFS,
680 &urb->transfer_dma);
681 if (!buffer) {
682 usb_free_urb(urb);
683 return NULL;
684 }
685
686 usb_fill_bulk_urb(urb, udev, usb_rcvbulkpipe(udev, EP_DATA_IN),
687 buffer, USB_MAX_RX_SIZE,
688 rx_urb_complete, usb);
689 urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
690
691 return urb;
692 }
693
694 static void free_urb(struct urb *urb)
695 {
696 if (!urb)
697 return;
698 usb_buffer_free(urb->dev, urb->transfer_buffer_length,
699 urb->transfer_buffer, urb->transfer_dma);
700 usb_free_urb(urb);
701 }
702
703 int zd_usb_enable_rx(struct zd_usb *usb)
704 {
705 int i, r;
706 struct zd_usb_rx *rx = &usb->rx;
707 struct urb **urbs;
708
709 dev_dbg_f(zd_usb_dev(usb), "\n");
710
711 r = -ENOMEM;
712 urbs = kcalloc(URBS_COUNT, sizeof(struct urb *), GFP_NOFS);
713 if (!urbs)
714 goto error;
715 for (i = 0; i < URBS_COUNT; i++) {
716 urbs[i] = alloc_urb(usb);
717 if (!urbs[i])
718 goto error;
719 }
720
721 ZD_ASSERT(!irqs_disabled());
722 spin_lock_irq(&rx->lock);
723 if (rx->urbs) {
724 spin_unlock_irq(&rx->lock);
725 r = 0;
726 goto error;
727 }
728 rx->urbs = urbs;
729 rx->urbs_count = URBS_COUNT;
730 spin_unlock_irq(&rx->lock);
731
732 for (i = 0; i < URBS_COUNT; i++) {
733 r = usb_submit_urb(urbs[i], GFP_NOFS);
734 if (r)
735 goto error_submit;
736 }
737
738 return 0;
739 error_submit:
740 for (i = 0; i < URBS_COUNT; i++) {
741 usb_kill_urb(urbs[i]);
742 }
743 spin_lock_irq(&rx->lock);
744 rx->urbs = NULL;
745 rx->urbs_count = 0;
746 spin_unlock_irq(&rx->lock);
747 error:
748 if (urbs) {
749 for (i = 0; i < URBS_COUNT; i++)
750 free_urb(urbs[i]);
751 }
752 return r;
753 }
754
755 void zd_usb_disable_rx(struct zd_usb *usb)
756 {
757 int i;
758 unsigned long flags;
759 struct urb **urbs;
760 unsigned int count;
761 struct zd_usb_rx *rx = &usb->rx;
762
763 spin_lock_irqsave(&rx->lock, flags);
764 urbs = rx->urbs;
765 count = rx->urbs_count;
766 spin_unlock_irqrestore(&rx->lock, flags);
767 if (!urbs)
768 return;
769
770 for (i = 0; i < count; i++) {
771 usb_kill_urb(urbs[i]);
772 free_urb(urbs[i]);
773 }
774 kfree(urbs);
775
776 spin_lock_irqsave(&rx->lock, flags);
777 rx->urbs = NULL;
778 rx->urbs_count = 0;
779 spin_unlock_irqrestore(&rx->lock, flags);
780 }
781
782 static void tx_urb_complete(struct urb *urb)
783 {
784 int r;
785
786 switch (urb->status) {
787 case 0:
788 break;
789 case -ESHUTDOWN:
790 case -EINVAL:
791 case -ENODEV:
792 case -ENOENT:
793 case -ECONNRESET:
794 case -EPIPE:
795 dev_dbg_f(urb_dev(urb), "urb %p error %d\n", urb, urb->status);
796 break;
797 default:
798 dev_dbg_f(urb_dev(urb), "urb %p error %d\n", urb, urb->status);
799 goto resubmit;
800 }
801 free_urb:
802 usb_buffer_free(urb->dev, urb->transfer_buffer_length,
803 urb->transfer_buffer, urb->transfer_dma);
804 usb_free_urb(urb);
805 return;
806 resubmit:
807 r = usb_submit_urb(urb, GFP_ATOMIC);
808 if (r) {
809 dev_dbg_f(urb_dev(urb), "error resubmit urb %p %d\n", urb, r);
810 goto free_urb;
811 }
812 }
813
814 /* Puts the frame on the USB endpoint. It doesn't wait for
815 * completion. The frame must contain the control set.
816 */
817 int zd_usb_tx(struct zd_usb *usb, const u8 *frame, unsigned int length)
818 {
819 int r;
820 struct usb_device *udev = zd_usb_to_usbdev(usb);
821 struct urb *urb;
822 void *buffer;
823
824 urb = usb_alloc_urb(0, GFP_ATOMIC);
825 if (!urb) {
826 r = -ENOMEM;
827 goto out;
828 }
829
830 buffer = usb_buffer_alloc(zd_usb_to_usbdev(usb), length, GFP_ATOMIC,
831 &urb->transfer_dma);
832 if (!buffer) {
833 r = -ENOMEM;
834 goto error_free_urb;
835 }
836 memcpy(buffer, frame, length);
837
838 usb_fill_bulk_urb(urb, udev, usb_sndbulkpipe(udev, EP_DATA_OUT),
839 buffer, length, tx_urb_complete, NULL);
840 urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
841
842 r = usb_submit_urb(urb, GFP_ATOMIC);
843 if (r)
844 goto error;
845 return 0;
846 error:
847 usb_buffer_free(zd_usb_to_usbdev(usb), length, buffer,
848 urb->transfer_dma);
849 error_free_urb:
850 usb_free_urb(urb);
851 out:
852 return r;
853 }
854
855 static inline void init_usb_interrupt(struct zd_usb *usb)
856 {
857 struct zd_usb_interrupt *intr = &usb->intr;
858
859 spin_lock_init(&intr->lock);
860 intr->interval = int_urb_interval(zd_usb_to_usbdev(usb));
861 init_completion(&intr->read_regs.completion);
862 intr->read_regs.cr_int_addr = cpu_to_le16(usb_addr(usb, CR_INTERRUPT));
863 }
864
865 static inline void init_usb_rx(struct zd_usb *usb)
866 {
867 struct zd_usb_rx *rx = &usb->rx;
868 spin_lock_init(&rx->lock);
869 if (interface_to_usbdev(usb->intf)->speed == USB_SPEED_HIGH) {
870 rx->usb_packet_size = 512;
871 } else {
872 rx->usb_packet_size = 64;
873 }
874 ZD_ASSERT(rx->fragment_length == 0);
875 }
876
877 static inline void init_usb_tx(struct zd_usb *usb)
878 {
879 /* FIXME: at this point we will allocate a fixed number of urb's for
880 * use in a cyclic scheme */
881 }
882
883 void zd_usb_init(struct zd_usb *usb, struct net_device *netdev,
884 struct usb_interface *intf)
885 {
886 memset(usb, 0, sizeof(*usb));
887 usb->intf = usb_get_intf(intf);
888 usb_set_intfdata(usb->intf, netdev);
889 init_usb_interrupt(usb);
890 init_usb_tx(usb);
891 init_usb_rx(usb);
892 }
893
894 int zd_usb_init_hw(struct zd_usb *usb)
895 {
896 int r;
897 struct zd_chip *chip = zd_usb_to_chip(usb);
898
899 ZD_ASSERT(mutex_is_locked(&chip->mutex));
900 r = zd_ioread16_locked(chip, &usb->fw_base_offset,
901 USB_REG((u16)FW_BASE_ADDR_OFFSET));
902 if (r)
903 return r;
904 dev_dbg_f(zd_usb_dev(usb), "fw_base_offset: %#06hx\n",
905 usb->fw_base_offset);
906
907 return 0;
908 }
909
910 void zd_usb_clear(struct zd_usb *usb)
911 {
912 usb_set_intfdata(usb->intf, NULL);
913 usb_put_intf(usb->intf);
914 ZD_MEMCLEAR(usb, sizeof(*usb));
915 /* FIXME: usb_interrupt, usb_tx, usb_rx? */
916 }
917
918 static const char *speed(enum usb_device_speed speed)
919 {
920 switch (speed) {
921 case USB_SPEED_LOW:
922 return "low";
923 case USB_SPEED_FULL:
924 return "full";
925 case USB_SPEED_HIGH:
926 return "high";
927 default:
928 return "unknown speed";
929 }
930 }
931
932 static int scnprint_id(struct usb_device *udev, char *buffer, size_t size)
933 {
934 return scnprintf(buffer, size, "%04hx:%04hx v%04hx %s",
935 le16_to_cpu(udev->descriptor.idVendor),
936 le16_to_cpu(udev->descriptor.idProduct),
937 get_bcdDevice(udev),
938 speed(udev->speed));
939 }
940
941 int zd_usb_scnprint_id(struct zd_usb *usb, char *buffer, size_t size)
942 {
943 struct usb_device *udev = interface_to_usbdev(usb->intf);
944 return scnprint_id(udev, buffer, size);
945 }
946
947 #ifdef DEBUG
948 static void print_id(struct usb_device *udev)
949 {
950 char buffer[40];
951
952 scnprint_id(udev, buffer, sizeof(buffer));
953 buffer[sizeof(buffer)-1] = 0;
954 dev_dbg_f(&udev->dev, "%s\n", buffer);
955 }
956 #else
957 #define print_id(udev) do { } while (0)
958 #endif
959
960 static int eject_installer(struct usb_interface *intf)
961 {
962 struct usb_device *udev = interface_to_usbdev(intf);
963 struct usb_host_interface *iface_desc = &intf->altsetting[0];
964 struct usb_endpoint_descriptor *endpoint;
965 unsigned char *cmd;
966 u8 bulk_out_ep;
967 int r;
968
969 /* Find bulk out endpoint */
970 endpoint = &iface_desc->endpoint[1].desc;
971 if ((endpoint->bEndpointAddress & USB_TYPE_MASK) == USB_DIR_OUT &&
972 (endpoint->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) ==
973 USB_ENDPOINT_XFER_BULK) {
974 bulk_out_ep = endpoint->bEndpointAddress;
975 } else {
976 dev_err(&udev->dev,
977 "zd1211rw: Could not find bulk out endpoint\n");
978 return -ENODEV;
979 }
980
981 cmd = kzalloc(31, GFP_KERNEL);
982 if (cmd == NULL)
983 return -ENODEV;
984
985 /* USB bulk command block */
986 cmd[0] = 0x55; /* bulk command signature */
987 cmd[1] = 0x53; /* bulk command signature */
988 cmd[2] = 0x42; /* bulk command signature */
989 cmd[3] = 0x43; /* bulk command signature */
990 cmd[14] = 6; /* command length */
991
992 cmd[15] = 0x1b; /* SCSI command: START STOP UNIT */
993 cmd[19] = 0x2; /* eject disc */
994
995 dev_info(&udev->dev, "Ejecting virtual installer media...\n");
996 r = usb_bulk_msg(udev, usb_sndbulkpipe(udev, bulk_out_ep),
997 cmd, 31, NULL, 2000);
998 kfree(cmd);
999 if (r)
1000 return r;
1001
1002 /* At this point, the device disconnects and reconnects with the real
1003 * ID numbers. */
1004
1005 usb_set_intfdata(intf, NULL);
1006 return 0;
1007 }
1008
1009 static int probe(struct usb_interface *intf, const struct usb_device_id *id)
1010 {
1011 int r;
1012 struct usb_device *udev = interface_to_usbdev(intf);
1013 struct net_device *netdev = NULL;
1014
1015 print_id(udev);
1016
1017 if (id->driver_info & DEVICE_INSTALLER)
1018 return eject_installer(intf);
1019
1020 switch (udev->speed) {
1021 case USB_SPEED_LOW:
1022 case USB_SPEED_FULL:
1023 case USB_SPEED_HIGH:
1024 break;
1025 default:
1026 dev_dbg_f(&intf->dev, "Unknown USB speed\n");
1027 r = -ENODEV;
1028 goto error;
1029 }
1030
1031 netdev = zd_netdev_alloc(intf);
1032 if (netdev == NULL) {
1033 r = -ENOMEM;
1034 goto error;
1035 }
1036
1037 r = upload_firmware(udev, id->driver_info);
1038 if (r) {
1039 dev_err(&intf->dev,
1040 "couldn't load firmware. Error number %d\n", r);
1041 goto error;
1042 }
1043
1044 r = usb_reset_configuration(udev);
1045 if (r) {
1046 dev_dbg_f(&intf->dev,
1047 "couldn't reset configuration. Error number %d\n", r);
1048 goto error;
1049 }
1050
1051 /* At this point the interrupt endpoint is not generally enabled. We
1052 * save the USB bandwidth until the network device is opened. But
1053 * notify that the initialization of the MAC will require the
1054 * interrupts to be temporary enabled.
1055 */
1056 r = zd_mac_init_hw(zd_netdev_mac(netdev), id->driver_info);
1057 if (r) {
1058 dev_dbg_f(&intf->dev,
1059 "couldn't initialize mac. Error number %d\n", r);
1060 goto error;
1061 }
1062
1063 r = register_netdev(netdev);
1064 if (r) {
1065 dev_dbg_f(&intf->dev,
1066 "couldn't register netdev. Error number %d\n", r);
1067 goto error;
1068 }
1069
1070 dev_dbg_f(&intf->dev, "successful\n");
1071 dev_info(&intf->dev,"%s\n", netdev->name);
1072 return 0;
1073 error:
1074 usb_reset_device(interface_to_usbdev(intf));
1075 zd_netdev_free(netdev);
1076 return r;
1077 }
1078
1079 static void disconnect(struct usb_interface *intf)
1080 {
1081 struct net_device *netdev = zd_intf_to_netdev(intf);
1082 struct zd_mac *mac = zd_netdev_mac(netdev);
1083 struct zd_usb *usb = &mac->chip.usb;
1084
1085 /* Either something really bad happened, or we're just dealing with
1086 * a DEVICE_INSTALLER. */
1087 if (netdev == NULL)
1088 return;
1089
1090 dev_dbg_f(zd_usb_dev(usb), "\n");
1091
1092 zd_netdev_disconnect(netdev);
1093
1094 /* Just in case something has gone wrong! */
1095 zd_usb_disable_rx(usb);
1096 zd_usb_disable_int(usb);
1097
1098 /* If the disconnect has been caused by a removal of the
1099 * driver module, the reset allows reloading of the driver. If the
1100 * reset will not be executed here, the upload of the firmware in the
1101 * probe function caused by the reloading of the driver will fail.
1102 */
1103 usb_reset_device(interface_to_usbdev(intf));
1104
1105 zd_netdev_free(netdev);
1106 dev_dbg(&intf->dev, "disconnected\n");
1107 }
1108
1109 static struct usb_driver driver = {
1110 .name = "zd1211rw",
1111 .id_table = usb_ids,
1112 .probe = probe,
1113 .disconnect = disconnect,
1114 };
1115
1116 struct workqueue_struct *zd_workqueue;
1117
1118 static int __init usb_init(void)
1119 {
1120 int r;
1121
1122 pr_debug("usb_init()\n");
1123
1124 zd_workqueue = create_singlethread_workqueue(driver.name);
1125 if (zd_workqueue == NULL) {
1126 printk(KERN_ERR "%s: couldn't create workqueue\n", driver.name);
1127 return -ENOMEM;
1128 }
1129
1130 r = usb_register(&driver);
1131 if (r) {
1132 printk(KERN_ERR "usb_register() failed. Error number %d\n", r);
1133 return r;
1134 }
1135
1136 pr_debug("zd1211rw initialized\n");
1137 return 0;
1138 }
1139
1140 static void __exit usb_exit(void)
1141 {
1142 pr_debug("usb_exit()\n");
1143 usb_deregister(&driver);
1144 destroy_workqueue(zd_workqueue);
1145 }
1146
1147 module_init(usb_init);
1148 module_exit(usb_exit);
1149
1150 static int usb_int_regs_length(unsigned int count)
1151 {
1152 return sizeof(struct usb_int_regs) + count * sizeof(struct reg_data);
1153 }
1154
1155 static void prepare_read_regs_int(struct zd_usb *usb)
1156 {
1157 struct zd_usb_interrupt *intr = &usb->intr;
1158
1159 spin_lock(&intr->lock);
1160 intr->read_regs_enabled = 1;
1161 INIT_COMPLETION(intr->read_regs.completion);
1162 spin_unlock(&intr->lock);
1163 }
1164
1165 static int get_results(struct zd_usb *usb, u16 *values,
1166 struct usb_req_read_regs *req, unsigned int count)
1167 {
1168 int r;
1169 int i;
1170 struct zd_usb_interrupt *intr = &usb->intr;
1171 struct read_regs_int *rr = &intr->read_regs;
1172 struct usb_int_regs *regs = (struct usb_int_regs *)rr->buffer;
1173
1174 spin_lock(&intr->lock);
1175
1176 r = -EIO;
1177 /* The created block size seems to be larger than expected.
1178 * However results appear to be correct.
1179 */
1180 if (rr->length < usb_int_regs_length(count)) {
1181 dev_dbg_f(zd_usb_dev(usb),
1182 "error: actual length %d less than expected %d\n",
1183 rr->length, usb_int_regs_length(count));
1184 goto error_unlock;
1185 }
1186 if (rr->length > sizeof(rr->buffer)) {
1187 dev_dbg_f(zd_usb_dev(usb),
1188 "error: actual length %d exceeds buffer size %zu\n",
1189 rr->length, sizeof(rr->buffer));
1190 goto error_unlock;
1191 }
1192
1193 for (i = 0; i < count; i++) {
1194 struct reg_data *rd = &regs->regs[i];
1195 if (rd->addr != req->addr[i]) {
1196 dev_dbg_f(zd_usb_dev(usb),
1197 "rd[%d] addr %#06hx expected %#06hx\n", i,
1198 le16_to_cpu(rd->addr),
1199 le16_to_cpu(req->addr[i]));
1200 goto error_unlock;
1201 }
1202 values[i] = le16_to_cpu(rd->value);
1203 }
1204
1205 r = 0;
1206 error_unlock:
1207 spin_unlock(&intr->lock);
1208 return r;
1209 }
1210
1211 int zd_usb_ioread16v(struct zd_usb *usb, u16 *values,
1212 const zd_addr_t *addresses, unsigned int count)
1213 {
1214 int r;
1215 int i, req_len, actual_req_len;
1216 struct usb_device *udev;
1217 struct usb_req_read_regs *req = NULL;
1218 unsigned long timeout;
1219
1220 if (count < 1) {
1221 dev_dbg_f(zd_usb_dev(usb), "error: count is zero\n");
1222 return -EINVAL;
1223 }
1224 if (count > USB_MAX_IOREAD16_COUNT) {
1225 dev_dbg_f(zd_usb_dev(usb),
1226 "error: count %u exceeds possible max %u\n",
1227 count, USB_MAX_IOREAD16_COUNT);
1228 return -EINVAL;
1229 }
1230 if (in_atomic()) {
1231 dev_dbg_f(zd_usb_dev(usb),
1232 "error: io in atomic context not supported\n");
1233 return -EWOULDBLOCK;
1234 }
1235 if (!usb_int_enabled(usb)) {
1236 dev_dbg_f(zd_usb_dev(usb),
1237 "error: usb interrupt not enabled\n");
1238 return -EWOULDBLOCK;
1239 }
1240
1241 req_len = sizeof(struct usb_req_read_regs) + count * sizeof(__le16);
1242 req = kmalloc(req_len, GFP_NOFS);
1243 if (!req)
1244 return -ENOMEM;
1245 req->id = cpu_to_le16(USB_REQ_READ_REGS);
1246 for (i = 0; i < count; i++)
1247 req->addr[i] = cpu_to_le16(usb_addr(usb, addresses[i]));
1248
1249 udev = zd_usb_to_usbdev(usb);
1250 prepare_read_regs_int(usb);
1251 r = usb_bulk_msg(udev, usb_sndbulkpipe(udev, EP_REGS_OUT),
1252 req, req_len, &actual_req_len, 1000 /* ms */);
1253 if (r) {
1254 dev_dbg_f(zd_usb_dev(usb),
1255 "error in usb_bulk_msg(). Error number %d\n", r);
1256 goto error;
1257 }
1258 if (req_len != actual_req_len) {
1259 dev_dbg_f(zd_usb_dev(usb), "error in usb_bulk_msg()\n"
1260 " req_len %d != actual_req_len %d\n",
1261 req_len, actual_req_len);
1262 r = -EIO;
1263 goto error;
1264 }
1265
1266 timeout = wait_for_completion_timeout(&usb->intr.read_regs.completion,
1267 msecs_to_jiffies(1000));
1268 if (!timeout) {
1269 disable_read_regs_int(usb);
1270 dev_dbg_f(zd_usb_dev(usb), "read timed out\n");
1271 r = -ETIMEDOUT;
1272 goto error;
1273 }
1274
1275 r = get_results(usb, values, req, count);
1276 error:
1277 kfree(req);
1278 return r;
1279 }
1280
1281 int zd_usb_iowrite16v(struct zd_usb *usb, const struct zd_ioreq16 *ioreqs,
1282 unsigned int count)
1283 {
1284 int r;
1285 struct usb_device *udev;
1286 struct usb_req_write_regs *req = NULL;
1287 int i, req_len, actual_req_len;
1288
1289 if (count == 0)
1290 return 0;
1291 if (count > USB_MAX_IOWRITE16_COUNT) {
1292 dev_dbg_f(zd_usb_dev(usb),
1293 "error: count %u exceeds possible max %u\n",
1294 count, USB_MAX_IOWRITE16_COUNT);
1295 return -EINVAL;
1296 }
1297 if (in_atomic()) {
1298 dev_dbg_f(zd_usb_dev(usb),
1299 "error: io in atomic context not supported\n");
1300 return -EWOULDBLOCK;
1301 }
1302
1303 req_len = sizeof(struct usb_req_write_regs) +
1304 count * sizeof(struct reg_data);
1305 req = kmalloc(req_len, GFP_NOFS);
1306 if (!req)
1307 return -ENOMEM;
1308
1309 req->id = cpu_to_le16(USB_REQ_WRITE_REGS);
1310 for (i = 0; i < count; i++) {
1311 struct reg_data *rw = &req->reg_writes[i];
1312 rw->addr = cpu_to_le16(usb_addr(usb, ioreqs[i].addr));
1313 rw->value = cpu_to_le16(ioreqs[i].value);
1314 }
1315
1316 udev = zd_usb_to_usbdev(usb);
1317 r = usb_bulk_msg(udev, usb_sndbulkpipe(udev, EP_REGS_OUT),
1318 req, req_len, &actual_req_len, 1000 /* ms */);
1319 if (r) {
1320 dev_dbg_f(zd_usb_dev(usb),
1321 "error in usb_bulk_msg(). Error number %d\n", r);
1322 goto error;
1323 }
1324 if (req_len != actual_req_len) {
1325 dev_dbg_f(zd_usb_dev(usb),
1326 "error in usb_bulk_msg()"
1327 " req_len %d != actual_req_len %d\n",
1328 req_len, actual_req_len);
1329 r = -EIO;
1330 goto error;
1331 }
1332
1333 /* FALL-THROUGH with r == 0 */
1334 error:
1335 kfree(req);
1336 return r;
1337 }
1338
1339 int zd_usb_rfwrite(struct zd_usb *usb, u32 value, u8 bits)
1340 {
1341 int r;
1342 struct usb_device *udev;
1343 struct usb_req_rfwrite *req = NULL;
1344 int i, req_len, actual_req_len;
1345 u16 bit_value_template;
1346
1347 if (in_atomic()) {
1348 dev_dbg_f(zd_usb_dev(usb),
1349 "error: io in atomic context not supported\n");
1350 return -EWOULDBLOCK;
1351 }
1352 if (bits < USB_MIN_RFWRITE_BIT_COUNT) {
1353 dev_dbg_f(zd_usb_dev(usb),
1354 "error: bits %d are smaller than"
1355 " USB_MIN_RFWRITE_BIT_COUNT %d\n",
1356 bits, USB_MIN_RFWRITE_BIT_COUNT);
1357 return -EINVAL;
1358 }
1359 if (bits > USB_MAX_RFWRITE_BIT_COUNT) {
1360 dev_dbg_f(zd_usb_dev(usb),
1361 "error: bits %d exceed USB_MAX_RFWRITE_BIT_COUNT %d\n",
1362 bits, USB_MAX_RFWRITE_BIT_COUNT);
1363 return -EINVAL;
1364 }
1365 #ifdef DEBUG
1366 if (value & (~0UL << bits)) {
1367 dev_dbg_f(zd_usb_dev(usb),
1368 "error: value %#09x has bits >= %d set\n",
1369 value, bits);
1370 return -EINVAL;
1371 }
1372 #endif /* DEBUG */
1373
1374 dev_dbg_f(zd_usb_dev(usb), "value %#09x bits %d\n", value, bits);
1375
1376 r = zd_usb_ioread16(usb, &bit_value_template, CR203);
1377 if (r) {
1378 dev_dbg_f(zd_usb_dev(usb),
1379 "error %d: Couldn't read CR203\n", r);
1380 goto out;
1381 }
1382 bit_value_template &= ~(RF_IF_LE|RF_CLK|RF_DATA);
1383
1384 req_len = sizeof(struct usb_req_rfwrite) + bits * sizeof(__le16);
1385 req = kmalloc(req_len, GFP_NOFS);
1386 if (!req)
1387 return -ENOMEM;
1388
1389 req->id = cpu_to_le16(USB_REQ_WRITE_RF);
1390 /* 1: 3683a, but not used in ZYDAS driver */
1391 req->value = cpu_to_le16(2);
1392 req->bits = cpu_to_le16(bits);
1393
1394 for (i = 0; i < bits; i++) {
1395 u16 bv = bit_value_template;
1396 if (value & (1 << (bits-1-i)))
1397 bv |= RF_DATA;
1398 req->bit_values[i] = cpu_to_le16(bv);
1399 }
1400
1401 udev = zd_usb_to_usbdev(usb);
1402 r = usb_bulk_msg(udev, usb_sndbulkpipe(udev, EP_REGS_OUT),
1403 req, req_len, &actual_req_len, 1000 /* ms */);
1404 if (r) {
1405 dev_dbg_f(zd_usb_dev(usb),
1406 "error in usb_bulk_msg(). Error number %d\n", r);
1407 goto out;
1408 }
1409 if (req_len != actual_req_len) {
1410 dev_dbg_f(zd_usb_dev(usb), "error in usb_bulk_msg()"
1411 " req_len %d != actual_req_len %d\n",
1412 req_len, actual_req_len);
1413 r = -EIO;
1414 goto out;
1415 }
1416
1417 /* FALL-THROUGH with r == 0 */
1418 out:
1419 kfree(req);
1420 return r;
1421 }