Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/cjb/mmc
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / net / wireless / rt2x00 / rt2800lib.c
1 /*
2 Copyright (C) 2010 Willow Garage <http://www.willowgarage.com>
3 Copyright (C) 2010 Ivo van Doorn <IvDoorn@gmail.com>
4 Copyright (C) 2009 Bartlomiej Zolnierkiewicz <bzolnier@gmail.com>
5 Copyright (C) 2009 Gertjan van Wingerde <gwingerde@gmail.com>
6
7 Based on the original rt2800pci.c and rt2800usb.c.
8 Copyright (C) 2009 Alban Browaeys <prahal@yahoo.com>
9 Copyright (C) 2009 Felix Fietkau <nbd@openwrt.org>
10 Copyright (C) 2009 Luis Correia <luis.f.correia@gmail.com>
11 Copyright (C) 2009 Mattias Nissler <mattias.nissler@gmx.de>
12 Copyright (C) 2009 Mark Asselstine <asselsm@gmail.com>
13 Copyright (C) 2009 Xose Vazquez Perez <xose.vazquez@gmail.com>
14 <http://rt2x00.serialmonkey.com>
15
16 This program is free software; you can redistribute it and/or modify
17 it under the terms of the GNU General Public License as published by
18 the Free Software Foundation; either version 2 of the License, or
19 (at your option) any later version.
20
21 This program is distributed in the hope that it will be useful,
22 but WITHOUT ANY WARRANTY; without even the implied warranty of
23 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
24 GNU General Public License for more details.
25
26 You should have received a copy of the GNU General Public License
27 along with this program; if not, write to the
28 Free Software Foundation, Inc.,
29 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
30 */
31
32 /*
33 Module: rt2800lib
34 Abstract: rt2800 generic device routines.
35 */
36
37 #include <linux/crc-ccitt.h>
38 #include <linux/kernel.h>
39 #include <linux/module.h>
40 #include <linux/slab.h>
41
42 #include "rt2x00.h"
43 #include "rt2800lib.h"
44 #include "rt2800.h"
45
46 /*
47 * Register access.
48 * All access to the CSR registers will go through the methods
49 * rt2800_register_read and rt2800_register_write.
50 * BBP and RF register require indirect register access,
51 * and use the CSR registers BBPCSR and RFCSR to achieve this.
52 * These indirect registers work with busy bits,
53 * and we will try maximal REGISTER_BUSY_COUNT times to access
54 * the register while taking a REGISTER_BUSY_DELAY us delay
55 * between each attampt. When the busy bit is still set at that time,
56 * the access attempt is considered to have failed,
57 * and we will print an error.
58 * The _lock versions must be used if you already hold the csr_mutex
59 */
60 #define WAIT_FOR_BBP(__dev, __reg) \
61 rt2800_regbusy_read((__dev), BBP_CSR_CFG, BBP_CSR_CFG_BUSY, (__reg))
62 #define WAIT_FOR_RFCSR(__dev, __reg) \
63 rt2800_regbusy_read((__dev), RF_CSR_CFG, RF_CSR_CFG_BUSY, (__reg))
64 #define WAIT_FOR_RF(__dev, __reg) \
65 rt2800_regbusy_read((__dev), RF_CSR_CFG0, RF_CSR_CFG0_BUSY, (__reg))
66 #define WAIT_FOR_MCU(__dev, __reg) \
67 rt2800_regbusy_read((__dev), H2M_MAILBOX_CSR, \
68 H2M_MAILBOX_CSR_OWNER, (__reg))
69
70 static inline bool rt2800_is_305x_soc(struct rt2x00_dev *rt2x00dev)
71 {
72 /* check for rt2872 on SoC */
73 if (!rt2x00_is_soc(rt2x00dev) ||
74 !rt2x00_rt(rt2x00dev, RT2872))
75 return false;
76
77 /* we know for sure that these rf chipsets are used on rt305x boards */
78 if (rt2x00_rf(rt2x00dev, RF3020) ||
79 rt2x00_rf(rt2x00dev, RF3021) ||
80 rt2x00_rf(rt2x00dev, RF3022))
81 return true;
82
83 NOTICE(rt2x00dev, "Unknown RF chipset on rt305x\n");
84 return false;
85 }
86
87 static void rt2800_bbp_write(struct rt2x00_dev *rt2x00dev,
88 const unsigned int word, const u8 value)
89 {
90 u32 reg;
91
92 mutex_lock(&rt2x00dev->csr_mutex);
93
94 /*
95 * Wait until the BBP becomes available, afterwards we
96 * can safely write the new data into the register.
97 */
98 if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
99 reg = 0;
100 rt2x00_set_field32(&reg, BBP_CSR_CFG_VALUE, value);
101 rt2x00_set_field32(&reg, BBP_CSR_CFG_REGNUM, word);
102 rt2x00_set_field32(&reg, BBP_CSR_CFG_BUSY, 1);
103 rt2x00_set_field32(&reg, BBP_CSR_CFG_READ_CONTROL, 0);
104 rt2x00_set_field32(&reg, BBP_CSR_CFG_BBP_RW_MODE, 1);
105
106 rt2800_register_write_lock(rt2x00dev, BBP_CSR_CFG, reg);
107 }
108
109 mutex_unlock(&rt2x00dev->csr_mutex);
110 }
111
112 static void rt2800_bbp_read(struct rt2x00_dev *rt2x00dev,
113 const unsigned int word, u8 *value)
114 {
115 u32 reg;
116
117 mutex_lock(&rt2x00dev->csr_mutex);
118
119 /*
120 * Wait until the BBP becomes available, afterwards we
121 * can safely write the read request into the register.
122 * After the data has been written, we wait until hardware
123 * returns the correct value, if at any time the register
124 * doesn't become available in time, reg will be 0xffffffff
125 * which means we return 0xff to the caller.
126 */
127 if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
128 reg = 0;
129 rt2x00_set_field32(&reg, BBP_CSR_CFG_REGNUM, word);
130 rt2x00_set_field32(&reg, BBP_CSR_CFG_BUSY, 1);
131 rt2x00_set_field32(&reg, BBP_CSR_CFG_READ_CONTROL, 1);
132 rt2x00_set_field32(&reg, BBP_CSR_CFG_BBP_RW_MODE, 1);
133
134 rt2800_register_write_lock(rt2x00dev, BBP_CSR_CFG, reg);
135
136 WAIT_FOR_BBP(rt2x00dev, &reg);
137 }
138
139 *value = rt2x00_get_field32(reg, BBP_CSR_CFG_VALUE);
140
141 mutex_unlock(&rt2x00dev->csr_mutex);
142 }
143
144 static void rt2800_rfcsr_write(struct rt2x00_dev *rt2x00dev,
145 const unsigned int word, const u8 value)
146 {
147 u32 reg;
148
149 mutex_lock(&rt2x00dev->csr_mutex);
150
151 /*
152 * Wait until the RFCSR becomes available, afterwards we
153 * can safely write the new data into the register.
154 */
155 if (WAIT_FOR_RFCSR(rt2x00dev, &reg)) {
156 reg = 0;
157 rt2x00_set_field32(&reg, RF_CSR_CFG_DATA, value);
158 rt2x00_set_field32(&reg, RF_CSR_CFG_REGNUM, word);
159 rt2x00_set_field32(&reg, RF_CSR_CFG_WRITE, 1);
160 rt2x00_set_field32(&reg, RF_CSR_CFG_BUSY, 1);
161
162 rt2800_register_write_lock(rt2x00dev, RF_CSR_CFG, reg);
163 }
164
165 mutex_unlock(&rt2x00dev->csr_mutex);
166 }
167
168 static void rt2800_rfcsr_read(struct rt2x00_dev *rt2x00dev,
169 const unsigned int word, u8 *value)
170 {
171 u32 reg;
172
173 mutex_lock(&rt2x00dev->csr_mutex);
174
175 /*
176 * Wait until the RFCSR becomes available, afterwards we
177 * can safely write the read request into the register.
178 * After the data has been written, we wait until hardware
179 * returns the correct value, if at any time the register
180 * doesn't become available in time, reg will be 0xffffffff
181 * which means we return 0xff to the caller.
182 */
183 if (WAIT_FOR_RFCSR(rt2x00dev, &reg)) {
184 reg = 0;
185 rt2x00_set_field32(&reg, RF_CSR_CFG_REGNUM, word);
186 rt2x00_set_field32(&reg, RF_CSR_CFG_WRITE, 0);
187 rt2x00_set_field32(&reg, RF_CSR_CFG_BUSY, 1);
188
189 rt2800_register_write_lock(rt2x00dev, RF_CSR_CFG, reg);
190
191 WAIT_FOR_RFCSR(rt2x00dev, &reg);
192 }
193
194 *value = rt2x00_get_field32(reg, RF_CSR_CFG_DATA);
195
196 mutex_unlock(&rt2x00dev->csr_mutex);
197 }
198
199 static void rt2800_rf_write(struct rt2x00_dev *rt2x00dev,
200 const unsigned int word, const u32 value)
201 {
202 u32 reg;
203
204 mutex_lock(&rt2x00dev->csr_mutex);
205
206 /*
207 * Wait until the RF becomes available, afterwards we
208 * can safely write the new data into the register.
209 */
210 if (WAIT_FOR_RF(rt2x00dev, &reg)) {
211 reg = 0;
212 rt2x00_set_field32(&reg, RF_CSR_CFG0_REG_VALUE_BW, value);
213 rt2x00_set_field32(&reg, RF_CSR_CFG0_STANDBYMODE, 0);
214 rt2x00_set_field32(&reg, RF_CSR_CFG0_SEL, 0);
215 rt2x00_set_field32(&reg, RF_CSR_CFG0_BUSY, 1);
216
217 rt2800_register_write_lock(rt2x00dev, RF_CSR_CFG0, reg);
218 rt2x00_rf_write(rt2x00dev, word, value);
219 }
220
221 mutex_unlock(&rt2x00dev->csr_mutex);
222 }
223
224 void rt2800_mcu_request(struct rt2x00_dev *rt2x00dev,
225 const u8 command, const u8 token,
226 const u8 arg0, const u8 arg1)
227 {
228 u32 reg;
229
230 /*
231 * SOC devices don't support MCU requests.
232 */
233 if (rt2x00_is_soc(rt2x00dev))
234 return;
235
236 mutex_lock(&rt2x00dev->csr_mutex);
237
238 /*
239 * Wait until the MCU becomes available, afterwards we
240 * can safely write the new data into the register.
241 */
242 if (WAIT_FOR_MCU(rt2x00dev, &reg)) {
243 rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_OWNER, 1);
244 rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_CMD_TOKEN, token);
245 rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_ARG0, arg0);
246 rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_ARG1, arg1);
247 rt2800_register_write_lock(rt2x00dev, H2M_MAILBOX_CSR, reg);
248
249 reg = 0;
250 rt2x00_set_field32(&reg, HOST_CMD_CSR_HOST_COMMAND, command);
251 rt2800_register_write_lock(rt2x00dev, HOST_CMD_CSR, reg);
252 }
253
254 mutex_unlock(&rt2x00dev->csr_mutex);
255 }
256 EXPORT_SYMBOL_GPL(rt2800_mcu_request);
257
258 int rt2800_wait_csr_ready(struct rt2x00_dev *rt2x00dev)
259 {
260 unsigned int i = 0;
261 u32 reg;
262
263 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
264 rt2800_register_read(rt2x00dev, MAC_CSR0, &reg);
265 if (reg && reg != ~0)
266 return 0;
267 msleep(1);
268 }
269
270 ERROR(rt2x00dev, "Unstable hardware.\n");
271 return -EBUSY;
272 }
273 EXPORT_SYMBOL_GPL(rt2800_wait_csr_ready);
274
275 int rt2800_wait_wpdma_ready(struct rt2x00_dev *rt2x00dev)
276 {
277 unsigned int i;
278 u32 reg;
279
280 /*
281 * Some devices are really slow to respond here. Wait a whole second
282 * before timing out.
283 */
284 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
285 rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG, &reg);
286 if (!rt2x00_get_field32(reg, WPDMA_GLO_CFG_TX_DMA_BUSY) &&
287 !rt2x00_get_field32(reg, WPDMA_GLO_CFG_RX_DMA_BUSY))
288 return 0;
289
290 msleep(10);
291 }
292
293 ERROR(rt2x00dev, "WPDMA TX/RX busy, aborting.\n");
294 return -EACCES;
295 }
296 EXPORT_SYMBOL_GPL(rt2800_wait_wpdma_ready);
297
298 static bool rt2800_check_firmware_crc(const u8 *data, const size_t len)
299 {
300 u16 fw_crc;
301 u16 crc;
302
303 /*
304 * The last 2 bytes in the firmware array are the crc checksum itself,
305 * this means that we should never pass those 2 bytes to the crc
306 * algorithm.
307 */
308 fw_crc = (data[len - 2] << 8 | data[len - 1]);
309
310 /*
311 * Use the crc ccitt algorithm.
312 * This will return the same value as the legacy driver which
313 * used bit ordering reversion on the both the firmware bytes
314 * before input input as well as on the final output.
315 * Obviously using crc ccitt directly is much more efficient.
316 */
317 crc = crc_ccitt(~0, data, len - 2);
318
319 /*
320 * There is a small difference between the crc-itu-t + bitrev and
321 * the crc-ccitt crc calculation. In the latter method the 2 bytes
322 * will be swapped, use swab16 to convert the crc to the correct
323 * value.
324 */
325 crc = swab16(crc);
326
327 return fw_crc == crc;
328 }
329
330 int rt2800_check_firmware(struct rt2x00_dev *rt2x00dev,
331 const u8 *data, const size_t len)
332 {
333 size_t offset = 0;
334 size_t fw_len;
335 bool multiple;
336
337 /*
338 * PCI(e) & SOC devices require firmware with a length
339 * of 8kb. USB devices require firmware files with a length
340 * of 4kb. Certain USB chipsets however require different firmware,
341 * which Ralink only provides attached to the original firmware
342 * file. Thus for USB devices, firmware files have a length
343 * which is a multiple of 4kb.
344 */
345 if (rt2x00_is_usb(rt2x00dev)) {
346 fw_len = 4096;
347 multiple = true;
348 } else {
349 fw_len = 8192;
350 multiple = true;
351 }
352
353 /*
354 * Validate the firmware length
355 */
356 if (len != fw_len && (!multiple || (len % fw_len) != 0))
357 return FW_BAD_LENGTH;
358
359 /*
360 * Check if the chipset requires one of the upper parts
361 * of the firmware.
362 */
363 if (rt2x00_is_usb(rt2x00dev) &&
364 !rt2x00_rt(rt2x00dev, RT2860) &&
365 !rt2x00_rt(rt2x00dev, RT2872) &&
366 !rt2x00_rt(rt2x00dev, RT3070) &&
367 ((len / fw_len) == 1))
368 return FW_BAD_VERSION;
369
370 /*
371 * 8kb firmware files must be checked as if it were
372 * 2 separate firmware files.
373 */
374 while (offset < len) {
375 if (!rt2800_check_firmware_crc(data + offset, fw_len))
376 return FW_BAD_CRC;
377
378 offset += fw_len;
379 }
380
381 return FW_OK;
382 }
383 EXPORT_SYMBOL_GPL(rt2800_check_firmware);
384
385 int rt2800_load_firmware(struct rt2x00_dev *rt2x00dev,
386 const u8 *data, const size_t len)
387 {
388 unsigned int i;
389 u32 reg;
390
391 /*
392 * If driver doesn't wake up firmware here,
393 * rt2800_load_firmware will hang forever when interface is up again.
394 */
395 rt2800_register_write(rt2x00dev, AUTOWAKEUP_CFG, 0x00000000);
396
397 /*
398 * Wait for stable hardware.
399 */
400 if (rt2800_wait_csr_ready(rt2x00dev))
401 return -EBUSY;
402
403 if (rt2x00_is_pci(rt2x00dev)) {
404 if (rt2x00_rt(rt2x00dev, RT5390)) {
405 rt2800_register_read(rt2x00dev, AUX_CTRL, &reg);
406 rt2x00_set_field32(&reg, AUX_CTRL_FORCE_PCIE_CLK, 1);
407 rt2x00_set_field32(&reg, AUX_CTRL_WAKE_PCIE_EN, 1);
408 rt2800_register_write(rt2x00dev, AUX_CTRL, reg);
409 }
410 rt2800_register_write(rt2x00dev, PWR_PIN_CFG, 0x00000002);
411 }
412
413 /*
414 * Disable DMA, will be reenabled later when enabling
415 * the radio.
416 */
417 rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG, &reg);
418 rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_TX_DMA, 0);
419 rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_DMA_BUSY, 0);
420 rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_RX_DMA, 0);
421 rt2x00_set_field32(&reg, WPDMA_GLO_CFG_RX_DMA_BUSY, 0);
422 rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_WRITEBACK_DONE, 1);
423 rt2800_register_write(rt2x00dev, WPDMA_GLO_CFG, reg);
424
425 /*
426 * Write firmware to the device.
427 */
428 rt2800_drv_write_firmware(rt2x00dev, data, len);
429
430 /*
431 * Wait for device to stabilize.
432 */
433 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
434 rt2800_register_read(rt2x00dev, PBF_SYS_CTRL, &reg);
435 if (rt2x00_get_field32(reg, PBF_SYS_CTRL_READY))
436 break;
437 msleep(1);
438 }
439
440 if (i == REGISTER_BUSY_COUNT) {
441 ERROR(rt2x00dev, "PBF system register not ready.\n");
442 return -EBUSY;
443 }
444
445 /*
446 * Initialize firmware.
447 */
448 rt2800_register_write(rt2x00dev, H2M_BBP_AGENT, 0);
449 rt2800_register_write(rt2x00dev, H2M_MAILBOX_CSR, 0);
450 msleep(1);
451
452 return 0;
453 }
454 EXPORT_SYMBOL_GPL(rt2800_load_firmware);
455
456 void rt2800_write_tx_data(struct queue_entry *entry,
457 struct txentry_desc *txdesc)
458 {
459 __le32 *txwi = rt2800_drv_get_txwi(entry);
460 u32 word;
461
462 /*
463 * Initialize TX Info descriptor
464 */
465 rt2x00_desc_read(txwi, 0, &word);
466 rt2x00_set_field32(&word, TXWI_W0_FRAG,
467 test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
468 rt2x00_set_field32(&word, TXWI_W0_MIMO_PS,
469 test_bit(ENTRY_TXD_HT_MIMO_PS, &txdesc->flags));
470 rt2x00_set_field32(&word, TXWI_W0_CF_ACK, 0);
471 rt2x00_set_field32(&word, TXWI_W0_TS,
472 test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
473 rt2x00_set_field32(&word, TXWI_W0_AMPDU,
474 test_bit(ENTRY_TXD_HT_AMPDU, &txdesc->flags));
475 rt2x00_set_field32(&word, TXWI_W0_MPDU_DENSITY,
476 txdesc->u.ht.mpdu_density);
477 rt2x00_set_field32(&word, TXWI_W0_TX_OP, txdesc->u.ht.txop);
478 rt2x00_set_field32(&word, TXWI_W0_MCS, txdesc->u.ht.mcs);
479 rt2x00_set_field32(&word, TXWI_W0_BW,
480 test_bit(ENTRY_TXD_HT_BW_40, &txdesc->flags));
481 rt2x00_set_field32(&word, TXWI_W0_SHORT_GI,
482 test_bit(ENTRY_TXD_HT_SHORT_GI, &txdesc->flags));
483 rt2x00_set_field32(&word, TXWI_W0_STBC, txdesc->u.ht.stbc);
484 rt2x00_set_field32(&word, TXWI_W0_PHYMODE, txdesc->rate_mode);
485 rt2x00_desc_write(txwi, 0, word);
486
487 rt2x00_desc_read(txwi, 1, &word);
488 rt2x00_set_field32(&word, TXWI_W1_ACK,
489 test_bit(ENTRY_TXD_ACK, &txdesc->flags));
490 rt2x00_set_field32(&word, TXWI_W1_NSEQ,
491 test_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags));
492 rt2x00_set_field32(&word, TXWI_W1_BW_WIN_SIZE, txdesc->u.ht.ba_size);
493 rt2x00_set_field32(&word, TXWI_W1_WIRELESS_CLI_ID,
494 test_bit(ENTRY_TXD_ENCRYPT, &txdesc->flags) ?
495 txdesc->key_idx : 0xff);
496 rt2x00_set_field32(&word, TXWI_W1_MPDU_TOTAL_BYTE_COUNT,
497 txdesc->length);
498 rt2x00_set_field32(&word, TXWI_W1_PACKETID_QUEUE, entry->queue->qid);
499 rt2x00_set_field32(&word, TXWI_W1_PACKETID_ENTRY, (entry->entry_idx % 3) + 1);
500 rt2x00_desc_write(txwi, 1, word);
501
502 /*
503 * Always write 0 to IV/EIV fields, hardware will insert the IV
504 * from the IVEIV register when TXD_W3_WIV is set to 0.
505 * When TXD_W3_WIV is set to 1 it will use the IV data
506 * from the descriptor. The TXWI_W1_WIRELESS_CLI_ID indicates which
507 * crypto entry in the registers should be used to encrypt the frame.
508 */
509 _rt2x00_desc_write(txwi, 2, 0 /* skbdesc->iv[0] */);
510 _rt2x00_desc_write(txwi, 3, 0 /* skbdesc->iv[1] */);
511 }
512 EXPORT_SYMBOL_GPL(rt2800_write_tx_data);
513
514 static int rt2800_agc_to_rssi(struct rt2x00_dev *rt2x00dev, u32 rxwi_w2)
515 {
516 int rssi0 = rt2x00_get_field32(rxwi_w2, RXWI_W2_RSSI0);
517 int rssi1 = rt2x00_get_field32(rxwi_w2, RXWI_W2_RSSI1);
518 int rssi2 = rt2x00_get_field32(rxwi_w2, RXWI_W2_RSSI2);
519 u16 eeprom;
520 u8 offset0;
521 u8 offset1;
522 u8 offset2;
523
524 if (rt2x00dev->curr_band == IEEE80211_BAND_2GHZ) {
525 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_BG, &eeprom);
526 offset0 = rt2x00_get_field16(eeprom, EEPROM_RSSI_BG_OFFSET0);
527 offset1 = rt2x00_get_field16(eeprom, EEPROM_RSSI_BG_OFFSET1);
528 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_BG2, &eeprom);
529 offset2 = rt2x00_get_field16(eeprom, EEPROM_RSSI_BG2_OFFSET2);
530 } else {
531 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_A, &eeprom);
532 offset0 = rt2x00_get_field16(eeprom, EEPROM_RSSI_A_OFFSET0);
533 offset1 = rt2x00_get_field16(eeprom, EEPROM_RSSI_A_OFFSET1);
534 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_A2, &eeprom);
535 offset2 = rt2x00_get_field16(eeprom, EEPROM_RSSI_A2_OFFSET2);
536 }
537
538 /*
539 * Convert the value from the descriptor into the RSSI value
540 * If the value in the descriptor is 0, it is considered invalid
541 * and the default (extremely low) rssi value is assumed
542 */
543 rssi0 = (rssi0) ? (-12 - offset0 - rt2x00dev->lna_gain - rssi0) : -128;
544 rssi1 = (rssi1) ? (-12 - offset1 - rt2x00dev->lna_gain - rssi1) : -128;
545 rssi2 = (rssi2) ? (-12 - offset2 - rt2x00dev->lna_gain - rssi2) : -128;
546
547 /*
548 * mac80211 only accepts a single RSSI value. Calculating the
549 * average doesn't deliver a fair answer either since -60:-60 would
550 * be considered equally good as -50:-70 while the second is the one
551 * which gives less energy...
552 */
553 rssi0 = max(rssi0, rssi1);
554 return max(rssi0, rssi2);
555 }
556
557 void rt2800_process_rxwi(struct queue_entry *entry,
558 struct rxdone_entry_desc *rxdesc)
559 {
560 __le32 *rxwi = (__le32 *) entry->skb->data;
561 u32 word;
562
563 rt2x00_desc_read(rxwi, 0, &word);
564
565 rxdesc->cipher = rt2x00_get_field32(word, RXWI_W0_UDF);
566 rxdesc->size = rt2x00_get_field32(word, RXWI_W0_MPDU_TOTAL_BYTE_COUNT);
567
568 rt2x00_desc_read(rxwi, 1, &word);
569
570 if (rt2x00_get_field32(word, RXWI_W1_SHORT_GI))
571 rxdesc->flags |= RX_FLAG_SHORT_GI;
572
573 if (rt2x00_get_field32(word, RXWI_W1_BW))
574 rxdesc->flags |= RX_FLAG_40MHZ;
575
576 /*
577 * Detect RX rate, always use MCS as signal type.
578 */
579 rxdesc->dev_flags |= RXDONE_SIGNAL_MCS;
580 rxdesc->signal = rt2x00_get_field32(word, RXWI_W1_MCS);
581 rxdesc->rate_mode = rt2x00_get_field32(word, RXWI_W1_PHYMODE);
582
583 /*
584 * Mask of 0x8 bit to remove the short preamble flag.
585 */
586 if (rxdesc->rate_mode == RATE_MODE_CCK)
587 rxdesc->signal &= ~0x8;
588
589 rt2x00_desc_read(rxwi, 2, &word);
590
591 /*
592 * Convert descriptor AGC value to RSSI value.
593 */
594 rxdesc->rssi = rt2800_agc_to_rssi(entry->queue->rt2x00dev, word);
595
596 /*
597 * Remove RXWI descriptor from start of buffer.
598 */
599 skb_pull(entry->skb, RXWI_DESC_SIZE);
600 }
601 EXPORT_SYMBOL_GPL(rt2800_process_rxwi);
602
603 static bool rt2800_txdone_entry_check(struct queue_entry *entry, u32 reg)
604 {
605 __le32 *txwi;
606 u32 word;
607 int wcid, ack, pid;
608 int tx_wcid, tx_ack, tx_pid;
609
610 wcid = rt2x00_get_field32(reg, TX_STA_FIFO_WCID);
611 ack = rt2x00_get_field32(reg, TX_STA_FIFO_TX_ACK_REQUIRED);
612 pid = rt2x00_get_field32(reg, TX_STA_FIFO_PID_TYPE);
613
614 /*
615 * This frames has returned with an IO error,
616 * so the status report is not intended for this
617 * frame.
618 */
619 if (test_bit(ENTRY_DATA_IO_FAILED, &entry->flags)) {
620 rt2x00lib_txdone_noinfo(entry, TXDONE_FAILURE);
621 return false;
622 }
623
624 /*
625 * Validate if this TX status report is intended for
626 * this entry by comparing the WCID/ACK/PID fields.
627 */
628 txwi = rt2800_drv_get_txwi(entry);
629
630 rt2x00_desc_read(txwi, 1, &word);
631 tx_wcid = rt2x00_get_field32(word, TXWI_W1_WIRELESS_CLI_ID);
632 tx_ack = rt2x00_get_field32(word, TXWI_W1_ACK);
633 tx_pid = rt2x00_get_field32(word, TXWI_W1_PACKETID);
634
635 if ((wcid != tx_wcid) || (ack != tx_ack) || (pid != tx_pid)) {
636 WARNING(entry->queue->rt2x00dev,
637 "TX status report missed for queue %d entry %d\n",
638 entry->queue->qid, entry->entry_idx);
639 rt2x00lib_txdone_noinfo(entry, TXDONE_UNKNOWN);
640 return false;
641 }
642
643 return true;
644 }
645
646 void rt2800_txdone_entry(struct queue_entry *entry, u32 status)
647 {
648 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
649 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
650 struct txdone_entry_desc txdesc;
651 u32 word;
652 u16 mcs, real_mcs;
653 int aggr, ampdu;
654 __le32 *txwi;
655
656 /*
657 * Obtain the status about this packet.
658 */
659 txdesc.flags = 0;
660 txwi = rt2800_drv_get_txwi(entry);
661 rt2x00_desc_read(txwi, 0, &word);
662
663 mcs = rt2x00_get_field32(word, TXWI_W0_MCS);
664 ampdu = rt2x00_get_field32(word, TXWI_W0_AMPDU);
665
666 real_mcs = rt2x00_get_field32(status, TX_STA_FIFO_MCS);
667 aggr = rt2x00_get_field32(status, TX_STA_FIFO_TX_AGGRE);
668
669 /*
670 * If a frame was meant to be sent as a single non-aggregated MPDU
671 * but ended up in an aggregate the used tx rate doesn't correlate
672 * with the one specified in the TXWI as the whole aggregate is sent
673 * with the same rate.
674 *
675 * For example: two frames are sent to rt2x00, the first one sets
676 * AMPDU=1 and requests MCS7 whereas the second frame sets AMDPU=0
677 * and requests MCS15. If the hw aggregates both frames into one
678 * AMDPU the tx status for both frames will contain MCS7 although
679 * the frame was sent successfully.
680 *
681 * Hence, replace the requested rate with the real tx rate to not
682 * confuse the rate control algortihm by providing clearly wrong
683 * data.
684 */
685 if (unlikely(aggr == 1 && ampdu == 0 && real_mcs != mcs)) {
686 skbdesc->tx_rate_idx = real_mcs;
687 mcs = real_mcs;
688 }
689
690 /*
691 * Ralink has a retry mechanism using a global fallback
692 * table. We setup this fallback table to try the immediate
693 * lower rate for all rates. In the TX_STA_FIFO, the MCS field
694 * always contains the MCS used for the last transmission, be
695 * it successful or not.
696 */
697 if (rt2x00_get_field32(status, TX_STA_FIFO_TX_SUCCESS)) {
698 /*
699 * Transmission succeeded. The number of retries is
700 * mcs - real_mcs
701 */
702 __set_bit(TXDONE_SUCCESS, &txdesc.flags);
703 txdesc.retry = ((mcs > real_mcs) ? mcs - real_mcs : 0);
704 } else {
705 /*
706 * Transmission failed. The number of retries is
707 * always 7 in this case (for a total number of 8
708 * frames sent).
709 */
710 __set_bit(TXDONE_FAILURE, &txdesc.flags);
711 txdesc.retry = rt2x00dev->long_retry;
712 }
713
714 /*
715 * the frame was retried at least once
716 * -> hw used fallback rates
717 */
718 if (txdesc.retry)
719 __set_bit(TXDONE_FALLBACK, &txdesc.flags);
720
721 rt2x00lib_txdone(entry, &txdesc);
722 }
723 EXPORT_SYMBOL_GPL(rt2800_txdone_entry);
724
725 void rt2800_txdone(struct rt2x00_dev *rt2x00dev)
726 {
727 struct data_queue *queue;
728 struct queue_entry *entry;
729 u32 reg;
730 u8 pid;
731 int i;
732
733 /*
734 * TX_STA_FIFO is a stack of X entries, hence read TX_STA_FIFO
735 * at most X times and also stop processing once the TX_STA_FIFO_VALID
736 * flag is not set anymore.
737 *
738 * The legacy drivers use X=TX_RING_SIZE but state in a comment
739 * that the TX_STA_FIFO stack has a size of 16. We stick to our
740 * tx ring size for now.
741 */
742 for (i = 0; i < rt2x00dev->ops->tx->entry_num; i++) {
743 rt2800_register_read(rt2x00dev, TX_STA_FIFO, &reg);
744 if (!rt2x00_get_field32(reg, TX_STA_FIFO_VALID))
745 break;
746
747 /*
748 * Skip this entry when it contains an invalid
749 * queue identication number.
750 */
751 pid = rt2x00_get_field32(reg, TX_STA_FIFO_PID_QUEUE);
752 if (pid >= QID_RX)
753 continue;
754
755 queue = rt2x00queue_get_tx_queue(rt2x00dev, pid);
756 if (unlikely(!queue))
757 continue;
758
759 /*
760 * Inside each queue, we process each entry in a chronological
761 * order. We first check that the queue is not empty.
762 */
763 entry = NULL;
764 while (!rt2x00queue_empty(queue)) {
765 entry = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
766 if (rt2800_txdone_entry_check(entry, reg))
767 break;
768 }
769
770 if (!entry || rt2x00queue_empty(queue))
771 break;
772
773 rt2800_txdone_entry(entry, reg);
774 }
775 }
776 EXPORT_SYMBOL_GPL(rt2800_txdone);
777
778 void rt2800_write_beacon(struct queue_entry *entry, struct txentry_desc *txdesc)
779 {
780 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
781 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
782 unsigned int beacon_base;
783 unsigned int padding_len;
784 u32 orig_reg, reg;
785
786 /*
787 * Disable beaconing while we are reloading the beacon data,
788 * otherwise we might be sending out invalid data.
789 */
790 rt2800_register_read(rt2x00dev, BCN_TIME_CFG, &reg);
791 orig_reg = reg;
792 rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_GEN, 0);
793 rt2800_register_write(rt2x00dev, BCN_TIME_CFG, reg);
794
795 /*
796 * Add space for the TXWI in front of the skb.
797 */
798 skb_push(entry->skb, TXWI_DESC_SIZE);
799 memset(entry->skb, 0, TXWI_DESC_SIZE);
800
801 /*
802 * Register descriptor details in skb frame descriptor.
803 */
804 skbdesc->flags |= SKBDESC_DESC_IN_SKB;
805 skbdesc->desc = entry->skb->data;
806 skbdesc->desc_len = TXWI_DESC_SIZE;
807
808 /*
809 * Add the TXWI for the beacon to the skb.
810 */
811 rt2800_write_tx_data(entry, txdesc);
812
813 /*
814 * Dump beacon to userspace through debugfs.
815 */
816 rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_BEACON, entry->skb);
817
818 /*
819 * Write entire beacon with TXWI and padding to register.
820 */
821 padding_len = roundup(entry->skb->len, 4) - entry->skb->len;
822 if (padding_len && skb_pad(entry->skb, padding_len)) {
823 ERROR(rt2x00dev, "Failure padding beacon, aborting\n");
824 /* skb freed by skb_pad() on failure */
825 entry->skb = NULL;
826 rt2800_register_write(rt2x00dev, BCN_TIME_CFG, orig_reg);
827 return;
828 }
829
830 beacon_base = HW_BEACON_OFFSET(entry->entry_idx);
831 rt2800_register_multiwrite(rt2x00dev, beacon_base, entry->skb->data,
832 entry->skb->len + padding_len);
833
834 /*
835 * Enable beaconing again.
836 */
837 rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_GEN, 1);
838 rt2800_register_write(rt2x00dev, BCN_TIME_CFG, reg);
839
840 /*
841 * Clean up beacon skb.
842 */
843 dev_kfree_skb_any(entry->skb);
844 entry->skb = NULL;
845 }
846 EXPORT_SYMBOL_GPL(rt2800_write_beacon);
847
848 static inline void rt2800_clear_beacon_register(struct rt2x00_dev *rt2x00dev,
849 unsigned int beacon_base)
850 {
851 int i;
852
853 /*
854 * For the Beacon base registers we only need to clear
855 * the whole TXWI which (when set to 0) will invalidate
856 * the entire beacon.
857 */
858 for (i = 0; i < TXWI_DESC_SIZE; i += sizeof(__le32))
859 rt2800_register_write(rt2x00dev, beacon_base + i, 0);
860 }
861
862 void rt2800_clear_beacon(struct queue_entry *entry)
863 {
864 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
865 u32 reg;
866
867 /*
868 * Disable beaconing while we are reloading the beacon data,
869 * otherwise we might be sending out invalid data.
870 */
871 rt2800_register_read(rt2x00dev, BCN_TIME_CFG, &reg);
872 rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_GEN, 0);
873 rt2800_register_write(rt2x00dev, BCN_TIME_CFG, reg);
874
875 /*
876 * Clear beacon.
877 */
878 rt2800_clear_beacon_register(rt2x00dev,
879 HW_BEACON_OFFSET(entry->entry_idx));
880
881 /*
882 * Enabled beaconing again.
883 */
884 rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_GEN, 1);
885 rt2800_register_write(rt2x00dev, BCN_TIME_CFG, reg);
886 }
887 EXPORT_SYMBOL_GPL(rt2800_clear_beacon);
888
889 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
890 const struct rt2x00debug rt2800_rt2x00debug = {
891 .owner = THIS_MODULE,
892 .csr = {
893 .read = rt2800_register_read,
894 .write = rt2800_register_write,
895 .flags = RT2X00DEBUGFS_OFFSET,
896 .word_base = CSR_REG_BASE,
897 .word_size = sizeof(u32),
898 .word_count = CSR_REG_SIZE / sizeof(u32),
899 },
900 .eeprom = {
901 .read = rt2x00_eeprom_read,
902 .write = rt2x00_eeprom_write,
903 .word_base = EEPROM_BASE,
904 .word_size = sizeof(u16),
905 .word_count = EEPROM_SIZE / sizeof(u16),
906 },
907 .bbp = {
908 .read = rt2800_bbp_read,
909 .write = rt2800_bbp_write,
910 .word_base = BBP_BASE,
911 .word_size = sizeof(u8),
912 .word_count = BBP_SIZE / sizeof(u8),
913 },
914 .rf = {
915 .read = rt2x00_rf_read,
916 .write = rt2800_rf_write,
917 .word_base = RF_BASE,
918 .word_size = sizeof(u32),
919 .word_count = RF_SIZE / sizeof(u32),
920 },
921 };
922 EXPORT_SYMBOL_GPL(rt2800_rt2x00debug);
923 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
924
925 int rt2800_rfkill_poll(struct rt2x00_dev *rt2x00dev)
926 {
927 u32 reg;
928
929 rt2800_register_read(rt2x00dev, GPIO_CTRL_CFG, &reg);
930 return rt2x00_get_field32(reg, GPIO_CTRL_CFG_BIT2);
931 }
932 EXPORT_SYMBOL_GPL(rt2800_rfkill_poll);
933
934 #ifdef CONFIG_RT2X00_LIB_LEDS
935 static void rt2800_brightness_set(struct led_classdev *led_cdev,
936 enum led_brightness brightness)
937 {
938 struct rt2x00_led *led =
939 container_of(led_cdev, struct rt2x00_led, led_dev);
940 unsigned int enabled = brightness != LED_OFF;
941 unsigned int bg_mode =
942 (enabled && led->rt2x00dev->curr_band == IEEE80211_BAND_2GHZ);
943 unsigned int polarity =
944 rt2x00_get_field16(led->rt2x00dev->led_mcu_reg,
945 EEPROM_FREQ_LED_POLARITY);
946 unsigned int ledmode =
947 rt2x00_get_field16(led->rt2x00dev->led_mcu_reg,
948 EEPROM_FREQ_LED_MODE);
949
950 if (led->type == LED_TYPE_RADIO) {
951 rt2800_mcu_request(led->rt2x00dev, MCU_LED, 0xff, ledmode,
952 enabled ? 0x20 : 0);
953 } else if (led->type == LED_TYPE_ASSOC) {
954 rt2800_mcu_request(led->rt2x00dev, MCU_LED, 0xff, ledmode,
955 enabled ? (bg_mode ? 0x60 : 0xa0) : 0x20);
956 } else if (led->type == LED_TYPE_QUALITY) {
957 /*
958 * The brightness is divided into 6 levels (0 - 5),
959 * The specs tell us the following levels:
960 * 0, 1 ,3, 7, 15, 31
961 * to determine the level in a simple way we can simply
962 * work with bitshifting:
963 * (1 << level) - 1
964 */
965 rt2800_mcu_request(led->rt2x00dev, MCU_LED_STRENGTH, 0xff,
966 (1 << brightness / (LED_FULL / 6)) - 1,
967 polarity);
968 }
969 }
970
971 static int rt2800_blink_set(struct led_classdev *led_cdev,
972 unsigned long *delay_on, unsigned long *delay_off)
973 {
974 struct rt2x00_led *led =
975 container_of(led_cdev, struct rt2x00_led, led_dev);
976 u32 reg;
977
978 rt2800_register_read(led->rt2x00dev, LED_CFG, &reg);
979 rt2x00_set_field32(&reg, LED_CFG_ON_PERIOD, *delay_on);
980 rt2x00_set_field32(&reg, LED_CFG_OFF_PERIOD, *delay_off);
981 rt2800_register_write(led->rt2x00dev, LED_CFG, reg);
982
983 return 0;
984 }
985
986 static void rt2800_init_led(struct rt2x00_dev *rt2x00dev,
987 struct rt2x00_led *led, enum led_type type)
988 {
989 led->rt2x00dev = rt2x00dev;
990 led->type = type;
991 led->led_dev.brightness_set = rt2800_brightness_set;
992 led->led_dev.blink_set = rt2800_blink_set;
993 led->flags = LED_INITIALIZED;
994 }
995 #endif /* CONFIG_RT2X00_LIB_LEDS */
996
997 /*
998 * Configuration handlers.
999 */
1000 static void rt2800_config_wcid_attr(struct rt2x00_dev *rt2x00dev,
1001 struct rt2x00lib_crypto *crypto,
1002 struct ieee80211_key_conf *key)
1003 {
1004 struct mac_wcid_entry wcid_entry;
1005 struct mac_iveiv_entry iveiv_entry;
1006 u32 offset;
1007 u32 reg;
1008
1009 offset = MAC_WCID_ATTR_ENTRY(key->hw_key_idx);
1010
1011 if (crypto->cmd == SET_KEY) {
1012 rt2800_register_read(rt2x00dev, offset, &reg);
1013 rt2x00_set_field32(&reg, MAC_WCID_ATTRIBUTE_KEYTAB,
1014 !!(key->flags & IEEE80211_KEY_FLAG_PAIRWISE));
1015 /*
1016 * Both the cipher as the BSS Idx numbers are split in a main
1017 * value of 3 bits, and a extended field for adding one additional
1018 * bit to the value.
1019 */
1020 rt2x00_set_field32(&reg, MAC_WCID_ATTRIBUTE_CIPHER,
1021 (crypto->cipher & 0x7));
1022 rt2x00_set_field32(&reg, MAC_WCID_ATTRIBUTE_CIPHER_EXT,
1023 (crypto->cipher & 0x8) >> 3);
1024 rt2x00_set_field32(&reg, MAC_WCID_ATTRIBUTE_BSS_IDX,
1025 (crypto->bssidx & 0x7));
1026 rt2x00_set_field32(&reg, MAC_WCID_ATTRIBUTE_BSS_IDX_EXT,
1027 (crypto->bssidx & 0x8) >> 3);
1028 rt2x00_set_field32(&reg, MAC_WCID_ATTRIBUTE_RX_WIUDF, crypto->cipher);
1029 rt2800_register_write(rt2x00dev, offset, reg);
1030 } else {
1031 rt2800_register_write(rt2x00dev, offset, 0);
1032 }
1033
1034 offset = MAC_IVEIV_ENTRY(key->hw_key_idx);
1035
1036 memset(&iveiv_entry, 0, sizeof(iveiv_entry));
1037 if ((crypto->cipher == CIPHER_TKIP) ||
1038 (crypto->cipher == CIPHER_TKIP_NO_MIC) ||
1039 (crypto->cipher == CIPHER_AES))
1040 iveiv_entry.iv[3] |= 0x20;
1041 iveiv_entry.iv[3] |= key->keyidx << 6;
1042 rt2800_register_multiwrite(rt2x00dev, offset,
1043 &iveiv_entry, sizeof(iveiv_entry));
1044
1045 offset = MAC_WCID_ENTRY(key->hw_key_idx);
1046
1047 memset(&wcid_entry, 0, sizeof(wcid_entry));
1048 if (crypto->cmd == SET_KEY)
1049 memcpy(wcid_entry.mac, crypto->address, ETH_ALEN);
1050 rt2800_register_multiwrite(rt2x00dev, offset,
1051 &wcid_entry, sizeof(wcid_entry));
1052 }
1053
1054 int rt2800_config_shared_key(struct rt2x00_dev *rt2x00dev,
1055 struct rt2x00lib_crypto *crypto,
1056 struct ieee80211_key_conf *key)
1057 {
1058 struct hw_key_entry key_entry;
1059 struct rt2x00_field32 field;
1060 u32 offset;
1061 u32 reg;
1062
1063 if (crypto->cmd == SET_KEY) {
1064 key->hw_key_idx = (4 * crypto->bssidx) + key->keyidx;
1065
1066 memcpy(key_entry.key, crypto->key,
1067 sizeof(key_entry.key));
1068 memcpy(key_entry.tx_mic, crypto->tx_mic,
1069 sizeof(key_entry.tx_mic));
1070 memcpy(key_entry.rx_mic, crypto->rx_mic,
1071 sizeof(key_entry.rx_mic));
1072
1073 offset = SHARED_KEY_ENTRY(key->hw_key_idx);
1074 rt2800_register_multiwrite(rt2x00dev, offset,
1075 &key_entry, sizeof(key_entry));
1076 }
1077
1078 /*
1079 * The cipher types are stored over multiple registers
1080 * starting with SHARED_KEY_MODE_BASE each word will have
1081 * 32 bits and contains the cipher types for 2 bssidx each.
1082 * Using the correct defines correctly will cause overhead,
1083 * so just calculate the correct offset.
1084 */
1085 field.bit_offset = 4 * (key->hw_key_idx % 8);
1086 field.bit_mask = 0x7 << field.bit_offset;
1087
1088 offset = SHARED_KEY_MODE_ENTRY(key->hw_key_idx / 8);
1089
1090 rt2800_register_read(rt2x00dev, offset, &reg);
1091 rt2x00_set_field32(&reg, field,
1092 (crypto->cmd == SET_KEY) * crypto->cipher);
1093 rt2800_register_write(rt2x00dev, offset, reg);
1094
1095 /*
1096 * Update WCID information
1097 */
1098 rt2800_config_wcid_attr(rt2x00dev, crypto, key);
1099
1100 return 0;
1101 }
1102 EXPORT_SYMBOL_GPL(rt2800_config_shared_key);
1103
1104 static inline int rt2800_find_pairwise_keyslot(struct rt2x00_dev *rt2x00dev)
1105 {
1106 int idx;
1107 u32 offset, reg;
1108
1109 /*
1110 * Search for the first free pairwise key entry and return the
1111 * corresponding index.
1112 *
1113 * Make sure the WCID starts _after_ the last possible shared key
1114 * entry (>32).
1115 *
1116 * Since parts of the pairwise key table might be shared with
1117 * the beacon frame buffers 6 & 7 we should only write into the
1118 * first 222 entries.
1119 */
1120 for (idx = 33; idx <= 222; idx++) {
1121 offset = MAC_WCID_ATTR_ENTRY(idx);
1122 rt2800_register_read(rt2x00dev, offset, &reg);
1123 if (!reg)
1124 return idx;
1125 }
1126 return -1;
1127 }
1128
1129 int rt2800_config_pairwise_key(struct rt2x00_dev *rt2x00dev,
1130 struct rt2x00lib_crypto *crypto,
1131 struct ieee80211_key_conf *key)
1132 {
1133 struct hw_key_entry key_entry;
1134 u32 offset;
1135 int idx;
1136
1137 if (crypto->cmd == SET_KEY) {
1138 idx = rt2800_find_pairwise_keyslot(rt2x00dev);
1139 if (idx < 0)
1140 return -ENOSPC;
1141 key->hw_key_idx = idx;
1142
1143 memcpy(key_entry.key, crypto->key,
1144 sizeof(key_entry.key));
1145 memcpy(key_entry.tx_mic, crypto->tx_mic,
1146 sizeof(key_entry.tx_mic));
1147 memcpy(key_entry.rx_mic, crypto->rx_mic,
1148 sizeof(key_entry.rx_mic));
1149
1150 offset = PAIRWISE_KEY_ENTRY(key->hw_key_idx);
1151 rt2800_register_multiwrite(rt2x00dev, offset,
1152 &key_entry, sizeof(key_entry));
1153 }
1154
1155 /*
1156 * Update WCID information
1157 */
1158 rt2800_config_wcid_attr(rt2x00dev, crypto, key);
1159
1160 return 0;
1161 }
1162 EXPORT_SYMBOL_GPL(rt2800_config_pairwise_key);
1163
1164 void rt2800_config_filter(struct rt2x00_dev *rt2x00dev,
1165 const unsigned int filter_flags)
1166 {
1167 u32 reg;
1168
1169 /*
1170 * Start configuration steps.
1171 * Note that the version error will always be dropped
1172 * and broadcast frames will always be accepted since
1173 * there is no filter for it at this time.
1174 */
1175 rt2800_register_read(rt2x00dev, RX_FILTER_CFG, &reg);
1176 rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_CRC_ERROR,
1177 !(filter_flags & FIF_FCSFAIL));
1178 rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_PHY_ERROR,
1179 !(filter_flags & FIF_PLCPFAIL));
1180 rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_NOT_TO_ME,
1181 !(filter_flags & FIF_PROMISC_IN_BSS));
1182 rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_NOT_MY_BSSD, 0);
1183 rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_VER_ERROR, 1);
1184 rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_MULTICAST,
1185 !(filter_flags & FIF_ALLMULTI));
1186 rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_BROADCAST, 0);
1187 rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_DUPLICATE, 1);
1188 rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_CF_END_ACK,
1189 !(filter_flags & FIF_CONTROL));
1190 rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_CF_END,
1191 !(filter_flags & FIF_CONTROL));
1192 rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_ACK,
1193 !(filter_flags & FIF_CONTROL));
1194 rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_CTS,
1195 !(filter_flags & FIF_CONTROL));
1196 rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_RTS,
1197 !(filter_flags & FIF_CONTROL));
1198 rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_PSPOLL,
1199 !(filter_flags & FIF_PSPOLL));
1200 rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_BA, 1);
1201 rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_BAR, 0);
1202 rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_CNTL,
1203 !(filter_flags & FIF_CONTROL));
1204 rt2800_register_write(rt2x00dev, RX_FILTER_CFG, reg);
1205 }
1206 EXPORT_SYMBOL_GPL(rt2800_config_filter);
1207
1208 void rt2800_config_intf(struct rt2x00_dev *rt2x00dev, struct rt2x00_intf *intf,
1209 struct rt2x00intf_conf *conf, const unsigned int flags)
1210 {
1211 u32 reg;
1212 bool update_bssid = false;
1213
1214 if (flags & CONFIG_UPDATE_TYPE) {
1215 /*
1216 * Enable synchronisation.
1217 */
1218 rt2800_register_read(rt2x00dev, BCN_TIME_CFG, &reg);
1219 rt2x00_set_field32(&reg, BCN_TIME_CFG_TSF_SYNC, conf->sync);
1220 rt2800_register_write(rt2x00dev, BCN_TIME_CFG, reg);
1221 }
1222
1223 if (flags & CONFIG_UPDATE_MAC) {
1224 if (flags & CONFIG_UPDATE_TYPE &&
1225 conf->sync == TSF_SYNC_AP_NONE) {
1226 /*
1227 * The BSSID register has to be set to our own mac
1228 * address in AP mode.
1229 */
1230 memcpy(conf->bssid, conf->mac, sizeof(conf->mac));
1231 update_bssid = true;
1232 }
1233
1234 if (!is_zero_ether_addr((const u8 *)conf->mac)) {
1235 reg = le32_to_cpu(conf->mac[1]);
1236 rt2x00_set_field32(&reg, MAC_ADDR_DW1_UNICAST_TO_ME_MASK, 0xff);
1237 conf->mac[1] = cpu_to_le32(reg);
1238 }
1239
1240 rt2800_register_multiwrite(rt2x00dev, MAC_ADDR_DW0,
1241 conf->mac, sizeof(conf->mac));
1242 }
1243
1244 if ((flags & CONFIG_UPDATE_BSSID) || update_bssid) {
1245 if (!is_zero_ether_addr((const u8 *)conf->bssid)) {
1246 reg = le32_to_cpu(conf->bssid[1]);
1247 rt2x00_set_field32(&reg, MAC_BSSID_DW1_BSS_ID_MASK, 3);
1248 rt2x00_set_field32(&reg, MAC_BSSID_DW1_BSS_BCN_NUM, 7);
1249 conf->bssid[1] = cpu_to_le32(reg);
1250 }
1251
1252 rt2800_register_multiwrite(rt2x00dev, MAC_BSSID_DW0,
1253 conf->bssid, sizeof(conf->bssid));
1254 }
1255 }
1256 EXPORT_SYMBOL_GPL(rt2800_config_intf);
1257
1258 static void rt2800_config_ht_opmode(struct rt2x00_dev *rt2x00dev,
1259 struct rt2x00lib_erp *erp)
1260 {
1261 bool any_sta_nongf = !!(erp->ht_opmode &
1262 IEEE80211_HT_OP_MODE_NON_GF_STA_PRSNT);
1263 u8 protection = erp->ht_opmode & IEEE80211_HT_OP_MODE_PROTECTION;
1264 u8 mm20_mode, mm40_mode, gf20_mode, gf40_mode;
1265 u16 mm20_rate, mm40_rate, gf20_rate, gf40_rate;
1266 u32 reg;
1267
1268 /* default protection rate for HT20: OFDM 24M */
1269 mm20_rate = gf20_rate = 0x4004;
1270
1271 /* default protection rate for HT40: duplicate OFDM 24M */
1272 mm40_rate = gf40_rate = 0x4084;
1273
1274 switch (protection) {
1275 case IEEE80211_HT_OP_MODE_PROTECTION_NONE:
1276 /*
1277 * All STAs in this BSS are HT20/40 but there might be
1278 * STAs not supporting greenfield mode.
1279 * => Disable protection for HT transmissions.
1280 */
1281 mm20_mode = mm40_mode = gf20_mode = gf40_mode = 0;
1282
1283 break;
1284 case IEEE80211_HT_OP_MODE_PROTECTION_20MHZ:
1285 /*
1286 * All STAs in this BSS are HT20 or HT20/40 but there
1287 * might be STAs not supporting greenfield mode.
1288 * => Protect all HT40 transmissions.
1289 */
1290 mm20_mode = gf20_mode = 0;
1291 mm40_mode = gf40_mode = 2;
1292
1293 break;
1294 case IEEE80211_HT_OP_MODE_PROTECTION_NONMEMBER:
1295 /*
1296 * Nonmember protection:
1297 * According to 802.11n we _should_ protect all
1298 * HT transmissions (but we don't have to).
1299 *
1300 * But if cts_protection is enabled we _shall_ protect
1301 * all HT transmissions using a CCK rate.
1302 *
1303 * And if any station is non GF we _shall_ protect
1304 * GF transmissions.
1305 *
1306 * We decide to protect everything
1307 * -> fall through to mixed mode.
1308 */
1309 case IEEE80211_HT_OP_MODE_PROTECTION_NONHT_MIXED:
1310 /*
1311 * Legacy STAs are present
1312 * => Protect all HT transmissions.
1313 */
1314 mm20_mode = mm40_mode = gf20_mode = gf40_mode = 2;
1315
1316 /*
1317 * If erp protection is needed we have to protect HT
1318 * transmissions with CCK 11M long preamble.
1319 */
1320 if (erp->cts_protection) {
1321 /* don't duplicate RTS/CTS in CCK mode */
1322 mm20_rate = mm40_rate = 0x0003;
1323 gf20_rate = gf40_rate = 0x0003;
1324 }
1325 break;
1326 };
1327
1328 /* check for STAs not supporting greenfield mode */
1329 if (any_sta_nongf)
1330 gf20_mode = gf40_mode = 2;
1331
1332 /* Update HT protection config */
1333 rt2800_register_read(rt2x00dev, MM20_PROT_CFG, &reg);
1334 rt2x00_set_field32(&reg, MM20_PROT_CFG_PROTECT_RATE, mm20_rate);
1335 rt2x00_set_field32(&reg, MM20_PROT_CFG_PROTECT_CTRL, mm20_mode);
1336 rt2800_register_write(rt2x00dev, MM20_PROT_CFG, reg);
1337
1338 rt2800_register_read(rt2x00dev, MM40_PROT_CFG, &reg);
1339 rt2x00_set_field32(&reg, MM40_PROT_CFG_PROTECT_RATE, mm40_rate);
1340 rt2x00_set_field32(&reg, MM40_PROT_CFG_PROTECT_CTRL, mm40_mode);
1341 rt2800_register_write(rt2x00dev, MM40_PROT_CFG, reg);
1342
1343 rt2800_register_read(rt2x00dev, GF20_PROT_CFG, &reg);
1344 rt2x00_set_field32(&reg, GF20_PROT_CFG_PROTECT_RATE, gf20_rate);
1345 rt2x00_set_field32(&reg, GF20_PROT_CFG_PROTECT_CTRL, gf20_mode);
1346 rt2800_register_write(rt2x00dev, GF20_PROT_CFG, reg);
1347
1348 rt2800_register_read(rt2x00dev, GF40_PROT_CFG, &reg);
1349 rt2x00_set_field32(&reg, GF40_PROT_CFG_PROTECT_RATE, gf40_rate);
1350 rt2x00_set_field32(&reg, GF40_PROT_CFG_PROTECT_CTRL, gf40_mode);
1351 rt2800_register_write(rt2x00dev, GF40_PROT_CFG, reg);
1352 }
1353
1354 void rt2800_config_erp(struct rt2x00_dev *rt2x00dev, struct rt2x00lib_erp *erp,
1355 u32 changed)
1356 {
1357 u32 reg;
1358
1359 if (changed & BSS_CHANGED_ERP_PREAMBLE) {
1360 rt2800_register_read(rt2x00dev, AUTO_RSP_CFG, &reg);
1361 rt2x00_set_field32(&reg, AUTO_RSP_CFG_BAC_ACK_POLICY,
1362 !!erp->short_preamble);
1363 rt2x00_set_field32(&reg, AUTO_RSP_CFG_AR_PREAMBLE,
1364 !!erp->short_preamble);
1365 rt2800_register_write(rt2x00dev, AUTO_RSP_CFG, reg);
1366 }
1367
1368 if (changed & BSS_CHANGED_ERP_CTS_PROT) {
1369 rt2800_register_read(rt2x00dev, OFDM_PROT_CFG, &reg);
1370 rt2x00_set_field32(&reg, OFDM_PROT_CFG_PROTECT_CTRL,
1371 erp->cts_protection ? 2 : 0);
1372 rt2800_register_write(rt2x00dev, OFDM_PROT_CFG, reg);
1373 }
1374
1375 if (changed & BSS_CHANGED_BASIC_RATES) {
1376 rt2800_register_write(rt2x00dev, LEGACY_BASIC_RATE,
1377 erp->basic_rates);
1378 rt2800_register_write(rt2x00dev, HT_BASIC_RATE, 0x00008003);
1379 }
1380
1381 if (changed & BSS_CHANGED_ERP_SLOT) {
1382 rt2800_register_read(rt2x00dev, BKOFF_SLOT_CFG, &reg);
1383 rt2x00_set_field32(&reg, BKOFF_SLOT_CFG_SLOT_TIME,
1384 erp->slot_time);
1385 rt2800_register_write(rt2x00dev, BKOFF_SLOT_CFG, reg);
1386
1387 rt2800_register_read(rt2x00dev, XIFS_TIME_CFG, &reg);
1388 rt2x00_set_field32(&reg, XIFS_TIME_CFG_EIFS, erp->eifs);
1389 rt2800_register_write(rt2x00dev, XIFS_TIME_CFG, reg);
1390 }
1391
1392 if (changed & BSS_CHANGED_BEACON_INT) {
1393 rt2800_register_read(rt2x00dev, BCN_TIME_CFG, &reg);
1394 rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_INTERVAL,
1395 erp->beacon_int * 16);
1396 rt2800_register_write(rt2x00dev, BCN_TIME_CFG, reg);
1397 }
1398
1399 if (changed & BSS_CHANGED_HT)
1400 rt2800_config_ht_opmode(rt2x00dev, erp);
1401 }
1402 EXPORT_SYMBOL_GPL(rt2800_config_erp);
1403
1404 static void rt2800_set_ant_diversity(struct rt2x00_dev *rt2x00dev,
1405 enum antenna ant)
1406 {
1407 u32 reg;
1408 u8 eesk_pin = (ant == ANTENNA_A) ? 1 : 0;
1409 u8 gpio_bit3 = (ant == ANTENNA_A) ? 0 : 1;
1410
1411 if (rt2x00_is_pci(rt2x00dev)) {
1412 rt2800_register_read(rt2x00dev, E2PROM_CSR, &reg);
1413 rt2x00_set_field32(&reg, E2PROM_CSR_DATA_CLOCK, eesk_pin);
1414 rt2800_register_write(rt2x00dev, E2PROM_CSR, reg);
1415 } else if (rt2x00_is_usb(rt2x00dev))
1416 rt2800_mcu_request(rt2x00dev, MCU_ANT_SELECT, 0xff,
1417 eesk_pin, 0);
1418
1419 rt2800_register_read(rt2x00dev, GPIO_CTRL_CFG, &reg);
1420 rt2x00_set_field32(&reg, GPIO_CTRL_CFG_GPIOD_BIT3, 0);
1421 rt2x00_set_field32(&reg, GPIO_CTRL_CFG_BIT3, gpio_bit3);
1422 rt2800_register_write(rt2x00dev, GPIO_CTRL_CFG, reg);
1423 }
1424
1425 void rt2800_config_ant(struct rt2x00_dev *rt2x00dev, struct antenna_setup *ant)
1426 {
1427 u8 r1;
1428 u8 r3;
1429 u16 eeprom;
1430
1431 rt2800_bbp_read(rt2x00dev, 1, &r1);
1432 rt2800_bbp_read(rt2x00dev, 3, &r3);
1433
1434 /*
1435 * Configure the TX antenna.
1436 */
1437 switch (ant->tx_chain_num) {
1438 case 1:
1439 rt2x00_set_field8(&r1, BBP1_TX_ANTENNA, 0);
1440 break;
1441 case 2:
1442 rt2x00_set_field8(&r1, BBP1_TX_ANTENNA, 2);
1443 break;
1444 case 3:
1445 rt2x00_set_field8(&r1, BBP1_TX_ANTENNA, 0);
1446 break;
1447 }
1448
1449 /*
1450 * Configure the RX antenna.
1451 */
1452 switch (ant->rx_chain_num) {
1453 case 1:
1454 if (rt2x00_rt(rt2x00dev, RT3070) ||
1455 rt2x00_rt(rt2x00dev, RT3090) ||
1456 rt2x00_rt(rt2x00dev, RT3390)) {
1457 rt2x00_eeprom_read(rt2x00dev,
1458 EEPROM_NIC_CONF1, &eeprom);
1459 if (rt2x00_get_field16(eeprom,
1460 EEPROM_NIC_CONF1_ANT_DIVERSITY))
1461 rt2800_set_ant_diversity(rt2x00dev,
1462 rt2x00dev->default_ant.rx);
1463 }
1464 rt2x00_set_field8(&r3, BBP3_RX_ANTENNA, 0);
1465 break;
1466 case 2:
1467 rt2x00_set_field8(&r3, BBP3_RX_ANTENNA, 1);
1468 break;
1469 case 3:
1470 rt2x00_set_field8(&r3, BBP3_RX_ANTENNA, 2);
1471 break;
1472 }
1473
1474 rt2800_bbp_write(rt2x00dev, 3, r3);
1475 rt2800_bbp_write(rt2x00dev, 1, r1);
1476 }
1477 EXPORT_SYMBOL_GPL(rt2800_config_ant);
1478
1479 static void rt2800_config_lna_gain(struct rt2x00_dev *rt2x00dev,
1480 struct rt2x00lib_conf *libconf)
1481 {
1482 u16 eeprom;
1483 short lna_gain;
1484
1485 if (libconf->rf.channel <= 14) {
1486 rt2x00_eeprom_read(rt2x00dev, EEPROM_LNA, &eeprom);
1487 lna_gain = rt2x00_get_field16(eeprom, EEPROM_LNA_BG);
1488 } else if (libconf->rf.channel <= 64) {
1489 rt2x00_eeprom_read(rt2x00dev, EEPROM_LNA, &eeprom);
1490 lna_gain = rt2x00_get_field16(eeprom, EEPROM_LNA_A0);
1491 } else if (libconf->rf.channel <= 128) {
1492 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_BG2, &eeprom);
1493 lna_gain = rt2x00_get_field16(eeprom, EEPROM_RSSI_BG2_LNA_A1);
1494 } else {
1495 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_A2, &eeprom);
1496 lna_gain = rt2x00_get_field16(eeprom, EEPROM_RSSI_A2_LNA_A2);
1497 }
1498
1499 rt2x00dev->lna_gain = lna_gain;
1500 }
1501
1502 static void rt2800_config_channel_rf2xxx(struct rt2x00_dev *rt2x00dev,
1503 struct ieee80211_conf *conf,
1504 struct rf_channel *rf,
1505 struct channel_info *info)
1506 {
1507 rt2x00_set_field32(&rf->rf4, RF4_FREQ_OFFSET, rt2x00dev->freq_offset);
1508
1509 if (rt2x00dev->default_ant.tx_chain_num == 1)
1510 rt2x00_set_field32(&rf->rf2, RF2_ANTENNA_TX1, 1);
1511
1512 if (rt2x00dev->default_ant.rx_chain_num == 1) {
1513 rt2x00_set_field32(&rf->rf2, RF2_ANTENNA_RX1, 1);
1514 rt2x00_set_field32(&rf->rf2, RF2_ANTENNA_RX2, 1);
1515 } else if (rt2x00dev->default_ant.rx_chain_num == 2)
1516 rt2x00_set_field32(&rf->rf2, RF2_ANTENNA_RX2, 1);
1517
1518 if (rf->channel > 14) {
1519 /*
1520 * When TX power is below 0, we should increase it by 7 to
1521 * make it a positive value (Minumum value is -7).
1522 * However this means that values between 0 and 7 have
1523 * double meaning, and we should set a 7DBm boost flag.
1524 */
1525 rt2x00_set_field32(&rf->rf3, RF3_TXPOWER_A_7DBM_BOOST,
1526 (info->default_power1 >= 0));
1527
1528 if (info->default_power1 < 0)
1529 info->default_power1 += 7;
1530
1531 rt2x00_set_field32(&rf->rf3, RF3_TXPOWER_A, info->default_power1);
1532
1533 rt2x00_set_field32(&rf->rf4, RF4_TXPOWER_A_7DBM_BOOST,
1534 (info->default_power2 >= 0));
1535
1536 if (info->default_power2 < 0)
1537 info->default_power2 += 7;
1538
1539 rt2x00_set_field32(&rf->rf4, RF4_TXPOWER_A, info->default_power2);
1540 } else {
1541 rt2x00_set_field32(&rf->rf3, RF3_TXPOWER_G, info->default_power1);
1542 rt2x00_set_field32(&rf->rf4, RF4_TXPOWER_G, info->default_power2);
1543 }
1544
1545 rt2x00_set_field32(&rf->rf4, RF4_HT40, conf_is_ht40(conf));
1546
1547 rt2800_rf_write(rt2x00dev, 1, rf->rf1);
1548 rt2800_rf_write(rt2x00dev, 2, rf->rf2);
1549 rt2800_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
1550 rt2800_rf_write(rt2x00dev, 4, rf->rf4);
1551
1552 udelay(200);
1553
1554 rt2800_rf_write(rt2x00dev, 1, rf->rf1);
1555 rt2800_rf_write(rt2x00dev, 2, rf->rf2);
1556 rt2800_rf_write(rt2x00dev, 3, rf->rf3 | 0x00000004);
1557 rt2800_rf_write(rt2x00dev, 4, rf->rf4);
1558
1559 udelay(200);
1560
1561 rt2800_rf_write(rt2x00dev, 1, rf->rf1);
1562 rt2800_rf_write(rt2x00dev, 2, rf->rf2);
1563 rt2800_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
1564 rt2800_rf_write(rt2x00dev, 4, rf->rf4);
1565 }
1566
1567 static void rt2800_config_channel_rf3xxx(struct rt2x00_dev *rt2x00dev,
1568 struct ieee80211_conf *conf,
1569 struct rf_channel *rf,
1570 struct channel_info *info)
1571 {
1572 u8 rfcsr;
1573
1574 rt2800_rfcsr_write(rt2x00dev, 2, rf->rf1);
1575 rt2800_rfcsr_write(rt2x00dev, 3, rf->rf3);
1576
1577 rt2800_rfcsr_read(rt2x00dev, 6, &rfcsr);
1578 rt2x00_set_field8(&rfcsr, RFCSR6_R1, rf->rf2);
1579 rt2800_rfcsr_write(rt2x00dev, 6, rfcsr);
1580
1581 rt2800_rfcsr_read(rt2x00dev, 12, &rfcsr);
1582 rt2x00_set_field8(&rfcsr, RFCSR12_TX_POWER, info->default_power1);
1583 rt2800_rfcsr_write(rt2x00dev, 12, rfcsr);
1584
1585 rt2800_rfcsr_read(rt2x00dev, 13, &rfcsr);
1586 rt2x00_set_field8(&rfcsr, RFCSR13_TX_POWER, info->default_power2);
1587 rt2800_rfcsr_write(rt2x00dev, 13, rfcsr);
1588
1589 rt2800_rfcsr_read(rt2x00dev, 23, &rfcsr);
1590 rt2x00_set_field8(&rfcsr, RFCSR23_FREQ_OFFSET, rt2x00dev->freq_offset);
1591 rt2800_rfcsr_write(rt2x00dev, 23, rfcsr);
1592
1593 rt2800_rfcsr_write(rt2x00dev, 24,
1594 rt2x00dev->calibration[conf_is_ht40(conf)]);
1595
1596 rt2800_rfcsr_read(rt2x00dev, 7, &rfcsr);
1597 rt2x00_set_field8(&rfcsr, RFCSR7_RF_TUNING, 1);
1598 rt2800_rfcsr_write(rt2x00dev, 7, rfcsr);
1599 }
1600
1601
1602 #define RT5390_POWER_BOUND 0x27
1603 #define RT5390_FREQ_OFFSET_BOUND 0x5f
1604
1605 static void rt2800_config_channel_rf53xx(struct rt2x00_dev *rt2x00dev,
1606 struct ieee80211_conf *conf,
1607 struct rf_channel *rf,
1608 struct channel_info *info)
1609 {
1610 u8 rfcsr;
1611 u16 eeprom;
1612
1613 rt2800_rfcsr_write(rt2x00dev, 8, rf->rf1);
1614 rt2800_rfcsr_write(rt2x00dev, 9, rf->rf3);
1615 rt2800_rfcsr_read(rt2x00dev, 11, &rfcsr);
1616 rt2x00_set_field8(&rfcsr, RFCSR11_R, rf->rf2);
1617 rt2800_rfcsr_write(rt2x00dev, 11, rfcsr);
1618
1619 rt2800_rfcsr_read(rt2x00dev, 49, &rfcsr);
1620 if (info->default_power1 > RT5390_POWER_BOUND)
1621 rt2x00_set_field8(&rfcsr, RFCSR49_TX, RT5390_POWER_BOUND);
1622 else
1623 rt2x00_set_field8(&rfcsr, RFCSR49_TX, info->default_power1);
1624 rt2800_rfcsr_write(rt2x00dev, 49, rfcsr);
1625
1626 rt2800_rfcsr_read(rt2x00dev, 1, &rfcsr);
1627 rt2x00_set_field8(&rfcsr, RFCSR1_RF_BLOCK_EN, 1);
1628 rt2x00_set_field8(&rfcsr, RFCSR1_PLL_PD, 1);
1629 rt2x00_set_field8(&rfcsr, RFCSR1_RX0_PD, 1);
1630 rt2x00_set_field8(&rfcsr, RFCSR1_TX0_PD, 1);
1631 rt2800_rfcsr_write(rt2x00dev, 1, rfcsr);
1632
1633 rt2800_rfcsr_read(rt2x00dev, 17, &rfcsr);
1634 if (rt2x00dev->freq_offset > RT5390_FREQ_OFFSET_BOUND)
1635 rt2x00_set_field8(&rfcsr, RFCSR17_CODE,
1636 RT5390_FREQ_OFFSET_BOUND);
1637 else
1638 rt2x00_set_field8(&rfcsr, RFCSR17_CODE, rt2x00dev->freq_offset);
1639 rt2800_rfcsr_write(rt2x00dev, 17, rfcsr);
1640
1641 rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC_CONF1, &eeprom);
1642 if (rf->channel <= 14) {
1643 int idx = rf->channel-1;
1644
1645 if (rt2x00_get_field16(eeprom, EEPROM_NIC_CONF1_BT_COEXIST)) {
1646 if (rt2x00_rt_rev_gte(rt2x00dev, RT5390, REV_RT5390F)) {
1647 /* r55/r59 value array of channel 1~14 */
1648 static const char r55_bt_rev[] = {0x83, 0x83,
1649 0x83, 0x73, 0x73, 0x63, 0x53, 0x53,
1650 0x53, 0x43, 0x43, 0x43, 0x43, 0x43};
1651 static const char r59_bt_rev[] = {0x0e, 0x0e,
1652 0x0e, 0x0e, 0x0e, 0x0b, 0x0a, 0x09,
1653 0x07, 0x07, 0x07, 0x07, 0x07, 0x07};
1654
1655 rt2800_rfcsr_write(rt2x00dev, 55,
1656 r55_bt_rev[idx]);
1657 rt2800_rfcsr_write(rt2x00dev, 59,
1658 r59_bt_rev[idx]);
1659 } else {
1660 static const char r59_bt[] = {0x8b, 0x8b, 0x8b,
1661 0x8b, 0x8b, 0x8b, 0x8b, 0x8a, 0x89,
1662 0x88, 0x88, 0x86, 0x85, 0x84};
1663
1664 rt2800_rfcsr_write(rt2x00dev, 59, r59_bt[idx]);
1665 }
1666 } else {
1667 if (rt2x00_rt_rev_gte(rt2x00dev, RT5390, REV_RT5390F)) {
1668 static const char r55_nonbt_rev[] = {0x23, 0x23,
1669 0x23, 0x23, 0x13, 0x13, 0x03, 0x03,
1670 0x03, 0x03, 0x03, 0x03, 0x03, 0x03};
1671 static const char r59_nonbt_rev[] = {0x07, 0x07,
1672 0x07, 0x07, 0x07, 0x07, 0x07, 0x07,
1673 0x07, 0x07, 0x06, 0x05, 0x04, 0x04};
1674
1675 rt2800_rfcsr_write(rt2x00dev, 55,
1676 r55_nonbt_rev[idx]);
1677 rt2800_rfcsr_write(rt2x00dev, 59,
1678 r59_nonbt_rev[idx]);
1679 } else if (rt2x00_rt(rt2x00dev, RT5390)) {
1680 static const char r59_non_bt[] = {0x8f, 0x8f,
1681 0x8f, 0x8f, 0x8f, 0x8f, 0x8f, 0x8d,
1682 0x8a, 0x88, 0x88, 0x87, 0x87, 0x86};
1683
1684 rt2800_rfcsr_write(rt2x00dev, 59,
1685 r59_non_bt[idx]);
1686 }
1687 }
1688 }
1689
1690 rt2800_rfcsr_read(rt2x00dev, 30, &rfcsr);
1691 rt2x00_set_field8(&rfcsr, RFCSR30_TX_H20M, 0);
1692 rt2x00_set_field8(&rfcsr, RFCSR30_RX_H20M, 0);
1693 rt2800_rfcsr_write(rt2x00dev, 30, rfcsr);
1694
1695 rt2800_rfcsr_read(rt2x00dev, 3, &rfcsr);
1696 rt2x00_set_field8(&rfcsr, RFCSR30_RF_CALIBRATION, 1);
1697 rt2800_rfcsr_write(rt2x00dev, 3, rfcsr);
1698 }
1699
1700 static void rt2800_config_channel(struct rt2x00_dev *rt2x00dev,
1701 struct ieee80211_conf *conf,
1702 struct rf_channel *rf,
1703 struct channel_info *info)
1704 {
1705 u32 reg;
1706 unsigned int tx_pin;
1707 u8 bbp;
1708
1709 if (rf->channel <= 14) {
1710 info->default_power1 = TXPOWER_G_TO_DEV(info->default_power1);
1711 info->default_power2 = TXPOWER_G_TO_DEV(info->default_power2);
1712 } else {
1713 info->default_power1 = TXPOWER_A_TO_DEV(info->default_power1);
1714 info->default_power2 = TXPOWER_A_TO_DEV(info->default_power2);
1715 }
1716
1717 if (rt2x00_rf(rt2x00dev, RF2020) ||
1718 rt2x00_rf(rt2x00dev, RF3020) ||
1719 rt2x00_rf(rt2x00dev, RF3021) ||
1720 rt2x00_rf(rt2x00dev, RF3022) ||
1721 rt2x00_rf(rt2x00dev, RF3052) ||
1722 rt2x00_rf(rt2x00dev, RF3320))
1723 rt2800_config_channel_rf3xxx(rt2x00dev, conf, rf, info);
1724 else if (rt2x00_rf(rt2x00dev, RF5390))
1725 rt2800_config_channel_rf53xx(rt2x00dev, conf, rf, info);
1726 else
1727 rt2800_config_channel_rf2xxx(rt2x00dev, conf, rf, info);
1728
1729 /*
1730 * Change BBP settings
1731 */
1732 rt2800_bbp_write(rt2x00dev, 62, 0x37 - rt2x00dev->lna_gain);
1733 rt2800_bbp_write(rt2x00dev, 63, 0x37 - rt2x00dev->lna_gain);
1734 rt2800_bbp_write(rt2x00dev, 64, 0x37 - rt2x00dev->lna_gain);
1735 rt2800_bbp_write(rt2x00dev, 86, 0);
1736
1737 if (rf->channel <= 14) {
1738 if (!rt2x00_rt(rt2x00dev, RT5390)) {
1739 if (test_bit(CONFIG_EXTERNAL_LNA_BG,
1740 &rt2x00dev->flags)) {
1741 rt2800_bbp_write(rt2x00dev, 82, 0x62);
1742 rt2800_bbp_write(rt2x00dev, 75, 0x46);
1743 } else {
1744 rt2800_bbp_write(rt2x00dev, 82, 0x84);
1745 rt2800_bbp_write(rt2x00dev, 75, 0x50);
1746 }
1747 }
1748 } else {
1749 rt2800_bbp_write(rt2x00dev, 82, 0xf2);
1750
1751 if (test_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags))
1752 rt2800_bbp_write(rt2x00dev, 75, 0x46);
1753 else
1754 rt2800_bbp_write(rt2x00dev, 75, 0x50);
1755 }
1756
1757 rt2800_register_read(rt2x00dev, TX_BAND_CFG, &reg);
1758 rt2x00_set_field32(&reg, TX_BAND_CFG_HT40_MINUS, conf_is_ht40_minus(conf));
1759 rt2x00_set_field32(&reg, TX_BAND_CFG_A, rf->channel > 14);
1760 rt2x00_set_field32(&reg, TX_BAND_CFG_BG, rf->channel <= 14);
1761 rt2800_register_write(rt2x00dev, TX_BAND_CFG, reg);
1762
1763 tx_pin = 0;
1764
1765 /* Turn on unused PA or LNA when not using 1T or 1R */
1766 if (rt2x00dev->default_ant.tx_chain_num == 2) {
1767 rt2x00_set_field32(&tx_pin, TX_PIN_CFG_PA_PE_A1_EN, 1);
1768 rt2x00_set_field32(&tx_pin, TX_PIN_CFG_PA_PE_G1_EN, 1);
1769 }
1770
1771 /* Turn on unused PA or LNA when not using 1T or 1R */
1772 if (rt2x00dev->default_ant.rx_chain_num == 2) {
1773 rt2x00_set_field32(&tx_pin, TX_PIN_CFG_LNA_PE_A1_EN, 1);
1774 rt2x00_set_field32(&tx_pin, TX_PIN_CFG_LNA_PE_G1_EN, 1);
1775 }
1776
1777 rt2x00_set_field32(&tx_pin, TX_PIN_CFG_LNA_PE_A0_EN, 1);
1778 rt2x00_set_field32(&tx_pin, TX_PIN_CFG_LNA_PE_G0_EN, 1);
1779 rt2x00_set_field32(&tx_pin, TX_PIN_CFG_RFTR_EN, 1);
1780 rt2x00_set_field32(&tx_pin, TX_PIN_CFG_TRSW_EN, 1);
1781 rt2x00_set_field32(&tx_pin, TX_PIN_CFG_PA_PE_G0_EN, rf->channel <= 14);
1782 rt2x00_set_field32(&tx_pin, TX_PIN_CFG_PA_PE_A0_EN, rf->channel > 14);
1783
1784 rt2800_register_write(rt2x00dev, TX_PIN_CFG, tx_pin);
1785
1786 rt2800_bbp_read(rt2x00dev, 4, &bbp);
1787 rt2x00_set_field8(&bbp, BBP4_BANDWIDTH, 2 * conf_is_ht40(conf));
1788 rt2800_bbp_write(rt2x00dev, 4, bbp);
1789
1790 rt2800_bbp_read(rt2x00dev, 3, &bbp);
1791 rt2x00_set_field8(&bbp, BBP3_HT40_MINUS, conf_is_ht40_minus(conf));
1792 rt2800_bbp_write(rt2x00dev, 3, bbp);
1793
1794 if (rt2x00_rt_rev(rt2x00dev, RT2860, REV_RT2860C)) {
1795 if (conf_is_ht40(conf)) {
1796 rt2800_bbp_write(rt2x00dev, 69, 0x1a);
1797 rt2800_bbp_write(rt2x00dev, 70, 0x0a);
1798 rt2800_bbp_write(rt2x00dev, 73, 0x16);
1799 } else {
1800 rt2800_bbp_write(rt2x00dev, 69, 0x16);
1801 rt2800_bbp_write(rt2x00dev, 70, 0x08);
1802 rt2800_bbp_write(rt2x00dev, 73, 0x11);
1803 }
1804 }
1805
1806 msleep(1);
1807
1808 /*
1809 * Clear channel statistic counters
1810 */
1811 rt2800_register_read(rt2x00dev, CH_IDLE_STA, &reg);
1812 rt2800_register_read(rt2x00dev, CH_BUSY_STA, &reg);
1813 rt2800_register_read(rt2x00dev, CH_BUSY_STA_SEC, &reg);
1814 }
1815
1816 static int rt2800_get_txpower_bw_comp(struct rt2x00_dev *rt2x00dev,
1817 enum ieee80211_band band)
1818 {
1819 u16 eeprom;
1820 u8 comp_en;
1821 u8 comp_type;
1822 int comp_value;
1823
1824 rt2x00_eeprom_read(rt2x00dev, EEPROM_TXPOWER_DELTA, &eeprom);
1825
1826 if (eeprom == 0xffff)
1827 return 0;
1828
1829 if (band == IEEE80211_BAND_2GHZ) {
1830 comp_en = rt2x00_get_field16(eeprom,
1831 EEPROM_TXPOWER_DELTA_ENABLE_2G);
1832 if (comp_en) {
1833 comp_type = rt2x00_get_field16(eeprom,
1834 EEPROM_TXPOWER_DELTA_TYPE_2G);
1835 comp_value = rt2x00_get_field16(eeprom,
1836 EEPROM_TXPOWER_DELTA_VALUE_2G);
1837 if (!comp_type)
1838 comp_value = -comp_value;
1839 }
1840 } else {
1841 comp_en = rt2x00_get_field16(eeprom,
1842 EEPROM_TXPOWER_DELTA_ENABLE_5G);
1843 if (comp_en) {
1844 comp_type = rt2x00_get_field16(eeprom,
1845 EEPROM_TXPOWER_DELTA_TYPE_5G);
1846 comp_value = rt2x00_get_field16(eeprom,
1847 EEPROM_TXPOWER_DELTA_VALUE_5G);
1848 if (!comp_type)
1849 comp_value = -comp_value;
1850 }
1851 }
1852
1853 return comp_value;
1854 }
1855
1856 static u8 rt2800_compesate_txpower(struct rt2x00_dev *rt2x00dev,
1857 int is_rate_b,
1858 enum ieee80211_band band,
1859 int power_level,
1860 u8 txpower)
1861 {
1862 u32 reg;
1863 u16 eeprom;
1864 u8 criterion;
1865 u8 eirp_txpower;
1866 u8 eirp_txpower_criterion;
1867 u8 reg_limit;
1868 int bw_comp = 0;
1869
1870 if (!((band == IEEE80211_BAND_5GHZ) && is_rate_b))
1871 return txpower;
1872
1873 if (test_bit(CONFIG_CHANNEL_HT40, &rt2x00dev->flags))
1874 bw_comp = rt2800_get_txpower_bw_comp(rt2x00dev, band);
1875
1876 if (test_bit(CONFIG_SUPPORT_POWER_LIMIT, &rt2x00dev->flags)) {
1877 /*
1878 * Check if eirp txpower exceed txpower_limit.
1879 * We use OFDM 6M as criterion and its eirp txpower
1880 * is stored at EEPROM_EIRP_MAX_TX_POWER.
1881 * .11b data rate need add additional 4dbm
1882 * when calculating eirp txpower.
1883 */
1884 rt2800_register_read(rt2x00dev, TX_PWR_CFG_0, &reg);
1885 criterion = rt2x00_get_field32(reg, TX_PWR_CFG_0_6MBS);
1886
1887 rt2x00_eeprom_read(rt2x00dev,
1888 EEPROM_EIRP_MAX_TX_POWER, &eeprom);
1889
1890 if (band == IEEE80211_BAND_2GHZ)
1891 eirp_txpower_criterion = rt2x00_get_field16(eeprom,
1892 EEPROM_EIRP_MAX_TX_POWER_2GHZ);
1893 else
1894 eirp_txpower_criterion = rt2x00_get_field16(eeprom,
1895 EEPROM_EIRP_MAX_TX_POWER_5GHZ);
1896
1897 eirp_txpower = eirp_txpower_criterion + (txpower - criterion) +
1898 (is_rate_b ? 4 : 0) + bw_comp;
1899
1900 reg_limit = (eirp_txpower > power_level) ?
1901 (eirp_txpower - power_level) : 0;
1902 } else
1903 reg_limit = 0;
1904
1905 return txpower + bw_comp - reg_limit;
1906 }
1907
1908 static void rt2800_config_txpower(struct rt2x00_dev *rt2x00dev,
1909 struct ieee80211_conf *conf)
1910 {
1911 u8 txpower;
1912 u16 eeprom;
1913 int i, is_rate_b;
1914 u32 reg;
1915 u8 r1;
1916 u32 offset;
1917 enum ieee80211_band band = conf->channel->band;
1918 int power_level = conf->power_level;
1919
1920 /*
1921 * set to normal bbp tx power control mode: +/- 0dBm
1922 */
1923 rt2800_bbp_read(rt2x00dev, 1, &r1);
1924 rt2x00_set_field8(&r1, BBP1_TX_POWER_CTRL, 0);
1925 rt2800_bbp_write(rt2x00dev, 1, r1);
1926 offset = TX_PWR_CFG_0;
1927
1928 for (i = 0; i < EEPROM_TXPOWER_BYRATE_SIZE; i += 2) {
1929 /* just to be safe */
1930 if (offset > TX_PWR_CFG_4)
1931 break;
1932
1933 rt2800_register_read(rt2x00dev, offset, &reg);
1934
1935 /* read the next four txpower values */
1936 rt2x00_eeprom_read(rt2x00dev, EEPROM_TXPOWER_BYRATE + i,
1937 &eeprom);
1938
1939 is_rate_b = i ? 0 : 1;
1940 /*
1941 * TX_PWR_CFG_0: 1MBS, TX_PWR_CFG_1: 24MBS,
1942 * TX_PWR_CFG_2: MCS4, TX_PWR_CFG_3: MCS12,
1943 * TX_PWR_CFG_4: unknown
1944 */
1945 txpower = rt2x00_get_field16(eeprom,
1946 EEPROM_TXPOWER_BYRATE_RATE0);
1947 txpower = rt2800_compesate_txpower(rt2x00dev, is_rate_b, band,
1948 power_level, txpower);
1949 rt2x00_set_field32(&reg, TX_PWR_CFG_RATE0, txpower);
1950
1951 /*
1952 * TX_PWR_CFG_0: 2MBS, TX_PWR_CFG_1: 36MBS,
1953 * TX_PWR_CFG_2: MCS5, TX_PWR_CFG_3: MCS13,
1954 * TX_PWR_CFG_4: unknown
1955 */
1956 txpower = rt2x00_get_field16(eeprom,
1957 EEPROM_TXPOWER_BYRATE_RATE1);
1958 txpower = rt2800_compesate_txpower(rt2x00dev, is_rate_b, band,
1959 power_level, txpower);
1960 rt2x00_set_field32(&reg, TX_PWR_CFG_RATE1, txpower);
1961
1962 /*
1963 * TX_PWR_CFG_0: 5.5MBS, TX_PWR_CFG_1: 48MBS,
1964 * TX_PWR_CFG_2: MCS6, TX_PWR_CFG_3: MCS14,
1965 * TX_PWR_CFG_4: unknown
1966 */
1967 txpower = rt2x00_get_field16(eeprom,
1968 EEPROM_TXPOWER_BYRATE_RATE2);
1969 txpower = rt2800_compesate_txpower(rt2x00dev, is_rate_b, band,
1970 power_level, txpower);
1971 rt2x00_set_field32(&reg, TX_PWR_CFG_RATE2, txpower);
1972
1973 /*
1974 * TX_PWR_CFG_0: 11MBS, TX_PWR_CFG_1: 54MBS,
1975 * TX_PWR_CFG_2: MCS7, TX_PWR_CFG_3: MCS15,
1976 * TX_PWR_CFG_4: unknown
1977 */
1978 txpower = rt2x00_get_field16(eeprom,
1979 EEPROM_TXPOWER_BYRATE_RATE3);
1980 txpower = rt2800_compesate_txpower(rt2x00dev, is_rate_b, band,
1981 power_level, txpower);
1982 rt2x00_set_field32(&reg, TX_PWR_CFG_RATE3, txpower);
1983
1984 /* read the next four txpower values */
1985 rt2x00_eeprom_read(rt2x00dev, EEPROM_TXPOWER_BYRATE + i + 1,
1986 &eeprom);
1987
1988 is_rate_b = 0;
1989 /*
1990 * TX_PWR_CFG_0: 6MBS, TX_PWR_CFG_1: MCS0,
1991 * TX_PWR_CFG_2: MCS8, TX_PWR_CFG_3: unknown,
1992 * TX_PWR_CFG_4: unknown
1993 */
1994 txpower = rt2x00_get_field16(eeprom,
1995 EEPROM_TXPOWER_BYRATE_RATE0);
1996 txpower = rt2800_compesate_txpower(rt2x00dev, is_rate_b, band,
1997 power_level, txpower);
1998 rt2x00_set_field32(&reg, TX_PWR_CFG_RATE4, txpower);
1999
2000 /*
2001 * TX_PWR_CFG_0: 9MBS, TX_PWR_CFG_1: MCS1,
2002 * TX_PWR_CFG_2: MCS9, TX_PWR_CFG_3: unknown,
2003 * TX_PWR_CFG_4: unknown
2004 */
2005 txpower = rt2x00_get_field16(eeprom,
2006 EEPROM_TXPOWER_BYRATE_RATE1);
2007 txpower = rt2800_compesate_txpower(rt2x00dev, is_rate_b, band,
2008 power_level, txpower);
2009 rt2x00_set_field32(&reg, TX_PWR_CFG_RATE5, txpower);
2010
2011 /*
2012 * TX_PWR_CFG_0: 12MBS, TX_PWR_CFG_1: MCS2,
2013 * TX_PWR_CFG_2: MCS10, TX_PWR_CFG_3: unknown,
2014 * TX_PWR_CFG_4: unknown
2015 */
2016 txpower = rt2x00_get_field16(eeprom,
2017 EEPROM_TXPOWER_BYRATE_RATE2);
2018 txpower = rt2800_compesate_txpower(rt2x00dev, is_rate_b, band,
2019 power_level, txpower);
2020 rt2x00_set_field32(&reg, TX_PWR_CFG_RATE6, txpower);
2021
2022 /*
2023 * TX_PWR_CFG_0: 18MBS, TX_PWR_CFG_1: MCS3,
2024 * TX_PWR_CFG_2: MCS11, TX_PWR_CFG_3: unknown,
2025 * TX_PWR_CFG_4: unknown
2026 */
2027 txpower = rt2x00_get_field16(eeprom,
2028 EEPROM_TXPOWER_BYRATE_RATE3);
2029 txpower = rt2800_compesate_txpower(rt2x00dev, is_rate_b, band,
2030 power_level, txpower);
2031 rt2x00_set_field32(&reg, TX_PWR_CFG_RATE7, txpower);
2032
2033 rt2800_register_write(rt2x00dev, offset, reg);
2034
2035 /* next TX_PWR_CFG register */
2036 offset += 4;
2037 }
2038 }
2039
2040 static void rt2800_config_retry_limit(struct rt2x00_dev *rt2x00dev,
2041 struct rt2x00lib_conf *libconf)
2042 {
2043 u32 reg;
2044
2045 rt2800_register_read(rt2x00dev, TX_RTY_CFG, &reg);
2046 rt2x00_set_field32(&reg, TX_RTY_CFG_SHORT_RTY_LIMIT,
2047 libconf->conf->short_frame_max_tx_count);
2048 rt2x00_set_field32(&reg, TX_RTY_CFG_LONG_RTY_LIMIT,
2049 libconf->conf->long_frame_max_tx_count);
2050 rt2800_register_write(rt2x00dev, TX_RTY_CFG, reg);
2051 }
2052
2053 static void rt2800_config_ps(struct rt2x00_dev *rt2x00dev,
2054 struct rt2x00lib_conf *libconf)
2055 {
2056 enum dev_state state =
2057 (libconf->conf->flags & IEEE80211_CONF_PS) ?
2058 STATE_SLEEP : STATE_AWAKE;
2059 u32 reg;
2060
2061 if (state == STATE_SLEEP) {
2062 rt2800_register_write(rt2x00dev, AUTOWAKEUP_CFG, 0);
2063
2064 rt2800_register_read(rt2x00dev, AUTOWAKEUP_CFG, &reg);
2065 rt2x00_set_field32(&reg, AUTOWAKEUP_CFG_AUTO_LEAD_TIME, 5);
2066 rt2x00_set_field32(&reg, AUTOWAKEUP_CFG_TBCN_BEFORE_WAKE,
2067 libconf->conf->listen_interval - 1);
2068 rt2x00_set_field32(&reg, AUTOWAKEUP_CFG_AUTOWAKE, 1);
2069 rt2800_register_write(rt2x00dev, AUTOWAKEUP_CFG, reg);
2070
2071 rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
2072 } else {
2073 rt2800_register_read(rt2x00dev, AUTOWAKEUP_CFG, &reg);
2074 rt2x00_set_field32(&reg, AUTOWAKEUP_CFG_AUTO_LEAD_TIME, 0);
2075 rt2x00_set_field32(&reg, AUTOWAKEUP_CFG_TBCN_BEFORE_WAKE, 0);
2076 rt2x00_set_field32(&reg, AUTOWAKEUP_CFG_AUTOWAKE, 0);
2077 rt2800_register_write(rt2x00dev, AUTOWAKEUP_CFG, reg);
2078
2079 rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
2080 }
2081 }
2082
2083 void rt2800_config(struct rt2x00_dev *rt2x00dev,
2084 struct rt2x00lib_conf *libconf,
2085 const unsigned int flags)
2086 {
2087 /* Always recalculate LNA gain before changing configuration */
2088 rt2800_config_lna_gain(rt2x00dev, libconf);
2089
2090 if (flags & IEEE80211_CONF_CHANGE_CHANNEL) {
2091 rt2800_config_channel(rt2x00dev, libconf->conf,
2092 &libconf->rf, &libconf->channel);
2093 rt2800_config_txpower(rt2x00dev, libconf->conf);
2094 }
2095 if (flags & IEEE80211_CONF_CHANGE_POWER)
2096 rt2800_config_txpower(rt2x00dev, libconf->conf);
2097 if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS)
2098 rt2800_config_retry_limit(rt2x00dev, libconf);
2099 if (flags & IEEE80211_CONF_CHANGE_PS)
2100 rt2800_config_ps(rt2x00dev, libconf);
2101 }
2102 EXPORT_SYMBOL_GPL(rt2800_config);
2103
2104 /*
2105 * Link tuning
2106 */
2107 void rt2800_link_stats(struct rt2x00_dev *rt2x00dev, struct link_qual *qual)
2108 {
2109 u32 reg;
2110
2111 /*
2112 * Update FCS error count from register.
2113 */
2114 rt2800_register_read(rt2x00dev, RX_STA_CNT0, &reg);
2115 qual->rx_failed = rt2x00_get_field32(reg, RX_STA_CNT0_CRC_ERR);
2116 }
2117 EXPORT_SYMBOL_GPL(rt2800_link_stats);
2118
2119 static u8 rt2800_get_default_vgc(struct rt2x00_dev *rt2x00dev)
2120 {
2121 if (rt2x00dev->curr_band == IEEE80211_BAND_2GHZ) {
2122 if (rt2x00_rt(rt2x00dev, RT3070) ||
2123 rt2x00_rt(rt2x00dev, RT3071) ||
2124 rt2x00_rt(rt2x00dev, RT3090) ||
2125 rt2x00_rt(rt2x00dev, RT3390) ||
2126 rt2x00_rt(rt2x00dev, RT5390))
2127 return 0x1c + (2 * rt2x00dev->lna_gain);
2128 else
2129 return 0x2e + rt2x00dev->lna_gain;
2130 }
2131
2132 if (!test_bit(CONFIG_CHANNEL_HT40, &rt2x00dev->flags))
2133 return 0x32 + (rt2x00dev->lna_gain * 5) / 3;
2134 else
2135 return 0x3a + (rt2x00dev->lna_gain * 5) / 3;
2136 }
2137
2138 static inline void rt2800_set_vgc(struct rt2x00_dev *rt2x00dev,
2139 struct link_qual *qual, u8 vgc_level)
2140 {
2141 if (qual->vgc_level != vgc_level) {
2142 rt2800_bbp_write(rt2x00dev, 66, vgc_level);
2143 qual->vgc_level = vgc_level;
2144 qual->vgc_level_reg = vgc_level;
2145 }
2146 }
2147
2148 void rt2800_reset_tuner(struct rt2x00_dev *rt2x00dev, struct link_qual *qual)
2149 {
2150 rt2800_set_vgc(rt2x00dev, qual, rt2800_get_default_vgc(rt2x00dev));
2151 }
2152 EXPORT_SYMBOL_GPL(rt2800_reset_tuner);
2153
2154 void rt2800_link_tuner(struct rt2x00_dev *rt2x00dev, struct link_qual *qual,
2155 const u32 count)
2156 {
2157 if (rt2x00_rt_rev(rt2x00dev, RT2860, REV_RT2860C))
2158 return;
2159
2160 /*
2161 * When RSSI is better then -80 increase VGC level with 0x10
2162 */
2163 rt2800_set_vgc(rt2x00dev, qual,
2164 rt2800_get_default_vgc(rt2x00dev) +
2165 ((qual->rssi > -80) * 0x10));
2166 }
2167 EXPORT_SYMBOL_GPL(rt2800_link_tuner);
2168
2169 /*
2170 * Initialization functions.
2171 */
2172 static int rt2800_init_registers(struct rt2x00_dev *rt2x00dev)
2173 {
2174 u32 reg;
2175 u16 eeprom;
2176 unsigned int i;
2177 int ret;
2178
2179 rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG, &reg);
2180 rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_TX_DMA, 0);
2181 rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_DMA_BUSY, 0);
2182 rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_RX_DMA, 0);
2183 rt2x00_set_field32(&reg, WPDMA_GLO_CFG_RX_DMA_BUSY, 0);
2184 rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_WRITEBACK_DONE, 1);
2185 rt2800_register_write(rt2x00dev, WPDMA_GLO_CFG, reg);
2186
2187 ret = rt2800_drv_init_registers(rt2x00dev);
2188 if (ret)
2189 return ret;
2190
2191 rt2800_register_read(rt2x00dev, BCN_OFFSET0, &reg);
2192 rt2x00_set_field32(&reg, BCN_OFFSET0_BCN0, 0xe0); /* 0x3800 */
2193 rt2x00_set_field32(&reg, BCN_OFFSET0_BCN1, 0xe8); /* 0x3a00 */
2194 rt2x00_set_field32(&reg, BCN_OFFSET0_BCN2, 0xf0); /* 0x3c00 */
2195 rt2x00_set_field32(&reg, BCN_OFFSET0_BCN3, 0xf8); /* 0x3e00 */
2196 rt2800_register_write(rt2x00dev, BCN_OFFSET0, reg);
2197
2198 rt2800_register_read(rt2x00dev, BCN_OFFSET1, &reg);
2199 rt2x00_set_field32(&reg, BCN_OFFSET1_BCN4, 0xc8); /* 0x3200 */
2200 rt2x00_set_field32(&reg, BCN_OFFSET1_BCN5, 0xd0); /* 0x3400 */
2201 rt2x00_set_field32(&reg, BCN_OFFSET1_BCN6, 0x77); /* 0x1dc0 */
2202 rt2x00_set_field32(&reg, BCN_OFFSET1_BCN7, 0x6f); /* 0x1bc0 */
2203 rt2800_register_write(rt2x00dev, BCN_OFFSET1, reg);
2204
2205 rt2800_register_write(rt2x00dev, LEGACY_BASIC_RATE, 0x0000013f);
2206 rt2800_register_write(rt2x00dev, HT_BASIC_RATE, 0x00008003);
2207
2208 rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, 0x00000000);
2209
2210 rt2800_register_read(rt2x00dev, BCN_TIME_CFG, &reg);
2211 rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_INTERVAL, 1600);
2212 rt2x00_set_field32(&reg, BCN_TIME_CFG_TSF_TICKING, 0);
2213 rt2x00_set_field32(&reg, BCN_TIME_CFG_TSF_SYNC, 0);
2214 rt2x00_set_field32(&reg, BCN_TIME_CFG_TBTT_ENABLE, 0);
2215 rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_GEN, 0);
2216 rt2x00_set_field32(&reg, BCN_TIME_CFG_TX_TIME_COMPENSATE, 0);
2217 rt2800_register_write(rt2x00dev, BCN_TIME_CFG, reg);
2218
2219 rt2800_config_filter(rt2x00dev, FIF_ALLMULTI);
2220
2221 rt2800_register_read(rt2x00dev, BKOFF_SLOT_CFG, &reg);
2222 rt2x00_set_field32(&reg, BKOFF_SLOT_CFG_SLOT_TIME, 9);
2223 rt2x00_set_field32(&reg, BKOFF_SLOT_CFG_CC_DELAY_TIME, 2);
2224 rt2800_register_write(rt2x00dev, BKOFF_SLOT_CFG, reg);
2225
2226 if (rt2x00_rt(rt2x00dev, RT3071) ||
2227 rt2x00_rt(rt2x00dev, RT3090) ||
2228 rt2x00_rt(rt2x00dev, RT3390)) {
2229 rt2800_register_write(rt2x00dev, TX_SW_CFG0, 0x00000400);
2230 rt2800_register_write(rt2x00dev, TX_SW_CFG1, 0x00000000);
2231 if (rt2x00_rt_rev_lt(rt2x00dev, RT3071, REV_RT3071E) ||
2232 rt2x00_rt_rev_lt(rt2x00dev, RT3090, REV_RT3090E) ||
2233 rt2x00_rt_rev_lt(rt2x00dev, RT3390, REV_RT3390E)) {
2234 rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC_CONF1, &eeprom);
2235 if (rt2x00_get_field16(eeprom, EEPROM_NIC_CONF1_DAC_TEST))
2236 rt2800_register_write(rt2x00dev, TX_SW_CFG2,
2237 0x0000002c);
2238 else
2239 rt2800_register_write(rt2x00dev, TX_SW_CFG2,
2240 0x0000000f);
2241 } else {
2242 rt2800_register_write(rt2x00dev, TX_SW_CFG2, 0x00000000);
2243 }
2244 } else if (rt2x00_rt(rt2x00dev, RT3070)) {
2245 rt2800_register_write(rt2x00dev, TX_SW_CFG0, 0x00000400);
2246
2247 if (rt2x00_rt_rev_lt(rt2x00dev, RT3070, REV_RT3070F)) {
2248 rt2800_register_write(rt2x00dev, TX_SW_CFG1, 0x00000000);
2249 rt2800_register_write(rt2x00dev, TX_SW_CFG2, 0x0000002c);
2250 } else {
2251 rt2800_register_write(rt2x00dev, TX_SW_CFG1, 0x00080606);
2252 rt2800_register_write(rt2x00dev, TX_SW_CFG2, 0x00000000);
2253 }
2254 } else if (rt2800_is_305x_soc(rt2x00dev)) {
2255 rt2800_register_write(rt2x00dev, TX_SW_CFG0, 0x00000400);
2256 rt2800_register_write(rt2x00dev, TX_SW_CFG1, 0x00000000);
2257 rt2800_register_write(rt2x00dev, TX_SW_CFG2, 0x0000001f);
2258 } else if (rt2x00_rt(rt2x00dev, RT5390)) {
2259 rt2800_register_write(rt2x00dev, TX_SW_CFG0, 0x00000404);
2260 rt2800_register_write(rt2x00dev, TX_SW_CFG1, 0x00080606);
2261 rt2800_register_write(rt2x00dev, TX_SW_CFG2, 0x00000000);
2262 } else {
2263 rt2800_register_write(rt2x00dev, TX_SW_CFG0, 0x00000000);
2264 rt2800_register_write(rt2x00dev, TX_SW_CFG1, 0x00080606);
2265 }
2266
2267 rt2800_register_read(rt2x00dev, TX_LINK_CFG, &reg);
2268 rt2x00_set_field32(&reg, TX_LINK_CFG_REMOTE_MFB_LIFETIME, 32);
2269 rt2x00_set_field32(&reg, TX_LINK_CFG_MFB_ENABLE, 0);
2270 rt2x00_set_field32(&reg, TX_LINK_CFG_REMOTE_UMFS_ENABLE, 0);
2271 rt2x00_set_field32(&reg, TX_LINK_CFG_TX_MRQ_EN, 0);
2272 rt2x00_set_field32(&reg, TX_LINK_CFG_TX_RDG_EN, 0);
2273 rt2x00_set_field32(&reg, TX_LINK_CFG_TX_CF_ACK_EN, 1);
2274 rt2x00_set_field32(&reg, TX_LINK_CFG_REMOTE_MFB, 0);
2275 rt2x00_set_field32(&reg, TX_LINK_CFG_REMOTE_MFS, 0);
2276 rt2800_register_write(rt2x00dev, TX_LINK_CFG, reg);
2277
2278 rt2800_register_read(rt2x00dev, TX_TIMEOUT_CFG, &reg);
2279 rt2x00_set_field32(&reg, TX_TIMEOUT_CFG_MPDU_LIFETIME, 9);
2280 rt2x00_set_field32(&reg, TX_TIMEOUT_CFG_RX_ACK_TIMEOUT, 32);
2281 rt2x00_set_field32(&reg, TX_TIMEOUT_CFG_TX_OP_TIMEOUT, 10);
2282 rt2800_register_write(rt2x00dev, TX_TIMEOUT_CFG, reg);
2283
2284 rt2800_register_read(rt2x00dev, MAX_LEN_CFG, &reg);
2285 rt2x00_set_field32(&reg, MAX_LEN_CFG_MAX_MPDU, AGGREGATION_SIZE);
2286 if (rt2x00_rt_rev_gte(rt2x00dev, RT2872, REV_RT2872E) ||
2287 rt2x00_rt(rt2x00dev, RT2883) ||
2288 rt2x00_rt_rev_lt(rt2x00dev, RT3070, REV_RT3070E))
2289 rt2x00_set_field32(&reg, MAX_LEN_CFG_MAX_PSDU, 2);
2290 else
2291 rt2x00_set_field32(&reg, MAX_LEN_CFG_MAX_PSDU, 1);
2292 rt2x00_set_field32(&reg, MAX_LEN_CFG_MIN_PSDU, 0);
2293 rt2x00_set_field32(&reg, MAX_LEN_CFG_MIN_MPDU, 0);
2294 rt2800_register_write(rt2x00dev, MAX_LEN_CFG, reg);
2295
2296 rt2800_register_read(rt2x00dev, LED_CFG, &reg);
2297 rt2x00_set_field32(&reg, LED_CFG_ON_PERIOD, 70);
2298 rt2x00_set_field32(&reg, LED_CFG_OFF_PERIOD, 30);
2299 rt2x00_set_field32(&reg, LED_CFG_SLOW_BLINK_PERIOD, 3);
2300 rt2x00_set_field32(&reg, LED_CFG_R_LED_MODE, 3);
2301 rt2x00_set_field32(&reg, LED_CFG_G_LED_MODE, 3);
2302 rt2x00_set_field32(&reg, LED_CFG_Y_LED_MODE, 3);
2303 rt2x00_set_field32(&reg, LED_CFG_LED_POLAR, 1);
2304 rt2800_register_write(rt2x00dev, LED_CFG, reg);
2305
2306 rt2800_register_write(rt2x00dev, PBF_MAX_PCNT, 0x1f3fbf9f);
2307
2308 rt2800_register_read(rt2x00dev, TX_RTY_CFG, &reg);
2309 rt2x00_set_field32(&reg, TX_RTY_CFG_SHORT_RTY_LIMIT, 15);
2310 rt2x00_set_field32(&reg, TX_RTY_CFG_LONG_RTY_LIMIT, 31);
2311 rt2x00_set_field32(&reg, TX_RTY_CFG_LONG_RTY_THRE, 2000);
2312 rt2x00_set_field32(&reg, TX_RTY_CFG_NON_AGG_RTY_MODE, 0);
2313 rt2x00_set_field32(&reg, TX_RTY_CFG_AGG_RTY_MODE, 0);
2314 rt2x00_set_field32(&reg, TX_RTY_CFG_TX_AUTO_FB_ENABLE, 1);
2315 rt2800_register_write(rt2x00dev, TX_RTY_CFG, reg);
2316
2317 rt2800_register_read(rt2x00dev, AUTO_RSP_CFG, &reg);
2318 rt2x00_set_field32(&reg, AUTO_RSP_CFG_AUTORESPONDER, 1);
2319 rt2x00_set_field32(&reg, AUTO_RSP_CFG_BAC_ACK_POLICY, 1);
2320 rt2x00_set_field32(&reg, AUTO_RSP_CFG_CTS_40_MMODE, 0);
2321 rt2x00_set_field32(&reg, AUTO_RSP_CFG_CTS_40_MREF, 0);
2322 rt2x00_set_field32(&reg, AUTO_RSP_CFG_AR_PREAMBLE, 1);
2323 rt2x00_set_field32(&reg, AUTO_RSP_CFG_DUAL_CTS_EN, 0);
2324 rt2x00_set_field32(&reg, AUTO_RSP_CFG_ACK_CTS_PSM_BIT, 0);
2325 rt2800_register_write(rt2x00dev, AUTO_RSP_CFG, reg);
2326
2327 rt2800_register_read(rt2x00dev, CCK_PROT_CFG, &reg);
2328 rt2x00_set_field32(&reg, CCK_PROT_CFG_PROTECT_RATE, 3);
2329 rt2x00_set_field32(&reg, CCK_PROT_CFG_PROTECT_CTRL, 0);
2330 rt2x00_set_field32(&reg, CCK_PROT_CFG_PROTECT_NAV_SHORT, 1);
2331 rt2x00_set_field32(&reg, CCK_PROT_CFG_TX_OP_ALLOW_CCK, 1);
2332 rt2x00_set_field32(&reg, CCK_PROT_CFG_TX_OP_ALLOW_OFDM, 1);
2333 rt2x00_set_field32(&reg, CCK_PROT_CFG_TX_OP_ALLOW_MM20, 1);
2334 rt2x00_set_field32(&reg, CCK_PROT_CFG_TX_OP_ALLOW_MM40, 0);
2335 rt2x00_set_field32(&reg, CCK_PROT_CFG_TX_OP_ALLOW_GF20, 1);
2336 rt2x00_set_field32(&reg, CCK_PROT_CFG_TX_OP_ALLOW_GF40, 0);
2337 rt2x00_set_field32(&reg, CCK_PROT_CFG_RTS_TH_EN, 1);
2338 rt2800_register_write(rt2x00dev, CCK_PROT_CFG, reg);
2339
2340 rt2800_register_read(rt2x00dev, OFDM_PROT_CFG, &reg);
2341 rt2x00_set_field32(&reg, OFDM_PROT_CFG_PROTECT_RATE, 3);
2342 rt2x00_set_field32(&reg, OFDM_PROT_CFG_PROTECT_CTRL, 0);
2343 rt2x00_set_field32(&reg, OFDM_PROT_CFG_PROTECT_NAV_SHORT, 1);
2344 rt2x00_set_field32(&reg, OFDM_PROT_CFG_TX_OP_ALLOW_CCK, 1);
2345 rt2x00_set_field32(&reg, OFDM_PROT_CFG_TX_OP_ALLOW_OFDM, 1);
2346 rt2x00_set_field32(&reg, OFDM_PROT_CFG_TX_OP_ALLOW_MM20, 1);
2347 rt2x00_set_field32(&reg, OFDM_PROT_CFG_TX_OP_ALLOW_MM40, 0);
2348 rt2x00_set_field32(&reg, OFDM_PROT_CFG_TX_OP_ALLOW_GF20, 1);
2349 rt2x00_set_field32(&reg, OFDM_PROT_CFG_TX_OP_ALLOW_GF40, 0);
2350 rt2x00_set_field32(&reg, OFDM_PROT_CFG_RTS_TH_EN, 1);
2351 rt2800_register_write(rt2x00dev, OFDM_PROT_CFG, reg);
2352
2353 rt2800_register_read(rt2x00dev, MM20_PROT_CFG, &reg);
2354 rt2x00_set_field32(&reg, MM20_PROT_CFG_PROTECT_RATE, 0x4004);
2355 rt2x00_set_field32(&reg, MM20_PROT_CFG_PROTECT_CTRL, 0);
2356 rt2x00_set_field32(&reg, MM20_PROT_CFG_PROTECT_NAV_SHORT, 1);
2357 rt2x00_set_field32(&reg, MM20_PROT_CFG_TX_OP_ALLOW_CCK, 1);
2358 rt2x00_set_field32(&reg, MM20_PROT_CFG_TX_OP_ALLOW_OFDM, 1);
2359 rt2x00_set_field32(&reg, MM20_PROT_CFG_TX_OP_ALLOW_MM20, 1);
2360 rt2x00_set_field32(&reg, MM20_PROT_CFG_TX_OP_ALLOW_MM40, 0);
2361 rt2x00_set_field32(&reg, MM20_PROT_CFG_TX_OP_ALLOW_GF20, 1);
2362 rt2x00_set_field32(&reg, MM20_PROT_CFG_TX_OP_ALLOW_GF40, 0);
2363 rt2x00_set_field32(&reg, MM20_PROT_CFG_RTS_TH_EN, 0);
2364 rt2800_register_write(rt2x00dev, MM20_PROT_CFG, reg);
2365
2366 rt2800_register_read(rt2x00dev, MM40_PROT_CFG, &reg);
2367 rt2x00_set_field32(&reg, MM40_PROT_CFG_PROTECT_RATE, 0x4084);
2368 rt2x00_set_field32(&reg, MM40_PROT_CFG_PROTECT_CTRL, 0);
2369 rt2x00_set_field32(&reg, MM40_PROT_CFG_PROTECT_NAV_SHORT, 1);
2370 rt2x00_set_field32(&reg, MM40_PROT_CFG_TX_OP_ALLOW_CCK, 1);
2371 rt2x00_set_field32(&reg, MM40_PROT_CFG_TX_OP_ALLOW_OFDM, 1);
2372 rt2x00_set_field32(&reg, MM40_PROT_CFG_TX_OP_ALLOW_MM20, 1);
2373 rt2x00_set_field32(&reg, MM40_PROT_CFG_TX_OP_ALLOW_MM40, 1);
2374 rt2x00_set_field32(&reg, MM40_PROT_CFG_TX_OP_ALLOW_GF20, 1);
2375 rt2x00_set_field32(&reg, MM40_PROT_CFG_TX_OP_ALLOW_GF40, 1);
2376 rt2x00_set_field32(&reg, MM40_PROT_CFG_RTS_TH_EN, 0);
2377 rt2800_register_write(rt2x00dev, MM40_PROT_CFG, reg);
2378
2379 rt2800_register_read(rt2x00dev, GF20_PROT_CFG, &reg);
2380 rt2x00_set_field32(&reg, GF20_PROT_CFG_PROTECT_RATE, 0x4004);
2381 rt2x00_set_field32(&reg, GF20_PROT_CFG_PROTECT_CTRL, 0);
2382 rt2x00_set_field32(&reg, GF20_PROT_CFG_PROTECT_NAV_SHORT, 1);
2383 rt2x00_set_field32(&reg, GF20_PROT_CFG_TX_OP_ALLOW_CCK, 1);
2384 rt2x00_set_field32(&reg, GF20_PROT_CFG_TX_OP_ALLOW_OFDM, 1);
2385 rt2x00_set_field32(&reg, GF20_PROT_CFG_TX_OP_ALLOW_MM20, 1);
2386 rt2x00_set_field32(&reg, GF20_PROT_CFG_TX_OP_ALLOW_MM40, 0);
2387 rt2x00_set_field32(&reg, GF20_PROT_CFG_TX_OP_ALLOW_GF20, 1);
2388 rt2x00_set_field32(&reg, GF20_PROT_CFG_TX_OP_ALLOW_GF40, 0);
2389 rt2x00_set_field32(&reg, GF20_PROT_CFG_RTS_TH_EN, 0);
2390 rt2800_register_write(rt2x00dev, GF20_PROT_CFG, reg);
2391
2392 rt2800_register_read(rt2x00dev, GF40_PROT_CFG, &reg);
2393 rt2x00_set_field32(&reg, GF40_PROT_CFG_PROTECT_RATE, 0x4084);
2394 rt2x00_set_field32(&reg, GF40_PROT_CFG_PROTECT_CTRL, 0);
2395 rt2x00_set_field32(&reg, GF40_PROT_CFG_PROTECT_NAV_SHORT, 1);
2396 rt2x00_set_field32(&reg, GF40_PROT_CFG_TX_OP_ALLOW_CCK, 1);
2397 rt2x00_set_field32(&reg, GF40_PROT_CFG_TX_OP_ALLOW_OFDM, 1);
2398 rt2x00_set_field32(&reg, GF40_PROT_CFG_TX_OP_ALLOW_MM20, 1);
2399 rt2x00_set_field32(&reg, GF40_PROT_CFG_TX_OP_ALLOW_MM40, 1);
2400 rt2x00_set_field32(&reg, GF40_PROT_CFG_TX_OP_ALLOW_GF20, 1);
2401 rt2x00_set_field32(&reg, GF40_PROT_CFG_TX_OP_ALLOW_GF40, 1);
2402 rt2x00_set_field32(&reg, GF40_PROT_CFG_RTS_TH_EN, 0);
2403 rt2800_register_write(rt2x00dev, GF40_PROT_CFG, reg);
2404
2405 if (rt2x00_is_usb(rt2x00dev)) {
2406 rt2800_register_write(rt2x00dev, PBF_CFG, 0xf40006);
2407
2408 rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG, &reg);
2409 rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_TX_DMA, 0);
2410 rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_DMA_BUSY, 0);
2411 rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_RX_DMA, 0);
2412 rt2x00_set_field32(&reg, WPDMA_GLO_CFG_RX_DMA_BUSY, 0);
2413 rt2x00_set_field32(&reg, WPDMA_GLO_CFG_WP_DMA_BURST_SIZE, 3);
2414 rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_WRITEBACK_DONE, 0);
2415 rt2x00_set_field32(&reg, WPDMA_GLO_CFG_BIG_ENDIAN, 0);
2416 rt2x00_set_field32(&reg, WPDMA_GLO_CFG_RX_HDR_SCATTER, 0);
2417 rt2x00_set_field32(&reg, WPDMA_GLO_CFG_HDR_SEG_LEN, 0);
2418 rt2800_register_write(rt2x00dev, WPDMA_GLO_CFG, reg);
2419 }
2420
2421 /*
2422 * The legacy driver also sets TXOP_CTRL_CFG_RESERVED_TRUN_EN to 1
2423 * although it is reserved.
2424 */
2425 rt2800_register_read(rt2x00dev, TXOP_CTRL_CFG, &reg);
2426 rt2x00_set_field32(&reg, TXOP_CTRL_CFG_TIMEOUT_TRUN_EN, 1);
2427 rt2x00_set_field32(&reg, TXOP_CTRL_CFG_AC_TRUN_EN, 1);
2428 rt2x00_set_field32(&reg, TXOP_CTRL_CFG_TXRATEGRP_TRUN_EN, 1);
2429 rt2x00_set_field32(&reg, TXOP_CTRL_CFG_USER_MODE_TRUN_EN, 1);
2430 rt2x00_set_field32(&reg, TXOP_CTRL_CFG_MIMO_PS_TRUN_EN, 1);
2431 rt2x00_set_field32(&reg, TXOP_CTRL_CFG_RESERVED_TRUN_EN, 1);
2432 rt2x00_set_field32(&reg, TXOP_CTRL_CFG_LSIG_TXOP_EN, 0);
2433 rt2x00_set_field32(&reg, TXOP_CTRL_CFG_EXT_CCA_EN, 0);
2434 rt2x00_set_field32(&reg, TXOP_CTRL_CFG_EXT_CCA_DLY, 88);
2435 rt2x00_set_field32(&reg, TXOP_CTRL_CFG_EXT_CWMIN, 0);
2436 rt2800_register_write(rt2x00dev, TXOP_CTRL_CFG, reg);
2437
2438 rt2800_register_write(rt2x00dev, TXOP_HLDR_ET, 0x00000002);
2439
2440 rt2800_register_read(rt2x00dev, TX_RTS_CFG, &reg);
2441 rt2x00_set_field32(&reg, TX_RTS_CFG_AUTO_RTS_RETRY_LIMIT, 32);
2442 rt2x00_set_field32(&reg, TX_RTS_CFG_RTS_THRES,
2443 IEEE80211_MAX_RTS_THRESHOLD);
2444 rt2x00_set_field32(&reg, TX_RTS_CFG_RTS_FBK_EN, 0);
2445 rt2800_register_write(rt2x00dev, TX_RTS_CFG, reg);
2446
2447 rt2800_register_write(rt2x00dev, EXP_ACK_TIME, 0x002400ca);
2448
2449 /*
2450 * Usually the CCK SIFS time should be set to 10 and the OFDM SIFS
2451 * time should be set to 16. However, the original Ralink driver uses
2452 * 16 for both and indeed using a value of 10 for CCK SIFS results in
2453 * connection problems with 11g + CTS protection. Hence, use the same
2454 * defaults as the Ralink driver: 16 for both, CCK and OFDM SIFS.
2455 */
2456 rt2800_register_read(rt2x00dev, XIFS_TIME_CFG, &reg);
2457 rt2x00_set_field32(&reg, XIFS_TIME_CFG_CCKM_SIFS_TIME, 16);
2458 rt2x00_set_field32(&reg, XIFS_TIME_CFG_OFDM_SIFS_TIME, 16);
2459 rt2x00_set_field32(&reg, XIFS_TIME_CFG_OFDM_XIFS_TIME, 4);
2460 rt2x00_set_field32(&reg, XIFS_TIME_CFG_EIFS, 314);
2461 rt2x00_set_field32(&reg, XIFS_TIME_CFG_BB_RXEND_ENABLE, 1);
2462 rt2800_register_write(rt2x00dev, XIFS_TIME_CFG, reg);
2463
2464 rt2800_register_write(rt2x00dev, PWR_PIN_CFG, 0x00000003);
2465
2466 /*
2467 * ASIC will keep garbage value after boot, clear encryption keys.
2468 */
2469 for (i = 0; i < 4; i++)
2470 rt2800_register_write(rt2x00dev,
2471 SHARED_KEY_MODE_ENTRY(i), 0);
2472
2473 for (i = 0; i < 256; i++) {
2474 static const u32 wcid[2] = { 0xffffffff, 0x00ffffff };
2475 rt2800_register_multiwrite(rt2x00dev, MAC_WCID_ENTRY(i),
2476 wcid, sizeof(wcid));
2477
2478 rt2800_register_write(rt2x00dev, MAC_WCID_ATTR_ENTRY(i), 0);
2479 rt2800_register_write(rt2x00dev, MAC_IVEIV_ENTRY(i), 0);
2480 }
2481
2482 /*
2483 * Clear all beacons
2484 */
2485 rt2800_clear_beacon_register(rt2x00dev, HW_BEACON_BASE0);
2486 rt2800_clear_beacon_register(rt2x00dev, HW_BEACON_BASE1);
2487 rt2800_clear_beacon_register(rt2x00dev, HW_BEACON_BASE2);
2488 rt2800_clear_beacon_register(rt2x00dev, HW_BEACON_BASE3);
2489 rt2800_clear_beacon_register(rt2x00dev, HW_BEACON_BASE4);
2490 rt2800_clear_beacon_register(rt2x00dev, HW_BEACON_BASE5);
2491 rt2800_clear_beacon_register(rt2x00dev, HW_BEACON_BASE6);
2492 rt2800_clear_beacon_register(rt2x00dev, HW_BEACON_BASE7);
2493
2494 if (rt2x00_is_usb(rt2x00dev)) {
2495 rt2800_register_read(rt2x00dev, US_CYC_CNT, &reg);
2496 rt2x00_set_field32(&reg, US_CYC_CNT_CLOCK_CYCLE, 30);
2497 rt2800_register_write(rt2x00dev, US_CYC_CNT, reg);
2498 } else if (rt2x00_is_pcie(rt2x00dev)) {
2499 rt2800_register_read(rt2x00dev, US_CYC_CNT, &reg);
2500 rt2x00_set_field32(&reg, US_CYC_CNT_CLOCK_CYCLE, 125);
2501 rt2800_register_write(rt2x00dev, US_CYC_CNT, reg);
2502 }
2503
2504 rt2800_register_read(rt2x00dev, HT_FBK_CFG0, &reg);
2505 rt2x00_set_field32(&reg, HT_FBK_CFG0_HTMCS0FBK, 0);
2506 rt2x00_set_field32(&reg, HT_FBK_CFG0_HTMCS1FBK, 0);
2507 rt2x00_set_field32(&reg, HT_FBK_CFG0_HTMCS2FBK, 1);
2508 rt2x00_set_field32(&reg, HT_FBK_CFG0_HTMCS3FBK, 2);
2509 rt2x00_set_field32(&reg, HT_FBK_CFG0_HTMCS4FBK, 3);
2510 rt2x00_set_field32(&reg, HT_FBK_CFG0_HTMCS5FBK, 4);
2511 rt2x00_set_field32(&reg, HT_FBK_CFG0_HTMCS6FBK, 5);
2512 rt2x00_set_field32(&reg, HT_FBK_CFG0_HTMCS7FBK, 6);
2513 rt2800_register_write(rt2x00dev, HT_FBK_CFG0, reg);
2514
2515 rt2800_register_read(rt2x00dev, HT_FBK_CFG1, &reg);
2516 rt2x00_set_field32(&reg, HT_FBK_CFG1_HTMCS8FBK, 8);
2517 rt2x00_set_field32(&reg, HT_FBK_CFG1_HTMCS9FBK, 8);
2518 rt2x00_set_field32(&reg, HT_FBK_CFG1_HTMCS10FBK, 9);
2519 rt2x00_set_field32(&reg, HT_FBK_CFG1_HTMCS11FBK, 10);
2520 rt2x00_set_field32(&reg, HT_FBK_CFG1_HTMCS12FBK, 11);
2521 rt2x00_set_field32(&reg, HT_FBK_CFG1_HTMCS13FBK, 12);
2522 rt2x00_set_field32(&reg, HT_FBK_CFG1_HTMCS14FBK, 13);
2523 rt2x00_set_field32(&reg, HT_FBK_CFG1_HTMCS15FBK, 14);
2524 rt2800_register_write(rt2x00dev, HT_FBK_CFG1, reg);
2525
2526 rt2800_register_read(rt2x00dev, LG_FBK_CFG0, &reg);
2527 rt2x00_set_field32(&reg, LG_FBK_CFG0_OFDMMCS0FBK, 8);
2528 rt2x00_set_field32(&reg, LG_FBK_CFG0_OFDMMCS1FBK, 8);
2529 rt2x00_set_field32(&reg, LG_FBK_CFG0_OFDMMCS2FBK, 9);
2530 rt2x00_set_field32(&reg, LG_FBK_CFG0_OFDMMCS3FBK, 10);
2531 rt2x00_set_field32(&reg, LG_FBK_CFG0_OFDMMCS4FBK, 11);
2532 rt2x00_set_field32(&reg, LG_FBK_CFG0_OFDMMCS5FBK, 12);
2533 rt2x00_set_field32(&reg, LG_FBK_CFG0_OFDMMCS6FBK, 13);
2534 rt2x00_set_field32(&reg, LG_FBK_CFG0_OFDMMCS7FBK, 14);
2535 rt2800_register_write(rt2x00dev, LG_FBK_CFG0, reg);
2536
2537 rt2800_register_read(rt2x00dev, LG_FBK_CFG1, &reg);
2538 rt2x00_set_field32(&reg, LG_FBK_CFG0_CCKMCS0FBK, 0);
2539 rt2x00_set_field32(&reg, LG_FBK_CFG0_CCKMCS1FBK, 0);
2540 rt2x00_set_field32(&reg, LG_FBK_CFG0_CCKMCS2FBK, 1);
2541 rt2x00_set_field32(&reg, LG_FBK_CFG0_CCKMCS3FBK, 2);
2542 rt2800_register_write(rt2x00dev, LG_FBK_CFG1, reg);
2543
2544 /*
2545 * Do not force the BA window size, we use the TXWI to set it
2546 */
2547 rt2800_register_read(rt2x00dev, AMPDU_BA_WINSIZE, &reg);
2548 rt2x00_set_field32(&reg, AMPDU_BA_WINSIZE_FORCE_WINSIZE_ENABLE, 0);
2549 rt2x00_set_field32(&reg, AMPDU_BA_WINSIZE_FORCE_WINSIZE, 0);
2550 rt2800_register_write(rt2x00dev, AMPDU_BA_WINSIZE, reg);
2551
2552 /*
2553 * We must clear the error counters.
2554 * These registers are cleared on read,
2555 * so we may pass a useless variable to store the value.
2556 */
2557 rt2800_register_read(rt2x00dev, RX_STA_CNT0, &reg);
2558 rt2800_register_read(rt2x00dev, RX_STA_CNT1, &reg);
2559 rt2800_register_read(rt2x00dev, RX_STA_CNT2, &reg);
2560 rt2800_register_read(rt2x00dev, TX_STA_CNT0, &reg);
2561 rt2800_register_read(rt2x00dev, TX_STA_CNT1, &reg);
2562 rt2800_register_read(rt2x00dev, TX_STA_CNT2, &reg);
2563
2564 /*
2565 * Setup leadtime for pre tbtt interrupt to 6ms
2566 */
2567 rt2800_register_read(rt2x00dev, INT_TIMER_CFG, &reg);
2568 rt2x00_set_field32(&reg, INT_TIMER_CFG_PRE_TBTT_TIMER, 6 << 4);
2569 rt2800_register_write(rt2x00dev, INT_TIMER_CFG, reg);
2570
2571 /*
2572 * Set up channel statistics timer
2573 */
2574 rt2800_register_read(rt2x00dev, CH_TIME_CFG, &reg);
2575 rt2x00_set_field32(&reg, CH_TIME_CFG_EIFS_BUSY, 1);
2576 rt2x00_set_field32(&reg, CH_TIME_CFG_NAV_BUSY, 1);
2577 rt2x00_set_field32(&reg, CH_TIME_CFG_RX_BUSY, 1);
2578 rt2x00_set_field32(&reg, CH_TIME_CFG_TX_BUSY, 1);
2579 rt2x00_set_field32(&reg, CH_TIME_CFG_TMR_EN, 1);
2580 rt2800_register_write(rt2x00dev, CH_TIME_CFG, reg);
2581
2582 return 0;
2583 }
2584
2585 static int rt2800_wait_bbp_rf_ready(struct rt2x00_dev *rt2x00dev)
2586 {
2587 unsigned int i;
2588 u32 reg;
2589
2590 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
2591 rt2800_register_read(rt2x00dev, MAC_STATUS_CFG, &reg);
2592 if (!rt2x00_get_field32(reg, MAC_STATUS_CFG_BBP_RF_BUSY))
2593 return 0;
2594
2595 udelay(REGISTER_BUSY_DELAY);
2596 }
2597
2598 ERROR(rt2x00dev, "BBP/RF register access failed, aborting.\n");
2599 return -EACCES;
2600 }
2601
2602 static int rt2800_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
2603 {
2604 unsigned int i;
2605 u8 value;
2606
2607 /*
2608 * BBP was enabled after firmware was loaded,
2609 * but we need to reactivate it now.
2610 */
2611 rt2800_register_write(rt2x00dev, H2M_BBP_AGENT, 0);
2612 rt2800_register_write(rt2x00dev, H2M_MAILBOX_CSR, 0);
2613 msleep(1);
2614
2615 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
2616 rt2800_bbp_read(rt2x00dev, 0, &value);
2617 if ((value != 0xff) && (value != 0x00))
2618 return 0;
2619 udelay(REGISTER_BUSY_DELAY);
2620 }
2621
2622 ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
2623 return -EACCES;
2624 }
2625
2626 static int rt2800_init_bbp(struct rt2x00_dev *rt2x00dev)
2627 {
2628 unsigned int i;
2629 u16 eeprom;
2630 u8 reg_id;
2631 u8 value;
2632
2633 if (unlikely(rt2800_wait_bbp_rf_ready(rt2x00dev) ||
2634 rt2800_wait_bbp_ready(rt2x00dev)))
2635 return -EACCES;
2636
2637 if (rt2x00_rt(rt2x00dev, RT5390)) {
2638 rt2800_bbp_read(rt2x00dev, 4, &value);
2639 rt2x00_set_field8(&value, BBP4_MAC_IF_CTRL, 1);
2640 rt2800_bbp_write(rt2x00dev, 4, value);
2641 }
2642
2643 if (rt2800_is_305x_soc(rt2x00dev) ||
2644 rt2x00_rt(rt2x00dev, RT5390))
2645 rt2800_bbp_write(rt2x00dev, 31, 0x08);
2646
2647 rt2800_bbp_write(rt2x00dev, 65, 0x2c);
2648 rt2800_bbp_write(rt2x00dev, 66, 0x38);
2649
2650 if (rt2x00_rt(rt2x00dev, RT5390))
2651 rt2800_bbp_write(rt2x00dev, 68, 0x0b);
2652
2653 if (rt2x00_rt_rev(rt2x00dev, RT2860, REV_RT2860C)) {
2654 rt2800_bbp_write(rt2x00dev, 69, 0x16);
2655 rt2800_bbp_write(rt2x00dev, 73, 0x12);
2656 } else if (rt2x00_rt(rt2x00dev, RT5390)) {
2657 rt2800_bbp_write(rt2x00dev, 69, 0x12);
2658 rt2800_bbp_write(rt2x00dev, 73, 0x13);
2659 rt2800_bbp_write(rt2x00dev, 75, 0x46);
2660 rt2800_bbp_write(rt2x00dev, 76, 0x28);
2661 rt2800_bbp_write(rt2x00dev, 77, 0x59);
2662 } else {
2663 rt2800_bbp_write(rt2x00dev, 69, 0x12);
2664 rt2800_bbp_write(rt2x00dev, 73, 0x10);
2665 }
2666
2667 rt2800_bbp_write(rt2x00dev, 70, 0x0a);
2668
2669 if (rt2x00_rt(rt2x00dev, RT3070) ||
2670 rt2x00_rt(rt2x00dev, RT3071) ||
2671 rt2x00_rt(rt2x00dev, RT3090) ||
2672 rt2x00_rt(rt2x00dev, RT3390) ||
2673 rt2x00_rt(rt2x00dev, RT5390)) {
2674 rt2800_bbp_write(rt2x00dev, 79, 0x13);
2675 rt2800_bbp_write(rt2x00dev, 80, 0x05);
2676 rt2800_bbp_write(rt2x00dev, 81, 0x33);
2677 } else if (rt2800_is_305x_soc(rt2x00dev)) {
2678 rt2800_bbp_write(rt2x00dev, 78, 0x0e);
2679 rt2800_bbp_write(rt2x00dev, 80, 0x08);
2680 } else {
2681 rt2800_bbp_write(rt2x00dev, 81, 0x37);
2682 }
2683
2684 rt2800_bbp_write(rt2x00dev, 82, 0x62);
2685 if (rt2x00_rt(rt2x00dev, RT5390))
2686 rt2800_bbp_write(rt2x00dev, 83, 0x7a);
2687 else
2688 rt2800_bbp_write(rt2x00dev, 83, 0x6a);
2689
2690 if (rt2x00_rt_rev(rt2x00dev, RT2860, REV_RT2860D))
2691 rt2800_bbp_write(rt2x00dev, 84, 0x19);
2692 else if (rt2x00_rt(rt2x00dev, RT5390))
2693 rt2800_bbp_write(rt2x00dev, 84, 0x9a);
2694 else
2695 rt2800_bbp_write(rt2x00dev, 84, 0x99);
2696
2697 if (rt2x00_rt(rt2x00dev, RT5390))
2698 rt2800_bbp_write(rt2x00dev, 86, 0x38);
2699 else
2700 rt2800_bbp_write(rt2x00dev, 86, 0x00);
2701
2702 rt2800_bbp_write(rt2x00dev, 91, 0x04);
2703
2704 if (rt2x00_rt(rt2x00dev, RT5390))
2705 rt2800_bbp_write(rt2x00dev, 92, 0x02);
2706 else
2707 rt2800_bbp_write(rt2x00dev, 92, 0x00);
2708
2709 if (rt2x00_rt_rev_gte(rt2x00dev, RT3070, REV_RT3070F) ||
2710 rt2x00_rt_rev_gte(rt2x00dev, RT3071, REV_RT3071E) ||
2711 rt2x00_rt_rev_gte(rt2x00dev, RT3090, REV_RT3090E) ||
2712 rt2x00_rt_rev_gte(rt2x00dev, RT3390, REV_RT3390E) ||
2713 rt2x00_rt(rt2x00dev, RT5390) ||
2714 rt2800_is_305x_soc(rt2x00dev))
2715 rt2800_bbp_write(rt2x00dev, 103, 0xc0);
2716 else
2717 rt2800_bbp_write(rt2x00dev, 103, 0x00);
2718
2719 if (rt2x00_rt(rt2x00dev, RT5390))
2720 rt2800_bbp_write(rt2x00dev, 104, 0x92);
2721
2722 if (rt2800_is_305x_soc(rt2x00dev))
2723 rt2800_bbp_write(rt2x00dev, 105, 0x01);
2724 else if (rt2x00_rt(rt2x00dev, RT5390))
2725 rt2800_bbp_write(rt2x00dev, 105, 0x3c);
2726 else
2727 rt2800_bbp_write(rt2x00dev, 105, 0x05);
2728
2729 if (rt2x00_rt(rt2x00dev, RT5390))
2730 rt2800_bbp_write(rt2x00dev, 106, 0x03);
2731 else
2732 rt2800_bbp_write(rt2x00dev, 106, 0x35);
2733
2734 if (rt2x00_rt(rt2x00dev, RT5390))
2735 rt2800_bbp_write(rt2x00dev, 128, 0x12);
2736
2737 if (rt2x00_rt(rt2x00dev, RT3071) ||
2738 rt2x00_rt(rt2x00dev, RT3090) ||
2739 rt2x00_rt(rt2x00dev, RT3390) ||
2740 rt2x00_rt(rt2x00dev, RT5390)) {
2741 rt2800_bbp_read(rt2x00dev, 138, &value);
2742
2743 rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC_CONF0, &eeprom);
2744 if (rt2x00_get_field16(eeprom, EEPROM_NIC_CONF0_TXPATH) == 1)
2745 value |= 0x20;
2746 if (rt2x00_get_field16(eeprom, EEPROM_NIC_CONF0_RXPATH) == 1)
2747 value &= ~0x02;
2748
2749 rt2800_bbp_write(rt2x00dev, 138, value);
2750 }
2751
2752 if (rt2x00_rt(rt2x00dev, RT5390)) {
2753 int ant, div_mode;
2754
2755 rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC_CONF1, &eeprom);
2756 div_mode = rt2x00_get_field16(eeprom,
2757 EEPROM_NIC_CONF1_ANT_DIVERSITY);
2758 ant = (div_mode == 3) ? 1 : 0;
2759
2760 /* check if this is a Bluetooth combo card */
2761 rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC_CONF1, &eeprom);
2762 if (rt2x00_get_field16(eeprom, EEPROM_NIC_CONF1_BT_COEXIST)) {
2763 u32 reg;
2764
2765 rt2800_register_read(rt2x00dev, GPIO_CTRL_CFG, &reg);
2766 rt2x00_set_field32(&reg, GPIO_CTRL_CFG_GPIOD_BIT3, 0);
2767 rt2x00_set_field32(&reg, GPIO_CTRL_CFG_GPIOD_BIT6, 0);
2768 rt2x00_set_field32(&reg, GPIO_CTRL_CFG_BIT3, 0);
2769 rt2x00_set_field32(&reg, GPIO_CTRL_CFG_BIT6, 0);
2770 if (ant == 0)
2771 rt2x00_set_field32(&reg, GPIO_CTRL_CFG_BIT3, 1);
2772 else if (ant == 1)
2773 rt2x00_set_field32(&reg, GPIO_CTRL_CFG_BIT6, 1);
2774 rt2800_register_write(rt2x00dev, GPIO_CTRL_CFG, reg);
2775 }
2776
2777 rt2800_bbp_read(rt2x00dev, 152, &value);
2778 if (ant == 0)
2779 rt2x00_set_field8(&value, BBP152_RX_DEFAULT_ANT, 1);
2780 else
2781 rt2x00_set_field8(&value, BBP152_RX_DEFAULT_ANT, 0);
2782 rt2800_bbp_write(rt2x00dev, 152, value);
2783
2784 /* Init frequency calibration */
2785 rt2800_bbp_write(rt2x00dev, 142, 1);
2786 rt2800_bbp_write(rt2x00dev, 143, 57);
2787 }
2788
2789 for (i = 0; i < EEPROM_BBP_SIZE; i++) {
2790 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
2791
2792 if (eeprom != 0xffff && eeprom != 0x0000) {
2793 reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
2794 value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
2795 rt2800_bbp_write(rt2x00dev, reg_id, value);
2796 }
2797 }
2798
2799 return 0;
2800 }
2801
2802 static u8 rt2800_init_rx_filter(struct rt2x00_dev *rt2x00dev,
2803 bool bw40, u8 rfcsr24, u8 filter_target)
2804 {
2805 unsigned int i;
2806 u8 bbp;
2807 u8 rfcsr;
2808 u8 passband;
2809 u8 stopband;
2810 u8 overtuned = 0;
2811
2812 rt2800_rfcsr_write(rt2x00dev, 24, rfcsr24);
2813
2814 rt2800_bbp_read(rt2x00dev, 4, &bbp);
2815 rt2x00_set_field8(&bbp, BBP4_BANDWIDTH, 2 * bw40);
2816 rt2800_bbp_write(rt2x00dev, 4, bbp);
2817
2818 rt2800_rfcsr_read(rt2x00dev, 31, &rfcsr);
2819 rt2x00_set_field8(&rfcsr, RFCSR31_RX_H20M, bw40);
2820 rt2800_rfcsr_write(rt2x00dev, 31, rfcsr);
2821
2822 rt2800_rfcsr_read(rt2x00dev, 22, &rfcsr);
2823 rt2x00_set_field8(&rfcsr, RFCSR22_BASEBAND_LOOPBACK, 1);
2824 rt2800_rfcsr_write(rt2x00dev, 22, rfcsr);
2825
2826 /*
2827 * Set power & frequency of passband test tone
2828 */
2829 rt2800_bbp_write(rt2x00dev, 24, 0);
2830
2831 for (i = 0; i < 100; i++) {
2832 rt2800_bbp_write(rt2x00dev, 25, 0x90);
2833 msleep(1);
2834
2835 rt2800_bbp_read(rt2x00dev, 55, &passband);
2836 if (passband)
2837 break;
2838 }
2839
2840 /*
2841 * Set power & frequency of stopband test tone
2842 */
2843 rt2800_bbp_write(rt2x00dev, 24, 0x06);
2844
2845 for (i = 0; i < 100; i++) {
2846 rt2800_bbp_write(rt2x00dev, 25, 0x90);
2847 msleep(1);
2848
2849 rt2800_bbp_read(rt2x00dev, 55, &stopband);
2850
2851 if ((passband - stopband) <= filter_target) {
2852 rfcsr24++;
2853 overtuned += ((passband - stopband) == filter_target);
2854 } else
2855 break;
2856
2857 rt2800_rfcsr_write(rt2x00dev, 24, rfcsr24);
2858 }
2859
2860 rfcsr24 -= !!overtuned;
2861
2862 rt2800_rfcsr_write(rt2x00dev, 24, rfcsr24);
2863 return rfcsr24;
2864 }
2865
2866 static int rt2800_init_rfcsr(struct rt2x00_dev *rt2x00dev)
2867 {
2868 u8 rfcsr;
2869 u8 bbp;
2870 u32 reg;
2871 u16 eeprom;
2872
2873 if (!rt2x00_rt(rt2x00dev, RT3070) &&
2874 !rt2x00_rt(rt2x00dev, RT3071) &&
2875 !rt2x00_rt(rt2x00dev, RT3090) &&
2876 !rt2x00_rt(rt2x00dev, RT3390) &&
2877 !rt2x00_rt(rt2x00dev, RT5390) &&
2878 !rt2800_is_305x_soc(rt2x00dev))
2879 return 0;
2880
2881 /*
2882 * Init RF calibration.
2883 */
2884 if (rt2x00_rt(rt2x00dev, RT5390)) {
2885 rt2800_rfcsr_read(rt2x00dev, 2, &rfcsr);
2886 rt2x00_set_field8(&rfcsr, RFCSR2_RESCAL_EN, 1);
2887 rt2800_rfcsr_write(rt2x00dev, 2, rfcsr);
2888 msleep(1);
2889 rt2x00_set_field8(&rfcsr, RFCSR2_RESCAL_EN, 0);
2890 rt2800_rfcsr_write(rt2x00dev, 2, rfcsr);
2891 } else {
2892 rt2800_rfcsr_read(rt2x00dev, 30, &rfcsr);
2893 rt2x00_set_field8(&rfcsr, RFCSR30_RF_CALIBRATION, 1);
2894 rt2800_rfcsr_write(rt2x00dev, 30, rfcsr);
2895 msleep(1);
2896 rt2x00_set_field8(&rfcsr, RFCSR30_RF_CALIBRATION, 0);
2897 rt2800_rfcsr_write(rt2x00dev, 30, rfcsr);
2898 }
2899
2900 if (rt2x00_rt(rt2x00dev, RT3070) ||
2901 rt2x00_rt(rt2x00dev, RT3071) ||
2902 rt2x00_rt(rt2x00dev, RT3090)) {
2903 rt2800_rfcsr_write(rt2x00dev, 4, 0x40);
2904 rt2800_rfcsr_write(rt2x00dev, 5, 0x03);
2905 rt2800_rfcsr_write(rt2x00dev, 6, 0x02);
2906 rt2800_rfcsr_write(rt2x00dev, 7, 0x60);
2907 rt2800_rfcsr_write(rt2x00dev, 9, 0x0f);
2908 rt2800_rfcsr_write(rt2x00dev, 10, 0x41);
2909 rt2800_rfcsr_write(rt2x00dev, 11, 0x21);
2910 rt2800_rfcsr_write(rt2x00dev, 12, 0x7b);
2911 rt2800_rfcsr_write(rt2x00dev, 14, 0x90);
2912 rt2800_rfcsr_write(rt2x00dev, 15, 0x58);
2913 rt2800_rfcsr_write(rt2x00dev, 16, 0xb3);
2914 rt2800_rfcsr_write(rt2x00dev, 17, 0x92);
2915 rt2800_rfcsr_write(rt2x00dev, 18, 0x2c);
2916 rt2800_rfcsr_write(rt2x00dev, 19, 0x02);
2917 rt2800_rfcsr_write(rt2x00dev, 20, 0xba);
2918 rt2800_rfcsr_write(rt2x00dev, 21, 0xdb);
2919 rt2800_rfcsr_write(rt2x00dev, 24, 0x16);
2920 rt2800_rfcsr_write(rt2x00dev, 25, 0x01);
2921 rt2800_rfcsr_write(rt2x00dev, 29, 0x1f);
2922 } else if (rt2x00_rt(rt2x00dev, RT3390)) {
2923 rt2800_rfcsr_write(rt2x00dev, 0, 0xa0);
2924 rt2800_rfcsr_write(rt2x00dev, 1, 0xe1);
2925 rt2800_rfcsr_write(rt2x00dev, 2, 0xf1);
2926 rt2800_rfcsr_write(rt2x00dev, 3, 0x62);
2927 rt2800_rfcsr_write(rt2x00dev, 4, 0x40);
2928 rt2800_rfcsr_write(rt2x00dev, 5, 0x8b);
2929 rt2800_rfcsr_write(rt2x00dev, 6, 0x42);
2930 rt2800_rfcsr_write(rt2x00dev, 7, 0x34);
2931 rt2800_rfcsr_write(rt2x00dev, 8, 0x00);
2932 rt2800_rfcsr_write(rt2x00dev, 9, 0xc0);
2933 rt2800_rfcsr_write(rt2x00dev, 10, 0x61);
2934 rt2800_rfcsr_write(rt2x00dev, 11, 0x21);
2935 rt2800_rfcsr_write(rt2x00dev, 12, 0x3b);
2936 rt2800_rfcsr_write(rt2x00dev, 13, 0xe0);
2937 rt2800_rfcsr_write(rt2x00dev, 14, 0x90);
2938 rt2800_rfcsr_write(rt2x00dev, 15, 0x53);
2939 rt2800_rfcsr_write(rt2x00dev, 16, 0xe0);
2940 rt2800_rfcsr_write(rt2x00dev, 17, 0x94);
2941 rt2800_rfcsr_write(rt2x00dev, 18, 0x5c);
2942 rt2800_rfcsr_write(rt2x00dev, 19, 0x4a);
2943 rt2800_rfcsr_write(rt2x00dev, 20, 0xb2);
2944 rt2800_rfcsr_write(rt2x00dev, 21, 0xf6);
2945 rt2800_rfcsr_write(rt2x00dev, 22, 0x00);
2946 rt2800_rfcsr_write(rt2x00dev, 23, 0x14);
2947 rt2800_rfcsr_write(rt2x00dev, 24, 0x08);
2948 rt2800_rfcsr_write(rt2x00dev, 25, 0x3d);
2949 rt2800_rfcsr_write(rt2x00dev, 26, 0x85);
2950 rt2800_rfcsr_write(rt2x00dev, 27, 0x00);
2951 rt2800_rfcsr_write(rt2x00dev, 28, 0x41);
2952 rt2800_rfcsr_write(rt2x00dev, 29, 0x8f);
2953 rt2800_rfcsr_write(rt2x00dev, 30, 0x20);
2954 rt2800_rfcsr_write(rt2x00dev, 31, 0x0f);
2955 } else if (rt2800_is_305x_soc(rt2x00dev)) {
2956 rt2800_rfcsr_write(rt2x00dev, 0, 0x50);
2957 rt2800_rfcsr_write(rt2x00dev, 1, 0x01);
2958 rt2800_rfcsr_write(rt2x00dev, 2, 0xf7);
2959 rt2800_rfcsr_write(rt2x00dev, 3, 0x75);
2960 rt2800_rfcsr_write(rt2x00dev, 4, 0x40);
2961 rt2800_rfcsr_write(rt2x00dev, 5, 0x03);
2962 rt2800_rfcsr_write(rt2x00dev, 6, 0x02);
2963 rt2800_rfcsr_write(rt2x00dev, 7, 0x50);
2964 rt2800_rfcsr_write(rt2x00dev, 8, 0x39);
2965 rt2800_rfcsr_write(rt2x00dev, 9, 0x0f);
2966 rt2800_rfcsr_write(rt2x00dev, 10, 0x60);
2967 rt2800_rfcsr_write(rt2x00dev, 11, 0x21);
2968 rt2800_rfcsr_write(rt2x00dev, 12, 0x75);
2969 rt2800_rfcsr_write(rt2x00dev, 13, 0x75);
2970 rt2800_rfcsr_write(rt2x00dev, 14, 0x90);
2971 rt2800_rfcsr_write(rt2x00dev, 15, 0x58);
2972 rt2800_rfcsr_write(rt2x00dev, 16, 0xb3);
2973 rt2800_rfcsr_write(rt2x00dev, 17, 0x92);
2974 rt2800_rfcsr_write(rt2x00dev, 18, 0x2c);
2975 rt2800_rfcsr_write(rt2x00dev, 19, 0x02);
2976 rt2800_rfcsr_write(rt2x00dev, 20, 0xba);
2977 rt2800_rfcsr_write(rt2x00dev, 21, 0xdb);
2978 rt2800_rfcsr_write(rt2x00dev, 22, 0x00);
2979 rt2800_rfcsr_write(rt2x00dev, 23, 0x31);
2980 rt2800_rfcsr_write(rt2x00dev, 24, 0x08);
2981 rt2800_rfcsr_write(rt2x00dev, 25, 0x01);
2982 rt2800_rfcsr_write(rt2x00dev, 26, 0x25);
2983 rt2800_rfcsr_write(rt2x00dev, 27, 0x23);
2984 rt2800_rfcsr_write(rt2x00dev, 28, 0x13);
2985 rt2800_rfcsr_write(rt2x00dev, 29, 0x83);
2986 rt2800_rfcsr_write(rt2x00dev, 30, 0x00);
2987 rt2800_rfcsr_write(rt2x00dev, 31, 0x00);
2988 return 0;
2989 } else if (rt2x00_rt(rt2x00dev, RT5390)) {
2990 rt2800_rfcsr_write(rt2x00dev, 1, 0x0f);
2991 rt2800_rfcsr_write(rt2x00dev, 2, 0x80);
2992 rt2800_rfcsr_write(rt2x00dev, 3, 0x88);
2993 rt2800_rfcsr_write(rt2x00dev, 5, 0x10);
2994 if (rt2x00_rt_rev_gte(rt2x00dev, RT5390, REV_RT5390F))
2995 rt2800_rfcsr_write(rt2x00dev, 6, 0xe0);
2996 else
2997 rt2800_rfcsr_write(rt2x00dev, 6, 0xa0);
2998 rt2800_rfcsr_write(rt2x00dev, 7, 0x00);
2999 rt2800_rfcsr_write(rt2x00dev, 10, 0x53);
3000 rt2800_rfcsr_write(rt2x00dev, 11, 0x4a);
3001 rt2800_rfcsr_write(rt2x00dev, 12, 0xc6);
3002 rt2800_rfcsr_write(rt2x00dev, 13, 0x9f);
3003 rt2800_rfcsr_write(rt2x00dev, 14, 0x00);
3004 rt2800_rfcsr_write(rt2x00dev, 15, 0x00);
3005 rt2800_rfcsr_write(rt2x00dev, 16, 0x00);
3006 rt2800_rfcsr_write(rt2x00dev, 18, 0x03);
3007 rt2800_rfcsr_write(rt2x00dev, 19, 0x00);
3008
3009 rt2800_rfcsr_write(rt2x00dev, 20, 0x00);
3010 rt2800_rfcsr_write(rt2x00dev, 21, 0x00);
3011 rt2800_rfcsr_write(rt2x00dev, 22, 0x20);
3012 rt2800_rfcsr_write(rt2x00dev, 23, 0x00);
3013 rt2800_rfcsr_write(rt2x00dev, 24, 0x00);
3014 if (rt2x00_rt_rev_gte(rt2x00dev, RT5390, REV_RT5390F))
3015 rt2800_rfcsr_write(rt2x00dev, 25, 0x80);
3016 else
3017 rt2800_rfcsr_write(rt2x00dev, 25, 0xc0);
3018 rt2800_rfcsr_write(rt2x00dev, 26, 0x00);
3019 rt2800_rfcsr_write(rt2x00dev, 27, 0x09);
3020 rt2800_rfcsr_write(rt2x00dev, 28, 0x00);
3021 rt2800_rfcsr_write(rt2x00dev, 29, 0x10);
3022
3023 rt2800_rfcsr_write(rt2x00dev, 30, 0x00);
3024 rt2800_rfcsr_write(rt2x00dev, 31, 0x80);
3025 rt2800_rfcsr_write(rt2x00dev, 32, 0x80);
3026 rt2800_rfcsr_write(rt2x00dev, 33, 0x00);
3027 rt2800_rfcsr_write(rt2x00dev, 34, 0x07);
3028 rt2800_rfcsr_write(rt2x00dev, 35, 0x12);
3029 rt2800_rfcsr_write(rt2x00dev, 36, 0x00);
3030 rt2800_rfcsr_write(rt2x00dev, 37, 0x08);
3031 rt2800_rfcsr_write(rt2x00dev, 38, 0x85);
3032 rt2800_rfcsr_write(rt2x00dev, 39, 0x1b);
3033
3034 if (rt2x00_rt_rev_gte(rt2x00dev, RT5390, REV_RT5390F))
3035 rt2800_rfcsr_write(rt2x00dev, 40, 0x0b);
3036 else
3037 rt2800_rfcsr_write(rt2x00dev, 40, 0x4b);
3038 rt2800_rfcsr_write(rt2x00dev, 41, 0xbb);
3039 rt2800_rfcsr_write(rt2x00dev, 42, 0xd2);
3040 rt2800_rfcsr_write(rt2x00dev, 43, 0x9a);
3041 rt2800_rfcsr_write(rt2x00dev, 44, 0x0e);
3042 rt2800_rfcsr_write(rt2x00dev, 45, 0xa2);
3043 if (rt2x00_rt_rev_gte(rt2x00dev, RT5390, REV_RT5390F))
3044 rt2800_rfcsr_write(rt2x00dev, 46, 0x73);
3045 else
3046 rt2800_rfcsr_write(rt2x00dev, 46, 0x7b);
3047 rt2800_rfcsr_write(rt2x00dev, 47, 0x00);
3048 rt2800_rfcsr_write(rt2x00dev, 48, 0x10);
3049 rt2800_rfcsr_write(rt2x00dev, 49, 0x94);
3050
3051 rt2800_rfcsr_write(rt2x00dev, 52, 0x38);
3052 if (rt2x00_rt_rev_gte(rt2x00dev, RT5390, REV_RT5390F))
3053 rt2800_rfcsr_write(rt2x00dev, 53, 0x00);
3054 else
3055 rt2800_rfcsr_write(rt2x00dev, 53, 0x84);
3056 rt2800_rfcsr_write(rt2x00dev, 54, 0x78);
3057 rt2800_rfcsr_write(rt2x00dev, 55, 0x44);
3058 rt2800_rfcsr_write(rt2x00dev, 56, 0x22);
3059 rt2800_rfcsr_write(rt2x00dev, 57, 0x80);
3060 rt2800_rfcsr_write(rt2x00dev, 58, 0x7f);
3061 rt2800_rfcsr_write(rt2x00dev, 59, 0x63);
3062
3063 rt2800_rfcsr_write(rt2x00dev, 60, 0x45);
3064 if (rt2x00_rt_rev_gte(rt2x00dev, RT5390, REV_RT5390F))
3065 rt2800_rfcsr_write(rt2x00dev, 61, 0xd1);
3066 else
3067 rt2800_rfcsr_write(rt2x00dev, 61, 0xdd);
3068 rt2800_rfcsr_write(rt2x00dev, 62, 0x00);
3069 rt2800_rfcsr_write(rt2x00dev, 63, 0x00);
3070 }
3071
3072 if (rt2x00_rt_rev_lt(rt2x00dev, RT3070, REV_RT3070F)) {
3073 rt2800_register_read(rt2x00dev, LDO_CFG0, &reg);
3074 rt2x00_set_field32(&reg, LDO_CFG0_BGSEL, 1);
3075 rt2x00_set_field32(&reg, LDO_CFG0_LDO_CORE_VLEVEL, 3);
3076 rt2800_register_write(rt2x00dev, LDO_CFG0, reg);
3077 } else if (rt2x00_rt(rt2x00dev, RT3071) ||
3078 rt2x00_rt(rt2x00dev, RT3090)) {
3079 rt2800_rfcsr_write(rt2x00dev, 31, 0x14);
3080
3081 rt2800_rfcsr_read(rt2x00dev, 6, &rfcsr);
3082 rt2x00_set_field8(&rfcsr, RFCSR6_R2, 1);
3083 rt2800_rfcsr_write(rt2x00dev, 6, rfcsr);
3084
3085 rt2800_register_read(rt2x00dev, LDO_CFG0, &reg);
3086 rt2x00_set_field32(&reg, LDO_CFG0_BGSEL, 1);
3087 if (rt2x00_rt_rev_lt(rt2x00dev, RT3071, REV_RT3071E) ||
3088 rt2x00_rt_rev_lt(rt2x00dev, RT3090, REV_RT3090E)) {
3089 rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC_CONF1, &eeprom);
3090 if (rt2x00_get_field16(eeprom, EEPROM_NIC_CONF1_DAC_TEST))
3091 rt2x00_set_field32(&reg, LDO_CFG0_LDO_CORE_VLEVEL, 3);
3092 else
3093 rt2x00_set_field32(&reg, LDO_CFG0_LDO_CORE_VLEVEL, 0);
3094 }
3095 rt2800_register_write(rt2x00dev, LDO_CFG0, reg);
3096
3097 rt2800_register_read(rt2x00dev, GPIO_SWITCH, &reg);
3098 rt2x00_set_field32(&reg, GPIO_SWITCH_5, 0);
3099 rt2800_register_write(rt2x00dev, GPIO_SWITCH, reg);
3100 } else if (rt2x00_rt(rt2x00dev, RT3390)) {
3101 rt2800_register_read(rt2x00dev, GPIO_SWITCH, &reg);
3102 rt2x00_set_field32(&reg, GPIO_SWITCH_5, 0);
3103 rt2800_register_write(rt2x00dev, GPIO_SWITCH, reg);
3104 }
3105
3106 /*
3107 * Set RX Filter calibration for 20MHz and 40MHz
3108 */
3109 if (rt2x00_rt(rt2x00dev, RT3070)) {
3110 rt2x00dev->calibration[0] =
3111 rt2800_init_rx_filter(rt2x00dev, false, 0x07, 0x16);
3112 rt2x00dev->calibration[1] =
3113 rt2800_init_rx_filter(rt2x00dev, true, 0x27, 0x19);
3114 } else if (rt2x00_rt(rt2x00dev, RT3071) ||
3115 rt2x00_rt(rt2x00dev, RT3090) ||
3116 rt2x00_rt(rt2x00dev, RT3390)) {
3117 rt2x00dev->calibration[0] =
3118 rt2800_init_rx_filter(rt2x00dev, false, 0x07, 0x13);
3119 rt2x00dev->calibration[1] =
3120 rt2800_init_rx_filter(rt2x00dev, true, 0x27, 0x15);
3121 }
3122
3123 if (!rt2x00_rt(rt2x00dev, RT5390)) {
3124 /*
3125 * Set back to initial state
3126 */
3127 rt2800_bbp_write(rt2x00dev, 24, 0);
3128
3129 rt2800_rfcsr_read(rt2x00dev, 22, &rfcsr);
3130 rt2x00_set_field8(&rfcsr, RFCSR22_BASEBAND_LOOPBACK, 0);
3131 rt2800_rfcsr_write(rt2x00dev, 22, rfcsr);
3132
3133 /*
3134 * Set BBP back to BW20
3135 */
3136 rt2800_bbp_read(rt2x00dev, 4, &bbp);
3137 rt2x00_set_field8(&bbp, BBP4_BANDWIDTH, 0);
3138 rt2800_bbp_write(rt2x00dev, 4, bbp);
3139 }
3140
3141 if (rt2x00_rt_rev_lt(rt2x00dev, RT3070, REV_RT3070F) ||
3142 rt2x00_rt_rev_lt(rt2x00dev, RT3071, REV_RT3071E) ||
3143 rt2x00_rt_rev_lt(rt2x00dev, RT3090, REV_RT3090E) ||
3144 rt2x00_rt_rev_lt(rt2x00dev, RT3390, REV_RT3390E))
3145 rt2800_rfcsr_write(rt2x00dev, 27, 0x03);
3146
3147 rt2800_register_read(rt2x00dev, OPT_14_CSR, &reg);
3148 rt2x00_set_field32(&reg, OPT_14_CSR_BIT0, 1);
3149 rt2800_register_write(rt2x00dev, OPT_14_CSR, reg);
3150
3151 if (!rt2x00_rt(rt2x00dev, RT5390)) {
3152 rt2800_rfcsr_read(rt2x00dev, 17, &rfcsr);
3153 rt2x00_set_field8(&rfcsr, RFCSR17_TX_LO1_EN, 0);
3154 if (rt2x00_rt(rt2x00dev, RT3070) ||
3155 rt2x00_rt_rev_lt(rt2x00dev, RT3071, REV_RT3071E) ||
3156 rt2x00_rt_rev_lt(rt2x00dev, RT3090, REV_RT3090E) ||
3157 rt2x00_rt_rev_lt(rt2x00dev, RT3390, REV_RT3390E)) {
3158 if (!test_bit(CONFIG_EXTERNAL_LNA_BG,
3159 &rt2x00dev->flags))
3160 rt2x00_set_field8(&rfcsr, RFCSR17_R, 1);
3161 }
3162 rt2x00_eeprom_read(rt2x00dev, EEPROM_TXMIXER_GAIN_BG, &eeprom);
3163 if (rt2x00_get_field16(eeprom, EEPROM_TXMIXER_GAIN_BG_VAL) >= 1)
3164 rt2x00_set_field8(&rfcsr, RFCSR17_TXMIXER_GAIN,
3165 rt2x00_get_field16(eeprom,
3166 EEPROM_TXMIXER_GAIN_BG_VAL));
3167 rt2800_rfcsr_write(rt2x00dev, 17, rfcsr);
3168 }
3169
3170 if (rt2x00_rt(rt2x00dev, RT3090)) {
3171 rt2800_bbp_read(rt2x00dev, 138, &bbp);
3172
3173 /* Turn off unused DAC1 and ADC1 to reduce power consumption */
3174 rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC_CONF0, &eeprom);
3175 if (rt2x00_get_field16(eeprom, EEPROM_NIC_CONF0_RXPATH) == 1)
3176 rt2x00_set_field8(&bbp, BBP138_RX_ADC1, 0);
3177 if (rt2x00_get_field16(eeprom, EEPROM_NIC_CONF0_TXPATH) == 1)
3178 rt2x00_set_field8(&bbp, BBP138_TX_DAC1, 1);
3179
3180 rt2800_bbp_write(rt2x00dev, 138, bbp);
3181 }
3182
3183 if (rt2x00_rt(rt2x00dev, RT3071) ||
3184 rt2x00_rt(rt2x00dev, RT3090) ||
3185 rt2x00_rt(rt2x00dev, RT3390)) {
3186 rt2800_rfcsr_read(rt2x00dev, 1, &rfcsr);
3187 rt2x00_set_field8(&rfcsr, RFCSR1_RF_BLOCK_EN, 1);
3188 rt2x00_set_field8(&rfcsr, RFCSR1_RX0_PD, 0);
3189 rt2x00_set_field8(&rfcsr, RFCSR1_TX0_PD, 0);
3190 rt2x00_set_field8(&rfcsr, RFCSR1_RX1_PD, 1);
3191 rt2x00_set_field8(&rfcsr, RFCSR1_TX1_PD, 1);
3192 rt2800_rfcsr_write(rt2x00dev, 1, rfcsr);
3193
3194 rt2800_rfcsr_read(rt2x00dev, 15, &rfcsr);
3195 rt2x00_set_field8(&rfcsr, RFCSR15_TX_LO2_EN, 0);
3196 rt2800_rfcsr_write(rt2x00dev, 15, rfcsr);
3197
3198 rt2800_rfcsr_read(rt2x00dev, 20, &rfcsr);
3199 rt2x00_set_field8(&rfcsr, RFCSR20_RX_LO1_EN, 0);
3200 rt2800_rfcsr_write(rt2x00dev, 20, rfcsr);
3201
3202 rt2800_rfcsr_read(rt2x00dev, 21, &rfcsr);
3203 rt2x00_set_field8(&rfcsr, RFCSR21_RX_LO2_EN, 0);
3204 rt2800_rfcsr_write(rt2x00dev, 21, rfcsr);
3205 }
3206
3207 if (rt2x00_rt(rt2x00dev, RT3070)) {
3208 rt2800_rfcsr_read(rt2x00dev, 27, &rfcsr);
3209 if (rt2x00_rt_rev_lt(rt2x00dev, RT3070, REV_RT3070F))
3210 rt2x00_set_field8(&rfcsr, RFCSR27_R1, 3);
3211 else
3212 rt2x00_set_field8(&rfcsr, RFCSR27_R1, 0);
3213 rt2x00_set_field8(&rfcsr, RFCSR27_R2, 0);
3214 rt2x00_set_field8(&rfcsr, RFCSR27_R3, 0);
3215 rt2x00_set_field8(&rfcsr, RFCSR27_R4, 0);
3216 rt2800_rfcsr_write(rt2x00dev, 27, rfcsr);
3217 }
3218
3219 if (rt2x00_rt(rt2x00dev, RT5390)) {
3220 rt2800_rfcsr_read(rt2x00dev, 38, &rfcsr);
3221 rt2x00_set_field8(&rfcsr, RFCSR38_RX_LO1_EN, 0);
3222 rt2800_rfcsr_write(rt2x00dev, 38, rfcsr);
3223
3224 rt2800_rfcsr_read(rt2x00dev, 39, &rfcsr);
3225 rt2x00_set_field8(&rfcsr, RFCSR39_RX_LO2_EN, 0);
3226 rt2800_rfcsr_write(rt2x00dev, 39, rfcsr);
3227
3228 rt2800_rfcsr_read(rt2x00dev, 30, &rfcsr);
3229 rt2x00_set_field8(&rfcsr, RFCSR30_RX_VCM, 2);
3230 rt2800_rfcsr_write(rt2x00dev, 30, rfcsr);
3231 }
3232
3233 return 0;
3234 }
3235
3236 int rt2800_enable_radio(struct rt2x00_dev *rt2x00dev)
3237 {
3238 u32 reg;
3239 u16 word;
3240
3241 /*
3242 * Initialize all registers.
3243 */
3244 if (unlikely(rt2800_wait_wpdma_ready(rt2x00dev) ||
3245 rt2800_init_registers(rt2x00dev) ||
3246 rt2800_init_bbp(rt2x00dev) ||
3247 rt2800_init_rfcsr(rt2x00dev)))
3248 return -EIO;
3249
3250 /*
3251 * Send signal to firmware during boot time.
3252 */
3253 rt2800_mcu_request(rt2x00dev, MCU_BOOT_SIGNAL, 0, 0, 0);
3254
3255 if (rt2x00_is_usb(rt2x00dev) &&
3256 (rt2x00_rt(rt2x00dev, RT3070) ||
3257 rt2x00_rt(rt2x00dev, RT3071) ||
3258 rt2x00_rt(rt2x00dev, RT3572))) {
3259 udelay(200);
3260 rt2800_mcu_request(rt2x00dev, MCU_CURRENT, 0, 0, 0);
3261 udelay(10);
3262 }
3263
3264 /*
3265 * Enable RX.
3266 */
3267 rt2800_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
3268 rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_TX, 1);
3269 rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_RX, 0);
3270 rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
3271
3272 udelay(50);
3273
3274 rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG, &reg);
3275 rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_TX_DMA, 1);
3276 rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_RX_DMA, 1);
3277 rt2x00_set_field32(&reg, WPDMA_GLO_CFG_WP_DMA_BURST_SIZE, 2);
3278 rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_WRITEBACK_DONE, 1);
3279 rt2800_register_write(rt2x00dev, WPDMA_GLO_CFG, reg);
3280
3281 rt2800_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
3282 rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_TX, 1);
3283 rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_RX, 1);
3284 rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
3285
3286 /*
3287 * Initialize LED control
3288 */
3289 rt2x00_eeprom_read(rt2x00dev, EEPROM_LED_AG_CONF, &word);
3290 rt2800_mcu_request(rt2x00dev, MCU_LED_AG_CONF, 0xff,
3291 word & 0xff, (word >> 8) & 0xff);
3292
3293 rt2x00_eeprom_read(rt2x00dev, EEPROM_LED_ACT_CONF, &word);
3294 rt2800_mcu_request(rt2x00dev, MCU_LED_ACT_CONF, 0xff,
3295 word & 0xff, (word >> 8) & 0xff);
3296
3297 rt2x00_eeprom_read(rt2x00dev, EEPROM_LED_POLARITY, &word);
3298 rt2800_mcu_request(rt2x00dev, MCU_LED_LED_POLARITY, 0xff,
3299 word & 0xff, (word >> 8) & 0xff);
3300
3301 return 0;
3302 }
3303 EXPORT_SYMBOL_GPL(rt2800_enable_radio);
3304
3305 void rt2800_disable_radio(struct rt2x00_dev *rt2x00dev)
3306 {
3307 u32 reg;
3308
3309 rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG, &reg);
3310 rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_TX_DMA, 0);
3311 rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_RX_DMA, 0);
3312 rt2800_register_write(rt2x00dev, WPDMA_GLO_CFG, reg);
3313
3314 /* Wait for DMA, ignore error */
3315 rt2800_wait_wpdma_ready(rt2x00dev);
3316
3317 rt2800_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
3318 rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_TX, 0);
3319 rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_RX, 0);
3320 rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
3321 }
3322 EXPORT_SYMBOL_GPL(rt2800_disable_radio);
3323
3324 int rt2800_efuse_detect(struct rt2x00_dev *rt2x00dev)
3325 {
3326 u32 reg;
3327
3328 rt2800_register_read(rt2x00dev, EFUSE_CTRL, &reg);
3329
3330 return rt2x00_get_field32(reg, EFUSE_CTRL_PRESENT);
3331 }
3332 EXPORT_SYMBOL_GPL(rt2800_efuse_detect);
3333
3334 static void rt2800_efuse_read(struct rt2x00_dev *rt2x00dev, unsigned int i)
3335 {
3336 u32 reg;
3337
3338 mutex_lock(&rt2x00dev->csr_mutex);
3339
3340 rt2800_register_read_lock(rt2x00dev, EFUSE_CTRL, &reg);
3341 rt2x00_set_field32(&reg, EFUSE_CTRL_ADDRESS_IN, i);
3342 rt2x00_set_field32(&reg, EFUSE_CTRL_MODE, 0);
3343 rt2x00_set_field32(&reg, EFUSE_CTRL_KICK, 1);
3344 rt2800_register_write_lock(rt2x00dev, EFUSE_CTRL, reg);
3345
3346 /* Wait until the EEPROM has been loaded */
3347 rt2800_regbusy_read(rt2x00dev, EFUSE_CTRL, EFUSE_CTRL_KICK, &reg);
3348
3349 /* Apparently the data is read from end to start */
3350 rt2800_register_read_lock(rt2x00dev, EFUSE_DATA3,
3351 (u32 *)&rt2x00dev->eeprom[i]);
3352 rt2800_register_read_lock(rt2x00dev, EFUSE_DATA2,
3353 (u32 *)&rt2x00dev->eeprom[i + 2]);
3354 rt2800_register_read_lock(rt2x00dev, EFUSE_DATA1,
3355 (u32 *)&rt2x00dev->eeprom[i + 4]);
3356 rt2800_register_read_lock(rt2x00dev, EFUSE_DATA0,
3357 (u32 *)&rt2x00dev->eeprom[i + 6]);
3358
3359 mutex_unlock(&rt2x00dev->csr_mutex);
3360 }
3361
3362 void rt2800_read_eeprom_efuse(struct rt2x00_dev *rt2x00dev)
3363 {
3364 unsigned int i;
3365
3366 for (i = 0; i < EEPROM_SIZE / sizeof(u16); i += 8)
3367 rt2800_efuse_read(rt2x00dev, i);
3368 }
3369 EXPORT_SYMBOL_GPL(rt2800_read_eeprom_efuse);
3370
3371 int rt2800_validate_eeprom(struct rt2x00_dev *rt2x00dev)
3372 {
3373 u16 word;
3374 u8 *mac;
3375 u8 default_lna_gain;
3376
3377 /*
3378 * Start validation of the data that has been read.
3379 */
3380 mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
3381 if (!is_valid_ether_addr(mac)) {
3382 random_ether_addr(mac);
3383 EEPROM(rt2x00dev, "MAC: %pM\n", mac);
3384 }
3385
3386 rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC_CONF0, &word);
3387 if (word == 0xffff) {
3388 rt2x00_set_field16(&word, EEPROM_NIC_CONF0_RXPATH, 2);
3389 rt2x00_set_field16(&word, EEPROM_NIC_CONF0_TXPATH, 1);
3390 rt2x00_set_field16(&word, EEPROM_NIC_CONF0_RF_TYPE, RF2820);
3391 rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC_CONF0, word);
3392 EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word);
3393 } else if (rt2x00_rt(rt2x00dev, RT2860) ||
3394 rt2x00_rt(rt2x00dev, RT2872)) {
3395 /*
3396 * There is a max of 2 RX streams for RT28x0 series
3397 */
3398 if (rt2x00_get_field16(word, EEPROM_NIC_CONF0_RXPATH) > 2)
3399 rt2x00_set_field16(&word, EEPROM_NIC_CONF0_RXPATH, 2);
3400 rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC_CONF0, word);
3401 }
3402
3403 rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC_CONF1, &word);
3404 if (word == 0xffff) {
3405 rt2x00_set_field16(&word, EEPROM_NIC_CONF1_HW_RADIO, 0);
3406 rt2x00_set_field16(&word, EEPROM_NIC_CONF1_EXTERNAL_TX_ALC, 0);
3407 rt2x00_set_field16(&word, EEPROM_NIC_CONF1_EXTERNAL_LNA_2G, 0);
3408 rt2x00_set_field16(&word, EEPROM_NIC_CONF1_EXTERNAL_LNA_5G, 0);
3409 rt2x00_set_field16(&word, EEPROM_NIC_CONF1_CARDBUS_ACCEL, 0);
3410 rt2x00_set_field16(&word, EEPROM_NIC_CONF1_BW40M_SB_2G, 0);
3411 rt2x00_set_field16(&word, EEPROM_NIC_CONF1_BW40M_SB_5G, 0);
3412 rt2x00_set_field16(&word, EEPROM_NIC_CONF1_WPS_PBC, 0);
3413 rt2x00_set_field16(&word, EEPROM_NIC_CONF1_BW40M_2G, 0);
3414 rt2x00_set_field16(&word, EEPROM_NIC_CONF1_BW40M_5G, 0);
3415 rt2x00_set_field16(&word, EEPROM_NIC_CONF1_BROADBAND_EXT_LNA, 0);
3416 rt2x00_set_field16(&word, EEPROM_NIC_CONF1_ANT_DIVERSITY, 0);
3417 rt2x00_set_field16(&word, EEPROM_NIC_CONF1_INTERNAL_TX_ALC, 0);
3418 rt2x00_set_field16(&word, EEPROM_NIC_CONF1_BT_COEXIST, 0);
3419 rt2x00_set_field16(&word, EEPROM_NIC_CONF1_DAC_TEST, 0);
3420 rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC_CONF1, word);
3421 EEPROM(rt2x00dev, "NIC: 0x%04x\n", word);
3422 }
3423
3424 rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &word);
3425 if ((word & 0x00ff) == 0x00ff) {
3426 rt2x00_set_field16(&word, EEPROM_FREQ_OFFSET, 0);
3427 rt2x00_eeprom_write(rt2x00dev, EEPROM_FREQ, word);
3428 EEPROM(rt2x00dev, "Freq: 0x%04x\n", word);
3429 }
3430 if ((word & 0xff00) == 0xff00) {
3431 rt2x00_set_field16(&word, EEPROM_FREQ_LED_MODE,
3432 LED_MODE_TXRX_ACTIVITY);
3433 rt2x00_set_field16(&word, EEPROM_FREQ_LED_POLARITY, 0);
3434 rt2x00_eeprom_write(rt2x00dev, EEPROM_FREQ, word);
3435 rt2x00_eeprom_write(rt2x00dev, EEPROM_LED_AG_CONF, 0x5555);
3436 rt2x00_eeprom_write(rt2x00dev, EEPROM_LED_ACT_CONF, 0x2221);
3437 rt2x00_eeprom_write(rt2x00dev, EEPROM_LED_POLARITY, 0xa9f8);
3438 EEPROM(rt2x00dev, "Led Mode: 0x%04x\n", word);
3439 }
3440
3441 /*
3442 * During the LNA validation we are going to use
3443 * lna0 as correct value. Note that EEPROM_LNA
3444 * is never validated.
3445 */
3446 rt2x00_eeprom_read(rt2x00dev, EEPROM_LNA, &word);
3447 default_lna_gain = rt2x00_get_field16(word, EEPROM_LNA_A0);
3448
3449 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_BG, &word);
3450 if (abs(rt2x00_get_field16(word, EEPROM_RSSI_BG_OFFSET0)) > 10)
3451 rt2x00_set_field16(&word, EEPROM_RSSI_BG_OFFSET0, 0);
3452 if (abs(rt2x00_get_field16(word, EEPROM_RSSI_BG_OFFSET1)) > 10)
3453 rt2x00_set_field16(&word, EEPROM_RSSI_BG_OFFSET1, 0);
3454 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_BG, word);
3455
3456 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_BG2, &word);
3457 if (abs(rt2x00_get_field16(word, EEPROM_RSSI_BG2_OFFSET2)) > 10)
3458 rt2x00_set_field16(&word, EEPROM_RSSI_BG2_OFFSET2, 0);
3459 if (rt2x00_get_field16(word, EEPROM_RSSI_BG2_LNA_A1) == 0x00 ||
3460 rt2x00_get_field16(word, EEPROM_RSSI_BG2_LNA_A1) == 0xff)
3461 rt2x00_set_field16(&word, EEPROM_RSSI_BG2_LNA_A1,
3462 default_lna_gain);
3463 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_BG2, word);
3464
3465 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_A, &word);
3466 if (abs(rt2x00_get_field16(word, EEPROM_RSSI_A_OFFSET0)) > 10)
3467 rt2x00_set_field16(&word, EEPROM_RSSI_A_OFFSET0, 0);
3468 if (abs(rt2x00_get_field16(word, EEPROM_RSSI_A_OFFSET1)) > 10)
3469 rt2x00_set_field16(&word, EEPROM_RSSI_A_OFFSET1, 0);
3470 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_A, word);
3471
3472 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_A2, &word);
3473 if (abs(rt2x00_get_field16(word, EEPROM_RSSI_A2_OFFSET2)) > 10)
3474 rt2x00_set_field16(&word, EEPROM_RSSI_A2_OFFSET2, 0);
3475 if (rt2x00_get_field16(word, EEPROM_RSSI_A2_LNA_A2) == 0x00 ||
3476 rt2x00_get_field16(word, EEPROM_RSSI_A2_LNA_A2) == 0xff)
3477 rt2x00_set_field16(&word, EEPROM_RSSI_A2_LNA_A2,
3478 default_lna_gain);
3479 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_A2, word);
3480
3481 return 0;
3482 }
3483 EXPORT_SYMBOL_GPL(rt2800_validate_eeprom);
3484
3485 int rt2800_init_eeprom(struct rt2x00_dev *rt2x00dev)
3486 {
3487 u32 reg;
3488 u16 value;
3489 u16 eeprom;
3490
3491 /*
3492 * Read EEPROM word for configuration.
3493 */
3494 rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC_CONF0, &eeprom);
3495
3496 /*
3497 * Identify RF chipset by EEPROM value
3498 * RT28xx/RT30xx: defined in "EEPROM_NIC_CONF0_RF_TYPE" field
3499 * RT53xx: defined in "EEPROM_CHIP_ID" field
3500 */
3501 rt2800_register_read(rt2x00dev, MAC_CSR0, &reg);
3502 if (rt2x00_get_field32(reg, MAC_CSR0_CHIPSET) == RT5390)
3503 rt2x00_eeprom_read(rt2x00dev, EEPROM_CHIP_ID, &value);
3504 else
3505 value = rt2x00_get_field16(eeprom, EEPROM_NIC_CONF0_RF_TYPE);
3506
3507 rt2x00_set_chip(rt2x00dev, rt2x00_get_field32(reg, MAC_CSR0_CHIPSET),
3508 value, rt2x00_get_field32(reg, MAC_CSR0_REVISION));
3509
3510 if (!rt2x00_rt(rt2x00dev, RT2860) &&
3511 !rt2x00_rt(rt2x00dev, RT2872) &&
3512 !rt2x00_rt(rt2x00dev, RT2883) &&
3513 !rt2x00_rt(rt2x00dev, RT3070) &&
3514 !rt2x00_rt(rt2x00dev, RT3071) &&
3515 !rt2x00_rt(rt2x00dev, RT3090) &&
3516 !rt2x00_rt(rt2x00dev, RT3390) &&
3517 !rt2x00_rt(rt2x00dev, RT3572) &&
3518 !rt2x00_rt(rt2x00dev, RT5390)) {
3519 ERROR(rt2x00dev, "Invalid RT chipset detected.\n");
3520 return -ENODEV;
3521 }
3522
3523 if (!rt2x00_rf(rt2x00dev, RF2820) &&
3524 !rt2x00_rf(rt2x00dev, RF2850) &&
3525 !rt2x00_rf(rt2x00dev, RF2720) &&
3526 !rt2x00_rf(rt2x00dev, RF2750) &&
3527 !rt2x00_rf(rt2x00dev, RF3020) &&
3528 !rt2x00_rf(rt2x00dev, RF2020) &&
3529 !rt2x00_rf(rt2x00dev, RF3021) &&
3530 !rt2x00_rf(rt2x00dev, RF3022) &&
3531 !rt2x00_rf(rt2x00dev, RF3052) &&
3532 !rt2x00_rf(rt2x00dev, RF3320) &&
3533 !rt2x00_rf(rt2x00dev, RF5390)) {
3534 ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
3535 return -ENODEV;
3536 }
3537
3538 /*
3539 * Identify default antenna configuration.
3540 */
3541 rt2x00dev->default_ant.tx_chain_num =
3542 rt2x00_get_field16(eeprom, EEPROM_NIC_CONF0_TXPATH);
3543 rt2x00dev->default_ant.rx_chain_num =
3544 rt2x00_get_field16(eeprom, EEPROM_NIC_CONF0_RXPATH);
3545
3546 rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC_CONF1, &eeprom);
3547
3548 if (rt2x00_rt(rt2x00dev, RT3070) ||
3549 rt2x00_rt(rt2x00dev, RT3090) ||
3550 rt2x00_rt(rt2x00dev, RT3390)) {
3551 value = rt2x00_get_field16(eeprom,
3552 EEPROM_NIC_CONF1_ANT_DIVERSITY);
3553 switch (value) {
3554 case 0:
3555 case 1:
3556 case 2:
3557 rt2x00dev->default_ant.tx = ANTENNA_A;
3558 rt2x00dev->default_ant.rx = ANTENNA_A;
3559 break;
3560 case 3:
3561 rt2x00dev->default_ant.tx = ANTENNA_A;
3562 rt2x00dev->default_ant.rx = ANTENNA_B;
3563 break;
3564 }
3565 } else {
3566 rt2x00dev->default_ant.tx = ANTENNA_A;
3567 rt2x00dev->default_ant.rx = ANTENNA_A;
3568 }
3569
3570 /*
3571 * Read frequency offset and RF programming sequence.
3572 */
3573 rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &eeprom);
3574 rt2x00dev->freq_offset = rt2x00_get_field16(eeprom, EEPROM_FREQ_OFFSET);
3575
3576 /*
3577 * Read external LNA informations.
3578 */
3579 rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC_CONF1, &eeprom);
3580
3581 if (rt2x00_get_field16(eeprom, EEPROM_NIC_CONF1_EXTERNAL_LNA_5G))
3582 __set_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags);
3583 if (rt2x00_get_field16(eeprom, EEPROM_NIC_CONF1_EXTERNAL_LNA_2G))
3584 __set_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags);
3585
3586 /*
3587 * Detect if this device has an hardware controlled radio.
3588 */
3589 if (rt2x00_get_field16(eeprom, EEPROM_NIC_CONF1_HW_RADIO))
3590 __set_bit(CONFIG_SUPPORT_HW_BUTTON, &rt2x00dev->flags);
3591
3592 /*
3593 * Store led settings, for correct led behaviour.
3594 */
3595 #ifdef CONFIG_RT2X00_LIB_LEDS
3596 rt2800_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
3597 rt2800_init_led(rt2x00dev, &rt2x00dev->led_assoc, LED_TYPE_ASSOC);
3598 rt2800_init_led(rt2x00dev, &rt2x00dev->led_qual, LED_TYPE_QUALITY);
3599
3600 rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &rt2x00dev->led_mcu_reg);
3601 #endif /* CONFIG_RT2X00_LIB_LEDS */
3602
3603 /*
3604 * Check if support EIRP tx power limit feature.
3605 */
3606 rt2x00_eeprom_read(rt2x00dev, EEPROM_EIRP_MAX_TX_POWER, &eeprom);
3607
3608 if (rt2x00_get_field16(eeprom, EEPROM_EIRP_MAX_TX_POWER_2GHZ) <
3609 EIRP_MAX_TX_POWER_LIMIT)
3610 __set_bit(CONFIG_SUPPORT_POWER_LIMIT, &rt2x00dev->flags);
3611
3612 return 0;
3613 }
3614 EXPORT_SYMBOL_GPL(rt2800_init_eeprom);
3615
3616 /*
3617 * RF value list for rt28xx
3618 * Supports: 2.4 GHz (all) & 5.2 GHz (RF2850 & RF2750)
3619 */
3620 static const struct rf_channel rf_vals[] = {
3621 { 1, 0x18402ecc, 0x184c0786, 0x1816b455, 0x1800510b },
3622 { 2, 0x18402ecc, 0x184c0786, 0x18168a55, 0x1800519f },
3623 { 3, 0x18402ecc, 0x184c078a, 0x18168a55, 0x1800518b },
3624 { 4, 0x18402ecc, 0x184c078a, 0x18168a55, 0x1800519f },
3625 { 5, 0x18402ecc, 0x184c078e, 0x18168a55, 0x1800518b },
3626 { 6, 0x18402ecc, 0x184c078e, 0x18168a55, 0x1800519f },
3627 { 7, 0x18402ecc, 0x184c0792, 0x18168a55, 0x1800518b },
3628 { 8, 0x18402ecc, 0x184c0792, 0x18168a55, 0x1800519f },
3629 { 9, 0x18402ecc, 0x184c0796, 0x18168a55, 0x1800518b },
3630 { 10, 0x18402ecc, 0x184c0796, 0x18168a55, 0x1800519f },
3631 { 11, 0x18402ecc, 0x184c079a, 0x18168a55, 0x1800518b },
3632 { 12, 0x18402ecc, 0x184c079a, 0x18168a55, 0x1800519f },
3633 { 13, 0x18402ecc, 0x184c079e, 0x18168a55, 0x1800518b },
3634 { 14, 0x18402ecc, 0x184c07a2, 0x18168a55, 0x18005193 },
3635
3636 /* 802.11 UNI / HyperLan 2 */
3637 { 36, 0x18402ecc, 0x184c099a, 0x18158a55, 0x180ed1a3 },
3638 { 38, 0x18402ecc, 0x184c099e, 0x18158a55, 0x180ed193 },
3639 { 40, 0x18402ec8, 0x184c0682, 0x18158a55, 0x180ed183 },
3640 { 44, 0x18402ec8, 0x184c0682, 0x18158a55, 0x180ed1a3 },
3641 { 46, 0x18402ec8, 0x184c0686, 0x18158a55, 0x180ed18b },
3642 { 48, 0x18402ec8, 0x184c0686, 0x18158a55, 0x180ed19b },
3643 { 52, 0x18402ec8, 0x184c068a, 0x18158a55, 0x180ed193 },
3644 { 54, 0x18402ec8, 0x184c068a, 0x18158a55, 0x180ed1a3 },
3645 { 56, 0x18402ec8, 0x184c068e, 0x18158a55, 0x180ed18b },
3646 { 60, 0x18402ec8, 0x184c0692, 0x18158a55, 0x180ed183 },
3647 { 62, 0x18402ec8, 0x184c0692, 0x18158a55, 0x180ed193 },
3648 { 64, 0x18402ec8, 0x184c0692, 0x18158a55, 0x180ed1a3 },
3649
3650 /* 802.11 HyperLan 2 */
3651 { 100, 0x18402ec8, 0x184c06b2, 0x18178a55, 0x180ed783 },
3652 { 102, 0x18402ec8, 0x184c06b2, 0x18578a55, 0x180ed793 },
3653 { 104, 0x18402ec8, 0x185c06b2, 0x18578a55, 0x180ed1a3 },
3654 { 108, 0x18402ecc, 0x185c0a32, 0x18578a55, 0x180ed193 },
3655 { 110, 0x18402ecc, 0x184c0a36, 0x18178a55, 0x180ed183 },
3656 { 112, 0x18402ecc, 0x184c0a36, 0x18178a55, 0x180ed19b },
3657 { 116, 0x18402ecc, 0x184c0a3a, 0x18178a55, 0x180ed1a3 },
3658 { 118, 0x18402ecc, 0x184c0a3e, 0x18178a55, 0x180ed193 },
3659 { 120, 0x18402ec4, 0x184c0382, 0x18178a55, 0x180ed183 },
3660 { 124, 0x18402ec4, 0x184c0382, 0x18178a55, 0x180ed193 },
3661 { 126, 0x18402ec4, 0x184c0382, 0x18178a55, 0x180ed15b },
3662 { 128, 0x18402ec4, 0x184c0382, 0x18178a55, 0x180ed1a3 },
3663 { 132, 0x18402ec4, 0x184c0386, 0x18178a55, 0x180ed18b },
3664 { 134, 0x18402ec4, 0x184c0386, 0x18178a55, 0x180ed193 },
3665 { 136, 0x18402ec4, 0x184c0386, 0x18178a55, 0x180ed19b },
3666 { 140, 0x18402ec4, 0x184c038a, 0x18178a55, 0x180ed183 },
3667
3668 /* 802.11 UNII */
3669 { 149, 0x18402ec4, 0x184c038a, 0x18178a55, 0x180ed1a7 },
3670 { 151, 0x18402ec4, 0x184c038e, 0x18178a55, 0x180ed187 },
3671 { 153, 0x18402ec4, 0x184c038e, 0x18178a55, 0x180ed18f },
3672 { 157, 0x18402ec4, 0x184c038e, 0x18178a55, 0x180ed19f },
3673 { 159, 0x18402ec4, 0x184c038e, 0x18178a55, 0x180ed1a7 },
3674 { 161, 0x18402ec4, 0x184c0392, 0x18178a55, 0x180ed187 },
3675 { 165, 0x18402ec4, 0x184c0392, 0x18178a55, 0x180ed197 },
3676 { 167, 0x18402ec4, 0x184c03d2, 0x18179855, 0x1815531f },
3677 { 169, 0x18402ec4, 0x184c03d2, 0x18179855, 0x18155327 },
3678 { 171, 0x18402ec4, 0x184c03d6, 0x18179855, 0x18155307 },
3679 { 173, 0x18402ec4, 0x184c03d6, 0x18179855, 0x1815530f },
3680
3681 /* 802.11 Japan */
3682 { 184, 0x15002ccc, 0x1500491e, 0x1509be55, 0x150c0a0b },
3683 { 188, 0x15002ccc, 0x15004922, 0x1509be55, 0x150c0a13 },
3684 { 192, 0x15002ccc, 0x15004926, 0x1509be55, 0x150c0a1b },
3685 { 196, 0x15002ccc, 0x1500492a, 0x1509be55, 0x150c0a23 },
3686 { 208, 0x15002ccc, 0x1500493a, 0x1509be55, 0x150c0a13 },
3687 { 212, 0x15002ccc, 0x1500493e, 0x1509be55, 0x150c0a1b },
3688 { 216, 0x15002ccc, 0x15004982, 0x1509be55, 0x150c0a23 },
3689 };
3690
3691 /*
3692 * RF value list for rt3xxx
3693 * Supports: 2.4 GHz (all) & 5.2 GHz (RF3052)
3694 */
3695 static const struct rf_channel rf_vals_3x[] = {
3696 {1, 241, 2, 2 },
3697 {2, 241, 2, 7 },
3698 {3, 242, 2, 2 },
3699 {4, 242, 2, 7 },
3700 {5, 243, 2, 2 },
3701 {6, 243, 2, 7 },
3702 {7, 244, 2, 2 },
3703 {8, 244, 2, 7 },
3704 {9, 245, 2, 2 },
3705 {10, 245, 2, 7 },
3706 {11, 246, 2, 2 },
3707 {12, 246, 2, 7 },
3708 {13, 247, 2, 2 },
3709 {14, 248, 2, 4 },
3710
3711 /* 802.11 UNI / HyperLan 2 */
3712 {36, 0x56, 0, 4},
3713 {38, 0x56, 0, 6},
3714 {40, 0x56, 0, 8},
3715 {44, 0x57, 0, 0},
3716 {46, 0x57, 0, 2},
3717 {48, 0x57, 0, 4},
3718 {52, 0x57, 0, 8},
3719 {54, 0x57, 0, 10},
3720 {56, 0x58, 0, 0},
3721 {60, 0x58, 0, 4},
3722 {62, 0x58, 0, 6},
3723 {64, 0x58, 0, 8},
3724
3725 /* 802.11 HyperLan 2 */
3726 {100, 0x5b, 0, 8},
3727 {102, 0x5b, 0, 10},
3728 {104, 0x5c, 0, 0},
3729 {108, 0x5c, 0, 4},
3730 {110, 0x5c, 0, 6},
3731 {112, 0x5c, 0, 8},
3732 {116, 0x5d, 0, 0},
3733 {118, 0x5d, 0, 2},
3734 {120, 0x5d, 0, 4},
3735 {124, 0x5d, 0, 8},
3736 {126, 0x5d, 0, 10},
3737 {128, 0x5e, 0, 0},
3738 {132, 0x5e, 0, 4},
3739 {134, 0x5e, 0, 6},
3740 {136, 0x5e, 0, 8},
3741 {140, 0x5f, 0, 0},
3742
3743 /* 802.11 UNII */
3744 {149, 0x5f, 0, 9},
3745 {151, 0x5f, 0, 11},
3746 {153, 0x60, 0, 1},
3747 {157, 0x60, 0, 5},
3748 {159, 0x60, 0, 7},
3749 {161, 0x60, 0, 9},
3750 {165, 0x61, 0, 1},
3751 {167, 0x61, 0, 3},
3752 {169, 0x61, 0, 5},
3753 {171, 0x61, 0, 7},
3754 {173, 0x61, 0, 9},
3755 };
3756
3757 int rt2800_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
3758 {
3759 struct hw_mode_spec *spec = &rt2x00dev->spec;
3760 struct channel_info *info;
3761 char *default_power1;
3762 char *default_power2;
3763 unsigned int i;
3764 u16 eeprom;
3765
3766 /*
3767 * Disable powersaving as default on PCI devices.
3768 */
3769 if (rt2x00_is_pci(rt2x00dev) || rt2x00_is_soc(rt2x00dev))
3770 rt2x00dev->hw->wiphy->flags &= ~WIPHY_FLAG_PS_ON_BY_DEFAULT;
3771
3772 /*
3773 * Initialize all hw fields.
3774 */
3775 rt2x00dev->hw->flags =
3776 IEEE80211_HW_SIGNAL_DBM |
3777 IEEE80211_HW_SUPPORTS_PS |
3778 IEEE80211_HW_PS_NULLFUNC_STACK |
3779 IEEE80211_HW_AMPDU_AGGREGATION;
3780 /*
3781 * Don't set IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING for USB devices
3782 * unless we are capable of sending the buffered frames out after the
3783 * DTIM transmission using rt2x00lib_beacondone. This will send out
3784 * multicast and broadcast traffic immediately instead of buffering it
3785 * infinitly and thus dropping it after some time.
3786 */
3787 if (!rt2x00_is_usb(rt2x00dev))
3788 rt2x00dev->hw->flags |=
3789 IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING;
3790
3791 SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
3792 SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
3793 rt2x00_eeprom_addr(rt2x00dev,
3794 EEPROM_MAC_ADDR_0));
3795
3796 /*
3797 * As rt2800 has a global fallback table we cannot specify
3798 * more then one tx rate per frame but since the hw will
3799 * try several rates (based on the fallback table) we should
3800 * initialize max_report_rates to the maximum number of rates
3801 * we are going to try. Otherwise mac80211 will truncate our
3802 * reported tx rates and the rc algortihm will end up with
3803 * incorrect data.
3804 */
3805 rt2x00dev->hw->max_rates = 1;
3806 rt2x00dev->hw->max_report_rates = 7;
3807 rt2x00dev->hw->max_rate_tries = 1;
3808
3809 rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC_CONF0, &eeprom);
3810
3811 /*
3812 * Initialize hw_mode information.
3813 */
3814 spec->supported_bands = SUPPORT_BAND_2GHZ;
3815 spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
3816
3817 if (rt2x00_rf(rt2x00dev, RF2820) ||
3818 rt2x00_rf(rt2x00dev, RF2720)) {
3819 spec->num_channels = 14;
3820 spec->channels = rf_vals;
3821 } else if (rt2x00_rf(rt2x00dev, RF2850) ||
3822 rt2x00_rf(rt2x00dev, RF2750)) {
3823 spec->supported_bands |= SUPPORT_BAND_5GHZ;
3824 spec->num_channels = ARRAY_SIZE(rf_vals);
3825 spec->channels = rf_vals;
3826 } else if (rt2x00_rf(rt2x00dev, RF3020) ||
3827 rt2x00_rf(rt2x00dev, RF2020) ||
3828 rt2x00_rf(rt2x00dev, RF3021) ||
3829 rt2x00_rf(rt2x00dev, RF3022) ||
3830 rt2x00_rf(rt2x00dev, RF3320) ||
3831 rt2x00_rf(rt2x00dev, RF5390)) {
3832 spec->num_channels = 14;
3833 spec->channels = rf_vals_3x;
3834 } else if (rt2x00_rf(rt2x00dev, RF3052)) {
3835 spec->supported_bands |= SUPPORT_BAND_5GHZ;
3836 spec->num_channels = ARRAY_SIZE(rf_vals_3x);
3837 spec->channels = rf_vals_3x;
3838 }
3839
3840 /*
3841 * Initialize HT information.
3842 */
3843 if (!rt2x00_rf(rt2x00dev, RF2020))
3844 spec->ht.ht_supported = true;
3845 else
3846 spec->ht.ht_supported = false;
3847
3848 spec->ht.cap =
3849 IEEE80211_HT_CAP_SUP_WIDTH_20_40 |
3850 IEEE80211_HT_CAP_GRN_FLD |
3851 IEEE80211_HT_CAP_SGI_20 |
3852 IEEE80211_HT_CAP_SGI_40;
3853
3854 if (rt2x00_get_field16(eeprom, EEPROM_NIC_CONF0_TXPATH) >= 2)
3855 spec->ht.cap |= IEEE80211_HT_CAP_TX_STBC;
3856
3857 spec->ht.cap |=
3858 rt2x00_get_field16(eeprom, EEPROM_NIC_CONF0_RXPATH) <<
3859 IEEE80211_HT_CAP_RX_STBC_SHIFT;
3860
3861 spec->ht.ampdu_factor = 3;
3862 spec->ht.ampdu_density = 4;
3863 spec->ht.mcs.tx_params =
3864 IEEE80211_HT_MCS_TX_DEFINED |
3865 IEEE80211_HT_MCS_TX_RX_DIFF |
3866 ((rt2x00_get_field16(eeprom, EEPROM_NIC_CONF0_TXPATH) - 1) <<
3867 IEEE80211_HT_MCS_TX_MAX_STREAMS_SHIFT);
3868
3869 switch (rt2x00_get_field16(eeprom, EEPROM_NIC_CONF0_RXPATH)) {
3870 case 3:
3871 spec->ht.mcs.rx_mask[2] = 0xff;
3872 case 2:
3873 spec->ht.mcs.rx_mask[1] = 0xff;
3874 case 1:
3875 spec->ht.mcs.rx_mask[0] = 0xff;
3876 spec->ht.mcs.rx_mask[4] = 0x1; /* MCS32 */
3877 break;
3878 }
3879
3880 /*
3881 * Create channel information array
3882 */
3883 info = kcalloc(spec->num_channels, sizeof(*info), GFP_KERNEL);
3884 if (!info)
3885 return -ENOMEM;
3886
3887 spec->channels_info = info;
3888
3889 default_power1 = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_BG1);
3890 default_power2 = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_BG2);
3891
3892 for (i = 0; i < 14; i++) {
3893 info[i].default_power1 = default_power1[i];
3894 info[i].default_power2 = default_power2[i];
3895 }
3896
3897 if (spec->num_channels > 14) {
3898 default_power1 = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_A1);
3899 default_power2 = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_A2);
3900
3901 for (i = 14; i < spec->num_channels; i++) {
3902 info[i].default_power1 = default_power1[i];
3903 info[i].default_power2 = default_power2[i];
3904 }
3905 }
3906
3907 return 0;
3908 }
3909 EXPORT_SYMBOL_GPL(rt2800_probe_hw_mode);
3910
3911 /*
3912 * IEEE80211 stack callback functions.
3913 */
3914 void rt2800_get_tkip_seq(struct ieee80211_hw *hw, u8 hw_key_idx, u32 *iv32,
3915 u16 *iv16)
3916 {
3917 struct rt2x00_dev *rt2x00dev = hw->priv;
3918 struct mac_iveiv_entry iveiv_entry;
3919 u32 offset;
3920
3921 offset = MAC_IVEIV_ENTRY(hw_key_idx);
3922 rt2800_register_multiread(rt2x00dev, offset,
3923 &iveiv_entry, sizeof(iveiv_entry));
3924
3925 memcpy(iv16, &iveiv_entry.iv[0], sizeof(*iv16));
3926 memcpy(iv32, &iveiv_entry.iv[4], sizeof(*iv32));
3927 }
3928 EXPORT_SYMBOL_GPL(rt2800_get_tkip_seq);
3929
3930 int rt2800_set_rts_threshold(struct ieee80211_hw *hw, u32 value)
3931 {
3932 struct rt2x00_dev *rt2x00dev = hw->priv;
3933 u32 reg;
3934 bool enabled = (value < IEEE80211_MAX_RTS_THRESHOLD);
3935
3936 rt2800_register_read(rt2x00dev, TX_RTS_CFG, &reg);
3937 rt2x00_set_field32(&reg, TX_RTS_CFG_RTS_THRES, value);
3938 rt2800_register_write(rt2x00dev, TX_RTS_CFG, reg);
3939
3940 rt2800_register_read(rt2x00dev, CCK_PROT_CFG, &reg);
3941 rt2x00_set_field32(&reg, CCK_PROT_CFG_RTS_TH_EN, enabled);
3942 rt2800_register_write(rt2x00dev, CCK_PROT_CFG, reg);
3943
3944 rt2800_register_read(rt2x00dev, OFDM_PROT_CFG, &reg);
3945 rt2x00_set_field32(&reg, OFDM_PROT_CFG_RTS_TH_EN, enabled);
3946 rt2800_register_write(rt2x00dev, OFDM_PROT_CFG, reg);
3947
3948 rt2800_register_read(rt2x00dev, MM20_PROT_CFG, &reg);
3949 rt2x00_set_field32(&reg, MM20_PROT_CFG_RTS_TH_EN, enabled);
3950 rt2800_register_write(rt2x00dev, MM20_PROT_CFG, reg);
3951
3952 rt2800_register_read(rt2x00dev, MM40_PROT_CFG, &reg);
3953 rt2x00_set_field32(&reg, MM40_PROT_CFG_RTS_TH_EN, enabled);
3954 rt2800_register_write(rt2x00dev, MM40_PROT_CFG, reg);
3955
3956 rt2800_register_read(rt2x00dev, GF20_PROT_CFG, &reg);
3957 rt2x00_set_field32(&reg, GF20_PROT_CFG_RTS_TH_EN, enabled);
3958 rt2800_register_write(rt2x00dev, GF20_PROT_CFG, reg);
3959
3960 rt2800_register_read(rt2x00dev, GF40_PROT_CFG, &reg);
3961 rt2x00_set_field32(&reg, GF40_PROT_CFG_RTS_TH_EN, enabled);
3962 rt2800_register_write(rt2x00dev, GF40_PROT_CFG, reg);
3963
3964 return 0;
3965 }
3966 EXPORT_SYMBOL_GPL(rt2800_set_rts_threshold);
3967
3968 int rt2800_conf_tx(struct ieee80211_hw *hw, u16 queue_idx,
3969 const struct ieee80211_tx_queue_params *params)
3970 {
3971 struct rt2x00_dev *rt2x00dev = hw->priv;
3972 struct data_queue *queue;
3973 struct rt2x00_field32 field;
3974 int retval;
3975 u32 reg;
3976 u32 offset;
3977
3978 /*
3979 * First pass the configuration through rt2x00lib, that will
3980 * update the queue settings and validate the input. After that
3981 * we are free to update the registers based on the value
3982 * in the queue parameter.
3983 */
3984 retval = rt2x00mac_conf_tx(hw, queue_idx, params);
3985 if (retval)
3986 return retval;
3987
3988 /*
3989 * We only need to perform additional register initialization
3990 * for WMM queues/
3991 */
3992 if (queue_idx >= 4)
3993 return 0;
3994
3995 queue = rt2x00queue_get_tx_queue(rt2x00dev, queue_idx);
3996
3997 /* Update WMM TXOP register */
3998 offset = WMM_TXOP0_CFG + (sizeof(u32) * (!!(queue_idx & 2)));
3999 field.bit_offset = (queue_idx & 1) * 16;
4000 field.bit_mask = 0xffff << field.bit_offset;
4001
4002 rt2800_register_read(rt2x00dev, offset, &reg);
4003 rt2x00_set_field32(&reg, field, queue->txop);
4004 rt2800_register_write(rt2x00dev, offset, reg);
4005
4006 /* Update WMM registers */
4007 field.bit_offset = queue_idx * 4;
4008 field.bit_mask = 0xf << field.bit_offset;
4009
4010 rt2800_register_read(rt2x00dev, WMM_AIFSN_CFG, &reg);
4011 rt2x00_set_field32(&reg, field, queue->aifs);
4012 rt2800_register_write(rt2x00dev, WMM_AIFSN_CFG, reg);
4013
4014 rt2800_register_read(rt2x00dev, WMM_CWMIN_CFG, &reg);
4015 rt2x00_set_field32(&reg, field, queue->cw_min);
4016 rt2800_register_write(rt2x00dev, WMM_CWMIN_CFG, reg);
4017
4018 rt2800_register_read(rt2x00dev, WMM_CWMAX_CFG, &reg);
4019 rt2x00_set_field32(&reg, field, queue->cw_max);
4020 rt2800_register_write(rt2x00dev, WMM_CWMAX_CFG, reg);
4021
4022 /* Update EDCA registers */
4023 offset = EDCA_AC0_CFG + (sizeof(u32) * queue_idx);
4024
4025 rt2800_register_read(rt2x00dev, offset, &reg);
4026 rt2x00_set_field32(&reg, EDCA_AC0_CFG_TX_OP, queue->txop);
4027 rt2x00_set_field32(&reg, EDCA_AC0_CFG_AIFSN, queue->aifs);
4028 rt2x00_set_field32(&reg, EDCA_AC0_CFG_CWMIN, queue->cw_min);
4029 rt2x00_set_field32(&reg, EDCA_AC0_CFG_CWMAX, queue->cw_max);
4030 rt2800_register_write(rt2x00dev, offset, reg);
4031
4032 return 0;
4033 }
4034 EXPORT_SYMBOL_GPL(rt2800_conf_tx);
4035
4036 u64 rt2800_get_tsf(struct ieee80211_hw *hw)
4037 {
4038 struct rt2x00_dev *rt2x00dev = hw->priv;
4039 u64 tsf;
4040 u32 reg;
4041
4042 rt2800_register_read(rt2x00dev, TSF_TIMER_DW1, &reg);
4043 tsf = (u64) rt2x00_get_field32(reg, TSF_TIMER_DW1_HIGH_WORD) << 32;
4044 rt2800_register_read(rt2x00dev, TSF_TIMER_DW0, &reg);
4045 tsf |= rt2x00_get_field32(reg, TSF_TIMER_DW0_LOW_WORD);
4046
4047 return tsf;
4048 }
4049 EXPORT_SYMBOL_GPL(rt2800_get_tsf);
4050
4051 int rt2800_ampdu_action(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
4052 enum ieee80211_ampdu_mlme_action action,
4053 struct ieee80211_sta *sta, u16 tid, u16 *ssn,
4054 u8 buf_size)
4055 {
4056 int ret = 0;
4057
4058 switch (action) {
4059 case IEEE80211_AMPDU_RX_START:
4060 case IEEE80211_AMPDU_RX_STOP:
4061 /*
4062 * The hw itself takes care of setting up BlockAck mechanisms.
4063 * So, we only have to allow mac80211 to nagotiate a BlockAck
4064 * agreement. Once that is done, the hw will BlockAck incoming
4065 * AMPDUs without further setup.
4066 */
4067 break;
4068 case IEEE80211_AMPDU_TX_START:
4069 ieee80211_start_tx_ba_cb_irqsafe(vif, sta->addr, tid);
4070 break;
4071 case IEEE80211_AMPDU_TX_STOP:
4072 ieee80211_stop_tx_ba_cb_irqsafe(vif, sta->addr, tid);
4073 break;
4074 case IEEE80211_AMPDU_TX_OPERATIONAL:
4075 break;
4076 default:
4077 WARNING((struct rt2x00_dev *)hw->priv, "Unknown AMPDU action\n");
4078 }
4079
4080 return ret;
4081 }
4082 EXPORT_SYMBOL_GPL(rt2800_ampdu_action);
4083
4084 int rt2800_get_survey(struct ieee80211_hw *hw, int idx,
4085 struct survey_info *survey)
4086 {
4087 struct rt2x00_dev *rt2x00dev = hw->priv;
4088 struct ieee80211_conf *conf = &hw->conf;
4089 u32 idle, busy, busy_ext;
4090
4091 if (idx != 0)
4092 return -ENOENT;
4093
4094 survey->channel = conf->channel;
4095
4096 rt2800_register_read(rt2x00dev, CH_IDLE_STA, &idle);
4097 rt2800_register_read(rt2x00dev, CH_BUSY_STA, &busy);
4098 rt2800_register_read(rt2x00dev, CH_BUSY_STA_SEC, &busy_ext);
4099
4100 if (idle || busy) {
4101 survey->filled = SURVEY_INFO_CHANNEL_TIME |
4102 SURVEY_INFO_CHANNEL_TIME_BUSY |
4103 SURVEY_INFO_CHANNEL_TIME_EXT_BUSY;
4104
4105 survey->channel_time = (idle + busy) / 1000;
4106 survey->channel_time_busy = busy / 1000;
4107 survey->channel_time_ext_busy = busy_ext / 1000;
4108 }
4109
4110 return 0;
4111
4112 }
4113 EXPORT_SYMBOL_GPL(rt2800_get_survey);
4114
4115 MODULE_AUTHOR(DRV_PROJECT ", Bartlomiej Zolnierkiewicz");
4116 MODULE_VERSION(DRV_VERSION);
4117 MODULE_DESCRIPTION("Ralink RT2800 library");
4118 MODULE_LICENSE("GPL");