08ad6e41a1cc22ffd210ef1c83e66214fcbc1a97
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / net / wireless / iwlwifi / iwl-eeprom.c
1 /******************************************************************************
2 *
3 * This file is provided under a dual BSD/GPLv2 license. When using or
4 * redistributing this file, you may do so under either license.
5 *
6 * GPL LICENSE SUMMARY
7 *
8 * Copyright(c) 2008 - 2009 Intel Corporation. All rights reserved.
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of version 2 of the GNU General Public License as
12 * published by the Free Software Foundation.
13 *
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110,
22 * USA
23 *
24 * The full GNU General Public License is included in this distribution
25 * in the file called LICENSE.GPL.
26 *
27 * Contact Information:
28 * Intel Linux Wireless <ilw@linux.intel.com>
29 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
30 *
31 * BSD LICENSE
32 *
33 * Copyright(c) 2005 - 2009 Intel Corporation. All rights reserved.
34 * All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 *
40 * * Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * * Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in
44 * the documentation and/or other materials provided with the
45 * distribution.
46 * * Neither the name Intel Corporation nor the names of its
47 * contributors may be used to endorse or promote products derived
48 * from this software without specific prior written permission.
49 *
50 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
51 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
52 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
53 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
54 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
55 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
56 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
57 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
58 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
59 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
60 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
61 *****************************************************************************/
62
63
64 #include <linux/kernel.h>
65 #include <linux/module.h>
66 #include <linux/init.h>
67
68 #include <net/mac80211.h>
69
70 #include "iwl-commands.h"
71 #include "iwl-dev.h"
72 #include "iwl-core.h"
73 #include "iwl-debug.h"
74 #include "iwl-eeprom.h"
75 #include "iwl-io.h"
76
77 /************************** EEPROM BANDS ****************************
78 *
79 * The iwl_eeprom_band definitions below provide the mapping from the
80 * EEPROM contents to the specific channel number supported for each
81 * band.
82 *
83 * For example, iwl_priv->eeprom.band_3_channels[4] from the band_3
84 * definition below maps to physical channel 42 in the 5.2GHz spectrum.
85 * The specific geography and calibration information for that channel
86 * is contained in the eeprom map itself.
87 *
88 * During init, we copy the eeprom information and channel map
89 * information into priv->channel_info_24/52 and priv->channel_map_24/52
90 *
91 * channel_map_24/52 provides the index in the channel_info array for a
92 * given channel. We have to have two separate maps as there is channel
93 * overlap with the 2.4GHz and 5.2GHz spectrum as seen in band_1 and
94 * band_2
95 *
96 * A value of 0xff stored in the channel_map indicates that the channel
97 * is not supported by the hardware at all.
98 *
99 * A value of 0xfe in the channel_map indicates that the channel is not
100 * valid for Tx with the current hardware. This means that
101 * while the system can tune and receive on a given channel, it may not
102 * be able to associate or transmit any frames on that
103 * channel. There is no corresponding channel information for that
104 * entry.
105 *
106 *********************************************************************/
107
108 /* 2.4 GHz */
109 const u8 iwl_eeprom_band_1[14] = {
110 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14
111 };
112
113 /* 5.2 GHz bands */
114 static const u8 iwl_eeprom_band_2[] = { /* 4915-5080MHz */
115 183, 184, 185, 187, 188, 189, 192, 196, 7, 8, 11, 12, 16
116 };
117
118 static const u8 iwl_eeprom_band_3[] = { /* 5170-5320MHz */
119 34, 36, 38, 40, 42, 44, 46, 48, 52, 56, 60, 64
120 };
121
122 static const u8 iwl_eeprom_band_4[] = { /* 5500-5700MHz */
123 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140
124 };
125
126 static const u8 iwl_eeprom_band_5[] = { /* 5725-5825MHz */
127 145, 149, 153, 157, 161, 165
128 };
129
130 static const u8 iwl_eeprom_band_6[] = { /* 2.4 ht40 channel */
131 1, 2, 3, 4, 5, 6, 7
132 };
133
134 static const u8 iwl_eeprom_band_7[] = { /* 5.2 ht40 channel */
135 36, 44, 52, 60, 100, 108, 116, 124, 132, 149, 157
136 };
137
138 /**
139 * struct iwl_txpwr_section: eeprom section information
140 * @offset: indirect address into eeprom image
141 * @count: number of "struct iwl_eeprom_enhanced_txpwr" in this section
142 * @band: band type for the section
143 * @is_common - true: common section, false: channel section
144 * @is_cck - true: cck section, false: not cck section
145 * @is_ht_40 - true: all channel in the section are HT40 channel,
146 * false: legacy or HT 20 MHz
147 * ignore if it is common section
148 * @iwl_eeprom_section_channel: channel array in the section,
149 * ignore if common section
150 */
151 struct iwl_txpwr_section {
152 u32 offset;
153 u8 count;
154 enum ieee80211_band band;
155 bool is_common;
156 bool is_cck;
157 bool is_ht40;
158 u8 iwl_eeprom_section_channel[EEPROM_MAX_TXPOWER_SECTION_ELEMENTS];
159 };
160
161 /**
162 * section 1 - 3 are regulatory tx power apply to all channels based on
163 * modulation: CCK, OFDM
164 * Band: 2.4GHz, 5.2GHz
165 * section 4 - 10 are regulatory tx power apply to specified channels
166 * For example:
167 * 1L - Channel 1 Legacy
168 * 1HT - Channel 1 HT
169 * (1,+1) - Channel 1 HT40 "_above_"
170 *
171 * Section 1: all CCK channels
172 * Section 2: all 2.4 GHz OFDM (Legacy, HT and HT40) channels
173 * Section 3: all 5.2 GHz OFDM (Legacy, HT and HT40) channels
174 * Section 4: 2.4 GHz 20MHz channels: 1L, 1HT, 2L, 2HT, 10L, 10HT, 11L, 11HT
175 * Section 5: 2.4 GHz 40MHz channels: (1,+1) (2,+1) (6,+1) (7,+1) (9,+1)
176 * Section 6: 5.2 GHz 20MHz channels: 36L, 64L, 100L, 36HT, 64HT, 100HT
177 * Section 7: 5.2 GHz 40MHz channels: (36,+1) (60,+1) (100,+1)
178 * Section 8: 2.4 GHz channel: 13L, 13HT
179 * Section 9: 2.4 GHz channel: 140L, 140HT
180 * Section 10: 2.4 GHz 40MHz channels: (132,+1) (44,+1)
181 *
182 */
183 static const struct iwl_txpwr_section enhinfo[] = {
184 { EEPROM_LB_CCK_20_COMMON, 1, IEEE80211_BAND_2GHZ, true, true, false },
185 { EEPROM_LB_OFDM_COMMON, 3, IEEE80211_BAND_2GHZ, true, false, false },
186 { EEPROM_HB_OFDM_COMMON, 3, IEEE80211_BAND_5GHZ, true, false, false },
187 { EEPROM_LB_OFDM_20_BAND, 8, IEEE80211_BAND_2GHZ,
188 false, false, false,
189 {1, 1, 2, 2, 10, 10, 11, 11 } },
190 { EEPROM_LB_OFDM_HT40_BAND, 5, IEEE80211_BAND_2GHZ,
191 false, false, true,
192 { 1, 2, 6, 7, 9 } },
193 { EEPROM_HB_OFDM_20_BAND, 6, IEEE80211_BAND_5GHZ,
194 false, false, false,
195 { 36, 64, 100, 36, 64, 100 } },
196 { EEPROM_HB_OFDM_HT40_BAND, 3, IEEE80211_BAND_5GHZ,
197 false, false, true,
198 { 36, 60, 100 } },
199 { EEPROM_LB_OFDM_20_CHANNEL_13, 2, IEEE80211_BAND_2GHZ,
200 false, false, false,
201 { 13, 13 } },
202 { EEPROM_HB_OFDM_20_CHANNEL_140, 2, IEEE80211_BAND_5GHZ,
203 false, false, false,
204 { 140, 140 } },
205 { EEPROM_HB_OFDM_HT40_BAND_1, 2, IEEE80211_BAND_5GHZ,
206 false, false, true,
207 { 132, 44 } },
208 };
209
210 /******************************************************************************
211 *
212 * EEPROM related functions
213 *
214 ******************************************************************************/
215
216 int iwlcore_eeprom_verify_signature(struct iwl_priv *priv)
217 {
218 u32 gp = iwl_read32(priv, CSR_EEPROM_GP) & CSR_EEPROM_GP_VALID_MSK;
219 int ret = 0;
220
221 IWL_DEBUG_INFO(priv, "EEPROM signature=0x%08x\n", gp);
222 switch (gp) {
223 case CSR_EEPROM_GP_BAD_SIG_EEP_GOOD_SIG_OTP:
224 if (priv->nvm_device_type != NVM_DEVICE_TYPE_OTP) {
225 IWL_ERR(priv, "EEPROM with bad signature: 0x%08x\n",
226 gp);
227 ret = -ENOENT;
228 }
229 break;
230 case CSR_EEPROM_GP_GOOD_SIG_EEP_LESS_THAN_4K:
231 case CSR_EEPROM_GP_GOOD_SIG_EEP_MORE_THAN_4K:
232 if (priv->nvm_device_type != NVM_DEVICE_TYPE_EEPROM) {
233 IWL_ERR(priv, "OTP with bad signature: 0x%08x\n", gp);
234 ret = -ENOENT;
235 }
236 break;
237 case CSR_EEPROM_GP_BAD_SIGNATURE_BOTH_EEP_AND_OTP:
238 default:
239 IWL_ERR(priv, "bad EEPROM/OTP signature, type=%s, "
240 "EEPROM_GP=0x%08x\n",
241 (priv->nvm_device_type == NVM_DEVICE_TYPE_OTP)
242 ? "OTP" : "EEPROM", gp);
243 ret = -ENOENT;
244 break;
245 }
246 return ret;
247 }
248 EXPORT_SYMBOL(iwlcore_eeprom_verify_signature);
249
250 static void iwl_set_otp_access(struct iwl_priv *priv, enum iwl_access_mode mode)
251 {
252 u32 otpgp;
253
254 otpgp = iwl_read32(priv, CSR_OTP_GP_REG);
255 if (mode == IWL_OTP_ACCESS_ABSOLUTE)
256 iwl_clear_bit(priv, CSR_OTP_GP_REG,
257 CSR_OTP_GP_REG_OTP_ACCESS_MODE);
258 else
259 iwl_set_bit(priv, CSR_OTP_GP_REG,
260 CSR_OTP_GP_REG_OTP_ACCESS_MODE);
261 }
262
263 static int iwlcore_get_nvm_type(struct iwl_priv *priv)
264 {
265 u32 otpgp;
266 int nvm_type;
267
268 /* OTP only valid for CP/PP and after */
269 switch (priv->hw_rev & CSR_HW_REV_TYPE_MSK) {
270 case CSR_HW_REV_TYPE_NONE:
271 IWL_ERR(priv, "Unknown hardware type\n");
272 return -ENOENT;
273 case CSR_HW_REV_TYPE_3945:
274 case CSR_HW_REV_TYPE_4965:
275 case CSR_HW_REV_TYPE_5300:
276 case CSR_HW_REV_TYPE_5350:
277 case CSR_HW_REV_TYPE_5100:
278 case CSR_HW_REV_TYPE_5150:
279 nvm_type = NVM_DEVICE_TYPE_EEPROM;
280 break;
281 default:
282 otpgp = iwl_read32(priv, CSR_OTP_GP_REG);
283 if (otpgp & CSR_OTP_GP_REG_DEVICE_SELECT)
284 nvm_type = NVM_DEVICE_TYPE_OTP;
285 else
286 nvm_type = NVM_DEVICE_TYPE_EEPROM;
287 break;
288 }
289 return nvm_type;
290 }
291
292 /*
293 * The device's EEPROM semaphore prevents conflicts between driver and uCode
294 * when accessing the EEPROM; each access is a series of pulses to/from the
295 * EEPROM chip, not a single event, so even reads could conflict if they
296 * weren't arbitrated by the semaphore.
297 */
298 int iwlcore_eeprom_acquire_semaphore(struct iwl_priv *priv)
299 {
300 u16 count;
301 int ret;
302
303 for (count = 0; count < EEPROM_SEM_RETRY_LIMIT; count++) {
304 /* Request semaphore */
305 iwl_set_bit(priv, CSR_HW_IF_CONFIG_REG,
306 CSR_HW_IF_CONFIG_REG_BIT_EEPROM_OWN_SEM);
307
308 /* See if we got it */
309 ret = iwl_poll_bit(priv, CSR_HW_IF_CONFIG_REG,
310 CSR_HW_IF_CONFIG_REG_BIT_EEPROM_OWN_SEM,
311 CSR_HW_IF_CONFIG_REG_BIT_EEPROM_OWN_SEM,
312 EEPROM_SEM_TIMEOUT);
313 if (ret >= 0) {
314 IWL_DEBUG_IO(priv, "Acquired semaphore after %d tries.\n",
315 count+1);
316 return ret;
317 }
318 }
319
320 return ret;
321 }
322 EXPORT_SYMBOL(iwlcore_eeprom_acquire_semaphore);
323
324 void iwlcore_eeprom_release_semaphore(struct iwl_priv *priv)
325 {
326 iwl_clear_bit(priv, CSR_HW_IF_CONFIG_REG,
327 CSR_HW_IF_CONFIG_REG_BIT_EEPROM_OWN_SEM);
328
329 }
330 EXPORT_SYMBOL(iwlcore_eeprom_release_semaphore);
331
332 const u8 *iwlcore_eeprom_query_addr(const struct iwl_priv *priv, size_t offset)
333 {
334 BUG_ON(offset >= priv->cfg->eeprom_size);
335 return &priv->eeprom[offset];
336 }
337 EXPORT_SYMBOL(iwlcore_eeprom_query_addr);
338
339 static int iwl_init_otp_access(struct iwl_priv *priv)
340 {
341 int ret;
342
343 /* Enable 40MHz radio clock */
344 _iwl_write32(priv, CSR_GP_CNTRL,
345 _iwl_read32(priv, CSR_GP_CNTRL) |
346 CSR_GP_CNTRL_REG_FLAG_INIT_DONE);
347
348 /* wait for clock to be ready */
349 ret = iwl_poll_bit(priv, CSR_GP_CNTRL,
350 CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY,
351 CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY,
352 25000);
353 if (ret < 0)
354 IWL_ERR(priv, "Time out access OTP\n");
355 else {
356 iwl_set_bits_prph(priv, APMG_PS_CTRL_REG,
357 APMG_PS_CTRL_VAL_RESET_REQ);
358 udelay(5);
359 iwl_clear_bits_prph(priv, APMG_PS_CTRL_REG,
360 APMG_PS_CTRL_VAL_RESET_REQ);
361
362 /*
363 * CSR auto clock gate disable bit -
364 * this is only applicable for HW with OTP shadow RAM
365 */
366 if (priv->cfg->shadow_ram_support)
367 iwl_set_bit(priv, CSR_DBG_LINK_PWR_MGMT_REG,
368 CSR_RESET_LINK_PWR_MGMT_DISABLED);
369 }
370 return ret;
371 }
372
373 static int iwl_read_otp_word(struct iwl_priv *priv, u16 addr, __le16 *eeprom_data)
374 {
375 int ret = 0;
376 u32 r;
377 u32 otpgp;
378
379 _iwl_write32(priv, CSR_EEPROM_REG,
380 CSR_EEPROM_REG_MSK_ADDR & (addr << 1));
381 ret = iwl_poll_bit(priv, CSR_EEPROM_REG,
382 CSR_EEPROM_REG_READ_VALID_MSK,
383 CSR_EEPROM_REG_READ_VALID_MSK,
384 IWL_EEPROM_ACCESS_TIMEOUT);
385 if (ret < 0) {
386 IWL_ERR(priv, "Time out reading OTP[%d]\n", addr);
387 return ret;
388 }
389 r = _iwl_read_direct32(priv, CSR_EEPROM_REG);
390 /* check for ECC errors: */
391 otpgp = iwl_read32(priv, CSR_OTP_GP_REG);
392 if (otpgp & CSR_OTP_GP_REG_ECC_UNCORR_STATUS_MSK) {
393 /* stop in this case */
394 /* set the uncorrectable OTP ECC bit for acknowledgement */
395 iwl_set_bit(priv, CSR_OTP_GP_REG,
396 CSR_OTP_GP_REG_ECC_UNCORR_STATUS_MSK);
397 IWL_ERR(priv, "Uncorrectable OTP ECC error, abort OTP read\n");
398 return -EINVAL;
399 }
400 if (otpgp & CSR_OTP_GP_REG_ECC_CORR_STATUS_MSK) {
401 /* continue in this case */
402 /* set the correctable OTP ECC bit for acknowledgement */
403 iwl_set_bit(priv, CSR_OTP_GP_REG,
404 CSR_OTP_GP_REG_ECC_CORR_STATUS_MSK);
405 IWL_ERR(priv, "Correctable OTP ECC error, continue read\n");
406 }
407 *eeprom_data = cpu_to_le16(r >> 16);
408 return 0;
409 }
410
411 /*
412 * iwl_is_otp_empty: check for empty OTP
413 */
414 static bool iwl_is_otp_empty(struct iwl_priv *priv)
415 {
416 u16 next_link_addr = 0;
417 __le16 link_value;
418 bool is_empty = false;
419
420 /* locate the beginning of OTP link list */
421 if (!iwl_read_otp_word(priv, next_link_addr, &link_value)) {
422 if (!link_value) {
423 IWL_ERR(priv, "OTP is empty\n");
424 is_empty = true;
425 }
426 } else {
427 IWL_ERR(priv, "Unable to read first block of OTP list.\n");
428 is_empty = true;
429 }
430
431 return is_empty;
432 }
433
434
435 /*
436 * iwl_find_otp_image: find EEPROM image in OTP
437 * finding the OTP block that contains the EEPROM image.
438 * the last valid block on the link list (the block _before_ the last block)
439 * is the block we should read and used to configure the device.
440 * If all the available OTP blocks are full, the last block will be the block
441 * we should read and used to configure the device.
442 * only perform this operation if shadow RAM is disabled
443 */
444 static int iwl_find_otp_image(struct iwl_priv *priv,
445 u16 *validblockaddr)
446 {
447 u16 next_link_addr = 0, valid_addr;
448 __le16 link_value = 0;
449 int usedblocks = 0;
450
451 /* set addressing mode to absolute to traverse the link list */
452 iwl_set_otp_access(priv, IWL_OTP_ACCESS_ABSOLUTE);
453
454 /* checking for empty OTP or error */
455 if (iwl_is_otp_empty(priv))
456 return -EINVAL;
457
458 /*
459 * start traverse link list
460 * until reach the max number of OTP blocks
461 * different devices have different number of OTP blocks
462 */
463 do {
464 /* save current valid block address
465 * check for more block on the link list
466 */
467 valid_addr = next_link_addr;
468 next_link_addr = le16_to_cpu(link_value) * sizeof(u16);
469 IWL_DEBUG_INFO(priv, "OTP blocks %d addr 0x%x\n",
470 usedblocks, next_link_addr);
471 if (iwl_read_otp_word(priv, next_link_addr, &link_value))
472 return -EINVAL;
473 if (!link_value) {
474 /*
475 * reach the end of link list, return success and
476 * set address point to the starting address
477 * of the image
478 */
479 *validblockaddr = valid_addr;
480 /* skip first 2 bytes (link list pointer) */
481 *validblockaddr += 2;
482 return 0;
483 }
484 /* more in the link list, continue */
485 usedblocks++;
486 } while (usedblocks <= priv->cfg->max_ll_items);
487
488 /* OTP has no valid blocks */
489 IWL_DEBUG_INFO(priv, "OTP has no valid blocks\n");
490 return -EINVAL;
491 }
492
493 /**
494 * iwl_eeprom_init - read EEPROM contents
495 *
496 * Load the EEPROM contents from adapter into priv->eeprom
497 *
498 * NOTE: This routine uses the non-debug IO access functions.
499 */
500 int iwl_eeprom_init(struct iwl_priv *priv)
501 {
502 __le16 *e;
503 u32 gp = iwl_read32(priv, CSR_EEPROM_GP);
504 int sz;
505 int ret;
506 u16 addr;
507 u16 validblockaddr = 0;
508 u16 cache_addr = 0;
509
510 priv->nvm_device_type = iwlcore_get_nvm_type(priv);
511 if (priv->nvm_device_type == -ENOENT)
512 return -ENOENT;
513 /* allocate eeprom */
514 IWL_DEBUG_INFO(priv, "NVM size = %d\n", priv->cfg->eeprom_size);
515 sz = priv->cfg->eeprom_size;
516 priv->eeprom = kzalloc(sz, GFP_KERNEL);
517 if (!priv->eeprom) {
518 ret = -ENOMEM;
519 goto alloc_err;
520 }
521 e = (__le16 *)priv->eeprom;
522
523 priv->cfg->ops->lib->apm_ops.init(priv);
524
525 ret = priv->cfg->ops->lib->eeprom_ops.verify_signature(priv);
526 if (ret < 0) {
527 IWL_ERR(priv, "EEPROM not found, EEPROM_GP=0x%08x\n", gp);
528 ret = -ENOENT;
529 goto err;
530 }
531
532 /* Make sure driver (instead of uCode) is allowed to read EEPROM */
533 ret = priv->cfg->ops->lib->eeprom_ops.acquire_semaphore(priv);
534 if (ret < 0) {
535 IWL_ERR(priv, "Failed to acquire EEPROM semaphore.\n");
536 ret = -ENOENT;
537 goto err;
538 }
539
540 if (priv->nvm_device_type == NVM_DEVICE_TYPE_OTP) {
541
542 ret = iwl_init_otp_access(priv);
543 if (ret) {
544 IWL_ERR(priv, "Failed to initialize OTP access.\n");
545 ret = -ENOENT;
546 goto done;
547 }
548 _iwl_write32(priv, CSR_EEPROM_GP,
549 iwl_read32(priv, CSR_EEPROM_GP) &
550 ~CSR_EEPROM_GP_IF_OWNER_MSK);
551
552 iwl_set_bit(priv, CSR_OTP_GP_REG,
553 CSR_OTP_GP_REG_ECC_CORR_STATUS_MSK |
554 CSR_OTP_GP_REG_ECC_UNCORR_STATUS_MSK);
555 /* traversing the linked list if no shadow ram supported */
556 if (!priv->cfg->shadow_ram_support) {
557 if (iwl_find_otp_image(priv, &validblockaddr)) {
558 ret = -ENOENT;
559 goto done;
560 }
561 }
562 for (addr = validblockaddr; addr < validblockaddr + sz;
563 addr += sizeof(u16)) {
564 __le16 eeprom_data;
565
566 ret = iwl_read_otp_word(priv, addr, &eeprom_data);
567 if (ret)
568 goto done;
569 e[cache_addr / 2] = eeprom_data;
570 cache_addr += sizeof(u16);
571 }
572 } else {
573 /* eeprom is an array of 16bit values */
574 for (addr = 0; addr < sz; addr += sizeof(u16)) {
575 u32 r;
576
577 _iwl_write32(priv, CSR_EEPROM_REG,
578 CSR_EEPROM_REG_MSK_ADDR & (addr << 1));
579
580 ret = iwl_poll_bit(priv, CSR_EEPROM_REG,
581 CSR_EEPROM_REG_READ_VALID_MSK,
582 CSR_EEPROM_REG_READ_VALID_MSK,
583 IWL_EEPROM_ACCESS_TIMEOUT);
584 if (ret < 0) {
585 IWL_ERR(priv, "Time out reading EEPROM[%d]\n", addr);
586 goto done;
587 }
588 r = _iwl_read_direct32(priv, CSR_EEPROM_REG);
589 e[addr / 2] = cpu_to_le16(r >> 16);
590 }
591 }
592 ret = 0;
593 done:
594 priv->cfg->ops->lib->eeprom_ops.release_semaphore(priv);
595 err:
596 if (ret)
597 iwl_eeprom_free(priv);
598 /* Reset chip to save power until we load uCode during "up". */
599 priv->cfg->ops->lib->apm_ops.stop(priv);
600 alloc_err:
601 return ret;
602 }
603 EXPORT_SYMBOL(iwl_eeprom_init);
604
605 void iwl_eeprom_free(struct iwl_priv *priv)
606 {
607 kfree(priv->eeprom);
608 priv->eeprom = NULL;
609 }
610 EXPORT_SYMBOL(iwl_eeprom_free);
611
612 int iwl_eeprom_check_version(struct iwl_priv *priv)
613 {
614 u16 eeprom_ver;
615 u16 calib_ver;
616
617 eeprom_ver = iwl_eeprom_query16(priv, EEPROM_VERSION);
618 calib_ver = priv->cfg->ops->lib->eeprom_ops.calib_version(priv);
619
620 if (eeprom_ver < priv->cfg->eeprom_ver ||
621 calib_ver < priv->cfg->eeprom_calib_ver)
622 goto err;
623
624 return 0;
625 err:
626 IWL_ERR(priv, "Unsupported (too old) EEPROM VER=0x%x < 0x%x CALIB=0x%x < 0x%x\n",
627 eeprom_ver, priv->cfg->eeprom_ver,
628 calib_ver, priv->cfg->eeprom_calib_ver);
629 return -EINVAL;
630
631 }
632 EXPORT_SYMBOL(iwl_eeprom_check_version);
633
634 const u8 *iwl_eeprom_query_addr(const struct iwl_priv *priv, size_t offset)
635 {
636 return priv->cfg->ops->lib->eeprom_ops.query_addr(priv, offset);
637 }
638 EXPORT_SYMBOL(iwl_eeprom_query_addr);
639
640 u16 iwl_eeprom_query16(const struct iwl_priv *priv, size_t offset)
641 {
642 if (!priv->eeprom)
643 return 0;
644 return (u16)priv->eeprom[offset] | ((u16)priv->eeprom[offset + 1] << 8);
645 }
646 EXPORT_SYMBOL(iwl_eeprom_query16);
647
648 void iwl_eeprom_get_mac(const struct iwl_priv *priv, u8 *mac)
649 {
650 const u8 *addr = priv->cfg->ops->lib->eeprom_ops.query_addr(priv,
651 EEPROM_MAC_ADDRESS);
652 memcpy(mac, addr, ETH_ALEN);
653 }
654 EXPORT_SYMBOL(iwl_eeprom_get_mac);
655
656 static void iwl_init_band_reference(const struct iwl_priv *priv,
657 int eep_band, int *eeprom_ch_count,
658 const struct iwl_eeprom_channel **eeprom_ch_info,
659 const u8 **eeprom_ch_index)
660 {
661 u32 offset = priv->cfg->ops->lib->
662 eeprom_ops.regulatory_bands[eep_band - 1];
663 switch (eep_band) {
664 case 1: /* 2.4GHz band */
665 *eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_1);
666 *eeprom_ch_info = (struct iwl_eeprom_channel *)
667 iwl_eeprom_query_addr(priv, offset);
668 *eeprom_ch_index = iwl_eeprom_band_1;
669 break;
670 case 2: /* 4.9GHz band */
671 *eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_2);
672 *eeprom_ch_info = (struct iwl_eeprom_channel *)
673 iwl_eeprom_query_addr(priv, offset);
674 *eeprom_ch_index = iwl_eeprom_band_2;
675 break;
676 case 3: /* 5.2GHz band */
677 *eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_3);
678 *eeprom_ch_info = (struct iwl_eeprom_channel *)
679 iwl_eeprom_query_addr(priv, offset);
680 *eeprom_ch_index = iwl_eeprom_band_3;
681 break;
682 case 4: /* 5.5GHz band */
683 *eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_4);
684 *eeprom_ch_info = (struct iwl_eeprom_channel *)
685 iwl_eeprom_query_addr(priv, offset);
686 *eeprom_ch_index = iwl_eeprom_band_4;
687 break;
688 case 5: /* 5.7GHz band */
689 *eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_5);
690 *eeprom_ch_info = (struct iwl_eeprom_channel *)
691 iwl_eeprom_query_addr(priv, offset);
692 *eeprom_ch_index = iwl_eeprom_band_5;
693 break;
694 case 6: /* 2.4GHz ht40 channels */
695 *eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_6);
696 *eeprom_ch_info = (struct iwl_eeprom_channel *)
697 iwl_eeprom_query_addr(priv, offset);
698 *eeprom_ch_index = iwl_eeprom_band_6;
699 break;
700 case 7: /* 5 GHz ht40 channels */
701 *eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_7);
702 *eeprom_ch_info = (struct iwl_eeprom_channel *)
703 iwl_eeprom_query_addr(priv, offset);
704 *eeprom_ch_index = iwl_eeprom_band_7;
705 break;
706 default:
707 BUG();
708 return;
709 }
710 }
711
712 #define CHECK_AND_PRINT(x) ((eeprom_ch->flags & EEPROM_CHANNEL_##x) \
713 ? # x " " : "")
714
715 /**
716 * iwl_mod_ht40_chan_info - Copy ht40 channel info into driver's priv.
717 *
718 * Does not set up a command, or touch hardware.
719 */
720 static int iwl_mod_ht40_chan_info(struct iwl_priv *priv,
721 enum ieee80211_band band, u16 channel,
722 const struct iwl_eeprom_channel *eeprom_ch,
723 u8 clear_ht40_extension_channel)
724 {
725 struct iwl_channel_info *ch_info;
726
727 ch_info = (struct iwl_channel_info *)
728 iwl_get_channel_info(priv, band, channel);
729
730 if (!is_channel_valid(ch_info))
731 return -1;
732
733 IWL_DEBUG_INFO(priv, "HT40 Ch. %d [%sGHz] %s%s%s%s%s(0x%02x %ddBm):"
734 " Ad-Hoc %ssupported\n",
735 ch_info->channel,
736 is_channel_a_band(ch_info) ?
737 "5.2" : "2.4",
738 CHECK_AND_PRINT(IBSS),
739 CHECK_AND_PRINT(ACTIVE),
740 CHECK_AND_PRINT(RADAR),
741 CHECK_AND_PRINT(WIDE),
742 CHECK_AND_PRINT(DFS),
743 eeprom_ch->flags,
744 eeprom_ch->max_power_avg,
745 ((eeprom_ch->flags & EEPROM_CHANNEL_IBSS)
746 && !(eeprom_ch->flags & EEPROM_CHANNEL_RADAR)) ?
747 "" : "not ");
748
749 ch_info->ht40_eeprom = *eeprom_ch;
750 ch_info->ht40_max_power_avg = eeprom_ch->max_power_avg;
751 ch_info->ht40_flags = eeprom_ch->flags;
752 ch_info->ht40_extension_channel &= ~clear_ht40_extension_channel;
753
754 return 0;
755 }
756
757 /**
758 * iwl_get_max_txpower_avg - get the highest tx power from all chains.
759 * find the highest tx power from all chains for the channel
760 */
761 static s8 iwl_get_max_txpower_avg(struct iwl_priv *priv,
762 struct iwl_eeprom_enhanced_txpwr *enhanced_txpower,
763 int element, s8 *max_txpower_in_half_dbm)
764 {
765 s8 max_txpower_avg = 0; /* (dBm) */
766
767 IWL_DEBUG_INFO(priv, "%d - "
768 "chain_a: %d dB chain_b: %d dB "
769 "chain_c: %d dB mimo2: %d dB mimo3: %d dB\n",
770 element,
771 enhanced_txpower[element].chain_a_max >> 1,
772 enhanced_txpower[element].chain_b_max >> 1,
773 enhanced_txpower[element].chain_c_max >> 1,
774 enhanced_txpower[element].mimo2_max >> 1,
775 enhanced_txpower[element].mimo3_max >> 1);
776 /* Take the highest tx power from any valid chains */
777 if ((priv->cfg->valid_tx_ant & ANT_A) &&
778 (enhanced_txpower[element].chain_a_max > max_txpower_avg))
779 max_txpower_avg = enhanced_txpower[element].chain_a_max;
780 if ((priv->cfg->valid_tx_ant & ANT_B) &&
781 (enhanced_txpower[element].chain_b_max > max_txpower_avg))
782 max_txpower_avg = enhanced_txpower[element].chain_b_max;
783 if ((priv->cfg->valid_tx_ant & ANT_C) &&
784 (enhanced_txpower[element].chain_c_max > max_txpower_avg))
785 max_txpower_avg = enhanced_txpower[element].chain_c_max;
786 if (((priv->cfg->valid_tx_ant == ANT_AB) |
787 (priv->cfg->valid_tx_ant == ANT_BC) |
788 (priv->cfg->valid_tx_ant == ANT_AC)) &&
789 (enhanced_txpower[element].mimo2_max > max_txpower_avg))
790 max_txpower_avg = enhanced_txpower[element].mimo2_max;
791 if ((priv->cfg->valid_tx_ant == ANT_ABC) &&
792 (enhanced_txpower[element].mimo3_max > max_txpower_avg))
793 max_txpower_avg = enhanced_txpower[element].mimo3_max;
794
795 /*
796 * max. tx power in EEPROM is in 1/2 dBm format
797 * convert from 1/2 dBm to dBm (round-up convert)
798 * but we also do not want to loss 1/2 dBm resolution which
799 * will impact performance
800 */
801 *max_txpower_in_half_dbm = max_txpower_avg;
802 return (max_txpower_avg & 0x01) + (max_txpower_avg >> 1);
803 }
804
805 /**
806 * iwl_update_common_txpower: update channel tx power
807 * update tx power per band based on EEPROM enhanced tx power info.
808 */
809 static s8 iwl_update_common_txpower(struct iwl_priv *priv,
810 struct iwl_eeprom_enhanced_txpwr *enhanced_txpower,
811 int section, int element, s8 *max_txpower_in_half_dbm)
812 {
813 struct iwl_channel_info *ch_info;
814 int ch;
815 bool is_ht40 = false;
816 s8 max_txpower_avg; /* (dBm) */
817
818 /* it is common section, contain all type (Legacy, HT and HT40)
819 * based on the element in the section to determine
820 * is it HT 40 or not
821 */
822 if (element == EEPROM_TXPOWER_COMMON_HT40_INDEX)
823 is_ht40 = true;
824 max_txpower_avg =
825 iwl_get_max_txpower_avg(priv, enhanced_txpower,
826 element, max_txpower_in_half_dbm);
827
828 ch_info = priv->channel_info;
829
830 for (ch = 0; ch < priv->channel_count; ch++) {
831 /* find matching band and update tx power if needed */
832 if ((ch_info->band == enhinfo[section].band) &&
833 (ch_info->max_power_avg < max_txpower_avg) &&
834 (!is_ht40)) {
835 /* Update regulatory-based run-time data */
836 ch_info->max_power_avg = ch_info->curr_txpow =
837 max_txpower_avg;
838 ch_info->scan_power = max_txpower_avg;
839 }
840 if ((ch_info->band == enhinfo[section].band) && is_ht40 &&
841 (ch_info->ht40_max_power_avg < max_txpower_avg)) {
842 /* Update regulatory-based run-time data */
843 ch_info->ht40_max_power_avg = max_txpower_avg;
844 }
845 ch_info++;
846 }
847 return max_txpower_avg;
848 }
849
850 /**
851 * iwl_update_channel_txpower: update channel tx power
852 * update channel tx power based on EEPROM enhanced tx power info.
853 */
854 static s8 iwl_update_channel_txpower(struct iwl_priv *priv,
855 struct iwl_eeprom_enhanced_txpwr *enhanced_txpower,
856 int section, int element, s8 *max_txpower_in_half_dbm)
857 {
858 struct iwl_channel_info *ch_info;
859 int ch;
860 u8 channel;
861 s8 max_txpower_avg; /* (dBm) */
862
863 channel = enhinfo[section].iwl_eeprom_section_channel[element];
864 max_txpower_avg =
865 iwl_get_max_txpower_avg(priv, enhanced_txpower,
866 element, max_txpower_in_half_dbm);
867
868 ch_info = priv->channel_info;
869 for (ch = 0; ch < priv->channel_count; ch++) {
870 /* find matching channel and update tx power if needed */
871 if (ch_info->channel == channel) {
872 if ((ch_info->max_power_avg < max_txpower_avg) &&
873 (!enhinfo[section].is_ht40)) {
874 /* Update regulatory-based run-time data */
875 ch_info->max_power_avg = max_txpower_avg;
876 ch_info->curr_txpow = max_txpower_avg;
877 ch_info->scan_power = max_txpower_avg;
878 }
879 if ((enhinfo[section].is_ht40) &&
880 (ch_info->ht40_max_power_avg < max_txpower_avg)) {
881 /* Update regulatory-based run-time data */
882 ch_info->ht40_max_power_avg = max_txpower_avg;
883 }
884 break;
885 }
886 ch_info++;
887 }
888 return max_txpower_avg;
889 }
890
891 /**
892 * iwlcore_eeprom_enhanced_txpower: process enhanced tx power info
893 */
894 void iwlcore_eeprom_enhanced_txpower(struct iwl_priv *priv)
895 {
896 int eeprom_section_count = 0;
897 int section, element;
898 struct iwl_eeprom_enhanced_txpwr *enhanced_txpower;
899 u32 offset;
900 s8 max_txpower_avg; /* (dBm) */
901 s8 max_txpower_in_half_dbm; /* (half-dBm) */
902
903 /* Loop through all the sections
904 * adjust bands and channel's max tx power
905 * Set the tx_power_user_lmt to the highest power
906 * supported by any channels and chains
907 */
908 for (section = 0; section < ARRAY_SIZE(enhinfo); section++) {
909 eeprom_section_count = enhinfo[section].count;
910 offset = enhinfo[section].offset;
911 enhanced_txpower = (struct iwl_eeprom_enhanced_txpwr *)
912 iwl_eeprom_query_addr(priv, offset);
913
914 /*
915 * check for valid entry -
916 * different version of EEPROM might contain different set
917 * of enhanced tx power table
918 * always check for valid entry before process
919 * the information
920 */
921 if (!enhanced_txpower->common || enhanced_txpower->reserved)
922 continue;
923
924 for (element = 0; element < eeprom_section_count; element++) {
925 if (enhinfo[section].is_common)
926 max_txpower_avg =
927 iwl_update_common_txpower(priv,
928 enhanced_txpower, section,
929 element,
930 &max_txpower_in_half_dbm);
931 else
932 max_txpower_avg =
933 iwl_update_channel_txpower(priv,
934 enhanced_txpower, section,
935 element,
936 &max_txpower_in_half_dbm);
937
938 /* Update the tx_power_user_lmt to the highest power
939 * supported by any channel */
940 if (max_txpower_avg > priv->tx_power_user_lmt)
941 priv->tx_power_user_lmt = max_txpower_avg;
942
943 /*
944 * Update the tx_power_lmt_in_half_dbm to
945 * the highest power supported by any channel
946 */
947 if (max_txpower_in_half_dbm >
948 priv->tx_power_lmt_in_half_dbm)
949 priv->tx_power_lmt_in_half_dbm =
950 max_txpower_in_half_dbm;
951 }
952 }
953 }
954 EXPORT_SYMBOL(iwlcore_eeprom_enhanced_txpower);
955
956 #define CHECK_AND_PRINT_I(x) ((eeprom_ch_info[ch].flags & EEPROM_CHANNEL_##x) \
957 ? # x " " : "")
958
959 /**
960 * iwl_init_channel_map - Set up driver's info for all possible channels
961 */
962 int iwl_init_channel_map(struct iwl_priv *priv)
963 {
964 int eeprom_ch_count = 0;
965 const u8 *eeprom_ch_index = NULL;
966 const struct iwl_eeprom_channel *eeprom_ch_info = NULL;
967 int band, ch;
968 struct iwl_channel_info *ch_info;
969
970 if (priv->channel_count) {
971 IWL_DEBUG_INFO(priv, "Channel map already initialized.\n");
972 return 0;
973 }
974
975 IWL_DEBUG_INFO(priv, "Initializing regulatory info from EEPROM\n");
976
977 priv->channel_count =
978 ARRAY_SIZE(iwl_eeprom_band_1) +
979 ARRAY_SIZE(iwl_eeprom_band_2) +
980 ARRAY_SIZE(iwl_eeprom_band_3) +
981 ARRAY_SIZE(iwl_eeprom_band_4) +
982 ARRAY_SIZE(iwl_eeprom_band_5);
983
984 IWL_DEBUG_INFO(priv, "Parsing data for %d channels.\n", priv->channel_count);
985
986 priv->channel_info = kzalloc(sizeof(struct iwl_channel_info) *
987 priv->channel_count, GFP_KERNEL);
988 if (!priv->channel_info) {
989 IWL_ERR(priv, "Could not allocate channel_info\n");
990 priv->channel_count = 0;
991 return -ENOMEM;
992 }
993
994 ch_info = priv->channel_info;
995
996 /* Loop through the 5 EEPROM bands adding them in order to the
997 * channel map we maintain (that contains additional information than
998 * what just in the EEPROM) */
999 for (band = 1; band <= 5; band++) {
1000
1001 iwl_init_band_reference(priv, band, &eeprom_ch_count,
1002 &eeprom_ch_info, &eeprom_ch_index);
1003
1004 /* Loop through each band adding each of the channels */
1005 for (ch = 0; ch < eeprom_ch_count; ch++) {
1006 ch_info->channel = eeprom_ch_index[ch];
1007 ch_info->band = (band == 1) ? IEEE80211_BAND_2GHZ :
1008 IEEE80211_BAND_5GHZ;
1009
1010 /* permanently store EEPROM's channel regulatory flags
1011 * and max power in channel info database. */
1012 ch_info->eeprom = eeprom_ch_info[ch];
1013
1014 /* Copy the run-time flags so they are there even on
1015 * invalid channels */
1016 ch_info->flags = eeprom_ch_info[ch].flags;
1017 /* First write that ht40 is not enabled, and then enable
1018 * one by one */
1019 ch_info->ht40_extension_channel =
1020 IEEE80211_CHAN_NO_HT40;
1021
1022 if (!(is_channel_valid(ch_info))) {
1023 IWL_DEBUG_INFO(priv, "Ch. %d Flags %x [%sGHz] - "
1024 "No traffic\n",
1025 ch_info->channel,
1026 ch_info->flags,
1027 is_channel_a_band(ch_info) ?
1028 "5.2" : "2.4");
1029 ch_info++;
1030 continue;
1031 }
1032
1033 /* Initialize regulatory-based run-time data */
1034 ch_info->max_power_avg = ch_info->curr_txpow =
1035 eeprom_ch_info[ch].max_power_avg;
1036 ch_info->scan_power = eeprom_ch_info[ch].max_power_avg;
1037 ch_info->min_power = 0;
1038
1039 IWL_DEBUG_INFO(priv, "Ch. %d [%sGHz] %s%s%s%s%s%s(0x%02x %ddBm):"
1040 " Ad-Hoc %ssupported\n",
1041 ch_info->channel,
1042 is_channel_a_band(ch_info) ?
1043 "5.2" : "2.4",
1044 CHECK_AND_PRINT_I(VALID),
1045 CHECK_AND_PRINT_I(IBSS),
1046 CHECK_AND_PRINT_I(ACTIVE),
1047 CHECK_AND_PRINT_I(RADAR),
1048 CHECK_AND_PRINT_I(WIDE),
1049 CHECK_AND_PRINT_I(DFS),
1050 eeprom_ch_info[ch].flags,
1051 eeprom_ch_info[ch].max_power_avg,
1052 ((eeprom_ch_info[ch].
1053 flags & EEPROM_CHANNEL_IBSS)
1054 && !(eeprom_ch_info[ch].
1055 flags & EEPROM_CHANNEL_RADAR))
1056 ? "" : "not ");
1057
1058 /* Set the tx_power_user_lmt to the highest power
1059 * supported by any channel */
1060 if (eeprom_ch_info[ch].max_power_avg >
1061 priv->tx_power_user_lmt)
1062 priv->tx_power_user_lmt =
1063 eeprom_ch_info[ch].max_power_avg;
1064
1065 ch_info++;
1066 }
1067 }
1068
1069 /* Check if we do have HT40 channels */
1070 if (priv->cfg->ops->lib->eeprom_ops.regulatory_bands[5] ==
1071 EEPROM_REGULATORY_BAND_NO_HT40 &&
1072 priv->cfg->ops->lib->eeprom_ops.regulatory_bands[6] ==
1073 EEPROM_REGULATORY_BAND_NO_HT40)
1074 return 0;
1075
1076 /* Two additional EEPROM bands for 2.4 and 5 GHz HT40 channels */
1077 for (band = 6; band <= 7; band++) {
1078 enum ieee80211_band ieeeband;
1079
1080 iwl_init_band_reference(priv, band, &eeprom_ch_count,
1081 &eeprom_ch_info, &eeprom_ch_index);
1082
1083 /* EEPROM band 6 is 2.4, band 7 is 5 GHz */
1084 ieeeband =
1085 (band == 6) ? IEEE80211_BAND_2GHZ : IEEE80211_BAND_5GHZ;
1086
1087 /* Loop through each band adding each of the channels */
1088 for (ch = 0; ch < eeprom_ch_count; ch++) {
1089 /* Set up driver's info for lower half */
1090 iwl_mod_ht40_chan_info(priv, ieeeband,
1091 eeprom_ch_index[ch],
1092 &eeprom_ch_info[ch],
1093 IEEE80211_CHAN_NO_HT40PLUS);
1094
1095 /* Set up driver's info for upper half */
1096 iwl_mod_ht40_chan_info(priv, ieeeband,
1097 eeprom_ch_index[ch] + 4,
1098 &eeprom_ch_info[ch],
1099 IEEE80211_CHAN_NO_HT40MINUS);
1100 }
1101 }
1102
1103 /* for newer device (6000 series and up)
1104 * EEPROM contain enhanced tx power information
1105 * driver need to process addition information
1106 * to determine the max channel tx power limits
1107 */
1108 if (priv->cfg->ops->lib->eeprom_ops.update_enhanced_txpower)
1109 priv->cfg->ops->lib->eeprom_ops.update_enhanced_txpower(priv);
1110
1111 return 0;
1112 }
1113 EXPORT_SYMBOL(iwl_init_channel_map);
1114
1115 /*
1116 * iwl_free_channel_map - undo allocations in iwl_init_channel_map
1117 */
1118 void iwl_free_channel_map(struct iwl_priv *priv)
1119 {
1120 kfree(priv->channel_info);
1121 priv->channel_count = 0;
1122 }
1123 EXPORT_SYMBOL(iwl_free_channel_map);
1124
1125 /**
1126 * iwl_get_channel_info - Find driver's private channel info
1127 *
1128 * Based on band and channel number.
1129 */
1130 const struct iwl_channel_info *iwl_get_channel_info(const struct iwl_priv *priv,
1131 enum ieee80211_band band, u16 channel)
1132 {
1133 int i;
1134
1135 switch (band) {
1136 case IEEE80211_BAND_5GHZ:
1137 for (i = 14; i < priv->channel_count; i++) {
1138 if (priv->channel_info[i].channel == channel)
1139 return &priv->channel_info[i];
1140 }
1141 break;
1142 case IEEE80211_BAND_2GHZ:
1143 if (channel >= 1 && channel <= 14)
1144 return &priv->channel_info[channel - 1];
1145 break;
1146 default:
1147 BUG();
1148 }
1149
1150 return NULL;
1151 }
1152 EXPORT_SYMBOL(iwl_get_channel_info);
1153