include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / net / wireless / ipw2x00 / ipw2200.c
1 /******************************************************************************
2
3 Copyright(c) 2003 - 2006 Intel Corporation. All rights reserved.
4
5 802.11 status code portion of this file from ethereal-0.10.6:
6 Copyright 2000, Axis Communications AB
7 Ethereal - Network traffic analyzer
8 By Gerald Combs <gerald@ethereal.com>
9 Copyright 1998 Gerald Combs
10
11 This program is free software; you can redistribute it and/or modify it
12 under the terms of version 2 of the GNU General Public License as
13 published by the Free Software Foundation.
14
15 This program is distributed in the hope that it will be useful, but WITHOUT
16 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
18 more details.
19
20 You should have received a copy of the GNU General Public License along with
21 this program; if not, write to the Free Software Foundation, Inc., 59
22 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
23
24 The full GNU General Public License is included in this distribution in the
25 file called LICENSE.
26
27 Contact Information:
28 Intel Linux Wireless <ilw@linux.intel.com>
29 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
30
31 ******************************************************************************/
32
33 #include <linux/sched.h>
34 #include <linux/slab.h>
35 #include "ipw2200.h"
36
37
38 #ifndef KBUILD_EXTMOD
39 #define VK "k"
40 #else
41 #define VK
42 #endif
43
44 #ifdef CONFIG_IPW2200_DEBUG
45 #define VD "d"
46 #else
47 #define VD
48 #endif
49
50 #ifdef CONFIG_IPW2200_MONITOR
51 #define VM "m"
52 #else
53 #define VM
54 #endif
55
56 #ifdef CONFIG_IPW2200_PROMISCUOUS
57 #define VP "p"
58 #else
59 #define VP
60 #endif
61
62 #ifdef CONFIG_IPW2200_RADIOTAP
63 #define VR "r"
64 #else
65 #define VR
66 #endif
67
68 #ifdef CONFIG_IPW2200_QOS
69 #define VQ "q"
70 #else
71 #define VQ
72 #endif
73
74 #define IPW2200_VERSION "1.2.2" VK VD VM VP VR VQ
75 #define DRV_DESCRIPTION "Intel(R) PRO/Wireless 2200/2915 Network Driver"
76 #define DRV_COPYRIGHT "Copyright(c) 2003-2006 Intel Corporation"
77 #define DRV_VERSION IPW2200_VERSION
78
79 #define ETH_P_80211_STATS (ETH_P_80211_RAW + 1)
80
81 MODULE_DESCRIPTION(DRV_DESCRIPTION);
82 MODULE_VERSION(DRV_VERSION);
83 MODULE_AUTHOR(DRV_COPYRIGHT);
84 MODULE_LICENSE("GPL");
85 MODULE_FIRMWARE("ipw2200-ibss.fw");
86 #ifdef CONFIG_IPW2200_MONITOR
87 MODULE_FIRMWARE("ipw2200-sniffer.fw");
88 #endif
89 MODULE_FIRMWARE("ipw2200-bss.fw");
90
91 static int cmdlog = 0;
92 static int debug = 0;
93 static int default_channel = 0;
94 static int network_mode = 0;
95
96 static u32 ipw_debug_level;
97 static int associate;
98 static int auto_create = 1;
99 static int led_support = 0;
100 static int disable = 0;
101 static int bt_coexist = 0;
102 static int hwcrypto = 0;
103 static int roaming = 1;
104 static const char ipw_modes[] = {
105 'a', 'b', 'g', '?'
106 };
107 static int antenna = CFG_SYS_ANTENNA_BOTH;
108
109 #ifdef CONFIG_IPW2200_PROMISCUOUS
110 static int rtap_iface = 0; /* def: 0 -- do not create rtap interface */
111 #endif
112
113 static struct ieee80211_rate ipw2200_rates[] = {
114 { .bitrate = 10 },
115 { .bitrate = 20, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
116 { .bitrate = 55, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
117 { .bitrate = 110, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
118 { .bitrate = 60 },
119 { .bitrate = 90 },
120 { .bitrate = 120 },
121 { .bitrate = 180 },
122 { .bitrate = 240 },
123 { .bitrate = 360 },
124 { .bitrate = 480 },
125 { .bitrate = 540 }
126 };
127
128 #define ipw2200_a_rates (ipw2200_rates + 4)
129 #define ipw2200_num_a_rates 8
130 #define ipw2200_bg_rates (ipw2200_rates + 0)
131 #define ipw2200_num_bg_rates 12
132
133 #ifdef CONFIG_IPW2200_QOS
134 static int qos_enable = 0;
135 static int qos_burst_enable = 0;
136 static int qos_no_ack_mask = 0;
137 static int burst_duration_CCK = 0;
138 static int burst_duration_OFDM = 0;
139
140 static struct libipw_qos_parameters def_qos_parameters_OFDM = {
141 {QOS_TX0_CW_MIN_OFDM, QOS_TX1_CW_MIN_OFDM, QOS_TX2_CW_MIN_OFDM,
142 QOS_TX3_CW_MIN_OFDM},
143 {QOS_TX0_CW_MAX_OFDM, QOS_TX1_CW_MAX_OFDM, QOS_TX2_CW_MAX_OFDM,
144 QOS_TX3_CW_MAX_OFDM},
145 {QOS_TX0_AIFS, QOS_TX1_AIFS, QOS_TX2_AIFS, QOS_TX3_AIFS},
146 {QOS_TX0_ACM, QOS_TX1_ACM, QOS_TX2_ACM, QOS_TX3_ACM},
147 {QOS_TX0_TXOP_LIMIT_OFDM, QOS_TX1_TXOP_LIMIT_OFDM,
148 QOS_TX2_TXOP_LIMIT_OFDM, QOS_TX3_TXOP_LIMIT_OFDM}
149 };
150
151 static struct libipw_qos_parameters def_qos_parameters_CCK = {
152 {QOS_TX0_CW_MIN_CCK, QOS_TX1_CW_MIN_CCK, QOS_TX2_CW_MIN_CCK,
153 QOS_TX3_CW_MIN_CCK},
154 {QOS_TX0_CW_MAX_CCK, QOS_TX1_CW_MAX_CCK, QOS_TX2_CW_MAX_CCK,
155 QOS_TX3_CW_MAX_CCK},
156 {QOS_TX0_AIFS, QOS_TX1_AIFS, QOS_TX2_AIFS, QOS_TX3_AIFS},
157 {QOS_TX0_ACM, QOS_TX1_ACM, QOS_TX2_ACM, QOS_TX3_ACM},
158 {QOS_TX0_TXOP_LIMIT_CCK, QOS_TX1_TXOP_LIMIT_CCK, QOS_TX2_TXOP_LIMIT_CCK,
159 QOS_TX3_TXOP_LIMIT_CCK}
160 };
161
162 static struct libipw_qos_parameters def_parameters_OFDM = {
163 {DEF_TX0_CW_MIN_OFDM, DEF_TX1_CW_MIN_OFDM, DEF_TX2_CW_MIN_OFDM,
164 DEF_TX3_CW_MIN_OFDM},
165 {DEF_TX0_CW_MAX_OFDM, DEF_TX1_CW_MAX_OFDM, DEF_TX2_CW_MAX_OFDM,
166 DEF_TX3_CW_MAX_OFDM},
167 {DEF_TX0_AIFS, DEF_TX1_AIFS, DEF_TX2_AIFS, DEF_TX3_AIFS},
168 {DEF_TX0_ACM, DEF_TX1_ACM, DEF_TX2_ACM, DEF_TX3_ACM},
169 {DEF_TX0_TXOP_LIMIT_OFDM, DEF_TX1_TXOP_LIMIT_OFDM,
170 DEF_TX2_TXOP_LIMIT_OFDM, DEF_TX3_TXOP_LIMIT_OFDM}
171 };
172
173 static struct libipw_qos_parameters def_parameters_CCK = {
174 {DEF_TX0_CW_MIN_CCK, DEF_TX1_CW_MIN_CCK, DEF_TX2_CW_MIN_CCK,
175 DEF_TX3_CW_MIN_CCK},
176 {DEF_TX0_CW_MAX_CCK, DEF_TX1_CW_MAX_CCK, DEF_TX2_CW_MAX_CCK,
177 DEF_TX3_CW_MAX_CCK},
178 {DEF_TX0_AIFS, DEF_TX1_AIFS, DEF_TX2_AIFS, DEF_TX3_AIFS},
179 {DEF_TX0_ACM, DEF_TX1_ACM, DEF_TX2_ACM, DEF_TX3_ACM},
180 {DEF_TX0_TXOP_LIMIT_CCK, DEF_TX1_TXOP_LIMIT_CCK, DEF_TX2_TXOP_LIMIT_CCK,
181 DEF_TX3_TXOP_LIMIT_CCK}
182 };
183
184 static u8 qos_oui[QOS_OUI_LEN] = { 0x00, 0x50, 0xF2 };
185
186 static int from_priority_to_tx_queue[] = {
187 IPW_TX_QUEUE_1, IPW_TX_QUEUE_2, IPW_TX_QUEUE_2, IPW_TX_QUEUE_1,
188 IPW_TX_QUEUE_3, IPW_TX_QUEUE_3, IPW_TX_QUEUE_4, IPW_TX_QUEUE_4
189 };
190
191 static u32 ipw_qos_get_burst_duration(struct ipw_priv *priv);
192
193 static int ipw_send_qos_params_command(struct ipw_priv *priv, struct libipw_qos_parameters
194 *qos_param);
195 static int ipw_send_qos_info_command(struct ipw_priv *priv, struct libipw_qos_information_element
196 *qos_param);
197 #endif /* CONFIG_IPW2200_QOS */
198
199 static struct iw_statistics *ipw_get_wireless_stats(struct net_device *dev);
200 static void ipw_remove_current_network(struct ipw_priv *priv);
201 static void ipw_rx(struct ipw_priv *priv);
202 static int ipw_queue_tx_reclaim(struct ipw_priv *priv,
203 struct clx2_tx_queue *txq, int qindex);
204 static int ipw_queue_reset(struct ipw_priv *priv);
205
206 static int ipw_queue_tx_hcmd(struct ipw_priv *priv, int hcmd, void *buf,
207 int len, int sync);
208
209 static void ipw_tx_queue_free(struct ipw_priv *);
210
211 static struct ipw_rx_queue *ipw_rx_queue_alloc(struct ipw_priv *);
212 static void ipw_rx_queue_free(struct ipw_priv *, struct ipw_rx_queue *);
213 static void ipw_rx_queue_replenish(void *);
214 static int ipw_up(struct ipw_priv *);
215 static void ipw_bg_up(struct work_struct *work);
216 static void ipw_down(struct ipw_priv *);
217 static void ipw_bg_down(struct work_struct *work);
218 static int ipw_config(struct ipw_priv *);
219 static int init_supported_rates(struct ipw_priv *priv,
220 struct ipw_supported_rates *prates);
221 static void ipw_set_hwcrypto_keys(struct ipw_priv *);
222 static void ipw_send_wep_keys(struct ipw_priv *, int);
223
224 static int snprint_line(char *buf, size_t count,
225 const u8 * data, u32 len, u32 ofs)
226 {
227 int out, i, j, l;
228 char c;
229
230 out = snprintf(buf, count, "%08X", ofs);
231
232 for (l = 0, i = 0; i < 2; i++) {
233 out += snprintf(buf + out, count - out, " ");
234 for (j = 0; j < 8 && l < len; j++, l++)
235 out += snprintf(buf + out, count - out, "%02X ",
236 data[(i * 8 + j)]);
237 for (; j < 8; j++)
238 out += snprintf(buf + out, count - out, " ");
239 }
240
241 out += snprintf(buf + out, count - out, " ");
242 for (l = 0, i = 0; i < 2; i++) {
243 out += snprintf(buf + out, count - out, " ");
244 for (j = 0; j < 8 && l < len; j++, l++) {
245 c = data[(i * 8 + j)];
246 if (!isascii(c) || !isprint(c))
247 c = '.';
248
249 out += snprintf(buf + out, count - out, "%c", c);
250 }
251
252 for (; j < 8; j++)
253 out += snprintf(buf + out, count - out, " ");
254 }
255
256 return out;
257 }
258
259 static void printk_buf(int level, const u8 * data, u32 len)
260 {
261 char line[81];
262 u32 ofs = 0;
263 if (!(ipw_debug_level & level))
264 return;
265
266 while (len) {
267 snprint_line(line, sizeof(line), &data[ofs],
268 min(len, 16U), ofs);
269 printk(KERN_DEBUG "%s\n", line);
270 ofs += 16;
271 len -= min(len, 16U);
272 }
273 }
274
275 static int snprintk_buf(u8 * output, size_t size, const u8 * data, size_t len)
276 {
277 size_t out = size;
278 u32 ofs = 0;
279 int total = 0;
280
281 while (size && len) {
282 out = snprint_line(output, size, &data[ofs],
283 min_t(size_t, len, 16U), ofs);
284
285 ofs += 16;
286 output += out;
287 size -= out;
288 len -= min_t(size_t, len, 16U);
289 total += out;
290 }
291 return total;
292 }
293
294 /* alias for 32-bit indirect read (for SRAM/reg above 4K), with debug wrapper */
295 static u32 _ipw_read_reg32(struct ipw_priv *priv, u32 reg);
296 #define ipw_read_reg32(a, b) _ipw_read_reg32(a, b)
297
298 /* alias for 8-bit indirect read (for SRAM/reg above 4K), with debug wrapper */
299 static u8 _ipw_read_reg8(struct ipw_priv *ipw, u32 reg);
300 #define ipw_read_reg8(a, b) _ipw_read_reg8(a, b)
301
302 /* 8-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
303 static void _ipw_write_reg8(struct ipw_priv *priv, u32 reg, u8 value);
304 static inline void ipw_write_reg8(struct ipw_priv *a, u32 b, u8 c)
305 {
306 IPW_DEBUG_IO("%s %d: write_indirect8(0x%08X, 0x%08X)\n", __FILE__,
307 __LINE__, (u32) (b), (u32) (c));
308 _ipw_write_reg8(a, b, c);
309 }
310
311 /* 16-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
312 static void _ipw_write_reg16(struct ipw_priv *priv, u32 reg, u16 value);
313 static inline void ipw_write_reg16(struct ipw_priv *a, u32 b, u16 c)
314 {
315 IPW_DEBUG_IO("%s %d: write_indirect16(0x%08X, 0x%08X)\n", __FILE__,
316 __LINE__, (u32) (b), (u32) (c));
317 _ipw_write_reg16(a, b, c);
318 }
319
320 /* 32-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
321 static void _ipw_write_reg32(struct ipw_priv *priv, u32 reg, u32 value);
322 static inline void ipw_write_reg32(struct ipw_priv *a, u32 b, u32 c)
323 {
324 IPW_DEBUG_IO("%s %d: write_indirect32(0x%08X, 0x%08X)\n", __FILE__,
325 __LINE__, (u32) (b), (u32) (c));
326 _ipw_write_reg32(a, b, c);
327 }
328
329 /* 8-bit direct write (low 4K) */
330 static inline void _ipw_write8(struct ipw_priv *ipw, unsigned long ofs,
331 u8 val)
332 {
333 writeb(val, ipw->hw_base + ofs);
334 }
335
336 /* 8-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
337 #define ipw_write8(ipw, ofs, val) do { \
338 IPW_DEBUG_IO("%s %d: write_direct8(0x%08X, 0x%08X)\n", __FILE__, \
339 __LINE__, (u32)(ofs), (u32)(val)); \
340 _ipw_write8(ipw, ofs, val); \
341 } while (0)
342
343 /* 16-bit direct write (low 4K) */
344 static inline void _ipw_write16(struct ipw_priv *ipw, unsigned long ofs,
345 u16 val)
346 {
347 writew(val, ipw->hw_base + ofs);
348 }
349
350 /* 16-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
351 #define ipw_write16(ipw, ofs, val) do { \
352 IPW_DEBUG_IO("%s %d: write_direct16(0x%08X, 0x%08X)\n", __FILE__, \
353 __LINE__, (u32)(ofs), (u32)(val)); \
354 _ipw_write16(ipw, ofs, val); \
355 } while (0)
356
357 /* 32-bit direct write (low 4K) */
358 static inline void _ipw_write32(struct ipw_priv *ipw, unsigned long ofs,
359 u32 val)
360 {
361 writel(val, ipw->hw_base + ofs);
362 }
363
364 /* 32-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
365 #define ipw_write32(ipw, ofs, val) do { \
366 IPW_DEBUG_IO("%s %d: write_direct32(0x%08X, 0x%08X)\n", __FILE__, \
367 __LINE__, (u32)(ofs), (u32)(val)); \
368 _ipw_write32(ipw, ofs, val); \
369 } while (0)
370
371 /* 8-bit direct read (low 4K) */
372 static inline u8 _ipw_read8(struct ipw_priv *ipw, unsigned long ofs)
373 {
374 return readb(ipw->hw_base + ofs);
375 }
376
377 /* alias to 8-bit direct read (low 4K of SRAM/regs), with debug wrapper */
378 #define ipw_read8(ipw, ofs) ({ \
379 IPW_DEBUG_IO("%s %d: read_direct8(0x%08X)\n", __FILE__, __LINE__, \
380 (u32)(ofs)); \
381 _ipw_read8(ipw, ofs); \
382 })
383
384 /* 16-bit direct read (low 4K) */
385 static inline u16 _ipw_read16(struct ipw_priv *ipw, unsigned long ofs)
386 {
387 return readw(ipw->hw_base + ofs);
388 }
389
390 /* alias to 16-bit direct read (low 4K of SRAM/regs), with debug wrapper */
391 #define ipw_read16(ipw, ofs) ({ \
392 IPW_DEBUG_IO("%s %d: read_direct16(0x%08X)\n", __FILE__, __LINE__, \
393 (u32)(ofs)); \
394 _ipw_read16(ipw, ofs); \
395 })
396
397 /* 32-bit direct read (low 4K) */
398 static inline u32 _ipw_read32(struct ipw_priv *ipw, unsigned long ofs)
399 {
400 return readl(ipw->hw_base + ofs);
401 }
402
403 /* alias to 32-bit direct read (low 4K of SRAM/regs), with debug wrapper */
404 #define ipw_read32(ipw, ofs) ({ \
405 IPW_DEBUG_IO("%s %d: read_direct32(0x%08X)\n", __FILE__, __LINE__, \
406 (u32)(ofs)); \
407 _ipw_read32(ipw, ofs); \
408 })
409
410 static void _ipw_read_indirect(struct ipw_priv *, u32, u8 *, int);
411 /* alias to multi-byte read (SRAM/regs above 4K), with debug wrapper */
412 #define ipw_read_indirect(a, b, c, d) ({ \
413 IPW_DEBUG_IO("%s %d: read_indirect(0x%08X) %u bytes\n", __FILE__, \
414 __LINE__, (u32)(b), (u32)(d)); \
415 _ipw_read_indirect(a, b, c, d); \
416 })
417
418 /* alias to multi-byte read (SRAM/regs above 4K), with debug wrapper */
419 static void _ipw_write_indirect(struct ipw_priv *priv, u32 addr, u8 * data,
420 int num);
421 #define ipw_write_indirect(a, b, c, d) do { \
422 IPW_DEBUG_IO("%s %d: write_indirect(0x%08X) %u bytes\n", __FILE__, \
423 __LINE__, (u32)(b), (u32)(d)); \
424 _ipw_write_indirect(a, b, c, d); \
425 } while (0)
426
427 /* 32-bit indirect write (above 4K) */
428 static void _ipw_write_reg32(struct ipw_priv *priv, u32 reg, u32 value)
429 {
430 IPW_DEBUG_IO(" %p : reg = 0x%8X : value = 0x%8X\n", priv, reg, value);
431 _ipw_write32(priv, IPW_INDIRECT_ADDR, reg);
432 _ipw_write32(priv, IPW_INDIRECT_DATA, value);
433 }
434
435 /* 8-bit indirect write (above 4K) */
436 static void _ipw_write_reg8(struct ipw_priv *priv, u32 reg, u8 value)
437 {
438 u32 aligned_addr = reg & IPW_INDIRECT_ADDR_MASK; /* dword align */
439 u32 dif_len = reg - aligned_addr;
440
441 IPW_DEBUG_IO(" reg = 0x%8X : value = 0x%8X\n", reg, value);
442 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
443 _ipw_write8(priv, IPW_INDIRECT_DATA + dif_len, value);
444 }
445
446 /* 16-bit indirect write (above 4K) */
447 static void _ipw_write_reg16(struct ipw_priv *priv, u32 reg, u16 value)
448 {
449 u32 aligned_addr = reg & IPW_INDIRECT_ADDR_MASK; /* dword align */
450 u32 dif_len = (reg - aligned_addr) & (~0x1ul);
451
452 IPW_DEBUG_IO(" reg = 0x%8X : value = 0x%8X\n", reg, value);
453 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
454 _ipw_write16(priv, IPW_INDIRECT_DATA + dif_len, value);
455 }
456
457 /* 8-bit indirect read (above 4K) */
458 static u8 _ipw_read_reg8(struct ipw_priv *priv, u32 reg)
459 {
460 u32 word;
461 _ipw_write32(priv, IPW_INDIRECT_ADDR, reg & IPW_INDIRECT_ADDR_MASK);
462 IPW_DEBUG_IO(" reg = 0x%8X : \n", reg);
463 word = _ipw_read32(priv, IPW_INDIRECT_DATA);
464 return (word >> ((reg & 0x3) * 8)) & 0xff;
465 }
466
467 /* 32-bit indirect read (above 4K) */
468 static u32 _ipw_read_reg32(struct ipw_priv *priv, u32 reg)
469 {
470 u32 value;
471
472 IPW_DEBUG_IO("%p : reg = 0x%08x\n", priv, reg);
473
474 _ipw_write32(priv, IPW_INDIRECT_ADDR, reg);
475 value = _ipw_read32(priv, IPW_INDIRECT_DATA);
476 IPW_DEBUG_IO(" reg = 0x%4X : value = 0x%4x \n", reg, value);
477 return value;
478 }
479
480 /* General purpose, no alignment requirement, iterative (multi-byte) read, */
481 /* for area above 1st 4K of SRAM/reg space */
482 static void _ipw_read_indirect(struct ipw_priv *priv, u32 addr, u8 * buf,
483 int num)
484 {
485 u32 aligned_addr = addr & IPW_INDIRECT_ADDR_MASK; /* dword align */
486 u32 dif_len = addr - aligned_addr;
487 u32 i;
488
489 IPW_DEBUG_IO("addr = %i, buf = %p, num = %i\n", addr, buf, num);
490
491 if (num <= 0) {
492 return;
493 }
494
495 /* Read the first dword (or portion) byte by byte */
496 if (unlikely(dif_len)) {
497 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
498 /* Start reading at aligned_addr + dif_len */
499 for (i = dif_len; ((i < 4) && (num > 0)); i++, num--)
500 *buf++ = _ipw_read8(priv, IPW_INDIRECT_DATA + i);
501 aligned_addr += 4;
502 }
503
504 /* Read all of the middle dwords as dwords, with auto-increment */
505 _ipw_write32(priv, IPW_AUTOINC_ADDR, aligned_addr);
506 for (; num >= 4; buf += 4, aligned_addr += 4, num -= 4)
507 *(u32 *) buf = _ipw_read32(priv, IPW_AUTOINC_DATA);
508
509 /* Read the last dword (or portion) byte by byte */
510 if (unlikely(num)) {
511 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
512 for (i = 0; num > 0; i++, num--)
513 *buf++ = ipw_read8(priv, IPW_INDIRECT_DATA + i);
514 }
515 }
516
517 /* General purpose, no alignment requirement, iterative (multi-byte) write, */
518 /* for area above 1st 4K of SRAM/reg space */
519 static void _ipw_write_indirect(struct ipw_priv *priv, u32 addr, u8 * buf,
520 int num)
521 {
522 u32 aligned_addr = addr & IPW_INDIRECT_ADDR_MASK; /* dword align */
523 u32 dif_len = addr - aligned_addr;
524 u32 i;
525
526 IPW_DEBUG_IO("addr = %i, buf = %p, num = %i\n", addr, buf, num);
527
528 if (num <= 0) {
529 return;
530 }
531
532 /* Write the first dword (or portion) byte by byte */
533 if (unlikely(dif_len)) {
534 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
535 /* Start writing at aligned_addr + dif_len */
536 for (i = dif_len; ((i < 4) && (num > 0)); i++, num--, buf++)
537 _ipw_write8(priv, IPW_INDIRECT_DATA + i, *buf);
538 aligned_addr += 4;
539 }
540
541 /* Write all of the middle dwords as dwords, with auto-increment */
542 _ipw_write32(priv, IPW_AUTOINC_ADDR, aligned_addr);
543 for (; num >= 4; buf += 4, aligned_addr += 4, num -= 4)
544 _ipw_write32(priv, IPW_AUTOINC_DATA, *(u32 *) buf);
545
546 /* Write the last dword (or portion) byte by byte */
547 if (unlikely(num)) {
548 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
549 for (i = 0; num > 0; i++, num--, buf++)
550 _ipw_write8(priv, IPW_INDIRECT_DATA + i, *buf);
551 }
552 }
553
554 /* General purpose, no alignment requirement, iterative (multi-byte) write, */
555 /* for 1st 4K of SRAM/regs space */
556 static void ipw_write_direct(struct ipw_priv *priv, u32 addr, void *buf,
557 int num)
558 {
559 memcpy_toio((priv->hw_base + addr), buf, num);
560 }
561
562 /* Set bit(s) in low 4K of SRAM/regs */
563 static inline void ipw_set_bit(struct ipw_priv *priv, u32 reg, u32 mask)
564 {
565 ipw_write32(priv, reg, ipw_read32(priv, reg) | mask);
566 }
567
568 /* Clear bit(s) in low 4K of SRAM/regs */
569 static inline void ipw_clear_bit(struct ipw_priv *priv, u32 reg, u32 mask)
570 {
571 ipw_write32(priv, reg, ipw_read32(priv, reg) & ~mask);
572 }
573
574 static inline void __ipw_enable_interrupts(struct ipw_priv *priv)
575 {
576 if (priv->status & STATUS_INT_ENABLED)
577 return;
578 priv->status |= STATUS_INT_ENABLED;
579 ipw_write32(priv, IPW_INTA_MASK_R, IPW_INTA_MASK_ALL);
580 }
581
582 static inline void __ipw_disable_interrupts(struct ipw_priv *priv)
583 {
584 if (!(priv->status & STATUS_INT_ENABLED))
585 return;
586 priv->status &= ~STATUS_INT_ENABLED;
587 ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
588 }
589
590 static inline void ipw_enable_interrupts(struct ipw_priv *priv)
591 {
592 unsigned long flags;
593
594 spin_lock_irqsave(&priv->irq_lock, flags);
595 __ipw_enable_interrupts(priv);
596 spin_unlock_irqrestore(&priv->irq_lock, flags);
597 }
598
599 static inline void ipw_disable_interrupts(struct ipw_priv *priv)
600 {
601 unsigned long flags;
602
603 spin_lock_irqsave(&priv->irq_lock, flags);
604 __ipw_disable_interrupts(priv);
605 spin_unlock_irqrestore(&priv->irq_lock, flags);
606 }
607
608 static char *ipw_error_desc(u32 val)
609 {
610 switch (val) {
611 case IPW_FW_ERROR_OK:
612 return "ERROR_OK";
613 case IPW_FW_ERROR_FAIL:
614 return "ERROR_FAIL";
615 case IPW_FW_ERROR_MEMORY_UNDERFLOW:
616 return "MEMORY_UNDERFLOW";
617 case IPW_FW_ERROR_MEMORY_OVERFLOW:
618 return "MEMORY_OVERFLOW";
619 case IPW_FW_ERROR_BAD_PARAM:
620 return "BAD_PARAM";
621 case IPW_FW_ERROR_BAD_CHECKSUM:
622 return "BAD_CHECKSUM";
623 case IPW_FW_ERROR_NMI_INTERRUPT:
624 return "NMI_INTERRUPT";
625 case IPW_FW_ERROR_BAD_DATABASE:
626 return "BAD_DATABASE";
627 case IPW_FW_ERROR_ALLOC_FAIL:
628 return "ALLOC_FAIL";
629 case IPW_FW_ERROR_DMA_UNDERRUN:
630 return "DMA_UNDERRUN";
631 case IPW_FW_ERROR_DMA_STATUS:
632 return "DMA_STATUS";
633 case IPW_FW_ERROR_DINO_ERROR:
634 return "DINO_ERROR";
635 case IPW_FW_ERROR_EEPROM_ERROR:
636 return "EEPROM_ERROR";
637 case IPW_FW_ERROR_SYSASSERT:
638 return "SYSASSERT";
639 case IPW_FW_ERROR_FATAL_ERROR:
640 return "FATAL_ERROR";
641 default:
642 return "UNKNOWN_ERROR";
643 }
644 }
645
646 static void ipw_dump_error_log(struct ipw_priv *priv,
647 struct ipw_fw_error *error)
648 {
649 u32 i;
650
651 if (!error) {
652 IPW_ERROR("Error allocating and capturing error log. "
653 "Nothing to dump.\n");
654 return;
655 }
656
657 IPW_ERROR("Start IPW Error Log Dump:\n");
658 IPW_ERROR("Status: 0x%08X, Config: %08X\n",
659 error->status, error->config);
660
661 for (i = 0; i < error->elem_len; i++)
662 IPW_ERROR("%s %i 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n",
663 ipw_error_desc(error->elem[i].desc),
664 error->elem[i].time,
665 error->elem[i].blink1,
666 error->elem[i].blink2,
667 error->elem[i].link1,
668 error->elem[i].link2, error->elem[i].data);
669 for (i = 0; i < error->log_len; i++)
670 IPW_ERROR("%i\t0x%08x\t%i\n",
671 error->log[i].time,
672 error->log[i].data, error->log[i].event);
673 }
674
675 static inline int ipw_is_init(struct ipw_priv *priv)
676 {
677 return (priv->status & STATUS_INIT) ? 1 : 0;
678 }
679
680 static int ipw_get_ordinal(struct ipw_priv *priv, u32 ord, void *val, u32 * len)
681 {
682 u32 addr, field_info, field_len, field_count, total_len;
683
684 IPW_DEBUG_ORD("ordinal = %i\n", ord);
685
686 if (!priv || !val || !len) {
687 IPW_DEBUG_ORD("Invalid argument\n");
688 return -EINVAL;
689 }
690
691 /* verify device ordinal tables have been initialized */
692 if (!priv->table0_addr || !priv->table1_addr || !priv->table2_addr) {
693 IPW_DEBUG_ORD("Access ordinals before initialization\n");
694 return -EINVAL;
695 }
696
697 switch (IPW_ORD_TABLE_ID_MASK & ord) {
698 case IPW_ORD_TABLE_0_MASK:
699 /*
700 * TABLE 0: Direct access to a table of 32 bit values
701 *
702 * This is a very simple table with the data directly
703 * read from the table
704 */
705
706 /* remove the table id from the ordinal */
707 ord &= IPW_ORD_TABLE_VALUE_MASK;
708
709 /* boundary check */
710 if (ord > priv->table0_len) {
711 IPW_DEBUG_ORD("ordinal value (%i) longer then "
712 "max (%i)\n", ord, priv->table0_len);
713 return -EINVAL;
714 }
715
716 /* verify we have enough room to store the value */
717 if (*len < sizeof(u32)) {
718 IPW_DEBUG_ORD("ordinal buffer length too small, "
719 "need %zd\n", sizeof(u32));
720 return -EINVAL;
721 }
722
723 IPW_DEBUG_ORD("Reading TABLE0[%i] from offset 0x%08x\n",
724 ord, priv->table0_addr + (ord << 2));
725
726 *len = sizeof(u32);
727 ord <<= 2;
728 *((u32 *) val) = ipw_read32(priv, priv->table0_addr + ord);
729 break;
730
731 case IPW_ORD_TABLE_1_MASK:
732 /*
733 * TABLE 1: Indirect access to a table of 32 bit values
734 *
735 * This is a fairly large table of u32 values each
736 * representing starting addr for the data (which is
737 * also a u32)
738 */
739
740 /* remove the table id from the ordinal */
741 ord &= IPW_ORD_TABLE_VALUE_MASK;
742
743 /* boundary check */
744 if (ord > priv->table1_len) {
745 IPW_DEBUG_ORD("ordinal value too long\n");
746 return -EINVAL;
747 }
748
749 /* verify we have enough room to store the value */
750 if (*len < sizeof(u32)) {
751 IPW_DEBUG_ORD("ordinal buffer length too small, "
752 "need %zd\n", sizeof(u32));
753 return -EINVAL;
754 }
755
756 *((u32 *) val) =
757 ipw_read_reg32(priv, (priv->table1_addr + (ord << 2)));
758 *len = sizeof(u32);
759 break;
760
761 case IPW_ORD_TABLE_2_MASK:
762 /*
763 * TABLE 2: Indirect access to a table of variable sized values
764 *
765 * This table consist of six values, each containing
766 * - dword containing the starting offset of the data
767 * - dword containing the lengh in the first 16bits
768 * and the count in the second 16bits
769 */
770
771 /* remove the table id from the ordinal */
772 ord &= IPW_ORD_TABLE_VALUE_MASK;
773
774 /* boundary check */
775 if (ord > priv->table2_len) {
776 IPW_DEBUG_ORD("ordinal value too long\n");
777 return -EINVAL;
778 }
779
780 /* get the address of statistic */
781 addr = ipw_read_reg32(priv, priv->table2_addr + (ord << 3));
782
783 /* get the second DW of statistics ;
784 * two 16-bit words - first is length, second is count */
785 field_info =
786 ipw_read_reg32(priv,
787 priv->table2_addr + (ord << 3) +
788 sizeof(u32));
789
790 /* get each entry length */
791 field_len = *((u16 *) & field_info);
792
793 /* get number of entries */
794 field_count = *(((u16 *) & field_info) + 1);
795
796 /* abort if not enough memory */
797 total_len = field_len * field_count;
798 if (total_len > *len) {
799 *len = total_len;
800 return -EINVAL;
801 }
802
803 *len = total_len;
804 if (!total_len)
805 return 0;
806
807 IPW_DEBUG_ORD("addr = 0x%08x, total_len = %i, "
808 "field_info = 0x%08x\n",
809 addr, total_len, field_info);
810 ipw_read_indirect(priv, addr, val, total_len);
811 break;
812
813 default:
814 IPW_DEBUG_ORD("Invalid ordinal!\n");
815 return -EINVAL;
816
817 }
818
819 return 0;
820 }
821
822 static void ipw_init_ordinals(struct ipw_priv *priv)
823 {
824 priv->table0_addr = IPW_ORDINALS_TABLE_LOWER;
825 priv->table0_len = ipw_read32(priv, priv->table0_addr);
826
827 IPW_DEBUG_ORD("table 0 offset at 0x%08x, len = %i\n",
828 priv->table0_addr, priv->table0_len);
829
830 priv->table1_addr = ipw_read32(priv, IPW_ORDINALS_TABLE_1);
831 priv->table1_len = ipw_read_reg32(priv, priv->table1_addr);
832
833 IPW_DEBUG_ORD("table 1 offset at 0x%08x, len = %i\n",
834 priv->table1_addr, priv->table1_len);
835
836 priv->table2_addr = ipw_read32(priv, IPW_ORDINALS_TABLE_2);
837 priv->table2_len = ipw_read_reg32(priv, priv->table2_addr);
838 priv->table2_len &= 0x0000ffff; /* use first two bytes */
839
840 IPW_DEBUG_ORD("table 2 offset at 0x%08x, len = %i\n",
841 priv->table2_addr, priv->table2_len);
842
843 }
844
845 static u32 ipw_register_toggle(u32 reg)
846 {
847 reg &= ~IPW_START_STANDBY;
848 if (reg & IPW_GATE_ODMA)
849 reg &= ~IPW_GATE_ODMA;
850 if (reg & IPW_GATE_IDMA)
851 reg &= ~IPW_GATE_IDMA;
852 if (reg & IPW_GATE_ADMA)
853 reg &= ~IPW_GATE_ADMA;
854 return reg;
855 }
856
857 /*
858 * LED behavior:
859 * - On radio ON, turn on any LEDs that require to be on during start
860 * - On initialization, start unassociated blink
861 * - On association, disable unassociated blink
862 * - On disassociation, start unassociated blink
863 * - On radio OFF, turn off any LEDs started during radio on
864 *
865 */
866 #define LD_TIME_LINK_ON msecs_to_jiffies(300)
867 #define LD_TIME_LINK_OFF msecs_to_jiffies(2700)
868 #define LD_TIME_ACT_ON msecs_to_jiffies(250)
869
870 static void ipw_led_link_on(struct ipw_priv *priv)
871 {
872 unsigned long flags;
873 u32 led;
874
875 /* If configured to not use LEDs, or nic_type is 1,
876 * then we don't toggle a LINK led */
877 if (priv->config & CFG_NO_LED || priv->nic_type == EEPROM_NIC_TYPE_1)
878 return;
879
880 spin_lock_irqsave(&priv->lock, flags);
881
882 if (!(priv->status & STATUS_RF_KILL_MASK) &&
883 !(priv->status & STATUS_LED_LINK_ON)) {
884 IPW_DEBUG_LED("Link LED On\n");
885 led = ipw_read_reg32(priv, IPW_EVENT_REG);
886 led |= priv->led_association_on;
887
888 led = ipw_register_toggle(led);
889
890 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
891 ipw_write_reg32(priv, IPW_EVENT_REG, led);
892
893 priv->status |= STATUS_LED_LINK_ON;
894
895 /* If we aren't associated, schedule turning the LED off */
896 if (!(priv->status & STATUS_ASSOCIATED))
897 queue_delayed_work(priv->workqueue,
898 &priv->led_link_off,
899 LD_TIME_LINK_ON);
900 }
901
902 spin_unlock_irqrestore(&priv->lock, flags);
903 }
904
905 static void ipw_bg_led_link_on(struct work_struct *work)
906 {
907 struct ipw_priv *priv =
908 container_of(work, struct ipw_priv, led_link_on.work);
909 mutex_lock(&priv->mutex);
910 ipw_led_link_on(priv);
911 mutex_unlock(&priv->mutex);
912 }
913
914 static void ipw_led_link_off(struct ipw_priv *priv)
915 {
916 unsigned long flags;
917 u32 led;
918
919 /* If configured not to use LEDs, or nic type is 1,
920 * then we don't goggle the LINK led. */
921 if (priv->config & CFG_NO_LED || priv->nic_type == EEPROM_NIC_TYPE_1)
922 return;
923
924 spin_lock_irqsave(&priv->lock, flags);
925
926 if (priv->status & STATUS_LED_LINK_ON) {
927 led = ipw_read_reg32(priv, IPW_EVENT_REG);
928 led &= priv->led_association_off;
929 led = ipw_register_toggle(led);
930
931 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
932 ipw_write_reg32(priv, IPW_EVENT_REG, led);
933
934 IPW_DEBUG_LED("Link LED Off\n");
935
936 priv->status &= ~STATUS_LED_LINK_ON;
937
938 /* If we aren't associated and the radio is on, schedule
939 * turning the LED on (blink while unassociated) */
940 if (!(priv->status & STATUS_RF_KILL_MASK) &&
941 !(priv->status & STATUS_ASSOCIATED))
942 queue_delayed_work(priv->workqueue, &priv->led_link_on,
943 LD_TIME_LINK_OFF);
944
945 }
946
947 spin_unlock_irqrestore(&priv->lock, flags);
948 }
949
950 static void ipw_bg_led_link_off(struct work_struct *work)
951 {
952 struct ipw_priv *priv =
953 container_of(work, struct ipw_priv, led_link_off.work);
954 mutex_lock(&priv->mutex);
955 ipw_led_link_off(priv);
956 mutex_unlock(&priv->mutex);
957 }
958
959 static void __ipw_led_activity_on(struct ipw_priv *priv)
960 {
961 u32 led;
962
963 if (priv->config & CFG_NO_LED)
964 return;
965
966 if (priv->status & STATUS_RF_KILL_MASK)
967 return;
968
969 if (!(priv->status & STATUS_LED_ACT_ON)) {
970 led = ipw_read_reg32(priv, IPW_EVENT_REG);
971 led |= priv->led_activity_on;
972
973 led = ipw_register_toggle(led);
974
975 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
976 ipw_write_reg32(priv, IPW_EVENT_REG, led);
977
978 IPW_DEBUG_LED("Activity LED On\n");
979
980 priv->status |= STATUS_LED_ACT_ON;
981
982 cancel_delayed_work(&priv->led_act_off);
983 queue_delayed_work(priv->workqueue, &priv->led_act_off,
984 LD_TIME_ACT_ON);
985 } else {
986 /* Reschedule LED off for full time period */
987 cancel_delayed_work(&priv->led_act_off);
988 queue_delayed_work(priv->workqueue, &priv->led_act_off,
989 LD_TIME_ACT_ON);
990 }
991 }
992
993 #if 0
994 void ipw_led_activity_on(struct ipw_priv *priv)
995 {
996 unsigned long flags;
997 spin_lock_irqsave(&priv->lock, flags);
998 __ipw_led_activity_on(priv);
999 spin_unlock_irqrestore(&priv->lock, flags);
1000 }
1001 #endif /* 0 */
1002
1003 static void ipw_led_activity_off(struct ipw_priv *priv)
1004 {
1005 unsigned long flags;
1006 u32 led;
1007
1008 if (priv->config & CFG_NO_LED)
1009 return;
1010
1011 spin_lock_irqsave(&priv->lock, flags);
1012
1013 if (priv->status & STATUS_LED_ACT_ON) {
1014 led = ipw_read_reg32(priv, IPW_EVENT_REG);
1015 led &= priv->led_activity_off;
1016
1017 led = ipw_register_toggle(led);
1018
1019 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
1020 ipw_write_reg32(priv, IPW_EVENT_REG, led);
1021
1022 IPW_DEBUG_LED("Activity LED Off\n");
1023
1024 priv->status &= ~STATUS_LED_ACT_ON;
1025 }
1026
1027 spin_unlock_irqrestore(&priv->lock, flags);
1028 }
1029
1030 static void ipw_bg_led_activity_off(struct work_struct *work)
1031 {
1032 struct ipw_priv *priv =
1033 container_of(work, struct ipw_priv, led_act_off.work);
1034 mutex_lock(&priv->mutex);
1035 ipw_led_activity_off(priv);
1036 mutex_unlock(&priv->mutex);
1037 }
1038
1039 static void ipw_led_band_on(struct ipw_priv *priv)
1040 {
1041 unsigned long flags;
1042 u32 led;
1043
1044 /* Only nic type 1 supports mode LEDs */
1045 if (priv->config & CFG_NO_LED ||
1046 priv->nic_type != EEPROM_NIC_TYPE_1 || !priv->assoc_network)
1047 return;
1048
1049 spin_lock_irqsave(&priv->lock, flags);
1050
1051 led = ipw_read_reg32(priv, IPW_EVENT_REG);
1052 if (priv->assoc_network->mode == IEEE_A) {
1053 led |= priv->led_ofdm_on;
1054 led &= priv->led_association_off;
1055 IPW_DEBUG_LED("Mode LED On: 802.11a\n");
1056 } else if (priv->assoc_network->mode == IEEE_G) {
1057 led |= priv->led_ofdm_on;
1058 led |= priv->led_association_on;
1059 IPW_DEBUG_LED("Mode LED On: 802.11g\n");
1060 } else {
1061 led &= priv->led_ofdm_off;
1062 led |= priv->led_association_on;
1063 IPW_DEBUG_LED("Mode LED On: 802.11b\n");
1064 }
1065
1066 led = ipw_register_toggle(led);
1067
1068 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
1069 ipw_write_reg32(priv, IPW_EVENT_REG, led);
1070
1071 spin_unlock_irqrestore(&priv->lock, flags);
1072 }
1073
1074 static void ipw_led_band_off(struct ipw_priv *priv)
1075 {
1076 unsigned long flags;
1077 u32 led;
1078
1079 /* Only nic type 1 supports mode LEDs */
1080 if (priv->config & CFG_NO_LED || priv->nic_type != EEPROM_NIC_TYPE_1)
1081 return;
1082
1083 spin_lock_irqsave(&priv->lock, flags);
1084
1085 led = ipw_read_reg32(priv, IPW_EVENT_REG);
1086 led &= priv->led_ofdm_off;
1087 led &= priv->led_association_off;
1088
1089 led = ipw_register_toggle(led);
1090
1091 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
1092 ipw_write_reg32(priv, IPW_EVENT_REG, led);
1093
1094 spin_unlock_irqrestore(&priv->lock, flags);
1095 }
1096
1097 static void ipw_led_radio_on(struct ipw_priv *priv)
1098 {
1099 ipw_led_link_on(priv);
1100 }
1101
1102 static void ipw_led_radio_off(struct ipw_priv *priv)
1103 {
1104 ipw_led_activity_off(priv);
1105 ipw_led_link_off(priv);
1106 }
1107
1108 static void ipw_led_link_up(struct ipw_priv *priv)
1109 {
1110 /* Set the Link Led on for all nic types */
1111 ipw_led_link_on(priv);
1112 }
1113
1114 static void ipw_led_link_down(struct ipw_priv *priv)
1115 {
1116 ipw_led_activity_off(priv);
1117 ipw_led_link_off(priv);
1118
1119 if (priv->status & STATUS_RF_KILL_MASK)
1120 ipw_led_radio_off(priv);
1121 }
1122
1123 static void ipw_led_init(struct ipw_priv *priv)
1124 {
1125 priv->nic_type = priv->eeprom[EEPROM_NIC_TYPE];
1126
1127 /* Set the default PINs for the link and activity leds */
1128 priv->led_activity_on = IPW_ACTIVITY_LED;
1129 priv->led_activity_off = ~(IPW_ACTIVITY_LED);
1130
1131 priv->led_association_on = IPW_ASSOCIATED_LED;
1132 priv->led_association_off = ~(IPW_ASSOCIATED_LED);
1133
1134 /* Set the default PINs for the OFDM leds */
1135 priv->led_ofdm_on = IPW_OFDM_LED;
1136 priv->led_ofdm_off = ~(IPW_OFDM_LED);
1137
1138 switch (priv->nic_type) {
1139 case EEPROM_NIC_TYPE_1:
1140 /* In this NIC type, the LEDs are reversed.... */
1141 priv->led_activity_on = IPW_ASSOCIATED_LED;
1142 priv->led_activity_off = ~(IPW_ASSOCIATED_LED);
1143 priv->led_association_on = IPW_ACTIVITY_LED;
1144 priv->led_association_off = ~(IPW_ACTIVITY_LED);
1145
1146 if (!(priv->config & CFG_NO_LED))
1147 ipw_led_band_on(priv);
1148
1149 /* And we don't blink link LEDs for this nic, so
1150 * just return here */
1151 return;
1152
1153 case EEPROM_NIC_TYPE_3:
1154 case EEPROM_NIC_TYPE_2:
1155 case EEPROM_NIC_TYPE_4:
1156 case EEPROM_NIC_TYPE_0:
1157 break;
1158
1159 default:
1160 IPW_DEBUG_INFO("Unknown NIC type from EEPROM: %d\n",
1161 priv->nic_type);
1162 priv->nic_type = EEPROM_NIC_TYPE_0;
1163 break;
1164 }
1165
1166 if (!(priv->config & CFG_NO_LED)) {
1167 if (priv->status & STATUS_ASSOCIATED)
1168 ipw_led_link_on(priv);
1169 else
1170 ipw_led_link_off(priv);
1171 }
1172 }
1173
1174 static void ipw_led_shutdown(struct ipw_priv *priv)
1175 {
1176 ipw_led_activity_off(priv);
1177 ipw_led_link_off(priv);
1178 ipw_led_band_off(priv);
1179 cancel_delayed_work(&priv->led_link_on);
1180 cancel_delayed_work(&priv->led_link_off);
1181 cancel_delayed_work(&priv->led_act_off);
1182 }
1183
1184 /*
1185 * The following adds a new attribute to the sysfs representation
1186 * of this device driver (i.e. a new file in /sys/bus/pci/drivers/ipw/)
1187 * used for controling the debug level.
1188 *
1189 * See the level definitions in ipw for details.
1190 */
1191 static ssize_t show_debug_level(struct device_driver *d, char *buf)
1192 {
1193 return sprintf(buf, "0x%08X\n", ipw_debug_level);
1194 }
1195
1196 static ssize_t store_debug_level(struct device_driver *d, const char *buf,
1197 size_t count)
1198 {
1199 char *p = (char *)buf;
1200 u32 val;
1201
1202 if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
1203 p++;
1204 if (p[0] == 'x' || p[0] == 'X')
1205 p++;
1206 val = simple_strtoul(p, &p, 16);
1207 } else
1208 val = simple_strtoul(p, &p, 10);
1209 if (p == buf)
1210 printk(KERN_INFO DRV_NAME
1211 ": %s is not in hex or decimal form.\n", buf);
1212 else
1213 ipw_debug_level = val;
1214
1215 return strnlen(buf, count);
1216 }
1217
1218 static DRIVER_ATTR(debug_level, S_IWUSR | S_IRUGO,
1219 show_debug_level, store_debug_level);
1220
1221 static inline u32 ipw_get_event_log_len(struct ipw_priv *priv)
1222 {
1223 /* length = 1st dword in log */
1224 return ipw_read_reg32(priv, ipw_read32(priv, IPW_EVENT_LOG));
1225 }
1226
1227 static void ipw_capture_event_log(struct ipw_priv *priv,
1228 u32 log_len, struct ipw_event *log)
1229 {
1230 u32 base;
1231
1232 if (log_len) {
1233 base = ipw_read32(priv, IPW_EVENT_LOG);
1234 ipw_read_indirect(priv, base + sizeof(base) + sizeof(u32),
1235 (u8 *) log, sizeof(*log) * log_len);
1236 }
1237 }
1238
1239 static struct ipw_fw_error *ipw_alloc_error_log(struct ipw_priv *priv)
1240 {
1241 struct ipw_fw_error *error;
1242 u32 log_len = ipw_get_event_log_len(priv);
1243 u32 base = ipw_read32(priv, IPW_ERROR_LOG);
1244 u32 elem_len = ipw_read_reg32(priv, base);
1245
1246 error = kmalloc(sizeof(*error) +
1247 sizeof(*error->elem) * elem_len +
1248 sizeof(*error->log) * log_len, GFP_ATOMIC);
1249 if (!error) {
1250 IPW_ERROR("Memory allocation for firmware error log "
1251 "failed.\n");
1252 return NULL;
1253 }
1254 error->jiffies = jiffies;
1255 error->status = priv->status;
1256 error->config = priv->config;
1257 error->elem_len = elem_len;
1258 error->log_len = log_len;
1259 error->elem = (struct ipw_error_elem *)error->payload;
1260 error->log = (struct ipw_event *)(error->elem + elem_len);
1261
1262 ipw_capture_event_log(priv, log_len, error->log);
1263
1264 if (elem_len)
1265 ipw_read_indirect(priv, base + sizeof(base), (u8 *) error->elem,
1266 sizeof(*error->elem) * elem_len);
1267
1268 return error;
1269 }
1270
1271 static ssize_t show_event_log(struct device *d,
1272 struct device_attribute *attr, char *buf)
1273 {
1274 struct ipw_priv *priv = dev_get_drvdata(d);
1275 u32 log_len = ipw_get_event_log_len(priv);
1276 u32 log_size;
1277 struct ipw_event *log;
1278 u32 len = 0, i;
1279
1280 /* not using min() because of its strict type checking */
1281 log_size = PAGE_SIZE / sizeof(*log) > log_len ?
1282 sizeof(*log) * log_len : PAGE_SIZE;
1283 log = kzalloc(log_size, GFP_KERNEL);
1284 if (!log) {
1285 IPW_ERROR("Unable to allocate memory for log\n");
1286 return 0;
1287 }
1288 log_len = log_size / sizeof(*log);
1289 ipw_capture_event_log(priv, log_len, log);
1290
1291 len += snprintf(buf + len, PAGE_SIZE - len, "%08X", log_len);
1292 for (i = 0; i < log_len; i++)
1293 len += snprintf(buf + len, PAGE_SIZE - len,
1294 "\n%08X%08X%08X",
1295 log[i].time, log[i].event, log[i].data);
1296 len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1297 kfree(log);
1298 return len;
1299 }
1300
1301 static DEVICE_ATTR(event_log, S_IRUGO, show_event_log, NULL);
1302
1303 static ssize_t show_error(struct device *d,
1304 struct device_attribute *attr, char *buf)
1305 {
1306 struct ipw_priv *priv = dev_get_drvdata(d);
1307 u32 len = 0, i;
1308 if (!priv->error)
1309 return 0;
1310 len += snprintf(buf + len, PAGE_SIZE - len,
1311 "%08lX%08X%08X%08X",
1312 priv->error->jiffies,
1313 priv->error->status,
1314 priv->error->config, priv->error->elem_len);
1315 for (i = 0; i < priv->error->elem_len; i++)
1316 len += snprintf(buf + len, PAGE_SIZE - len,
1317 "\n%08X%08X%08X%08X%08X%08X%08X",
1318 priv->error->elem[i].time,
1319 priv->error->elem[i].desc,
1320 priv->error->elem[i].blink1,
1321 priv->error->elem[i].blink2,
1322 priv->error->elem[i].link1,
1323 priv->error->elem[i].link2,
1324 priv->error->elem[i].data);
1325
1326 len += snprintf(buf + len, PAGE_SIZE - len,
1327 "\n%08X", priv->error->log_len);
1328 for (i = 0; i < priv->error->log_len; i++)
1329 len += snprintf(buf + len, PAGE_SIZE - len,
1330 "\n%08X%08X%08X",
1331 priv->error->log[i].time,
1332 priv->error->log[i].event,
1333 priv->error->log[i].data);
1334 len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1335 return len;
1336 }
1337
1338 static ssize_t clear_error(struct device *d,
1339 struct device_attribute *attr,
1340 const char *buf, size_t count)
1341 {
1342 struct ipw_priv *priv = dev_get_drvdata(d);
1343
1344 kfree(priv->error);
1345 priv->error = NULL;
1346 return count;
1347 }
1348
1349 static DEVICE_ATTR(error, S_IRUGO | S_IWUSR, show_error, clear_error);
1350
1351 static ssize_t show_cmd_log(struct device *d,
1352 struct device_attribute *attr, char *buf)
1353 {
1354 struct ipw_priv *priv = dev_get_drvdata(d);
1355 u32 len = 0, i;
1356 if (!priv->cmdlog)
1357 return 0;
1358 for (i = (priv->cmdlog_pos + 1) % priv->cmdlog_len;
1359 (i != priv->cmdlog_pos) && (PAGE_SIZE - len);
1360 i = (i + 1) % priv->cmdlog_len) {
1361 len +=
1362 snprintf(buf + len, PAGE_SIZE - len,
1363 "\n%08lX%08X%08X%08X\n", priv->cmdlog[i].jiffies,
1364 priv->cmdlog[i].retcode, priv->cmdlog[i].cmd.cmd,
1365 priv->cmdlog[i].cmd.len);
1366 len +=
1367 snprintk_buf(buf + len, PAGE_SIZE - len,
1368 (u8 *) priv->cmdlog[i].cmd.param,
1369 priv->cmdlog[i].cmd.len);
1370 len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1371 }
1372 len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1373 return len;
1374 }
1375
1376 static DEVICE_ATTR(cmd_log, S_IRUGO, show_cmd_log, NULL);
1377
1378 #ifdef CONFIG_IPW2200_PROMISCUOUS
1379 static void ipw_prom_free(struct ipw_priv *priv);
1380 static int ipw_prom_alloc(struct ipw_priv *priv);
1381 static ssize_t store_rtap_iface(struct device *d,
1382 struct device_attribute *attr,
1383 const char *buf, size_t count)
1384 {
1385 struct ipw_priv *priv = dev_get_drvdata(d);
1386 int rc = 0;
1387
1388 if (count < 1)
1389 return -EINVAL;
1390
1391 switch (buf[0]) {
1392 case '0':
1393 if (!rtap_iface)
1394 return count;
1395
1396 if (netif_running(priv->prom_net_dev)) {
1397 IPW_WARNING("Interface is up. Cannot unregister.\n");
1398 return count;
1399 }
1400
1401 ipw_prom_free(priv);
1402 rtap_iface = 0;
1403 break;
1404
1405 case '1':
1406 if (rtap_iface)
1407 return count;
1408
1409 rc = ipw_prom_alloc(priv);
1410 if (!rc)
1411 rtap_iface = 1;
1412 break;
1413
1414 default:
1415 return -EINVAL;
1416 }
1417
1418 if (rc) {
1419 IPW_ERROR("Failed to register promiscuous network "
1420 "device (error %d).\n", rc);
1421 }
1422
1423 return count;
1424 }
1425
1426 static ssize_t show_rtap_iface(struct device *d,
1427 struct device_attribute *attr,
1428 char *buf)
1429 {
1430 struct ipw_priv *priv = dev_get_drvdata(d);
1431 if (rtap_iface)
1432 return sprintf(buf, "%s", priv->prom_net_dev->name);
1433 else {
1434 buf[0] = '-';
1435 buf[1] = '1';
1436 buf[2] = '\0';
1437 return 3;
1438 }
1439 }
1440
1441 static DEVICE_ATTR(rtap_iface, S_IWUSR | S_IRUSR, show_rtap_iface,
1442 store_rtap_iface);
1443
1444 static ssize_t store_rtap_filter(struct device *d,
1445 struct device_attribute *attr,
1446 const char *buf, size_t count)
1447 {
1448 struct ipw_priv *priv = dev_get_drvdata(d);
1449
1450 if (!priv->prom_priv) {
1451 IPW_ERROR("Attempting to set filter without "
1452 "rtap_iface enabled.\n");
1453 return -EPERM;
1454 }
1455
1456 priv->prom_priv->filter = simple_strtol(buf, NULL, 0);
1457
1458 IPW_DEBUG_INFO("Setting rtap filter to " BIT_FMT16 "\n",
1459 BIT_ARG16(priv->prom_priv->filter));
1460
1461 return count;
1462 }
1463
1464 static ssize_t show_rtap_filter(struct device *d,
1465 struct device_attribute *attr,
1466 char *buf)
1467 {
1468 struct ipw_priv *priv = dev_get_drvdata(d);
1469 return sprintf(buf, "0x%04X",
1470 priv->prom_priv ? priv->prom_priv->filter : 0);
1471 }
1472
1473 static DEVICE_ATTR(rtap_filter, S_IWUSR | S_IRUSR, show_rtap_filter,
1474 store_rtap_filter);
1475 #endif
1476
1477 static ssize_t show_scan_age(struct device *d, struct device_attribute *attr,
1478 char *buf)
1479 {
1480 struct ipw_priv *priv = dev_get_drvdata(d);
1481 return sprintf(buf, "%d\n", priv->ieee->scan_age);
1482 }
1483
1484 static ssize_t store_scan_age(struct device *d, struct device_attribute *attr,
1485 const char *buf, size_t count)
1486 {
1487 struct ipw_priv *priv = dev_get_drvdata(d);
1488 struct net_device *dev = priv->net_dev;
1489 char buffer[] = "00000000";
1490 unsigned long len =
1491 (sizeof(buffer) - 1) > count ? count : sizeof(buffer) - 1;
1492 unsigned long val;
1493 char *p = buffer;
1494
1495 IPW_DEBUG_INFO("enter\n");
1496
1497 strncpy(buffer, buf, len);
1498 buffer[len] = 0;
1499
1500 if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
1501 p++;
1502 if (p[0] == 'x' || p[0] == 'X')
1503 p++;
1504 val = simple_strtoul(p, &p, 16);
1505 } else
1506 val = simple_strtoul(p, &p, 10);
1507 if (p == buffer) {
1508 IPW_DEBUG_INFO("%s: user supplied invalid value.\n", dev->name);
1509 } else {
1510 priv->ieee->scan_age = val;
1511 IPW_DEBUG_INFO("set scan_age = %u\n", priv->ieee->scan_age);
1512 }
1513
1514 IPW_DEBUG_INFO("exit\n");
1515 return len;
1516 }
1517
1518 static DEVICE_ATTR(scan_age, S_IWUSR | S_IRUGO, show_scan_age, store_scan_age);
1519
1520 static ssize_t show_led(struct device *d, struct device_attribute *attr,
1521 char *buf)
1522 {
1523 struct ipw_priv *priv = dev_get_drvdata(d);
1524 return sprintf(buf, "%d\n", (priv->config & CFG_NO_LED) ? 0 : 1);
1525 }
1526
1527 static ssize_t store_led(struct device *d, struct device_attribute *attr,
1528 const char *buf, size_t count)
1529 {
1530 struct ipw_priv *priv = dev_get_drvdata(d);
1531
1532 IPW_DEBUG_INFO("enter\n");
1533
1534 if (count == 0)
1535 return 0;
1536
1537 if (*buf == 0) {
1538 IPW_DEBUG_LED("Disabling LED control.\n");
1539 priv->config |= CFG_NO_LED;
1540 ipw_led_shutdown(priv);
1541 } else {
1542 IPW_DEBUG_LED("Enabling LED control.\n");
1543 priv->config &= ~CFG_NO_LED;
1544 ipw_led_init(priv);
1545 }
1546
1547 IPW_DEBUG_INFO("exit\n");
1548 return count;
1549 }
1550
1551 static DEVICE_ATTR(led, S_IWUSR | S_IRUGO, show_led, store_led);
1552
1553 static ssize_t show_status(struct device *d,
1554 struct device_attribute *attr, char *buf)
1555 {
1556 struct ipw_priv *p = dev_get_drvdata(d);
1557 return sprintf(buf, "0x%08x\n", (int)p->status);
1558 }
1559
1560 static DEVICE_ATTR(status, S_IRUGO, show_status, NULL);
1561
1562 static ssize_t show_cfg(struct device *d, struct device_attribute *attr,
1563 char *buf)
1564 {
1565 struct ipw_priv *p = dev_get_drvdata(d);
1566 return sprintf(buf, "0x%08x\n", (int)p->config);
1567 }
1568
1569 static DEVICE_ATTR(cfg, S_IRUGO, show_cfg, NULL);
1570
1571 static ssize_t show_nic_type(struct device *d,
1572 struct device_attribute *attr, char *buf)
1573 {
1574 struct ipw_priv *priv = dev_get_drvdata(d);
1575 return sprintf(buf, "TYPE: %d\n", priv->nic_type);
1576 }
1577
1578 static DEVICE_ATTR(nic_type, S_IRUGO, show_nic_type, NULL);
1579
1580 static ssize_t show_ucode_version(struct device *d,
1581 struct device_attribute *attr, char *buf)
1582 {
1583 u32 len = sizeof(u32), tmp = 0;
1584 struct ipw_priv *p = dev_get_drvdata(d);
1585
1586 if (ipw_get_ordinal(p, IPW_ORD_STAT_UCODE_VERSION, &tmp, &len))
1587 return 0;
1588
1589 return sprintf(buf, "0x%08x\n", tmp);
1590 }
1591
1592 static DEVICE_ATTR(ucode_version, S_IWUSR | S_IRUGO, show_ucode_version, NULL);
1593
1594 static ssize_t show_rtc(struct device *d, struct device_attribute *attr,
1595 char *buf)
1596 {
1597 u32 len = sizeof(u32), tmp = 0;
1598 struct ipw_priv *p = dev_get_drvdata(d);
1599
1600 if (ipw_get_ordinal(p, IPW_ORD_STAT_RTC, &tmp, &len))
1601 return 0;
1602
1603 return sprintf(buf, "0x%08x\n", tmp);
1604 }
1605
1606 static DEVICE_ATTR(rtc, S_IWUSR | S_IRUGO, show_rtc, NULL);
1607
1608 /*
1609 * Add a device attribute to view/control the delay between eeprom
1610 * operations.
1611 */
1612 static ssize_t show_eeprom_delay(struct device *d,
1613 struct device_attribute *attr, char *buf)
1614 {
1615 struct ipw_priv *p = dev_get_drvdata(d);
1616 int n = p->eeprom_delay;
1617 return sprintf(buf, "%i\n", n);
1618 }
1619 static ssize_t store_eeprom_delay(struct device *d,
1620 struct device_attribute *attr,
1621 const char *buf, size_t count)
1622 {
1623 struct ipw_priv *p = dev_get_drvdata(d);
1624 sscanf(buf, "%i", &p->eeprom_delay);
1625 return strnlen(buf, count);
1626 }
1627
1628 static DEVICE_ATTR(eeprom_delay, S_IWUSR | S_IRUGO,
1629 show_eeprom_delay, store_eeprom_delay);
1630
1631 static ssize_t show_command_event_reg(struct device *d,
1632 struct device_attribute *attr, char *buf)
1633 {
1634 u32 reg = 0;
1635 struct ipw_priv *p = dev_get_drvdata(d);
1636
1637 reg = ipw_read_reg32(p, IPW_INTERNAL_CMD_EVENT);
1638 return sprintf(buf, "0x%08x\n", reg);
1639 }
1640 static ssize_t store_command_event_reg(struct device *d,
1641 struct device_attribute *attr,
1642 const char *buf, size_t count)
1643 {
1644 u32 reg;
1645 struct ipw_priv *p = dev_get_drvdata(d);
1646
1647 sscanf(buf, "%x", &reg);
1648 ipw_write_reg32(p, IPW_INTERNAL_CMD_EVENT, reg);
1649 return strnlen(buf, count);
1650 }
1651
1652 static DEVICE_ATTR(command_event_reg, S_IWUSR | S_IRUGO,
1653 show_command_event_reg, store_command_event_reg);
1654
1655 static ssize_t show_mem_gpio_reg(struct device *d,
1656 struct device_attribute *attr, char *buf)
1657 {
1658 u32 reg = 0;
1659 struct ipw_priv *p = dev_get_drvdata(d);
1660
1661 reg = ipw_read_reg32(p, 0x301100);
1662 return sprintf(buf, "0x%08x\n", reg);
1663 }
1664 static ssize_t store_mem_gpio_reg(struct device *d,
1665 struct device_attribute *attr,
1666 const char *buf, size_t count)
1667 {
1668 u32 reg;
1669 struct ipw_priv *p = dev_get_drvdata(d);
1670
1671 sscanf(buf, "%x", &reg);
1672 ipw_write_reg32(p, 0x301100, reg);
1673 return strnlen(buf, count);
1674 }
1675
1676 static DEVICE_ATTR(mem_gpio_reg, S_IWUSR | S_IRUGO,
1677 show_mem_gpio_reg, store_mem_gpio_reg);
1678
1679 static ssize_t show_indirect_dword(struct device *d,
1680 struct device_attribute *attr, char *buf)
1681 {
1682 u32 reg = 0;
1683 struct ipw_priv *priv = dev_get_drvdata(d);
1684
1685 if (priv->status & STATUS_INDIRECT_DWORD)
1686 reg = ipw_read_reg32(priv, priv->indirect_dword);
1687 else
1688 reg = 0;
1689
1690 return sprintf(buf, "0x%08x\n", reg);
1691 }
1692 static ssize_t store_indirect_dword(struct device *d,
1693 struct device_attribute *attr,
1694 const char *buf, size_t count)
1695 {
1696 struct ipw_priv *priv = dev_get_drvdata(d);
1697
1698 sscanf(buf, "%x", &priv->indirect_dword);
1699 priv->status |= STATUS_INDIRECT_DWORD;
1700 return strnlen(buf, count);
1701 }
1702
1703 static DEVICE_ATTR(indirect_dword, S_IWUSR | S_IRUGO,
1704 show_indirect_dword, store_indirect_dword);
1705
1706 static ssize_t show_indirect_byte(struct device *d,
1707 struct device_attribute *attr, char *buf)
1708 {
1709 u8 reg = 0;
1710 struct ipw_priv *priv = dev_get_drvdata(d);
1711
1712 if (priv->status & STATUS_INDIRECT_BYTE)
1713 reg = ipw_read_reg8(priv, priv->indirect_byte);
1714 else
1715 reg = 0;
1716
1717 return sprintf(buf, "0x%02x\n", reg);
1718 }
1719 static ssize_t store_indirect_byte(struct device *d,
1720 struct device_attribute *attr,
1721 const char *buf, size_t count)
1722 {
1723 struct ipw_priv *priv = dev_get_drvdata(d);
1724
1725 sscanf(buf, "%x", &priv->indirect_byte);
1726 priv->status |= STATUS_INDIRECT_BYTE;
1727 return strnlen(buf, count);
1728 }
1729
1730 static DEVICE_ATTR(indirect_byte, S_IWUSR | S_IRUGO,
1731 show_indirect_byte, store_indirect_byte);
1732
1733 static ssize_t show_direct_dword(struct device *d,
1734 struct device_attribute *attr, char *buf)
1735 {
1736 u32 reg = 0;
1737 struct ipw_priv *priv = dev_get_drvdata(d);
1738
1739 if (priv->status & STATUS_DIRECT_DWORD)
1740 reg = ipw_read32(priv, priv->direct_dword);
1741 else
1742 reg = 0;
1743
1744 return sprintf(buf, "0x%08x\n", reg);
1745 }
1746 static ssize_t store_direct_dword(struct device *d,
1747 struct device_attribute *attr,
1748 const char *buf, size_t count)
1749 {
1750 struct ipw_priv *priv = dev_get_drvdata(d);
1751
1752 sscanf(buf, "%x", &priv->direct_dword);
1753 priv->status |= STATUS_DIRECT_DWORD;
1754 return strnlen(buf, count);
1755 }
1756
1757 static DEVICE_ATTR(direct_dword, S_IWUSR | S_IRUGO,
1758 show_direct_dword, store_direct_dword);
1759
1760 static int rf_kill_active(struct ipw_priv *priv)
1761 {
1762 if (0 == (ipw_read32(priv, 0x30) & 0x10000)) {
1763 priv->status |= STATUS_RF_KILL_HW;
1764 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, true);
1765 } else {
1766 priv->status &= ~STATUS_RF_KILL_HW;
1767 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, false);
1768 }
1769
1770 return (priv->status & STATUS_RF_KILL_HW) ? 1 : 0;
1771 }
1772
1773 static ssize_t show_rf_kill(struct device *d, struct device_attribute *attr,
1774 char *buf)
1775 {
1776 /* 0 - RF kill not enabled
1777 1 - SW based RF kill active (sysfs)
1778 2 - HW based RF kill active
1779 3 - Both HW and SW baed RF kill active */
1780 struct ipw_priv *priv = dev_get_drvdata(d);
1781 int val = ((priv->status & STATUS_RF_KILL_SW) ? 0x1 : 0x0) |
1782 (rf_kill_active(priv) ? 0x2 : 0x0);
1783 return sprintf(buf, "%i\n", val);
1784 }
1785
1786 static int ipw_radio_kill_sw(struct ipw_priv *priv, int disable_radio)
1787 {
1788 if ((disable_radio ? 1 : 0) ==
1789 ((priv->status & STATUS_RF_KILL_SW) ? 1 : 0))
1790 return 0;
1791
1792 IPW_DEBUG_RF_KILL("Manual SW RF Kill set to: RADIO %s\n",
1793 disable_radio ? "OFF" : "ON");
1794
1795 if (disable_radio) {
1796 priv->status |= STATUS_RF_KILL_SW;
1797
1798 if (priv->workqueue) {
1799 cancel_delayed_work(&priv->request_scan);
1800 cancel_delayed_work(&priv->request_direct_scan);
1801 cancel_delayed_work(&priv->request_passive_scan);
1802 cancel_delayed_work(&priv->scan_event);
1803 }
1804 queue_work(priv->workqueue, &priv->down);
1805 } else {
1806 priv->status &= ~STATUS_RF_KILL_SW;
1807 if (rf_kill_active(priv)) {
1808 IPW_DEBUG_RF_KILL("Can not turn radio back on - "
1809 "disabled by HW switch\n");
1810 /* Make sure the RF_KILL check timer is running */
1811 cancel_delayed_work(&priv->rf_kill);
1812 queue_delayed_work(priv->workqueue, &priv->rf_kill,
1813 round_jiffies_relative(2 * HZ));
1814 } else
1815 queue_work(priv->workqueue, &priv->up);
1816 }
1817
1818 return 1;
1819 }
1820
1821 static ssize_t store_rf_kill(struct device *d, struct device_attribute *attr,
1822 const char *buf, size_t count)
1823 {
1824 struct ipw_priv *priv = dev_get_drvdata(d);
1825
1826 ipw_radio_kill_sw(priv, buf[0] == '1');
1827
1828 return count;
1829 }
1830
1831 static DEVICE_ATTR(rf_kill, S_IWUSR | S_IRUGO, show_rf_kill, store_rf_kill);
1832
1833 static ssize_t show_speed_scan(struct device *d, struct device_attribute *attr,
1834 char *buf)
1835 {
1836 struct ipw_priv *priv = dev_get_drvdata(d);
1837 int pos = 0, len = 0;
1838 if (priv->config & CFG_SPEED_SCAN) {
1839 while (priv->speed_scan[pos] != 0)
1840 len += sprintf(&buf[len], "%d ",
1841 priv->speed_scan[pos++]);
1842 return len + sprintf(&buf[len], "\n");
1843 }
1844
1845 return sprintf(buf, "0\n");
1846 }
1847
1848 static ssize_t store_speed_scan(struct device *d, struct device_attribute *attr,
1849 const char *buf, size_t count)
1850 {
1851 struct ipw_priv *priv = dev_get_drvdata(d);
1852 int channel, pos = 0;
1853 const char *p = buf;
1854
1855 /* list of space separated channels to scan, optionally ending with 0 */
1856 while ((channel = simple_strtol(p, NULL, 0))) {
1857 if (pos == MAX_SPEED_SCAN - 1) {
1858 priv->speed_scan[pos] = 0;
1859 break;
1860 }
1861
1862 if (libipw_is_valid_channel(priv->ieee, channel))
1863 priv->speed_scan[pos++] = channel;
1864 else
1865 IPW_WARNING("Skipping invalid channel request: %d\n",
1866 channel);
1867 p = strchr(p, ' ');
1868 if (!p)
1869 break;
1870 while (*p == ' ' || *p == '\t')
1871 p++;
1872 }
1873
1874 if (pos == 0)
1875 priv->config &= ~CFG_SPEED_SCAN;
1876 else {
1877 priv->speed_scan_pos = 0;
1878 priv->config |= CFG_SPEED_SCAN;
1879 }
1880
1881 return count;
1882 }
1883
1884 static DEVICE_ATTR(speed_scan, S_IWUSR | S_IRUGO, show_speed_scan,
1885 store_speed_scan);
1886
1887 static ssize_t show_net_stats(struct device *d, struct device_attribute *attr,
1888 char *buf)
1889 {
1890 struct ipw_priv *priv = dev_get_drvdata(d);
1891 return sprintf(buf, "%c\n", (priv->config & CFG_NET_STATS) ? '1' : '0');
1892 }
1893
1894 static ssize_t store_net_stats(struct device *d, struct device_attribute *attr,
1895 const char *buf, size_t count)
1896 {
1897 struct ipw_priv *priv = dev_get_drvdata(d);
1898 if (buf[0] == '1')
1899 priv->config |= CFG_NET_STATS;
1900 else
1901 priv->config &= ~CFG_NET_STATS;
1902
1903 return count;
1904 }
1905
1906 static DEVICE_ATTR(net_stats, S_IWUSR | S_IRUGO,
1907 show_net_stats, store_net_stats);
1908
1909 static ssize_t show_channels(struct device *d,
1910 struct device_attribute *attr,
1911 char *buf)
1912 {
1913 struct ipw_priv *priv = dev_get_drvdata(d);
1914 const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
1915 int len = 0, i;
1916
1917 len = sprintf(&buf[len],
1918 "Displaying %d channels in 2.4Ghz band "
1919 "(802.11bg):\n", geo->bg_channels);
1920
1921 for (i = 0; i < geo->bg_channels; i++) {
1922 len += sprintf(&buf[len], "%d: BSS%s%s, %s, Band %s.\n",
1923 geo->bg[i].channel,
1924 geo->bg[i].flags & LIBIPW_CH_RADAR_DETECT ?
1925 " (radar spectrum)" : "",
1926 ((geo->bg[i].flags & LIBIPW_CH_NO_IBSS) ||
1927 (geo->bg[i].flags & LIBIPW_CH_RADAR_DETECT))
1928 ? "" : ", IBSS",
1929 geo->bg[i].flags & LIBIPW_CH_PASSIVE_ONLY ?
1930 "passive only" : "active/passive",
1931 geo->bg[i].flags & LIBIPW_CH_B_ONLY ?
1932 "B" : "B/G");
1933 }
1934
1935 len += sprintf(&buf[len],
1936 "Displaying %d channels in 5.2Ghz band "
1937 "(802.11a):\n", geo->a_channels);
1938 for (i = 0; i < geo->a_channels; i++) {
1939 len += sprintf(&buf[len], "%d: BSS%s%s, %s.\n",
1940 geo->a[i].channel,
1941 geo->a[i].flags & LIBIPW_CH_RADAR_DETECT ?
1942 " (radar spectrum)" : "",
1943 ((geo->a[i].flags & LIBIPW_CH_NO_IBSS) ||
1944 (geo->a[i].flags & LIBIPW_CH_RADAR_DETECT))
1945 ? "" : ", IBSS",
1946 geo->a[i].flags & LIBIPW_CH_PASSIVE_ONLY ?
1947 "passive only" : "active/passive");
1948 }
1949
1950 return len;
1951 }
1952
1953 static DEVICE_ATTR(channels, S_IRUSR, show_channels, NULL);
1954
1955 static void notify_wx_assoc_event(struct ipw_priv *priv)
1956 {
1957 union iwreq_data wrqu;
1958 wrqu.ap_addr.sa_family = ARPHRD_ETHER;
1959 if (priv->status & STATUS_ASSOCIATED)
1960 memcpy(wrqu.ap_addr.sa_data, priv->bssid, ETH_ALEN);
1961 else
1962 memset(wrqu.ap_addr.sa_data, 0, ETH_ALEN);
1963 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1964 }
1965
1966 static void ipw_irq_tasklet(struct ipw_priv *priv)
1967 {
1968 u32 inta, inta_mask, handled = 0;
1969 unsigned long flags;
1970 int rc = 0;
1971
1972 spin_lock_irqsave(&priv->irq_lock, flags);
1973
1974 inta = ipw_read32(priv, IPW_INTA_RW);
1975 inta_mask = ipw_read32(priv, IPW_INTA_MASK_R);
1976 inta &= (IPW_INTA_MASK_ALL & inta_mask);
1977
1978 /* Add any cached INTA values that need to be handled */
1979 inta |= priv->isr_inta;
1980
1981 spin_unlock_irqrestore(&priv->irq_lock, flags);
1982
1983 spin_lock_irqsave(&priv->lock, flags);
1984
1985 /* handle all the justifications for the interrupt */
1986 if (inta & IPW_INTA_BIT_RX_TRANSFER) {
1987 ipw_rx(priv);
1988 handled |= IPW_INTA_BIT_RX_TRANSFER;
1989 }
1990
1991 if (inta & IPW_INTA_BIT_TX_CMD_QUEUE) {
1992 IPW_DEBUG_HC("Command completed.\n");
1993 rc = ipw_queue_tx_reclaim(priv, &priv->txq_cmd, -1);
1994 priv->status &= ~STATUS_HCMD_ACTIVE;
1995 wake_up_interruptible(&priv->wait_command_queue);
1996 handled |= IPW_INTA_BIT_TX_CMD_QUEUE;
1997 }
1998
1999 if (inta & IPW_INTA_BIT_TX_QUEUE_1) {
2000 IPW_DEBUG_TX("TX_QUEUE_1\n");
2001 rc = ipw_queue_tx_reclaim(priv, &priv->txq[0], 0);
2002 handled |= IPW_INTA_BIT_TX_QUEUE_1;
2003 }
2004
2005 if (inta & IPW_INTA_BIT_TX_QUEUE_2) {
2006 IPW_DEBUG_TX("TX_QUEUE_2\n");
2007 rc = ipw_queue_tx_reclaim(priv, &priv->txq[1], 1);
2008 handled |= IPW_INTA_BIT_TX_QUEUE_2;
2009 }
2010
2011 if (inta & IPW_INTA_BIT_TX_QUEUE_3) {
2012 IPW_DEBUG_TX("TX_QUEUE_3\n");
2013 rc = ipw_queue_tx_reclaim(priv, &priv->txq[2], 2);
2014 handled |= IPW_INTA_BIT_TX_QUEUE_3;
2015 }
2016
2017 if (inta & IPW_INTA_BIT_TX_QUEUE_4) {
2018 IPW_DEBUG_TX("TX_QUEUE_4\n");
2019 rc = ipw_queue_tx_reclaim(priv, &priv->txq[3], 3);
2020 handled |= IPW_INTA_BIT_TX_QUEUE_4;
2021 }
2022
2023 if (inta & IPW_INTA_BIT_STATUS_CHANGE) {
2024 IPW_WARNING("STATUS_CHANGE\n");
2025 handled |= IPW_INTA_BIT_STATUS_CHANGE;
2026 }
2027
2028 if (inta & IPW_INTA_BIT_BEACON_PERIOD_EXPIRED) {
2029 IPW_WARNING("TX_PERIOD_EXPIRED\n");
2030 handled |= IPW_INTA_BIT_BEACON_PERIOD_EXPIRED;
2031 }
2032
2033 if (inta & IPW_INTA_BIT_SLAVE_MODE_HOST_CMD_DONE) {
2034 IPW_WARNING("HOST_CMD_DONE\n");
2035 handled |= IPW_INTA_BIT_SLAVE_MODE_HOST_CMD_DONE;
2036 }
2037
2038 if (inta & IPW_INTA_BIT_FW_INITIALIZATION_DONE) {
2039 IPW_WARNING("FW_INITIALIZATION_DONE\n");
2040 handled |= IPW_INTA_BIT_FW_INITIALIZATION_DONE;
2041 }
2042
2043 if (inta & IPW_INTA_BIT_FW_CARD_DISABLE_PHY_OFF_DONE) {
2044 IPW_WARNING("PHY_OFF_DONE\n");
2045 handled |= IPW_INTA_BIT_FW_CARD_DISABLE_PHY_OFF_DONE;
2046 }
2047
2048 if (inta & IPW_INTA_BIT_RF_KILL_DONE) {
2049 IPW_DEBUG_RF_KILL("RF_KILL_DONE\n");
2050 priv->status |= STATUS_RF_KILL_HW;
2051 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, true);
2052 wake_up_interruptible(&priv->wait_command_queue);
2053 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
2054 cancel_delayed_work(&priv->request_scan);
2055 cancel_delayed_work(&priv->request_direct_scan);
2056 cancel_delayed_work(&priv->request_passive_scan);
2057 cancel_delayed_work(&priv->scan_event);
2058 schedule_work(&priv->link_down);
2059 queue_delayed_work(priv->workqueue, &priv->rf_kill, 2 * HZ);
2060 handled |= IPW_INTA_BIT_RF_KILL_DONE;
2061 }
2062
2063 if (inta & IPW_INTA_BIT_FATAL_ERROR) {
2064 IPW_WARNING("Firmware error detected. Restarting.\n");
2065 if (priv->error) {
2066 IPW_DEBUG_FW("Sysfs 'error' log already exists.\n");
2067 if (ipw_debug_level & IPW_DL_FW_ERRORS) {
2068 struct ipw_fw_error *error =
2069 ipw_alloc_error_log(priv);
2070 ipw_dump_error_log(priv, error);
2071 kfree(error);
2072 }
2073 } else {
2074 priv->error = ipw_alloc_error_log(priv);
2075 if (priv->error)
2076 IPW_DEBUG_FW("Sysfs 'error' log captured.\n");
2077 else
2078 IPW_DEBUG_FW("Error allocating sysfs 'error' "
2079 "log.\n");
2080 if (ipw_debug_level & IPW_DL_FW_ERRORS)
2081 ipw_dump_error_log(priv, priv->error);
2082 }
2083
2084 /* XXX: If hardware encryption is for WPA/WPA2,
2085 * we have to notify the supplicant. */
2086 if (priv->ieee->sec.encrypt) {
2087 priv->status &= ~STATUS_ASSOCIATED;
2088 notify_wx_assoc_event(priv);
2089 }
2090
2091 /* Keep the restart process from trying to send host
2092 * commands by clearing the INIT status bit */
2093 priv->status &= ~STATUS_INIT;
2094
2095 /* Cancel currently queued command. */
2096 priv->status &= ~STATUS_HCMD_ACTIVE;
2097 wake_up_interruptible(&priv->wait_command_queue);
2098
2099 queue_work(priv->workqueue, &priv->adapter_restart);
2100 handled |= IPW_INTA_BIT_FATAL_ERROR;
2101 }
2102
2103 if (inta & IPW_INTA_BIT_PARITY_ERROR) {
2104 IPW_ERROR("Parity error\n");
2105 handled |= IPW_INTA_BIT_PARITY_ERROR;
2106 }
2107
2108 if (handled != inta) {
2109 IPW_ERROR("Unhandled INTA bits 0x%08x\n", inta & ~handled);
2110 }
2111
2112 spin_unlock_irqrestore(&priv->lock, flags);
2113
2114 /* enable all interrupts */
2115 ipw_enable_interrupts(priv);
2116 }
2117
2118 #define IPW_CMD(x) case IPW_CMD_ ## x : return #x
2119 static char *get_cmd_string(u8 cmd)
2120 {
2121 switch (cmd) {
2122 IPW_CMD(HOST_COMPLETE);
2123 IPW_CMD(POWER_DOWN);
2124 IPW_CMD(SYSTEM_CONFIG);
2125 IPW_CMD(MULTICAST_ADDRESS);
2126 IPW_CMD(SSID);
2127 IPW_CMD(ADAPTER_ADDRESS);
2128 IPW_CMD(PORT_TYPE);
2129 IPW_CMD(RTS_THRESHOLD);
2130 IPW_CMD(FRAG_THRESHOLD);
2131 IPW_CMD(POWER_MODE);
2132 IPW_CMD(WEP_KEY);
2133 IPW_CMD(TGI_TX_KEY);
2134 IPW_CMD(SCAN_REQUEST);
2135 IPW_CMD(SCAN_REQUEST_EXT);
2136 IPW_CMD(ASSOCIATE);
2137 IPW_CMD(SUPPORTED_RATES);
2138 IPW_CMD(SCAN_ABORT);
2139 IPW_CMD(TX_FLUSH);
2140 IPW_CMD(QOS_PARAMETERS);
2141 IPW_CMD(DINO_CONFIG);
2142 IPW_CMD(RSN_CAPABILITIES);
2143 IPW_CMD(RX_KEY);
2144 IPW_CMD(CARD_DISABLE);
2145 IPW_CMD(SEED_NUMBER);
2146 IPW_CMD(TX_POWER);
2147 IPW_CMD(COUNTRY_INFO);
2148 IPW_CMD(AIRONET_INFO);
2149 IPW_CMD(AP_TX_POWER);
2150 IPW_CMD(CCKM_INFO);
2151 IPW_CMD(CCX_VER_INFO);
2152 IPW_CMD(SET_CALIBRATION);
2153 IPW_CMD(SENSITIVITY_CALIB);
2154 IPW_CMD(RETRY_LIMIT);
2155 IPW_CMD(IPW_PRE_POWER_DOWN);
2156 IPW_CMD(VAP_BEACON_TEMPLATE);
2157 IPW_CMD(VAP_DTIM_PERIOD);
2158 IPW_CMD(EXT_SUPPORTED_RATES);
2159 IPW_CMD(VAP_LOCAL_TX_PWR_CONSTRAINT);
2160 IPW_CMD(VAP_QUIET_INTERVALS);
2161 IPW_CMD(VAP_CHANNEL_SWITCH);
2162 IPW_CMD(VAP_MANDATORY_CHANNELS);
2163 IPW_CMD(VAP_CELL_PWR_LIMIT);
2164 IPW_CMD(VAP_CF_PARAM_SET);
2165 IPW_CMD(VAP_SET_BEACONING_STATE);
2166 IPW_CMD(MEASUREMENT);
2167 IPW_CMD(POWER_CAPABILITY);
2168 IPW_CMD(SUPPORTED_CHANNELS);
2169 IPW_CMD(TPC_REPORT);
2170 IPW_CMD(WME_INFO);
2171 IPW_CMD(PRODUCTION_COMMAND);
2172 default:
2173 return "UNKNOWN";
2174 }
2175 }
2176
2177 #define HOST_COMPLETE_TIMEOUT HZ
2178
2179 static int __ipw_send_cmd(struct ipw_priv *priv, struct host_cmd *cmd)
2180 {
2181 int rc = 0;
2182 unsigned long flags;
2183
2184 spin_lock_irqsave(&priv->lock, flags);
2185 if (priv->status & STATUS_HCMD_ACTIVE) {
2186 IPW_ERROR("Failed to send %s: Already sending a command.\n",
2187 get_cmd_string(cmd->cmd));
2188 spin_unlock_irqrestore(&priv->lock, flags);
2189 return -EAGAIN;
2190 }
2191
2192 priv->status |= STATUS_HCMD_ACTIVE;
2193
2194 if (priv->cmdlog) {
2195 priv->cmdlog[priv->cmdlog_pos].jiffies = jiffies;
2196 priv->cmdlog[priv->cmdlog_pos].cmd.cmd = cmd->cmd;
2197 priv->cmdlog[priv->cmdlog_pos].cmd.len = cmd->len;
2198 memcpy(priv->cmdlog[priv->cmdlog_pos].cmd.param, cmd->param,
2199 cmd->len);
2200 priv->cmdlog[priv->cmdlog_pos].retcode = -1;
2201 }
2202
2203 IPW_DEBUG_HC("%s command (#%d) %d bytes: 0x%08X\n",
2204 get_cmd_string(cmd->cmd), cmd->cmd, cmd->len,
2205 priv->status);
2206
2207 #ifndef DEBUG_CMD_WEP_KEY
2208 if (cmd->cmd == IPW_CMD_WEP_KEY)
2209 IPW_DEBUG_HC("WEP_KEY command masked out for secure.\n");
2210 else
2211 #endif
2212 printk_buf(IPW_DL_HOST_COMMAND, (u8 *) cmd->param, cmd->len);
2213
2214 rc = ipw_queue_tx_hcmd(priv, cmd->cmd, cmd->param, cmd->len, 0);
2215 if (rc) {
2216 priv->status &= ~STATUS_HCMD_ACTIVE;
2217 IPW_ERROR("Failed to send %s: Reason %d\n",
2218 get_cmd_string(cmd->cmd), rc);
2219 spin_unlock_irqrestore(&priv->lock, flags);
2220 goto exit;
2221 }
2222 spin_unlock_irqrestore(&priv->lock, flags);
2223
2224 rc = wait_event_interruptible_timeout(priv->wait_command_queue,
2225 !(priv->
2226 status & STATUS_HCMD_ACTIVE),
2227 HOST_COMPLETE_TIMEOUT);
2228 if (rc == 0) {
2229 spin_lock_irqsave(&priv->lock, flags);
2230 if (priv->status & STATUS_HCMD_ACTIVE) {
2231 IPW_ERROR("Failed to send %s: Command timed out.\n",
2232 get_cmd_string(cmd->cmd));
2233 priv->status &= ~STATUS_HCMD_ACTIVE;
2234 spin_unlock_irqrestore(&priv->lock, flags);
2235 rc = -EIO;
2236 goto exit;
2237 }
2238 spin_unlock_irqrestore(&priv->lock, flags);
2239 } else
2240 rc = 0;
2241
2242 if (priv->status & STATUS_RF_KILL_HW) {
2243 IPW_ERROR("Failed to send %s: Aborted due to RF kill switch.\n",
2244 get_cmd_string(cmd->cmd));
2245 rc = -EIO;
2246 goto exit;
2247 }
2248
2249 exit:
2250 if (priv->cmdlog) {
2251 priv->cmdlog[priv->cmdlog_pos++].retcode = rc;
2252 priv->cmdlog_pos %= priv->cmdlog_len;
2253 }
2254 return rc;
2255 }
2256
2257 static int ipw_send_cmd_simple(struct ipw_priv *priv, u8 command)
2258 {
2259 struct host_cmd cmd = {
2260 .cmd = command,
2261 };
2262
2263 return __ipw_send_cmd(priv, &cmd);
2264 }
2265
2266 static int ipw_send_cmd_pdu(struct ipw_priv *priv, u8 command, u8 len,
2267 void *data)
2268 {
2269 struct host_cmd cmd = {
2270 .cmd = command,
2271 .len = len,
2272 .param = data,
2273 };
2274
2275 return __ipw_send_cmd(priv, &cmd);
2276 }
2277
2278 static int ipw_send_host_complete(struct ipw_priv *priv)
2279 {
2280 if (!priv) {
2281 IPW_ERROR("Invalid args\n");
2282 return -1;
2283 }
2284
2285 return ipw_send_cmd_simple(priv, IPW_CMD_HOST_COMPLETE);
2286 }
2287
2288 static int ipw_send_system_config(struct ipw_priv *priv)
2289 {
2290 return ipw_send_cmd_pdu(priv, IPW_CMD_SYSTEM_CONFIG,
2291 sizeof(priv->sys_config),
2292 &priv->sys_config);
2293 }
2294
2295 static int ipw_send_ssid(struct ipw_priv *priv, u8 * ssid, int len)
2296 {
2297 if (!priv || !ssid) {
2298 IPW_ERROR("Invalid args\n");
2299 return -1;
2300 }
2301
2302 return ipw_send_cmd_pdu(priv, IPW_CMD_SSID, min(len, IW_ESSID_MAX_SIZE),
2303 ssid);
2304 }
2305
2306 static int ipw_send_adapter_address(struct ipw_priv *priv, u8 * mac)
2307 {
2308 if (!priv || !mac) {
2309 IPW_ERROR("Invalid args\n");
2310 return -1;
2311 }
2312
2313 IPW_DEBUG_INFO("%s: Setting MAC to %pM\n",
2314 priv->net_dev->name, mac);
2315
2316 return ipw_send_cmd_pdu(priv, IPW_CMD_ADAPTER_ADDRESS, ETH_ALEN, mac);
2317 }
2318
2319 /*
2320 * NOTE: This must be executed from our workqueue as it results in udelay
2321 * being called which may corrupt the keyboard if executed on default
2322 * workqueue
2323 */
2324 static void ipw_adapter_restart(void *adapter)
2325 {
2326 struct ipw_priv *priv = adapter;
2327
2328 if (priv->status & STATUS_RF_KILL_MASK)
2329 return;
2330
2331 ipw_down(priv);
2332
2333 if (priv->assoc_network &&
2334 (priv->assoc_network->capability & WLAN_CAPABILITY_IBSS))
2335 ipw_remove_current_network(priv);
2336
2337 if (ipw_up(priv)) {
2338 IPW_ERROR("Failed to up device\n");
2339 return;
2340 }
2341 }
2342
2343 static void ipw_bg_adapter_restart(struct work_struct *work)
2344 {
2345 struct ipw_priv *priv =
2346 container_of(work, struct ipw_priv, adapter_restart);
2347 mutex_lock(&priv->mutex);
2348 ipw_adapter_restart(priv);
2349 mutex_unlock(&priv->mutex);
2350 }
2351
2352 #define IPW_SCAN_CHECK_WATCHDOG (5 * HZ)
2353
2354 static void ipw_scan_check(void *data)
2355 {
2356 struct ipw_priv *priv = data;
2357 if (priv->status & (STATUS_SCANNING | STATUS_SCAN_ABORTING)) {
2358 IPW_DEBUG_SCAN("Scan completion watchdog resetting "
2359 "adapter after (%dms).\n",
2360 jiffies_to_msecs(IPW_SCAN_CHECK_WATCHDOG));
2361 queue_work(priv->workqueue, &priv->adapter_restart);
2362 }
2363 }
2364
2365 static void ipw_bg_scan_check(struct work_struct *work)
2366 {
2367 struct ipw_priv *priv =
2368 container_of(work, struct ipw_priv, scan_check.work);
2369 mutex_lock(&priv->mutex);
2370 ipw_scan_check(priv);
2371 mutex_unlock(&priv->mutex);
2372 }
2373
2374 static int ipw_send_scan_request_ext(struct ipw_priv *priv,
2375 struct ipw_scan_request_ext *request)
2376 {
2377 return ipw_send_cmd_pdu(priv, IPW_CMD_SCAN_REQUEST_EXT,
2378 sizeof(*request), request);
2379 }
2380
2381 static int ipw_send_scan_abort(struct ipw_priv *priv)
2382 {
2383 if (!priv) {
2384 IPW_ERROR("Invalid args\n");
2385 return -1;
2386 }
2387
2388 return ipw_send_cmd_simple(priv, IPW_CMD_SCAN_ABORT);
2389 }
2390
2391 static int ipw_set_sensitivity(struct ipw_priv *priv, u16 sens)
2392 {
2393 struct ipw_sensitivity_calib calib = {
2394 .beacon_rssi_raw = cpu_to_le16(sens),
2395 };
2396
2397 return ipw_send_cmd_pdu(priv, IPW_CMD_SENSITIVITY_CALIB, sizeof(calib),
2398 &calib);
2399 }
2400
2401 static int ipw_send_associate(struct ipw_priv *priv,
2402 struct ipw_associate *associate)
2403 {
2404 if (!priv || !associate) {
2405 IPW_ERROR("Invalid args\n");
2406 return -1;
2407 }
2408
2409 return ipw_send_cmd_pdu(priv, IPW_CMD_ASSOCIATE, sizeof(*associate),
2410 associate);
2411 }
2412
2413 static int ipw_send_supported_rates(struct ipw_priv *priv,
2414 struct ipw_supported_rates *rates)
2415 {
2416 if (!priv || !rates) {
2417 IPW_ERROR("Invalid args\n");
2418 return -1;
2419 }
2420
2421 return ipw_send_cmd_pdu(priv, IPW_CMD_SUPPORTED_RATES, sizeof(*rates),
2422 rates);
2423 }
2424
2425 static int ipw_set_random_seed(struct ipw_priv *priv)
2426 {
2427 u32 val;
2428
2429 if (!priv) {
2430 IPW_ERROR("Invalid args\n");
2431 return -1;
2432 }
2433
2434 get_random_bytes(&val, sizeof(val));
2435
2436 return ipw_send_cmd_pdu(priv, IPW_CMD_SEED_NUMBER, sizeof(val), &val);
2437 }
2438
2439 static int ipw_send_card_disable(struct ipw_priv *priv, u32 phy_off)
2440 {
2441 __le32 v = cpu_to_le32(phy_off);
2442 if (!priv) {
2443 IPW_ERROR("Invalid args\n");
2444 return -1;
2445 }
2446
2447 return ipw_send_cmd_pdu(priv, IPW_CMD_CARD_DISABLE, sizeof(v), &v);
2448 }
2449
2450 static int ipw_send_tx_power(struct ipw_priv *priv, struct ipw_tx_power *power)
2451 {
2452 if (!priv || !power) {
2453 IPW_ERROR("Invalid args\n");
2454 return -1;
2455 }
2456
2457 return ipw_send_cmd_pdu(priv, IPW_CMD_TX_POWER, sizeof(*power), power);
2458 }
2459
2460 static int ipw_set_tx_power(struct ipw_priv *priv)
2461 {
2462 const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
2463 struct ipw_tx_power tx_power;
2464 s8 max_power;
2465 int i;
2466
2467 memset(&tx_power, 0, sizeof(tx_power));
2468
2469 /* configure device for 'G' band */
2470 tx_power.ieee_mode = IPW_G_MODE;
2471 tx_power.num_channels = geo->bg_channels;
2472 for (i = 0; i < geo->bg_channels; i++) {
2473 max_power = geo->bg[i].max_power;
2474 tx_power.channels_tx_power[i].channel_number =
2475 geo->bg[i].channel;
2476 tx_power.channels_tx_power[i].tx_power = max_power ?
2477 min(max_power, priv->tx_power) : priv->tx_power;
2478 }
2479 if (ipw_send_tx_power(priv, &tx_power))
2480 return -EIO;
2481
2482 /* configure device to also handle 'B' band */
2483 tx_power.ieee_mode = IPW_B_MODE;
2484 if (ipw_send_tx_power(priv, &tx_power))
2485 return -EIO;
2486
2487 /* configure device to also handle 'A' band */
2488 if (priv->ieee->abg_true) {
2489 tx_power.ieee_mode = IPW_A_MODE;
2490 tx_power.num_channels = geo->a_channels;
2491 for (i = 0; i < tx_power.num_channels; i++) {
2492 max_power = geo->a[i].max_power;
2493 tx_power.channels_tx_power[i].channel_number =
2494 geo->a[i].channel;
2495 tx_power.channels_tx_power[i].tx_power = max_power ?
2496 min(max_power, priv->tx_power) : priv->tx_power;
2497 }
2498 if (ipw_send_tx_power(priv, &tx_power))
2499 return -EIO;
2500 }
2501 return 0;
2502 }
2503
2504 static int ipw_send_rts_threshold(struct ipw_priv *priv, u16 rts)
2505 {
2506 struct ipw_rts_threshold rts_threshold = {
2507 .rts_threshold = cpu_to_le16(rts),
2508 };
2509
2510 if (!priv) {
2511 IPW_ERROR("Invalid args\n");
2512 return -1;
2513 }
2514
2515 return ipw_send_cmd_pdu(priv, IPW_CMD_RTS_THRESHOLD,
2516 sizeof(rts_threshold), &rts_threshold);
2517 }
2518
2519 static int ipw_send_frag_threshold(struct ipw_priv *priv, u16 frag)
2520 {
2521 struct ipw_frag_threshold frag_threshold = {
2522 .frag_threshold = cpu_to_le16(frag),
2523 };
2524
2525 if (!priv) {
2526 IPW_ERROR("Invalid args\n");
2527 return -1;
2528 }
2529
2530 return ipw_send_cmd_pdu(priv, IPW_CMD_FRAG_THRESHOLD,
2531 sizeof(frag_threshold), &frag_threshold);
2532 }
2533
2534 static int ipw_send_power_mode(struct ipw_priv *priv, u32 mode)
2535 {
2536 __le32 param;
2537
2538 if (!priv) {
2539 IPW_ERROR("Invalid args\n");
2540 return -1;
2541 }
2542
2543 /* If on battery, set to 3, if AC set to CAM, else user
2544 * level */
2545 switch (mode) {
2546 case IPW_POWER_BATTERY:
2547 param = cpu_to_le32(IPW_POWER_INDEX_3);
2548 break;
2549 case IPW_POWER_AC:
2550 param = cpu_to_le32(IPW_POWER_MODE_CAM);
2551 break;
2552 default:
2553 param = cpu_to_le32(mode);
2554 break;
2555 }
2556
2557 return ipw_send_cmd_pdu(priv, IPW_CMD_POWER_MODE, sizeof(param),
2558 &param);
2559 }
2560
2561 static int ipw_send_retry_limit(struct ipw_priv *priv, u8 slimit, u8 llimit)
2562 {
2563 struct ipw_retry_limit retry_limit = {
2564 .short_retry_limit = slimit,
2565 .long_retry_limit = llimit
2566 };
2567
2568 if (!priv) {
2569 IPW_ERROR("Invalid args\n");
2570 return -1;
2571 }
2572
2573 return ipw_send_cmd_pdu(priv, IPW_CMD_RETRY_LIMIT, sizeof(retry_limit),
2574 &retry_limit);
2575 }
2576
2577 /*
2578 * The IPW device contains a Microwire compatible EEPROM that stores
2579 * various data like the MAC address. Usually the firmware has exclusive
2580 * access to the eeprom, but during device initialization (before the
2581 * device driver has sent the HostComplete command to the firmware) the
2582 * device driver has read access to the EEPROM by way of indirect addressing
2583 * through a couple of memory mapped registers.
2584 *
2585 * The following is a simplified implementation for pulling data out of the
2586 * the eeprom, along with some helper functions to find information in
2587 * the per device private data's copy of the eeprom.
2588 *
2589 * NOTE: To better understand how these functions work (i.e what is a chip
2590 * select and why do have to keep driving the eeprom clock?), read
2591 * just about any data sheet for a Microwire compatible EEPROM.
2592 */
2593
2594 /* write a 32 bit value into the indirect accessor register */
2595 static inline void eeprom_write_reg(struct ipw_priv *p, u32 data)
2596 {
2597 ipw_write_reg32(p, FW_MEM_REG_EEPROM_ACCESS, data);
2598
2599 /* the eeprom requires some time to complete the operation */
2600 udelay(p->eeprom_delay);
2601
2602 return;
2603 }
2604
2605 /* perform a chip select operation */
2606 static void eeprom_cs(struct ipw_priv *priv)
2607 {
2608 eeprom_write_reg(priv, 0);
2609 eeprom_write_reg(priv, EEPROM_BIT_CS);
2610 eeprom_write_reg(priv, EEPROM_BIT_CS | EEPROM_BIT_SK);
2611 eeprom_write_reg(priv, EEPROM_BIT_CS);
2612 }
2613
2614 /* perform a chip select operation */
2615 static void eeprom_disable_cs(struct ipw_priv *priv)
2616 {
2617 eeprom_write_reg(priv, EEPROM_BIT_CS);
2618 eeprom_write_reg(priv, 0);
2619 eeprom_write_reg(priv, EEPROM_BIT_SK);
2620 }
2621
2622 /* push a single bit down to the eeprom */
2623 static inline void eeprom_write_bit(struct ipw_priv *p, u8 bit)
2624 {
2625 int d = (bit ? EEPROM_BIT_DI : 0);
2626 eeprom_write_reg(p, EEPROM_BIT_CS | d);
2627 eeprom_write_reg(p, EEPROM_BIT_CS | d | EEPROM_BIT_SK);
2628 }
2629
2630 /* push an opcode followed by an address down to the eeprom */
2631 static void eeprom_op(struct ipw_priv *priv, u8 op, u8 addr)
2632 {
2633 int i;
2634
2635 eeprom_cs(priv);
2636 eeprom_write_bit(priv, 1);
2637 eeprom_write_bit(priv, op & 2);
2638 eeprom_write_bit(priv, op & 1);
2639 for (i = 7; i >= 0; i--) {
2640 eeprom_write_bit(priv, addr & (1 << i));
2641 }
2642 }
2643
2644 /* pull 16 bits off the eeprom, one bit at a time */
2645 static u16 eeprom_read_u16(struct ipw_priv *priv, u8 addr)
2646 {
2647 int i;
2648 u16 r = 0;
2649
2650 /* Send READ Opcode */
2651 eeprom_op(priv, EEPROM_CMD_READ, addr);
2652
2653 /* Send dummy bit */
2654 eeprom_write_reg(priv, EEPROM_BIT_CS);
2655
2656 /* Read the byte off the eeprom one bit at a time */
2657 for (i = 0; i < 16; i++) {
2658 u32 data = 0;
2659 eeprom_write_reg(priv, EEPROM_BIT_CS | EEPROM_BIT_SK);
2660 eeprom_write_reg(priv, EEPROM_BIT_CS);
2661 data = ipw_read_reg32(priv, FW_MEM_REG_EEPROM_ACCESS);
2662 r = (r << 1) | ((data & EEPROM_BIT_DO) ? 1 : 0);
2663 }
2664
2665 /* Send another dummy bit */
2666 eeprom_write_reg(priv, 0);
2667 eeprom_disable_cs(priv);
2668
2669 return r;
2670 }
2671
2672 /* helper function for pulling the mac address out of the private */
2673 /* data's copy of the eeprom data */
2674 static void eeprom_parse_mac(struct ipw_priv *priv, u8 * mac)
2675 {
2676 memcpy(mac, &priv->eeprom[EEPROM_MAC_ADDRESS], 6);
2677 }
2678
2679 /*
2680 * Either the device driver (i.e. the host) or the firmware can
2681 * load eeprom data into the designated region in SRAM. If neither
2682 * happens then the FW will shutdown with a fatal error.
2683 *
2684 * In order to signal the FW to load the EEPROM, the EEPROM_LOAD_DISABLE
2685 * bit needs region of shared SRAM needs to be non-zero.
2686 */
2687 static void ipw_eeprom_init_sram(struct ipw_priv *priv)
2688 {
2689 int i;
2690 __le16 *eeprom = (__le16 *) priv->eeprom;
2691
2692 IPW_DEBUG_TRACE(">>\n");
2693
2694 /* read entire contents of eeprom into private buffer */
2695 for (i = 0; i < 128; i++)
2696 eeprom[i] = cpu_to_le16(eeprom_read_u16(priv, (u8) i));
2697
2698 /*
2699 If the data looks correct, then copy it to our private
2700 copy. Otherwise let the firmware know to perform the operation
2701 on its own.
2702 */
2703 if (priv->eeprom[EEPROM_VERSION] != 0) {
2704 IPW_DEBUG_INFO("Writing EEPROM data into SRAM\n");
2705
2706 /* write the eeprom data to sram */
2707 for (i = 0; i < IPW_EEPROM_IMAGE_SIZE; i++)
2708 ipw_write8(priv, IPW_EEPROM_DATA + i, priv->eeprom[i]);
2709
2710 /* Do not load eeprom data on fatal error or suspend */
2711 ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 0);
2712 } else {
2713 IPW_DEBUG_INFO("Enabling FW initializationg of SRAM\n");
2714
2715 /* Load eeprom data on fatal error or suspend */
2716 ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 1);
2717 }
2718
2719 IPW_DEBUG_TRACE("<<\n");
2720 }
2721
2722 static void ipw_zero_memory(struct ipw_priv *priv, u32 start, u32 count)
2723 {
2724 count >>= 2;
2725 if (!count)
2726 return;
2727 _ipw_write32(priv, IPW_AUTOINC_ADDR, start);
2728 while (count--)
2729 _ipw_write32(priv, IPW_AUTOINC_DATA, 0);
2730 }
2731
2732 static inline void ipw_fw_dma_reset_command_blocks(struct ipw_priv *priv)
2733 {
2734 ipw_zero_memory(priv, IPW_SHARED_SRAM_DMA_CONTROL,
2735 CB_NUMBER_OF_ELEMENTS_SMALL *
2736 sizeof(struct command_block));
2737 }
2738
2739 static int ipw_fw_dma_enable(struct ipw_priv *priv)
2740 { /* start dma engine but no transfers yet */
2741
2742 IPW_DEBUG_FW(">> : \n");
2743
2744 /* Start the dma */
2745 ipw_fw_dma_reset_command_blocks(priv);
2746
2747 /* Write CB base address */
2748 ipw_write_reg32(priv, IPW_DMA_I_CB_BASE, IPW_SHARED_SRAM_DMA_CONTROL);
2749
2750 IPW_DEBUG_FW("<< : \n");
2751 return 0;
2752 }
2753
2754 static void ipw_fw_dma_abort(struct ipw_priv *priv)
2755 {
2756 u32 control = 0;
2757
2758 IPW_DEBUG_FW(">> :\n");
2759
2760 /* set the Stop and Abort bit */
2761 control = DMA_CONTROL_SMALL_CB_CONST_VALUE | DMA_CB_STOP_AND_ABORT;
2762 ipw_write_reg32(priv, IPW_DMA_I_DMA_CONTROL, control);
2763 priv->sram_desc.last_cb_index = 0;
2764
2765 IPW_DEBUG_FW("<< \n");
2766 }
2767
2768 static int ipw_fw_dma_write_command_block(struct ipw_priv *priv, int index,
2769 struct command_block *cb)
2770 {
2771 u32 address =
2772 IPW_SHARED_SRAM_DMA_CONTROL +
2773 (sizeof(struct command_block) * index);
2774 IPW_DEBUG_FW(">> :\n");
2775
2776 ipw_write_indirect(priv, address, (u8 *) cb,
2777 (int)sizeof(struct command_block));
2778
2779 IPW_DEBUG_FW("<< :\n");
2780 return 0;
2781
2782 }
2783
2784 static int ipw_fw_dma_kick(struct ipw_priv *priv)
2785 {
2786 u32 control = 0;
2787 u32 index = 0;
2788
2789 IPW_DEBUG_FW(">> :\n");
2790
2791 for (index = 0; index < priv->sram_desc.last_cb_index; index++)
2792 ipw_fw_dma_write_command_block(priv, index,
2793 &priv->sram_desc.cb_list[index]);
2794
2795 /* Enable the DMA in the CSR register */
2796 ipw_clear_bit(priv, IPW_RESET_REG,
2797 IPW_RESET_REG_MASTER_DISABLED |
2798 IPW_RESET_REG_STOP_MASTER);
2799
2800 /* Set the Start bit. */
2801 control = DMA_CONTROL_SMALL_CB_CONST_VALUE | DMA_CB_START;
2802 ipw_write_reg32(priv, IPW_DMA_I_DMA_CONTROL, control);
2803
2804 IPW_DEBUG_FW("<< :\n");
2805 return 0;
2806 }
2807
2808 static void ipw_fw_dma_dump_command_block(struct ipw_priv *priv)
2809 {
2810 u32 address;
2811 u32 register_value = 0;
2812 u32 cb_fields_address = 0;
2813
2814 IPW_DEBUG_FW(">> :\n");
2815 address = ipw_read_reg32(priv, IPW_DMA_I_CURRENT_CB);
2816 IPW_DEBUG_FW_INFO("Current CB is 0x%x \n", address);
2817
2818 /* Read the DMA Controlor register */
2819 register_value = ipw_read_reg32(priv, IPW_DMA_I_DMA_CONTROL);
2820 IPW_DEBUG_FW_INFO("IPW_DMA_I_DMA_CONTROL is 0x%x \n", register_value);
2821
2822 /* Print the CB values */
2823 cb_fields_address = address;
2824 register_value = ipw_read_reg32(priv, cb_fields_address);
2825 IPW_DEBUG_FW_INFO("Current CB ControlField is 0x%x \n", register_value);
2826
2827 cb_fields_address += sizeof(u32);
2828 register_value = ipw_read_reg32(priv, cb_fields_address);
2829 IPW_DEBUG_FW_INFO("Current CB Source Field is 0x%x \n", register_value);
2830
2831 cb_fields_address += sizeof(u32);
2832 register_value = ipw_read_reg32(priv, cb_fields_address);
2833 IPW_DEBUG_FW_INFO("Current CB Destination Field is 0x%x \n",
2834 register_value);
2835
2836 cb_fields_address += sizeof(u32);
2837 register_value = ipw_read_reg32(priv, cb_fields_address);
2838 IPW_DEBUG_FW_INFO("Current CB Status Field is 0x%x \n", register_value);
2839
2840 IPW_DEBUG_FW(">> :\n");
2841 }
2842
2843 static int ipw_fw_dma_command_block_index(struct ipw_priv *priv)
2844 {
2845 u32 current_cb_address = 0;
2846 u32 current_cb_index = 0;
2847
2848 IPW_DEBUG_FW("<< :\n");
2849 current_cb_address = ipw_read_reg32(priv, IPW_DMA_I_CURRENT_CB);
2850
2851 current_cb_index = (current_cb_address - IPW_SHARED_SRAM_DMA_CONTROL) /
2852 sizeof(struct command_block);
2853
2854 IPW_DEBUG_FW_INFO("Current CB index 0x%x address = 0x%X \n",
2855 current_cb_index, current_cb_address);
2856
2857 IPW_DEBUG_FW(">> :\n");
2858 return current_cb_index;
2859
2860 }
2861
2862 static int ipw_fw_dma_add_command_block(struct ipw_priv *priv,
2863 u32 src_address,
2864 u32 dest_address,
2865 u32 length,
2866 int interrupt_enabled, int is_last)
2867 {
2868
2869 u32 control = CB_VALID | CB_SRC_LE | CB_DEST_LE | CB_SRC_AUTOINC |
2870 CB_SRC_IO_GATED | CB_DEST_AUTOINC | CB_SRC_SIZE_LONG |
2871 CB_DEST_SIZE_LONG;
2872 struct command_block *cb;
2873 u32 last_cb_element = 0;
2874
2875 IPW_DEBUG_FW_INFO("src_address=0x%x dest_address=0x%x length=0x%x\n",
2876 src_address, dest_address, length);
2877
2878 if (priv->sram_desc.last_cb_index >= CB_NUMBER_OF_ELEMENTS_SMALL)
2879 return -1;
2880
2881 last_cb_element = priv->sram_desc.last_cb_index;
2882 cb = &priv->sram_desc.cb_list[last_cb_element];
2883 priv->sram_desc.last_cb_index++;
2884
2885 /* Calculate the new CB control word */
2886 if (interrupt_enabled)
2887 control |= CB_INT_ENABLED;
2888
2889 if (is_last)
2890 control |= CB_LAST_VALID;
2891
2892 control |= length;
2893
2894 /* Calculate the CB Element's checksum value */
2895 cb->status = control ^ src_address ^ dest_address;
2896
2897 /* Copy the Source and Destination addresses */
2898 cb->dest_addr = dest_address;
2899 cb->source_addr = src_address;
2900
2901 /* Copy the Control Word last */
2902 cb->control = control;
2903
2904 return 0;
2905 }
2906
2907 static int ipw_fw_dma_add_buffer(struct ipw_priv *priv, dma_addr_t *src_address,
2908 int nr, u32 dest_address, u32 len)
2909 {
2910 int ret, i;
2911 u32 size;
2912
2913 IPW_DEBUG_FW(">> \n");
2914 IPW_DEBUG_FW_INFO("nr=%d dest_address=0x%x len=0x%x\n",
2915 nr, dest_address, len);
2916
2917 for (i = 0; i < nr; i++) {
2918 size = min_t(u32, len - i * CB_MAX_LENGTH, CB_MAX_LENGTH);
2919 ret = ipw_fw_dma_add_command_block(priv, src_address[i],
2920 dest_address +
2921 i * CB_MAX_LENGTH, size,
2922 0, 0);
2923 if (ret) {
2924 IPW_DEBUG_FW_INFO(": Failed\n");
2925 return -1;
2926 } else
2927 IPW_DEBUG_FW_INFO(": Added new cb\n");
2928 }
2929
2930 IPW_DEBUG_FW("<< \n");
2931 return 0;
2932 }
2933
2934 static int ipw_fw_dma_wait(struct ipw_priv *priv)
2935 {
2936 u32 current_index = 0, previous_index;
2937 u32 watchdog = 0;
2938
2939 IPW_DEBUG_FW(">> : \n");
2940
2941 current_index = ipw_fw_dma_command_block_index(priv);
2942 IPW_DEBUG_FW_INFO("sram_desc.last_cb_index:0x%08X\n",
2943 (int)priv->sram_desc.last_cb_index);
2944
2945 while (current_index < priv->sram_desc.last_cb_index) {
2946 udelay(50);
2947 previous_index = current_index;
2948 current_index = ipw_fw_dma_command_block_index(priv);
2949
2950 if (previous_index < current_index) {
2951 watchdog = 0;
2952 continue;
2953 }
2954 if (++watchdog > 400) {
2955 IPW_DEBUG_FW_INFO("Timeout\n");
2956 ipw_fw_dma_dump_command_block(priv);
2957 ipw_fw_dma_abort(priv);
2958 return -1;
2959 }
2960 }
2961
2962 ipw_fw_dma_abort(priv);
2963
2964 /*Disable the DMA in the CSR register */
2965 ipw_set_bit(priv, IPW_RESET_REG,
2966 IPW_RESET_REG_MASTER_DISABLED | IPW_RESET_REG_STOP_MASTER);
2967
2968 IPW_DEBUG_FW("<< dmaWaitSync \n");
2969 return 0;
2970 }
2971
2972 static void ipw_remove_current_network(struct ipw_priv *priv)
2973 {
2974 struct list_head *element, *safe;
2975 struct libipw_network *network = NULL;
2976 unsigned long flags;
2977
2978 spin_lock_irqsave(&priv->ieee->lock, flags);
2979 list_for_each_safe(element, safe, &priv->ieee->network_list) {
2980 network = list_entry(element, struct libipw_network, list);
2981 if (!memcmp(network->bssid, priv->bssid, ETH_ALEN)) {
2982 list_del(element);
2983 list_add_tail(&network->list,
2984 &priv->ieee->network_free_list);
2985 }
2986 }
2987 spin_unlock_irqrestore(&priv->ieee->lock, flags);
2988 }
2989
2990 /**
2991 * Check that card is still alive.
2992 * Reads debug register from domain0.
2993 * If card is present, pre-defined value should
2994 * be found there.
2995 *
2996 * @param priv
2997 * @return 1 if card is present, 0 otherwise
2998 */
2999 static inline int ipw_alive(struct ipw_priv *priv)
3000 {
3001 return ipw_read32(priv, 0x90) == 0xd55555d5;
3002 }
3003
3004 /* timeout in msec, attempted in 10-msec quanta */
3005 static int ipw_poll_bit(struct ipw_priv *priv, u32 addr, u32 mask,
3006 int timeout)
3007 {
3008 int i = 0;
3009
3010 do {
3011 if ((ipw_read32(priv, addr) & mask) == mask)
3012 return i;
3013 mdelay(10);
3014 i += 10;
3015 } while (i < timeout);
3016
3017 return -ETIME;
3018 }
3019
3020 /* These functions load the firmware and micro code for the operation of
3021 * the ipw hardware. It assumes the buffer has all the bits for the
3022 * image and the caller is handling the memory allocation and clean up.
3023 */
3024
3025 static int ipw_stop_master(struct ipw_priv *priv)
3026 {
3027 int rc;
3028
3029 IPW_DEBUG_TRACE(">> \n");
3030 /* stop master. typical delay - 0 */
3031 ipw_set_bit(priv, IPW_RESET_REG, IPW_RESET_REG_STOP_MASTER);
3032
3033 /* timeout is in msec, polled in 10-msec quanta */
3034 rc = ipw_poll_bit(priv, IPW_RESET_REG,
3035 IPW_RESET_REG_MASTER_DISABLED, 100);
3036 if (rc < 0) {
3037 IPW_ERROR("wait for stop master failed after 100ms\n");
3038 return -1;
3039 }
3040
3041 IPW_DEBUG_INFO("stop master %dms\n", rc);
3042
3043 return rc;
3044 }
3045
3046 static void ipw_arc_release(struct ipw_priv *priv)
3047 {
3048 IPW_DEBUG_TRACE(">> \n");
3049 mdelay(5);
3050
3051 ipw_clear_bit(priv, IPW_RESET_REG, CBD_RESET_REG_PRINCETON_RESET);
3052
3053 /* no one knows timing, for safety add some delay */
3054 mdelay(5);
3055 }
3056
3057 struct fw_chunk {
3058 __le32 address;
3059 __le32 length;
3060 };
3061
3062 static int ipw_load_ucode(struct ipw_priv *priv, u8 * data, size_t len)
3063 {
3064 int rc = 0, i, addr;
3065 u8 cr = 0;
3066 __le16 *image;
3067
3068 image = (__le16 *) data;
3069
3070 IPW_DEBUG_TRACE(">> \n");
3071
3072 rc = ipw_stop_master(priv);
3073
3074 if (rc < 0)
3075 return rc;
3076
3077 for (addr = IPW_SHARED_LOWER_BOUND;
3078 addr < IPW_REGISTER_DOMAIN1_END; addr += 4) {
3079 ipw_write32(priv, addr, 0);
3080 }
3081
3082 /* no ucode (yet) */
3083 memset(&priv->dino_alive, 0, sizeof(priv->dino_alive));
3084 /* destroy DMA queues */
3085 /* reset sequence */
3086
3087 ipw_write_reg32(priv, IPW_MEM_HALT_AND_RESET, IPW_BIT_HALT_RESET_ON);
3088 ipw_arc_release(priv);
3089 ipw_write_reg32(priv, IPW_MEM_HALT_AND_RESET, IPW_BIT_HALT_RESET_OFF);
3090 mdelay(1);
3091
3092 /* reset PHY */
3093 ipw_write_reg32(priv, IPW_INTERNAL_CMD_EVENT, IPW_BASEBAND_POWER_DOWN);
3094 mdelay(1);
3095
3096 ipw_write_reg32(priv, IPW_INTERNAL_CMD_EVENT, 0);
3097 mdelay(1);
3098
3099 /* enable ucode store */
3100 ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0x0);
3101 ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, DINO_ENABLE_CS);
3102 mdelay(1);
3103
3104 /* write ucode */
3105 /**
3106 * @bug
3107 * Do NOT set indirect address register once and then
3108 * store data to indirect data register in the loop.
3109 * It seems very reasonable, but in this case DINO do not
3110 * accept ucode. It is essential to set address each time.
3111 */
3112 /* load new ipw uCode */
3113 for (i = 0; i < len / 2; i++)
3114 ipw_write_reg16(priv, IPW_BASEBAND_CONTROL_STORE,
3115 le16_to_cpu(image[i]));
3116
3117 /* enable DINO */
3118 ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0);
3119 ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, DINO_ENABLE_SYSTEM);
3120
3121 /* this is where the igx / win driver deveates from the VAP driver. */
3122
3123 /* wait for alive response */
3124 for (i = 0; i < 100; i++) {
3125 /* poll for incoming data */
3126 cr = ipw_read_reg8(priv, IPW_BASEBAND_CONTROL_STATUS);
3127 if (cr & DINO_RXFIFO_DATA)
3128 break;
3129 mdelay(1);
3130 }
3131
3132 if (cr & DINO_RXFIFO_DATA) {
3133 /* alive_command_responce size is NOT multiple of 4 */
3134 __le32 response_buffer[(sizeof(priv->dino_alive) + 3) / 4];
3135
3136 for (i = 0; i < ARRAY_SIZE(response_buffer); i++)
3137 response_buffer[i] =
3138 cpu_to_le32(ipw_read_reg32(priv,
3139 IPW_BASEBAND_RX_FIFO_READ));
3140 memcpy(&priv->dino_alive, response_buffer,
3141 sizeof(priv->dino_alive));
3142 if (priv->dino_alive.alive_command == 1
3143 && priv->dino_alive.ucode_valid == 1) {
3144 rc = 0;
3145 IPW_DEBUG_INFO
3146 ("Microcode OK, rev. %d (0x%x) dev. %d (0x%x) "
3147 "of %02d/%02d/%02d %02d:%02d\n",
3148 priv->dino_alive.software_revision,
3149 priv->dino_alive.software_revision,
3150 priv->dino_alive.device_identifier,
3151 priv->dino_alive.device_identifier,
3152 priv->dino_alive.time_stamp[0],
3153 priv->dino_alive.time_stamp[1],
3154 priv->dino_alive.time_stamp[2],
3155 priv->dino_alive.time_stamp[3],
3156 priv->dino_alive.time_stamp[4]);
3157 } else {
3158 IPW_DEBUG_INFO("Microcode is not alive\n");
3159 rc = -EINVAL;
3160 }
3161 } else {
3162 IPW_DEBUG_INFO("No alive response from DINO\n");
3163 rc = -ETIME;
3164 }
3165
3166 /* disable DINO, otherwise for some reason
3167 firmware have problem getting alive resp. */
3168 ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0);
3169
3170 return rc;
3171 }
3172
3173 static int ipw_load_firmware(struct ipw_priv *priv, u8 * data, size_t len)
3174 {
3175 int ret = -1;
3176 int offset = 0;
3177 struct fw_chunk *chunk;
3178 int total_nr = 0;
3179 int i;
3180 struct pci_pool *pool;
3181 void **virts;
3182 dma_addr_t *phys;
3183
3184 IPW_DEBUG_TRACE("<< : \n");
3185
3186 virts = kmalloc(sizeof(void *) * CB_NUMBER_OF_ELEMENTS_SMALL,
3187 GFP_KERNEL);
3188 if (!virts)
3189 return -ENOMEM;
3190
3191 phys = kmalloc(sizeof(dma_addr_t) * CB_NUMBER_OF_ELEMENTS_SMALL,
3192 GFP_KERNEL);
3193 if (!phys) {
3194 kfree(virts);
3195 return -ENOMEM;
3196 }
3197 pool = pci_pool_create("ipw2200", priv->pci_dev, CB_MAX_LENGTH, 0, 0);
3198 if (!pool) {
3199 IPW_ERROR("pci_pool_create failed\n");
3200 kfree(phys);
3201 kfree(virts);
3202 return -ENOMEM;
3203 }
3204
3205 /* Start the Dma */
3206 ret = ipw_fw_dma_enable(priv);
3207
3208 /* the DMA is already ready this would be a bug. */
3209 BUG_ON(priv->sram_desc.last_cb_index > 0);
3210
3211 do {
3212 u32 chunk_len;
3213 u8 *start;
3214 int size;
3215 int nr = 0;
3216
3217 chunk = (struct fw_chunk *)(data + offset);
3218 offset += sizeof(struct fw_chunk);
3219 chunk_len = le32_to_cpu(chunk->length);
3220 start = data + offset;
3221
3222 nr = (chunk_len + CB_MAX_LENGTH - 1) / CB_MAX_LENGTH;
3223 for (i = 0; i < nr; i++) {
3224 virts[total_nr] = pci_pool_alloc(pool, GFP_KERNEL,
3225 &phys[total_nr]);
3226 if (!virts[total_nr]) {
3227 ret = -ENOMEM;
3228 goto out;
3229 }
3230 size = min_t(u32, chunk_len - i * CB_MAX_LENGTH,
3231 CB_MAX_LENGTH);
3232 memcpy(virts[total_nr], start, size);
3233 start += size;
3234 total_nr++;
3235 /* We don't support fw chunk larger than 64*8K */
3236 BUG_ON(total_nr > CB_NUMBER_OF_ELEMENTS_SMALL);
3237 }
3238
3239 /* build DMA packet and queue up for sending */
3240 /* dma to chunk->address, the chunk->length bytes from data +
3241 * offeset*/
3242 /* Dma loading */
3243 ret = ipw_fw_dma_add_buffer(priv, &phys[total_nr - nr],
3244 nr, le32_to_cpu(chunk->address),
3245 chunk_len);
3246 if (ret) {
3247 IPW_DEBUG_INFO("dmaAddBuffer Failed\n");
3248 goto out;
3249 }
3250
3251 offset += chunk_len;
3252 } while (offset < len);
3253
3254 /* Run the DMA and wait for the answer */
3255 ret = ipw_fw_dma_kick(priv);
3256 if (ret) {
3257 IPW_ERROR("dmaKick Failed\n");
3258 goto out;
3259 }
3260
3261 ret = ipw_fw_dma_wait(priv);
3262 if (ret) {
3263 IPW_ERROR("dmaWaitSync Failed\n");
3264 goto out;
3265 }
3266 out:
3267 for (i = 0; i < total_nr; i++)
3268 pci_pool_free(pool, virts[i], phys[i]);
3269
3270 pci_pool_destroy(pool);
3271 kfree(phys);
3272 kfree(virts);
3273
3274 return ret;
3275 }
3276
3277 /* stop nic */
3278 static int ipw_stop_nic(struct ipw_priv *priv)
3279 {
3280 int rc = 0;
3281
3282 /* stop */
3283 ipw_write32(priv, IPW_RESET_REG, IPW_RESET_REG_STOP_MASTER);
3284
3285 rc = ipw_poll_bit(priv, IPW_RESET_REG,
3286 IPW_RESET_REG_MASTER_DISABLED, 500);
3287 if (rc < 0) {
3288 IPW_ERROR("wait for reg master disabled failed after 500ms\n");
3289 return rc;
3290 }
3291
3292 ipw_set_bit(priv, IPW_RESET_REG, CBD_RESET_REG_PRINCETON_RESET);
3293
3294 return rc;
3295 }
3296
3297 static void ipw_start_nic(struct ipw_priv *priv)
3298 {
3299 IPW_DEBUG_TRACE(">>\n");
3300
3301 /* prvHwStartNic release ARC */
3302 ipw_clear_bit(priv, IPW_RESET_REG,
3303 IPW_RESET_REG_MASTER_DISABLED |
3304 IPW_RESET_REG_STOP_MASTER |
3305 CBD_RESET_REG_PRINCETON_RESET);
3306
3307 /* enable power management */
3308 ipw_set_bit(priv, IPW_GP_CNTRL_RW,
3309 IPW_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY);
3310
3311 IPW_DEBUG_TRACE("<<\n");
3312 }
3313
3314 static int ipw_init_nic(struct ipw_priv *priv)
3315 {
3316 int rc;
3317
3318 IPW_DEBUG_TRACE(">>\n");
3319 /* reset */
3320 /*prvHwInitNic */
3321 /* set "initialization complete" bit to move adapter to D0 state */
3322 ipw_set_bit(priv, IPW_GP_CNTRL_RW, IPW_GP_CNTRL_BIT_INIT_DONE);
3323
3324 /* low-level PLL activation */
3325 ipw_write32(priv, IPW_READ_INT_REGISTER,
3326 IPW_BIT_INT_HOST_SRAM_READ_INT_REGISTER);
3327
3328 /* wait for clock stabilization */
3329 rc = ipw_poll_bit(priv, IPW_GP_CNTRL_RW,
3330 IPW_GP_CNTRL_BIT_CLOCK_READY, 250);
3331 if (rc < 0)
3332 IPW_DEBUG_INFO("FAILED wait for clock stablization\n");
3333
3334 /* assert SW reset */
3335 ipw_set_bit(priv, IPW_RESET_REG, IPW_RESET_REG_SW_RESET);
3336
3337 udelay(10);
3338
3339 /* set "initialization complete" bit to move adapter to D0 state */
3340 ipw_set_bit(priv, IPW_GP_CNTRL_RW, IPW_GP_CNTRL_BIT_INIT_DONE);
3341
3342 IPW_DEBUG_TRACE(">>\n");
3343 return 0;
3344 }
3345
3346 /* Call this function from process context, it will sleep in request_firmware.
3347 * Probe is an ok place to call this from.
3348 */
3349 static int ipw_reset_nic(struct ipw_priv *priv)
3350 {
3351 int rc = 0;
3352 unsigned long flags;
3353
3354 IPW_DEBUG_TRACE(">>\n");
3355
3356 rc = ipw_init_nic(priv);
3357
3358 spin_lock_irqsave(&priv->lock, flags);
3359 /* Clear the 'host command active' bit... */
3360 priv->status &= ~STATUS_HCMD_ACTIVE;
3361 wake_up_interruptible(&priv->wait_command_queue);
3362 priv->status &= ~(STATUS_SCANNING | STATUS_SCAN_ABORTING);
3363 wake_up_interruptible(&priv->wait_state);
3364 spin_unlock_irqrestore(&priv->lock, flags);
3365
3366 IPW_DEBUG_TRACE("<<\n");
3367 return rc;
3368 }
3369
3370
3371 struct ipw_fw {
3372 __le32 ver;
3373 __le32 boot_size;
3374 __le32 ucode_size;
3375 __le32 fw_size;
3376 u8 data[0];
3377 };
3378
3379 static int ipw_get_fw(struct ipw_priv *priv,
3380 const struct firmware **raw, const char *name)
3381 {
3382 struct ipw_fw *fw;
3383 int rc;
3384
3385 /* ask firmware_class module to get the boot firmware off disk */
3386 rc = request_firmware(raw, name, &priv->pci_dev->dev);
3387 if (rc < 0) {
3388 IPW_ERROR("%s request_firmware failed: Reason %d\n", name, rc);
3389 return rc;
3390 }
3391
3392 if ((*raw)->size < sizeof(*fw)) {
3393 IPW_ERROR("%s is too small (%zd)\n", name, (*raw)->size);
3394 return -EINVAL;
3395 }
3396
3397 fw = (void *)(*raw)->data;
3398
3399 if ((*raw)->size < sizeof(*fw) + le32_to_cpu(fw->boot_size) +
3400 le32_to_cpu(fw->ucode_size) + le32_to_cpu(fw->fw_size)) {
3401 IPW_ERROR("%s is too small or corrupt (%zd)\n",
3402 name, (*raw)->size);
3403 return -EINVAL;
3404 }
3405
3406 IPW_DEBUG_INFO("Read firmware '%s' image v%d.%d (%zd bytes)\n",
3407 name,
3408 le32_to_cpu(fw->ver) >> 16,
3409 le32_to_cpu(fw->ver) & 0xff,
3410 (*raw)->size - sizeof(*fw));
3411 return 0;
3412 }
3413
3414 #define IPW_RX_BUF_SIZE (3000)
3415
3416 static void ipw_rx_queue_reset(struct ipw_priv *priv,
3417 struct ipw_rx_queue *rxq)
3418 {
3419 unsigned long flags;
3420 int i;
3421
3422 spin_lock_irqsave(&rxq->lock, flags);
3423
3424 INIT_LIST_HEAD(&rxq->rx_free);
3425 INIT_LIST_HEAD(&rxq->rx_used);
3426
3427 /* Fill the rx_used queue with _all_ of the Rx buffers */
3428 for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++) {
3429 /* In the reset function, these buffers may have been allocated
3430 * to an SKB, so we need to unmap and free potential storage */
3431 if (rxq->pool[i].skb != NULL) {
3432 pci_unmap_single(priv->pci_dev, rxq->pool[i].dma_addr,
3433 IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
3434 dev_kfree_skb(rxq->pool[i].skb);
3435 rxq->pool[i].skb = NULL;
3436 }
3437 list_add_tail(&rxq->pool[i].list, &rxq->rx_used);
3438 }
3439
3440 /* Set us so that we have processed and used all buffers, but have
3441 * not restocked the Rx queue with fresh buffers */
3442 rxq->read = rxq->write = 0;
3443 rxq->free_count = 0;
3444 spin_unlock_irqrestore(&rxq->lock, flags);
3445 }
3446
3447 #ifdef CONFIG_PM
3448 static int fw_loaded = 0;
3449 static const struct firmware *raw = NULL;
3450
3451 static void free_firmware(void)
3452 {
3453 if (fw_loaded) {
3454 release_firmware(raw);
3455 raw = NULL;
3456 fw_loaded = 0;
3457 }
3458 }
3459 #else
3460 #define free_firmware() do {} while (0)
3461 #endif
3462
3463 static int ipw_load(struct ipw_priv *priv)
3464 {
3465 #ifndef CONFIG_PM
3466 const struct firmware *raw = NULL;
3467 #endif
3468 struct ipw_fw *fw;
3469 u8 *boot_img, *ucode_img, *fw_img;
3470 u8 *name = NULL;
3471 int rc = 0, retries = 3;
3472
3473 switch (priv->ieee->iw_mode) {
3474 case IW_MODE_ADHOC:
3475 name = "ipw2200-ibss.fw";
3476 break;
3477 #ifdef CONFIG_IPW2200_MONITOR
3478 case IW_MODE_MONITOR:
3479 name = "ipw2200-sniffer.fw";
3480 break;
3481 #endif
3482 case IW_MODE_INFRA:
3483 name = "ipw2200-bss.fw";
3484 break;
3485 }
3486
3487 if (!name) {
3488 rc = -EINVAL;
3489 goto error;
3490 }
3491
3492 #ifdef CONFIG_PM
3493 if (!fw_loaded) {
3494 #endif
3495 rc = ipw_get_fw(priv, &raw, name);
3496 if (rc < 0)
3497 goto error;
3498 #ifdef CONFIG_PM
3499 }
3500 #endif
3501
3502 fw = (void *)raw->data;
3503 boot_img = &fw->data[0];
3504 ucode_img = &fw->data[le32_to_cpu(fw->boot_size)];
3505 fw_img = &fw->data[le32_to_cpu(fw->boot_size) +
3506 le32_to_cpu(fw->ucode_size)];
3507
3508 if (rc < 0)
3509 goto error;
3510
3511 if (!priv->rxq)
3512 priv->rxq = ipw_rx_queue_alloc(priv);
3513 else
3514 ipw_rx_queue_reset(priv, priv->rxq);
3515 if (!priv->rxq) {
3516 IPW_ERROR("Unable to initialize Rx queue\n");
3517 goto error;
3518 }
3519
3520 retry:
3521 /* Ensure interrupts are disabled */
3522 ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
3523 priv->status &= ~STATUS_INT_ENABLED;
3524
3525 /* ack pending interrupts */
3526 ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3527
3528 ipw_stop_nic(priv);
3529
3530 rc = ipw_reset_nic(priv);
3531 if (rc < 0) {
3532 IPW_ERROR("Unable to reset NIC\n");
3533 goto error;
3534 }
3535
3536 ipw_zero_memory(priv, IPW_NIC_SRAM_LOWER_BOUND,
3537 IPW_NIC_SRAM_UPPER_BOUND - IPW_NIC_SRAM_LOWER_BOUND);
3538
3539 /* DMA the initial boot firmware into the device */
3540 rc = ipw_load_firmware(priv, boot_img, le32_to_cpu(fw->boot_size));
3541 if (rc < 0) {
3542 IPW_ERROR("Unable to load boot firmware: %d\n", rc);
3543 goto error;
3544 }
3545
3546 /* kick start the device */
3547 ipw_start_nic(priv);
3548
3549 /* wait for the device to finish its initial startup sequence */
3550 rc = ipw_poll_bit(priv, IPW_INTA_RW,
3551 IPW_INTA_BIT_FW_INITIALIZATION_DONE, 500);
3552 if (rc < 0) {
3553 IPW_ERROR("device failed to boot initial fw image\n");
3554 goto error;
3555 }
3556 IPW_DEBUG_INFO("initial device response after %dms\n", rc);
3557
3558 /* ack fw init done interrupt */
3559 ipw_write32(priv, IPW_INTA_RW, IPW_INTA_BIT_FW_INITIALIZATION_DONE);
3560
3561 /* DMA the ucode into the device */
3562 rc = ipw_load_ucode(priv, ucode_img, le32_to_cpu(fw->ucode_size));
3563 if (rc < 0) {
3564 IPW_ERROR("Unable to load ucode: %d\n", rc);
3565 goto error;
3566 }
3567
3568 /* stop nic */
3569 ipw_stop_nic(priv);
3570
3571 /* DMA bss firmware into the device */
3572 rc = ipw_load_firmware(priv, fw_img, le32_to_cpu(fw->fw_size));
3573 if (rc < 0) {
3574 IPW_ERROR("Unable to load firmware: %d\n", rc);
3575 goto error;
3576 }
3577 #ifdef CONFIG_PM
3578 fw_loaded = 1;
3579 #endif
3580
3581 ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 0);
3582
3583 rc = ipw_queue_reset(priv);
3584 if (rc < 0) {
3585 IPW_ERROR("Unable to initialize queues\n");
3586 goto error;
3587 }
3588
3589 /* Ensure interrupts are disabled */
3590 ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
3591 /* ack pending interrupts */
3592 ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3593
3594 /* kick start the device */
3595 ipw_start_nic(priv);
3596
3597 if (ipw_read32(priv, IPW_INTA_RW) & IPW_INTA_BIT_PARITY_ERROR) {
3598 if (retries > 0) {
3599 IPW_WARNING("Parity error. Retrying init.\n");
3600 retries--;
3601 goto retry;
3602 }
3603
3604 IPW_ERROR("TODO: Handle parity error -- schedule restart?\n");
3605 rc = -EIO;
3606 goto error;
3607 }
3608
3609 /* wait for the device */
3610 rc = ipw_poll_bit(priv, IPW_INTA_RW,
3611 IPW_INTA_BIT_FW_INITIALIZATION_DONE, 500);
3612 if (rc < 0) {
3613 IPW_ERROR("device failed to start within 500ms\n");
3614 goto error;
3615 }
3616 IPW_DEBUG_INFO("device response after %dms\n", rc);
3617
3618 /* ack fw init done interrupt */
3619 ipw_write32(priv, IPW_INTA_RW, IPW_INTA_BIT_FW_INITIALIZATION_DONE);
3620
3621 /* read eeprom data and initialize the eeprom region of sram */
3622 priv->eeprom_delay = 1;
3623 ipw_eeprom_init_sram(priv);
3624
3625 /* enable interrupts */
3626 ipw_enable_interrupts(priv);
3627
3628 /* Ensure our queue has valid packets */
3629 ipw_rx_queue_replenish(priv);
3630
3631 ipw_write32(priv, IPW_RX_READ_INDEX, priv->rxq->read);
3632
3633 /* ack pending interrupts */
3634 ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3635
3636 #ifndef CONFIG_PM
3637 release_firmware(raw);
3638 #endif
3639 return 0;
3640
3641 error:
3642 if (priv->rxq) {
3643 ipw_rx_queue_free(priv, priv->rxq);
3644 priv->rxq = NULL;
3645 }
3646 ipw_tx_queue_free(priv);
3647 if (raw)
3648 release_firmware(raw);
3649 #ifdef CONFIG_PM
3650 fw_loaded = 0;
3651 raw = NULL;
3652 #endif
3653
3654 return rc;
3655 }
3656
3657 /**
3658 * DMA services
3659 *
3660 * Theory of operation
3661 *
3662 * A queue is a circular buffers with 'Read' and 'Write' pointers.
3663 * 2 empty entries always kept in the buffer to protect from overflow.
3664 *
3665 * For Tx queue, there are low mark and high mark limits. If, after queuing
3666 * the packet for Tx, free space become < low mark, Tx queue stopped. When
3667 * reclaiming packets (on 'tx done IRQ), if free space become > high mark,
3668 * Tx queue resumed.
3669 *
3670 * The IPW operates with six queues, one receive queue in the device's
3671 * sram, one transmit queue for sending commands to the device firmware,
3672 * and four transmit queues for data.
3673 *
3674 * The four transmit queues allow for performing quality of service (qos)
3675 * transmissions as per the 802.11 protocol. Currently Linux does not
3676 * provide a mechanism to the user for utilizing prioritized queues, so
3677 * we only utilize the first data transmit queue (queue1).
3678 */
3679
3680 /**
3681 * Driver allocates buffers of this size for Rx
3682 */
3683
3684 /**
3685 * ipw_rx_queue_space - Return number of free slots available in queue.
3686 */
3687 static int ipw_rx_queue_space(const struct ipw_rx_queue *q)
3688 {
3689 int s = q->read - q->write;
3690 if (s <= 0)
3691 s += RX_QUEUE_SIZE;
3692 /* keep some buffer to not confuse full and empty queue */
3693 s -= 2;
3694 if (s < 0)
3695 s = 0;
3696 return s;
3697 }
3698
3699 static inline int ipw_tx_queue_space(const struct clx2_queue *q)
3700 {
3701 int s = q->last_used - q->first_empty;
3702 if (s <= 0)
3703 s += q->n_bd;
3704 s -= 2; /* keep some reserve to not confuse empty and full situations */
3705 if (s < 0)
3706 s = 0;
3707 return s;
3708 }
3709
3710 static inline int ipw_queue_inc_wrap(int index, int n_bd)
3711 {
3712 return (++index == n_bd) ? 0 : index;
3713 }
3714
3715 /**
3716 * Initialize common DMA queue structure
3717 *
3718 * @param q queue to init
3719 * @param count Number of BD's to allocate. Should be power of 2
3720 * @param read_register Address for 'read' register
3721 * (not offset within BAR, full address)
3722 * @param write_register Address for 'write' register
3723 * (not offset within BAR, full address)
3724 * @param base_register Address for 'base' register
3725 * (not offset within BAR, full address)
3726 * @param size Address for 'size' register
3727 * (not offset within BAR, full address)
3728 */
3729 static void ipw_queue_init(struct ipw_priv *priv, struct clx2_queue *q,
3730 int count, u32 read, u32 write, u32 base, u32 size)
3731 {
3732 q->n_bd = count;
3733
3734 q->low_mark = q->n_bd / 4;
3735 if (q->low_mark < 4)
3736 q->low_mark = 4;
3737
3738 q->high_mark = q->n_bd / 8;
3739 if (q->high_mark < 2)
3740 q->high_mark = 2;
3741
3742 q->first_empty = q->last_used = 0;
3743 q->reg_r = read;
3744 q->reg_w = write;
3745
3746 ipw_write32(priv, base, q->dma_addr);
3747 ipw_write32(priv, size, count);
3748 ipw_write32(priv, read, 0);
3749 ipw_write32(priv, write, 0);
3750
3751 _ipw_read32(priv, 0x90);
3752 }
3753
3754 static int ipw_queue_tx_init(struct ipw_priv *priv,
3755 struct clx2_tx_queue *q,
3756 int count, u32 read, u32 write, u32 base, u32 size)
3757 {
3758 struct pci_dev *dev = priv->pci_dev;
3759
3760 q->txb = kmalloc(sizeof(q->txb[0]) * count, GFP_KERNEL);
3761 if (!q->txb) {
3762 IPW_ERROR("vmalloc for auxilary BD structures failed\n");
3763 return -ENOMEM;
3764 }
3765
3766 q->bd =
3767 pci_alloc_consistent(dev, sizeof(q->bd[0]) * count, &q->q.dma_addr);
3768 if (!q->bd) {
3769 IPW_ERROR("pci_alloc_consistent(%zd) failed\n",
3770 sizeof(q->bd[0]) * count);
3771 kfree(q->txb);
3772 q->txb = NULL;
3773 return -ENOMEM;
3774 }
3775
3776 ipw_queue_init(priv, &q->q, count, read, write, base, size);
3777 return 0;
3778 }
3779
3780 /**
3781 * Free one TFD, those at index [txq->q.last_used].
3782 * Do NOT advance any indexes
3783 *
3784 * @param dev
3785 * @param txq
3786 */
3787 static void ipw_queue_tx_free_tfd(struct ipw_priv *priv,
3788 struct clx2_tx_queue *txq)
3789 {
3790 struct tfd_frame *bd = &txq->bd[txq->q.last_used];
3791 struct pci_dev *dev = priv->pci_dev;
3792 int i;
3793
3794 /* classify bd */
3795 if (bd->control_flags.message_type == TX_HOST_COMMAND_TYPE)
3796 /* nothing to cleanup after for host commands */
3797 return;
3798
3799 /* sanity check */
3800 if (le32_to_cpu(bd->u.data.num_chunks) > NUM_TFD_CHUNKS) {
3801 IPW_ERROR("Too many chunks: %i\n",
3802 le32_to_cpu(bd->u.data.num_chunks));
3803 /** @todo issue fatal error, it is quite serious situation */
3804 return;
3805 }
3806
3807 /* unmap chunks if any */
3808 for (i = 0; i < le32_to_cpu(bd->u.data.num_chunks); i++) {
3809 pci_unmap_single(dev, le32_to_cpu(bd->u.data.chunk_ptr[i]),
3810 le16_to_cpu(bd->u.data.chunk_len[i]),
3811 PCI_DMA_TODEVICE);
3812 if (txq->txb[txq->q.last_used]) {
3813 libipw_txb_free(txq->txb[txq->q.last_used]);
3814 txq->txb[txq->q.last_used] = NULL;
3815 }
3816 }
3817 }
3818
3819 /**
3820 * Deallocate DMA queue.
3821 *
3822 * Empty queue by removing and destroying all BD's.
3823 * Free all buffers.
3824 *
3825 * @param dev
3826 * @param q
3827 */
3828 static void ipw_queue_tx_free(struct ipw_priv *priv, struct clx2_tx_queue *txq)
3829 {
3830 struct clx2_queue *q = &txq->q;
3831 struct pci_dev *dev = priv->pci_dev;
3832
3833 if (q->n_bd == 0)
3834 return;
3835
3836 /* first, empty all BD's */
3837 for (; q->first_empty != q->last_used;
3838 q->last_used = ipw_queue_inc_wrap(q->last_used, q->n_bd)) {
3839 ipw_queue_tx_free_tfd(priv, txq);
3840 }
3841
3842 /* free buffers belonging to queue itself */
3843 pci_free_consistent(dev, sizeof(txq->bd[0]) * q->n_bd, txq->bd,
3844 q->dma_addr);
3845 kfree(txq->txb);
3846
3847 /* 0 fill whole structure */
3848 memset(txq, 0, sizeof(*txq));
3849 }
3850
3851 /**
3852 * Destroy all DMA queues and structures
3853 *
3854 * @param priv
3855 */
3856 static void ipw_tx_queue_free(struct ipw_priv *priv)
3857 {
3858 /* Tx CMD queue */
3859 ipw_queue_tx_free(priv, &priv->txq_cmd);
3860
3861 /* Tx queues */
3862 ipw_queue_tx_free(priv, &priv->txq[0]);
3863 ipw_queue_tx_free(priv, &priv->txq[1]);
3864 ipw_queue_tx_free(priv, &priv->txq[2]);
3865 ipw_queue_tx_free(priv, &priv->txq[3]);
3866 }
3867
3868 static void ipw_create_bssid(struct ipw_priv *priv, u8 * bssid)
3869 {
3870 /* First 3 bytes are manufacturer */
3871 bssid[0] = priv->mac_addr[0];
3872 bssid[1] = priv->mac_addr[1];
3873 bssid[2] = priv->mac_addr[2];
3874
3875 /* Last bytes are random */
3876 get_random_bytes(&bssid[3], ETH_ALEN - 3);
3877
3878 bssid[0] &= 0xfe; /* clear multicast bit */
3879 bssid[0] |= 0x02; /* set local assignment bit (IEEE802) */
3880 }
3881
3882 static u8 ipw_add_station(struct ipw_priv *priv, u8 * bssid)
3883 {
3884 struct ipw_station_entry entry;
3885 int i;
3886
3887 for (i = 0; i < priv->num_stations; i++) {
3888 if (!memcmp(priv->stations[i], bssid, ETH_ALEN)) {
3889 /* Another node is active in network */
3890 priv->missed_adhoc_beacons = 0;
3891 if (!(priv->config & CFG_STATIC_CHANNEL))
3892 /* when other nodes drop out, we drop out */
3893 priv->config &= ~CFG_ADHOC_PERSIST;
3894
3895 return i;
3896 }
3897 }
3898
3899 if (i == MAX_STATIONS)
3900 return IPW_INVALID_STATION;
3901
3902 IPW_DEBUG_SCAN("Adding AdHoc station: %pM\n", bssid);
3903
3904 entry.reserved = 0;
3905 entry.support_mode = 0;
3906 memcpy(entry.mac_addr, bssid, ETH_ALEN);
3907 memcpy(priv->stations[i], bssid, ETH_ALEN);
3908 ipw_write_direct(priv, IPW_STATION_TABLE_LOWER + i * sizeof(entry),
3909 &entry, sizeof(entry));
3910 priv->num_stations++;
3911
3912 return i;
3913 }
3914
3915 static u8 ipw_find_station(struct ipw_priv *priv, u8 * bssid)
3916 {
3917 int i;
3918
3919 for (i = 0; i < priv->num_stations; i++)
3920 if (!memcmp(priv->stations[i], bssid, ETH_ALEN))
3921 return i;
3922
3923 return IPW_INVALID_STATION;
3924 }
3925
3926 static void ipw_send_disassociate(struct ipw_priv *priv, int quiet)
3927 {
3928 int err;
3929
3930 if (priv->status & STATUS_ASSOCIATING) {
3931 IPW_DEBUG_ASSOC("Disassociating while associating.\n");
3932 queue_work(priv->workqueue, &priv->disassociate);
3933 return;
3934 }
3935
3936 if (!(priv->status & STATUS_ASSOCIATED)) {
3937 IPW_DEBUG_ASSOC("Disassociating while not associated.\n");
3938 return;
3939 }
3940
3941 IPW_DEBUG_ASSOC("Disassocation attempt from %pM "
3942 "on channel %d.\n",
3943 priv->assoc_request.bssid,
3944 priv->assoc_request.channel);
3945
3946 priv->status &= ~(STATUS_ASSOCIATING | STATUS_ASSOCIATED);
3947 priv->status |= STATUS_DISASSOCIATING;
3948
3949 if (quiet)
3950 priv->assoc_request.assoc_type = HC_DISASSOC_QUIET;
3951 else
3952 priv->assoc_request.assoc_type = HC_DISASSOCIATE;
3953
3954 err = ipw_send_associate(priv, &priv->assoc_request);
3955 if (err) {
3956 IPW_DEBUG_HC("Attempt to send [dis]associate command "
3957 "failed.\n");
3958 return;
3959 }
3960
3961 }
3962
3963 static int ipw_disassociate(void *data)
3964 {
3965 struct ipw_priv *priv = data;
3966 if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)))
3967 return 0;
3968 ipw_send_disassociate(data, 0);
3969 netif_carrier_off(priv->net_dev);
3970 return 1;
3971 }
3972
3973 static void ipw_bg_disassociate(struct work_struct *work)
3974 {
3975 struct ipw_priv *priv =
3976 container_of(work, struct ipw_priv, disassociate);
3977 mutex_lock(&priv->mutex);
3978 ipw_disassociate(priv);
3979 mutex_unlock(&priv->mutex);
3980 }
3981
3982 static void ipw_system_config(struct work_struct *work)
3983 {
3984 struct ipw_priv *priv =
3985 container_of(work, struct ipw_priv, system_config);
3986
3987 #ifdef CONFIG_IPW2200_PROMISCUOUS
3988 if (priv->prom_net_dev && netif_running(priv->prom_net_dev)) {
3989 priv->sys_config.accept_all_data_frames = 1;
3990 priv->sys_config.accept_non_directed_frames = 1;
3991 priv->sys_config.accept_all_mgmt_bcpr = 1;
3992 priv->sys_config.accept_all_mgmt_frames = 1;
3993 }
3994 #endif
3995
3996 ipw_send_system_config(priv);
3997 }
3998
3999 struct ipw_status_code {
4000 u16 status;
4001 const char *reason;
4002 };
4003
4004 static const struct ipw_status_code ipw_status_codes[] = {
4005 {0x00, "Successful"},
4006 {0x01, "Unspecified failure"},
4007 {0x0A, "Cannot support all requested capabilities in the "
4008 "Capability information field"},
4009 {0x0B, "Reassociation denied due to inability to confirm that "
4010 "association exists"},
4011 {0x0C, "Association denied due to reason outside the scope of this "
4012 "standard"},
4013 {0x0D,
4014 "Responding station does not support the specified authentication "
4015 "algorithm"},
4016 {0x0E,
4017 "Received an Authentication frame with authentication sequence "
4018 "transaction sequence number out of expected sequence"},
4019 {0x0F, "Authentication rejected because of challenge failure"},
4020 {0x10, "Authentication rejected due to timeout waiting for next "
4021 "frame in sequence"},
4022 {0x11, "Association denied because AP is unable to handle additional "
4023 "associated stations"},
4024 {0x12,
4025 "Association denied due to requesting station not supporting all "
4026 "of the datarates in the BSSBasicServiceSet Parameter"},
4027 {0x13,
4028 "Association denied due to requesting station not supporting "
4029 "short preamble operation"},
4030 {0x14,
4031 "Association denied due to requesting station not supporting "
4032 "PBCC encoding"},
4033 {0x15,
4034 "Association denied due to requesting station not supporting "
4035 "channel agility"},
4036 {0x19,
4037 "Association denied due to requesting station not supporting "
4038 "short slot operation"},
4039 {0x1A,
4040 "Association denied due to requesting station not supporting "
4041 "DSSS-OFDM operation"},
4042 {0x28, "Invalid Information Element"},
4043 {0x29, "Group Cipher is not valid"},
4044 {0x2A, "Pairwise Cipher is not valid"},
4045 {0x2B, "AKMP is not valid"},
4046 {0x2C, "Unsupported RSN IE version"},
4047 {0x2D, "Invalid RSN IE Capabilities"},
4048 {0x2E, "Cipher suite is rejected per security policy"},
4049 };
4050
4051 static const char *ipw_get_status_code(u16 status)
4052 {
4053 int i;
4054 for (i = 0; i < ARRAY_SIZE(ipw_status_codes); i++)
4055 if (ipw_status_codes[i].status == (status & 0xff))
4056 return ipw_status_codes[i].reason;
4057 return "Unknown status value.";
4058 }
4059
4060 static void inline average_init(struct average *avg)
4061 {
4062 memset(avg, 0, sizeof(*avg));
4063 }
4064
4065 #define DEPTH_RSSI 8
4066 #define DEPTH_NOISE 16
4067 static s16 exponential_average(s16 prev_avg, s16 val, u8 depth)
4068 {
4069 return ((depth-1)*prev_avg + val)/depth;
4070 }
4071
4072 static void average_add(struct average *avg, s16 val)
4073 {
4074 avg->sum -= avg->entries[avg->pos];
4075 avg->sum += val;
4076 avg->entries[avg->pos++] = val;
4077 if (unlikely(avg->pos == AVG_ENTRIES)) {
4078 avg->init = 1;
4079 avg->pos = 0;
4080 }
4081 }
4082
4083 static s16 average_value(struct average *avg)
4084 {
4085 if (!unlikely(avg->init)) {
4086 if (avg->pos)
4087 return avg->sum / avg->pos;
4088 return 0;
4089 }
4090
4091 return avg->sum / AVG_ENTRIES;
4092 }
4093
4094 static void ipw_reset_stats(struct ipw_priv *priv)
4095 {
4096 u32 len = sizeof(u32);
4097
4098 priv->quality = 0;
4099
4100 average_init(&priv->average_missed_beacons);
4101 priv->exp_avg_rssi = -60;
4102 priv->exp_avg_noise = -85 + 0x100;
4103
4104 priv->last_rate = 0;
4105 priv->last_missed_beacons = 0;
4106 priv->last_rx_packets = 0;
4107 priv->last_tx_packets = 0;
4108 priv->last_tx_failures = 0;
4109
4110 /* Firmware managed, reset only when NIC is restarted, so we have to
4111 * normalize on the current value */
4112 ipw_get_ordinal(priv, IPW_ORD_STAT_RX_ERR_CRC,
4113 &priv->last_rx_err, &len);
4114 ipw_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURE,
4115 &priv->last_tx_failures, &len);
4116
4117 /* Driver managed, reset with each association */
4118 priv->missed_adhoc_beacons = 0;
4119 priv->missed_beacons = 0;
4120 priv->tx_packets = 0;
4121 priv->rx_packets = 0;
4122
4123 }
4124
4125 static u32 ipw_get_max_rate(struct ipw_priv *priv)
4126 {
4127 u32 i = 0x80000000;
4128 u32 mask = priv->rates_mask;
4129 /* If currently associated in B mode, restrict the maximum
4130 * rate match to B rates */
4131 if (priv->assoc_request.ieee_mode == IPW_B_MODE)
4132 mask &= LIBIPW_CCK_RATES_MASK;
4133
4134 /* TODO: Verify that the rate is supported by the current rates
4135 * list. */
4136
4137 while (i && !(mask & i))
4138 i >>= 1;
4139 switch (i) {
4140 case LIBIPW_CCK_RATE_1MB_MASK:
4141 return 1000000;
4142 case LIBIPW_CCK_RATE_2MB_MASK:
4143 return 2000000;
4144 case LIBIPW_CCK_RATE_5MB_MASK:
4145 return 5500000;
4146 case LIBIPW_OFDM_RATE_6MB_MASK:
4147 return 6000000;
4148 case LIBIPW_OFDM_RATE_9MB_MASK:
4149 return 9000000;
4150 case LIBIPW_CCK_RATE_11MB_MASK:
4151 return 11000000;
4152 case LIBIPW_OFDM_RATE_12MB_MASK:
4153 return 12000000;
4154 case LIBIPW_OFDM_RATE_18MB_MASK:
4155 return 18000000;
4156 case LIBIPW_OFDM_RATE_24MB_MASK:
4157 return 24000000;
4158 case LIBIPW_OFDM_RATE_36MB_MASK:
4159 return 36000000;
4160 case LIBIPW_OFDM_RATE_48MB_MASK:
4161 return 48000000;
4162 case LIBIPW_OFDM_RATE_54MB_MASK:
4163 return 54000000;
4164 }
4165
4166 if (priv->ieee->mode == IEEE_B)
4167 return 11000000;
4168 else
4169 return 54000000;
4170 }
4171
4172 static u32 ipw_get_current_rate(struct ipw_priv *priv)
4173 {
4174 u32 rate, len = sizeof(rate);
4175 int err;
4176
4177 if (!(priv->status & STATUS_ASSOCIATED))
4178 return 0;
4179
4180 if (priv->tx_packets > IPW_REAL_RATE_RX_PACKET_THRESHOLD) {
4181 err = ipw_get_ordinal(priv, IPW_ORD_STAT_TX_CURR_RATE, &rate,
4182 &len);
4183 if (err) {
4184 IPW_DEBUG_INFO("failed querying ordinals.\n");
4185 return 0;
4186 }
4187 } else
4188 return ipw_get_max_rate(priv);
4189
4190 switch (rate) {
4191 case IPW_TX_RATE_1MB:
4192 return 1000000;
4193 case IPW_TX_RATE_2MB:
4194 return 2000000;
4195 case IPW_TX_RATE_5MB:
4196 return 5500000;
4197 case IPW_TX_RATE_6MB:
4198 return 6000000;
4199 case IPW_TX_RATE_9MB:
4200 return 9000000;
4201 case IPW_TX_RATE_11MB:
4202 return 11000000;
4203 case IPW_TX_RATE_12MB:
4204 return 12000000;
4205 case IPW_TX_RATE_18MB:
4206 return 18000000;
4207 case IPW_TX_RATE_24MB:
4208 return 24000000;
4209 case IPW_TX_RATE_36MB:
4210 return 36000000;
4211 case IPW_TX_RATE_48MB:
4212 return 48000000;
4213 case IPW_TX_RATE_54MB:
4214 return 54000000;
4215 }
4216
4217 return 0;
4218 }
4219
4220 #define IPW_STATS_INTERVAL (2 * HZ)
4221 static void ipw_gather_stats(struct ipw_priv *priv)
4222 {
4223 u32 rx_err, rx_err_delta, rx_packets_delta;
4224 u32 tx_failures, tx_failures_delta, tx_packets_delta;
4225 u32 missed_beacons_percent, missed_beacons_delta;
4226 u32 quality = 0;
4227 u32 len = sizeof(u32);
4228 s16 rssi;
4229 u32 beacon_quality, signal_quality, tx_quality, rx_quality,
4230 rate_quality;
4231 u32 max_rate;
4232
4233 if (!(priv->status & STATUS_ASSOCIATED)) {
4234 priv->quality = 0;
4235 return;
4236 }
4237
4238 /* Update the statistics */
4239 ipw_get_ordinal(priv, IPW_ORD_STAT_MISSED_BEACONS,
4240 &priv->missed_beacons, &len);
4241 missed_beacons_delta = priv->missed_beacons - priv->last_missed_beacons;
4242 priv->last_missed_beacons = priv->missed_beacons;
4243 if (priv->assoc_request.beacon_interval) {
4244 missed_beacons_percent = missed_beacons_delta *
4245 (HZ * le16_to_cpu(priv->assoc_request.beacon_interval)) /
4246 (IPW_STATS_INTERVAL * 10);
4247 } else {
4248 missed_beacons_percent = 0;
4249 }
4250 average_add(&priv->average_missed_beacons, missed_beacons_percent);
4251
4252 ipw_get_ordinal(priv, IPW_ORD_STAT_RX_ERR_CRC, &rx_err, &len);
4253 rx_err_delta = rx_err - priv->last_rx_err;
4254 priv->last_rx_err = rx_err;
4255
4256 ipw_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURE, &tx_failures, &len);
4257 tx_failures_delta = tx_failures - priv->last_tx_failures;
4258 priv->last_tx_failures = tx_failures;
4259
4260 rx_packets_delta = priv->rx_packets - priv->last_rx_packets;
4261 priv->last_rx_packets = priv->rx_packets;
4262
4263 tx_packets_delta = priv->tx_packets - priv->last_tx_packets;
4264 priv->last_tx_packets = priv->tx_packets;
4265
4266 /* Calculate quality based on the following:
4267 *
4268 * Missed beacon: 100% = 0, 0% = 70% missed
4269 * Rate: 60% = 1Mbs, 100% = Max
4270 * Rx and Tx errors represent a straight % of total Rx/Tx
4271 * RSSI: 100% = > -50, 0% = < -80
4272 * Rx errors: 100% = 0, 0% = 50% missed
4273 *
4274 * The lowest computed quality is used.
4275 *
4276 */
4277 #define BEACON_THRESHOLD 5
4278 beacon_quality = 100 - missed_beacons_percent;
4279 if (beacon_quality < BEACON_THRESHOLD)
4280 beacon_quality = 0;
4281 else
4282 beacon_quality = (beacon_quality - BEACON_THRESHOLD) * 100 /
4283 (100 - BEACON_THRESHOLD);
4284 IPW_DEBUG_STATS("Missed beacon: %3d%% (%d%%)\n",
4285 beacon_quality, missed_beacons_percent);
4286
4287 priv->last_rate = ipw_get_current_rate(priv);
4288 max_rate = ipw_get_max_rate(priv);
4289 rate_quality = priv->last_rate * 40 / max_rate + 60;
4290 IPW_DEBUG_STATS("Rate quality : %3d%% (%dMbs)\n",
4291 rate_quality, priv->last_rate / 1000000);
4292
4293 if (rx_packets_delta > 100 && rx_packets_delta + rx_err_delta)
4294 rx_quality = 100 - (rx_err_delta * 100) /
4295 (rx_packets_delta + rx_err_delta);
4296 else
4297 rx_quality = 100;
4298 IPW_DEBUG_STATS("Rx quality : %3d%% (%u errors, %u packets)\n",
4299 rx_quality, rx_err_delta, rx_packets_delta);
4300
4301 if (tx_packets_delta > 100 && tx_packets_delta + tx_failures_delta)
4302 tx_quality = 100 - (tx_failures_delta * 100) /
4303 (tx_packets_delta + tx_failures_delta);
4304 else
4305 tx_quality = 100;
4306 IPW_DEBUG_STATS("Tx quality : %3d%% (%u errors, %u packets)\n",
4307 tx_quality, tx_failures_delta, tx_packets_delta);
4308
4309 rssi = priv->exp_avg_rssi;
4310 signal_quality =
4311 (100 *
4312 (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) *
4313 (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) -
4314 (priv->ieee->perfect_rssi - rssi) *
4315 (15 * (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) +
4316 62 * (priv->ieee->perfect_rssi - rssi))) /
4317 ((priv->ieee->perfect_rssi - priv->ieee->worst_rssi) *
4318 (priv->ieee->perfect_rssi - priv->ieee->worst_rssi));
4319 if (signal_quality > 100)
4320 signal_quality = 100;
4321 else if (signal_quality < 1)
4322 signal_quality = 0;
4323
4324 IPW_DEBUG_STATS("Signal level : %3d%% (%d dBm)\n",
4325 signal_quality, rssi);
4326
4327 quality = min(rx_quality, signal_quality);
4328 quality = min(tx_quality, quality);
4329 quality = min(rate_quality, quality);
4330 quality = min(beacon_quality, quality);
4331 if (quality == beacon_quality)
4332 IPW_DEBUG_STATS("Quality (%d%%): Clamped to missed beacons.\n",
4333 quality);
4334 if (quality == rate_quality)
4335 IPW_DEBUG_STATS("Quality (%d%%): Clamped to rate quality.\n",
4336 quality);
4337 if (quality == tx_quality)
4338 IPW_DEBUG_STATS("Quality (%d%%): Clamped to Tx quality.\n",
4339 quality);
4340 if (quality == rx_quality)
4341 IPW_DEBUG_STATS("Quality (%d%%): Clamped to Rx quality.\n",
4342 quality);
4343 if (quality == signal_quality)
4344 IPW_DEBUG_STATS("Quality (%d%%): Clamped to signal quality.\n",
4345 quality);
4346
4347 priv->quality = quality;
4348
4349 queue_delayed_work(priv->workqueue, &priv->gather_stats,
4350 IPW_STATS_INTERVAL);
4351 }
4352
4353 static void ipw_bg_gather_stats(struct work_struct *work)
4354 {
4355 struct ipw_priv *priv =
4356 container_of(work, struct ipw_priv, gather_stats.work);
4357 mutex_lock(&priv->mutex);
4358 ipw_gather_stats(priv);
4359 mutex_unlock(&priv->mutex);
4360 }
4361
4362 /* Missed beacon behavior:
4363 * 1st missed -> roaming_threshold, just wait, don't do any scan/roam.
4364 * roaming_threshold -> disassociate_threshold, scan and roam for better signal.
4365 * Above disassociate threshold, give up and stop scanning.
4366 * Roaming is disabled if disassociate_threshold <= roaming_threshold */
4367 static void ipw_handle_missed_beacon(struct ipw_priv *priv,
4368 int missed_count)
4369 {
4370 priv->notif_missed_beacons = missed_count;
4371
4372 if (missed_count > priv->disassociate_threshold &&
4373 priv->status & STATUS_ASSOCIATED) {
4374 /* If associated and we've hit the missed
4375 * beacon threshold, disassociate, turn
4376 * off roaming, and abort any active scans */
4377 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
4378 IPW_DL_STATE | IPW_DL_ASSOC,
4379 "Missed beacon: %d - disassociate\n", missed_count);
4380 priv->status &= ~STATUS_ROAMING;
4381 if (priv->status & STATUS_SCANNING) {
4382 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
4383 IPW_DL_STATE,
4384 "Aborting scan with missed beacon.\n");
4385 queue_work(priv->workqueue, &priv->abort_scan);
4386 }
4387
4388 queue_work(priv->workqueue, &priv->disassociate);
4389 return;
4390 }
4391
4392 if (priv->status & STATUS_ROAMING) {
4393 /* If we are currently roaming, then just
4394 * print a debug statement... */
4395 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4396 "Missed beacon: %d - roam in progress\n",
4397 missed_count);
4398 return;
4399 }
4400
4401 if (roaming &&
4402 (missed_count > priv->roaming_threshold &&
4403 missed_count <= priv->disassociate_threshold)) {
4404 /* If we are not already roaming, set the ROAM
4405 * bit in the status and kick off a scan.
4406 * This can happen several times before we reach
4407 * disassociate_threshold. */
4408 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4409 "Missed beacon: %d - initiate "
4410 "roaming\n", missed_count);
4411 if (!(priv->status & STATUS_ROAMING)) {
4412 priv->status |= STATUS_ROAMING;
4413 if (!(priv->status & STATUS_SCANNING))
4414 queue_delayed_work(priv->workqueue,
4415 &priv->request_scan, 0);
4416 }
4417 return;
4418 }
4419
4420 if (priv->status & STATUS_SCANNING &&
4421 missed_count > IPW_MB_SCAN_CANCEL_THRESHOLD) {
4422 /* Stop scan to keep fw from getting
4423 * stuck (only if we aren't roaming --
4424 * otherwise we'll never scan more than 2 or 3
4425 * channels..) */
4426 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF | IPW_DL_STATE,
4427 "Aborting scan with missed beacon.\n");
4428 queue_work(priv->workqueue, &priv->abort_scan);
4429 }
4430
4431 IPW_DEBUG_NOTIF("Missed beacon: %d\n", missed_count);
4432 }
4433
4434 static void ipw_scan_event(struct work_struct *work)
4435 {
4436 union iwreq_data wrqu;
4437
4438 struct ipw_priv *priv =
4439 container_of(work, struct ipw_priv, scan_event.work);
4440
4441 wrqu.data.length = 0;
4442 wrqu.data.flags = 0;
4443 wireless_send_event(priv->net_dev, SIOCGIWSCAN, &wrqu, NULL);
4444 }
4445
4446 static void handle_scan_event(struct ipw_priv *priv)
4447 {
4448 /* Only userspace-requested scan completion events go out immediately */
4449 if (!priv->user_requested_scan) {
4450 if (!delayed_work_pending(&priv->scan_event))
4451 queue_delayed_work(priv->workqueue, &priv->scan_event,
4452 round_jiffies_relative(msecs_to_jiffies(4000)));
4453 } else {
4454 union iwreq_data wrqu;
4455
4456 priv->user_requested_scan = 0;
4457 cancel_delayed_work(&priv->scan_event);
4458
4459 wrqu.data.length = 0;
4460 wrqu.data.flags = 0;
4461 wireless_send_event(priv->net_dev, SIOCGIWSCAN, &wrqu, NULL);
4462 }
4463 }
4464
4465 /**
4466 * Handle host notification packet.
4467 * Called from interrupt routine
4468 */
4469 static void ipw_rx_notification(struct ipw_priv *priv,
4470 struct ipw_rx_notification *notif)
4471 {
4472 DECLARE_SSID_BUF(ssid);
4473 u16 size = le16_to_cpu(notif->size);
4474
4475 IPW_DEBUG_NOTIF("type = %i (%d bytes)\n", notif->subtype, size);
4476
4477 switch (notif->subtype) {
4478 case HOST_NOTIFICATION_STATUS_ASSOCIATED:{
4479 struct notif_association *assoc = &notif->u.assoc;
4480
4481 switch (assoc->state) {
4482 case CMAS_ASSOCIATED:{
4483 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4484 IPW_DL_ASSOC,
4485 "associated: '%s' %pM \n",
4486 print_ssid(ssid, priv->essid,
4487 priv->essid_len),
4488 priv->bssid);
4489
4490 switch (priv->ieee->iw_mode) {
4491 case IW_MODE_INFRA:
4492 memcpy(priv->ieee->bssid,
4493 priv->bssid, ETH_ALEN);
4494 break;
4495
4496 case IW_MODE_ADHOC:
4497 memcpy(priv->ieee->bssid,
4498 priv->bssid, ETH_ALEN);
4499
4500 /* clear out the station table */
4501 priv->num_stations = 0;
4502
4503 IPW_DEBUG_ASSOC
4504 ("queueing adhoc check\n");
4505 queue_delayed_work(priv->
4506 workqueue,
4507 &priv->
4508 adhoc_check,
4509 le16_to_cpu(priv->
4510 assoc_request.
4511 beacon_interval));
4512 break;
4513 }
4514
4515 priv->status &= ~STATUS_ASSOCIATING;
4516 priv->status |= STATUS_ASSOCIATED;
4517 queue_work(priv->workqueue,
4518 &priv->system_config);
4519
4520 #ifdef CONFIG_IPW2200_QOS
4521 #define IPW_GET_PACKET_STYPE(x) WLAN_FC_GET_STYPE( \
4522 le16_to_cpu(((struct ieee80211_hdr *)(x))->frame_control))
4523 if ((priv->status & STATUS_AUTH) &&
4524 (IPW_GET_PACKET_STYPE(&notif->u.raw)
4525 == IEEE80211_STYPE_ASSOC_RESP)) {
4526 if ((sizeof
4527 (struct
4528 libipw_assoc_response)
4529 <= size)
4530 && (size <= 2314)) {
4531 struct
4532 libipw_rx_stats
4533 stats = {
4534 .len = size - 1,
4535 };
4536
4537 IPW_DEBUG_QOS
4538 ("QoS Associate "
4539 "size %d\n", size);
4540 libipw_rx_mgt(priv->
4541 ieee,
4542 (struct
4543 libipw_hdr_4addr
4544 *)
4545 &notif->u.raw, &stats);
4546 }
4547 }
4548 #endif
4549
4550 schedule_work(&priv->link_up);
4551
4552 break;
4553 }
4554
4555 case CMAS_AUTHENTICATED:{
4556 if (priv->
4557 status & (STATUS_ASSOCIATED |
4558 STATUS_AUTH)) {
4559 struct notif_authenticate *auth
4560 = &notif->u.auth;
4561 IPW_DEBUG(IPW_DL_NOTIF |
4562 IPW_DL_STATE |
4563 IPW_DL_ASSOC,
4564 "deauthenticated: '%s' "
4565 "%pM"
4566 ": (0x%04X) - %s \n",
4567 print_ssid(ssid,
4568 priv->
4569 essid,
4570 priv->
4571 essid_len),
4572 priv->bssid,
4573 le16_to_cpu(auth->status),
4574 ipw_get_status_code
4575 (le16_to_cpu
4576 (auth->status)));
4577
4578 priv->status &=
4579 ~(STATUS_ASSOCIATING |
4580 STATUS_AUTH |
4581 STATUS_ASSOCIATED);
4582
4583 schedule_work(&priv->link_down);
4584 break;
4585 }
4586
4587 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4588 IPW_DL_ASSOC,
4589 "authenticated: '%s' %pM\n",
4590 print_ssid(ssid, priv->essid,
4591 priv->essid_len),
4592 priv->bssid);
4593 break;
4594 }
4595
4596 case CMAS_INIT:{
4597 if (priv->status & STATUS_AUTH) {
4598 struct
4599 libipw_assoc_response
4600 *resp;
4601 resp =
4602 (struct
4603 libipw_assoc_response
4604 *)&notif->u.raw;
4605 IPW_DEBUG(IPW_DL_NOTIF |
4606 IPW_DL_STATE |
4607 IPW_DL_ASSOC,
4608 "association failed (0x%04X): %s\n",
4609 le16_to_cpu(resp->status),
4610 ipw_get_status_code
4611 (le16_to_cpu
4612 (resp->status)));
4613 }
4614
4615 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4616 IPW_DL_ASSOC,
4617 "disassociated: '%s' %pM \n",
4618 print_ssid(ssid, priv->essid,
4619 priv->essid_len),
4620 priv->bssid);
4621
4622 priv->status &=
4623 ~(STATUS_DISASSOCIATING |
4624 STATUS_ASSOCIATING |
4625 STATUS_ASSOCIATED | STATUS_AUTH);
4626 if (priv->assoc_network
4627 && (priv->assoc_network->
4628 capability &
4629 WLAN_CAPABILITY_IBSS))
4630 ipw_remove_current_network
4631 (priv);
4632
4633 schedule_work(&priv->link_down);
4634
4635 break;
4636 }
4637
4638 case CMAS_RX_ASSOC_RESP:
4639 break;
4640
4641 default:
4642 IPW_ERROR("assoc: unknown (%d)\n",
4643 assoc->state);
4644 break;
4645 }
4646
4647 break;
4648 }
4649
4650 case HOST_NOTIFICATION_STATUS_AUTHENTICATE:{
4651 struct notif_authenticate *auth = &notif->u.auth;
4652 switch (auth->state) {
4653 case CMAS_AUTHENTICATED:
4654 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4655 "authenticated: '%s' %pM \n",
4656 print_ssid(ssid, priv->essid,
4657 priv->essid_len),
4658 priv->bssid);
4659 priv->status |= STATUS_AUTH;
4660 break;
4661
4662 case CMAS_INIT:
4663 if (priv->status & STATUS_AUTH) {
4664 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4665 IPW_DL_ASSOC,
4666 "authentication failed (0x%04X): %s\n",
4667 le16_to_cpu(auth->status),
4668 ipw_get_status_code(le16_to_cpu
4669 (auth->
4670 status)));
4671 }
4672 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4673 IPW_DL_ASSOC,
4674 "deauthenticated: '%s' %pM\n",
4675 print_ssid(ssid, priv->essid,
4676 priv->essid_len),
4677 priv->bssid);
4678
4679 priv->status &= ~(STATUS_ASSOCIATING |
4680 STATUS_AUTH |
4681 STATUS_ASSOCIATED);
4682
4683 schedule_work(&priv->link_down);
4684 break;
4685
4686 case CMAS_TX_AUTH_SEQ_1:
4687 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4688 IPW_DL_ASSOC, "AUTH_SEQ_1\n");
4689 break;
4690 case CMAS_RX_AUTH_SEQ_2:
4691 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4692 IPW_DL_ASSOC, "AUTH_SEQ_2\n");
4693 break;
4694 case CMAS_AUTH_SEQ_1_PASS:
4695 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4696 IPW_DL_ASSOC, "AUTH_SEQ_1_PASS\n");
4697 break;
4698 case CMAS_AUTH_SEQ_1_FAIL:
4699 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4700 IPW_DL_ASSOC, "AUTH_SEQ_1_FAIL\n");
4701 break;
4702 case CMAS_TX_AUTH_SEQ_3:
4703 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4704 IPW_DL_ASSOC, "AUTH_SEQ_3\n");
4705 break;
4706 case CMAS_RX_AUTH_SEQ_4:
4707 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4708 IPW_DL_ASSOC, "RX_AUTH_SEQ_4\n");
4709 break;
4710 case CMAS_AUTH_SEQ_2_PASS:
4711 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4712 IPW_DL_ASSOC, "AUTH_SEQ_2_PASS\n");
4713 break;
4714 case CMAS_AUTH_SEQ_2_FAIL:
4715 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4716 IPW_DL_ASSOC, "AUT_SEQ_2_FAIL\n");
4717 break;
4718 case CMAS_TX_ASSOC:
4719 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4720 IPW_DL_ASSOC, "TX_ASSOC\n");
4721 break;
4722 case CMAS_RX_ASSOC_RESP:
4723 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4724 IPW_DL_ASSOC, "RX_ASSOC_RESP\n");
4725
4726 break;
4727 case CMAS_ASSOCIATED:
4728 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4729 IPW_DL_ASSOC, "ASSOCIATED\n");
4730 break;
4731 default:
4732 IPW_DEBUG_NOTIF("auth: failure - %d\n",
4733 auth->state);
4734 break;
4735 }
4736 break;
4737 }
4738
4739 case HOST_NOTIFICATION_STATUS_SCAN_CHANNEL_RESULT:{
4740 struct notif_channel_result *x =
4741 &notif->u.channel_result;
4742
4743 if (size == sizeof(*x)) {
4744 IPW_DEBUG_SCAN("Scan result for channel %d\n",
4745 x->channel_num);
4746 } else {
4747 IPW_DEBUG_SCAN("Scan result of wrong size %d "
4748 "(should be %zd)\n",
4749 size, sizeof(*x));
4750 }
4751 break;
4752 }
4753
4754 case HOST_NOTIFICATION_STATUS_SCAN_COMPLETED:{
4755 struct notif_scan_complete *x = &notif->u.scan_complete;
4756 if (size == sizeof(*x)) {
4757 IPW_DEBUG_SCAN
4758 ("Scan completed: type %d, %d channels, "
4759 "%d status\n", x->scan_type,
4760 x->num_channels, x->status);
4761 } else {
4762 IPW_ERROR("Scan completed of wrong size %d "
4763 "(should be %zd)\n",
4764 size, sizeof(*x));
4765 }
4766
4767 priv->status &=
4768 ~(STATUS_SCANNING | STATUS_SCAN_ABORTING);
4769
4770 wake_up_interruptible(&priv->wait_state);
4771 cancel_delayed_work(&priv->scan_check);
4772
4773 if (priv->status & STATUS_EXIT_PENDING)
4774 break;
4775
4776 priv->ieee->scans++;
4777
4778 #ifdef CONFIG_IPW2200_MONITOR
4779 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
4780 priv->status |= STATUS_SCAN_FORCED;
4781 queue_delayed_work(priv->workqueue,
4782 &priv->request_scan, 0);
4783 break;
4784 }
4785 priv->status &= ~STATUS_SCAN_FORCED;
4786 #endif /* CONFIG_IPW2200_MONITOR */
4787
4788 /* Do queued direct scans first */
4789 if (priv->status & STATUS_DIRECT_SCAN_PENDING) {
4790 queue_delayed_work(priv->workqueue,
4791 &priv->request_direct_scan, 0);
4792 }
4793
4794 if (!(priv->status & (STATUS_ASSOCIATED |
4795 STATUS_ASSOCIATING |
4796 STATUS_ROAMING |
4797 STATUS_DISASSOCIATING)))
4798 queue_work(priv->workqueue, &priv->associate);
4799 else if (priv->status & STATUS_ROAMING) {
4800 if (x->status == SCAN_COMPLETED_STATUS_COMPLETE)
4801 /* If a scan completed and we are in roam mode, then
4802 * the scan that completed was the one requested as a
4803 * result of entering roam... so, schedule the
4804 * roam work */
4805 queue_work(priv->workqueue,
4806 &priv->roam);
4807 else
4808 /* Don't schedule if we aborted the scan */
4809 priv->status &= ~STATUS_ROAMING;
4810 } else if (priv->status & STATUS_SCAN_PENDING)
4811 queue_delayed_work(priv->workqueue,
4812 &priv->request_scan, 0);
4813 else if (priv->config & CFG_BACKGROUND_SCAN
4814 && priv->status & STATUS_ASSOCIATED)
4815 queue_delayed_work(priv->workqueue,
4816 &priv->request_scan,
4817 round_jiffies_relative(HZ));
4818
4819 /* Send an empty event to user space.
4820 * We don't send the received data on the event because
4821 * it would require us to do complex transcoding, and
4822 * we want to minimise the work done in the irq handler
4823 * Use a request to extract the data.
4824 * Also, we generate this even for any scan, regardless
4825 * on how the scan was initiated. User space can just
4826 * sync on periodic scan to get fresh data...
4827 * Jean II */
4828 if (x->status == SCAN_COMPLETED_STATUS_COMPLETE)
4829 handle_scan_event(priv);
4830 break;
4831 }
4832
4833 case HOST_NOTIFICATION_STATUS_FRAG_LENGTH:{
4834 struct notif_frag_length *x = &notif->u.frag_len;
4835
4836 if (size == sizeof(*x))
4837 IPW_ERROR("Frag length: %d\n",
4838 le16_to_cpu(x->frag_length));
4839 else
4840 IPW_ERROR("Frag length of wrong size %d "
4841 "(should be %zd)\n",
4842 size, sizeof(*x));
4843 break;
4844 }
4845
4846 case HOST_NOTIFICATION_STATUS_LINK_DETERIORATION:{
4847 struct notif_link_deterioration *x =
4848 &notif->u.link_deterioration;
4849
4850 if (size == sizeof(*x)) {
4851 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4852 "link deterioration: type %d, cnt %d\n",
4853 x->silence_notification_type,
4854 x->silence_count);
4855 memcpy(&priv->last_link_deterioration, x,
4856 sizeof(*x));
4857 } else {
4858 IPW_ERROR("Link Deterioration of wrong size %d "
4859 "(should be %zd)\n",
4860 size, sizeof(*x));
4861 }
4862 break;
4863 }
4864
4865 case HOST_NOTIFICATION_DINO_CONFIG_RESPONSE:{
4866 IPW_ERROR("Dino config\n");
4867 if (priv->hcmd
4868 && priv->hcmd->cmd != HOST_CMD_DINO_CONFIG)
4869 IPW_ERROR("Unexpected DINO_CONFIG_RESPONSE\n");
4870
4871 break;
4872 }
4873
4874 case HOST_NOTIFICATION_STATUS_BEACON_STATE:{
4875 struct notif_beacon_state *x = &notif->u.beacon_state;
4876 if (size != sizeof(*x)) {
4877 IPW_ERROR
4878 ("Beacon state of wrong size %d (should "
4879 "be %zd)\n", size, sizeof(*x));
4880 break;
4881 }
4882
4883 if (le32_to_cpu(x->state) ==
4884 HOST_NOTIFICATION_STATUS_BEACON_MISSING)
4885 ipw_handle_missed_beacon(priv,
4886 le32_to_cpu(x->
4887 number));
4888
4889 break;
4890 }
4891
4892 case HOST_NOTIFICATION_STATUS_TGI_TX_KEY:{
4893 struct notif_tgi_tx_key *x = &notif->u.tgi_tx_key;
4894 if (size == sizeof(*x)) {
4895 IPW_ERROR("TGi Tx Key: state 0x%02x sec type "
4896 "0x%02x station %d\n",
4897 x->key_state, x->security_type,
4898 x->station_index);
4899 break;
4900 }
4901
4902 IPW_ERROR
4903 ("TGi Tx Key of wrong size %d (should be %zd)\n",
4904 size, sizeof(*x));
4905 break;
4906 }
4907
4908 case HOST_NOTIFICATION_CALIB_KEEP_RESULTS:{
4909 struct notif_calibration *x = &notif->u.calibration;
4910
4911 if (size == sizeof(*x)) {
4912 memcpy(&priv->calib, x, sizeof(*x));
4913 IPW_DEBUG_INFO("TODO: Calibration\n");
4914 break;
4915 }
4916
4917 IPW_ERROR
4918 ("Calibration of wrong size %d (should be %zd)\n",
4919 size, sizeof(*x));
4920 break;
4921 }
4922
4923 case HOST_NOTIFICATION_NOISE_STATS:{
4924 if (size == sizeof(u32)) {
4925 priv->exp_avg_noise =
4926 exponential_average(priv->exp_avg_noise,
4927 (u8) (le32_to_cpu(notif->u.noise.value) & 0xff),
4928 DEPTH_NOISE);
4929 break;
4930 }
4931
4932 IPW_ERROR
4933 ("Noise stat is wrong size %d (should be %zd)\n",
4934 size, sizeof(u32));
4935 break;
4936 }
4937
4938 default:
4939 IPW_DEBUG_NOTIF("Unknown notification: "
4940 "subtype=%d,flags=0x%2x,size=%d\n",
4941 notif->subtype, notif->flags, size);
4942 }
4943 }
4944
4945 /**
4946 * Destroys all DMA structures and initialise them again
4947 *
4948 * @param priv
4949 * @return error code
4950 */
4951 static int ipw_queue_reset(struct ipw_priv *priv)
4952 {
4953 int rc = 0;
4954 /** @todo customize queue sizes */
4955 int nTx = 64, nTxCmd = 8;
4956 ipw_tx_queue_free(priv);
4957 /* Tx CMD queue */
4958 rc = ipw_queue_tx_init(priv, &priv->txq_cmd, nTxCmd,
4959 IPW_TX_CMD_QUEUE_READ_INDEX,
4960 IPW_TX_CMD_QUEUE_WRITE_INDEX,
4961 IPW_TX_CMD_QUEUE_BD_BASE,
4962 IPW_TX_CMD_QUEUE_BD_SIZE);
4963 if (rc) {
4964 IPW_ERROR("Tx Cmd queue init failed\n");
4965 goto error;
4966 }
4967 /* Tx queue(s) */
4968 rc = ipw_queue_tx_init(priv, &priv->txq[0], nTx,
4969 IPW_TX_QUEUE_0_READ_INDEX,
4970 IPW_TX_QUEUE_0_WRITE_INDEX,
4971 IPW_TX_QUEUE_0_BD_BASE, IPW_TX_QUEUE_0_BD_SIZE);
4972 if (rc) {
4973 IPW_ERROR("Tx 0 queue init failed\n");
4974 goto error;
4975 }
4976 rc = ipw_queue_tx_init(priv, &priv->txq[1], nTx,
4977 IPW_TX_QUEUE_1_READ_INDEX,
4978 IPW_TX_QUEUE_1_WRITE_INDEX,
4979 IPW_TX_QUEUE_1_BD_BASE, IPW_TX_QUEUE_1_BD_SIZE);
4980 if (rc) {
4981 IPW_ERROR("Tx 1 queue init failed\n");
4982 goto error;
4983 }
4984 rc = ipw_queue_tx_init(priv, &priv->txq[2], nTx,
4985 IPW_TX_QUEUE_2_READ_INDEX,
4986 IPW_TX_QUEUE_2_WRITE_INDEX,
4987 IPW_TX_QUEUE_2_BD_BASE, IPW_TX_QUEUE_2_BD_SIZE);
4988 if (rc) {
4989 IPW_ERROR("Tx 2 queue init failed\n");
4990 goto error;
4991 }
4992 rc = ipw_queue_tx_init(priv, &priv->txq[3], nTx,
4993 IPW_TX_QUEUE_3_READ_INDEX,
4994 IPW_TX_QUEUE_3_WRITE_INDEX,
4995 IPW_TX_QUEUE_3_BD_BASE, IPW_TX_QUEUE_3_BD_SIZE);
4996 if (rc) {
4997 IPW_ERROR("Tx 3 queue init failed\n");
4998 goto error;
4999 }
5000 /* statistics */
5001 priv->rx_bufs_min = 0;
5002 priv->rx_pend_max = 0;
5003 return rc;
5004
5005 error:
5006 ipw_tx_queue_free(priv);
5007 return rc;
5008 }
5009
5010 /**
5011 * Reclaim Tx queue entries no more used by NIC.
5012 *
5013 * When FW advances 'R' index, all entries between old and
5014 * new 'R' index need to be reclaimed. As result, some free space
5015 * forms. If there is enough free space (> low mark), wake Tx queue.
5016 *
5017 * @note Need to protect against garbage in 'R' index
5018 * @param priv
5019 * @param txq
5020 * @param qindex
5021 * @return Number of used entries remains in the queue
5022 */
5023 static int ipw_queue_tx_reclaim(struct ipw_priv *priv,
5024 struct clx2_tx_queue *txq, int qindex)
5025 {
5026 u32 hw_tail;
5027 int used;
5028 struct clx2_queue *q = &txq->q;
5029
5030 hw_tail = ipw_read32(priv, q->reg_r);
5031 if (hw_tail >= q->n_bd) {
5032 IPW_ERROR
5033 ("Read index for DMA queue (%d) is out of range [0-%d)\n",
5034 hw_tail, q->n_bd);
5035 goto done;
5036 }
5037 for (; q->last_used != hw_tail;
5038 q->last_used = ipw_queue_inc_wrap(q->last_used, q->n_bd)) {
5039 ipw_queue_tx_free_tfd(priv, txq);
5040 priv->tx_packets++;
5041 }
5042 done:
5043 if ((ipw_tx_queue_space(q) > q->low_mark) &&
5044 (qindex >= 0))
5045 netif_wake_queue(priv->net_dev);
5046 used = q->first_empty - q->last_used;
5047 if (used < 0)
5048 used += q->n_bd;
5049
5050 return used;
5051 }
5052
5053 static int ipw_queue_tx_hcmd(struct ipw_priv *priv, int hcmd, void *buf,
5054 int len, int sync)
5055 {
5056 struct clx2_tx_queue *txq = &priv->txq_cmd;
5057 struct clx2_queue *q = &txq->q;
5058 struct tfd_frame *tfd;
5059
5060 if (ipw_tx_queue_space(q) < (sync ? 1 : 2)) {
5061 IPW_ERROR("No space for Tx\n");
5062 return -EBUSY;
5063 }
5064
5065 tfd = &txq->bd[q->first_empty];
5066 txq->txb[q->first_empty] = NULL;
5067
5068 memset(tfd, 0, sizeof(*tfd));
5069 tfd->control_flags.message_type = TX_HOST_COMMAND_TYPE;
5070 tfd->control_flags.control_bits = TFD_NEED_IRQ_MASK;
5071 priv->hcmd_seq++;
5072 tfd->u.cmd.index = hcmd;
5073 tfd->u.cmd.length = len;
5074 memcpy(tfd->u.cmd.payload, buf, len);
5075 q->first_empty = ipw_queue_inc_wrap(q->first_empty, q->n_bd);
5076 ipw_write32(priv, q->reg_w, q->first_empty);
5077 _ipw_read32(priv, 0x90);
5078
5079 return 0;
5080 }
5081
5082 /*
5083 * Rx theory of operation
5084 *
5085 * The host allocates 32 DMA target addresses and passes the host address
5086 * to the firmware at register IPW_RFDS_TABLE_LOWER + N * RFD_SIZE where N is
5087 * 0 to 31
5088 *
5089 * Rx Queue Indexes
5090 * The host/firmware share two index registers for managing the Rx buffers.
5091 *
5092 * The READ index maps to the first position that the firmware may be writing
5093 * to -- the driver can read up to (but not including) this position and get
5094 * good data.
5095 * The READ index is managed by the firmware once the card is enabled.
5096 *
5097 * The WRITE index maps to the last position the driver has read from -- the
5098 * position preceding WRITE is the last slot the firmware can place a packet.
5099 *
5100 * The queue is empty (no good data) if WRITE = READ - 1, and is full if
5101 * WRITE = READ.
5102 *
5103 * During initialization the host sets up the READ queue position to the first
5104 * INDEX position, and WRITE to the last (READ - 1 wrapped)
5105 *
5106 * When the firmware places a packet in a buffer it will advance the READ index
5107 * and fire the RX interrupt. The driver can then query the READ index and
5108 * process as many packets as possible, moving the WRITE index forward as it
5109 * resets the Rx queue buffers with new memory.
5110 *
5111 * The management in the driver is as follows:
5112 * + A list of pre-allocated SKBs is stored in ipw->rxq->rx_free. When
5113 * ipw->rxq->free_count drops to or below RX_LOW_WATERMARK, work is scheduled
5114 * to replensish the ipw->rxq->rx_free.
5115 * + In ipw_rx_queue_replenish (scheduled) if 'processed' != 'read' then the
5116 * ipw->rxq is replenished and the READ INDEX is updated (updating the
5117 * 'processed' and 'read' driver indexes as well)
5118 * + A received packet is processed and handed to the kernel network stack,
5119 * detached from the ipw->rxq. The driver 'processed' index is updated.
5120 * + The Host/Firmware ipw->rxq is replenished at tasklet time from the rx_free
5121 * list. If there are no allocated buffers in ipw->rxq->rx_free, the READ
5122 * INDEX is not incremented and ipw->status(RX_STALLED) is set. If there
5123 * were enough free buffers and RX_STALLED is set it is cleared.
5124 *
5125 *
5126 * Driver sequence:
5127 *
5128 * ipw_rx_queue_alloc() Allocates rx_free
5129 * ipw_rx_queue_replenish() Replenishes rx_free list from rx_used, and calls
5130 * ipw_rx_queue_restock
5131 * ipw_rx_queue_restock() Moves available buffers from rx_free into Rx
5132 * queue, updates firmware pointers, and updates
5133 * the WRITE index. If insufficient rx_free buffers
5134 * are available, schedules ipw_rx_queue_replenish
5135 *
5136 * -- enable interrupts --
5137 * ISR - ipw_rx() Detach ipw_rx_mem_buffers from pool up to the
5138 * READ INDEX, detaching the SKB from the pool.
5139 * Moves the packet buffer from queue to rx_used.
5140 * Calls ipw_rx_queue_restock to refill any empty
5141 * slots.
5142 * ...
5143 *
5144 */
5145
5146 /*
5147 * If there are slots in the RX queue that need to be restocked,
5148 * and we have free pre-allocated buffers, fill the ranks as much
5149 * as we can pulling from rx_free.
5150 *
5151 * This moves the 'write' index forward to catch up with 'processed', and
5152 * also updates the memory address in the firmware to reference the new
5153 * target buffer.
5154 */
5155 static void ipw_rx_queue_restock(struct ipw_priv *priv)
5156 {
5157 struct ipw_rx_queue *rxq = priv->rxq;
5158 struct list_head *element;
5159 struct ipw_rx_mem_buffer *rxb;
5160 unsigned long flags;
5161 int write;
5162
5163 spin_lock_irqsave(&rxq->lock, flags);
5164 write = rxq->write;
5165 while ((ipw_rx_queue_space(rxq) > 0) && (rxq->free_count)) {
5166 element = rxq->rx_free.next;
5167 rxb = list_entry(element, struct ipw_rx_mem_buffer, list);
5168 list_del(element);
5169
5170 ipw_write32(priv, IPW_RFDS_TABLE_LOWER + rxq->write * RFD_SIZE,
5171 rxb->dma_addr);
5172 rxq->queue[rxq->write] = rxb;
5173 rxq->write = (rxq->write + 1) % RX_QUEUE_SIZE;
5174 rxq->free_count--;
5175 }
5176 spin_unlock_irqrestore(&rxq->lock, flags);
5177
5178 /* If the pre-allocated buffer pool is dropping low, schedule to
5179 * refill it */
5180 if (rxq->free_count <= RX_LOW_WATERMARK)
5181 queue_work(priv->workqueue, &priv->rx_replenish);
5182
5183 /* If we've added more space for the firmware to place data, tell it */
5184 if (write != rxq->write)
5185 ipw_write32(priv, IPW_RX_WRITE_INDEX, rxq->write);
5186 }
5187
5188 /*
5189 * Move all used packet from rx_used to rx_free, allocating a new SKB for each.
5190 * Also restock the Rx queue via ipw_rx_queue_restock.
5191 *
5192 * This is called as a scheduled work item (except for during intialization)
5193 */
5194 static void ipw_rx_queue_replenish(void *data)
5195 {
5196 struct ipw_priv *priv = data;
5197 struct ipw_rx_queue *rxq = priv->rxq;
5198 struct list_head *element;
5199 struct ipw_rx_mem_buffer *rxb;
5200 unsigned long flags;
5201
5202 spin_lock_irqsave(&rxq->lock, flags);
5203 while (!list_empty(&rxq->rx_used)) {
5204 element = rxq->rx_used.next;
5205 rxb = list_entry(element, struct ipw_rx_mem_buffer, list);
5206 rxb->skb = alloc_skb(IPW_RX_BUF_SIZE, GFP_ATOMIC);
5207 if (!rxb->skb) {
5208 printk(KERN_CRIT "%s: Can not allocate SKB buffers.\n",
5209 priv->net_dev->name);
5210 /* We don't reschedule replenish work here -- we will
5211 * call the restock method and if it still needs
5212 * more buffers it will schedule replenish */
5213 break;
5214 }
5215 list_del(element);
5216
5217 rxb->dma_addr =
5218 pci_map_single(priv->pci_dev, rxb->skb->data,
5219 IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
5220
5221 list_add_tail(&rxb->list, &rxq->rx_free);
5222 rxq->free_count++;
5223 }
5224 spin_unlock_irqrestore(&rxq->lock, flags);
5225
5226 ipw_rx_queue_restock(priv);
5227 }
5228
5229 static void ipw_bg_rx_queue_replenish(struct work_struct *work)
5230 {
5231 struct ipw_priv *priv =
5232 container_of(work, struct ipw_priv, rx_replenish);
5233 mutex_lock(&priv->mutex);
5234 ipw_rx_queue_replenish(priv);
5235 mutex_unlock(&priv->mutex);
5236 }
5237
5238 /* Assumes that the skb field of the buffers in 'pool' is kept accurate.
5239 * If an SKB has been detached, the POOL needs to have its SKB set to NULL
5240 * This free routine walks the list of POOL entries and if SKB is set to
5241 * non NULL it is unmapped and freed
5242 */
5243 static void ipw_rx_queue_free(struct ipw_priv *priv, struct ipw_rx_queue *rxq)
5244 {
5245 int i;
5246
5247 if (!rxq)
5248 return;
5249
5250 for (i = 0; i < RX_QUEUE_SIZE + RX_FREE_BUFFERS; i++) {
5251 if (rxq->pool[i].skb != NULL) {
5252 pci_unmap_single(priv->pci_dev, rxq->pool[i].dma_addr,
5253 IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
5254 dev_kfree_skb(rxq->pool[i].skb);
5255 }
5256 }
5257
5258 kfree(rxq);
5259 }
5260
5261 static struct ipw_rx_queue *ipw_rx_queue_alloc(struct ipw_priv *priv)
5262 {
5263 struct ipw_rx_queue *rxq;
5264 int i;
5265
5266 rxq = kzalloc(sizeof(*rxq), GFP_KERNEL);
5267 if (unlikely(!rxq)) {
5268 IPW_ERROR("memory allocation failed\n");
5269 return NULL;
5270 }
5271 spin_lock_init(&rxq->lock);
5272 INIT_LIST_HEAD(&rxq->rx_free);
5273 INIT_LIST_HEAD(&rxq->rx_used);
5274
5275 /* Fill the rx_used queue with _all_ of the Rx buffers */
5276 for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++)
5277 list_add_tail(&rxq->pool[i].list, &rxq->rx_used);
5278
5279 /* Set us so that we have processed and used all buffers, but have
5280 * not restocked the Rx queue with fresh buffers */
5281 rxq->read = rxq->write = 0;
5282 rxq->free_count = 0;
5283
5284 return rxq;
5285 }
5286
5287 static int ipw_is_rate_in_mask(struct ipw_priv *priv, int ieee_mode, u8 rate)
5288 {
5289 rate &= ~LIBIPW_BASIC_RATE_MASK;
5290 if (ieee_mode == IEEE_A) {
5291 switch (rate) {
5292 case LIBIPW_OFDM_RATE_6MB:
5293 return priv->rates_mask & LIBIPW_OFDM_RATE_6MB_MASK ?
5294 1 : 0;
5295 case LIBIPW_OFDM_RATE_9MB:
5296 return priv->rates_mask & LIBIPW_OFDM_RATE_9MB_MASK ?
5297 1 : 0;
5298 case LIBIPW_OFDM_RATE_12MB:
5299 return priv->
5300 rates_mask & LIBIPW_OFDM_RATE_12MB_MASK ? 1 : 0;
5301 case LIBIPW_OFDM_RATE_18MB:
5302 return priv->
5303 rates_mask & LIBIPW_OFDM_RATE_18MB_MASK ? 1 : 0;
5304 case LIBIPW_OFDM_RATE_24MB:
5305 return priv->
5306 rates_mask & LIBIPW_OFDM_RATE_24MB_MASK ? 1 : 0;
5307 case LIBIPW_OFDM_RATE_36MB:
5308 return priv->
5309 rates_mask & LIBIPW_OFDM_RATE_36MB_MASK ? 1 : 0;
5310 case LIBIPW_OFDM_RATE_48MB:
5311 return priv->
5312 rates_mask & LIBIPW_OFDM_RATE_48MB_MASK ? 1 : 0;
5313 case LIBIPW_OFDM_RATE_54MB:
5314 return priv->
5315 rates_mask & LIBIPW_OFDM_RATE_54MB_MASK ? 1 : 0;
5316 default:
5317 return 0;
5318 }
5319 }
5320
5321 /* B and G mixed */
5322 switch (rate) {
5323 case LIBIPW_CCK_RATE_1MB:
5324 return priv->rates_mask & LIBIPW_CCK_RATE_1MB_MASK ? 1 : 0;
5325 case LIBIPW_CCK_RATE_2MB:
5326 return priv->rates_mask & LIBIPW_CCK_RATE_2MB_MASK ? 1 : 0;
5327 case LIBIPW_CCK_RATE_5MB:
5328 return priv->rates_mask & LIBIPW_CCK_RATE_5MB_MASK ? 1 : 0;
5329 case LIBIPW_CCK_RATE_11MB:
5330 return priv->rates_mask & LIBIPW_CCK_RATE_11MB_MASK ? 1 : 0;
5331 }
5332
5333 /* If we are limited to B modulations, bail at this point */
5334 if (ieee_mode == IEEE_B)
5335 return 0;
5336
5337 /* G */
5338 switch (rate) {
5339 case LIBIPW_OFDM_RATE_6MB:
5340 return priv->rates_mask & LIBIPW_OFDM_RATE_6MB_MASK ? 1 : 0;
5341 case LIBIPW_OFDM_RATE_9MB:
5342 return priv->rates_mask & LIBIPW_OFDM_RATE_9MB_MASK ? 1 : 0;
5343 case LIBIPW_OFDM_RATE_12MB:
5344 return priv->rates_mask & LIBIPW_OFDM_RATE_12MB_MASK ? 1 : 0;
5345 case LIBIPW_OFDM_RATE_18MB:
5346 return priv->rates_mask & LIBIPW_OFDM_RATE_18MB_MASK ? 1 : 0;
5347 case LIBIPW_OFDM_RATE_24MB:
5348 return priv->rates_mask & LIBIPW_OFDM_RATE_24MB_MASK ? 1 : 0;
5349 case LIBIPW_OFDM_RATE_36MB:
5350 return priv->rates_mask & LIBIPW_OFDM_RATE_36MB_MASK ? 1 : 0;
5351 case LIBIPW_OFDM_RATE_48MB:
5352 return priv->rates_mask & LIBIPW_OFDM_RATE_48MB_MASK ? 1 : 0;
5353 case LIBIPW_OFDM_RATE_54MB:
5354 return priv->rates_mask & LIBIPW_OFDM_RATE_54MB_MASK ? 1 : 0;
5355 }
5356
5357 return 0;
5358 }
5359
5360 static int ipw_compatible_rates(struct ipw_priv *priv,
5361 const struct libipw_network *network,
5362 struct ipw_supported_rates *rates)
5363 {
5364 int num_rates, i;
5365
5366 memset(rates, 0, sizeof(*rates));
5367 num_rates = min(network->rates_len, (u8) IPW_MAX_RATES);
5368 rates->num_rates = 0;
5369 for (i = 0; i < num_rates; i++) {
5370 if (!ipw_is_rate_in_mask(priv, network->mode,
5371 network->rates[i])) {
5372
5373 if (network->rates[i] & LIBIPW_BASIC_RATE_MASK) {
5374 IPW_DEBUG_SCAN("Adding masked mandatory "
5375 "rate %02X\n",
5376 network->rates[i]);
5377 rates->supported_rates[rates->num_rates++] =
5378 network->rates[i];
5379 continue;
5380 }
5381
5382 IPW_DEBUG_SCAN("Rate %02X masked : 0x%08X\n",
5383 network->rates[i], priv->rates_mask);
5384 continue;
5385 }
5386
5387 rates->supported_rates[rates->num_rates++] = network->rates[i];
5388 }
5389
5390 num_rates = min(network->rates_ex_len,
5391 (u8) (IPW_MAX_RATES - num_rates));
5392 for (i = 0; i < num_rates; i++) {
5393 if (!ipw_is_rate_in_mask(priv, network->mode,
5394 network->rates_ex[i])) {
5395 if (network->rates_ex[i] & LIBIPW_BASIC_RATE_MASK) {
5396 IPW_DEBUG_SCAN("Adding masked mandatory "
5397 "rate %02X\n",
5398 network->rates_ex[i]);
5399 rates->supported_rates[rates->num_rates++] =
5400 network->rates[i];
5401 continue;
5402 }
5403
5404 IPW_DEBUG_SCAN("Rate %02X masked : 0x%08X\n",
5405 network->rates_ex[i], priv->rates_mask);
5406 continue;
5407 }
5408
5409 rates->supported_rates[rates->num_rates++] =
5410 network->rates_ex[i];
5411 }
5412
5413 return 1;
5414 }
5415
5416 static void ipw_copy_rates(struct ipw_supported_rates *dest,
5417 const struct ipw_supported_rates *src)
5418 {
5419 u8 i;
5420 for (i = 0; i < src->num_rates; i++)
5421 dest->supported_rates[i] = src->supported_rates[i];
5422 dest->num_rates = src->num_rates;
5423 }
5424
5425 /* TODO: Look at sniffed packets in the air to determine if the basic rate
5426 * mask should ever be used -- right now all callers to add the scan rates are
5427 * set with the modulation = CCK, so BASIC_RATE_MASK is never set... */
5428 static void ipw_add_cck_scan_rates(struct ipw_supported_rates *rates,
5429 u8 modulation, u32 rate_mask)
5430 {
5431 u8 basic_mask = (LIBIPW_OFDM_MODULATION == modulation) ?
5432 LIBIPW_BASIC_RATE_MASK : 0;
5433
5434 if (rate_mask & LIBIPW_CCK_RATE_1MB_MASK)
5435 rates->supported_rates[rates->num_rates++] =
5436 LIBIPW_BASIC_RATE_MASK | LIBIPW_CCK_RATE_1MB;
5437
5438 if (rate_mask & LIBIPW_CCK_RATE_2MB_MASK)
5439 rates->supported_rates[rates->num_rates++] =
5440 LIBIPW_BASIC_RATE_MASK | LIBIPW_CCK_RATE_2MB;
5441
5442 if (rate_mask & LIBIPW_CCK_RATE_5MB_MASK)
5443 rates->supported_rates[rates->num_rates++] = basic_mask |
5444 LIBIPW_CCK_RATE_5MB;
5445
5446 if (rate_mask & LIBIPW_CCK_RATE_11MB_MASK)
5447 rates->supported_rates[rates->num_rates++] = basic_mask |
5448 LIBIPW_CCK_RATE_11MB;
5449 }
5450
5451 static void ipw_add_ofdm_scan_rates(struct ipw_supported_rates *rates,
5452 u8 modulation, u32 rate_mask)
5453 {
5454 u8 basic_mask = (LIBIPW_OFDM_MODULATION == modulation) ?
5455 LIBIPW_BASIC_RATE_MASK : 0;
5456
5457 if (rate_mask & LIBIPW_OFDM_RATE_6MB_MASK)
5458 rates->supported_rates[rates->num_rates++] = basic_mask |
5459 LIBIPW_OFDM_RATE_6MB;
5460
5461 if (rate_mask & LIBIPW_OFDM_RATE_9MB_MASK)
5462 rates->supported_rates[rates->num_rates++] =
5463 LIBIPW_OFDM_RATE_9MB;
5464
5465 if (rate_mask & LIBIPW_OFDM_RATE_12MB_MASK)
5466 rates->supported_rates[rates->num_rates++] = basic_mask |
5467 LIBIPW_OFDM_RATE_12MB;
5468
5469 if (rate_mask & LIBIPW_OFDM_RATE_18MB_MASK)
5470 rates->supported_rates[rates->num_rates++] =
5471 LIBIPW_OFDM_RATE_18MB;
5472
5473 if (rate_mask & LIBIPW_OFDM_RATE_24MB_MASK)
5474 rates->supported_rates[rates->num_rates++] = basic_mask |
5475 LIBIPW_OFDM_RATE_24MB;
5476
5477 if (rate_mask & LIBIPW_OFDM_RATE_36MB_MASK)
5478 rates->supported_rates[rates->num_rates++] =
5479 LIBIPW_OFDM_RATE_36MB;
5480
5481 if (rate_mask & LIBIPW_OFDM_RATE_48MB_MASK)
5482 rates->supported_rates[rates->num_rates++] =
5483 LIBIPW_OFDM_RATE_48MB;
5484
5485 if (rate_mask & LIBIPW_OFDM_RATE_54MB_MASK)
5486 rates->supported_rates[rates->num_rates++] =
5487 LIBIPW_OFDM_RATE_54MB;
5488 }
5489
5490 struct ipw_network_match {
5491 struct libipw_network *network;
5492 struct ipw_supported_rates rates;
5493 };
5494
5495 static int ipw_find_adhoc_network(struct ipw_priv *priv,
5496 struct ipw_network_match *match,
5497 struct libipw_network *network,
5498 int roaming)
5499 {
5500 struct ipw_supported_rates rates;
5501 DECLARE_SSID_BUF(ssid);
5502
5503 /* Verify that this network's capability is compatible with the
5504 * current mode (AdHoc or Infrastructure) */
5505 if ((priv->ieee->iw_mode == IW_MODE_ADHOC &&
5506 !(network->capability & WLAN_CAPABILITY_IBSS))) {
5507 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded due to "
5508 "capability mismatch.\n",
5509 print_ssid(ssid, network->ssid,
5510 network->ssid_len),
5511 network->bssid);
5512 return 0;
5513 }
5514
5515 if (unlikely(roaming)) {
5516 /* If we are roaming, then ensure check if this is a valid
5517 * network to try and roam to */
5518 if ((network->ssid_len != match->network->ssid_len) ||
5519 memcmp(network->ssid, match->network->ssid,
5520 network->ssid_len)) {
5521 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5522 "because of non-network ESSID.\n",
5523 print_ssid(ssid, network->ssid,
5524 network->ssid_len),
5525 network->bssid);
5526 return 0;
5527 }
5528 } else {
5529 /* If an ESSID has been configured then compare the broadcast
5530 * ESSID to ours */
5531 if ((priv->config & CFG_STATIC_ESSID) &&
5532 ((network->ssid_len != priv->essid_len) ||
5533 memcmp(network->ssid, priv->essid,
5534 min(network->ssid_len, priv->essid_len)))) {
5535 char escaped[IW_ESSID_MAX_SIZE * 2 + 1];
5536
5537 strncpy(escaped,
5538 print_ssid(ssid, network->ssid,
5539 network->ssid_len),
5540 sizeof(escaped));
5541 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5542 "because of ESSID mismatch: '%s'.\n",
5543 escaped, network->bssid,
5544 print_ssid(ssid, priv->essid,
5545 priv->essid_len));
5546 return 0;
5547 }
5548 }
5549
5550 /* If the old network rate is better than this one, don't bother
5551 * testing everything else. */
5552
5553 if (network->time_stamp[0] < match->network->time_stamp[0]) {
5554 IPW_DEBUG_MERGE("Network '%s excluded because newer than "
5555 "current network.\n",
5556 print_ssid(ssid, match->network->ssid,
5557 match->network->ssid_len));
5558 return 0;
5559 } else if (network->time_stamp[1] < match->network->time_stamp[1]) {
5560 IPW_DEBUG_MERGE("Network '%s excluded because newer than "
5561 "current network.\n",
5562 print_ssid(ssid, match->network->ssid,
5563 match->network->ssid_len));
5564 return 0;
5565 }
5566
5567 /* Now go through and see if the requested network is valid... */
5568 if (priv->ieee->scan_age != 0 &&
5569 time_after(jiffies, network->last_scanned + priv->ieee->scan_age)) {
5570 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5571 "because of age: %ums.\n",
5572 print_ssid(ssid, network->ssid,
5573 network->ssid_len),
5574 network->bssid,
5575 jiffies_to_msecs(jiffies -
5576 network->last_scanned));
5577 return 0;
5578 }
5579
5580 if ((priv->config & CFG_STATIC_CHANNEL) &&
5581 (network->channel != priv->channel)) {
5582 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5583 "because of channel mismatch: %d != %d.\n",
5584 print_ssid(ssid, network->ssid,
5585 network->ssid_len),
5586 network->bssid,
5587 network->channel, priv->channel);
5588 return 0;
5589 }
5590
5591 /* Verify privacy compatability */
5592 if (((priv->capability & CAP_PRIVACY_ON) ? 1 : 0) !=
5593 ((network->capability & WLAN_CAPABILITY_PRIVACY) ? 1 : 0)) {
5594 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5595 "because of privacy mismatch: %s != %s.\n",
5596 print_ssid(ssid, network->ssid,
5597 network->ssid_len),
5598 network->bssid,
5599 priv->
5600 capability & CAP_PRIVACY_ON ? "on" : "off",
5601 network->
5602 capability & WLAN_CAPABILITY_PRIVACY ? "on" :
5603 "off");
5604 return 0;
5605 }
5606
5607 if (!memcmp(network->bssid, priv->bssid, ETH_ALEN)) {
5608 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5609 "because of the same BSSID match: %pM"
5610 ".\n", print_ssid(ssid, network->ssid,
5611 network->ssid_len),
5612 network->bssid,
5613 priv->bssid);
5614 return 0;
5615 }
5616
5617 /* Filter out any incompatible freq / mode combinations */
5618 if (!libipw_is_valid_mode(priv->ieee, network->mode)) {
5619 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5620 "because of invalid frequency/mode "
5621 "combination.\n",
5622 print_ssid(ssid, network->ssid,
5623 network->ssid_len),
5624 network->bssid);
5625 return 0;
5626 }
5627
5628 /* Ensure that the rates supported by the driver are compatible with
5629 * this AP, including verification of basic rates (mandatory) */
5630 if (!ipw_compatible_rates(priv, network, &rates)) {
5631 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5632 "because configured rate mask excludes "
5633 "AP mandatory rate.\n",
5634 print_ssid(ssid, network->ssid,
5635 network->ssid_len),
5636 network->bssid);
5637 return 0;
5638 }
5639
5640 if (rates.num_rates == 0) {
5641 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5642 "because of no compatible rates.\n",
5643 print_ssid(ssid, network->ssid,
5644 network->ssid_len),
5645 network->bssid);
5646 return 0;
5647 }
5648
5649 /* TODO: Perform any further minimal comparititive tests. We do not
5650 * want to put too much policy logic here; intelligent scan selection
5651 * should occur within a generic IEEE 802.11 user space tool. */
5652
5653 /* Set up 'new' AP to this network */
5654 ipw_copy_rates(&match->rates, &rates);
5655 match->network = network;
5656 IPW_DEBUG_MERGE("Network '%s (%pM)' is a viable match.\n",
5657 print_ssid(ssid, network->ssid, network->ssid_len),
5658 network->bssid);
5659
5660 return 1;
5661 }
5662
5663 static void ipw_merge_adhoc_network(struct work_struct *work)
5664 {
5665 DECLARE_SSID_BUF(ssid);
5666 struct ipw_priv *priv =
5667 container_of(work, struct ipw_priv, merge_networks);
5668 struct libipw_network *network = NULL;
5669 struct ipw_network_match match = {
5670 .network = priv->assoc_network
5671 };
5672
5673 if ((priv->status & STATUS_ASSOCIATED) &&
5674 (priv->ieee->iw_mode == IW_MODE_ADHOC)) {
5675 /* First pass through ROAM process -- look for a better
5676 * network */
5677 unsigned long flags;
5678
5679 spin_lock_irqsave(&priv->ieee->lock, flags);
5680 list_for_each_entry(network, &priv->ieee->network_list, list) {
5681 if (network != priv->assoc_network)
5682 ipw_find_adhoc_network(priv, &match, network,
5683 1);
5684 }
5685 spin_unlock_irqrestore(&priv->ieee->lock, flags);
5686
5687 if (match.network == priv->assoc_network) {
5688 IPW_DEBUG_MERGE("No better ADHOC in this network to "
5689 "merge to.\n");
5690 return;
5691 }
5692
5693 mutex_lock(&priv->mutex);
5694 if ((priv->ieee->iw_mode == IW_MODE_ADHOC)) {
5695 IPW_DEBUG_MERGE("remove network %s\n",
5696 print_ssid(ssid, priv->essid,
5697 priv->essid_len));
5698 ipw_remove_current_network(priv);
5699 }
5700
5701 ipw_disassociate(priv);
5702 priv->assoc_network = match.network;
5703 mutex_unlock(&priv->mutex);
5704 return;
5705 }
5706 }
5707
5708 static int ipw_best_network(struct ipw_priv *priv,
5709 struct ipw_network_match *match,
5710 struct libipw_network *network, int roaming)
5711 {
5712 struct ipw_supported_rates rates;
5713 DECLARE_SSID_BUF(ssid);
5714
5715 /* Verify that this network's capability is compatible with the
5716 * current mode (AdHoc or Infrastructure) */
5717 if ((priv->ieee->iw_mode == IW_MODE_INFRA &&
5718 !(network->capability & WLAN_CAPABILITY_ESS)) ||
5719 (priv->ieee->iw_mode == IW_MODE_ADHOC &&
5720 !(network->capability & WLAN_CAPABILITY_IBSS))) {
5721 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded due to "
5722 "capability mismatch.\n",
5723 print_ssid(ssid, network->ssid,
5724 network->ssid_len),
5725 network->bssid);
5726 return 0;
5727 }
5728
5729 if (unlikely(roaming)) {
5730 /* If we are roaming, then ensure check if this is a valid
5731 * network to try and roam to */
5732 if ((network->ssid_len != match->network->ssid_len) ||
5733 memcmp(network->ssid, match->network->ssid,
5734 network->ssid_len)) {
5735 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5736 "because of non-network ESSID.\n",
5737 print_ssid(ssid, network->ssid,
5738 network->ssid_len),
5739 network->bssid);
5740 return 0;
5741 }
5742 } else {
5743 /* If an ESSID has been configured then compare the broadcast
5744 * ESSID to ours */
5745 if ((priv->config & CFG_STATIC_ESSID) &&
5746 ((network->ssid_len != priv->essid_len) ||
5747 memcmp(network->ssid, priv->essid,
5748 min(network->ssid_len, priv->essid_len)))) {
5749 char escaped[IW_ESSID_MAX_SIZE * 2 + 1];
5750 strncpy(escaped,
5751 print_ssid(ssid, network->ssid,
5752 network->ssid_len),
5753 sizeof(escaped));
5754 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5755 "because of ESSID mismatch: '%s'.\n",
5756 escaped, network->bssid,
5757 print_ssid(ssid, priv->essid,
5758 priv->essid_len));
5759 return 0;
5760 }
5761 }
5762
5763 /* If the old network rate is better than this one, don't bother
5764 * testing everything else. */
5765 if (match->network && match->network->stats.rssi > network->stats.rssi) {
5766 char escaped[IW_ESSID_MAX_SIZE * 2 + 1];
5767 strncpy(escaped,
5768 print_ssid(ssid, network->ssid, network->ssid_len),
5769 sizeof(escaped));
5770 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded because "
5771 "'%s (%pM)' has a stronger signal.\n",
5772 escaped, network->bssid,
5773 print_ssid(ssid, match->network->ssid,
5774 match->network->ssid_len),
5775 match->network->bssid);
5776 return 0;
5777 }
5778
5779 /* If this network has already had an association attempt within the
5780 * last 3 seconds, do not try and associate again... */
5781 if (network->last_associate &&
5782 time_after(network->last_associate + (HZ * 3UL), jiffies)) {
5783 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5784 "because of storming (%ums since last "
5785 "assoc attempt).\n",
5786 print_ssid(ssid, network->ssid,
5787 network->ssid_len),
5788 network->bssid,
5789 jiffies_to_msecs(jiffies -
5790 network->last_associate));
5791 return 0;
5792 }
5793
5794 /* Now go through and see if the requested network is valid... */
5795 if (priv->ieee->scan_age != 0 &&
5796 time_after(jiffies, network->last_scanned + priv->ieee->scan_age)) {
5797 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5798 "because of age: %ums.\n",
5799 print_ssid(ssid, network->ssid,
5800 network->ssid_len),
5801 network->bssid,
5802 jiffies_to_msecs(jiffies -
5803 network->last_scanned));
5804 return 0;
5805 }
5806
5807 if ((priv->config & CFG_STATIC_CHANNEL) &&
5808 (network->channel != priv->channel)) {
5809 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5810 "because of channel mismatch: %d != %d.\n",
5811 print_ssid(ssid, network->ssid,
5812 network->ssid_len),
5813 network->bssid,
5814 network->channel, priv->channel);
5815 return 0;
5816 }
5817
5818 /* Verify privacy compatability */
5819 if (((priv->capability & CAP_PRIVACY_ON) ? 1 : 0) !=
5820 ((network->capability & WLAN_CAPABILITY_PRIVACY) ? 1 : 0)) {
5821 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5822 "because of privacy mismatch: %s != %s.\n",
5823 print_ssid(ssid, network->ssid,
5824 network->ssid_len),
5825 network->bssid,
5826 priv->capability & CAP_PRIVACY_ON ? "on" :
5827 "off",
5828 network->capability &
5829 WLAN_CAPABILITY_PRIVACY ? "on" : "off");
5830 return 0;
5831 }
5832
5833 if ((priv->config & CFG_STATIC_BSSID) &&
5834 memcmp(network->bssid, priv->bssid, ETH_ALEN)) {
5835 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5836 "because of BSSID mismatch: %pM.\n",
5837 print_ssid(ssid, network->ssid,
5838 network->ssid_len),
5839 network->bssid, priv->bssid);
5840 return 0;
5841 }
5842
5843 /* Filter out any incompatible freq / mode combinations */
5844 if (!libipw_is_valid_mode(priv->ieee, network->mode)) {
5845 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5846 "because of invalid frequency/mode "
5847 "combination.\n",
5848 print_ssid(ssid, network->ssid,
5849 network->ssid_len),
5850 network->bssid);
5851 return 0;
5852 }
5853
5854 /* Filter out invalid channel in current GEO */
5855 if (!libipw_is_valid_channel(priv->ieee, network->channel)) {
5856 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5857 "because of invalid channel in current GEO\n",
5858 print_ssid(ssid, network->ssid,
5859 network->ssid_len),
5860 network->bssid);
5861 return 0;
5862 }
5863
5864 /* Ensure that the rates supported by the driver are compatible with
5865 * this AP, including verification of basic rates (mandatory) */
5866 if (!ipw_compatible_rates(priv, network, &rates)) {
5867 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5868 "because configured rate mask excludes "
5869 "AP mandatory rate.\n",
5870 print_ssid(ssid, network->ssid,
5871 network->ssid_len),
5872 network->bssid);
5873 return 0;
5874 }
5875
5876 if (rates.num_rates == 0) {
5877 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5878 "because of no compatible rates.\n",
5879 print_ssid(ssid, network->ssid,
5880 network->ssid_len),
5881 network->bssid);
5882 return 0;
5883 }
5884
5885 /* TODO: Perform any further minimal comparititive tests. We do not
5886 * want to put too much policy logic here; intelligent scan selection
5887 * should occur within a generic IEEE 802.11 user space tool. */
5888
5889 /* Set up 'new' AP to this network */
5890 ipw_copy_rates(&match->rates, &rates);
5891 match->network = network;
5892
5893 IPW_DEBUG_ASSOC("Network '%s (%pM)' is a viable match.\n",
5894 print_ssid(ssid, network->ssid, network->ssid_len),
5895 network->bssid);
5896
5897 return 1;
5898 }
5899
5900 static void ipw_adhoc_create(struct ipw_priv *priv,
5901 struct libipw_network *network)
5902 {
5903 const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
5904 int i;
5905
5906 /*
5907 * For the purposes of scanning, we can set our wireless mode
5908 * to trigger scans across combinations of bands, but when it
5909 * comes to creating a new ad-hoc network, we have tell the FW
5910 * exactly which band to use.
5911 *
5912 * We also have the possibility of an invalid channel for the
5913 * chossen band. Attempting to create a new ad-hoc network
5914 * with an invalid channel for wireless mode will trigger a
5915 * FW fatal error.
5916 *
5917 */
5918 switch (libipw_is_valid_channel(priv->ieee, priv->channel)) {
5919 case LIBIPW_52GHZ_BAND:
5920 network->mode = IEEE_A;
5921 i = libipw_channel_to_index(priv->ieee, priv->channel);
5922 BUG_ON(i == -1);
5923 if (geo->a[i].flags & LIBIPW_CH_PASSIVE_ONLY) {
5924 IPW_WARNING("Overriding invalid channel\n");
5925 priv->channel = geo->a[0].channel;
5926 }
5927 break;
5928
5929 case LIBIPW_24GHZ_BAND:
5930 if (priv->ieee->mode & IEEE_G)
5931 network->mode = IEEE_G;
5932 else
5933 network->mode = IEEE_B;
5934 i = libipw_channel_to_index(priv->ieee, priv->channel);
5935 BUG_ON(i == -1);
5936 if (geo->bg[i].flags & LIBIPW_CH_PASSIVE_ONLY) {
5937 IPW_WARNING("Overriding invalid channel\n");
5938 priv->channel = geo->bg[0].channel;
5939 }
5940 break;
5941
5942 default:
5943 IPW_WARNING("Overriding invalid channel\n");
5944 if (priv->ieee->mode & IEEE_A) {
5945 network->mode = IEEE_A;
5946 priv->channel = geo->a[0].channel;
5947 } else if (priv->ieee->mode & IEEE_G) {
5948 network->mode = IEEE_G;
5949 priv->channel = geo->bg[0].channel;
5950 } else {
5951 network->mode = IEEE_B;
5952 priv->channel = geo->bg[0].channel;
5953 }
5954 break;
5955 }
5956
5957 network->channel = priv->channel;
5958 priv->config |= CFG_ADHOC_PERSIST;
5959 ipw_create_bssid(priv, network->bssid);
5960 network->ssid_len = priv->essid_len;
5961 memcpy(network->ssid, priv->essid, priv->essid_len);
5962 memset(&network->stats, 0, sizeof(network->stats));
5963 network->capability = WLAN_CAPABILITY_IBSS;
5964 if (!(priv->config & CFG_PREAMBLE_LONG))
5965 network->capability |= WLAN_CAPABILITY_SHORT_PREAMBLE;
5966 if (priv->capability & CAP_PRIVACY_ON)
5967 network->capability |= WLAN_CAPABILITY_PRIVACY;
5968 network->rates_len = min(priv->rates.num_rates, MAX_RATES_LENGTH);
5969 memcpy(network->rates, priv->rates.supported_rates, network->rates_len);
5970 network->rates_ex_len = priv->rates.num_rates - network->rates_len;
5971 memcpy(network->rates_ex,
5972 &priv->rates.supported_rates[network->rates_len],
5973 network->rates_ex_len);
5974 network->last_scanned = 0;
5975 network->flags = 0;
5976 network->last_associate = 0;
5977 network->time_stamp[0] = 0;
5978 network->time_stamp[1] = 0;
5979 network->beacon_interval = 100; /* Default */
5980 network->listen_interval = 10; /* Default */
5981 network->atim_window = 0; /* Default */
5982 network->wpa_ie_len = 0;
5983 network->rsn_ie_len = 0;
5984 }
5985
5986 static void ipw_send_tgi_tx_key(struct ipw_priv *priv, int type, int index)
5987 {
5988 struct ipw_tgi_tx_key key;
5989
5990 if (!(priv->ieee->sec.flags & (1 << index)))
5991 return;
5992
5993 key.key_id = index;
5994 memcpy(key.key, priv->ieee->sec.keys[index], SCM_TEMPORAL_KEY_LENGTH);
5995 key.security_type = type;
5996 key.station_index = 0; /* always 0 for BSS */
5997 key.flags = 0;
5998 /* 0 for new key; previous value of counter (after fatal error) */
5999 key.tx_counter[0] = cpu_to_le32(0);
6000 key.tx_counter[1] = cpu_to_le32(0);
6001
6002 ipw_send_cmd_pdu(priv, IPW_CMD_TGI_TX_KEY, sizeof(key), &key);
6003 }
6004
6005 static void ipw_send_wep_keys(struct ipw_priv *priv, int type)
6006 {
6007 struct ipw_wep_key key;
6008 int i;
6009
6010 key.cmd_id = DINO_CMD_WEP_KEY;
6011 key.seq_num = 0;
6012
6013 /* Note: AES keys cannot be set for multiple times.
6014 * Only set it at the first time. */
6015 for (i = 0; i < 4; i++) {
6016 key.key_index = i | type;
6017 if (!(priv->ieee->sec.flags & (1 << i))) {
6018 key.key_size = 0;
6019 continue;
6020 }
6021
6022 key.key_size = priv->ieee->sec.key_sizes[i];
6023 memcpy(key.key, priv->ieee->sec.keys[i], key.key_size);
6024
6025 ipw_send_cmd_pdu(priv, IPW_CMD_WEP_KEY, sizeof(key), &key);
6026 }
6027 }
6028
6029 static void ipw_set_hw_decrypt_unicast(struct ipw_priv *priv, int level)
6030 {
6031 if (priv->ieee->host_encrypt)
6032 return;
6033
6034 switch (level) {
6035 case SEC_LEVEL_3:
6036 priv->sys_config.disable_unicast_decryption = 0;
6037 priv->ieee->host_decrypt = 0;
6038 break;
6039 case SEC_LEVEL_2:
6040 priv->sys_config.disable_unicast_decryption = 1;
6041 priv->ieee->host_decrypt = 1;
6042 break;
6043 case SEC_LEVEL_1:
6044 priv->sys_config.disable_unicast_decryption = 0;
6045 priv->ieee->host_decrypt = 0;
6046 break;
6047 case SEC_LEVEL_0:
6048 priv->sys_config.disable_unicast_decryption = 1;
6049 break;
6050 default:
6051 break;
6052 }
6053 }
6054
6055 static void ipw_set_hw_decrypt_multicast(struct ipw_priv *priv, int level)
6056 {
6057 if (priv->ieee->host_encrypt)
6058 return;
6059
6060 switch (level) {
6061 case SEC_LEVEL_3:
6062 priv->sys_config.disable_multicast_decryption = 0;
6063 break;
6064 case SEC_LEVEL_2:
6065 priv->sys_config.disable_multicast_decryption = 1;
6066 break;
6067 case SEC_LEVEL_1:
6068 priv->sys_config.disable_multicast_decryption = 0;
6069 break;
6070 case SEC_LEVEL_0:
6071 priv->sys_config.disable_multicast_decryption = 1;
6072 break;
6073 default:
6074 break;
6075 }
6076 }
6077
6078 static void ipw_set_hwcrypto_keys(struct ipw_priv *priv)
6079 {
6080 switch (priv->ieee->sec.level) {
6081 case SEC_LEVEL_3:
6082 if (priv->ieee->sec.flags & SEC_ACTIVE_KEY)
6083 ipw_send_tgi_tx_key(priv,
6084 DCT_FLAG_EXT_SECURITY_CCM,
6085 priv->ieee->sec.active_key);
6086
6087 if (!priv->ieee->host_mc_decrypt)
6088 ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_CCM);
6089 break;
6090 case SEC_LEVEL_2:
6091 if (priv->ieee->sec.flags & SEC_ACTIVE_KEY)
6092 ipw_send_tgi_tx_key(priv,
6093 DCT_FLAG_EXT_SECURITY_TKIP,
6094 priv->ieee->sec.active_key);
6095 break;
6096 case SEC_LEVEL_1:
6097 ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_WEP);
6098 ipw_set_hw_decrypt_unicast(priv, priv->ieee->sec.level);
6099 ipw_set_hw_decrypt_multicast(priv, priv->ieee->sec.level);
6100 break;
6101 case SEC_LEVEL_0:
6102 default:
6103 break;
6104 }
6105 }
6106
6107 static void ipw_adhoc_check(void *data)
6108 {
6109 struct ipw_priv *priv = data;
6110
6111 if (priv->missed_adhoc_beacons++ > priv->disassociate_threshold &&
6112 !(priv->config & CFG_ADHOC_PERSIST)) {
6113 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
6114 IPW_DL_STATE | IPW_DL_ASSOC,
6115 "Missed beacon: %d - disassociate\n",
6116 priv->missed_adhoc_beacons);
6117 ipw_remove_current_network(priv);
6118 ipw_disassociate(priv);
6119 return;
6120 }
6121
6122 queue_delayed_work(priv->workqueue, &priv->adhoc_check,
6123 le16_to_cpu(priv->assoc_request.beacon_interval));
6124 }
6125
6126 static void ipw_bg_adhoc_check(struct work_struct *work)
6127 {
6128 struct ipw_priv *priv =
6129 container_of(work, struct ipw_priv, adhoc_check.work);
6130 mutex_lock(&priv->mutex);
6131 ipw_adhoc_check(priv);
6132 mutex_unlock(&priv->mutex);
6133 }
6134
6135 static void ipw_debug_config(struct ipw_priv *priv)
6136 {
6137 DECLARE_SSID_BUF(ssid);
6138 IPW_DEBUG_INFO("Scan completed, no valid APs matched "
6139 "[CFG 0x%08X]\n", priv->config);
6140 if (priv->config & CFG_STATIC_CHANNEL)
6141 IPW_DEBUG_INFO("Channel locked to %d\n", priv->channel);
6142 else
6143 IPW_DEBUG_INFO("Channel unlocked.\n");
6144 if (priv->config & CFG_STATIC_ESSID)
6145 IPW_DEBUG_INFO("ESSID locked to '%s'\n",
6146 print_ssid(ssid, priv->essid, priv->essid_len));
6147 else
6148 IPW_DEBUG_INFO("ESSID unlocked.\n");
6149 if (priv->config & CFG_STATIC_BSSID)
6150 IPW_DEBUG_INFO("BSSID locked to %pM\n", priv->bssid);
6151 else
6152 IPW_DEBUG_INFO("BSSID unlocked.\n");
6153 if (priv->capability & CAP_PRIVACY_ON)
6154 IPW_DEBUG_INFO("PRIVACY on\n");
6155 else
6156 IPW_DEBUG_INFO("PRIVACY off\n");
6157 IPW_DEBUG_INFO("RATE MASK: 0x%08X\n", priv->rates_mask);
6158 }
6159
6160 static void ipw_set_fixed_rate(struct ipw_priv *priv, int mode)
6161 {
6162 /* TODO: Verify that this works... */
6163 struct ipw_fixed_rate fr;
6164 u32 reg;
6165 u16 mask = 0;
6166 u16 new_tx_rates = priv->rates_mask;
6167
6168 /* Identify 'current FW band' and match it with the fixed
6169 * Tx rates */
6170
6171 switch (priv->ieee->freq_band) {
6172 case LIBIPW_52GHZ_BAND: /* A only */
6173 /* IEEE_A */
6174 if (priv->rates_mask & ~LIBIPW_OFDM_RATES_MASK) {
6175 /* Invalid fixed rate mask */
6176 IPW_DEBUG_WX
6177 ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6178 new_tx_rates = 0;
6179 break;
6180 }
6181
6182 new_tx_rates >>= LIBIPW_OFDM_SHIFT_MASK_A;
6183 break;
6184
6185 default: /* 2.4Ghz or Mixed */
6186 /* IEEE_B */
6187 if (mode == IEEE_B) {
6188 if (new_tx_rates & ~LIBIPW_CCK_RATES_MASK) {
6189 /* Invalid fixed rate mask */
6190 IPW_DEBUG_WX
6191 ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6192 new_tx_rates = 0;
6193 }
6194 break;
6195 }
6196
6197 /* IEEE_G */
6198 if (new_tx_rates & ~(LIBIPW_CCK_RATES_MASK |
6199 LIBIPW_OFDM_RATES_MASK)) {
6200 /* Invalid fixed rate mask */
6201 IPW_DEBUG_WX
6202 ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6203 new_tx_rates = 0;
6204 break;
6205 }
6206
6207 if (LIBIPW_OFDM_RATE_6MB_MASK & new_tx_rates) {
6208 mask |= (LIBIPW_OFDM_RATE_6MB_MASK >> 1);
6209 new_tx_rates &= ~LIBIPW_OFDM_RATE_6MB_MASK;
6210 }
6211
6212 if (LIBIPW_OFDM_RATE_9MB_MASK & new_tx_rates) {
6213 mask |= (LIBIPW_OFDM_RATE_9MB_MASK >> 1);
6214 new_tx_rates &= ~LIBIPW_OFDM_RATE_9MB_MASK;
6215 }
6216
6217 if (LIBIPW_OFDM_RATE_12MB_MASK & new_tx_rates) {
6218 mask |= (LIBIPW_OFDM_RATE_12MB_MASK >> 1);
6219 new_tx_rates &= ~LIBIPW_OFDM_RATE_12MB_MASK;
6220 }
6221
6222 new_tx_rates |= mask;
6223 break;
6224 }
6225
6226 fr.tx_rates = cpu_to_le16(new_tx_rates);
6227
6228 reg = ipw_read32(priv, IPW_MEM_FIXED_OVERRIDE);
6229 ipw_write_reg32(priv, reg, *(u32 *) & fr);
6230 }
6231
6232 static void ipw_abort_scan(struct ipw_priv *priv)
6233 {
6234 int err;
6235
6236 if (priv->status & STATUS_SCAN_ABORTING) {
6237 IPW_DEBUG_HC("Ignoring concurrent scan abort request.\n");
6238 return;
6239 }
6240 priv->status |= STATUS_SCAN_ABORTING;
6241
6242 err = ipw_send_scan_abort(priv);
6243 if (err)
6244 IPW_DEBUG_HC("Request to abort scan failed.\n");
6245 }
6246
6247 static void ipw_add_scan_channels(struct ipw_priv *priv,
6248 struct ipw_scan_request_ext *scan,
6249 int scan_type)
6250 {
6251 int channel_index = 0;
6252 const struct libipw_geo *geo;
6253 int i;
6254
6255 geo = libipw_get_geo(priv->ieee);
6256
6257 if (priv->ieee->freq_band & LIBIPW_52GHZ_BAND) {
6258 int start = channel_index;
6259 for (i = 0; i < geo->a_channels; i++) {
6260 if ((priv->status & STATUS_ASSOCIATED) &&
6261 geo->a[i].channel == priv->channel)
6262 continue;
6263 channel_index++;
6264 scan->channels_list[channel_index] = geo->a[i].channel;
6265 ipw_set_scan_type(scan, channel_index,
6266 geo->a[i].
6267 flags & LIBIPW_CH_PASSIVE_ONLY ?
6268 IPW_SCAN_PASSIVE_FULL_DWELL_SCAN :
6269 scan_type);
6270 }
6271
6272 if (start != channel_index) {
6273 scan->channels_list[start] = (u8) (IPW_A_MODE << 6) |
6274 (channel_index - start);
6275 channel_index++;
6276 }
6277 }
6278
6279 if (priv->ieee->freq_band & LIBIPW_24GHZ_BAND) {
6280 int start = channel_index;
6281 if (priv->config & CFG_SPEED_SCAN) {
6282 int index;
6283 u8 channels[LIBIPW_24GHZ_CHANNELS] = {
6284 /* nop out the list */
6285 [0] = 0
6286 };
6287
6288 u8 channel;
6289 while (channel_index < IPW_SCAN_CHANNELS - 1) {
6290 channel =
6291 priv->speed_scan[priv->speed_scan_pos];
6292 if (channel == 0) {
6293 priv->speed_scan_pos = 0;
6294 channel = priv->speed_scan[0];
6295 }
6296 if ((priv->status & STATUS_ASSOCIATED) &&
6297 channel == priv->channel) {
6298 priv->speed_scan_pos++;
6299 continue;
6300 }
6301
6302 /* If this channel has already been
6303 * added in scan, break from loop
6304 * and this will be the first channel
6305 * in the next scan.
6306 */
6307 if (channels[channel - 1] != 0)
6308 break;
6309
6310 channels[channel - 1] = 1;
6311 priv->speed_scan_pos++;
6312 channel_index++;
6313 scan->channels_list[channel_index] = channel;
6314 index =
6315 libipw_channel_to_index(priv->ieee, channel);
6316 ipw_set_scan_type(scan, channel_index,
6317 geo->bg[index].
6318 flags &
6319 LIBIPW_CH_PASSIVE_ONLY ?
6320 IPW_SCAN_PASSIVE_FULL_DWELL_SCAN
6321 : scan_type);
6322 }
6323 } else {
6324 for (i = 0; i < geo->bg_channels; i++) {
6325 if ((priv->status & STATUS_ASSOCIATED) &&
6326 geo->bg[i].channel == priv->channel)
6327 continue;
6328 channel_index++;
6329 scan->channels_list[channel_index] =
6330 geo->bg[i].channel;
6331 ipw_set_scan_type(scan, channel_index,
6332 geo->bg[i].
6333 flags &
6334 LIBIPW_CH_PASSIVE_ONLY ?
6335 IPW_SCAN_PASSIVE_FULL_DWELL_SCAN
6336 : scan_type);
6337 }
6338 }
6339
6340 if (start != channel_index) {
6341 scan->channels_list[start] = (u8) (IPW_B_MODE << 6) |
6342 (channel_index - start);
6343 }
6344 }
6345 }
6346
6347 static int ipw_passive_dwell_time(struct ipw_priv *priv)
6348 {
6349 /* staying on passive channels longer than the DTIM interval during a
6350 * scan, while associated, causes the firmware to cancel the scan
6351 * without notification. Hence, don't stay on passive channels longer
6352 * than the beacon interval.
6353 */
6354 if (priv->status & STATUS_ASSOCIATED
6355 && priv->assoc_network->beacon_interval > 10)
6356 return priv->assoc_network->beacon_interval - 10;
6357 else
6358 return 120;
6359 }
6360
6361 static int ipw_request_scan_helper(struct ipw_priv *priv, int type, int direct)
6362 {
6363 struct ipw_scan_request_ext scan;
6364 int err = 0, scan_type;
6365
6366 if (!(priv->status & STATUS_INIT) ||
6367 (priv->status & STATUS_EXIT_PENDING))
6368 return 0;
6369
6370 mutex_lock(&priv->mutex);
6371
6372 if (direct && (priv->direct_scan_ssid_len == 0)) {
6373 IPW_DEBUG_HC("Direct scan requested but no SSID to scan for\n");
6374 priv->status &= ~STATUS_DIRECT_SCAN_PENDING;
6375 goto done;
6376 }
6377
6378 if (priv->status & STATUS_SCANNING) {
6379 IPW_DEBUG_HC("Concurrent scan requested. Queuing.\n");
6380 priv->status |= direct ? STATUS_DIRECT_SCAN_PENDING :
6381 STATUS_SCAN_PENDING;
6382 goto done;
6383 }
6384
6385 if (!(priv->status & STATUS_SCAN_FORCED) &&
6386 priv->status & STATUS_SCAN_ABORTING) {
6387 IPW_DEBUG_HC("Scan request while abort pending. Queuing.\n");
6388 priv->status |= direct ? STATUS_DIRECT_SCAN_PENDING :
6389 STATUS_SCAN_PENDING;
6390 goto done;
6391 }
6392
6393 if (priv->status & STATUS_RF_KILL_MASK) {
6394 IPW_DEBUG_HC("Queuing scan due to RF Kill activation\n");
6395 priv->status |= direct ? STATUS_DIRECT_SCAN_PENDING :
6396 STATUS_SCAN_PENDING;
6397 goto done;
6398 }
6399
6400 memset(&scan, 0, sizeof(scan));
6401 scan.full_scan_index = cpu_to_le32(libipw_get_scans(priv->ieee));
6402
6403 if (type == IW_SCAN_TYPE_PASSIVE) {
6404 IPW_DEBUG_WX("use passive scanning\n");
6405 scan_type = IPW_SCAN_PASSIVE_FULL_DWELL_SCAN;
6406 scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] =
6407 cpu_to_le16(ipw_passive_dwell_time(priv));
6408 ipw_add_scan_channels(priv, &scan, scan_type);
6409 goto send_request;
6410 }
6411
6412 /* Use active scan by default. */
6413 if (priv->config & CFG_SPEED_SCAN)
6414 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
6415 cpu_to_le16(30);
6416 else
6417 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
6418 cpu_to_le16(20);
6419
6420 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN] =
6421 cpu_to_le16(20);
6422
6423 scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] =
6424 cpu_to_le16(ipw_passive_dwell_time(priv));
6425 scan.dwell_time[IPW_SCAN_ACTIVE_DIRECT_SCAN] = cpu_to_le16(20);
6426
6427 #ifdef CONFIG_IPW2200_MONITOR
6428 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
6429 u8 channel;
6430 u8 band = 0;
6431
6432 switch (libipw_is_valid_channel(priv->ieee, priv->channel)) {
6433 case LIBIPW_52GHZ_BAND:
6434 band = (u8) (IPW_A_MODE << 6) | 1;
6435 channel = priv->channel;
6436 break;
6437
6438 case LIBIPW_24GHZ_BAND:
6439 band = (u8) (IPW_B_MODE << 6) | 1;
6440 channel = priv->channel;
6441 break;
6442
6443 default:
6444 band = (u8) (IPW_B_MODE << 6) | 1;
6445 channel = 9;
6446 break;
6447 }
6448
6449 scan.channels_list[0] = band;
6450 scan.channels_list[1] = channel;
6451 ipw_set_scan_type(&scan, 1, IPW_SCAN_PASSIVE_FULL_DWELL_SCAN);
6452
6453 /* NOTE: The card will sit on this channel for this time
6454 * period. Scan aborts are timing sensitive and frequently
6455 * result in firmware restarts. As such, it is best to
6456 * set a small dwell_time here and just keep re-issuing
6457 * scans. Otherwise fast channel hopping will not actually
6458 * hop channels.
6459 *
6460 * TODO: Move SPEED SCAN support to all modes and bands */
6461 scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] =
6462 cpu_to_le16(2000);
6463 } else {
6464 #endif /* CONFIG_IPW2200_MONITOR */
6465 /* Honor direct scans first, otherwise if we are roaming make
6466 * this a direct scan for the current network. Finally,
6467 * ensure that every other scan is a fast channel hop scan */
6468 if (direct) {
6469 err = ipw_send_ssid(priv, priv->direct_scan_ssid,
6470 priv->direct_scan_ssid_len);
6471 if (err) {
6472 IPW_DEBUG_HC("Attempt to send SSID command "
6473 "failed\n");
6474 goto done;
6475 }
6476
6477 scan_type = IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN;
6478 } else if ((priv->status & STATUS_ROAMING)
6479 || (!(priv->status & STATUS_ASSOCIATED)
6480 && (priv->config & CFG_STATIC_ESSID)
6481 && (le32_to_cpu(scan.full_scan_index) % 2))) {
6482 err = ipw_send_ssid(priv, priv->essid, priv->essid_len);
6483 if (err) {
6484 IPW_DEBUG_HC("Attempt to send SSID command "
6485 "failed.\n");
6486 goto done;
6487 }
6488
6489 scan_type = IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN;
6490 } else
6491 scan_type = IPW_SCAN_ACTIVE_BROADCAST_SCAN;
6492
6493 ipw_add_scan_channels(priv, &scan, scan_type);
6494 #ifdef CONFIG_IPW2200_MONITOR
6495 }
6496 #endif
6497
6498 send_request:
6499 err = ipw_send_scan_request_ext(priv, &scan);
6500 if (err) {
6501 IPW_DEBUG_HC("Sending scan command failed: %08X\n", err);
6502 goto done;
6503 }
6504
6505 priv->status |= STATUS_SCANNING;
6506 if (direct) {
6507 priv->status &= ~STATUS_DIRECT_SCAN_PENDING;
6508 priv->direct_scan_ssid_len = 0;
6509 } else
6510 priv->status &= ~STATUS_SCAN_PENDING;
6511
6512 queue_delayed_work(priv->workqueue, &priv->scan_check,
6513 IPW_SCAN_CHECK_WATCHDOG);
6514 done:
6515 mutex_unlock(&priv->mutex);
6516 return err;
6517 }
6518
6519 static void ipw_request_passive_scan(struct work_struct *work)
6520 {
6521 struct ipw_priv *priv =
6522 container_of(work, struct ipw_priv, request_passive_scan.work);
6523 ipw_request_scan_helper(priv, IW_SCAN_TYPE_PASSIVE, 0);
6524 }
6525
6526 static void ipw_request_scan(struct work_struct *work)
6527 {
6528 struct ipw_priv *priv =
6529 container_of(work, struct ipw_priv, request_scan.work);
6530 ipw_request_scan_helper(priv, IW_SCAN_TYPE_ACTIVE, 0);
6531 }
6532
6533 static void ipw_request_direct_scan(struct work_struct *work)
6534 {
6535 struct ipw_priv *priv =
6536 container_of(work, struct ipw_priv, request_direct_scan.work);
6537 ipw_request_scan_helper(priv, IW_SCAN_TYPE_ACTIVE, 1);
6538 }
6539
6540 static void ipw_bg_abort_scan(struct work_struct *work)
6541 {
6542 struct ipw_priv *priv =
6543 container_of(work, struct ipw_priv, abort_scan);
6544 mutex_lock(&priv->mutex);
6545 ipw_abort_scan(priv);
6546 mutex_unlock(&priv->mutex);
6547 }
6548
6549 static int ipw_wpa_enable(struct ipw_priv *priv, int value)
6550 {
6551 /* This is called when wpa_supplicant loads and closes the driver
6552 * interface. */
6553 priv->ieee->wpa_enabled = value;
6554 return 0;
6555 }
6556
6557 static int ipw_wpa_set_auth_algs(struct ipw_priv *priv, int value)
6558 {
6559 struct libipw_device *ieee = priv->ieee;
6560 struct libipw_security sec = {
6561 .flags = SEC_AUTH_MODE,
6562 };
6563 int ret = 0;
6564
6565 if (value & IW_AUTH_ALG_SHARED_KEY) {
6566 sec.auth_mode = WLAN_AUTH_SHARED_KEY;
6567 ieee->open_wep = 0;
6568 } else if (value & IW_AUTH_ALG_OPEN_SYSTEM) {
6569 sec.auth_mode = WLAN_AUTH_OPEN;
6570 ieee->open_wep = 1;
6571 } else if (value & IW_AUTH_ALG_LEAP) {
6572 sec.auth_mode = WLAN_AUTH_LEAP;
6573 ieee->open_wep = 1;
6574 } else
6575 return -EINVAL;
6576
6577 if (ieee->set_security)
6578 ieee->set_security(ieee->dev, &sec);
6579 else
6580 ret = -EOPNOTSUPP;
6581
6582 return ret;
6583 }
6584
6585 static void ipw_wpa_assoc_frame(struct ipw_priv *priv, char *wpa_ie,
6586 int wpa_ie_len)
6587 {
6588 /* make sure WPA is enabled */
6589 ipw_wpa_enable(priv, 1);
6590 }
6591
6592 static int ipw_set_rsn_capa(struct ipw_priv *priv,
6593 char *capabilities, int length)
6594 {
6595 IPW_DEBUG_HC("HOST_CMD_RSN_CAPABILITIES\n");
6596
6597 return ipw_send_cmd_pdu(priv, IPW_CMD_RSN_CAPABILITIES, length,
6598 capabilities);
6599 }
6600
6601 /*
6602 * WE-18 support
6603 */
6604
6605 /* SIOCSIWGENIE */
6606 static int ipw_wx_set_genie(struct net_device *dev,
6607 struct iw_request_info *info,
6608 union iwreq_data *wrqu, char *extra)
6609 {
6610 struct ipw_priv *priv = libipw_priv(dev);
6611 struct libipw_device *ieee = priv->ieee;
6612 u8 *buf;
6613 int err = 0;
6614
6615 if (wrqu->data.length > MAX_WPA_IE_LEN ||
6616 (wrqu->data.length && extra == NULL))
6617 return -EINVAL;
6618
6619 if (wrqu->data.length) {
6620 buf = kmalloc(wrqu->data.length, GFP_KERNEL);
6621 if (buf == NULL) {
6622 err = -ENOMEM;
6623 goto out;
6624 }
6625
6626 memcpy(buf, extra, wrqu->data.length);
6627 kfree(ieee->wpa_ie);
6628 ieee->wpa_ie = buf;
6629 ieee->wpa_ie_len = wrqu->data.length;
6630 } else {
6631 kfree(ieee->wpa_ie);
6632 ieee->wpa_ie = NULL;
6633 ieee->wpa_ie_len = 0;
6634 }
6635
6636 ipw_wpa_assoc_frame(priv, ieee->wpa_ie, ieee->wpa_ie_len);
6637 out:
6638 return err;
6639 }
6640
6641 /* SIOCGIWGENIE */
6642 static int ipw_wx_get_genie(struct net_device *dev,
6643 struct iw_request_info *info,
6644 union iwreq_data *wrqu, char *extra)
6645 {
6646 struct ipw_priv *priv = libipw_priv(dev);
6647 struct libipw_device *ieee = priv->ieee;
6648 int err = 0;
6649
6650 if (ieee->wpa_ie_len == 0 || ieee->wpa_ie == NULL) {
6651 wrqu->data.length = 0;
6652 goto out;
6653 }
6654
6655 if (wrqu->data.length < ieee->wpa_ie_len) {
6656 err = -E2BIG;
6657 goto out;
6658 }
6659
6660 wrqu->data.length = ieee->wpa_ie_len;
6661 memcpy(extra, ieee->wpa_ie, ieee->wpa_ie_len);
6662
6663 out:
6664 return err;
6665 }
6666
6667 static int wext_cipher2level(int cipher)
6668 {
6669 switch (cipher) {
6670 case IW_AUTH_CIPHER_NONE:
6671 return SEC_LEVEL_0;
6672 case IW_AUTH_CIPHER_WEP40:
6673 case IW_AUTH_CIPHER_WEP104:
6674 return SEC_LEVEL_1;
6675 case IW_AUTH_CIPHER_TKIP:
6676 return SEC_LEVEL_2;
6677 case IW_AUTH_CIPHER_CCMP:
6678 return SEC_LEVEL_3;
6679 default:
6680 return -1;
6681 }
6682 }
6683
6684 /* SIOCSIWAUTH */
6685 static int ipw_wx_set_auth(struct net_device *dev,
6686 struct iw_request_info *info,
6687 union iwreq_data *wrqu, char *extra)
6688 {
6689 struct ipw_priv *priv = libipw_priv(dev);
6690 struct libipw_device *ieee = priv->ieee;
6691 struct iw_param *param = &wrqu->param;
6692 struct lib80211_crypt_data *crypt;
6693 unsigned long flags;
6694 int ret = 0;
6695
6696 switch (param->flags & IW_AUTH_INDEX) {
6697 case IW_AUTH_WPA_VERSION:
6698 break;
6699 case IW_AUTH_CIPHER_PAIRWISE:
6700 ipw_set_hw_decrypt_unicast(priv,
6701 wext_cipher2level(param->value));
6702 break;
6703 case IW_AUTH_CIPHER_GROUP:
6704 ipw_set_hw_decrypt_multicast(priv,
6705 wext_cipher2level(param->value));
6706 break;
6707 case IW_AUTH_KEY_MGMT:
6708 /*
6709 * ipw2200 does not use these parameters
6710 */
6711 break;
6712
6713 case IW_AUTH_TKIP_COUNTERMEASURES:
6714 crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx];
6715 if (!crypt || !crypt->ops->set_flags || !crypt->ops->get_flags)
6716 break;
6717
6718 flags = crypt->ops->get_flags(crypt->priv);
6719
6720 if (param->value)
6721 flags |= IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
6722 else
6723 flags &= ~IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
6724
6725 crypt->ops->set_flags(flags, crypt->priv);
6726
6727 break;
6728
6729 case IW_AUTH_DROP_UNENCRYPTED:{
6730 /* HACK:
6731 *
6732 * wpa_supplicant calls set_wpa_enabled when the driver
6733 * is loaded and unloaded, regardless of if WPA is being
6734 * used. No other calls are made which can be used to
6735 * determine if encryption will be used or not prior to
6736 * association being expected. If encryption is not being
6737 * used, drop_unencrypted is set to false, else true -- we
6738 * can use this to determine if the CAP_PRIVACY_ON bit should
6739 * be set.
6740 */
6741 struct libipw_security sec = {
6742 .flags = SEC_ENABLED,
6743 .enabled = param->value,
6744 };
6745 priv->ieee->drop_unencrypted = param->value;
6746 /* We only change SEC_LEVEL for open mode. Others
6747 * are set by ipw_wpa_set_encryption.
6748 */
6749 if (!param->value) {
6750 sec.flags |= SEC_LEVEL;
6751 sec.level = SEC_LEVEL_0;
6752 } else {
6753 sec.flags |= SEC_LEVEL;
6754 sec.level = SEC_LEVEL_1;
6755 }
6756 if (priv->ieee->set_security)
6757 priv->ieee->set_security(priv->ieee->dev, &sec);
6758 break;
6759 }
6760
6761 case IW_AUTH_80211_AUTH_ALG:
6762 ret = ipw_wpa_set_auth_algs(priv, param->value);
6763 break;
6764
6765 case IW_AUTH_WPA_ENABLED:
6766 ret = ipw_wpa_enable(priv, param->value);
6767 ipw_disassociate(priv);
6768 break;
6769
6770 case IW_AUTH_RX_UNENCRYPTED_EAPOL:
6771 ieee->ieee802_1x = param->value;
6772 break;
6773
6774 case IW_AUTH_PRIVACY_INVOKED:
6775 ieee->privacy_invoked = param->value;
6776 break;
6777
6778 default:
6779 return -EOPNOTSUPP;
6780 }
6781 return ret;
6782 }
6783
6784 /* SIOCGIWAUTH */
6785 static int ipw_wx_get_auth(struct net_device *dev,
6786 struct iw_request_info *info,
6787 union iwreq_data *wrqu, char *extra)
6788 {
6789 struct ipw_priv *priv = libipw_priv(dev);
6790 struct libipw_device *ieee = priv->ieee;
6791 struct lib80211_crypt_data *crypt;
6792 struct iw_param *param = &wrqu->param;
6793 int ret = 0;
6794
6795 switch (param->flags & IW_AUTH_INDEX) {
6796 case IW_AUTH_WPA_VERSION:
6797 case IW_AUTH_CIPHER_PAIRWISE:
6798 case IW_AUTH_CIPHER_GROUP:
6799 case IW_AUTH_KEY_MGMT:
6800 /*
6801 * wpa_supplicant will control these internally
6802 */
6803 ret = -EOPNOTSUPP;
6804 break;
6805
6806 case IW_AUTH_TKIP_COUNTERMEASURES:
6807 crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx];
6808 if (!crypt || !crypt->ops->get_flags)
6809 break;
6810
6811 param->value = (crypt->ops->get_flags(crypt->priv) &
6812 IEEE80211_CRYPTO_TKIP_COUNTERMEASURES) ? 1 : 0;
6813
6814 break;
6815
6816 case IW_AUTH_DROP_UNENCRYPTED:
6817 param->value = ieee->drop_unencrypted;
6818 break;
6819
6820 case IW_AUTH_80211_AUTH_ALG:
6821 param->value = ieee->sec.auth_mode;
6822 break;
6823
6824 case IW_AUTH_WPA_ENABLED:
6825 param->value = ieee->wpa_enabled;
6826 break;
6827
6828 case IW_AUTH_RX_UNENCRYPTED_EAPOL:
6829 param->value = ieee->ieee802_1x;
6830 break;
6831
6832 case IW_AUTH_ROAMING_CONTROL:
6833 case IW_AUTH_PRIVACY_INVOKED:
6834 param->value = ieee->privacy_invoked;
6835 break;
6836
6837 default:
6838 return -EOPNOTSUPP;
6839 }
6840 return 0;
6841 }
6842
6843 /* SIOCSIWENCODEEXT */
6844 static int ipw_wx_set_encodeext(struct net_device *dev,
6845 struct iw_request_info *info,
6846 union iwreq_data *wrqu, char *extra)
6847 {
6848 struct ipw_priv *priv = libipw_priv(dev);
6849 struct iw_encode_ext *ext = (struct iw_encode_ext *)extra;
6850
6851 if (hwcrypto) {
6852 if (ext->alg == IW_ENCODE_ALG_TKIP) {
6853 /* IPW HW can't build TKIP MIC,
6854 host decryption still needed */
6855 if (ext->ext_flags & IW_ENCODE_EXT_GROUP_KEY)
6856 priv->ieee->host_mc_decrypt = 1;
6857 else {
6858 priv->ieee->host_encrypt = 0;
6859 priv->ieee->host_encrypt_msdu = 1;
6860 priv->ieee->host_decrypt = 1;
6861 }
6862 } else {
6863 priv->ieee->host_encrypt = 0;
6864 priv->ieee->host_encrypt_msdu = 0;
6865 priv->ieee->host_decrypt = 0;
6866 priv->ieee->host_mc_decrypt = 0;
6867 }
6868 }
6869
6870 return libipw_wx_set_encodeext(priv->ieee, info, wrqu, extra);
6871 }
6872
6873 /* SIOCGIWENCODEEXT */
6874 static int ipw_wx_get_encodeext(struct net_device *dev,
6875 struct iw_request_info *info,
6876 union iwreq_data *wrqu, char *extra)
6877 {
6878 struct ipw_priv *priv = libipw_priv(dev);
6879 return libipw_wx_get_encodeext(priv->ieee, info, wrqu, extra);
6880 }
6881
6882 /* SIOCSIWMLME */
6883 static int ipw_wx_set_mlme(struct net_device *dev,
6884 struct iw_request_info *info,
6885 union iwreq_data *wrqu, char *extra)
6886 {
6887 struct ipw_priv *priv = libipw_priv(dev);
6888 struct iw_mlme *mlme = (struct iw_mlme *)extra;
6889 __le16 reason;
6890
6891 reason = cpu_to_le16(mlme->reason_code);
6892
6893 switch (mlme->cmd) {
6894 case IW_MLME_DEAUTH:
6895 /* silently ignore */
6896 break;
6897
6898 case IW_MLME_DISASSOC:
6899 ipw_disassociate(priv);
6900 break;
6901
6902 default:
6903 return -EOPNOTSUPP;
6904 }
6905 return 0;
6906 }
6907
6908 #ifdef CONFIG_IPW2200_QOS
6909
6910 /* QoS */
6911 /*
6912 * get the modulation type of the current network or
6913 * the card current mode
6914 */
6915 static u8 ipw_qos_current_mode(struct ipw_priv * priv)
6916 {
6917 u8 mode = 0;
6918
6919 if (priv->status & STATUS_ASSOCIATED) {
6920 unsigned long flags;
6921
6922 spin_lock_irqsave(&priv->ieee->lock, flags);
6923 mode = priv->assoc_network->mode;
6924 spin_unlock_irqrestore(&priv->ieee->lock, flags);
6925 } else {
6926 mode = priv->ieee->mode;
6927 }
6928 IPW_DEBUG_QOS("QoS network/card mode %d \n", mode);
6929 return mode;
6930 }
6931
6932 /*
6933 * Handle management frame beacon and probe response
6934 */
6935 static int ipw_qos_handle_probe_response(struct ipw_priv *priv,
6936 int active_network,
6937 struct libipw_network *network)
6938 {
6939 u32 size = sizeof(struct libipw_qos_parameters);
6940
6941 if (network->capability & WLAN_CAPABILITY_IBSS)
6942 network->qos_data.active = network->qos_data.supported;
6943
6944 if (network->flags & NETWORK_HAS_QOS_MASK) {
6945 if (active_network &&
6946 (network->flags & NETWORK_HAS_QOS_PARAMETERS))
6947 network->qos_data.active = network->qos_data.supported;
6948
6949 if ((network->qos_data.active == 1) && (active_network == 1) &&
6950 (network->flags & NETWORK_HAS_QOS_PARAMETERS) &&
6951 (network->qos_data.old_param_count !=
6952 network->qos_data.param_count)) {
6953 network->qos_data.old_param_count =
6954 network->qos_data.param_count;
6955 schedule_work(&priv->qos_activate);
6956 IPW_DEBUG_QOS("QoS parameters change call "
6957 "qos_activate\n");
6958 }
6959 } else {
6960 if ((priv->ieee->mode == IEEE_B) || (network->mode == IEEE_B))
6961 memcpy(&network->qos_data.parameters,
6962 &def_parameters_CCK, size);
6963 else
6964 memcpy(&network->qos_data.parameters,
6965 &def_parameters_OFDM, size);
6966
6967 if ((network->qos_data.active == 1) && (active_network == 1)) {
6968 IPW_DEBUG_QOS("QoS was disabled call qos_activate \n");
6969 schedule_work(&priv->qos_activate);
6970 }
6971
6972 network->qos_data.active = 0;
6973 network->qos_data.supported = 0;
6974 }
6975 if ((priv->status & STATUS_ASSOCIATED) &&
6976 (priv->ieee->iw_mode == IW_MODE_ADHOC) && (active_network == 0)) {
6977 if (memcmp(network->bssid, priv->bssid, ETH_ALEN))
6978 if (network->capability & WLAN_CAPABILITY_IBSS)
6979 if ((network->ssid_len ==
6980 priv->assoc_network->ssid_len) &&
6981 !memcmp(network->ssid,
6982 priv->assoc_network->ssid,
6983 network->ssid_len)) {
6984 queue_work(priv->workqueue,
6985 &priv->merge_networks);
6986 }
6987 }
6988
6989 return 0;
6990 }
6991
6992 /*
6993 * This function set up the firmware to support QoS. It sends
6994 * IPW_CMD_QOS_PARAMETERS and IPW_CMD_WME_INFO
6995 */
6996 static int ipw_qos_activate(struct ipw_priv *priv,
6997 struct libipw_qos_data *qos_network_data)
6998 {
6999 int err;
7000 struct libipw_qos_parameters qos_parameters[QOS_QOS_SETS];
7001 struct libipw_qos_parameters *active_one = NULL;
7002 u32 size = sizeof(struct libipw_qos_parameters);
7003 u32 burst_duration;
7004 int i;
7005 u8 type;
7006
7007 type = ipw_qos_current_mode(priv);
7008
7009 active_one = &(qos_parameters[QOS_PARAM_SET_DEF_CCK]);
7010 memcpy(active_one, priv->qos_data.def_qos_parm_CCK, size);
7011 active_one = &(qos_parameters[QOS_PARAM_SET_DEF_OFDM]);
7012 memcpy(active_one, priv->qos_data.def_qos_parm_OFDM, size);
7013
7014 if (qos_network_data == NULL) {
7015 if (type == IEEE_B) {
7016 IPW_DEBUG_QOS("QoS activate network mode %d\n", type);
7017 active_one = &def_parameters_CCK;
7018 } else
7019 active_one = &def_parameters_OFDM;
7020
7021 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
7022 burst_duration = ipw_qos_get_burst_duration(priv);
7023 for (i = 0; i < QOS_QUEUE_NUM; i++)
7024 qos_parameters[QOS_PARAM_SET_ACTIVE].tx_op_limit[i] =
7025 cpu_to_le16(burst_duration);
7026 } else if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
7027 if (type == IEEE_B) {
7028 IPW_DEBUG_QOS("QoS activate IBSS nework mode %d\n",
7029 type);
7030 if (priv->qos_data.qos_enable == 0)
7031 active_one = &def_parameters_CCK;
7032 else
7033 active_one = priv->qos_data.def_qos_parm_CCK;
7034 } else {
7035 if (priv->qos_data.qos_enable == 0)
7036 active_one = &def_parameters_OFDM;
7037 else
7038 active_one = priv->qos_data.def_qos_parm_OFDM;
7039 }
7040 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
7041 } else {
7042 unsigned long flags;
7043 int active;
7044
7045 spin_lock_irqsave(&priv->ieee->lock, flags);
7046 active_one = &(qos_network_data->parameters);
7047 qos_network_data->old_param_count =
7048 qos_network_data->param_count;
7049 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
7050 active = qos_network_data->supported;
7051 spin_unlock_irqrestore(&priv->ieee->lock, flags);
7052
7053 if (active == 0) {
7054 burst_duration = ipw_qos_get_burst_duration(priv);
7055 for (i = 0; i < QOS_QUEUE_NUM; i++)
7056 qos_parameters[QOS_PARAM_SET_ACTIVE].
7057 tx_op_limit[i] = cpu_to_le16(burst_duration);
7058 }
7059 }
7060
7061 IPW_DEBUG_QOS("QoS sending IPW_CMD_QOS_PARAMETERS\n");
7062 err = ipw_send_qos_params_command(priv,
7063 (struct libipw_qos_parameters *)
7064 &(qos_parameters[0]));
7065 if (err)
7066 IPW_DEBUG_QOS("QoS IPW_CMD_QOS_PARAMETERS failed\n");
7067
7068 return err;
7069 }
7070
7071 /*
7072 * send IPW_CMD_WME_INFO to the firmware
7073 */
7074 static int ipw_qos_set_info_element(struct ipw_priv *priv)
7075 {
7076 int ret = 0;
7077 struct libipw_qos_information_element qos_info;
7078
7079 if (priv == NULL)
7080 return -1;
7081
7082 qos_info.elementID = QOS_ELEMENT_ID;
7083 qos_info.length = sizeof(struct libipw_qos_information_element) - 2;
7084
7085 qos_info.version = QOS_VERSION_1;
7086 qos_info.ac_info = 0;
7087
7088 memcpy(qos_info.qui, qos_oui, QOS_OUI_LEN);
7089 qos_info.qui_type = QOS_OUI_TYPE;
7090 qos_info.qui_subtype = QOS_OUI_INFO_SUB_TYPE;
7091
7092 ret = ipw_send_qos_info_command(priv, &qos_info);
7093 if (ret != 0) {
7094 IPW_DEBUG_QOS("QoS error calling ipw_send_qos_info_command\n");
7095 }
7096 return ret;
7097 }
7098
7099 /*
7100 * Set the QoS parameter with the association request structure
7101 */
7102 static int ipw_qos_association(struct ipw_priv *priv,
7103 struct libipw_network *network)
7104 {
7105 int err = 0;
7106 struct libipw_qos_data *qos_data = NULL;
7107 struct libipw_qos_data ibss_data = {
7108 .supported = 1,
7109 .active = 1,
7110 };
7111
7112 switch (priv->ieee->iw_mode) {
7113 case IW_MODE_ADHOC:
7114 BUG_ON(!(network->capability & WLAN_CAPABILITY_IBSS));
7115
7116 qos_data = &ibss_data;
7117 break;
7118
7119 case IW_MODE_INFRA:
7120 qos_data = &network->qos_data;
7121 break;
7122
7123 default:
7124 BUG();
7125 break;
7126 }
7127
7128 err = ipw_qos_activate(priv, qos_data);
7129 if (err) {
7130 priv->assoc_request.policy_support &= ~HC_QOS_SUPPORT_ASSOC;
7131 return err;
7132 }
7133
7134 if (priv->qos_data.qos_enable && qos_data->supported) {
7135 IPW_DEBUG_QOS("QoS will be enabled for this association\n");
7136 priv->assoc_request.policy_support |= HC_QOS_SUPPORT_ASSOC;
7137 return ipw_qos_set_info_element(priv);
7138 }
7139
7140 return 0;
7141 }
7142
7143 /*
7144 * handling the beaconing responses. if we get different QoS setting
7145 * off the network from the associated setting, adjust the QoS
7146 * setting
7147 */
7148 static int ipw_qos_association_resp(struct ipw_priv *priv,
7149 struct libipw_network *network)
7150 {
7151 int ret = 0;
7152 unsigned long flags;
7153 u32 size = sizeof(struct libipw_qos_parameters);
7154 int set_qos_param = 0;
7155
7156 if ((priv == NULL) || (network == NULL) ||
7157 (priv->assoc_network == NULL))
7158 return ret;
7159
7160 if (!(priv->status & STATUS_ASSOCIATED))
7161 return ret;
7162
7163 if ((priv->ieee->iw_mode != IW_MODE_INFRA))
7164 return ret;
7165
7166 spin_lock_irqsave(&priv->ieee->lock, flags);
7167 if (network->flags & NETWORK_HAS_QOS_PARAMETERS) {
7168 memcpy(&priv->assoc_network->qos_data, &network->qos_data,
7169 sizeof(struct libipw_qos_data));
7170 priv->assoc_network->qos_data.active = 1;
7171 if ((network->qos_data.old_param_count !=
7172 network->qos_data.param_count)) {
7173 set_qos_param = 1;
7174 network->qos_data.old_param_count =
7175 network->qos_data.param_count;
7176 }
7177
7178 } else {
7179 if ((network->mode == IEEE_B) || (priv->ieee->mode == IEEE_B))
7180 memcpy(&priv->assoc_network->qos_data.parameters,
7181 &def_parameters_CCK, size);
7182 else
7183 memcpy(&priv->assoc_network->qos_data.parameters,
7184 &def_parameters_OFDM, size);
7185 priv->assoc_network->qos_data.active = 0;
7186 priv->assoc_network->qos_data.supported = 0;
7187 set_qos_param = 1;
7188 }
7189
7190 spin_unlock_irqrestore(&priv->ieee->lock, flags);
7191
7192 if (set_qos_param == 1)
7193 schedule_work(&priv->qos_activate);
7194
7195 return ret;
7196 }
7197
7198 static u32 ipw_qos_get_burst_duration(struct ipw_priv *priv)
7199 {
7200 u32 ret = 0;
7201
7202 if ((priv == NULL))
7203 return 0;
7204
7205 if (!(priv->ieee->modulation & LIBIPW_OFDM_MODULATION))
7206 ret = priv->qos_data.burst_duration_CCK;
7207 else
7208 ret = priv->qos_data.burst_duration_OFDM;
7209
7210 return ret;
7211 }
7212
7213 /*
7214 * Initialize the setting of QoS global
7215 */
7216 static void ipw_qos_init(struct ipw_priv *priv, int enable,
7217 int burst_enable, u32 burst_duration_CCK,
7218 u32 burst_duration_OFDM)
7219 {
7220 priv->qos_data.qos_enable = enable;
7221
7222 if (priv->qos_data.qos_enable) {
7223 priv->qos_data.def_qos_parm_CCK = &def_qos_parameters_CCK;
7224 priv->qos_data.def_qos_parm_OFDM = &def_qos_parameters_OFDM;
7225 IPW_DEBUG_QOS("QoS is enabled\n");
7226 } else {
7227 priv->qos_data.def_qos_parm_CCK = &def_parameters_CCK;
7228 priv->qos_data.def_qos_parm_OFDM = &def_parameters_OFDM;
7229 IPW_DEBUG_QOS("QoS is not enabled\n");
7230 }
7231
7232 priv->qos_data.burst_enable = burst_enable;
7233
7234 if (burst_enable) {
7235 priv->qos_data.burst_duration_CCK = burst_duration_CCK;
7236 priv->qos_data.burst_duration_OFDM = burst_duration_OFDM;
7237 } else {
7238 priv->qos_data.burst_duration_CCK = 0;
7239 priv->qos_data.burst_duration_OFDM = 0;
7240 }
7241 }
7242
7243 /*
7244 * map the packet priority to the right TX Queue
7245 */
7246 static int ipw_get_tx_queue_number(struct ipw_priv *priv, u16 priority)
7247 {
7248 if (priority > 7 || !priv->qos_data.qos_enable)
7249 priority = 0;
7250
7251 return from_priority_to_tx_queue[priority] - 1;
7252 }
7253
7254 static int ipw_is_qos_active(struct net_device *dev,
7255 struct sk_buff *skb)
7256 {
7257 struct ipw_priv *priv = libipw_priv(dev);
7258 struct libipw_qos_data *qos_data = NULL;
7259 int active, supported;
7260 u8 *daddr = skb->data + ETH_ALEN;
7261 int unicast = !is_multicast_ether_addr(daddr);
7262
7263 if (!(priv->status & STATUS_ASSOCIATED))
7264 return 0;
7265
7266 qos_data = &priv->assoc_network->qos_data;
7267
7268 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
7269 if (unicast == 0)
7270 qos_data->active = 0;
7271 else
7272 qos_data->active = qos_data->supported;
7273 }
7274 active = qos_data->active;
7275 supported = qos_data->supported;
7276 IPW_DEBUG_QOS("QoS %d network is QoS active %d supported %d "
7277 "unicast %d\n",
7278 priv->qos_data.qos_enable, active, supported, unicast);
7279 if (active && priv->qos_data.qos_enable)
7280 return 1;
7281
7282 return 0;
7283
7284 }
7285 /*
7286 * add QoS parameter to the TX command
7287 */
7288 static int ipw_qos_set_tx_queue_command(struct ipw_priv *priv,
7289 u16 priority,
7290 struct tfd_data *tfd)
7291 {
7292 int tx_queue_id = 0;
7293
7294
7295 tx_queue_id = from_priority_to_tx_queue[priority] - 1;
7296 tfd->tx_flags_ext |= DCT_FLAG_EXT_QOS_ENABLED;
7297
7298 if (priv->qos_data.qos_no_ack_mask & (1UL << tx_queue_id)) {
7299 tfd->tx_flags &= ~DCT_FLAG_ACK_REQD;
7300 tfd->tfd.tfd_26.mchdr.qos_ctrl |= cpu_to_le16(CTRL_QOS_NO_ACK);
7301 }
7302 return 0;
7303 }
7304
7305 /*
7306 * background support to run QoS activate functionality
7307 */
7308 static void ipw_bg_qos_activate(struct work_struct *work)
7309 {
7310 struct ipw_priv *priv =
7311 container_of(work, struct ipw_priv, qos_activate);
7312
7313 mutex_lock(&priv->mutex);
7314
7315 if (priv->status & STATUS_ASSOCIATED)
7316 ipw_qos_activate(priv, &(priv->assoc_network->qos_data));
7317
7318 mutex_unlock(&priv->mutex);
7319 }
7320
7321 static int ipw_handle_probe_response(struct net_device *dev,
7322 struct libipw_probe_response *resp,
7323 struct libipw_network *network)
7324 {
7325 struct ipw_priv *priv = libipw_priv(dev);
7326 int active_network = ((priv->status & STATUS_ASSOCIATED) &&
7327 (network == priv->assoc_network));
7328
7329 ipw_qos_handle_probe_response(priv, active_network, network);
7330
7331 return 0;
7332 }
7333
7334 static int ipw_handle_beacon(struct net_device *dev,
7335 struct libipw_beacon *resp,
7336 struct libipw_network *network)
7337 {
7338 struct ipw_priv *priv = libipw_priv(dev);
7339 int active_network = ((priv->status & STATUS_ASSOCIATED) &&
7340 (network == priv->assoc_network));
7341
7342 ipw_qos_handle_probe_response(priv, active_network, network);
7343
7344 return 0;
7345 }
7346
7347 static int ipw_handle_assoc_response(struct net_device *dev,
7348 struct libipw_assoc_response *resp,
7349 struct libipw_network *network)
7350 {
7351 struct ipw_priv *priv = libipw_priv(dev);
7352 ipw_qos_association_resp(priv, network);
7353 return 0;
7354 }
7355
7356 static int ipw_send_qos_params_command(struct ipw_priv *priv, struct libipw_qos_parameters
7357 *qos_param)
7358 {
7359 return ipw_send_cmd_pdu(priv, IPW_CMD_QOS_PARAMETERS,
7360 sizeof(*qos_param) * 3, qos_param);
7361 }
7362
7363 static int ipw_send_qos_info_command(struct ipw_priv *priv, struct libipw_qos_information_element
7364 *qos_param)
7365 {
7366 return ipw_send_cmd_pdu(priv, IPW_CMD_WME_INFO, sizeof(*qos_param),
7367 qos_param);
7368 }
7369
7370 #endif /* CONFIG_IPW2200_QOS */
7371
7372 static int ipw_associate_network(struct ipw_priv *priv,
7373 struct libipw_network *network,
7374 struct ipw_supported_rates *rates, int roaming)
7375 {
7376 int err;
7377 DECLARE_SSID_BUF(ssid);
7378
7379 if (priv->config & CFG_FIXED_RATE)
7380 ipw_set_fixed_rate(priv, network->mode);
7381
7382 if (!(priv->config & CFG_STATIC_ESSID)) {
7383 priv->essid_len = min(network->ssid_len,
7384 (u8) IW_ESSID_MAX_SIZE);
7385 memcpy(priv->essid, network->ssid, priv->essid_len);
7386 }
7387
7388 network->last_associate = jiffies;
7389
7390 memset(&priv->assoc_request, 0, sizeof(priv->assoc_request));
7391 priv->assoc_request.channel = network->channel;
7392 priv->assoc_request.auth_key = 0;
7393
7394 if ((priv->capability & CAP_PRIVACY_ON) &&
7395 (priv->ieee->sec.auth_mode == WLAN_AUTH_SHARED_KEY)) {
7396 priv->assoc_request.auth_type = AUTH_SHARED_KEY;
7397 priv->assoc_request.auth_key = priv->ieee->sec.active_key;
7398
7399 if (priv->ieee->sec.level == SEC_LEVEL_1)
7400 ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_WEP);
7401
7402 } else if ((priv->capability & CAP_PRIVACY_ON) &&
7403 (priv->ieee->sec.auth_mode == WLAN_AUTH_LEAP))
7404 priv->assoc_request.auth_type = AUTH_LEAP;
7405 else
7406 priv->assoc_request.auth_type = AUTH_OPEN;
7407
7408 if (priv->ieee->wpa_ie_len) {
7409 priv->assoc_request.policy_support = cpu_to_le16(0x02); /* RSN active */
7410 ipw_set_rsn_capa(priv, priv->ieee->wpa_ie,
7411 priv->ieee->wpa_ie_len);
7412 }
7413
7414 /*
7415 * It is valid for our ieee device to support multiple modes, but
7416 * when it comes to associating to a given network we have to choose
7417 * just one mode.
7418 */
7419 if (network->mode & priv->ieee->mode & IEEE_A)
7420 priv->assoc_request.ieee_mode = IPW_A_MODE;
7421 else if (network->mode & priv->ieee->mode & IEEE_G)
7422 priv->assoc_request.ieee_mode = IPW_G_MODE;
7423 else if (network->mode & priv->ieee->mode & IEEE_B)
7424 priv->assoc_request.ieee_mode = IPW_B_MODE;
7425
7426 priv->assoc_request.capability = cpu_to_le16(network->capability);
7427 if ((network->capability & WLAN_CAPABILITY_SHORT_PREAMBLE)
7428 && !(priv->config & CFG_PREAMBLE_LONG)) {
7429 priv->assoc_request.preamble_length = DCT_FLAG_SHORT_PREAMBLE;
7430 } else {
7431 priv->assoc_request.preamble_length = DCT_FLAG_LONG_PREAMBLE;
7432
7433 /* Clear the short preamble if we won't be supporting it */
7434 priv->assoc_request.capability &=
7435 ~cpu_to_le16(WLAN_CAPABILITY_SHORT_PREAMBLE);
7436 }
7437
7438 /* Clear capability bits that aren't used in Ad Hoc */
7439 if (priv->ieee->iw_mode == IW_MODE_ADHOC)
7440 priv->assoc_request.capability &=
7441 ~cpu_to_le16(WLAN_CAPABILITY_SHORT_SLOT_TIME);
7442
7443 IPW_DEBUG_ASSOC("%sssocation attempt: '%s', channel %d, "
7444 "802.11%c [%d], %s[:%s], enc=%s%s%s%c%c\n",
7445 roaming ? "Rea" : "A",
7446 print_ssid(ssid, priv->essid, priv->essid_len),
7447 network->channel,
7448 ipw_modes[priv->assoc_request.ieee_mode],
7449 rates->num_rates,
7450 (priv->assoc_request.preamble_length ==
7451 DCT_FLAG_LONG_PREAMBLE) ? "long" : "short",
7452 network->capability &
7453 WLAN_CAPABILITY_SHORT_PREAMBLE ? "short" : "long",
7454 priv->capability & CAP_PRIVACY_ON ? "on " : "off",
7455 priv->capability & CAP_PRIVACY_ON ?
7456 (priv->capability & CAP_SHARED_KEY ? "(shared)" :
7457 "(open)") : "",
7458 priv->capability & CAP_PRIVACY_ON ? " key=" : "",
7459 priv->capability & CAP_PRIVACY_ON ?
7460 '1' + priv->ieee->sec.active_key : '.',
7461 priv->capability & CAP_PRIVACY_ON ? '.' : ' ');
7462
7463 priv->assoc_request.beacon_interval = cpu_to_le16(network->beacon_interval);
7464 if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
7465 (network->time_stamp[0] == 0) && (network->time_stamp[1] == 0)) {
7466 priv->assoc_request.assoc_type = HC_IBSS_START;
7467 priv->assoc_request.assoc_tsf_msw = 0;
7468 priv->assoc_request.assoc_tsf_lsw = 0;
7469 } else {
7470 if (unlikely(roaming))
7471 priv->assoc_request.assoc_type = HC_REASSOCIATE;
7472 else
7473 priv->assoc_request.assoc_type = HC_ASSOCIATE;
7474 priv->assoc_request.assoc_tsf_msw = cpu_to_le32(network->time_stamp[1]);
7475 priv->assoc_request.assoc_tsf_lsw = cpu_to_le32(network->time_stamp[0]);
7476 }
7477
7478 memcpy(priv->assoc_request.bssid, network->bssid, ETH_ALEN);
7479
7480 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
7481 memset(&priv->assoc_request.dest, 0xFF, ETH_ALEN);
7482 priv->assoc_request.atim_window = cpu_to_le16(network->atim_window);
7483 } else {
7484 memcpy(priv->assoc_request.dest, network->bssid, ETH_ALEN);
7485 priv->assoc_request.atim_window = 0;
7486 }
7487
7488 priv->assoc_request.listen_interval = cpu_to_le16(network->listen_interval);
7489
7490 err = ipw_send_ssid(priv, priv->essid, priv->essid_len);
7491 if (err) {
7492 IPW_DEBUG_HC("Attempt to send SSID command failed.\n");
7493 return err;
7494 }
7495
7496 rates->ieee_mode = priv->assoc_request.ieee_mode;
7497 rates->purpose = IPW_RATE_CONNECT;
7498 ipw_send_supported_rates(priv, rates);
7499
7500 if (priv->assoc_request.ieee_mode == IPW_G_MODE)
7501 priv->sys_config.dot11g_auto_detection = 1;
7502 else
7503 priv->sys_config.dot11g_auto_detection = 0;
7504
7505 if (priv->ieee->iw_mode == IW_MODE_ADHOC)
7506 priv->sys_config.answer_broadcast_ssid_probe = 1;
7507 else
7508 priv->sys_config.answer_broadcast_ssid_probe = 0;
7509
7510 err = ipw_send_system_config(priv);
7511 if (err) {
7512 IPW_DEBUG_HC("Attempt to send sys config command failed.\n");
7513 return err;
7514 }
7515
7516 IPW_DEBUG_ASSOC("Association sensitivity: %d\n", network->stats.rssi);
7517 err = ipw_set_sensitivity(priv, network->stats.rssi + IPW_RSSI_TO_DBM);
7518 if (err) {
7519 IPW_DEBUG_HC("Attempt to send associate command failed.\n");
7520 return err;
7521 }
7522
7523 /*
7524 * If preemption is enabled, it is possible for the association
7525 * to complete before we return from ipw_send_associate. Therefore
7526 * we have to be sure and update our priviate data first.
7527 */
7528 priv->channel = network->channel;
7529 memcpy(priv->bssid, network->bssid, ETH_ALEN);
7530 priv->status |= STATUS_ASSOCIATING;
7531 priv->status &= ~STATUS_SECURITY_UPDATED;
7532
7533 priv->assoc_network = network;
7534
7535 #ifdef CONFIG_IPW2200_QOS
7536 ipw_qos_association(priv, network);
7537 #endif
7538
7539 err = ipw_send_associate(priv, &priv->assoc_request);
7540 if (err) {
7541 IPW_DEBUG_HC("Attempt to send associate command failed.\n");
7542 return err;
7543 }
7544
7545 IPW_DEBUG(IPW_DL_STATE, "associating: '%s' %pM \n",
7546 print_ssid(ssid, priv->essid, priv->essid_len),
7547 priv->bssid);
7548
7549 return 0;
7550 }
7551
7552 static void ipw_roam(void *data)
7553 {
7554 struct ipw_priv *priv = data;
7555 struct libipw_network *network = NULL;
7556 struct ipw_network_match match = {
7557 .network = priv->assoc_network
7558 };
7559
7560 /* The roaming process is as follows:
7561 *
7562 * 1. Missed beacon threshold triggers the roaming process by
7563 * setting the status ROAM bit and requesting a scan.
7564 * 2. When the scan completes, it schedules the ROAM work
7565 * 3. The ROAM work looks at all of the known networks for one that
7566 * is a better network than the currently associated. If none
7567 * found, the ROAM process is over (ROAM bit cleared)
7568 * 4. If a better network is found, a disassociation request is
7569 * sent.
7570 * 5. When the disassociation completes, the roam work is again
7571 * scheduled. The second time through, the driver is no longer
7572 * associated, and the newly selected network is sent an
7573 * association request.
7574 * 6. At this point ,the roaming process is complete and the ROAM
7575 * status bit is cleared.
7576 */
7577
7578 /* If we are no longer associated, and the roaming bit is no longer
7579 * set, then we are not actively roaming, so just return */
7580 if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ROAMING)))
7581 return;
7582
7583 if (priv->status & STATUS_ASSOCIATED) {
7584 /* First pass through ROAM process -- look for a better
7585 * network */
7586 unsigned long flags;
7587 u8 rssi = priv->assoc_network->stats.rssi;
7588 priv->assoc_network->stats.rssi = -128;
7589 spin_lock_irqsave(&priv->ieee->lock, flags);
7590 list_for_each_entry(network, &priv->ieee->network_list, list) {
7591 if (network != priv->assoc_network)
7592 ipw_best_network(priv, &match, network, 1);
7593 }
7594 spin_unlock_irqrestore(&priv->ieee->lock, flags);
7595 priv->assoc_network->stats.rssi = rssi;
7596
7597 if (match.network == priv->assoc_network) {
7598 IPW_DEBUG_ASSOC("No better APs in this network to "
7599 "roam to.\n");
7600 priv->status &= ~STATUS_ROAMING;
7601 ipw_debug_config(priv);
7602 return;
7603 }
7604
7605 ipw_send_disassociate(priv, 1);
7606 priv->assoc_network = match.network;
7607
7608 return;
7609 }
7610
7611 /* Second pass through ROAM process -- request association */
7612 ipw_compatible_rates(priv, priv->assoc_network, &match.rates);
7613 ipw_associate_network(priv, priv->assoc_network, &match.rates, 1);
7614 priv->status &= ~STATUS_ROAMING;
7615 }
7616
7617 static void ipw_bg_roam(struct work_struct *work)
7618 {
7619 struct ipw_priv *priv =
7620 container_of(work, struct ipw_priv, roam);
7621 mutex_lock(&priv->mutex);
7622 ipw_roam(priv);
7623 mutex_unlock(&priv->mutex);
7624 }
7625
7626 static int ipw_associate(void *data)
7627 {
7628 struct ipw_priv *priv = data;
7629
7630 struct libipw_network *network = NULL;
7631 struct ipw_network_match match = {
7632 .network = NULL
7633 };
7634 struct ipw_supported_rates *rates;
7635 struct list_head *element;
7636 unsigned long flags;
7637 DECLARE_SSID_BUF(ssid);
7638
7639 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
7640 IPW_DEBUG_ASSOC("Not attempting association (monitor mode)\n");
7641 return 0;
7642 }
7643
7644 if (priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
7645 IPW_DEBUG_ASSOC("Not attempting association (already in "
7646 "progress)\n");
7647 return 0;
7648 }
7649
7650 if (priv->status & STATUS_DISASSOCIATING) {
7651 IPW_DEBUG_ASSOC("Not attempting association (in "
7652 "disassociating)\n ");
7653 queue_work(priv->workqueue, &priv->associate);
7654 return 0;
7655 }
7656
7657 if (!ipw_is_init(priv) || (priv->status & STATUS_SCANNING)) {
7658 IPW_DEBUG_ASSOC("Not attempting association (scanning or not "
7659 "initialized)\n");
7660 return 0;
7661 }
7662
7663 if (!(priv->config & CFG_ASSOCIATE) &&
7664 !(priv->config & (CFG_STATIC_ESSID | CFG_STATIC_BSSID))) {
7665 IPW_DEBUG_ASSOC("Not attempting association (associate=0)\n");
7666 return 0;
7667 }
7668
7669 /* Protect our use of the network_list */
7670 spin_lock_irqsave(&priv->ieee->lock, flags);
7671 list_for_each_entry(network, &priv->ieee->network_list, list)
7672 ipw_best_network(priv, &match, network, 0);
7673
7674 network = match.network;
7675 rates = &match.rates;
7676
7677 if (network == NULL &&
7678 priv->ieee->iw_mode == IW_MODE_ADHOC &&
7679 priv->config & CFG_ADHOC_CREATE &&
7680 priv->config & CFG_STATIC_ESSID &&
7681 priv->config & CFG_STATIC_CHANNEL) {
7682 /* Use oldest network if the free list is empty */
7683 if (list_empty(&priv->ieee->network_free_list)) {
7684 struct libipw_network *oldest = NULL;
7685 struct libipw_network *target;
7686
7687 list_for_each_entry(target, &priv->ieee->network_list, list) {
7688 if ((oldest == NULL) ||
7689 (target->last_scanned < oldest->last_scanned))
7690 oldest = target;
7691 }
7692
7693 /* If there are no more slots, expire the oldest */
7694 list_del(&oldest->list);
7695 target = oldest;
7696 IPW_DEBUG_ASSOC("Expired '%s' (%pM) from "
7697 "network list.\n",
7698 print_ssid(ssid, target->ssid,
7699 target->ssid_len),
7700 target->bssid);
7701 list_add_tail(&target->list,
7702 &priv->ieee->network_free_list);
7703 }
7704
7705 element = priv->ieee->network_free_list.next;
7706 network = list_entry(element, struct libipw_network, list);
7707 ipw_adhoc_create(priv, network);
7708 rates = &priv->rates;
7709 list_del(element);
7710 list_add_tail(&network->list, &priv->ieee->network_list);
7711 }
7712 spin_unlock_irqrestore(&priv->ieee->lock, flags);
7713
7714 /* If we reached the end of the list, then we don't have any valid
7715 * matching APs */
7716 if (!network) {
7717 ipw_debug_config(priv);
7718
7719 if (!(priv->status & STATUS_SCANNING)) {
7720 if (!(priv->config & CFG_SPEED_SCAN))
7721 queue_delayed_work(priv->workqueue,
7722 &priv->request_scan,
7723 SCAN_INTERVAL);
7724 else
7725 queue_delayed_work(priv->workqueue,
7726 &priv->request_scan, 0);
7727 }
7728
7729 return 0;
7730 }
7731
7732 ipw_associate_network(priv, network, rates, 0);
7733
7734 return 1;
7735 }
7736
7737 static void ipw_bg_associate(struct work_struct *work)
7738 {
7739 struct ipw_priv *priv =
7740 container_of(work, struct ipw_priv, associate);
7741 mutex_lock(&priv->mutex);
7742 ipw_associate(priv);
7743 mutex_unlock(&priv->mutex);
7744 }
7745
7746 static void ipw_rebuild_decrypted_skb(struct ipw_priv *priv,
7747 struct sk_buff *skb)
7748 {
7749 struct ieee80211_hdr *hdr;
7750 u16 fc;
7751
7752 hdr = (struct ieee80211_hdr *)skb->data;
7753 fc = le16_to_cpu(hdr->frame_control);
7754 if (!(fc & IEEE80211_FCTL_PROTECTED))
7755 return;
7756
7757 fc &= ~IEEE80211_FCTL_PROTECTED;
7758 hdr->frame_control = cpu_to_le16(fc);
7759 switch (priv->ieee->sec.level) {
7760 case SEC_LEVEL_3:
7761 /* Remove CCMP HDR */
7762 memmove(skb->data + LIBIPW_3ADDR_LEN,
7763 skb->data + LIBIPW_3ADDR_LEN + 8,
7764 skb->len - LIBIPW_3ADDR_LEN - 8);
7765 skb_trim(skb, skb->len - 16); /* CCMP_HDR_LEN + CCMP_MIC_LEN */
7766 break;
7767 case SEC_LEVEL_2:
7768 break;
7769 case SEC_LEVEL_1:
7770 /* Remove IV */
7771 memmove(skb->data + LIBIPW_3ADDR_LEN,
7772 skb->data + LIBIPW_3ADDR_LEN + 4,
7773 skb->len - LIBIPW_3ADDR_LEN - 4);
7774 skb_trim(skb, skb->len - 8); /* IV + ICV */
7775 break;
7776 case SEC_LEVEL_0:
7777 break;
7778 default:
7779 printk(KERN_ERR "Unknown security level %d\n",
7780 priv->ieee->sec.level);
7781 break;
7782 }
7783 }
7784
7785 static void ipw_handle_data_packet(struct ipw_priv *priv,
7786 struct ipw_rx_mem_buffer *rxb,
7787 struct libipw_rx_stats *stats)
7788 {
7789 struct net_device *dev = priv->net_dev;
7790 struct libipw_hdr_4addr *hdr;
7791 struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7792
7793 /* We received data from the HW, so stop the watchdog */
7794 dev->trans_start = jiffies;
7795
7796 /* We only process data packets if the
7797 * interface is open */
7798 if (unlikely((le16_to_cpu(pkt->u.frame.length) + IPW_RX_FRAME_SIZE) >
7799 skb_tailroom(rxb->skb))) {
7800 dev->stats.rx_errors++;
7801 priv->wstats.discard.misc++;
7802 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7803 return;
7804 } else if (unlikely(!netif_running(priv->net_dev))) {
7805 dev->stats.rx_dropped++;
7806 priv->wstats.discard.misc++;
7807 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7808 return;
7809 }
7810
7811 /* Advance skb->data to the start of the actual payload */
7812 skb_reserve(rxb->skb, offsetof(struct ipw_rx_packet, u.frame.data));
7813
7814 /* Set the size of the skb to the size of the frame */
7815 skb_put(rxb->skb, le16_to_cpu(pkt->u.frame.length));
7816
7817 IPW_DEBUG_RX("Rx packet of %d bytes.\n", rxb->skb->len);
7818
7819 /* HW decrypt will not clear the WEP bit, MIC, PN, etc. */
7820 hdr = (struct libipw_hdr_4addr *)rxb->skb->data;
7821 if (priv->ieee->iw_mode != IW_MODE_MONITOR &&
7822 (is_multicast_ether_addr(hdr->addr1) ?
7823 !priv->ieee->host_mc_decrypt : !priv->ieee->host_decrypt))
7824 ipw_rebuild_decrypted_skb(priv, rxb->skb);
7825
7826 if (!libipw_rx(priv->ieee, rxb->skb, stats))
7827 dev->stats.rx_errors++;
7828 else { /* libipw_rx succeeded, so it now owns the SKB */
7829 rxb->skb = NULL;
7830 __ipw_led_activity_on(priv);
7831 }
7832 }
7833
7834 #ifdef CONFIG_IPW2200_RADIOTAP
7835 static void ipw_handle_data_packet_monitor(struct ipw_priv *priv,
7836 struct ipw_rx_mem_buffer *rxb,
7837 struct libipw_rx_stats *stats)
7838 {
7839 struct net_device *dev = priv->net_dev;
7840 struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7841 struct ipw_rx_frame *frame = &pkt->u.frame;
7842
7843 /* initial pull of some data */
7844 u16 received_channel = frame->received_channel;
7845 u8 antennaAndPhy = frame->antennaAndPhy;
7846 s8 antsignal = frame->rssi_dbm - IPW_RSSI_TO_DBM; /* call it signed anyhow */
7847 u16 pktrate = frame->rate;
7848
7849 /* Magic struct that slots into the radiotap header -- no reason
7850 * to build this manually element by element, we can write it much
7851 * more efficiently than we can parse it. ORDER MATTERS HERE */
7852 struct ipw_rt_hdr *ipw_rt;
7853
7854 short len = le16_to_cpu(pkt->u.frame.length);
7855
7856 /* We received data from the HW, so stop the watchdog */
7857 dev->trans_start = jiffies;
7858
7859 /* We only process data packets if the
7860 * interface is open */
7861 if (unlikely((le16_to_cpu(pkt->u.frame.length) + IPW_RX_FRAME_SIZE) >
7862 skb_tailroom(rxb->skb))) {
7863 dev->stats.rx_errors++;
7864 priv->wstats.discard.misc++;
7865 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7866 return;
7867 } else if (unlikely(!netif_running(priv->net_dev))) {
7868 dev->stats.rx_dropped++;
7869 priv->wstats.discard.misc++;
7870 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7871 return;
7872 }
7873
7874 /* Libpcap 0.9.3+ can handle variable length radiotap, so we'll use
7875 * that now */
7876 if (len > IPW_RX_BUF_SIZE - sizeof(struct ipw_rt_hdr)) {
7877 /* FIXME: Should alloc bigger skb instead */
7878 dev->stats.rx_dropped++;
7879 priv->wstats.discard.misc++;
7880 IPW_DEBUG_DROP("Dropping too large packet in monitor\n");
7881 return;
7882 }
7883
7884 /* copy the frame itself */
7885 memmove(rxb->skb->data + sizeof(struct ipw_rt_hdr),
7886 rxb->skb->data + IPW_RX_FRAME_SIZE, len);
7887
7888 ipw_rt = (struct ipw_rt_hdr *)rxb->skb->data;
7889
7890 ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
7891 ipw_rt->rt_hdr.it_pad = 0; /* always good to zero */
7892 ipw_rt->rt_hdr.it_len = cpu_to_le16(sizeof(struct ipw_rt_hdr)); /* total header+data */
7893
7894 /* Big bitfield of all the fields we provide in radiotap */
7895 ipw_rt->rt_hdr.it_present = cpu_to_le32(
7896 (1 << IEEE80211_RADIOTAP_TSFT) |
7897 (1 << IEEE80211_RADIOTAP_FLAGS) |
7898 (1 << IEEE80211_RADIOTAP_RATE) |
7899 (1 << IEEE80211_RADIOTAP_CHANNEL) |
7900 (1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL) |
7901 (1 << IEEE80211_RADIOTAP_DBM_ANTNOISE) |
7902 (1 << IEEE80211_RADIOTAP_ANTENNA));
7903
7904 /* Zero the flags, we'll add to them as we go */
7905 ipw_rt->rt_flags = 0;
7906 ipw_rt->rt_tsf = (u64)(frame->parent_tsf[3] << 24 |
7907 frame->parent_tsf[2] << 16 |
7908 frame->parent_tsf[1] << 8 |
7909 frame->parent_tsf[0]);
7910
7911 /* Convert signal to DBM */
7912 ipw_rt->rt_dbmsignal = antsignal;
7913 ipw_rt->rt_dbmnoise = (s8) le16_to_cpu(frame->noise);
7914
7915 /* Convert the channel data and set the flags */
7916 ipw_rt->rt_channel = cpu_to_le16(ieee80211chan2mhz(received_channel));
7917 if (received_channel > 14) { /* 802.11a */
7918 ipw_rt->rt_chbitmask =
7919 cpu_to_le16((IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ));
7920 } else if (antennaAndPhy & 32) { /* 802.11b */
7921 ipw_rt->rt_chbitmask =
7922 cpu_to_le16((IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ));
7923 } else { /* 802.11g */
7924 ipw_rt->rt_chbitmask =
7925 cpu_to_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ);
7926 }
7927
7928 /* set the rate in multiples of 500k/s */
7929 switch (pktrate) {
7930 case IPW_TX_RATE_1MB:
7931 ipw_rt->rt_rate = 2;
7932 break;
7933 case IPW_TX_RATE_2MB:
7934 ipw_rt->rt_rate = 4;
7935 break;
7936 case IPW_TX_RATE_5MB:
7937 ipw_rt->rt_rate = 10;
7938 break;
7939 case IPW_TX_RATE_6MB:
7940 ipw_rt->rt_rate = 12;
7941 break;
7942 case IPW_TX_RATE_9MB:
7943 ipw_rt->rt_rate = 18;
7944 break;
7945 case IPW_TX_RATE_11MB:
7946 ipw_rt->rt_rate = 22;
7947 break;
7948 case IPW_TX_RATE_12MB:
7949 ipw_rt->rt_rate = 24;
7950 break;
7951 case IPW_TX_RATE_18MB:
7952 ipw_rt->rt_rate = 36;
7953 break;
7954 case IPW_TX_RATE_24MB:
7955 ipw_rt->rt_rate = 48;
7956 break;
7957 case IPW_TX_RATE_36MB:
7958 ipw_rt->rt_rate = 72;
7959 break;
7960 case IPW_TX_RATE_48MB:
7961 ipw_rt->rt_rate = 96;
7962 break;
7963 case IPW_TX_RATE_54MB:
7964 ipw_rt->rt_rate = 108;
7965 break;
7966 default:
7967 ipw_rt->rt_rate = 0;
7968 break;
7969 }
7970
7971 /* antenna number */
7972 ipw_rt->rt_antenna = (antennaAndPhy & 3); /* Is this right? */
7973
7974 /* set the preamble flag if we have it */
7975 if ((antennaAndPhy & 64))
7976 ipw_rt->rt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
7977
7978 /* Set the size of the skb to the size of the frame */
7979 skb_put(rxb->skb, len + sizeof(struct ipw_rt_hdr));
7980
7981 IPW_DEBUG_RX("Rx packet of %d bytes.\n", rxb->skb->len);
7982
7983 if (!libipw_rx(priv->ieee, rxb->skb, stats))
7984 dev->stats.rx_errors++;
7985 else { /* libipw_rx succeeded, so it now owns the SKB */
7986 rxb->skb = NULL;
7987 /* no LED during capture */
7988 }
7989 }
7990 #endif
7991
7992 #ifdef CONFIG_IPW2200_PROMISCUOUS
7993 #define libipw_is_probe_response(fc) \
7994 ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT && \
7995 (fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_PROBE_RESP )
7996
7997 #define libipw_is_management(fc) \
7998 ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT)
7999
8000 #define libipw_is_control(fc) \
8001 ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_CTL)
8002
8003 #define libipw_is_data(fc) \
8004 ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA)
8005
8006 #define libipw_is_assoc_request(fc) \
8007 ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_ASSOC_REQ)
8008
8009 #define libipw_is_reassoc_request(fc) \
8010 ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_REASSOC_REQ)
8011
8012 static void ipw_handle_promiscuous_rx(struct ipw_priv *priv,
8013 struct ipw_rx_mem_buffer *rxb,
8014 struct libipw_rx_stats *stats)
8015 {
8016 struct net_device *dev = priv->prom_net_dev;
8017 struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
8018 struct ipw_rx_frame *frame = &pkt->u.frame;
8019 struct ipw_rt_hdr *ipw_rt;
8020
8021 /* First cache any information we need before we overwrite
8022 * the information provided in the skb from the hardware */
8023 struct ieee80211_hdr *hdr;
8024 u16 channel = frame->received_channel;
8025 u8 phy_flags = frame->antennaAndPhy;
8026 s8 signal = frame->rssi_dbm - IPW_RSSI_TO_DBM;
8027 s8 noise = (s8) le16_to_cpu(frame->noise);
8028 u8 rate = frame->rate;
8029 short len = le16_to_cpu(pkt->u.frame.length);
8030 struct sk_buff *skb;
8031 int hdr_only = 0;
8032 u16 filter = priv->prom_priv->filter;
8033
8034 /* If the filter is set to not include Rx frames then return */
8035 if (filter & IPW_PROM_NO_RX)
8036 return;
8037
8038 /* We received data from the HW, so stop the watchdog */
8039 dev->trans_start = jiffies;
8040
8041 if (unlikely((len + IPW_RX_FRAME_SIZE) > skb_tailroom(rxb->skb))) {
8042 dev->stats.rx_errors++;
8043 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
8044 return;
8045 }
8046
8047 /* We only process data packets if the interface is open */
8048 if (unlikely(!netif_running(dev))) {
8049 dev->stats.rx_dropped++;
8050 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
8051 return;
8052 }
8053
8054 /* Libpcap 0.9.3+ can handle variable length radiotap, so we'll use
8055 * that now */
8056 if (len > IPW_RX_BUF_SIZE - sizeof(struct ipw_rt_hdr)) {
8057 /* FIXME: Should alloc bigger skb instead */
8058 dev->stats.rx_dropped++;
8059 IPW_DEBUG_DROP("Dropping too large packet in monitor\n");
8060 return;
8061 }
8062
8063 hdr = (void *)rxb->skb->data + IPW_RX_FRAME_SIZE;
8064 if (libipw_is_management(le16_to_cpu(hdr->frame_control))) {
8065 if (filter & IPW_PROM_NO_MGMT)
8066 return;
8067 if (filter & IPW_PROM_MGMT_HEADER_ONLY)
8068 hdr_only = 1;
8069 } else if (libipw_is_control(le16_to_cpu(hdr->frame_control))) {
8070 if (filter & IPW_PROM_NO_CTL)
8071 return;
8072 if (filter & IPW_PROM_CTL_HEADER_ONLY)
8073 hdr_only = 1;
8074 } else if (libipw_is_data(le16_to_cpu(hdr->frame_control))) {
8075 if (filter & IPW_PROM_NO_DATA)
8076 return;
8077 if (filter & IPW_PROM_DATA_HEADER_ONLY)
8078 hdr_only = 1;
8079 }
8080
8081 /* Copy the SKB since this is for the promiscuous side */
8082 skb = skb_copy(rxb->skb, GFP_ATOMIC);
8083 if (skb == NULL) {
8084 IPW_ERROR("skb_clone failed for promiscuous copy.\n");
8085 return;
8086 }
8087
8088 /* copy the frame data to write after where the radiotap header goes */
8089 ipw_rt = (void *)skb->data;
8090
8091 if (hdr_only)
8092 len = libipw_get_hdrlen(le16_to_cpu(hdr->frame_control));
8093
8094 memcpy(ipw_rt->payload, hdr, len);
8095
8096 ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
8097 ipw_rt->rt_hdr.it_pad = 0; /* always good to zero */
8098 ipw_rt->rt_hdr.it_len = cpu_to_le16(sizeof(*ipw_rt)); /* total header+data */
8099
8100 /* Set the size of the skb to the size of the frame */
8101 skb_put(skb, sizeof(*ipw_rt) + len);
8102
8103 /* Big bitfield of all the fields we provide in radiotap */
8104 ipw_rt->rt_hdr.it_present = cpu_to_le32(
8105 (1 << IEEE80211_RADIOTAP_TSFT) |
8106 (1 << IEEE80211_RADIOTAP_FLAGS) |
8107 (1 << IEEE80211_RADIOTAP_RATE) |
8108 (1 << IEEE80211_RADIOTAP_CHANNEL) |
8109 (1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL) |
8110 (1 << IEEE80211_RADIOTAP_DBM_ANTNOISE) |
8111 (1 << IEEE80211_RADIOTAP_ANTENNA));
8112
8113 /* Zero the flags, we'll add to them as we go */
8114 ipw_rt->rt_flags = 0;
8115 ipw_rt->rt_tsf = (u64)(frame->parent_tsf[3] << 24 |
8116 frame->parent_tsf[2] << 16 |
8117 frame->parent_tsf[1] << 8 |
8118 frame->parent_tsf[0]);
8119
8120 /* Convert to DBM */
8121 ipw_rt->rt_dbmsignal = signal;
8122 ipw_rt->rt_dbmnoise = noise;
8123
8124 /* Convert the channel data and set the flags */
8125 ipw_rt->rt_channel = cpu_to_le16(ieee80211chan2mhz(channel));
8126 if (channel > 14) { /* 802.11a */
8127 ipw_rt->rt_chbitmask =
8128 cpu_to_le16((IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ));
8129 } else if (phy_flags & (1 << 5)) { /* 802.11b */
8130 ipw_rt->rt_chbitmask =
8131 cpu_to_le16((IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ));
8132 } else { /* 802.11g */
8133 ipw_rt->rt_chbitmask =
8134 cpu_to_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ);
8135 }
8136
8137 /* set the rate in multiples of 500k/s */
8138 switch (rate) {
8139 case IPW_TX_RATE_1MB:
8140 ipw_rt->rt_rate = 2;
8141 break;
8142 case IPW_TX_RATE_2MB:
8143 ipw_rt->rt_rate = 4;
8144 break;
8145 case IPW_TX_RATE_5MB:
8146 ipw_rt->rt_rate = 10;
8147 break;
8148 case IPW_TX_RATE_6MB:
8149 ipw_rt->rt_rate = 12;
8150 break;
8151 case IPW_TX_RATE_9MB:
8152 ipw_rt->rt_rate = 18;
8153 break;
8154 case IPW_TX_RATE_11MB:
8155 ipw_rt->rt_rate = 22;
8156 break;
8157 case IPW_TX_RATE_12MB:
8158 ipw_rt->rt_rate = 24;
8159 break;
8160 case IPW_TX_RATE_18MB:
8161 ipw_rt->rt_rate = 36;
8162 break;
8163 case IPW_TX_RATE_24MB:
8164 ipw_rt->rt_rate = 48;
8165 break;
8166 case IPW_TX_RATE_36MB:
8167 ipw_rt->rt_rate = 72;
8168 break;
8169 case IPW_TX_RATE_48MB:
8170 ipw_rt->rt_rate = 96;
8171 break;
8172 case IPW_TX_RATE_54MB:
8173 ipw_rt->rt_rate = 108;
8174 break;
8175 default:
8176 ipw_rt->rt_rate = 0;
8177 break;
8178 }
8179
8180 /* antenna number */
8181 ipw_rt->rt_antenna = (phy_flags & 3);
8182
8183 /* set the preamble flag if we have it */
8184 if (phy_flags & (1 << 6))
8185 ipw_rt->rt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
8186
8187 IPW_DEBUG_RX("Rx packet of %d bytes.\n", skb->len);
8188
8189 if (!libipw_rx(priv->prom_priv->ieee, skb, stats)) {
8190 dev->stats.rx_errors++;
8191 dev_kfree_skb_any(skb);
8192 }
8193 }
8194 #endif
8195
8196 static int is_network_packet(struct ipw_priv *priv,
8197 struct libipw_hdr_4addr *header)
8198 {
8199 /* Filter incoming packets to determine if they are targetted toward
8200 * this network, discarding packets coming from ourselves */
8201 switch (priv->ieee->iw_mode) {
8202 case IW_MODE_ADHOC: /* Header: Dest. | Source | BSSID */
8203 /* packets from our adapter are dropped (echo) */
8204 if (!memcmp(header->addr2, priv->net_dev->dev_addr, ETH_ALEN))
8205 return 0;
8206
8207 /* {broad,multi}cast packets to our BSSID go through */
8208 if (is_multicast_ether_addr(header->addr1))
8209 return !memcmp(header->addr3, priv->bssid, ETH_ALEN);
8210
8211 /* packets to our adapter go through */
8212 return !memcmp(header->addr1, priv->net_dev->dev_addr,
8213 ETH_ALEN);
8214
8215 case IW_MODE_INFRA: /* Header: Dest. | BSSID | Source */
8216 /* packets from our adapter are dropped (echo) */
8217 if (!memcmp(header->addr3, priv->net_dev->dev_addr, ETH_ALEN))
8218 return 0;
8219
8220 /* {broad,multi}cast packets to our BSS go through */
8221 if (is_multicast_ether_addr(header->addr1))
8222 return !memcmp(header->addr2, priv->bssid, ETH_ALEN);
8223
8224 /* packets to our adapter go through */
8225 return !memcmp(header->addr1, priv->net_dev->dev_addr,
8226 ETH_ALEN);
8227 }
8228
8229 return 1;
8230 }
8231
8232 #define IPW_PACKET_RETRY_TIME HZ
8233
8234 static int is_duplicate_packet(struct ipw_priv *priv,
8235 struct libipw_hdr_4addr *header)
8236 {
8237 u16 sc = le16_to_cpu(header->seq_ctl);
8238 u16 seq = WLAN_GET_SEQ_SEQ(sc);
8239 u16 frag = WLAN_GET_SEQ_FRAG(sc);
8240 u16 *last_seq, *last_frag;
8241 unsigned long *last_time;
8242
8243 switch (priv->ieee->iw_mode) {
8244 case IW_MODE_ADHOC:
8245 {
8246 struct list_head *p;
8247 struct ipw_ibss_seq *entry = NULL;
8248 u8 *mac = header->addr2;
8249 int index = mac[5] % IPW_IBSS_MAC_HASH_SIZE;
8250
8251 __list_for_each(p, &priv->ibss_mac_hash[index]) {
8252 entry =
8253 list_entry(p, struct ipw_ibss_seq, list);
8254 if (!memcmp(entry->mac, mac, ETH_ALEN))
8255 break;
8256 }
8257 if (p == &priv->ibss_mac_hash[index]) {
8258 entry = kmalloc(sizeof(*entry), GFP_ATOMIC);
8259 if (!entry) {
8260 IPW_ERROR
8261 ("Cannot malloc new mac entry\n");
8262 return 0;
8263 }
8264 memcpy(entry->mac, mac, ETH_ALEN);
8265 entry->seq_num = seq;
8266 entry->frag_num = frag;
8267 entry->packet_time = jiffies;
8268 list_add(&entry->list,
8269 &priv->ibss_mac_hash[index]);
8270 return 0;
8271 }
8272 last_seq = &entry->seq_num;
8273 last_frag = &entry->frag_num;
8274 last_time = &entry->packet_time;
8275 break;
8276 }
8277 case IW_MODE_INFRA:
8278 last_seq = &priv->last_seq_num;
8279 last_frag = &priv->last_frag_num;
8280 last_time = &priv->last_packet_time;
8281 break;
8282 default:
8283 return 0;
8284 }
8285 if ((*last_seq == seq) &&
8286 time_after(*last_time + IPW_PACKET_RETRY_TIME, jiffies)) {
8287 if (*last_frag == frag)
8288 goto drop;
8289 if (*last_frag + 1 != frag)
8290 /* out-of-order fragment */
8291 goto drop;
8292 } else
8293 *last_seq = seq;
8294
8295 *last_frag = frag;
8296 *last_time = jiffies;
8297 return 0;
8298
8299 drop:
8300 /* Comment this line now since we observed the card receives
8301 * duplicate packets but the FCTL_RETRY bit is not set in the
8302 * IBSS mode with fragmentation enabled.
8303 BUG_ON(!(le16_to_cpu(header->frame_control) & IEEE80211_FCTL_RETRY)); */
8304 return 1;
8305 }
8306
8307 static void ipw_handle_mgmt_packet(struct ipw_priv *priv,
8308 struct ipw_rx_mem_buffer *rxb,
8309 struct libipw_rx_stats *stats)
8310 {
8311 struct sk_buff *skb = rxb->skb;
8312 struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)skb->data;
8313 struct libipw_hdr_4addr *header = (struct libipw_hdr_4addr *)
8314 (skb->data + IPW_RX_FRAME_SIZE);
8315
8316 libipw_rx_mgt(priv->ieee, header, stats);
8317
8318 if (priv->ieee->iw_mode == IW_MODE_ADHOC &&
8319 ((WLAN_FC_GET_STYPE(le16_to_cpu(header->frame_ctl)) ==
8320 IEEE80211_STYPE_PROBE_RESP) ||
8321 (WLAN_FC_GET_STYPE(le16_to_cpu(header->frame_ctl)) ==
8322 IEEE80211_STYPE_BEACON))) {
8323 if (!memcmp(header->addr3, priv->bssid, ETH_ALEN))
8324 ipw_add_station(priv, header->addr2);
8325 }
8326
8327 if (priv->config & CFG_NET_STATS) {
8328 IPW_DEBUG_HC("sending stat packet\n");
8329
8330 /* Set the size of the skb to the size of the full
8331 * ipw header and 802.11 frame */
8332 skb_put(skb, le16_to_cpu(pkt->u.frame.length) +
8333 IPW_RX_FRAME_SIZE);
8334
8335 /* Advance past the ipw packet header to the 802.11 frame */
8336 skb_pull(skb, IPW_RX_FRAME_SIZE);
8337
8338 /* Push the libipw_rx_stats before the 802.11 frame */
8339 memcpy(skb_push(skb, sizeof(*stats)), stats, sizeof(*stats));
8340
8341 skb->dev = priv->ieee->dev;
8342
8343 /* Point raw at the libipw_stats */
8344 skb_reset_mac_header(skb);
8345
8346 skb->pkt_type = PACKET_OTHERHOST;
8347 skb->protocol = cpu_to_be16(ETH_P_80211_STATS);
8348 memset(skb->cb, 0, sizeof(rxb->skb->cb));
8349 netif_rx(skb);
8350 rxb->skb = NULL;
8351 }
8352 }
8353
8354 /*
8355 * Main entry function for recieving a packet with 80211 headers. This
8356 * should be called when ever the FW has notified us that there is a new
8357 * skb in the recieve queue.
8358 */
8359 static void ipw_rx(struct ipw_priv *priv)
8360 {
8361 struct ipw_rx_mem_buffer *rxb;
8362 struct ipw_rx_packet *pkt;
8363 struct libipw_hdr_4addr *header;
8364 u32 r, w, i;
8365 u8 network_packet;
8366 u8 fill_rx = 0;
8367
8368 r = ipw_read32(priv, IPW_RX_READ_INDEX);
8369 w = ipw_read32(priv, IPW_RX_WRITE_INDEX);
8370 i = priv->rxq->read;
8371
8372 if (ipw_rx_queue_space (priv->rxq) > (RX_QUEUE_SIZE / 2))
8373 fill_rx = 1;
8374
8375 while (i != r) {
8376 rxb = priv->rxq->queue[i];
8377 if (unlikely(rxb == NULL)) {
8378 printk(KERN_CRIT "Queue not allocated!\n");
8379 break;
8380 }
8381 priv->rxq->queue[i] = NULL;
8382
8383 pci_dma_sync_single_for_cpu(priv->pci_dev, rxb->dma_addr,
8384 IPW_RX_BUF_SIZE,
8385 PCI_DMA_FROMDEVICE);
8386
8387 pkt = (struct ipw_rx_packet *)rxb->skb->data;
8388 IPW_DEBUG_RX("Packet: type=%02X seq=%02X bits=%02X\n",
8389 pkt->header.message_type,
8390 pkt->header.rx_seq_num, pkt->header.control_bits);
8391
8392 switch (pkt->header.message_type) {
8393 case RX_FRAME_TYPE: /* 802.11 frame */ {
8394 struct libipw_rx_stats stats = {
8395 .rssi = pkt->u.frame.rssi_dbm -
8396 IPW_RSSI_TO_DBM,
8397 .signal =
8398 pkt->u.frame.rssi_dbm -
8399 IPW_RSSI_TO_DBM + 0x100,
8400 .noise =
8401 le16_to_cpu(pkt->u.frame.noise),
8402 .rate = pkt->u.frame.rate,
8403 .mac_time = jiffies,
8404 .received_channel =
8405 pkt->u.frame.received_channel,
8406 .freq =
8407 (pkt->u.frame.
8408 control & (1 << 0)) ?
8409 LIBIPW_24GHZ_BAND :
8410 LIBIPW_52GHZ_BAND,
8411 .len = le16_to_cpu(pkt->u.frame.length),
8412 };
8413
8414 if (stats.rssi != 0)
8415 stats.mask |= LIBIPW_STATMASK_RSSI;
8416 if (stats.signal != 0)
8417 stats.mask |= LIBIPW_STATMASK_SIGNAL;
8418 if (stats.noise != 0)
8419 stats.mask |= LIBIPW_STATMASK_NOISE;
8420 if (stats.rate != 0)
8421 stats.mask |= LIBIPW_STATMASK_RATE;
8422
8423 priv->rx_packets++;
8424
8425 #ifdef CONFIG_IPW2200_PROMISCUOUS
8426 if (priv->prom_net_dev && netif_running(priv->prom_net_dev))
8427 ipw_handle_promiscuous_rx(priv, rxb, &stats);
8428 #endif
8429
8430 #ifdef CONFIG_IPW2200_MONITOR
8431 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
8432 #ifdef CONFIG_IPW2200_RADIOTAP
8433
8434 ipw_handle_data_packet_monitor(priv,
8435 rxb,
8436 &stats);
8437 #else
8438 ipw_handle_data_packet(priv, rxb,
8439 &stats);
8440 #endif
8441 break;
8442 }
8443 #endif
8444
8445 header =
8446 (struct libipw_hdr_4addr *)(rxb->skb->
8447 data +
8448 IPW_RX_FRAME_SIZE);
8449 /* TODO: Check Ad-Hoc dest/source and make sure
8450 * that we are actually parsing these packets
8451 * correctly -- we should probably use the
8452 * frame control of the packet and disregard
8453 * the current iw_mode */
8454
8455 network_packet =
8456 is_network_packet(priv, header);
8457 if (network_packet && priv->assoc_network) {
8458 priv->assoc_network->stats.rssi =
8459 stats.rssi;
8460 priv->exp_avg_rssi =
8461 exponential_average(priv->exp_avg_rssi,
8462 stats.rssi, DEPTH_RSSI);
8463 }
8464
8465 IPW_DEBUG_RX("Frame: len=%u\n",
8466 le16_to_cpu(pkt->u.frame.length));
8467
8468 if (le16_to_cpu(pkt->u.frame.length) <
8469 libipw_get_hdrlen(le16_to_cpu(
8470 header->frame_ctl))) {
8471 IPW_DEBUG_DROP
8472 ("Received packet is too small. "
8473 "Dropping.\n");
8474 priv->net_dev->stats.rx_errors++;
8475 priv->wstats.discard.misc++;
8476 break;
8477 }
8478
8479 switch (WLAN_FC_GET_TYPE
8480 (le16_to_cpu(header->frame_ctl))) {
8481
8482 case IEEE80211_FTYPE_MGMT:
8483 ipw_handle_mgmt_packet(priv, rxb,
8484 &stats);
8485 break;
8486
8487 case IEEE80211_FTYPE_CTL:
8488 break;
8489
8490 case IEEE80211_FTYPE_DATA:
8491 if (unlikely(!network_packet ||
8492 is_duplicate_packet(priv,
8493 header)))
8494 {
8495 IPW_DEBUG_DROP("Dropping: "
8496 "%pM, "
8497 "%pM, "
8498 "%pM\n",
8499 header->addr1,
8500 header->addr2,
8501 header->addr3);
8502 break;
8503 }
8504
8505 ipw_handle_data_packet(priv, rxb,
8506 &stats);
8507
8508 break;
8509 }
8510 break;
8511 }
8512
8513 case RX_HOST_NOTIFICATION_TYPE:{
8514 IPW_DEBUG_RX
8515 ("Notification: subtype=%02X flags=%02X size=%d\n",
8516 pkt->u.notification.subtype,
8517 pkt->u.notification.flags,
8518 le16_to_cpu(pkt->u.notification.size));
8519 ipw_rx_notification(priv, &pkt->u.notification);
8520 break;
8521 }
8522
8523 default:
8524 IPW_DEBUG_RX("Bad Rx packet of type %d\n",
8525 pkt->header.message_type);
8526 break;
8527 }
8528
8529 /* For now we just don't re-use anything. We can tweak this
8530 * later to try and re-use notification packets and SKBs that
8531 * fail to Rx correctly */
8532 if (rxb->skb != NULL) {
8533 dev_kfree_skb_any(rxb->skb);
8534 rxb->skb = NULL;
8535 }
8536
8537 pci_unmap_single(priv->pci_dev, rxb->dma_addr,
8538 IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
8539 list_add_tail(&rxb->list, &priv->rxq->rx_used);
8540
8541 i = (i + 1) % RX_QUEUE_SIZE;
8542
8543 /* If there are a lot of unsued frames, restock the Rx queue
8544 * so the ucode won't assert */
8545 if (fill_rx) {
8546 priv->rxq->read = i;
8547 ipw_rx_queue_replenish(priv);
8548 }
8549 }
8550
8551 /* Backtrack one entry */
8552 priv->rxq->read = i;
8553 ipw_rx_queue_restock(priv);
8554 }
8555
8556 #define DEFAULT_RTS_THRESHOLD 2304U
8557 #define MIN_RTS_THRESHOLD 1U
8558 #define MAX_RTS_THRESHOLD 2304U
8559 #define DEFAULT_BEACON_INTERVAL 100U
8560 #define DEFAULT_SHORT_RETRY_LIMIT 7U
8561 #define DEFAULT_LONG_RETRY_LIMIT 4U
8562
8563 /**
8564 * ipw_sw_reset
8565 * @option: options to control different reset behaviour
8566 * 0 = reset everything except the 'disable' module_param
8567 * 1 = reset everything and print out driver info (for probe only)
8568 * 2 = reset everything
8569 */
8570 static int ipw_sw_reset(struct ipw_priv *priv, int option)
8571 {
8572 int band, modulation;
8573 int old_mode = priv->ieee->iw_mode;
8574
8575 /* Initialize module parameter values here */
8576 priv->config = 0;
8577
8578 /* We default to disabling the LED code as right now it causes
8579 * too many systems to lock up... */
8580 if (!led_support)
8581 priv->config |= CFG_NO_LED;
8582
8583 if (associate)
8584 priv->config |= CFG_ASSOCIATE;
8585 else
8586 IPW_DEBUG_INFO("Auto associate disabled.\n");
8587
8588 if (auto_create)
8589 priv->config |= CFG_ADHOC_CREATE;
8590 else
8591 IPW_DEBUG_INFO("Auto adhoc creation disabled.\n");
8592
8593 priv->config &= ~CFG_STATIC_ESSID;
8594 priv->essid_len = 0;
8595 memset(priv->essid, 0, IW_ESSID_MAX_SIZE);
8596
8597 if (disable && option) {
8598 priv->status |= STATUS_RF_KILL_SW;
8599 IPW_DEBUG_INFO("Radio disabled.\n");
8600 }
8601
8602 if (default_channel != 0) {
8603 priv->config |= CFG_STATIC_CHANNEL;
8604 priv->channel = default_channel;
8605 IPW_DEBUG_INFO("Bind to static channel %d\n", default_channel);
8606 /* TODO: Validate that provided channel is in range */
8607 }
8608 #ifdef CONFIG_IPW2200_QOS
8609 ipw_qos_init(priv, qos_enable, qos_burst_enable,
8610 burst_duration_CCK, burst_duration_OFDM);
8611 #endif /* CONFIG_IPW2200_QOS */
8612
8613 switch (network_mode) {
8614 case 1:
8615 priv->ieee->iw_mode = IW_MODE_ADHOC;
8616 priv->net_dev->type = ARPHRD_ETHER;
8617
8618 break;
8619 #ifdef CONFIG_IPW2200_MONITOR
8620 case 2:
8621 priv->ieee->iw_mode = IW_MODE_MONITOR;
8622 #ifdef CONFIG_IPW2200_RADIOTAP
8623 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
8624 #else
8625 priv->net_dev->type = ARPHRD_IEEE80211;
8626 #endif
8627 break;
8628 #endif
8629 default:
8630 case 0:
8631 priv->net_dev->type = ARPHRD_ETHER;
8632 priv->ieee->iw_mode = IW_MODE_INFRA;
8633 break;
8634 }
8635
8636 if (hwcrypto) {
8637 priv->ieee->host_encrypt = 0;
8638 priv->ieee->host_encrypt_msdu = 0;
8639 priv->ieee->host_decrypt = 0;
8640 priv->ieee->host_mc_decrypt = 0;
8641 }
8642 IPW_DEBUG_INFO("Hardware crypto [%s]\n", hwcrypto ? "on" : "off");
8643
8644 /* IPW2200/2915 is abled to do hardware fragmentation. */
8645 priv->ieee->host_open_frag = 0;
8646
8647 if ((priv->pci_dev->device == 0x4223) ||
8648 (priv->pci_dev->device == 0x4224)) {
8649 if (option == 1)
8650 printk(KERN_INFO DRV_NAME
8651 ": Detected Intel PRO/Wireless 2915ABG Network "
8652 "Connection\n");
8653 priv->ieee->abg_true = 1;
8654 band = LIBIPW_52GHZ_BAND | LIBIPW_24GHZ_BAND;
8655 modulation = LIBIPW_OFDM_MODULATION |
8656 LIBIPW_CCK_MODULATION;
8657 priv->adapter = IPW_2915ABG;
8658 priv->ieee->mode = IEEE_A | IEEE_G | IEEE_B;
8659 } else {
8660 if (option == 1)
8661 printk(KERN_INFO DRV_NAME
8662 ": Detected Intel PRO/Wireless 2200BG Network "
8663 "Connection\n");
8664
8665 priv->ieee->abg_true = 0;
8666 band = LIBIPW_24GHZ_BAND;
8667 modulation = LIBIPW_OFDM_MODULATION |
8668 LIBIPW_CCK_MODULATION;
8669 priv->adapter = IPW_2200BG;
8670 priv->ieee->mode = IEEE_G | IEEE_B;
8671 }
8672
8673 priv->ieee->freq_band = band;
8674 priv->ieee->modulation = modulation;
8675
8676 priv->rates_mask = LIBIPW_DEFAULT_RATES_MASK;
8677
8678 priv->disassociate_threshold = IPW_MB_DISASSOCIATE_THRESHOLD_DEFAULT;
8679 priv->roaming_threshold = IPW_MB_ROAMING_THRESHOLD_DEFAULT;
8680
8681 priv->rts_threshold = DEFAULT_RTS_THRESHOLD;
8682 priv->short_retry_limit = DEFAULT_SHORT_RETRY_LIMIT;
8683 priv->long_retry_limit = DEFAULT_LONG_RETRY_LIMIT;
8684
8685 /* If power management is turned on, default to AC mode */
8686 priv->power_mode = IPW_POWER_AC;
8687 priv->tx_power = IPW_TX_POWER_DEFAULT;
8688
8689 return old_mode == priv->ieee->iw_mode;
8690 }
8691
8692 /*
8693 * This file defines the Wireless Extension handlers. It does not
8694 * define any methods of hardware manipulation and relies on the
8695 * functions defined in ipw_main to provide the HW interaction.
8696 *
8697 * The exception to this is the use of the ipw_get_ordinal()
8698 * function used to poll the hardware vs. making unecessary calls.
8699 *
8700 */
8701
8702 static int ipw_set_channel(struct ipw_priv *priv, u8 channel)
8703 {
8704 if (channel == 0) {
8705 IPW_DEBUG_INFO("Setting channel to ANY (0)\n");
8706 priv->config &= ~CFG_STATIC_CHANNEL;
8707 IPW_DEBUG_ASSOC("Attempting to associate with new "
8708 "parameters.\n");
8709 ipw_associate(priv);
8710 return 0;
8711 }
8712
8713 priv->config |= CFG_STATIC_CHANNEL;
8714
8715 if (priv->channel == channel) {
8716 IPW_DEBUG_INFO("Request to set channel to current value (%d)\n",
8717 channel);
8718 return 0;
8719 }
8720
8721 IPW_DEBUG_INFO("Setting channel to %i\n", (int)channel);
8722 priv->channel = channel;
8723
8724 #ifdef CONFIG_IPW2200_MONITOR
8725 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
8726 int i;
8727 if (priv->status & STATUS_SCANNING) {
8728 IPW_DEBUG_SCAN("Scan abort triggered due to "
8729 "channel change.\n");
8730 ipw_abort_scan(priv);
8731 }
8732
8733 for (i = 1000; i && (priv->status & STATUS_SCANNING); i--)
8734 udelay(10);
8735
8736 if (priv->status & STATUS_SCANNING)
8737 IPW_DEBUG_SCAN("Still scanning...\n");
8738 else
8739 IPW_DEBUG_SCAN("Took %dms to abort current scan\n",
8740 1000 - i);
8741
8742 return 0;
8743 }
8744 #endif /* CONFIG_IPW2200_MONITOR */
8745
8746 /* Network configuration changed -- force [re]association */
8747 IPW_DEBUG_ASSOC("[re]association triggered due to channel change.\n");
8748 if (!ipw_disassociate(priv))
8749 ipw_associate(priv);
8750
8751 return 0;
8752 }
8753
8754 static int ipw_wx_set_freq(struct net_device *dev,
8755 struct iw_request_info *info,
8756 union iwreq_data *wrqu, char *extra)
8757 {
8758 struct ipw_priv *priv = libipw_priv(dev);
8759 const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
8760 struct iw_freq *fwrq = &wrqu->freq;
8761 int ret = 0, i;
8762 u8 channel, flags;
8763 int band;
8764
8765 if (fwrq->m == 0) {
8766 IPW_DEBUG_WX("SET Freq/Channel -> any\n");
8767 mutex_lock(&priv->mutex);
8768 ret = ipw_set_channel(priv, 0);
8769 mutex_unlock(&priv->mutex);
8770 return ret;
8771 }
8772 /* if setting by freq convert to channel */
8773 if (fwrq->e == 1) {
8774 channel = libipw_freq_to_channel(priv->ieee, fwrq->m);
8775 if (channel == 0)
8776 return -EINVAL;
8777 } else
8778 channel = fwrq->m;
8779
8780 if (!(band = libipw_is_valid_channel(priv->ieee, channel)))
8781 return -EINVAL;
8782
8783 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
8784 i = libipw_channel_to_index(priv->ieee, channel);
8785 if (i == -1)
8786 return -EINVAL;
8787
8788 flags = (band == LIBIPW_24GHZ_BAND) ?
8789 geo->bg[i].flags : geo->a[i].flags;
8790 if (flags & LIBIPW_CH_PASSIVE_ONLY) {
8791 IPW_DEBUG_WX("Invalid Ad-Hoc channel for 802.11a\n");
8792 return -EINVAL;
8793 }
8794 }
8795
8796 IPW_DEBUG_WX("SET Freq/Channel -> %d \n", fwrq->m);
8797 mutex_lock(&priv->mutex);
8798 ret = ipw_set_channel(priv, channel);
8799 mutex_unlock(&priv->mutex);
8800 return ret;
8801 }
8802
8803 static int ipw_wx_get_freq(struct net_device *dev,
8804 struct iw_request_info *info,
8805 union iwreq_data *wrqu, char *extra)
8806 {
8807 struct ipw_priv *priv = libipw_priv(dev);
8808
8809 wrqu->freq.e = 0;
8810
8811 /* If we are associated, trying to associate, or have a statically
8812 * configured CHANNEL then return that; otherwise return ANY */
8813 mutex_lock(&priv->mutex);
8814 if (priv->config & CFG_STATIC_CHANNEL ||
8815 priv->status & (STATUS_ASSOCIATING | STATUS_ASSOCIATED)) {
8816 int i;
8817
8818 i = libipw_channel_to_index(priv->ieee, priv->channel);
8819 BUG_ON(i == -1);
8820 wrqu->freq.e = 1;
8821
8822 switch (libipw_is_valid_channel(priv->ieee, priv->channel)) {
8823 case LIBIPW_52GHZ_BAND:
8824 wrqu->freq.m = priv->ieee->geo.a[i].freq * 100000;
8825 break;
8826
8827 case LIBIPW_24GHZ_BAND:
8828 wrqu->freq.m = priv->ieee->geo.bg[i].freq * 100000;
8829 break;
8830
8831 default:
8832 BUG();
8833 }
8834 } else
8835 wrqu->freq.m = 0;
8836
8837 mutex_unlock(&priv->mutex);
8838 IPW_DEBUG_WX("GET Freq/Channel -> %d \n", priv->channel);
8839 return 0;
8840 }
8841
8842 static int ipw_wx_set_mode(struct net_device *dev,
8843 struct iw_request_info *info,
8844 union iwreq_data *wrqu, char *extra)
8845 {
8846 struct ipw_priv *priv = libipw_priv(dev);
8847 int err = 0;
8848
8849 IPW_DEBUG_WX("Set MODE: %d\n", wrqu->mode);
8850
8851 switch (wrqu->mode) {
8852 #ifdef CONFIG_IPW2200_MONITOR
8853 case IW_MODE_MONITOR:
8854 #endif
8855 case IW_MODE_ADHOC:
8856 case IW_MODE_INFRA:
8857 break;
8858 case IW_MODE_AUTO:
8859 wrqu->mode = IW_MODE_INFRA;
8860 break;
8861 default:
8862 return -EINVAL;
8863 }
8864 if (wrqu->mode == priv->ieee->iw_mode)
8865 return 0;
8866
8867 mutex_lock(&priv->mutex);
8868
8869 ipw_sw_reset(priv, 0);
8870
8871 #ifdef CONFIG_IPW2200_MONITOR
8872 if (priv->ieee->iw_mode == IW_MODE_MONITOR)
8873 priv->net_dev->type = ARPHRD_ETHER;
8874
8875 if (wrqu->mode == IW_MODE_MONITOR)
8876 #ifdef CONFIG_IPW2200_RADIOTAP
8877 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
8878 #else
8879 priv->net_dev->type = ARPHRD_IEEE80211;
8880 #endif
8881 #endif /* CONFIG_IPW2200_MONITOR */
8882
8883 /* Free the existing firmware and reset the fw_loaded
8884 * flag so ipw_load() will bring in the new firmware */
8885 free_firmware();
8886
8887 priv->ieee->iw_mode = wrqu->mode;
8888
8889 queue_work(priv->workqueue, &priv->adapter_restart);
8890 mutex_unlock(&priv->mutex);
8891 return err;
8892 }
8893
8894 static int ipw_wx_get_mode(struct net_device *dev,
8895 struct iw_request_info *info,
8896 union iwreq_data *wrqu, char *extra)
8897 {
8898 struct ipw_priv *priv = libipw_priv(dev);
8899 mutex_lock(&priv->mutex);
8900 wrqu->mode = priv->ieee->iw_mode;
8901 IPW_DEBUG_WX("Get MODE -> %d\n", wrqu->mode);
8902 mutex_unlock(&priv->mutex);
8903 return 0;
8904 }
8905
8906 /* Values are in microsecond */
8907 static const s32 timeout_duration[] = {
8908 350000,
8909 250000,
8910 75000,
8911 37000,
8912 25000,
8913 };
8914
8915 static const s32 period_duration[] = {
8916 400000,
8917 700000,
8918 1000000,
8919 1000000,
8920 1000000
8921 };
8922
8923 static int ipw_wx_get_range(struct net_device *dev,
8924 struct iw_request_info *info,
8925 union iwreq_data *wrqu, char *extra)
8926 {
8927 struct ipw_priv *priv = libipw_priv(dev);
8928 struct iw_range *range = (struct iw_range *)extra;
8929 const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
8930 int i = 0, j;
8931
8932 wrqu->data.length = sizeof(*range);
8933 memset(range, 0, sizeof(*range));
8934
8935 /* 54Mbs == ~27 Mb/s real (802.11g) */
8936 range->throughput = 27 * 1000 * 1000;
8937
8938 range->max_qual.qual = 100;
8939 /* TODO: Find real max RSSI and stick here */
8940 range->max_qual.level = 0;
8941 range->max_qual.noise = 0;
8942 range->max_qual.updated = 7; /* Updated all three */
8943
8944 range->avg_qual.qual = 70;
8945 /* TODO: Find real 'good' to 'bad' threshold value for RSSI */
8946 range->avg_qual.level = 0; /* FIXME to real average level */
8947 range->avg_qual.noise = 0;
8948 range->avg_qual.updated = 7; /* Updated all three */
8949 mutex_lock(&priv->mutex);
8950 range->num_bitrates = min(priv->rates.num_rates, (u8) IW_MAX_BITRATES);
8951
8952 for (i = 0; i < range->num_bitrates; i++)
8953 range->bitrate[i] = (priv->rates.supported_rates[i] & 0x7F) *
8954 500000;
8955
8956 range->max_rts = DEFAULT_RTS_THRESHOLD;
8957 range->min_frag = MIN_FRAG_THRESHOLD;
8958 range->max_frag = MAX_FRAG_THRESHOLD;
8959
8960 range->encoding_size[0] = 5;
8961 range->encoding_size[1] = 13;
8962 range->num_encoding_sizes = 2;
8963 range->max_encoding_tokens = WEP_KEYS;
8964
8965 /* Set the Wireless Extension versions */
8966 range->we_version_compiled = WIRELESS_EXT;
8967 range->we_version_source = 18;
8968
8969 i = 0;
8970 if (priv->ieee->mode & (IEEE_B | IEEE_G)) {
8971 for (j = 0; j < geo->bg_channels && i < IW_MAX_FREQUENCIES; j++) {
8972 if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
8973 (geo->bg[j].flags & LIBIPW_CH_PASSIVE_ONLY))
8974 continue;
8975
8976 range->freq[i].i = geo->bg[j].channel;
8977 range->freq[i].m = geo->bg[j].freq * 100000;
8978 range->freq[i].e = 1;
8979 i++;
8980 }
8981 }
8982
8983 if (priv->ieee->mode & IEEE_A) {
8984 for (j = 0; j < geo->a_channels && i < IW_MAX_FREQUENCIES; j++) {
8985 if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
8986 (geo->a[j].flags & LIBIPW_CH_PASSIVE_ONLY))
8987 continue;
8988
8989 range->freq[i].i = geo->a[j].channel;
8990 range->freq[i].m = geo->a[j].freq * 100000;
8991 range->freq[i].e = 1;
8992 i++;
8993 }
8994 }
8995
8996 range->num_channels = i;
8997 range->num_frequency = i;
8998
8999 mutex_unlock(&priv->mutex);
9000
9001 /* Event capability (kernel + driver) */
9002 range->event_capa[0] = (IW_EVENT_CAPA_K_0 |
9003 IW_EVENT_CAPA_MASK(SIOCGIWTHRSPY) |
9004 IW_EVENT_CAPA_MASK(SIOCGIWAP) |
9005 IW_EVENT_CAPA_MASK(SIOCGIWSCAN));
9006 range->event_capa[1] = IW_EVENT_CAPA_K_1;
9007
9008 range->enc_capa = IW_ENC_CAPA_WPA | IW_ENC_CAPA_WPA2 |
9009 IW_ENC_CAPA_CIPHER_TKIP | IW_ENC_CAPA_CIPHER_CCMP;
9010
9011 range->scan_capa = IW_SCAN_CAPA_ESSID | IW_SCAN_CAPA_TYPE;
9012
9013 IPW_DEBUG_WX("GET Range\n");
9014 return 0;
9015 }
9016
9017 static int ipw_wx_set_wap(struct net_device *dev,
9018 struct iw_request_info *info,
9019 union iwreq_data *wrqu, char *extra)
9020 {
9021 struct ipw_priv *priv = libipw_priv(dev);
9022
9023 static const unsigned char any[] = {
9024 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
9025 };
9026 static const unsigned char off[] = {
9027 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
9028 };
9029
9030 if (wrqu->ap_addr.sa_family != ARPHRD_ETHER)
9031 return -EINVAL;
9032 mutex_lock(&priv->mutex);
9033 if (!memcmp(any, wrqu->ap_addr.sa_data, ETH_ALEN) ||
9034 !memcmp(off, wrqu->ap_addr.sa_data, ETH_ALEN)) {
9035 /* we disable mandatory BSSID association */
9036 IPW_DEBUG_WX("Setting AP BSSID to ANY\n");
9037 priv->config &= ~CFG_STATIC_BSSID;
9038 IPW_DEBUG_ASSOC("Attempting to associate with new "
9039 "parameters.\n");
9040 ipw_associate(priv);
9041 mutex_unlock(&priv->mutex);
9042 return 0;
9043 }
9044
9045 priv->config |= CFG_STATIC_BSSID;
9046 if (!memcmp(priv->bssid, wrqu->ap_addr.sa_data, ETH_ALEN)) {
9047 IPW_DEBUG_WX("BSSID set to current BSSID.\n");
9048 mutex_unlock(&priv->mutex);
9049 return 0;
9050 }
9051
9052 IPW_DEBUG_WX("Setting mandatory BSSID to %pM\n",
9053 wrqu->ap_addr.sa_data);
9054
9055 memcpy(priv->bssid, wrqu->ap_addr.sa_data, ETH_ALEN);
9056
9057 /* Network configuration changed -- force [re]association */
9058 IPW_DEBUG_ASSOC("[re]association triggered due to BSSID change.\n");
9059 if (!ipw_disassociate(priv))
9060 ipw_associate(priv);
9061
9062 mutex_unlock(&priv->mutex);
9063 return 0;
9064 }
9065
9066 static int ipw_wx_get_wap(struct net_device *dev,
9067 struct iw_request_info *info,
9068 union iwreq_data *wrqu, char *extra)
9069 {
9070 struct ipw_priv *priv = libipw_priv(dev);
9071
9072 /* If we are associated, trying to associate, or have a statically
9073 * configured BSSID then return that; otherwise return ANY */
9074 mutex_lock(&priv->mutex);
9075 if (priv->config & CFG_STATIC_BSSID ||
9076 priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
9077 wrqu->ap_addr.sa_family = ARPHRD_ETHER;
9078 memcpy(wrqu->ap_addr.sa_data, priv->bssid, ETH_ALEN);
9079 } else
9080 memset(wrqu->ap_addr.sa_data, 0, ETH_ALEN);
9081
9082 IPW_DEBUG_WX("Getting WAP BSSID: %pM\n",
9083 wrqu->ap_addr.sa_data);
9084 mutex_unlock(&priv->mutex);
9085 return 0;
9086 }
9087
9088 static int ipw_wx_set_essid(struct net_device *dev,
9089 struct iw_request_info *info,
9090 union iwreq_data *wrqu, char *extra)
9091 {
9092 struct ipw_priv *priv = libipw_priv(dev);
9093 int length;
9094 DECLARE_SSID_BUF(ssid);
9095
9096 mutex_lock(&priv->mutex);
9097
9098 if (!wrqu->essid.flags)
9099 {
9100 IPW_DEBUG_WX("Setting ESSID to ANY\n");
9101 ipw_disassociate(priv);
9102 priv->config &= ~CFG_STATIC_ESSID;
9103 ipw_associate(priv);
9104 mutex_unlock(&priv->mutex);
9105 return 0;
9106 }
9107
9108 length = min((int)wrqu->essid.length, IW_ESSID_MAX_SIZE);
9109
9110 priv->config |= CFG_STATIC_ESSID;
9111
9112 if (priv->essid_len == length && !memcmp(priv->essid, extra, length)
9113 && (priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING))) {
9114 IPW_DEBUG_WX("ESSID set to current ESSID.\n");
9115 mutex_unlock(&priv->mutex);
9116 return 0;
9117 }
9118
9119 IPW_DEBUG_WX("Setting ESSID: '%s' (%d)\n",
9120 print_ssid(ssid, extra, length), length);
9121
9122 priv->essid_len = length;
9123 memcpy(priv->essid, extra, priv->essid_len);
9124
9125 /* Network configuration changed -- force [re]association */
9126 IPW_DEBUG_ASSOC("[re]association triggered due to ESSID change.\n");
9127 if (!ipw_disassociate(priv))
9128 ipw_associate(priv);
9129
9130 mutex_unlock(&priv->mutex);
9131 return 0;
9132 }
9133
9134 static int ipw_wx_get_essid(struct net_device *dev,
9135 struct iw_request_info *info,
9136 union iwreq_data *wrqu, char *extra)
9137 {
9138 struct ipw_priv *priv = libipw_priv(dev);
9139 DECLARE_SSID_BUF(ssid);
9140
9141 /* If we are associated, trying to associate, or have a statically
9142 * configured ESSID then return that; otherwise return ANY */
9143 mutex_lock(&priv->mutex);
9144 if (priv->config & CFG_STATIC_ESSID ||
9145 priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
9146 IPW_DEBUG_WX("Getting essid: '%s'\n",
9147 print_ssid(ssid, priv->essid, priv->essid_len));
9148 memcpy(extra, priv->essid, priv->essid_len);
9149 wrqu->essid.length = priv->essid_len;
9150 wrqu->essid.flags = 1; /* active */
9151 } else {
9152 IPW_DEBUG_WX("Getting essid: ANY\n");
9153 wrqu->essid.length = 0;
9154 wrqu->essid.flags = 0; /* active */
9155 }
9156 mutex_unlock(&priv->mutex);
9157 return 0;
9158 }
9159
9160 static int ipw_wx_set_nick(struct net_device *dev,
9161 struct iw_request_info *info,
9162 union iwreq_data *wrqu, char *extra)
9163 {
9164 struct ipw_priv *priv = libipw_priv(dev);
9165
9166 IPW_DEBUG_WX("Setting nick to '%s'\n", extra);
9167 if (wrqu->data.length > IW_ESSID_MAX_SIZE)
9168 return -E2BIG;
9169 mutex_lock(&priv->mutex);
9170 wrqu->data.length = min((size_t) wrqu->data.length, sizeof(priv->nick));
9171 memset(priv->nick, 0, sizeof(priv->nick));
9172 memcpy(priv->nick, extra, wrqu->data.length);
9173 IPW_DEBUG_TRACE("<<\n");
9174 mutex_unlock(&priv->mutex);
9175 return 0;
9176
9177 }
9178
9179 static int ipw_wx_get_nick(struct net_device *dev,
9180 struct iw_request_info *info,
9181 union iwreq_data *wrqu, char *extra)
9182 {
9183 struct ipw_priv *priv = libipw_priv(dev);
9184 IPW_DEBUG_WX("Getting nick\n");
9185 mutex_lock(&priv->mutex);
9186 wrqu->data.length = strlen(priv->nick);
9187 memcpy(extra, priv->nick, wrqu->data.length);
9188 wrqu->data.flags = 1; /* active */
9189 mutex_unlock(&priv->mutex);
9190 return 0;
9191 }
9192
9193 static int ipw_wx_set_sens(struct net_device *dev,
9194 struct iw_request_info *info,
9195 union iwreq_data *wrqu, char *extra)
9196 {
9197 struct ipw_priv *priv = libipw_priv(dev);
9198 int err = 0;
9199
9200 IPW_DEBUG_WX("Setting roaming threshold to %d\n", wrqu->sens.value);
9201 IPW_DEBUG_WX("Setting disassociate threshold to %d\n", 3*wrqu->sens.value);
9202 mutex_lock(&priv->mutex);
9203
9204 if (wrqu->sens.fixed == 0)
9205 {
9206 priv->roaming_threshold = IPW_MB_ROAMING_THRESHOLD_DEFAULT;
9207 priv->disassociate_threshold = IPW_MB_DISASSOCIATE_THRESHOLD_DEFAULT;
9208 goto out;
9209 }
9210 if ((wrqu->sens.value > IPW_MB_ROAMING_THRESHOLD_MAX) ||
9211 (wrqu->sens.value < IPW_MB_ROAMING_THRESHOLD_MIN)) {
9212 err = -EINVAL;
9213 goto out;
9214 }
9215
9216 priv->roaming_threshold = wrqu->sens.value;
9217 priv->disassociate_threshold = 3*wrqu->sens.value;
9218 out:
9219 mutex_unlock(&priv->mutex);
9220 return err;
9221 }
9222
9223 static int ipw_wx_get_sens(struct net_device *dev,
9224 struct iw_request_info *info,
9225 union iwreq_data *wrqu, char *extra)
9226 {
9227 struct ipw_priv *priv = libipw_priv(dev);
9228 mutex_lock(&priv->mutex);
9229 wrqu->sens.fixed = 1;
9230 wrqu->sens.value = priv->roaming_threshold;
9231 mutex_unlock(&priv->mutex);
9232
9233 IPW_DEBUG_WX("GET roaming threshold -> %s %d \n",
9234 wrqu->power.disabled ? "OFF" : "ON", wrqu->power.value);
9235
9236 return 0;
9237 }
9238
9239 static int ipw_wx_set_rate(struct net_device *dev,
9240 struct iw_request_info *info,
9241 union iwreq_data *wrqu, char *extra)
9242 {
9243 /* TODO: We should use semaphores or locks for access to priv */
9244 struct ipw_priv *priv = libipw_priv(dev);
9245 u32 target_rate = wrqu->bitrate.value;
9246 u32 fixed, mask;
9247
9248 /* value = -1, fixed = 0 means auto only, so we should use all rates offered by AP */
9249 /* value = X, fixed = 1 means only rate X */
9250 /* value = X, fixed = 0 means all rates lower equal X */
9251
9252 if (target_rate == -1) {
9253 fixed = 0;
9254 mask = LIBIPW_DEFAULT_RATES_MASK;
9255 /* Now we should reassociate */
9256 goto apply;
9257 }
9258
9259 mask = 0;
9260 fixed = wrqu->bitrate.fixed;
9261
9262 if (target_rate == 1000000 || !fixed)
9263 mask |= LIBIPW_CCK_RATE_1MB_MASK;
9264 if (target_rate == 1000000)
9265 goto apply;
9266
9267 if (target_rate == 2000000 || !fixed)
9268 mask |= LIBIPW_CCK_RATE_2MB_MASK;
9269 if (target_rate == 2000000)
9270 goto apply;
9271
9272 if (target_rate == 5500000 || !fixed)
9273 mask |= LIBIPW_CCK_RATE_5MB_MASK;
9274 if (target_rate == 5500000)
9275 goto apply;
9276
9277 if (target_rate == 6000000 || !fixed)
9278 mask |= LIBIPW_OFDM_RATE_6MB_MASK;
9279 if (target_rate == 6000000)
9280 goto apply;
9281
9282 if (target_rate == 9000000 || !fixed)
9283 mask |= LIBIPW_OFDM_RATE_9MB_MASK;
9284 if (target_rate == 9000000)
9285 goto apply;
9286
9287 if (target_rate == 11000000 || !fixed)
9288 mask |= LIBIPW_CCK_RATE_11MB_MASK;
9289 if (target_rate == 11000000)
9290 goto apply;
9291
9292 if (target_rate == 12000000 || !fixed)
9293 mask |= LIBIPW_OFDM_RATE_12MB_MASK;
9294 if (target_rate == 12000000)
9295 goto apply;
9296
9297 if (target_rate == 18000000 || !fixed)
9298 mask |= LIBIPW_OFDM_RATE_18MB_MASK;
9299 if (target_rate == 18000000)
9300 goto apply;
9301
9302 if (target_rate == 24000000 || !fixed)
9303 mask |= LIBIPW_OFDM_RATE_24MB_MASK;
9304 if (target_rate == 24000000)
9305 goto apply;
9306
9307 if (target_rate == 36000000 || !fixed)
9308 mask |= LIBIPW_OFDM_RATE_36MB_MASK;
9309 if (target_rate == 36000000)
9310 goto apply;
9311
9312 if (target_rate == 48000000 || !fixed)
9313 mask |= LIBIPW_OFDM_RATE_48MB_MASK;
9314 if (target_rate == 48000000)
9315 goto apply;
9316
9317 if (target_rate == 54000000 || !fixed)
9318 mask |= LIBIPW_OFDM_RATE_54MB_MASK;
9319 if (target_rate == 54000000)
9320 goto apply;
9321
9322 IPW_DEBUG_WX("invalid rate specified, returning error\n");
9323 return -EINVAL;
9324
9325 apply:
9326 IPW_DEBUG_WX("Setting rate mask to 0x%08X [%s]\n",
9327 mask, fixed ? "fixed" : "sub-rates");
9328 mutex_lock(&priv->mutex);
9329 if (mask == LIBIPW_DEFAULT_RATES_MASK) {
9330 priv->config &= ~CFG_FIXED_RATE;
9331 ipw_set_fixed_rate(priv, priv->ieee->mode);
9332 } else
9333 priv->config |= CFG_FIXED_RATE;
9334
9335 if (priv->rates_mask == mask) {
9336 IPW_DEBUG_WX("Mask set to current mask.\n");
9337 mutex_unlock(&priv->mutex);
9338 return 0;
9339 }
9340
9341 priv->rates_mask = mask;
9342
9343 /* Network configuration changed -- force [re]association */
9344 IPW_DEBUG_ASSOC("[re]association triggered due to rates change.\n");
9345 if (!ipw_disassociate(priv))
9346 ipw_associate(priv);
9347
9348 mutex_unlock(&priv->mutex);
9349 return 0;
9350 }
9351
9352 static int ipw_wx_get_rate(struct net_device *dev,
9353 struct iw_request_info *info,
9354 union iwreq_data *wrqu, char *extra)
9355 {
9356 struct ipw_priv *priv = libipw_priv(dev);
9357 mutex_lock(&priv->mutex);
9358 wrqu->bitrate.value = priv->last_rate;
9359 wrqu->bitrate.fixed = (priv->config & CFG_FIXED_RATE) ? 1 : 0;
9360 mutex_unlock(&priv->mutex);
9361 IPW_DEBUG_WX("GET Rate -> %d \n", wrqu->bitrate.value);
9362 return 0;
9363 }
9364
9365 static int ipw_wx_set_rts(struct net_device *dev,
9366 struct iw_request_info *info,
9367 union iwreq_data *wrqu, char *extra)
9368 {
9369 struct ipw_priv *priv = libipw_priv(dev);
9370 mutex_lock(&priv->mutex);
9371 if (wrqu->rts.disabled || !wrqu->rts.fixed)
9372 priv->rts_threshold = DEFAULT_RTS_THRESHOLD;
9373 else {
9374 if (wrqu->rts.value < MIN_RTS_THRESHOLD ||
9375 wrqu->rts.value > MAX_RTS_THRESHOLD) {
9376 mutex_unlock(&priv->mutex);
9377 return -EINVAL;
9378 }
9379 priv->rts_threshold = wrqu->rts.value;
9380 }
9381
9382 ipw_send_rts_threshold(priv, priv->rts_threshold);
9383 mutex_unlock(&priv->mutex);
9384 IPW_DEBUG_WX("SET RTS Threshold -> %d \n", priv->rts_threshold);
9385 return 0;
9386 }
9387
9388 static int ipw_wx_get_rts(struct net_device *dev,
9389 struct iw_request_info *info,
9390 union iwreq_data *wrqu, char *extra)
9391 {
9392 struct ipw_priv *priv = libipw_priv(dev);
9393 mutex_lock(&priv->mutex);
9394 wrqu->rts.value = priv->rts_threshold;
9395 wrqu->rts.fixed = 0; /* no auto select */
9396 wrqu->rts.disabled = (wrqu->rts.value == DEFAULT_RTS_THRESHOLD);
9397 mutex_unlock(&priv->mutex);
9398 IPW_DEBUG_WX("GET RTS Threshold -> %d \n", wrqu->rts.value);
9399 return 0;
9400 }
9401
9402 static int ipw_wx_set_txpow(struct net_device *dev,
9403 struct iw_request_info *info,
9404 union iwreq_data *wrqu, char *extra)
9405 {
9406 struct ipw_priv *priv = libipw_priv(dev);
9407 int err = 0;
9408
9409 mutex_lock(&priv->mutex);
9410 if (ipw_radio_kill_sw(priv, wrqu->power.disabled)) {
9411 err = -EINPROGRESS;
9412 goto out;
9413 }
9414
9415 if (!wrqu->power.fixed)
9416 wrqu->power.value = IPW_TX_POWER_DEFAULT;
9417
9418 if (wrqu->power.flags != IW_TXPOW_DBM) {
9419 err = -EINVAL;
9420 goto out;
9421 }
9422
9423 if ((wrqu->power.value > IPW_TX_POWER_MAX) ||
9424 (wrqu->power.value < IPW_TX_POWER_MIN)) {
9425 err = -EINVAL;
9426 goto out;
9427 }
9428
9429 priv->tx_power = wrqu->power.value;
9430 err = ipw_set_tx_power(priv);
9431 out:
9432 mutex_unlock(&priv->mutex);
9433 return err;
9434 }
9435
9436 static int ipw_wx_get_txpow(struct net_device *dev,
9437 struct iw_request_info *info,
9438 union iwreq_data *wrqu, char *extra)
9439 {
9440 struct ipw_priv *priv = libipw_priv(dev);
9441 mutex_lock(&priv->mutex);
9442 wrqu->power.value = priv->tx_power;
9443 wrqu->power.fixed = 1;
9444 wrqu->power.flags = IW_TXPOW_DBM;
9445 wrqu->power.disabled = (priv->status & STATUS_RF_KILL_MASK) ? 1 : 0;
9446 mutex_unlock(&priv->mutex);
9447
9448 IPW_DEBUG_WX("GET TX Power -> %s %d \n",
9449 wrqu->power.disabled ? "OFF" : "ON", wrqu->power.value);
9450
9451 return 0;
9452 }
9453
9454 static int ipw_wx_set_frag(struct net_device *dev,
9455 struct iw_request_info *info,
9456 union iwreq_data *wrqu, char *extra)
9457 {
9458 struct ipw_priv *priv = libipw_priv(dev);
9459 mutex_lock(&priv->mutex);
9460 if (wrqu->frag.disabled || !wrqu->frag.fixed)
9461 priv->ieee->fts = DEFAULT_FTS;
9462 else {
9463 if (wrqu->frag.value < MIN_FRAG_THRESHOLD ||
9464 wrqu->frag.value > MAX_FRAG_THRESHOLD) {
9465 mutex_unlock(&priv->mutex);
9466 return -EINVAL;
9467 }
9468
9469 priv->ieee->fts = wrqu->frag.value & ~0x1;
9470 }
9471
9472 ipw_send_frag_threshold(priv, wrqu->frag.value);
9473 mutex_unlock(&priv->mutex);
9474 IPW_DEBUG_WX("SET Frag Threshold -> %d \n", wrqu->frag.value);
9475 return 0;
9476 }
9477
9478 static int ipw_wx_get_frag(struct net_device *dev,
9479 struct iw_request_info *info,
9480 union iwreq_data *wrqu, char *extra)
9481 {
9482 struct ipw_priv *priv = libipw_priv(dev);
9483 mutex_lock(&priv->mutex);
9484 wrqu->frag.value = priv->ieee->fts;
9485 wrqu->frag.fixed = 0; /* no auto select */
9486 wrqu->frag.disabled = (wrqu->frag.value == DEFAULT_FTS);
9487 mutex_unlock(&priv->mutex);
9488 IPW_DEBUG_WX("GET Frag Threshold -> %d \n", wrqu->frag.value);
9489
9490 return 0;
9491 }
9492
9493 static int ipw_wx_set_retry(struct net_device *dev,
9494 struct iw_request_info *info,
9495 union iwreq_data *wrqu, char *extra)
9496 {
9497 struct ipw_priv *priv = libipw_priv(dev);
9498
9499 if (wrqu->retry.flags & IW_RETRY_LIFETIME || wrqu->retry.disabled)
9500 return -EINVAL;
9501
9502 if (!(wrqu->retry.flags & IW_RETRY_LIMIT))
9503 return 0;
9504
9505 if (wrqu->retry.value < 0 || wrqu->retry.value >= 255)
9506 return -EINVAL;
9507
9508 mutex_lock(&priv->mutex);
9509 if (wrqu->retry.flags & IW_RETRY_SHORT)
9510 priv->short_retry_limit = (u8) wrqu->retry.value;
9511 else if (wrqu->retry.flags & IW_RETRY_LONG)
9512 priv->long_retry_limit = (u8) wrqu->retry.value;
9513 else {
9514 priv->short_retry_limit = (u8) wrqu->retry.value;
9515 priv->long_retry_limit = (u8) wrqu->retry.value;
9516 }
9517
9518 ipw_send_retry_limit(priv, priv->short_retry_limit,
9519 priv->long_retry_limit);
9520 mutex_unlock(&priv->mutex);
9521 IPW_DEBUG_WX("SET retry limit -> short:%d long:%d\n",
9522 priv->short_retry_limit, priv->long_retry_limit);
9523 return 0;
9524 }
9525
9526 static int ipw_wx_get_retry(struct net_device *dev,
9527 struct iw_request_info *info,
9528 union iwreq_data *wrqu, char *extra)
9529 {
9530 struct ipw_priv *priv = libipw_priv(dev);
9531
9532 mutex_lock(&priv->mutex);
9533 wrqu->retry.disabled = 0;
9534
9535 if ((wrqu->retry.flags & IW_RETRY_TYPE) == IW_RETRY_LIFETIME) {
9536 mutex_unlock(&priv->mutex);
9537 return -EINVAL;
9538 }
9539
9540 if (wrqu->retry.flags & IW_RETRY_LONG) {
9541 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_LONG;
9542 wrqu->retry.value = priv->long_retry_limit;
9543 } else if (wrqu->retry.flags & IW_RETRY_SHORT) {
9544 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_SHORT;
9545 wrqu->retry.value = priv->short_retry_limit;
9546 } else {
9547 wrqu->retry.flags = IW_RETRY_LIMIT;
9548 wrqu->retry.value = priv->short_retry_limit;
9549 }
9550 mutex_unlock(&priv->mutex);
9551
9552 IPW_DEBUG_WX("GET retry -> %d \n", wrqu->retry.value);
9553
9554 return 0;
9555 }
9556
9557 static int ipw_wx_set_scan(struct net_device *dev,
9558 struct iw_request_info *info,
9559 union iwreq_data *wrqu, char *extra)
9560 {
9561 struct ipw_priv *priv = libipw_priv(dev);
9562 struct iw_scan_req *req = (struct iw_scan_req *)extra;
9563 struct delayed_work *work = NULL;
9564
9565 mutex_lock(&priv->mutex);
9566
9567 priv->user_requested_scan = 1;
9568
9569 if (wrqu->data.length == sizeof(struct iw_scan_req)) {
9570 if (wrqu->data.flags & IW_SCAN_THIS_ESSID) {
9571 int len = min((int)req->essid_len,
9572 (int)sizeof(priv->direct_scan_ssid));
9573 memcpy(priv->direct_scan_ssid, req->essid, len);
9574 priv->direct_scan_ssid_len = len;
9575 work = &priv->request_direct_scan;
9576 } else if (req->scan_type == IW_SCAN_TYPE_PASSIVE) {
9577 work = &priv->request_passive_scan;
9578 }
9579 } else {
9580 /* Normal active broadcast scan */
9581 work = &priv->request_scan;
9582 }
9583
9584 mutex_unlock(&priv->mutex);
9585
9586 IPW_DEBUG_WX("Start scan\n");
9587
9588 queue_delayed_work(priv->workqueue, work, 0);
9589
9590 return 0;
9591 }
9592
9593 static int ipw_wx_get_scan(struct net_device *dev,
9594 struct iw_request_info *info,
9595 union iwreq_data *wrqu, char *extra)
9596 {
9597 struct ipw_priv *priv = libipw_priv(dev);
9598 return libipw_wx_get_scan(priv->ieee, info, wrqu, extra);
9599 }
9600
9601 static int ipw_wx_set_encode(struct net_device *dev,
9602 struct iw_request_info *info,
9603 union iwreq_data *wrqu, char *key)
9604 {
9605 struct ipw_priv *priv = libipw_priv(dev);
9606 int ret;
9607 u32 cap = priv->capability;
9608
9609 mutex_lock(&priv->mutex);
9610 ret = libipw_wx_set_encode(priv->ieee, info, wrqu, key);
9611
9612 /* In IBSS mode, we need to notify the firmware to update
9613 * the beacon info after we changed the capability. */
9614 if (cap != priv->capability &&
9615 priv->ieee->iw_mode == IW_MODE_ADHOC &&
9616 priv->status & STATUS_ASSOCIATED)
9617 ipw_disassociate(priv);
9618
9619 mutex_unlock(&priv->mutex);
9620 return ret;
9621 }
9622
9623 static int ipw_wx_get_encode(struct net_device *dev,
9624 struct iw_request_info *info,
9625 union iwreq_data *wrqu, char *key)
9626 {
9627 struct ipw_priv *priv = libipw_priv(dev);
9628 return libipw_wx_get_encode(priv->ieee, info, wrqu, key);
9629 }
9630
9631 static int ipw_wx_set_power(struct net_device *dev,
9632 struct iw_request_info *info,
9633 union iwreq_data *wrqu, char *extra)
9634 {
9635 struct ipw_priv *priv = libipw_priv(dev);
9636 int err;
9637 mutex_lock(&priv->mutex);
9638 if (wrqu->power.disabled) {
9639 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
9640 err = ipw_send_power_mode(priv, IPW_POWER_MODE_CAM);
9641 if (err) {
9642 IPW_DEBUG_WX("failed setting power mode.\n");
9643 mutex_unlock(&priv->mutex);
9644 return err;
9645 }
9646 IPW_DEBUG_WX("SET Power Management Mode -> off\n");
9647 mutex_unlock(&priv->mutex);
9648 return 0;
9649 }
9650
9651 switch (wrqu->power.flags & IW_POWER_MODE) {
9652 case IW_POWER_ON: /* If not specified */
9653 case IW_POWER_MODE: /* If set all mask */
9654 case IW_POWER_ALL_R: /* If explicitly state all */
9655 break;
9656 default: /* Otherwise we don't support it */
9657 IPW_DEBUG_WX("SET PM Mode: %X not supported.\n",
9658 wrqu->power.flags);
9659 mutex_unlock(&priv->mutex);
9660 return -EOPNOTSUPP;
9661 }
9662
9663 /* If the user hasn't specified a power management mode yet, default
9664 * to BATTERY */
9665 if (IPW_POWER_LEVEL(priv->power_mode) == IPW_POWER_AC)
9666 priv->power_mode = IPW_POWER_ENABLED | IPW_POWER_BATTERY;
9667 else
9668 priv->power_mode = IPW_POWER_ENABLED | priv->power_mode;
9669
9670 err = ipw_send_power_mode(priv, IPW_POWER_LEVEL(priv->power_mode));
9671 if (err) {
9672 IPW_DEBUG_WX("failed setting power mode.\n");
9673 mutex_unlock(&priv->mutex);
9674 return err;
9675 }
9676
9677 IPW_DEBUG_WX("SET Power Management Mode -> 0x%02X\n", priv->power_mode);
9678 mutex_unlock(&priv->mutex);
9679 return 0;
9680 }
9681
9682 static int ipw_wx_get_power(struct net_device *dev,
9683 struct iw_request_info *info,
9684 union iwreq_data *wrqu, char *extra)
9685 {
9686 struct ipw_priv *priv = libipw_priv(dev);
9687 mutex_lock(&priv->mutex);
9688 if (!(priv->power_mode & IPW_POWER_ENABLED))
9689 wrqu->power.disabled = 1;
9690 else
9691 wrqu->power.disabled = 0;
9692
9693 mutex_unlock(&priv->mutex);
9694 IPW_DEBUG_WX("GET Power Management Mode -> %02X\n", priv->power_mode);
9695
9696 return 0;
9697 }
9698
9699 static int ipw_wx_set_powermode(struct net_device *dev,
9700 struct iw_request_info *info,
9701 union iwreq_data *wrqu, char *extra)
9702 {
9703 struct ipw_priv *priv = libipw_priv(dev);
9704 int mode = *(int *)extra;
9705 int err;
9706
9707 mutex_lock(&priv->mutex);
9708 if ((mode < 1) || (mode > IPW_POWER_LIMIT))
9709 mode = IPW_POWER_AC;
9710
9711 if (IPW_POWER_LEVEL(priv->power_mode) != mode) {
9712 err = ipw_send_power_mode(priv, mode);
9713 if (err) {
9714 IPW_DEBUG_WX("failed setting power mode.\n");
9715 mutex_unlock(&priv->mutex);
9716 return err;
9717 }
9718 priv->power_mode = IPW_POWER_ENABLED | mode;
9719 }
9720 mutex_unlock(&priv->mutex);
9721 return 0;
9722 }
9723
9724 #define MAX_WX_STRING 80
9725 static int ipw_wx_get_powermode(struct net_device *dev,
9726 struct iw_request_info *info,
9727 union iwreq_data *wrqu, char *extra)
9728 {
9729 struct ipw_priv *priv = libipw_priv(dev);
9730 int level = IPW_POWER_LEVEL(priv->power_mode);
9731 char *p = extra;
9732
9733 p += snprintf(p, MAX_WX_STRING, "Power save level: %d ", level);
9734
9735 switch (level) {
9736 case IPW_POWER_AC:
9737 p += snprintf(p, MAX_WX_STRING - (p - extra), "(AC)");
9738 break;
9739 case IPW_POWER_BATTERY:
9740 p += snprintf(p, MAX_WX_STRING - (p - extra), "(BATTERY)");
9741 break;
9742 default:
9743 p += snprintf(p, MAX_WX_STRING - (p - extra),
9744 "(Timeout %dms, Period %dms)",
9745 timeout_duration[level - 1] / 1000,
9746 period_duration[level - 1] / 1000);
9747 }
9748
9749 if (!(priv->power_mode & IPW_POWER_ENABLED))
9750 p += snprintf(p, MAX_WX_STRING - (p - extra), " OFF");
9751
9752 wrqu->data.length = p - extra + 1;
9753
9754 return 0;
9755 }
9756
9757 static int ipw_wx_set_wireless_mode(struct net_device *dev,
9758 struct iw_request_info *info,
9759 union iwreq_data *wrqu, char *extra)
9760 {
9761 struct ipw_priv *priv = libipw_priv(dev);
9762 int mode = *(int *)extra;
9763 u8 band = 0, modulation = 0;
9764
9765 if (mode == 0 || mode & ~IEEE_MODE_MASK) {
9766 IPW_WARNING("Attempt to set invalid wireless mode: %d\n", mode);
9767 return -EINVAL;
9768 }
9769 mutex_lock(&priv->mutex);
9770 if (priv->adapter == IPW_2915ABG) {
9771 priv->ieee->abg_true = 1;
9772 if (mode & IEEE_A) {
9773 band |= LIBIPW_52GHZ_BAND;
9774 modulation |= LIBIPW_OFDM_MODULATION;
9775 } else
9776 priv->ieee->abg_true = 0;
9777 } else {
9778 if (mode & IEEE_A) {
9779 IPW_WARNING("Attempt to set 2200BG into "
9780 "802.11a mode\n");
9781 mutex_unlock(&priv->mutex);
9782 return -EINVAL;
9783 }
9784
9785 priv->ieee->abg_true = 0;
9786 }
9787
9788 if (mode & IEEE_B) {
9789 band |= LIBIPW_24GHZ_BAND;
9790 modulation |= LIBIPW_CCK_MODULATION;
9791 } else
9792 priv->ieee->abg_true = 0;
9793
9794 if (mode & IEEE_G) {
9795 band |= LIBIPW_24GHZ_BAND;
9796 modulation |= LIBIPW_OFDM_MODULATION;
9797 } else
9798 priv->ieee->abg_true = 0;
9799
9800 priv->ieee->mode = mode;
9801 priv->ieee->freq_band = band;
9802 priv->ieee->modulation = modulation;
9803 init_supported_rates(priv, &priv->rates);
9804
9805 /* Network configuration changed -- force [re]association */
9806 IPW_DEBUG_ASSOC("[re]association triggered due to mode change.\n");
9807 if (!ipw_disassociate(priv)) {
9808 ipw_send_supported_rates(priv, &priv->rates);
9809 ipw_associate(priv);
9810 }
9811
9812 /* Update the band LEDs */
9813 ipw_led_band_on(priv);
9814
9815 IPW_DEBUG_WX("PRIV SET MODE: %c%c%c\n",
9816 mode & IEEE_A ? 'a' : '.',
9817 mode & IEEE_B ? 'b' : '.', mode & IEEE_G ? 'g' : '.');
9818 mutex_unlock(&priv->mutex);
9819 return 0;
9820 }
9821
9822 static int ipw_wx_get_wireless_mode(struct net_device *dev,
9823 struct iw_request_info *info,
9824 union iwreq_data *wrqu, char *extra)
9825 {
9826 struct ipw_priv *priv = libipw_priv(dev);
9827 mutex_lock(&priv->mutex);
9828 switch (priv->ieee->mode) {
9829 case IEEE_A:
9830 strncpy(extra, "802.11a (1)", MAX_WX_STRING);
9831 break;
9832 case IEEE_B:
9833 strncpy(extra, "802.11b (2)", MAX_WX_STRING);
9834 break;
9835 case IEEE_A | IEEE_B:
9836 strncpy(extra, "802.11ab (3)", MAX_WX_STRING);
9837 break;
9838 case IEEE_G:
9839 strncpy(extra, "802.11g (4)", MAX_WX_STRING);
9840 break;
9841 case IEEE_A | IEEE_G:
9842 strncpy(extra, "802.11ag (5)", MAX_WX_STRING);
9843 break;
9844 case IEEE_B | IEEE_G:
9845 strncpy(extra, "802.11bg (6)", MAX_WX_STRING);
9846 break;
9847 case IEEE_A | IEEE_B | IEEE_G:
9848 strncpy(extra, "802.11abg (7)", MAX_WX_STRING);
9849 break;
9850 default:
9851 strncpy(extra, "unknown", MAX_WX_STRING);
9852 break;
9853 }
9854
9855 IPW_DEBUG_WX("PRIV GET MODE: %s\n", extra);
9856
9857 wrqu->data.length = strlen(extra) + 1;
9858 mutex_unlock(&priv->mutex);
9859
9860 return 0;
9861 }
9862
9863 static int ipw_wx_set_preamble(struct net_device *dev,
9864 struct iw_request_info *info,
9865 union iwreq_data *wrqu, char *extra)
9866 {
9867 struct ipw_priv *priv = libipw_priv(dev);
9868 int mode = *(int *)extra;
9869 mutex_lock(&priv->mutex);
9870 /* Switching from SHORT -> LONG requires a disassociation */
9871 if (mode == 1) {
9872 if (!(priv->config & CFG_PREAMBLE_LONG)) {
9873 priv->config |= CFG_PREAMBLE_LONG;
9874
9875 /* Network configuration changed -- force [re]association */
9876 IPW_DEBUG_ASSOC
9877 ("[re]association triggered due to preamble change.\n");
9878 if (!ipw_disassociate(priv))
9879 ipw_associate(priv);
9880 }
9881 goto done;
9882 }
9883
9884 if (mode == 0) {
9885 priv->config &= ~CFG_PREAMBLE_LONG;
9886 goto done;
9887 }
9888 mutex_unlock(&priv->mutex);
9889 return -EINVAL;
9890
9891 done:
9892 mutex_unlock(&priv->mutex);
9893 return 0;
9894 }
9895
9896 static int ipw_wx_get_preamble(struct net_device *dev,
9897 struct iw_request_info *info,
9898 union iwreq_data *wrqu, char *extra)
9899 {
9900 struct ipw_priv *priv = libipw_priv(dev);
9901 mutex_lock(&priv->mutex);
9902 if (priv->config & CFG_PREAMBLE_LONG)
9903 snprintf(wrqu->name, IFNAMSIZ, "long (1)");
9904 else
9905 snprintf(wrqu->name, IFNAMSIZ, "auto (0)");
9906 mutex_unlock(&priv->mutex);
9907 return 0;
9908 }
9909
9910 #ifdef CONFIG_IPW2200_MONITOR
9911 static int ipw_wx_set_monitor(struct net_device *dev,
9912 struct iw_request_info *info,
9913 union iwreq_data *wrqu, char *extra)
9914 {
9915 struct ipw_priv *priv = libipw_priv(dev);
9916 int *parms = (int *)extra;
9917 int enable = (parms[0] > 0);
9918 mutex_lock(&priv->mutex);
9919 IPW_DEBUG_WX("SET MONITOR: %d %d\n", enable, parms[1]);
9920 if (enable) {
9921 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
9922 #ifdef CONFIG_IPW2200_RADIOTAP
9923 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
9924 #else
9925 priv->net_dev->type = ARPHRD_IEEE80211;
9926 #endif
9927 queue_work(priv->workqueue, &priv->adapter_restart);
9928 }
9929
9930 ipw_set_channel(priv, parms[1]);
9931 } else {
9932 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
9933 mutex_unlock(&priv->mutex);
9934 return 0;
9935 }
9936 priv->net_dev->type = ARPHRD_ETHER;
9937 queue_work(priv->workqueue, &priv->adapter_restart);
9938 }
9939 mutex_unlock(&priv->mutex);
9940 return 0;
9941 }
9942
9943 #endif /* CONFIG_IPW2200_MONITOR */
9944
9945 static int ipw_wx_reset(struct net_device *dev,
9946 struct iw_request_info *info,
9947 union iwreq_data *wrqu, char *extra)
9948 {
9949 struct ipw_priv *priv = libipw_priv(dev);
9950 IPW_DEBUG_WX("RESET\n");
9951 queue_work(priv->workqueue, &priv->adapter_restart);
9952 return 0;
9953 }
9954
9955 static int ipw_wx_sw_reset(struct net_device *dev,
9956 struct iw_request_info *info,
9957 union iwreq_data *wrqu, char *extra)
9958 {
9959 struct ipw_priv *priv = libipw_priv(dev);
9960 union iwreq_data wrqu_sec = {
9961 .encoding = {
9962 .flags = IW_ENCODE_DISABLED,
9963 },
9964 };
9965 int ret;
9966
9967 IPW_DEBUG_WX("SW_RESET\n");
9968
9969 mutex_lock(&priv->mutex);
9970
9971 ret = ipw_sw_reset(priv, 2);
9972 if (!ret) {
9973 free_firmware();
9974 ipw_adapter_restart(priv);
9975 }
9976
9977 /* The SW reset bit might have been toggled on by the 'disable'
9978 * module parameter, so take appropriate action */
9979 ipw_radio_kill_sw(priv, priv->status & STATUS_RF_KILL_SW);
9980
9981 mutex_unlock(&priv->mutex);
9982 libipw_wx_set_encode(priv->ieee, info, &wrqu_sec, NULL);
9983 mutex_lock(&priv->mutex);
9984
9985 if (!(priv->status & STATUS_RF_KILL_MASK)) {
9986 /* Configuration likely changed -- force [re]association */
9987 IPW_DEBUG_ASSOC("[re]association triggered due to sw "
9988 "reset.\n");
9989 if (!ipw_disassociate(priv))
9990 ipw_associate(priv);
9991 }
9992
9993 mutex_unlock(&priv->mutex);
9994
9995 return 0;
9996 }
9997
9998 /* Rebase the WE IOCTLs to zero for the handler array */
9999 #define IW_IOCTL(x) [(x)-SIOCSIWCOMMIT]
10000 static iw_handler ipw_wx_handlers[] = {
10001 IW_IOCTL(SIOCGIWNAME) = (iw_handler) cfg80211_wext_giwname,
10002 IW_IOCTL(SIOCSIWFREQ) = ipw_wx_set_freq,
10003 IW_IOCTL(SIOCGIWFREQ) = ipw_wx_get_freq,
10004 IW_IOCTL(SIOCSIWMODE) = ipw_wx_set_mode,
10005 IW_IOCTL(SIOCGIWMODE) = ipw_wx_get_mode,
10006 IW_IOCTL(SIOCSIWSENS) = ipw_wx_set_sens,
10007 IW_IOCTL(SIOCGIWSENS) = ipw_wx_get_sens,
10008 IW_IOCTL(SIOCGIWRANGE) = ipw_wx_get_range,
10009 IW_IOCTL(SIOCSIWAP) = ipw_wx_set_wap,
10010 IW_IOCTL(SIOCGIWAP) = ipw_wx_get_wap,
10011 IW_IOCTL(SIOCSIWSCAN) = ipw_wx_set_scan,
10012 IW_IOCTL(SIOCGIWSCAN) = ipw_wx_get_scan,
10013 IW_IOCTL(SIOCSIWESSID) = ipw_wx_set_essid,
10014 IW_IOCTL(SIOCGIWESSID) = ipw_wx_get_essid,
10015 IW_IOCTL(SIOCSIWNICKN) = ipw_wx_set_nick,
10016 IW_IOCTL(SIOCGIWNICKN) = ipw_wx_get_nick,
10017 IW_IOCTL(SIOCSIWRATE) = ipw_wx_set_rate,
10018 IW_IOCTL(SIOCGIWRATE) = ipw_wx_get_rate,
10019 IW_IOCTL(SIOCSIWRTS) = ipw_wx_set_rts,
10020 IW_IOCTL(SIOCGIWRTS) = ipw_wx_get_rts,
10021 IW_IOCTL(SIOCSIWFRAG) = ipw_wx_set_frag,
10022 IW_IOCTL(SIOCGIWFRAG) = ipw_wx_get_frag,
10023 IW_IOCTL(SIOCSIWTXPOW) = ipw_wx_set_txpow,
10024 IW_IOCTL(SIOCGIWTXPOW) = ipw_wx_get_txpow,
10025 IW_IOCTL(SIOCSIWRETRY) = ipw_wx_set_retry,
10026 IW_IOCTL(SIOCGIWRETRY) = ipw_wx_get_retry,
10027 IW_IOCTL(SIOCSIWENCODE) = ipw_wx_set_encode,
10028 IW_IOCTL(SIOCGIWENCODE) = ipw_wx_get_encode,
10029 IW_IOCTL(SIOCSIWPOWER) = ipw_wx_set_power,
10030 IW_IOCTL(SIOCGIWPOWER) = ipw_wx_get_power,
10031 IW_IOCTL(SIOCSIWSPY) = iw_handler_set_spy,
10032 IW_IOCTL(SIOCGIWSPY) = iw_handler_get_spy,
10033 IW_IOCTL(SIOCSIWTHRSPY) = iw_handler_set_thrspy,
10034 IW_IOCTL(SIOCGIWTHRSPY) = iw_handler_get_thrspy,
10035 IW_IOCTL(SIOCSIWGENIE) = ipw_wx_set_genie,
10036 IW_IOCTL(SIOCGIWGENIE) = ipw_wx_get_genie,
10037 IW_IOCTL(SIOCSIWMLME) = ipw_wx_set_mlme,
10038 IW_IOCTL(SIOCSIWAUTH) = ipw_wx_set_auth,
10039 IW_IOCTL(SIOCGIWAUTH) = ipw_wx_get_auth,
10040 IW_IOCTL(SIOCSIWENCODEEXT) = ipw_wx_set_encodeext,
10041 IW_IOCTL(SIOCGIWENCODEEXT) = ipw_wx_get_encodeext,
10042 };
10043
10044 enum {
10045 IPW_PRIV_SET_POWER = SIOCIWFIRSTPRIV,
10046 IPW_PRIV_GET_POWER,
10047 IPW_PRIV_SET_MODE,
10048 IPW_PRIV_GET_MODE,
10049 IPW_PRIV_SET_PREAMBLE,
10050 IPW_PRIV_GET_PREAMBLE,
10051 IPW_PRIV_RESET,
10052 IPW_PRIV_SW_RESET,
10053 #ifdef CONFIG_IPW2200_MONITOR
10054 IPW_PRIV_SET_MONITOR,
10055 #endif
10056 };
10057
10058 static struct iw_priv_args ipw_priv_args[] = {
10059 {
10060 .cmd = IPW_PRIV_SET_POWER,
10061 .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
10062 .name = "set_power"},
10063 {
10064 .cmd = IPW_PRIV_GET_POWER,
10065 .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_WX_STRING,
10066 .name = "get_power"},
10067 {
10068 .cmd = IPW_PRIV_SET_MODE,
10069 .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
10070 .name = "set_mode"},
10071 {
10072 .cmd = IPW_PRIV_GET_MODE,
10073 .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_WX_STRING,
10074 .name = "get_mode"},
10075 {
10076 .cmd = IPW_PRIV_SET_PREAMBLE,
10077 .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
10078 .name = "set_preamble"},
10079 {
10080 .cmd = IPW_PRIV_GET_PREAMBLE,
10081 .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ,
10082 .name = "get_preamble"},
10083 {
10084 IPW_PRIV_RESET,
10085 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "reset"},
10086 {
10087 IPW_PRIV_SW_RESET,
10088 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "sw_reset"},
10089 #ifdef CONFIG_IPW2200_MONITOR
10090 {
10091 IPW_PRIV_SET_MONITOR,
10092 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 2, 0, "monitor"},
10093 #endif /* CONFIG_IPW2200_MONITOR */
10094 };
10095
10096 static iw_handler ipw_priv_handler[] = {
10097 ipw_wx_set_powermode,
10098 ipw_wx_get_powermode,
10099 ipw_wx_set_wireless_mode,
10100 ipw_wx_get_wireless_mode,
10101 ipw_wx_set_preamble,
10102 ipw_wx_get_preamble,
10103 ipw_wx_reset,
10104 ipw_wx_sw_reset,
10105 #ifdef CONFIG_IPW2200_MONITOR
10106 ipw_wx_set_monitor,
10107 #endif
10108 };
10109
10110 static struct iw_handler_def ipw_wx_handler_def = {
10111 .standard = ipw_wx_handlers,
10112 .num_standard = ARRAY_SIZE(ipw_wx_handlers),
10113 .num_private = ARRAY_SIZE(ipw_priv_handler),
10114 .num_private_args = ARRAY_SIZE(ipw_priv_args),
10115 .private = ipw_priv_handler,
10116 .private_args = ipw_priv_args,
10117 .get_wireless_stats = ipw_get_wireless_stats,
10118 };
10119
10120 /*
10121 * Get wireless statistics.
10122 * Called by /proc/net/wireless
10123 * Also called by SIOCGIWSTATS
10124 */
10125 static struct iw_statistics *ipw_get_wireless_stats(struct net_device *dev)
10126 {
10127 struct ipw_priv *priv = libipw_priv(dev);
10128 struct iw_statistics *wstats;
10129
10130 wstats = &priv->wstats;
10131
10132 /* if hw is disabled, then ipw_get_ordinal() can't be called.
10133 * netdev->get_wireless_stats seems to be called before fw is
10134 * initialized. STATUS_ASSOCIATED will only be set if the hw is up
10135 * and associated; if not associcated, the values are all meaningless
10136 * anyway, so set them all to NULL and INVALID */
10137 if (!(priv->status & STATUS_ASSOCIATED)) {
10138 wstats->miss.beacon = 0;
10139 wstats->discard.retries = 0;
10140 wstats->qual.qual = 0;
10141 wstats->qual.level = 0;
10142 wstats->qual.noise = 0;
10143 wstats->qual.updated = 7;
10144 wstats->qual.updated |= IW_QUAL_NOISE_INVALID |
10145 IW_QUAL_QUAL_INVALID | IW_QUAL_LEVEL_INVALID;
10146 return wstats;
10147 }
10148
10149 wstats->qual.qual = priv->quality;
10150 wstats->qual.level = priv->exp_avg_rssi;
10151 wstats->qual.noise = priv->exp_avg_noise;
10152 wstats->qual.updated = IW_QUAL_QUAL_UPDATED | IW_QUAL_LEVEL_UPDATED |
10153 IW_QUAL_NOISE_UPDATED | IW_QUAL_DBM;
10154
10155 wstats->miss.beacon = average_value(&priv->average_missed_beacons);
10156 wstats->discard.retries = priv->last_tx_failures;
10157 wstats->discard.code = priv->ieee->ieee_stats.rx_discards_undecryptable;
10158
10159 /* if (ipw_get_ordinal(priv, IPW_ORD_STAT_TX_RETRY, &tx_retry, &len))
10160 goto fail_get_ordinal;
10161 wstats->discard.retries += tx_retry; */
10162
10163 return wstats;
10164 }
10165
10166 /* net device stuff */
10167
10168 static void init_sys_config(struct ipw_sys_config *sys_config)
10169 {
10170 memset(sys_config, 0, sizeof(struct ipw_sys_config));
10171 sys_config->bt_coexistence = 0;
10172 sys_config->answer_broadcast_ssid_probe = 0;
10173 sys_config->accept_all_data_frames = 0;
10174 sys_config->accept_non_directed_frames = 1;
10175 sys_config->exclude_unicast_unencrypted = 0;
10176 sys_config->disable_unicast_decryption = 1;
10177 sys_config->exclude_multicast_unencrypted = 0;
10178 sys_config->disable_multicast_decryption = 1;
10179 if (antenna < CFG_SYS_ANTENNA_BOTH || antenna > CFG_SYS_ANTENNA_B)
10180 antenna = CFG_SYS_ANTENNA_BOTH;
10181 sys_config->antenna_diversity = antenna;
10182 sys_config->pass_crc_to_host = 0; /* TODO: See if 1 gives us FCS */
10183 sys_config->dot11g_auto_detection = 0;
10184 sys_config->enable_cts_to_self = 0;
10185 sys_config->bt_coexist_collision_thr = 0;
10186 sys_config->pass_noise_stats_to_host = 1; /* 1 -- fix for 256 */
10187 sys_config->silence_threshold = 0x1e;
10188 }
10189
10190 static int ipw_net_open(struct net_device *dev)
10191 {
10192 IPW_DEBUG_INFO("dev->open\n");
10193 netif_start_queue(dev);
10194 return 0;
10195 }
10196
10197 static int ipw_net_stop(struct net_device *dev)
10198 {
10199 IPW_DEBUG_INFO("dev->close\n");
10200 netif_stop_queue(dev);
10201 return 0;
10202 }
10203
10204 /*
10205 todo:
10206
10207 modify to send one tfd per fragment instead of using chunking. otherwise
10208 we need to heavily modify the libipw_skb_to_txb.
10209 */
10210
10211 static int ipw_tx_skb(struct ipw_priv *priv, struct libipw_txb *txb,
10212 int pri)
10213 {
10214 struct libipw_hdr_3addrqos *hdr = (struct libipw_hdr_3addrqos *)
10215 txb->fragments[0]->data;
10216 int i = 0;
10217 struct tfd_frame *tfd;
10218 #ifdef CONFIG_IPW2200_QOS
10219 int tx_id = ipw_get_tx_queue_number(priv, pri);
10220 struct clx2_tx_queue *txq = &priv->txq[tx_id];
10221 #else
10222 struct clx2_tx_queue *txq = &priv->txq[0];
10223 #endif
10224 struct clx2_queue *q = &txq->q;
10225 u8 id, hdr_len, unicast;
10226 int fc;
10227
10228 if (!(priv->status & STATUS_ASSOCIATED))
10229 goto drop;
10230
10231 hdr_len = libipw_get_hdrlen(le16_to_cpu(hdr->frame_ctl));
10232 switch (priv->ieee->iw_mode) {
10233 case IW_MODE_ADHOC:
10234 unicast = !is_multicast_ether_addr(hdr->addr1);
10235 id = ipw_find_station(priv, hdr->addr1);
10236 if (id == IPW_INVALID_STATION) {
10237 id = ipw_add_station(priv, hdr->addr1);
10238 if (id == IPW_INVALID_STATION) {
10239 IPW_WARNING("Attempt to send data to "
10240 "invalid cell: %pM\n",
10241 hdr->addr1);
10242 goto drop;
10243 }
10244 }
10245 break;
10246
10247 case IW_MODE_INFRA:
10248 default:
10249 unicast = !is_multicast_ether_addr(hdr->addr3);
10250 id = 0;
10251 break;
10252 }
10253
10254 tfd = &txq->bd[q->first_empty];
10255 txq->txb[q->first_empty] = txb;
10256 memset(tfd, 0, sizeof(*tfd));
10257 tfd->u.data.station_number = id;
10258
10259 tfd->control_flags.message_type = TX_FRAME_TYPE;
10260 tfd->control_flags.control_bits = TFD_NEED_IRQ_MASK;
10261
10262 tfd->u.data.cmd_id = DINO_CMD_TX;
10263 tfd->u.data.len = cpu_to_le16(txb->payload_size);
10264
10265 if (priv->assoc_request.ieee_mode == IPW_B_MODE)
10266 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_MODE_CCK;
10267 else
10268 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_MODE_OFDM;
10269
10270 if (priv->assoc_request.preamble_length == DCT_FLAG_SHORT_PREAMBLE)
10271 tfd->u.data.tx_flags |= DCT_FLAG_SHORT_PREAMBLE;
10272
10273 fc = le16_to_cpu(hdr->frame_ctl);
10274 hdr->frame_ctl = cpu_to_le16(fc & ~IEEE80211_FCTL_MOREFRAGS);
10275
10276 memcpy(&tfd->u.data.tfd.tfd_24.mchdr, hdr, hdr_len);
10277
10278 if (likely(unicast))
10279 tfd->u.data.tx_flags |= DCT_FLAG_ACK_REQD;
10280
10281 if (txb->encrypted && !priv->ieee->host_encrypt) {
10282 switch (priv->ieee->sec.level) {
10283 case SEC_LEVEL_3:
10284 tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10285 cpu_to_le16(IEEE80211_FCTL_PROTECTED);
10286 /* XXX: ACK flag must be set for CCMP even if it
10287 * is a multicast/broadcast packet, because CCMP
10288 * group communication encrypted by GTK is
10289 * actually done by the AP. */
10290 if (!unicast)
10291 tfd->u.data.tx_flags |= DCT_FLAG_ACK_REQD;
10292
10293 tfd->u.data.tx_flags &= ~DCT_FLAG_NO_WEP;
10294 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_SECURITY_CCM;
10295 tfd->u.data.key_index = 0;
10296 tfd->u.data.key_index |= DCT_WEP_INDEX_USE_IMMEDIATE;
10297 break;
10298 case SEC_LEVEL_2:
10299 tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10300 cpu_to_le16(IEEE80211_FCTL_PROTECTED);
10301 tfd->u.data.tx_flags &= ~DCT_FLAG_NO_WEP;
10302 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_SECURITY_TKIP;
10303 tfd->u.data.key_index = DCT_WEP_INDEX_USE_IMMEDIATE;
10304 break;
10305 case SEC_LEVEL_1:
10306 tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10307 cpu_to_le16(IEEE80211_FCTL_PROTECTED);
10308 tfd->u.data.key_index = priv->ieee->crypt_info.tx_keyidx;
10309 if (priv->ieee->sec.key_sizes[priv->ieee->crypt_info.tx_keyidx] <=
10310 40)
10311 tfd->u.data.key_index |= DCT_WEP_KEY_64Bit;
10312 else
10313 tfd->u.data.key_index |= DCT_WEP_KEY_128Bit;
10314 break;
10315 case SEC_LEVEL_0:
10316 break;
10317 default:
10318 printk(KERN_ERR "Unknown security level %d\n",
10319 priv->ieee->sec.level);
10320 break;
10321 }
10322 } else
10323 /* No hardware encryption */
10324 tfd->u.data.tx_flags |= DCT_FLAG_NO_WEP;
10325
10326 #ifdef CONFIG_IPW2200_QOS
10327 if (fc & IEEE80211_STYPE_QOS_DATA)
10328 ipw_qos_set_tx_queue_command(priv, pri, &(tfd->u.data));
10329 #endif /* CONFIG_IPW2200_QOS */
10330
10331 /* payload */
10332 tfd->u.data.num_chunks = cpu_to_le32(min((u8) (NUM_TFD_CHUNKS - 2),
10333 txb->nr_frags));
10334 IPW_DEBUG_FRAG("%i fragments being sent as %i chunks.\n",
10335 txb->nr_frags, le32_to_cpu(tfd->u.data.num_chunks));
10336 for (i = 0; i < le32_to_cpu(tfd->u.data.num_chunks); i++) {
10337 IPW_DEBUG_FRAG("Adding fragment %i of %i (%d bytes).\n",
10338 i, le32_to_cpu(tfd->u.data.num_chunks),
10339 txb->fragments[i]->len - hdr_len);
10340 IPW_DEBUG_TX("Dumping TX packet frag %i of %i (%d bytes):\n",
10341 i, tfd->u.data.num_chunks,
10342 txb->fragments[i]->len - hdr_len);
10343 printk_buf(IPW_DL_TX, txb->fragments[i]->data + hdr_len,
10344 txb->fragments[i]->len - hdr_len);
10345
10346 tfd->u.data.chunk_ptr[i] =
10347 cpu_to_le32(pci_map_single
10348 (priv->pci_dev,
10349 txb->fragments[i]->data + hdr_len,
10350 txb->fragments[i]->len - hdr_len,
10351 PCI_DMA_TODEVICE));
10352 tfd->u.data.chunk_len[i] =
10353 cpu_to_le16(txb->fragments[i]->len - hdr_len);
10354 }
10355
10356 if (i != txb->nr_frags) {
10357 struct sk_buff *skb;
10358 u16 remaining_bytes = 0;
10359 int j;
10360
10361 for (j = i; j < txb->nr_frags; j++)
10362 remaining_bytes += txb->fragments[j]->len - hdr_len;
10363
10364 printk(KERN_INFO "Trying to reallocate for %d bytes\n",
10365 remaining_bytes);
10366 skb = alloc_skb(remaining_bytes, GFP_ATOMIC);
10367 if (skb != NULL) {
10368 tfd->u.data.chunk_len[i] = cpu_to_le16(remaining_bytes);
10369 for (j = i; j < txb->nr_frags; j++) {
10370 int size = txb->fragments[j]->len - hdr_len;
10371
10372 printk(KERN_INFO "Adding frag %d %d...\n",
10373 j, size);
10374 memcpy(skb_put(skb, size),
10375 txb->fragments[j]->data + hdr_len, size);
10376 }
10377 dev_kfree_skb_any(txb->fragments[i]);
10378 txb->fragments[i] = skb;
10379 tfd->u.data.chunk_ptr[i] =
10380 cpu_to_le32(pci_map_single
10381 (priv->pci_dev, skb->data,
10382 remaining_bytes,
10383 PCI_DMA_TODEVICE));
10384
10385 le32_add_cpu(&tfd->u.data.num_chunks, 1);
10386 }
10387 }
10388
10389 /* kick DMA */
10390 q->first_empty = ipw_queue_inc_wrap(q->first_empty, q->n_bd);
10391 ipw_write32(priv, q->reg_w, q->first_empty);
10392
10393 if (ipw_tx_queue_space(q) < q->high_mark)
10394 netif_stop_queue(priv->net_dev);
10395
10396 return NETDEV_TX_OK;
10397
10398 drop:
10399 IPW_DEBUG_DROP("Silently dropping Tx packet.\n");
10400 libipw_txb_free(txb);
10401 return NETDEV_TX_OK;
10402 }
10403
10404 static int ipw_net_is_queue_full(struct net_device *dev, int pri)
10405 {
10406 struct ipw_priv *priv = libipw_priv(dev);
10407 #ifdef CONFIG_IPW2200_QOS
10408 int tx_id = ipw_get_tx_queue_number(priv, pri);
10409 struct clx2_tx_queue *txq = &priv->txq[tx_id];
10410 #else
10411 struct clx2_tx_queue *txq = &priv->txq[0];
10412 #endif /* CONFIG_IPW2200_QOS */
10413
10414 if (ipw_tx_queue_space(&txq->q) < txq->q.high_mark)
10415 return 1;
10416
10417 return 0;
10418 }
10419
10420 #ifdef CONFIG_IPW2200_PROMISCUOUS
10421 static void ipw_handle_promiscuous_tx(struct ipw_priv *priv,
10422 struct libipw_txb *txb)
10423 {
10424 struct libipw_rx_stats dummystats;
10425 struct ieee80211_hdr *hdr;
10426 u8 n;
10427 u16 filter = priv->prom_priv->filter;
10428 int hdr_only = 0;
10429
10430 if (filter & IPW_PROM_NO_TX)
10431 return;
10432
10433 memset(&dummystats, 0, sizeof(dummystats));
10434
10435 /* Filtering of fragment chains is done agains the first fragment */
10436 hdr = (void *)txb->fragments[0]->data;
10437 if (libipw_is_management(le16_to_cpu(hdr->frame_control))) {
10438 if (filter & IPW_PROM_NO_MGMT)
10439 return;
10440 if (filter & IPW_PROM_MGMT_HEADER_ONLY)
10441 hdr_only = 1;
10442 } else if (libipw_is_control(le16_to_cpu(hdr->frame_control))) {
10443 if (filter & IPW_PROM_NO_CTL)
10444 return;
10445 if (filter & IPW_PROM_CTL_HEADER_ONLY)
10446 hdr_only = 1;
10447 } else if (libipw_is_data(le16_to_cpu(hdr->frame_control))) {
10448 if (filter & IPW_PROM_NO_DATA)
10449 return;
10450 if (filter & IPW_PROM_DATA_HEADER_ONLY)
10451 hdr_only = 1;
10452 }
10453
10454 for(n=0; n<txb->nr_frags; ++n) {
10455 struct sk_buff *src = txb->fragments[n];
10456 struct sk_buff *dst;
10457 struct ieee80211_radiotap_header *rt_hdr;
10458 int len;
10459
10460 if (hdr_only) {
10461 hdr = (void *)src->data;
10462 len = libipw_get_hdrlen(le16_to_cpu(hdr->frame_control));
10463 } else
10464 len = src->len;
10465
10466 dst = alloc_skb(len + sizeof(*rt_hdr), GFP_ATOMIC);
10467 if (!dst)
10468 continue;
10469
10470 rt_hdr = (void *)skb_put(dst, sizeof(*rt_hdr));
10471
10472 rt_hdr->it_version = PKTHDR_RADIOTAP_VERSION;
10473 rt_hdr->it_pad = 0;
10474 rt_hdr->it_present = 0; /* after all, it's just an idea */
10475 rt_hdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_CHANNEL);
10476
10477 *(__le16*)skb_put(dst, sizeof(u16)) = cpu_to_le16(
10478 ieee80211chan2mhz(priv->channel));
10479 if (priv->channel > 14) /* 802.11a */
10480 *(__le16*)skb_put(dst, sizeof(u16)) =
10481 cpu_to_le16(IEEE80211_CHAN_OFDM |
10482 IEEE80211_CHAN_5GHZ);
10483 else if (priv->ieee->mode == IEEE_B) /* 802.11b */
10484 *(__le16*)skb_put(dst, sizeof(u16)) =
10485 cpu_to_le16(IEEE80211_CHAN_CCK |
10486 IEEE80211_CHAN_2GHZ);
10487 else /* 802.11g */
10488 *(__le16*)skb_put(dst, sizeof(u16)) =
10489 cpu_to_le16(IEEE80211_CHAN_OFDM |
10490 IEEE80211_CHAN_2GHZ);
10491
10492 rt_hdr->it_len = cpu_to_le16(dst->len);
10493
10494 skb_copy_from_linear_data(src, skb_put(dst, len), len);
10495
10496 if (!libipw_rx(priv->prom_priv->ieee, dst, &dummystats))
10497 dev_kfree_skb_any(dst);
10498 }
10499 }
10500 #endif
10501
10502 static netdev_tx_t ipw_net_hard_start_xmit(struct libipw_txb *txb,
10503 struct net_device *dev, int pri)
10504 {
10505 struct ipw_priv *priv = libipw_priv(dev);
10506 unsigned long flags;
10507 netdev_tx_t ret;
10508
10509 IPW_DEBUG_TX("dev->xmit(%d bytes)\n", txb->payload_size);
10510 spin_lock_irqsave(&priv->lock, flags);
10511
10512 #ifdef CONFIG_IPW2200_PROMISCUOUS
10513 if (rtap_iface && netif_running(priv->prom_net_dev))
10514 ipw_handle_promiscuous_tx(priv, txb);
10515 #endif
10516
10517 ret = ipw_tx_skb(priv, txb, pri);
10518 if (ret == NETDEV_TX_OK)
10519 __ipw_led_activity_on(priv);
10520 spin_unlock_irqrestore(&priv->lock, flags);
10521
10522 return ret;
10523 }
10524
10525 static void ipw_net_set_multicast_list(struct net_device *dev)
10526 {
10527
10528 }
10529
10530 static int ipw_net_set_mac_address(struct net_device *dev, void *p)
10531 {
10532 struct ipw_priv *priv = libipw_priv(dev);
10533 struct sockaddr *addr = p;
10534
10535 if (!is_valid_ether_addr(addr->sa_data))
10536 return -EADDRNOTAVAIL;
10537 mutex_lock(&priv->mutex);
10538 priv->config |= CFG_CUSTOM_MAC;
10539 memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
10540 printk(KERN_INFO "%s: Setting MAC to %pM\n",
10541 priv->net_dev->name, priv->mac_addr);
10542 queue_work(priv->workqueue, &priv->adapter_restart);
10543 mutex_unlock(&priv->mutex);
10544 return 0;
10545 }
10546
10547 static void ipw_ethtool_get_drvinfo(struct net_device *dev,
10548 struct ethtool_drvinfo *info)
10549 {
10550 struct ipw_priv *p = libipw_priv(dev);
10551 char vers[64];
10552 char date[32];
10553 u32 len;
10554
10555 strcpy(info->driver, DRV_NAME);
10556 strcpy(info->version, DRV_VERSION);
10557
10558 len = sizeof(vers);
10559 ipw_get_ordinal(p, IPW_ORD_STAT_FW_VERSION, vers, &len);
10560 len = sizeof(date);
10561 ipw_get_ordinal(p, IPW_ORD_STAT_FW_DATE, date, &len);
10562
10563 snprintf(info->fw_version, sizeof(info->fw_version), "%s (%s)",
10564 vers, date);
10565 strcpy(info->bus_info, pci_name(p->pci_dev));
10566 info->eedump_len = IPW_EEPROM_IMAGE_SIZE;
10567 }
10568
10569 static u32 ipw_ethtool_get_link(struct net_device *dev)
10570 {
10571 struct ipw_priv *priv = libipw_priv(dev);
10572 return (priv->status & STATUS_ASSOCIATED) != 0;
10573 }
10574
10575 static int ipw_ethtool_get_eeprom_len(struct net_device *dev)
10576 {
10577 return IPW_EEPROM_IMAGE_SIZE;
10578 }
10579
10580 static int ipw_ethtool_get_eeprom(struct net_device *dev,
10581 struct ethtool_eeprom *eeprom, u8 * bytes)
10582 {
10583 struct ipw_priv *p = libipw_priv(dev);
10584
10585 if (eeprom->offset + eeprom->len > IPW_EEPROM_IMAGE_SIZE)
10586 return -EINVAL;
10587 mutex_lock(&p->mutex);
10588 memcpy(bytes, &p->eeprom[eeprom->offset], eeprom->len);
10589 mutex_unlock(&p->mutex);
10590 return 0;
10591 }
10592
10593 static int ipw_ethtool_set_eeprom(struct net_device *dev,
10594 struct ethtool_eeprom *eeprom, u8 * bytes)
10595 {
10596 struct ipw_priv *p = libipw_priv(dev);
10597 int i;
10598
10599 if (eeprom->offset + eeprom->len > IPW_EEPROM_IMAGE_SIZE)
10600 return -EINVAL;
10601 mutex_lock(&p->mutex);
10602 memcpy(&p->eeprom[eeprom->offset], bytes, eeprom->len);
10603 for (i = 0; i < IPW_EEPROM_IMAGE_SIZE; i++)
10604 ipw_write8(p, i + IPW_EEPROM_DATA, p->eeprom[i]);
10605 mutex_unlock(&p->mutex);
10606 return 0;
10607 }
10608
10609 static const struct ethtool_ops ipw_ethtool_ops = {
10610 .get_link = ipw_ethtool_get_link,
10611 .get_drvinfo = ipw_ethtool_get_drvinfo,
10612 .get_eeprom_len = ipw_ethtool_get_eeprom_len,
10613 .get_eeprom = ipw_ethtool_get_eeprom,
10614 .set_eeprom = ipw_ethtool_set_eeprom,
10615 };
10616
10617 static irqreturn_t ipw_isr(int irq, void *data)
10618 {
10619 struct ipw_priv *priv = data;
10620 u32 inta, inta_mask;
10621
10622 if (!priv)
10623 return IRQ_NONE;
10624
10625 spin_lock(&priv->irq_lock);
10626
10627 if (!(priv->status & STATUS_INT_ENABLED)) {
10628 /* IRQ is disabled */
10629 goto none;
10630 }
10631
10632 inta = ipw_read32(priv, IPW_INTA_RW);
10633 inta_mask = ipw_read32(priv, IPW_INTA_MASK_R);
10634
10635 if (inta == 0xFFFFFFFF) {
10636 /* Hardware disappeared */
10637 IPW_WARNING("IRQ INTA == 0xFFFFFFFF\n");
10638 goto none;
10639 }
10640
10641 if (!(inta & (IPW_INTA_MASK_ALL & inta_mask))) {
10642 /* Shared interrupt */
10643 goto none;
10644 }
10645
10646 /* tell the device to stop sending interrupts */
10647 __ipw_disable_interrupts(priv);
10648
10649 /* ack current interrupts */
10650 inta &= (IPW_INTA_MASK_ALL & inta_mask);
10651 ipw_write32(priv, IPW_INTA_RW, inta);
10652
10653 /* Cache INTA value for our tasklet */
10654 priv->isr_inta = inta;
10655
10656 tasklet_schedule(&priv->irq_tasklet);
10657
10658 spin_unlock(&priv->irq_lock);
10659
10660 return IRQ_HANDLED;
10661 none:
10662 spin_unlock(&priv->irq_lock);
10663 return IRQ_NONE;
10664 }
10665
10666 static void ipw_rf_kill(void *adapter)
10667 {
10668 struct ipw_priv *priv = adapter;
10669 unsigned long flags;
10670
10671 spin_lock_irqsave(&priv->lock, flags);
10672
10673 if (rf_kill_active(priv)) {
10674 IPW_DEBUG_RF_KILL("RF Kill active, rescheduling GPIO check\n");
10675 if (priv->workqueue)
10676 queue_delayed_work(priv->workqueue,
10677 &priv->rf_kill, 2 * HZ);
10678 goto exit_unlock;
10679 }
10680
10681 /* RF Kill is now disabled, so bring the device back up */
10682
10683 if (!(priv->status & STATUS_RF_KILL_MASK)) {
10684 IPW_DEBUG_RF_KILL("HW RF Kill no longer active, restarting "
10685 "device\n");
10686
10687 /* we can not do an adapter restart while inside an irq lock */
10688 queue_work(priv->workqueue, &priv->adapter_restart);
10689 } else
10690 IPW_DEBUG_RF_KILL("HW RF Kill deactivated. SW RF Kill still "
10691 "enabled\n");
10692
10693 exit_unlock:
10694 spin_unlock_irqrestore(&priv->lock, flags);
10695 }
10696
10697 static void ipw_bg_rf_kill(struct work_struct *work)
10698 {
10699 struct ipw_priv *priv =
10700 container_of(work, struct ipw_priv, rf_kill.work);
10701 mutex_lock(&priv->mutex);
10702 ipw_rf_kill(priv);
10703 mutex_unlock(&priv->mutex);
10704 }
10705
10706 static void ipw_link_up(struct ipw_priv *priv)
10707 {
10708 priv->last_seq_num = -1;
10709 priv->last_frag_num = -1;
10710 priv->last_packet_time = 0;
10711
10712 netif_carrier_on(priv->net_dev);
10713
10714 cancel_delayed_work(&priv->request_scan);
10715 cancel_delayed_work(&priv->request_direct_scan);
10716 cancel_delayed_work(&priv->request_passive_scan);
10717 cancel_delayed_work(&priv->scan_event);
10718 ipw_reset_stats(priv);
10719 /* Ensure the rate is updated immediately */
10720 priv->last_rate = ipw_get_current_rate(priv);
10721 ipw_gather_stats(priv);
10722 ipw_led_link_up(priv);
10723 notify_wx_assoc_event(priv);
10724
10725 if (priv->config & CFG_BACKGROUND_SCAN)
10726 queue_delayed_work(priv->workqueue, &priv->request_scan, HZ);
10727 }
10728
10729 static void ipw_bg_link_up(struct work_struct *work)
10730 {
10731 struct ipw_priv *priv =
10732 container_of(work, struct ipw_priv, link_up);
10733 mutex_lock(&priv->mutex);
10734 ipw_link_up(priv);
10735 mutex_unlock(&priv->mutex);
10736 }
10737
10738 static void ipw_link_down(struct ipw_priv *priv)
10739 {
10740 ipw_led_link_down(priv);
10741 netif_carrier_off(priv->net_dev);
10742 notify_wx_assoc_event(priv);
10743
10744 /* Cancel any queued work ... */
10745 cancel_delayed_work(&priv->request_scan);
10746 cancel_delayed_work(&priv->request_direct_scan);
10747 cancel_delayed_work(&priv->request_passive_scan);
10748 cancel_delayed_work(&priv->adhoc_check);
10749 cancel_delayed_work(&priv->gather_stats);
10750
10751 ipw_reset_stats(priv);
10752
10753 if (!(priv->status & STATUS_EXIT_PENDING)) {
10754 /* Queue up another scan... */
10755 queue_delayed_work(priv->workqueue, &priv->request_scan, 0);
10756 } else
10757 cancel_delayed_work(&priv->scan_event);
10758 }
10759
10760 static void ipw_bg_link_down(struct work_struct *work)
10761 {
10762 struct ipw_priv *priv =
10763 container_of(work, struct ipw_priv, link_down);
10764 mutex_lock(&priv->mutex);
10765 ipw_link_down(priv);
10766 mutex_unlock(&priv->mutex);
10767 }
10768
10769 static int __devinit ipw_setup_deferred_work(struct ipw_priv *priv)
10770 {
10771 int ret = 0;
10772
10773 priv->workqueue = create_workqueue(DRV_NAME);
10774 init_waitqueue_head(&priv->wait_command_queue);
10775 init_waitqueue_head(&priv->wait_state);
10776
10777 INIT_DELAYED_WORK(&priv->adhoc_check, ipw_bg_adhoc_check);
10778 INIT_WORK(&priv->associate, ipw_bg_associate);
10779 INIT_WORK(&priv->disassociate, ipw_bg_disassociate);
10780 INIT_WORK(&priv->system_config, ipw_system_config);
10781 INIT_WORK(&priv->rx_replenish, ipw_bg_rx_queue_replenish);
10782 INIT_WORK(&priv->adapter_restart, ipw_bg_adapter_restart);
10783 INIT_DELAYED_WORK(&priv->rf_kill, ipw_bg_rf_kill);
10784 INIT_WORK(&priv->up, ipw_bg_up);
10785 INIT_WORK(&priv->down, ipw_bg_down);
10786 INIT_DELAYED_WORK(&priv->request_scan, ipw_request_scan);
10787 INIT_DELAYED_WORK(&priv->request_direct_scan, ipw_request_direct_scan);
10788 INIT_DELAYED_WORK(&priv->request_passive_scan, ipw_request_passive_scan);
10789 INIT_DELAYED_WORK(&priv->scan_event, ipw_scan_event);
10790 INIT_DELAYED_WORK(&priv->gather_stats, ipw_bg_gather_stats);
10791 INIT_WORK(&priv->abort_scan, ipw_bg_abort_scan);
10792 INIT_WORK(&priv->roam, ipw_bg_roam);
10793 INIT_DELAYED_WORK(&priv->scan_check, ipw_bg_scan_check);
10794 INIT_WORK(&priv->link_up, ipw_bg_link_up);
10795 INIT_WORK(&priv->link_down, ipw_bg_link_down);
10796 INIT_DELAYED_WORK(&priv->led_link_on, ipw_bg_led_link_on);
10797 INIT_DELAYED_WORK(&priv->led_link_off, ipw_bg_led_link_off);
10798 INIT_DELAYED_WORK(&priv->led_act_off, ipw_bg_led_activity_off);
10799 INIT_WORK(&priv->merge_networks, ipw_merge_adhoc_network);
10800
10801 #ifdef CONFIG_IPW2200_QOS
10802 INIT_WORK(&priv->qos_activate, ipw_bg_qos_activate);
10803 #endif /* CONFIG_IPW2200_QOS */
10804
10805 tasklet_init(&priv->irq_tasklet, (void (*)(unsigned long))
10806 ipw_irq_tasklet, (unsigned long)priv);
10807
10808 return ret;
10809 }
10810
10811 static void shim__set_security(struct net_device *dev,
10812 struct libipw_security *sec)
10813 {
10814 struct ipw_priv *priv = libipw_priv(dev);
10815 int i;
10816 for (i = 0; i < 4; i++) {
10817 if (sec->flags & (1 << i)) {
10818 priv->ieee->sec.encode_alg[i] = sec->encode_alg[i];
10819 priv->ieee->sec.key_sizes[i] = sec->key_sizes[i];
10820 if (sec->key_sizes[i] == 0)
10821 priv->ieee->sec.flags &= ~(1 << i);
10822 else {
10823 memcpy(priv->ieee->sec.keys[i], sec->keys[i],
10824 sec->key_sizes[i]);
10825 priv->ieee->sec.flags |= (1 << i);
10826 }
10827 priv->status |= STATUS_SECURITY_UPDATED;
10828 } else if (sec->level != SEC_LEVEL_1)
10829 priv->ieee->sec.flags &= ~(1 << i);
10830 }
10831
10832 if (sec->flags & SEC_ACTIVE_KEY) {
10833 if (sec->active_key <= 3) {
10834 priv->ieee->sec.active_key = sec->active_key;
10835 priv->ieee->sec.flags |= SEC_ACTIVE_KEY;
10836 } else
10837 priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
10838 priv->status |= STATUS_SECURITY_UPDATED;
10839 } else
10840 priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
10841
10842 if ((sec->flags & SEC_AUTH_MODE) &&
10843 (priv->ieee->sec.auth_mode != sec->auth_mode)) {
10844 priv->ieee->sec.auth_mode = sec->auth_mode;
10845 priv->ieee->sec.flags |= SEC_AUTH_MODE;
10846 if (sec->auth_mode == WLAN_AUTH_SHARED_KEY)
10847 priv->capability |= CAP_SHARED_KEY;
10848 else
10849 priv->capability &= ~CAP_SHARED_KEY;
10850 priv->status |= STATUS_SECURITY_UPDATED;
10851 }
10852
10853 if (sec->flags & SEC_ENABLED && priv->ieee->sec.enabled != sec->enabled) {
10854 priv->ieee->sec.flags |= SEC_ENABLED;
10855 priv->ieee->sec.enabled = sec->enabled;
10856 priv->status |= STATUS_SECURITY_UPDATED;
10857 if (sec->enabled)
10858 priv->capability |= CAP_PRIVACY_ON;
10859 else
10860 priv->capability &= ~CAP_PRIVACY_ON;
10861 }
10862
10863 if (sec->flags & SEC_ENCRYPT)
10864 priv->ieee->sec.encrypt = sec->encrypt;
10865
10866 if (sec->flags & SEC_LEVEL && priv->ieee->sec.level != sec->level) {
10867 priv->ieee->sec.level = sec->level;
10868 priv->ieee->sec.flags |= SEC_LEVEL;
10869 priv->status |= STATUS_SECURITY_UPDATED;
10870 }
10871
10872 if (!priv->ieee->host_encrypt && (sec->flags & SEC_ENCRYPT))
10873 ipw_set_hwcrypto_keys(priv);
10874
10875 /* To match current functionality of ipw2100 (which works well w/
10876 * various supplicants, we don't force a disassociate if the
10877 * privacy capability changes ... */
10878 #if 0
10879 if ((priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) &&
10880 (((priv->assoc_request.capability &
10881 cpu_to_le16(WLAN_CAPABILITY_PRIVACY)) && !sec->enabled) ||
10882 (!(priv->assoc_request.capability &
10883 cpu_to_le16(WLAN_CAPABILITY_PRIVACY)) && sec->enabled))) {
10884 IPW_DEBUG_ASSOC("Disassociating due to capability "
10885 "change.\n");
10886 ipw_disassociate(priv);
10887 }
10888 #endif
10889 }
10890
10891 static int init_supported_rates(struct ipw_priv *priv,
10892 struct ipw_supported_rates *rates)
10893 {
10894 /* TODO: Mask out rates based on priv->rates_mask */
10895
10896 memset(rates, 0, sizeof(*rates));
10897 /* configure supported rates */
10898 switch (priv->ieee->freq_band) {
10899 case LIBIPW_52GHZ_BAND:
10900 rates->ieee_mode = IPW_A_MODE;
10901 rates->purpose = IPW_RATE_CAPABILITIES;
10902 ipw_add_ofdm_scan_rates(rates, LIBIPW_CCK_MODULATION,
10903 LIBIPW_OFDM_DEFAULT_RATES_MASK);
10904 break;
10905
10906 default: /* Mixed or 2.4Ghz */
10907 rates->ieee_mode = IPW_G_MODE;
10908 rates->purpose = IPW_RATE_CAPABILITIES;
10909 ipw_add_cck_scan_rates(rates, LIBIPW_CCK_MODULATION,
10910 LIBIPW_CCK_DEFAULT_RATES_MASK);
10911 if (priv->ieee->modulation & LIBIPW_OFDM_MODULATION) {
10912 ipw_add_ofdm_scan_rates(rates, LIBIPW_CCK_MODULATION,
10913 LIBIPW_OFDM_DEFAULT_RATES_MASK);
10914 }
10915 break;
10916 }
10917
10918 return 0;
10919 }
10920
10921 static int ipw_config(struct ipw_priv *priv)
10922 {
10923 /* This is only called from ipw_up, which resets/reloads the firmware
10924 so, we don't need to first disable the card before we configure
10925 it */
10926 if (ipw_set_tx_power(priv))
10927 goto error;
10928
10929 /* initialize adapter address */
10930 if (ipw_send_adapter_address(priv, priv->net_dev->dev_addr))
10931 goto error;
10932
10933 /* set basic system config settings */
10934 init_sys_config(&priv->sys_config);
10935
10936 /* Support Bluetooth if we have BT h/w on board, and user wants to.
10937 * Does not support BT priority yet (don't abort or defer our Tx) */
10938 if (bt_coexist) {
10939 unsigned char bt_caps = priv->eeprom[EEPROM_SKU_CAPABILITY];
10940
10941 if (bt_caps & EEPROM_SKU_CAP_BT_CHANNEL_SIG)
10942 priv->sys_config.bt_coexistence
10943 |= CFG_BT_COEXISTENCE_SIGNAL_CHNL;
10944 if (bt_caps & EEPROM_SKU_CAP_BT_OOB)
10945 priv->sys_config.bt_coexistence
10946 |= CFG_BT_COEXISTENCE_OOB;
10947 }
10948
10949 #ifdef CONFIG_IPW2200_PROMISCUOUS
10950 if (priv->prom_net_dev && netif_running(priv->prom_net_dev)) {
10951 priv->sys_config.accept_all_data_frames = 1;
10952 priv->sys_config.accept_non_directed_frames = 1;
10953 priv->sys_config.accept_all_mgmt_bcpr = 1;
10954 priv->sys_config.accept_all_mgmt_frames = 1;
10955 }
10956 #endif
10957
10958 if (priv->ieee->iw_mode == IW_MODE_ADHOC)
10959 priv->sys_config.answer_broadcast_ssid_probe = 1;
10960 else
10961 priv->sys_config.answer_broadcast_ssid_probe = 0;
10962
10963 if (ipw_send_system_config(priv))
10964 goto error;
10965
10966 init_supported_rates(priv, &priv->rates);
10967 if (ipw_send_supported_rates(priv, &priv->rates))
10968 goto error;
10969
10970 /* Set request-to-send threshold */
10971 if (priv->rts_threshold) {
10972 if (ipw_send_rts_threshold(priv, priv->rts_threshold))
10973 goto error;
10974 }
10975 #ifdef CONFIG_IPW2200_QOS
10976 IPW_DEBUG_QOS("QoS: call ipw_qos_activate\n");
10977 ipw_qos_activate(priv, NULL);
10978 #endif /* CONFIG_IPW2200_QOS */
10979
10980 if (ipw_set_random_seed(priv))
10981 goto error;
10982
10983 /* final state transition to the RUN state */
10984 if (ipw_send_host_complete(priv))
10985 goto error;
10986
10987 priv->status |= STATUS_INIT;
10988
10989 ipw_led_init(priv);
10990 ipw_led_radio_on(priv);
10991 priv->notif_missed_beacons = 0;
10992
10993 /* Set hardware WEP key if it is configured. */
10994 if ((priv->capability & CAP_PRIVACY_ON) &&
10995 (priv->ieee->sec.level == SEC_LEVEL_1) &&
10996 !(priv->ieee->host_encrypt || priv->ieee->host_decrypt))
10997 ipw_set_hwcrypto_keys(priv);
10998
10999 return 0;
11000
11001 error:
11002 return -EIO;
11003 }
11004
11005 /*
11006 * NOTE:
11007 *
11008 * These tables have been tested in conjunction with the
11009 * Intel PRO/Wireless 2200BG and 2915ABG Network Connection Adapters.
11010 *
11011 * Altering this values, using it on other hardware, or in geographies
11012 * not intended for resale of the above mentioned Intel adapters has
11013 * not been tested.
11014 *
11015 * Remember to update the table in README.ipw2200 when changing this
11016 * table.
11017 *
11018 */
11019 static const struct libipw_geo ipw_geos[] = {
11020 { /* Restricted */
11021 "---",
11022 .bg_channels = 11,
11023 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11024 {2427, 4}, {2432, 5}, {2437, 6},
11025 {2442, 7}, {2447, 8}, {2452, 9},
11026 {2457, 10}, {2462, 11}},
11027 },
11028
11029 { /* Custom US/Canada */
11030 "ZZF",
11031 .bg_channels = 11,
11032 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11033 {2427, 4}, {2432, 5}, {2437, 6},
11034 {2442, 7}, {2447, 8}, {2452, 9},
11035 {2457, 10}, {2462, 11}},
11036 .a_channels = 8,
11037 .a = {{5180, 36},
11038 {5200, 40},
11039 {5220, 44},
11040 {5240, 48},
11041 {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
11042 {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
11043 {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
11044 {5320, 64, LIBIPW_CH_PASSIVE_ONLY}},
11045 },
11046
11047 { /* Rest of World */
11048 "ZZD",
11049 .bg_channels = 13,
11050 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11051 {2427, 4}, {2432, 5}, {2437, 6},
11052 {2442, 7}, {2447, 8}, {2452, 9},
11053 {2457, 10}, {2462, 11}, {2467, 12},
11054 {2472, 13}},
11055 },
11056
11057 { /* Custom USA & Europe & High */
11058 "ZZA",
11059 .bg_channels = 11,
11060 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11061 {2427, 4}, {2432, 5}, {2437, 6},
11062 {2442, 7}, {2447, 8}, {2452, 9},
11063 {2457, 10}, {2462, 11}},
11064 .a_channels = 13,
11065 .a = {{5180, 36},
11066 {5200, 40},
11067 {5220, 44},
11068 {5240, 48},
11069 {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
11070 {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
11071 {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
11072 {5320, 64, LIBIPW_CH_PASSIVE_ONLY},
11073 {5745, 149},
11074 {5765, 153},
11075 {5785, 157},
11076 {5805, 161},
11077 {5825, 165}},
11078 },
11079
11080 { /* Custom NA & Europe */
11081 "ZZB",
11082 .bg_channels = 11,
11083 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11084 {2427, 4}, {2432, 5}, {2437, 6},
11085 {2442, 7}, {2447, 8}, {2452, 9},
11086 {2457, 10}, {2462, 11}},
11087 .a_channels = 13,
11088 .a = {{5180, 36},
11089 {5200, 40},
11090 {5220, 44},
11091 {5240, 48},
11092 {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
11093 {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
11094 {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
11095 {5320, 64, LIBIPW_CH_PASSIVE_ONLY},
11096 {5745, 149, LIBIPW_CH_PASSIVE_ONLY},
11097 {5765, 153, LIBIPW_CH_PASSIVE_ONLY},
11098 {5785, 157, LIBIPW_CH_PASSIVE_ONLY},
11099 {5805, 161, LIBIPW_CH_PASSIVE_ONLY},
11100 {5825, 165, LIBIPW_CH_PASSIVE_ONLY}},
11101 },
11102
11103 { /* Custom Japan */
11104 "ZZC",
11105 .bg_channels = 11,
11106 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11107 {2427, 4}, {2432, 5}, {2437, 6},
11108 {2442, 7}, {2447, 8}, {2452, 9},
11109 {2457, 10}, {2462, 11}},
11110 .a_channels = 4,
11111 .a = {{5170, 34}, {5190, 38},
11112 {5210, 42}, {5230, 46}},
11113 },
11114
11115 { /* Custom */
11116 "ZZM",
11117 .bg_channels = 11,
11118 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11119 {2427, 4}, {2432, 5}, {2437, 6},
11120 {2442, 7}, {2447, 8}, {2452, 9},
11121 {2457, 10}, {2462, 11}},
11122 },
11123
11124 { /* Europe */
11125 "ZZE",
11126 .bg_channels = 13,
11127 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11128 {2427, 4}, {2432, 5}, {2437, 6},
11129 {2442, 7}, {2447, 8}, {2452, 9},
11130 {2457, 10}, {2462, 11}, {2467, 12},
11131 {2472, 13}},
11132 .a_channels = 19,
11133 .a = {{5180, 36},
11134 {5200, 40},
11135 {5220, 44},
11136 {5240, 48},
11137 {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
11138 {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
11139 {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
11140 {5320, 64, LIBIPW_CH_PASSIVE_ONLY},
11141 {5500, 100, LIBIPW_CH_PASSIVE_ONLY},
11142 {5520, 104, LIBIPW_CH_PASSIVE_ONLY},
11143 {5540, 108, LIBIPW_CH_PASSIVE_ONLY},
11144 {5560, 112, LIBIPW_CH_PASSIVE_ONLY},
11145 {5580, 116, LIBIPW_CH_PASSIVE_ONLY},
11146 {5600, 120, LIBIPW_CH_PASSIVE_ONLY},
11147 {5620, 124, LIBIPW_CH_PASSIVE_ONLY},
11148 {5640, 128, LIBIPW_CH_PASSIVE_ONLY},
11149 {5660, 132, LIBIPW_CH_PASSIVE_ONLY},
11150 {5680, 136, LIBIPW_CH_PASSIVE_ONLY},
11151 {5700, 140, LIBIPW_CH_PASSIVE_ONLY}},
11152 },
11153
11154 { /* Custom Japan */
11155 "ZZJ",
11156 .bg_channels = 14,
11157 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11158 {2427, 4}, {2432, 5}, {2437, 6},
11159 {2442, 7}, {2447, 8}, {2452, 9},
11160 {2457, 10}, {2462, 11}, {2467, 12},
11161 {2472, 13}, {2484, 14, LIBIPW_CH_B_ONLY}},
11162 .a_channels = 4,
11163 .a = {{5170, 34}, {5190, 38},
11164 {5210, 42}, {5230, 46}},
11165 },
11166
11167 { /* Rest of World */
11168 "ZZR",
11169 .bg_channels = 14,
11170 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11171 {2427, 4}, {2432, 5}, {2437, 6},
11172 {2442, 7}, {2447, 8}, {2452, 9},
11173 {2457, 10}, {2462, 11}, {2467, 12},
11174 {2472, 13}, {2484, 14, LIBIPW_CH_B_ONLY |
11175 LIBIPW_CH_PASSIVE_ONLY}},
11176 },
11177
11178 { /* High Band */
11179 "ZZH",
11180 .bg_channels = 13,
11181 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11182 {2427, 4}, {2432, 5}, {2437, 6},
11183 {2442, 7}, {2447, 8}, {2452, 9},
11184 {2457, 10}, {2462, 11},
11185 {2467, 12, LIBIPW_CH_PASSIVE_ONLY},
11186 {2472, 13, LIBIPW_CH_PASSIVE_ONLY}},
11187 .a_channels = 4,
11188 .a = {{5745, 149}, {5765, 153},
11189 {5785, 157}, {5805, 161}},
11190 },
11191
11192 { /* Custom Europe */
11193 "ZZG",
11194 .bg_channels = 13,
11195 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11196 {2427, 4}, {2432, 5}, {2437, 6},
11197 {2442, 7}, {2447, 8}, {2452, 9},
11198 {2457, 10}, {2462, 11},
11199 {2467, 12}, {2472, 13}},
11200 .a_channels = 4,
11201 .a = {{5180, 36}, {5200, 40},
11202 {5220, 44}, {5240, 48}},
11203 },
11204
11205 { /* Europe */
11206 "ZZK",
11207 .bg_channels = 13,
11208 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11209 {2427, 4}, {2432, 5}, {2437, 6},
11210 {2442, 7}, {2447, 8}, {2452, 9},
11211 {2457, 10}, {2462, 11},
11212 {2467, 12, LIBIPW_CH_PASSIVE_ONLY},
11213 {2472, 13, LIBIPW_CH_PASSIVE_ONLY}},
11214 .a_channels = 24,
11215 .a = {{5180, 36, LIBIPW_CH_PASSIVE_ONLY},
11216 {5200, 40, LIBIPW_CH_PASSIVE_ONLY},
11217 {5220, 44, LIBIPW_CH_PASSIVE_ONLY},
11218 {5240, 48, LIBIPW_CH_PASSIVE_ONLY},
11219 {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
11220 {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
11221 {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
11222 {5320, 64, LIBIPW_CH_PASSIVE_ONLY},
11223 {5500, 100, LIBIPW_CH_PASSIVE_ONLY},
11224 {5520, 104, LIBIPW_CH_PASSIVE_ONLY},
11225 {5540, 108, LIBIPW_CH_PASSIVE_ONLY},
11226 {5560, 112, LIBIPW_CH_PASSIVE_ONLY},
11227 {5580, 116, LIBIPW_CH_PASSIVE_ONLY},
11228 {5600, 120, LIBIPW_CH_PASSIVE_ONLY},
11229 {5620, 124, LIBIPW_CH_PASSIVE_ONLY},
11230 {5640, 128, LIBIPW_CH_PASSIVE_ONLY},
11231 {5660, 132, LIBIPW_CH_PASSIVE_ONLY},
11232 {5680, 136, LIBIPW_CH_PASSIVE_ONLY},
11233 {5700, 140, LIBIPW_CH_PASSIVE_ONLY},
11234 {5745, 149, LIBIPW_CH_PASSIVE_ONLY},
11235 {5765, 153, LIBIPW_CH_PASSIVE_ONLY},
11236 {5785, 157, LIBIPW_CH_PASSIVE_ONLY},
11237 {5805, 161, LIBIPW_CH_PASSIVE_ONLY},
11238 {5825, 165, LIBIPW_CH_PASSIVE_ONLY}},
11239 },
11240
11241 { /* Europe */
11242 "ZZL",
11243 .bg_channels = 11,
11244 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11245 {2427, 4}, {2432, 5}, {2437, 6},
11246 {2442, 7}, {2447, 8}, {2452, 9},
11247 {2457, 10}, {2462, 11}},
11248 .a_channels = 13,
11249 .a = {{5180, 36, LIBIPW_CH_PASSIVE_ONLY},
11250 {5200, 40, LIBIPW_CH_PASSIVE_ONLY},
11251 {5220, 44, LIBIPW_CH_PASSIVE_ONLY},
11252 {5240, 48, LIBIPW_CH_PASSIVE_ONLY},
11253 {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
11254 {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
11255 {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
11256 {5320, 64, LIBIPW_CH_PASSIVE_ONLY},
11257 {5745, 149, LIBIPW_CH_PASSIVE_ONLY},
11258 {5765, 153, LIBIPW_CH_PASSIVE_ONLY},
11259 {5785, 157, LIBIPW_CH_PASSIVE_ONLY},
11260 {5805, 161, LIBIPW_CH_PASSIVE_ONLY},
11261 {5825, 165, LIBIPW_CH_PASSIVE_ONLY}},
11262 }
11263 };
11264
11265 #define MAX_HW_RESTARTS 5
11266 static int ipw_up(struct ipw_priv *priv)
11267 {
11268 int rc, i, j;
11269
11270 /* Age scan list entries found before suspend */
11271 if (priv->suspend_time) {
11272 libipw_networks_age(priv->ieee, priv->suspend_time);
11273 priv->suspend_time = 0;
11274 }
11275
11276 if (priv->status & STATUS_EXIT_PENDING)
11277 return -EIO;
11278
11279 if (cmdlog && !priv->cmdlog) {
11280 priv->cmdlog = kcalloc(cmdlog, sizeof(*priv->cmdlog),
11281 GFP_KERNEL);
11282 if (priv->cmdlog == NULL) {
11283 IPW_ERROR("Error allocating %d command log entries.\n",
11284 cmdlog);
11285 return -ENOMEM;
11286 } else {
11287 priv->cmdlog_len = cmdlog;
11288 }
11289 }
11290
11291 for (i = 0; i < MAX_HW_RESTARTS; i++) {
11292 /* Load the microcode, firmware, and eeprom.
11293 * Also start the clocks. */
11294 rc = ipw_load(priv);
11295 if (rc) {
11296 IPW_ERROR("Unable to load firmware: %d\n", rc);
11297 return rc;
11298 }
11299
11300 ipw_init_ordinals(priv);
11301 if (!(priv->config & CFG_CUSTOM_MAC))
11302 eeprom_parse_mac(priv, priv->mac_addr);
11303 memcpy(priv->net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
11304 memcpy(priv->net_dev->perm_addr, priv->mac_addr, ETH_ALEN);
11305
11306 for (j = 0; j < ARRAY_SIZE(ipw_geos); j++) {
11307 if (!memcmp(&priv->eeprom[EEPROM_COUNTRY_CODE],
11308 ipw_geos[j].name, 3))
11309 break;
11310 }
11311 if (j == ARRAY_SIZE(ipw_geos)) {
11312 IPW_WARNING("SKU [%c%c%c] not recognized.\n",
11313 priv->eeprom[EEPROM_COUNTRY_CODE + 0],
11314 priv->eeprom[EEPROM_COUNTRY_CODE + 1],
11315 priv->eeprom[EEPROM_COUNTRY_CODE + 2]);
11316 j = 0;
11317 }
11318 if (libipw_set_geo(priv->ieee, &ipw_geos[j])) {
11319 IPW_WARNING("Could not set geography.");
11320 return 0;
11321 }
11322
11323 if (priv->status & STATUS_RF_KILL_SW) {
11324 IPW_WARNING("Radio disabled by module parameter.\n");
11325 return 0;
11326 } else if (rf_kill_active(priv)) {
11327 IPW_WARNING("Radio Frequency Kill Switch is On:\n"
11328 "Kill switch must be turned off for "
11329 "wireless networking to work.\n");
11330 queue_delayed_work(priv->workqueue, &priv->rf_kill,
11331 2 * HZ);
11332 return 0;
11333 }
11334
11335 rc = ipw_config(priv);
11336 if (!rc) {
11337 IPW_DEBUG_INFO("Configured device on count %i\n", i);
11338
11339 /* If configure to try and auto-associate, kick
11340 * off a scan. */
11341 queue_delayed_work(priv->workqueue,
11342 &priv->request_scan, 0);
11343
11344 return 0;
11345 }
11346
11347 IPW_DEBUG_INFO("Device configuration failed: 0x%08X\n", rc);
11348 IPW_DEBUG_INFO("Failed to config device on retry %d of %d\n",
11349 i, MAX_HW_RESTARTS);
11350
11351 /* We had an error bringing up the hardware, so take it
11352 * all the way back down so we can try again */
11353 ipw_down(priv);
11354 }
11355
11356 /* tried to restart and config the device for as long as our
11357 * patience could withstand */
11358 IPW_ERROR("Unable to initialize device after %d attempts.\n", i);
11359
11360 return -EIO;
11361 }
11362
11363 static void ipw_bg_up(struct work_struct *work)
11364 {
11365 struct ipw_priv *priv =
11366 container_of(work, struct ipw_priv, up);
11367 mutex_lock(&priv->mutex);
11368 ipw_up(priv);
11369 mutex_unlock(&priv->mutex);
11370 }
11371
11372 static void ipw_deinit(struct ipw_priv *priv)
11373 {
11374 int i;
11375
11376 if (priv->status & STATUS_SCANNING) {
11377 IPW_DEBUG_INFO("Aborting scan during shutdown.\n");
11378 ipw_abort_scan(priv);
11379 }
11380
11381 if (priv->status & STATUS_ASSOCIATED) {
11382 IPW_DEBUG_INFO("Disassociating during shutdown.\n");
11383 ipw_disassociate(priv);
11384 }
11385
11386 ipw_led_shutdown(priv);
11387
11388 /* Wait up to 1s for status to change to not scanning and not
11389 * associated (disassociation can take a while for a ful 802.11
11390 * exchange */
11391 for (i = 1000; i && (priv->status &
11392 (STATUS_DISASSOCIATING |
11393 STATUS_ASSOCIATED | STATUS_SCANNING)); i--)
11394 udelay(10);
11395
11396 if (priv->status & (STATUS_DISASSOCIATING |
11397 STATUS_ASSOCIATED | STATUS_SCANNING))
11398 IPW_DEBUG_INFO("Still associated or scanning...\n");
11399 else
11400 IPW_DEBUG_INFO("Took %dms to de-init\n", 1000 - i);
11401
11402 /* Attempt to disable the card */
11403 ipw_send_card_disable(priv, 0);
11404
11405 priv->status &= ~STATUS_INIT;
11406 }
11407
11408 static void ipw_down(struct ipw_priv *priv)
11409 {
11410 int exit_pending = priv->status & STATUS_EXIT_PENDING;
11411
11412 priv->status |= STATUS_EXIT_PENDING;
11413
11414 if (ipw_is_init(priv))
11415 ipw_deinit(priv);
11416
11417 /* Wipe out the EXIT_PENDING status bit if we are not actually
11418 * exiting the module */
11419 if (!exit_pending)
11420 priv->status &= ~STATUS_EXIT_PENDING;
11421
11422 /* tell the device to stop sending interrupts */
11423 ipw_disable_interrupts(priv);
11424
11425 /* Clear all bits but the RF Kill */
11426 priv->status &= STATUS_RF_KILL_MASK | STATUS_EXIT_PENDING;
11427 netif_carrier_off(priv->net_dev);
11428
11429 ipw_stop_nic(priv);
11430
11431 ipw_led_radio_off(priv);
11432 }
11433
11434 static void ipw_bg_down(struct work_struct *work)
11435 {
11436 struct ipw_priv *priv =
11437 container_of(work, struct ipw_priv, down);
11438 mutex_lock(&priv->mutex);
11439 ipw_down(priv);
11440 mutex_unlock(&priv->mutex);
11441 }
11442
11443 /* Called by register_netdev() */
11444 static int ipw_net_init(struct net_device *dev)
11445 {
11446 int i, rc = 0;
11447 struct ipw_priv *priv = libipw_priv(dev);
11448 const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
11449 struct wireless_dev *wdev = &priv->ieee->wdev;
11450 mutex_lock(&priv->mutex);
11451
11452 if (ipw_up(priv)) {
11453 rc = -EIO;
11454 goto out;
11455 }
11456
11457 memcpy(wdev->wiphy->perm_addr, priv->mac_addr, ETH_ALEN);
11458
11459 /* fill-out priv->ieee->bg_band */
11460 if (geo->bg_channels) {
11461 struct ieee80211_supported_band *bg_band = &priv->ieee->bg_band;
11462
11463 bg_band->band = IEEE80211_BAND_2GHZ;
11464 bg_band->n_channels = geo->bg_channels;
11465 bg_band->channels =
11466 kzalloc(geo->bg_channels *
11467 sizeof(struct ieee80211_channel), GFP_KERNEL);
11468 /* translate geo->bg to bg_band.channels */
11469 for (i = 0; i < geo->bg_channels; i++) {
11470 bg_band->channels[i].band = IEEE80211_BAND_2GHZ;
11471 bg_band->channels[i].center_freq = geo->bg[i].freq;
11472 bg_band->channels[i].hw_value = geo->bg[i].channel;
11473 bg_band->channels[i].max_power = geo->bg[i].max_power;
11474 if (geo->bg[i].flags & LIBIPW_CH_PASSIVE_ONLY)
11475 bg_band->channels[i].flags |=
11476 IEEE80211_CHAN_PASSIVE_SCAN;
11477 if (geo->bg[i].flags & LIBIPW_CH_NO_IBSS)
11478 bg_band->channels[i].flags |=
11479 IEEE80211_CHAN_NO_IBSS;
11480 if (geo->bg[i].flags & LIBIPW_CH_RADAR_DETECT)
11481 bg_band->channels[i].flags |=
11482 IEEE80211_CHAN_RADAR;
11483 /* No equivalent for LIBIPW_CH_80211H_RULES,
11484 LIBIPW_CH_UNIFORM_SPREADING, or
11485 LIBIPW_CH_B_ONLY... */
11486 }
11487 /* point at bitrate info */
11488 bg_band->bitrates = ipw2200_bg_rates;
11489 bg_band->n_bitrates = ipw2200_num_bg_rates;
11490
11491 wdev->wiphy->bands[IEEE80211_BAND_2GHZ] = bg_band;
11492 }
11493
11494 /* fill-out priv->ieee->a_band */
11495 if (geo->a_channels) {
11496 struct ieee80211_supported_band *a_band = &priv->ieee->a_band;
11497
11498 a_band->band = IEEE80211_BAND_5GHZ;
11499 a_band->n_channels = geo->a_channels;
11500 a_band->channels =
11501 kzalloc(geo->a_channels *
11502 sizeof(struct ieee80211_channel), GFP_KERNEL);
11503 /* translate geo->bg to a_band.channels */
11504 for (i = 0; i < geo->a_channels; i++) {
11505 a_band->channels[i].band = IEEE80211_BAND_2GHZ;
11506 a_band->channels[i].center_freq = geo->a[i].freq;
11507 a_band->channels[i].hw_value = geo->a[i].channel;
11508 a_band->channels[i].max_power = geo->a[i].max_power;
11509 if (geo->a[i].flags & LIBIPW_CH_PASSIVE_ONLY)
11510 a_band->channels[i].flags |=
11511 IEEE80211_CHAN_PASSIVE_SCAN;
11512 if (geo->a[i].flags & LIBIPW_CH_NO_IBSS)
11513 a_band->channels[i].flags |=
11514 IEEE80211_CHAN_NO_IBSS;
11515 if (geo->a[i].flags & LIBIPW_CH_RADAR_DETECT)
11516 a_band->channels[i].flags |=
11517 IEEE80211_CHAN_RADAR;
11518 /* No equivalent for LIBIPW_CH_80211H_RULES,
11519 LIBIPW_CH_UNIFORM_SPREADING, or
11520 LIBIPW_CH_B_ONLY... */
11521 }
11522 /* point at bitrate info */
11523 a_band->bitrates = ipw2200_a_rates;
11524 a_band->n_bitrates = ipw2200_num_a_rates;
11525
11526 wdev->wiphy->bands[IEEE80211_BAND_5GHZ] = a_band;
11527 }
11528
11529 set_wiphy_dev(wdev->wiphy, &priv->pci_dev->dev);
11530
11531 /* With that information in place, we can now register the wiphy... */
11532 if (wiphy_register(wdev->wiphy)) {
11533 rc = -EIO;
11534 goto out;
11535 }
11536
11537 out:
11538 mutex_unlock(&priv->mutex);
11539 return rc;
11540 }
11541
11542 /* PCI driver stuff */
11543 static DEFINE_PCI_DEVICE_TABLE(card_ids) = {
11544 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2701, 0, 0, 0},
11545 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2702, 0, 0, 0},
11546 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2711, 0, 0, 0},
11547 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2712, 0, 0, 0},
11548 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2721, 0, 0, 0},
11549 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2722, 0, 0, 0},
11550 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2731, 0, 0, 0},
11551 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2732, 0, 0, 0},
11552 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2741, 0, 0, 0},
11553 {PCI_VENDOR_ID_INTEL, 0x1043, 0x103c, 0x2741, 0, 0, 0},
11554 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2742, 0, 0, 0},
11555 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2751, 0, 0, 0},
11556 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2752, 0, 0, 0},
11557 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2753, 0, 0, 0},
11558 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2754, 0, 0, 0},
11559 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2761, 0, 0, 0},
11560 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2762, 0, 0, 0},
11561 {PCI_VDEVICE(INTEL, 0x104f), 0},
11562 {PCI_VDEVICE(INTEL, 0x4220), 0}, /* BG */
11563 {PCI_VDEVICE(INTEL, 0x4221), 0}, /* BG */
11564 {PCI_VDEVICE(INTEL, 0x4223), 0}, /* ABG */
11565 {PCI_VDEVICE(INTEL, 0x4224), 0}, /* ABG */
11566
11567 /* required last entry */
11568 {0,}
11569 };
11570
11571 MODULE_DEVICE_TABLE(pci, card_ids);
11572
11573 static struct attribute *ipw_sysfs_entries[] = {
11574 &dev_attr_rf_kill.attr,
11575 &dev_attr_direct_dword.attr,
11576 &dev_attr_indirect_byte.attr,
11577 &dev_attr_indirect_dword.attr,
11578 &dev_attr_mem_gpio_reg.attr,
11579 &dev_attr_command_event_reg.attr,
11580 &dev_attr_nic_type.attr,
11581 &dev_attr_status.attr,
11582 &dev_attr_cfg.attr,
11583 &dev_attr_error.attr,
11584 &dev_attr_event_log.attr,
11585 &dev_attr_cmd_log.attr,
11586 &dev_attr_eeprom_delay.attr,
11587 &dev_attr_ucode_version.attr,
11588 &dev_attr_rtc.attr,
11589 &dev_attr_scan_age.attr,
11590 &dev_attr_led.attr,
11591 &dev_attr_speed_scan.attr,
11592 &dev_attr_net_stats.attr,
11593 &dev_attr_channels.attr,
11594 #ifdef CONFIG_IPW2200_PROMISCUOUS
11595 &dev_attr_rtap_iface.attr,
11596 &dev_attr_rtap_filter.attr,
11597 #endif
11598 NULL
11599 };
11600
11601 static struct attribute_group ipw_attribute_group = {
11602 .name = NULL, /* put in device directory */
11603 .attrs = ipw_sysfs_entries,
11604 };
11605
11606 #ifdef CONFIG_IPW2200_PROMISCUOUS
11607 static int ipw_prom_open(struct net_device *dev)
11608 {
11609 struct ipw_prom_priv *prom_priv = libipw_priv(dev);
11610 struct ipw_priv *priv = prom_priv->priv;
11611
11612 IPW_DEBUG_INFO("prom dev->open\n");
11613 netif_carrier_off(dev);
11614
11615 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
11616 priv->sys_config.accept_all_data_frames = 1;
11617 priv->sys_config.accept_non_directed_frames = 1;
11618 priv->sys_config.accept_all_mgmt_bcpr = 1;
11619 priv->sys_config.accept_all_mgmt_frames = 1;
11620
11621 ipw_send_system_config(priv);
11622 }
11623
11624 return 0;
11625 }
11626
11627 static int ipw_prom_stop(struct net_device *dev)
11628 {
11629 struct ipw_prom_priv *prom_priv = libipw_priv(dev);
11630 struct ipw_priv *priv = prom_priv->priv;
11631
11632 IPW_DEBUG_INFO("prom dev->stop\n");
11633
11634 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
11635 priv->sys_config.accept_all_data_frames = 0;
11636 priv->sys_config.accept_non_directed_frames = 0;
11637 priv->sys_config.accept_all_mgmt_bcpr = 0;
11638 priv->sys_config.accept_all_mgmt_frames = 0;
11639
11640 ipw_send_system_config(priv);
11641 }
11642
11643 return 0;
11644 }
11645
11646 static netdev_tx_t ipw_prom_hard_start_xmit(struct sk_buff *skb,
11647 struct net_device *dev)
11648 {
11649 IPW_DEBUG_INFO("prom dev->xmit\n");
11650 dev_kfree_skb(skb);
11651 return NETDEV_TX_OK;
11652 }
11653
11654 static const struct net_device_ops ipw_prom_netdev_ops = {
11655 .ndo_open = ipw_prom_open,
11656 .ndo_stop = ipw_prom_stop,
11657 .ndo_start_xmit = ipw_prom_hard_start_xmit,
11658 .ndo_change_mtu = libipw_change_mtu,
11659 .ndo_set_mac_address = eth_mac_addr,
11660 .ndo_validate_addr = eth_validate_addr,
11661 };
11662
11663 static int ipw_prom_alloc(struct ipw_priv *priv)
11664 {
11665 int rc = 0;
11666
11667 if (priv->prom_net_dev)
11668 return -EPERM;
11669
11670 priv->prom_net_dev = alloc_ieee80211(sizeof(struct ipw_prom_priv), 1);
11671 if (priv->prom_net_dev == NULL)
11672 return -ENOMEM;
11673
11674 priv->prom_priv = libipw_priv(priv->prom_net_dev);
11675 priv->prom_priv->ieee = netdev_priv(priv->prom_net_dev);
11676 priv->prom_priv->priv = priv;
11677
11678 strcpy(priv->prom_net_dev->name, "rtap%d");
11679 memcpy(priv->prom_net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
11680
11681 priv->prom_net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
11682 priv->prom_net_dev->netdev_ops = &ipw_prom_netdev_ops;
11683
11684 priv->prom_priv->ieee->iw_mode = IW_MODE_MONITOR;
11685 SET_NETDEV_DEV(priv->prom_net_dev, &priv->pci_dev->dev);
11686
11687 rc = register_netdev(priv->prom_net_dev);
11688 if (rc) {
11689 free_ieee80211(priv->prom_net_dev, 1);
11690 priv->prom_net_dev = NULL;
11691 return rc;
11692 }
11693
11694 return 0;
11695 }
11696
11697 static void ipw_prom_free(struct ipw_priv *priv)
11698 {
11699 if (!priv->prom_net_dev)
11700 return;
11701
11702 unregister_netdev(priv->prom_net_dev);
11703 free_ieee80211(priv->prom_net_dev, 1);
11704
11705 priv->prom_net_dev = NULL;
11706 }
11707
11708 #endif
11709
11710 static const struct net_device_ops ipw_netdev_ops = {
11711 .ndo_init = ipw_net_init,
11712 .ndo_open = ipw_net_open,
11713 .ndo_stop = ipw_net_stop,
11714 .ndo_set_multicast_list = ipw_net_set_multicast_list,
11715 .ndo_set_mac_address = ipw_net_set_mac_address,
11716 .ndo_start_xmit = libipw_xmit,
11717 .ndo_change_mtu = libipw_change_mtu,
11718 .ndo_validate_addr = eth_validate_addr,
11719 };
11720
11721 static int __devinit ipw_pci_probe(struct pci_dev *pdev,
11722 const struct pci_device_id *ent)
11723 {
11724 int err = 0;
11725 struct net_device *net_dev;
11726 void __iomem *base;
11727 u32 length, val;
11728 struct ipw_priv *priv;
11729 int i;
11730
11731 net_dev = alloc_ieee80211(sizeof(struct ipw_priv), 0);
11732 if (net_dev == NULL) {
11733 err = -ENOMEM;
11734 goto out;
11735 }
11736
11737 priv = libipw_priv(net_dev);
11738 priv->ieee = netdev_priv(net_dev);
11739
11740 priv->net_dev = net_dev;
11741 priv->pci_dev = pdev;
11742 ipw_debug_level = debug;
11743 spin_lock_init(&priv->irq_lock);
11744 spin_lock_init(&priv->lock);
11745 for (i = 0; i < IPW_IBSS_MAC_HASH_SIZE; i++)
11746 INIT_LIST_HEAD(&priv->ibss_mac_hash[i]);
11747
11748 mutex_init(&priv->mutex);
11749 if (pci_enable_device(pdev)) {
11750 err = -ENODEV;
11751 goto out_free_ieee80211;
11752 }
11753
11754 pci_set_master(pdev);
11755
11756 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
11757 if (!err)
11758 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
11759 if (err) {
11760 printk(KERN_WARNING DRV_NAME ": No suitable DMA available.\n");
11761 goto out_pci_disable_device;
11762 }
11763
11764 pci_set_drvdata(pdev, priv);
11765
11766 err = pci_request_regions(pdev, DRV_NAME);
11767 if (err)
11768 goto out_pci_disable_device;
11769
11770 /* We disable the RETRY_TIMEOUT register (0x41) to keep
11771 * PCI Tx retries from interfering with C3 CPU state */
11772 pci_read_config_dword(pdev, 0x40, &val);
11773 if ((val & 0x0000ff00) != 0)
11774 pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
11775
11776 length = pci_resource_len(pdev, 0);
11777 priv->hw_len = length;
11778
11779 base = pci_ioremap_bar(pdev, 0);
11780 if (!base) {
11781 err = -ENODEV;
11782 goto out_pci_release_regions;
11783 }
11784
11785 priv->hw_base = base;
11786 IPW_DEBUG_INFO("pci_resource_len = 0x%08x\n", length);
11787 IPW_DEBUG_INFO("pci_resource_base = %p\n", base);
11788
11789 err = ipw_setup_deferred_work(priv);
11790 if (err) {
11791 IPW_ERROR("Unable to setup deferred work\n");
11792 goto out_iounmap;
11793 }
11794
11795 ipw_sw_reset(priv, 1);
11796
11797 err = request_irq(pdev->irq, ipw_isr, IRQF_SHARED, DRV_NAME, priv);
11798 if (err) {
11799 IPW_ERROR("Error allocating IRQ %d\n", pdev->irq);
11800 goto out_destroy_workqueue;
11801 }
11802
11803 SET_NETDEV_DEV(net_dev, &pdev->dev);
11804
11805 mutex_lock(&priv->mutex);
11806
11807 priv->ieee->hard_start_xmit = ipw_net_hard_start_xmit;
11808 priv->ieee->set_security = shim__set_security;
11809 priv->ieee->is_queue_full = ipw_net_is_queue_full;
11810
11811 #ifdef CONFIG_IPW2200_QOS
11812 priv->ieee->is_qos_active = ipw_is_qos_active;
11813 priv->ieee->handle_probe_response = ipw_handle_beacon;
11814 priv->ieee->handle_beacon = ipw_handle_probe_response;
11815 priv->ieee->handle_assoc_response = ipw_handle_assoc_response;
11816 #endif /* CONFIG_IPW2200_QOS */
11817
11818 priv->ieee->perfect_rssi = -20;
11819 priv->ieee->worst_rssi = -85;
11820
11821 net_dev->netdev_ops = &ipw_netdev_ops;
11822 priv->wireless_data.spy_data = &priv->ieee->spy_data;
11823 net_dev->wireless_data = &priv->wireless_data;
11824 net_dev->wireless_handlers = &ipw_wx_handler_def;
11825 net_dev->ethtool_ops = &ipw_ethtool_ops;
11826 net_dev->irq = pdev->irq;
11827 net_dev->base_addr = (unsigned long)priv->hw_base;
11828 net_dev->mem_start = pci_resource_start(pdev, 0);
11829 net_dev->mem_end = net_dev->mem_start + pci_resource_len(pdev, 0) - 1;
11830
11831 err = sysfs_create_group(&pdev->dev.kobj, &ipw_attribute_group);
11832 if (err) {
11833 IPW_ERROR("failed to create sysfs device attributes\n");
11834 mutex_unlock(&priv->mutex);
11835 goto out_release_irq;
11836 }
11837
11838 mutex_unlock(&priv->mutex);
11839 err = register_netdev(net_dev);
11840 if (err) {
11841 IPW_ERROR("failed to register network device\n");
11842 goto out_remove_sysfs;
11843 }
11844
11845 #ifdef CONFIG_IPW2200_PROMISCUOUS
11846 if (rtap_iface) {
11847 err = ipw_prom_alloc(priv);
11848 if (err) {
11849 IPW_ERROR("Failed to register promiscuous network "
11850 "device (error %d).\n", err);
11851 unregister_netdev(priv->net_dev);
11852 goto out_remove_sysfs;
11853 }
11854 }
11855 #endif
11856
11857 printk(KERN_INFO DRV_NAME ": Detected geography %s (%d 802.11bg "
11858 "channels, %d 802.11a channels)\n",
11859 priv->ieee->geo.name, priv->ieee->geo.bg_channels,
11860 priv->ieee->geo.a_channels);
11861
11862 return 0;
11863
11864 out_remove_sysfs:
11865 sysfs_remove_group(&pdev->dev.kobj, &ipw_attribute_group);
11866 out_release_irq:
11867 free_irq(pdev->irq, priv);
11868 out_destroy_workqueue:
11869 destroy_workqueue(priv->workqueue);
11870 priv->workqueue = NULL;
11871 out_iounmap:
11872 iounmap(priv->hw_base);
11873 out_pci_release_regions:
11874 pci_release_regions(pdev);
11875 out_pci_disable_device:
11876 pci_disable_device(pdev);
11877 pci_set_drvdata(pdev, NULL);
11878 out_free_ieee80211:
11879 free_ieee80211(priv->net_dev, 0);
11880 out:
11881 return err;
11882 }
11883
11884 static void __devexit ipw_pci_remove(struct pci_dev *pdev)
11885 {
11886 struct ipw_priv *priv = pci_get_drvdata(pdev);
11887 struct list_head *p, *q;
11888 int i;
11889
11890 if (!priv)
11891 return;
11892
11893 mutex_lock(&priv->mutex);
11894
11895 priv->status |= STATUS_EXIT_PENDING;
11896 ipw_down(priv);
11897 sysfs_remove_group(&pdev->dev.kobj, &ipw_attribute_group);
11898
11899 mutex_unlock(&priv->mutex);
11900
11901 unregister_netdev(priv->net_dev);
11902
11903 if (priv->rxq) {
11904 ipw_rx_queue_free(priv, priv->rxq);
11905 priv->rxq = NULL;
11906 }
11907 ipw_tx_queue_free(priv);
11908
11909 if (priv->cmdlog) {
11910 kfree(priv->cmdlog);
11911 priv->cmdlog = NULL;
11912 }
11913 /* ipw_down will ensure that there is no more pending work
11914 * in the workqueue's, so we can safely remove them now. */
11915 cancel_delayed_work(&priv->adhoc_check);
11916 cancel_delayed_work(&priv->gather_stats);
11917 cancel_delayed_work(&priv->request_scan);
11918 cancel_delayed_work(&priv->request_direct_scan);
11919 cancel_delayed_work(&priv->request_passive_scan);
11920 cancel_delayed_work(&priv->scan_event);
11921 cancel_delayed_work(&priv->rf_kill);
11922 cancel_delayed_work(&priv->scan_check);
11923 destroy_workqueue(priv->workqueue);
11924 priv->workqueue = NULL;
11925
11926 /* Free MAC hash list for ADHOC */
11927 for (i = 0; i < IPW_IBSS_MAC_HASH_SIZE; i++) {
11928 list_for_each_safe(p, q, &priv->ibss_mac_hash[i]) {
11929 list_del(p);
11930 kfree(list_entry(p, struct ipw_ibss_seq, list));
11931 }
11932 }
11933
11934 kfree(priv->error);
11935 priv->error = NULL;
11936
11937 #ifdef CONFIG_IPW2200_PROMISCUOUS
11938 ipw_prom_free(priv);
11939 #endif
11940
11941 free_irq(pdev->irq, priv);
11942 iounmap(priv->hw_base);
11943 pci_release_regions(pdev);
11944 pci_disable_device(pdev);
11945 pci_set_drvdata(pdev, NULL);
11946 /* wiphy_unregister needs to be here, before free_ieee80211 */
11947 wiphy_unregister(priv->ieee->wdev.wiphy);
11948 kfree(priv->ieee->a_band.channels);
11949 kfree(priv->ieee->bg_band.channels);
11950 free_ieee80211(priv->net_dev, 0);
11951 free_firmware();
11952 }
11953
11954 #ifdef CONFIG_PM
11955 static int ipw_pci_suspend(struct pci_dev *pdev, pm_message_t state)
11956 {
11957 struct ipw_priv *priv = pci_get_drvdata(pdev);
11958 struct net_device *dev = priv->net_dev;
11959
11960 printk(KERN_INFO "%s: Going into suspend...\n", dev->name);
11961
11962 /* Take down the device; powers it off, etc. */
11963 ipw_down(priv);
11964
11965 /* Remove the PRESENT state of the device */
11966 netif_device_detach(dev);
11967
11968 pci_save_state(pdev);
11969 pci_disable_device(pdev);
11970 pci_set_power_state(pdev, pci_choose_state(pdev, state));
11971
11972 priv->suspend_at = get_seconds();
11973
11974 return 0;
11975 }
11976
11977 static int ipw_pci_resume(struct pci_dev *pdev)
11978 {
11979 struct ipw_priv *priv = pci_get_drvdata(pdev);
11980 struct net_device *dev = priv->net_dev;
11981 int err;
11982 u32 val;
11983
11984 printk(KERN_INFO "%s: Coming out of suspend...\n", dev->name);
11985
11986 pci_set_power_state(pdev, PCI_D0);
11987 err = pci_enable_device(pdev);
11988 if (err) {
11989 printk(KERN_ERR "%s: pci_enable_device failed on resume\n",
11990 dev->name);
11991 return err;
11992 }
11993 pci_restore_state(pdev);
11994
11995 /*
11996 * Suspend/Resume resets the PCI configuration space, so we have to
11997 * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
11998 * from interfering with C3 CPU state. pci_restore_state won't help
11999 * here since it only restores the first 64 bytes pci config header.
12000 */
12001 pci_read_config_dword(pdev, 0x40, &val);
12002 if ((val & 0x0000ff00) != 0)
12003 pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
12004
12005 /* Set the device back into the PRESENT state; this will also wake
12006 * the queue of needed */
12007 netif_device_attach(dev);
12008
12009 priv->suspend_time = get_seconds() - priv->suspend_at;
12010
12011 /* Bring the device back up */
12012 queue_work(priv->workqueue, &priv->up);
12013
12014 return 0;
12015 }
12016 #endif
12017
12018 static void ipw_pci_shutdown(struct pci_dev *pdev)
12019 {
12020 struct ipw_priv *priv = pci_get_drvdata(pdev);
12021
12022 /* Take down the device; powers it off, etc. */
12023 ipw_down(priv);
12024
12025 pci_disable_device(pdev);
12026 }
12027
12028 /* driver initialization stuff */
12029 static struct pci_driver ipw_driver = {
12030 .name = DRV_NAME,
12031 .id_table = card_ids,
12032 .probe = ipw_pci_probe,
12033 .remove = __devexit_p(ipw_pci_remove),
12034 #ifdef CONFIG_PM
12035 .suspend = ipw_pci_suspend,
12036 .resume = ipw_pci_resume,
12037 #endif
12038 .shutdown = ipw_pci_shutdown,
12039 };
12040
12041 static int __init ipw_init(void)
12042 {
12043 int ret;
12044
12045 printk(KERN_INFO DRV_NAME ": " DRV_DESCRIPTION ", " DRV_VERSION "\n");
12046 printk(KERN_INFO DRV_NAME ": " DRV_COPYRIGHT "\n");
12047
12048 ret = pci_register_driver(&ipw_driver);
12049 if (ret) {
12050 IPW_ERROR("Unable to initialize PCI module\n");
12051 return ret;
12052 }
12053
12054 ret = driver_create_file(&ipw_driver.driver, &driver_attr_debug_level);
12055 if (ret) {
12056 IPW_ERROR("Unable to create driver sysfs file\n");
12057 pci_unregister_driver(&ipw_driver);
12058 return ret;
12059 }
12060
12061 return ret;
12062 }
12063
12064 static void __exit ipw_exit(void)
12065 {
12066 driver_remove_file(&ipw_driver.driver, &driver_attr_debug_level);
12067 pci_unregister_driver(&ipw_driver);
12068 }
12069
12070 module_param(disable, int, 0444);
12071 MODULE_PARM_DESC(disable, "manually disable the radio (default 0 [radio on])");
12072
12073 module_param(associate, int, 0444);
12074 MODULE_PARM_DESC(associate, "auto associate when scanning (default off)");
12075
12076 module_param(auto_create, int, 0444);
12077 MODULE_PARM_DESC(auto_create, "auto create adhoc network (default on)");
12078
12079 module_param_named(led, led_support, int, 0444);
12080 MODULE_PARM_DESC(led, "enable led control on some systems (default 0 off)");
12081
12082 module_param(debug, int, 0444);
12083 MODULE_PARM_DESC(debug, "debug output mask");
12084
12085 module_param_named(channel, default_channel, int, 0444);
12086 MODULE_PARM_DESC(channel, "channel to limit associate to (default 0 [ANY])");
12087
12088 #ifdef CONFIG_IPW2200_PROMISCUOUS
12089 module_param(rtap_iface, int, 0444);
12090 MODULE_PARM_DESC(rtap_iface, "create the rtap interface (1 - create, default 0)");
12091 #endif
12092
12093 #ifdef CONFIG_IPW2200_QOS
12094 module_param(qos_enable, int, 0444);
12095 MODULE_PARM_DESC(qos_enable, "enable all QoS functionalitis");
12096
12097 module_param(qos_burst_enable, int, 0444);
12098 MODULE_PARM_DESC(qos_burst_enable, "enable QoS burst mode");
12099
12100 module_param(qos_no_ack_mask, int, 0444);
12101 MODULE_PARM_DESC(qos_no_ack_mask, "mask Tx_Queue to no ack");
12102
12103 module_param(burst_duration_CCK, int, 0444);
12104 MODULE_PARM_DESC(burst_duration_CCK, "set CCK burst value");
12105
12106 module_param(burst_duration_OFDM, int, 0444);
12107 MODULE_PARM_DESC(burst_duration_OFDM, "set OFDM burst value");
12108 #endif /* CONFIG_IPW2200_QOS */
12109
12110 #ifdef CONFIG_IPW2200_MONITOR
12111 module_param_named(mode, network_mode, int, 0444);
12112 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS,2=Monitor)");
12113 #else
12114 module_param_named(mode, network_mode, int, 0444);
12115 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS)");
12116 #endif
12117
12118 module_param(bt_coexist, int, 0444);
12119 MODULE_PARM_DESC(bt_coexist, "enable bluetooth coexistence (default off)");
12120
12121 module_param(hwcrypto, int, 0444);
12122 MODULE_PARM_DESC(hwcrypto, "enable hardware crypto (default off)");
12123
12124 module_param(cmdlog, int, 0444);
12125 MODULE_PARM_DESC(cmdlog,
12126 "allocate a ring buffer for logging firmware commands");
12127
12128 module_param(roaming, int, 0444);
12129 MODULE_PARM_DESC(roaming, "enable roaming support (default on)");
12130
12131 module_param(antenna, int, 0444);
12132 MODULE_PARM_DESC(antenna, "select antenna 1=Main, 3=Aux, default 0 [both], 2=slow_diversity (choose the one with lower background noise)");
12133
12134 module_exit(ipw_exit);
12135 module_init(ipw_init);