Merge branch 'perf-uprobes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / net / wireless / ipw2x00 / ipw2100.c
1 /******************************************************************************
2
3 Copyright(c) 2003 - 2006 Intel Corporation. All rights reserved.
4
5 This program is free software; you can redistribute it and/or modify it
6 under the terms of version 2 of the GNU General Public License as
7 published by the Free Software Foundation.
8
9 This program is distributed in the hope that it will be useful, but WITHOUT
10 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 more details.
13
14 You should have received a copy of the GNU General Public License along with
15 this program; if not, write to the Free Software Foundation, Inc., 59
16 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17
18 The full GNU General Public License is included in this distribution in the
19 file called LICENSE.
20
21 Contact Information:
22 Intel Linux Wireless <ilw@linux.intel.com>
23 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24
25 Portions of this file are based on the sample_* files provided by Wireless
26 Extensions 0.26 package and copyright (c) 1997-2003 Jean Tourrilhes
27 <jt@hpl.hp.com>
28
29 Portions of this file are based on the Host AP project,
30 Copyright (c) 2001-2002, SSH Communications Security Corp and Jouni Malinen
31 <j@w1.fi>
32 Copyright (c) 2002-2003, Jouni Malinen <j@w1.fi>
33
34 Portions of ipw2100_mod_firmware_load, ipw2100_do_mod_firmware_load, and
35 ipw2100_fw_load are loosely based on drivers/sound/sound_firmware.c
36 available in the 2.4.25 kernel sources, and are copyright (c) Alan Cox
37
38 ******************************************************************************/
39 /*
40
41 Initial driver on which this is based was developed by Janusz Gorycki,
42 Maciej Urbaniak, and Maciej Sosnowski.
43
44 Promiscuous mode support added by Jacek Wysoczynski and Maciej Urbaniak.
45
46 Theory of Operation
47
48 Tx - Commands and Data
49
50 Firmware and host share a circular queue of Transmit Buffer Descriptors (TBDs)
51 Each TBD contains a pointer to the physical (dma_addr_t) address of data being
52 sent to the firmware as well as the length of the data.
53
54 The host writes to the TBD queue at the WRITE index. The WRITE index points
55 to the _next_ packet to be written and is advanced when after the TBD has been
56 filled.
57
58 The firmware pulls from the TBD queue at the READ index. The READ index points
59 to the currently being read entry, and is advanced once the firmware is
60 done with a packet.
61
62 When data is sent to the firmware, the first TBD is used to indicate to the
63 firmware if a Command or Data is being sent. If it is Command, all of the
64 command information is contained within the physical address referred to by the
65 TBD. If it is Data, the first TBD indicates the type of data packet, number
66 of fragments, etc. The next TBD then refers to the actual packet location.
67
68 The Tx flow cycle is as follows:
69
70 1) ipw2100_tx() is called by kernel with SKB to transmit
71 2) Packet is move from the tx_free_list and appended to the transmit pending
72 list (tx_pend_list)
73 3) work is scheduled to move pending packets into the shared circular queue.
74 4) when placing packet in the circular queue, the incoming SKB is DMA mapped
75 to a physical address. That address is entered into a TBD. Two TBDs are
76 filled out. The first indicating a data packet, the second referring to the
77 actual payload data.
78 5) the packet is removed from tx_pend_list and placed on the end of the
79 firmware pending list (fw_pend_list)
80 6) firmware is notified that the WRITE index has
81 7) Once the firmware has processed the TBD, INTA is triggered.
82 8) For each Tx interrupt received from the firmware, the READ index is checked
83 to see which TBDs are done being processed.
84 9) For each TBD that has been processed, the ISR pulls the oldest packet
85 from the fw_pend_list.
86 10)The packet structure contained in the fw_pend_list is then used
87 to unmap the DMA address and to free the SKB originally passed to the driver
88 from the kernel.
89 11)The packet structure is placed onto the tx_free_list
90
91 The above steps are the same for commands, only the msg_free_list/msg_pend_list
92 are used instead of tx_free_list/tx_pend_list
93
94 ...
95
96 Critical Sections / Locking :
97
98 There are two locks utilized. The first is the low level lock (priv->low_lock)
99 that protects the following:
100
101 - Access to the Tx/Rx queue lists via priv->low_lock. The lists are as follows:
102
103 tx_free_list : Holds pre-allocated Tx buffers.
104 TAIL modified in __ipw2100_tx_process()
105 HEAD modified in ipw2100_tx()
106
107 tx_pend_list : Holds used Tx buffers waiting to go into the TBD ring
108 TAIL modified ipw2100_tx()
109 HEAD modified by ipw2100_tx_send_data()
110
111 msg_free_list : Holds pre-allocated Msg (Command) buffers
112 TAIL modified in __ipw2100_tx_process()
113 HEAD modified in ipw2100_hw_send_command()
114
115 msg_pend_list : Holds used Msg buffers waiting to go into the TBD ring
116 TAIL modified in ipw2100_hw_send_command()
117 HEAD modified in ipw2100_tx_send_commands()
118
119 The flow of data on the TX side is as follows:
120
121 MSG_FREE_LIST + COMMAND => MSG_PEND_LIST => TBD => MSG_FREE_LIST
122 TX_FREE_LIST + DATA => TX_PEND_LIST => TBD => TX_FREE_LIST
123
124 The methods that work on the TBD ring are protected via priv->low_lock.
125
126 - The internal data state of the device itself
127 - Access to the firmware read/write indexes for the BD queues
128 and associated logic
129
130 All external entry functions are locked with the priv->action_lock to ensure
131 that only one external action is invoked at a time.
132
133
134 */
135
136 #include <linux/compiler.h>
137 #include <linux/errno.h>
138 #include <linux/if_arp.h>
139 #include <linux/in6.h>
140 #include <linux/in.h>
141 #include <linux/ip.h>
142 #include <linux/kernel.h>
143 #include <linux/kmod.h>
144 #include <linux/module.h>
145 #include <linux/netdevice.h>
146 #include <linux/ethtool.h>
147 #include <linux/pci.h>
148 #include <linux/dma-mapping.h>
149 #include <linux/proc_fs.h>
150 #include <linux/skbuff.h>
151 #include <asm/uaccess.h>
152 #include <asm/io.h>
153 #include <linux/fs.h>
154 #include <linux/mm.h>
155 #include <linux/slab.h>
156 #include <linux/unistd.h>
157 #include <linux/stringify.h>
158 #include <linux/tcp.h>
159 #include <linux/types.h>
160 #include <linux/time.h>
161 #include <linux/firmware.h>
162 #include <linux/acpi.h>
163 #include <linux/ctype.h>
164 #include <linux/pm_qos.h>
165
166 #include <net/lib80211.h>
167
168 #include "ipw2100.h"
169 #include "ipw.h"
170
171 #define IPW2100_VERSION "git-1.2.2"
172
173 #define DRV_NAME "ipw2100"
174 #define DRV_VERSION IPW2100_VERSION
175 #define DRV_DESCRIPTION "Intel(R) PRO/Wireless 2100 Network Driver"
176 #define DRV_COPYRIGHT "Copyright(c) 2003-2006 Intel Corporation"
177
178 static struct pm_qos_request ipw2100_pm_qos_req;
179
180 /* Debugging stuff */
181 #ifdef CONFIG_IPW2100_DEBUG
182 #define IPW2100_RX_DEBUG /* Reception debugging */
183 #endif
184
185 MODULE_DESCRIPTION(DRV_DESCRIPTION);
186 MODULE_VERSION(DRV_VERSION);
187 MODULE_AUTHOR(DRV_COPYRIGHT);
188 MODULE_LICENSE("GPL");
189
190 static int debug = 0;
191 static int network_mode = 0;
192 static int channel = 0;
193 static int associate = 0;
194 static int disable = 0;
195 #ifdef CONFIG_PM
196 static struct ipw2100_fw ipw2100_firmware;
197 #endif
198
199 #include <linux/moduleparam.h>
200 module_param(debug, int, 0444);
201 module_param_named(mode, network_mode, int, 0444);
202 module_param(channel, int, 0444);
203 module_param(associate, int, 0444);
204 module_param(disable, int, 0444);
205
206 MODULE_PARM_DESC(debug, "debug level");
207 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS,2=Monitor)");
208 MODULE_PARM_DESC(channel, "channel");
209 MODULE_PARM_DESC(associate, "auto associate when scanning (default off)");
210 MODULE_PARM_DESC(disable, "manually disable the radio (default 0 [radio on])");
211
212 static u32 ipw2100_debug_level = IPW_DL_NONE;
213
214 #ifdef CONFIG_IPW2100_DEBUG
215 #define IPW_DEBUG(level, message...) \
216 do { \
217 if (ipw2100_debug_level & (level)) { \
218 printk(KERN_DEBUG "ipw2100: %c %s ", \
219 in_interrupt() ? 'I' : 'U', __func__); \
220 printk(message); \
221 } \
222 } while (0)
223 #else
224 #define IPW_DEBUG(level, message...) do {} while (0)
225 #endif /* CONFIG_IPW2100_DEBUG */
226
227 #ifdef CONFIG_IPW2100_DEBUG
228 static const char *command_types[] = {
229 "undefined",
230 "unused", /* HOST_ATTENTION */
231 "HOST_COMPLETE",
232 "unused", /* SLEEP */
233 "unused", /* HOST_POWER_DOWN */
234 "unused",
235 "SYSTEM_CONFIG",
236 "unused", /* SET_IMR */
237 "SSID",
238 "MANDATORY_BSSID",
239 "AUTHENTICATION_TYPE",
240 "ADAPTER_ADDRESS",
241 "PORT_TYPE",
242 "INTERNATIONAL_MODE",
243 "CHANNEL",
244 "RTS_THRESHOLD",
245 "FRAG_THRESHOLD",
246 "POWER_MODE",
247 "TX_RATES",
248 "BASIC_TX_RATES",
249 "WEP_KEY_INFO",
250 "unused",
251 "unused",
252 "unused",
253 "unused",
254 "WEP_KEY_INDEX",
255 "WEP_FLAGS",
256 "ADD_MULTICAST",
257 "CLEAR_ALL_MULTICAST",
258 "BEACON_INTERVAL",
259 "ATIM_WINDOW",
260 "CLEAR_STATISTICS",
261 "undefined",
262 "undefined",
263 "undefined",
264 "undefined",
265 "TX_POWER_INDEX",
266 "undefined",
267 "undefined",
268 "undefined",
269 "undefined",
270 "undefined",
271 "undefined",
272 "BROADCAST_SCAN",
273 "CARD_DISABLE",
274 "PREFERRED_BSSID",
275 "SET_SCAN_OPTIONS",
276 "SCAN_DWELL_TIME",
277 "SWEEP_TABLE",
278 "AP_OR_STATION_TABLE",
279 "GROUP_ORDINALS",
280 "SHORT_RETRY_LIMIT",
281 "LONG_RETRY_LIMIT",
282 "unused", /* SAVE_CALIBRATION */
283 "unused", /* RESTORE_CALIBRATION */
284 "undefined",
285 "undefined",
286 "undefined",
287 "HOST_PRE_POWER_DOWN",
288 "unused", /* HOST_INTERRUPT_COALESCING */
289 "undefined",
290 "CARD_DISABLE_PHY_OFF",
291 "MSDU_TX_RATES",
292 "undefined",
293 "SET_STATION_STAT_BITS",
294 "CLEAR_STATIONS_STAT_BITS",
295 "LEAP_ROGUE_MODE",
296 "SET_SECURITY_INFORMATION",
297 "DISASSOCIATION_BSSID",
298 "SET_WPA_ASS_IE"
299 };
300 #endif
301
302 static const long ipw2100_frequencies[] = {
303 2412, 2417, 2422, 2427,
304 2432, 2437, 2442, 2447,
305 2452, 2457, 2462, 2467,
306 2472, 2484
307 };
308
309 #define FREQ_COUNT ARRAY_SIZE(ipw2100_frequencies)
310
311 static struct ieee80211_rate ipw2100_bg_rates[] = {
312 { .bitrate = 10 },
313 { .bitrate = 20, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
314 { .bitrate = 55, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
315 { .bitrate = 110, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
316 };
317
318 #define RATE_COUNT ARRAY_SIZE(ipw2100_bg_rates)
319
320 /* Pre-decl until we get the code solid and then we can clean it up */
321 static void ipw2100_tx_send_commands(struct ipw2100_priv *priv);
322 static void ipw2100_tx_send_data(struct ipw2100_priv *priv);
323 static int ipw2100_adapter_setup(struct ipw2100_priv *priv);
324
325 static void ipw2100_queues_initialize(struct ipw2100_priv *priv);
326 static void ipw2100_queues_free(struct ipw2100_priv *priv);
327 static int ipw2100_queues_allocate(struct ipw2100_priv *priv);
328
329 static int ipw2100_fw_download(struct ipw2100_priv *priv,
330 struct ipw2100_fw *fw);
331 static int ipw2100_get_firmware(struct ipw2100_priv *priv,
332 struct ipw2100_fw *fw);
333 static int ipw2100_get_fwversion(struct ipw2100_priv *priv, char *buf,
334 size_t max);
335 static int ipw2100_get_ucodeversion(struct ipw2100_priv *priv, char *buf,
336 size_t max);
337 static void ipw2100_release_firmware(struct ipw2100_priv *priv,
338 struct ipw2100_fw *fw);
339 static int ipw2100_ucode_download(struct ipw2100_priv *priv,
340 struct ipw2100_fw *fw);
341 static void ipw2100_wx_event_work(struct work_struct *work);
342 static struct iw_statistics *ipw2100_wx_wireless_stats(struct net_device *dev);
343 static struct iw_handler_def ipw2100_wx_handler_def;
344
345 static inline void read_register(struct net_device *dev, u32 reg, u32 * val)
346 {
347 struct ipw2100_priv *priv = libipw_priv(dev);
348
349 *val = ioread32(priv->ioaddr + reg);
350 IPW_DEBUG_IO("r: 0x%08X => 0x%08X\n", reg, *val);
351 }
352
353 static inline void write_register(struct net_device *dev, u32 reg, u32 val)
354 {
355 struct ipw2100_priv *priv = libipw_priv(dev);
356
357 iowrite32(val, priv->ioaddr + reg);
358 IPW_DEBUG_IO("w: 0x%08X <= 0x%08X\n", reg, val);
359 }
360
361 static inline void read_register_word(struct net_device *dev, u32 reg,
362 u16 * val)
363 {
364 struct ipw2100_priv *priv = libipw_priv(dev);
365
366 *val = ioread16(priv->ioaddr + reg);
367 IPW_DEBUG_IO("r: 0x%08X => %04X\n", reg, *val);
368 }
369
370 static inline void read_register_byte(struct net_device *dev, u32 reg, u8 * val)
371 {
372 struct ipw2100_priv *priv = libipw_priv(dev);
373
374 *val = ioread8(priv->ioaddr + reg);
375 IPW_DEBUG_IO("r: 0x%08X => %02X\n", reg, *val);
376 }
377
378 static inline void write_register_word(struct net_device *dev, u32 reg, u16 val)
379 {
380 struct ipw2100_priv *priv = libipw_priv(dev);
381
382 iowrite16(val, priv->ioaddr + reg);
383 IPW_DEBUG_IO("w: 0x%08X <= %04X\n", reg, val);
384 }
385
386 static inline void write_register_byte(struct net_device *dev, u32 reg, u8 val)
387 {
388 struct ipw2100_priv *priv = libipw_priv(dev);
389
390 iowrite8(val, priv->ioaddr + reg);
391 IPW_DEBUG_IO("w: 0x%08X =< %02X\n", reg, val);
392 }
393
394 static inline void read_nic_dword(struct net_device *dev, u32 addr, u32 * val)
395 {
396 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
397 addr & IPW_REG_INDIRECT_ADDR_MASK);
398 read_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
399 }
400
401 static inline void write_nic_dword(struct net_device *dev, u32 addr, u32 val)
402 {
403 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
404 addr & IPW_REG_INDIRECT_ADDR_MASK);
405 write_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
406 }
407
408 static inline void read_nic_word(struct net_device *dev, u32 addr, u16 * val)
409 {
410 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
411 addr & IPW_REG_INDIRECT_ADDR_MASK);
412 read_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
413 }
414
415 static inline void write_nic_word(struct net_device *dev, u32 addr, u16 val)
416 {
417 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
418 addr & IPW_REG_INDIRECT_ADDR_MASK);
419 write_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
420 }
421
422 static inline void read_nic_byte(struct net_device *dev, u32 addr, u8 * val)
423 {
424 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
425 addr & IPW_REG_INDIRECT_ADDR_MASK);
426 read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
427 }
428
429 static inline void write_nic_byte(struct net_device *dev, u32 addr, u8 val)
430 {
431 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
432 addr & IPW_REG_INDIRECT_ADDR_MASK);
433 write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
434 }
435
436 static inline void write_nic_auto_inc_address(struct net_device *dev, u32 addr)
437 {
438 write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS,
439 addr & IPW_REG_INDIRECT_ADDR_MASK);
440 }
441
442 static inline void write_nic_dword_auto_inc(struct net_device *dev, u32 val)
443 {
444 write_register(dev, IPW_REG_AUTOINCREMENT_DATA, val);
445 }
446
447 static void write_nic_memory(struct net_device *dev, u32 addr, u32 len,
448 const u8 * buf)
449 {
450 u32 aligned_addr;
451 u32 aligned_len;
452 u32 dif_len;
453 u32 i;
454
455 /* read first nibble byte by byte */
456 aligned_addr = addr & (~0x3);
457 dif_len = addr - aligned_addr;
458 if (dif_len) {
459 /* Start reading at aligned_addr + dif_len */
460 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
461 aligned_addr);
462 for (i = dif_len; i < 4; i++, buf++)
463 write_register_byte(dev,
464 IPW_REG_INDIRECT_ACCESS_DATA + i,
465 *buf);
466
467 len -= dif_len;
468 aligned_addr += 4;
469 }
470
471 /* read DWs through autoincrement registers */
472 write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr);
473 aligned_len = len & (~0x3);
474 for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4)
475 write_register(dev, IPW_REG_AUTOINCREMENT_DATA, *(u32 *) buf);
476
477 /* copy the last nibble */
478 dif_len = len - aligned_len;
479 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr);
480 for (i = 0; i < dif_len; i++, buf++)
481 write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i,
482 *buf);
483 }
484
485 static void read_nic_memory(struct net_device *dev, u32 addr, u32 len,
486 u8 * buf)
487 {
488 u32 aligned_addr;
489 u32 aligned_len;
490 u32 dif_len;
491 u32 i;
492
493 /* read first nibble byte by byte */
494 aligned_addr = addr & (~0x3);
495 dif_len = addr - aligned_addr;
496 if (dif_len) {
497 /* Start reading at aligned_addr + dif_len */
498 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
499 aligned_addr);
500 for (i = dif_len; i < 4; i++, buf++)
501 read_register_byte(dev,
502 IPW_REG_INDIRECT_ACCESS_DATA + i,
503 buf);
504
505 len -= dif_len;
506 aligned_addr += 4;
507 }
508
509 /* read DWs through autoincrement registers */
510 write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr);
511 aligned_len = len & (~0x3);
512 for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4)
513 read_register(dev, IPW_REG_AUTOINCREMENT_DATA, (u32 *) buf);
514
515 /* copy the last nibble */
516 dif_len = len - aligned_len;
517 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr);
518 for (i = 0; i < dif_len; i++, buf++)
519 read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i, buf);
520 }
521
522 static bool ipw2100_hw_is_adapter_in_system(struct net_device *dev)
523 {
524 u32 dbg;
525
526 read_register(dev, IPW_REG_DOA_DEBUG_AREA_START, &dbg);
527
528 return dbg == IPW_DATA_DOA_DEBUG_VALUE;
529 }
530
531 static int ipw2100_get_ordinal(struct ipw2100_priv *priv, u32 ord,
532 void *val, u32 * len)
533 {
534 struct ipw2100_ordinals *ordinals = &priv->ordinals;
535 u32 addr;
536 u32 field_info;
537 u16 field_len;
538 u16 field_count;
539 u32 total_length;
540
541 if (ordinals->table1_addr == 0) {
542 printk(KERN_WARNING DRV_NAME ": attempt to use fw ordinals "
543 "before they have been loaded.\n");
544 return -EINVAL;
545 }
546
547 if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) {
548 if (*len < IPW_ORD_TAB_1_ENTRY_SIZE) {
549 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
550
551 printk(KERN_WARNING DRV_NAME
552 ": ordinal buffer length too small, need %zd\n",
553 IPW_ORD_TAB_1_ENTRY_SIZE);
554
555 return -EINVAL;
556 }
557
558 read_nic_dword(priv->net_dev,
559 ordinals->table1_addr + (ord << 2), &addr);
560 read_nic_dword(priv->net_dev, addr, val);
561
562 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
563
564 return 0;
565 }
566
567 if (IS_ORDINAL_TABLE_TWO(ordinals, ord)) {
568
569 ord -= IPW_START_ORD_TAB_2;
570
571 /* get the address of statistic */
572 read_nic_dword(priv->net_dev,
573 ordinals->table2_addr + (ord << 3), &addr);
574
575 /* get the second DW of statistics ;
576 * two 16-bit words - first is length, second is count */
577 read_nic_dword(priv->net_dev,
578 ordinals->table2_addr + (ord << 3) + sizeof(u32),
579 &field_info);
580
581 /* get each entry length */
582 field_len = *((u16 *) & field_info);
583
584 /* get number of entries */
585 field_count = *(((u16 *) & field_info) + 1);
586
587 /* abort if no enough memory */
588 total_length = field_len * field_count;
589 if (total_length > *len) {
590 *len = total_length;
591 return -EINVAL;
592 }
593
594 *len = total_length;
595 if (!total_length)
596 return 0;
597
598 /* read the ordinal data from the SRAM */
599 read_nic_memory(priv->net_dev, addr, total_length, val);
600
601 return 0;
602 }
603
604 printk(KERN_WARNING DRV_NAME ": ordinal %d neither in table 1 nor "
605 "in table 2\n", ord);
606
607 return -EINVAL;
608 }
609
610 static int ipw2100_set_ordinal(struct ipw2100_priv *priv, u32 ord, u32 * val,
611 u32 * len)
612 {
613 struct ipw2100_ordinals *ordinals = &priv->ordinals;
614 u32 addr;
615
616 if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) {
617 if (*len != IPW_ORD_TAB_1_ENTRY_SIZE) {
618 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
619 IPW_DEBUG_INFO("wrong size\n");
620 return -EINVAL;
621 }
622
623 read_nic_dword(priv->net_dev,
624 ordinals->table1_addr + (ord << 2), &addr);
625
626 write_nic_dword(priv->net_dev, addr, *val);
627
628 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
629
630 return 0;
631 }
632
633 IPW_DEBUG_INFO("wrong table\n");
634 if (IS_ORDINAL_TABLE_TWO(ordinals, ord))
635 return -EINVAL;
636
637 return -EINVAL;
638 }
639
640 static char *snprint_line(char *buf, size_t count,
641 const u8 * data, u32 len, u32 ofs)
642 {
643 int out, i, j, l;
644 char c;
645
646 out = snprintf(buf, count, "%08X", ofs);
647
648 for (l = 0, i = 0; i < 2; i++) {
649 out += snprintf(buf + out, count - out, " ");
650 for (j = 0; j < 8 && l < len; j++, l++)
651 out += snprintf(buf + out, count - out, "%02X ",
652 data[(i * 8 + j)]);
653 for (; j < 8; j++)
654 out += snprintf(buf + out, count - out, " ");
655 }
656
657 out += snprintf(buf + out, count - out, " ");
658 for (l = 0, i = 0; i < 2; i++) {
659 out += snprintf(buf + out, count - out, " ");
660 for (j = 0; j < 8 && l < len; j++, l++) {
661 c = data[(i * 8 + j)];
662 if (!isascii(c) || !isprint(c))
663 c = '.';
664
665 out += snprintf(buf + out, count - out, "%c", c);
666 }
667
668 for (; j < 8; j++)
669 out += snprintf(buf + out, count - out, " ");
670 }
671
672 return buf;
673 }
674
675 static void printk_buf(int level, const u8 * data, u32 len)
676 {
677 char line[81];
678 u32 ofs = 0;
679 if (!(ipw2100_debug_level & level))
680 return;
681
682 while (len) {
683 printk(KERN_DEBUG "%s\n",
684 snprint_line(line, sizeof(line), &data[ofs],
685 min(len, 16U), ofs));
686 ofs += 16;
687 len -= min(len, 16U);
688 }
689 }
690
691 #define MAX_RESET_BACKOFF 10
692
693 static void schedule_reset(struct ipw2100_priv *priv)
694 {
695 unsigned long now = get_seconds();
696
697 /* If we haven't received a reset request within the backoff period,
698 * then we can reset the backoff interval so this reset occurs
699 * immediately */
700 if (priv->reset_backoff &&
701 (now - priv->last_reset > priv->reset_backoff))
702 priv->reset_backoff = 0;
703
704 priv->last_reset = get_seconds();
705
706 if (!(priv->status & STATUS_RESET_PENDING)) {
707 IPW_DEBUG_INFO("%s: Scheduling firmware restart (%ds).\n",
708 priv->net_dev->name, priv->reset_backoff);
709 netif_carrier_off(priv->net_dev);
710 netif_stop_queue(priv->net_dev);
711 priv->status |= STATUS_RESET_PENDING;
712 if (priv->reset_backoff)
713 schedule_delayed_work(&priv->reset_work,
714 priv->reset_backoff * HZ);
715 else
716 schedule_delayed_work(&priv->reset_work, 0);
717
718 if (priv->reset_backoff < MAX_RESET_BACKOFF)
719 priv->reset_backoff++;
720
721 wake_up_interruptible(&priv->wait_command_queue);
722 } else
723 IPW_DEBUG_INFO("%s: Firmware restart already in progress.\n",
724 priv->net_dev->name);
725
726 }
727
728 #define HOST_COMPLETE_TIMEOUT (2 * HZ)
729 static int ipw2100_hw_send_command(struct ipw2100_priv *priv,
730 struct host_command *cmd)
731 {
732 struct list_head *element;
733 struct ipw2100_tx_packet *packet;
734 unsigned long flags;
735 int err = 0;
736
737 IPW_DEBUG_HC("Sending %s command (#%d), %d bytes\n",
738 command_types[cmd->host_command], cmd->host_command,
739 cmd->host_command_length);
740 printk_buf(IPW_DL_HC, (u8 *) cmd->host_command_parameters,
741 cmd->host_command_length);
742
743 spin_lock_irqsave(&priv->low_lock, flags);
744
745 if (priv->fatal_error) {
746 IPW_DEBUG_INFO
747 ("Attempt to send command while hardware in fatal error condition.\n");
748 err = -EIO;
749 goto fail_unlock;
750 }
751
752 if (!(priv->status & STATUS_RUNNING)) {
753 IPW_DEBUG_INFO
754 ("Attempt to send command while hardware is not running.\n");
755 err = -EIO;
756 goto fail_unlock;
757 }
758
759 if (priv->status & STATUS_CMD_ACTIVE) {
760 IPW_DEBUG_INFO
761 ("Attempt to send command while another command is pending.\n");
762 err = -EBUSY;
763 goto fail_unlock;
764 }
765
766 if (list_empty(&priv->msg_free_list)) {
767 IPW_DEBUG_INFO("no available msg buffers\n");
768 goto fail_unlock;
769 }
770
771 priv->status |= STATUS_CMD_ACTIVE;
772 priv->messages_sent++;
773
774 element = priv->msg_free_list.next;
775
776 packet = list_entry(element, struct ipw2100_tx_packet, list);
777 packet->jiffy_start = jiffies;
778
779 /* initialize the firmware command packet */
780 packet->info.c_struct.cmd->host_command_reg = cmd->host_command;
781 packet->info.c_struct.cmd->host_command_reg1 = cmd->host_command1;
782 packet->info.c_struct.cmd->host_command_len_reg =
783 cmd->host_command_length;
784 packet->info.c_struct.cmd->sequence = cmd->host_command_sequence;
785
786 memcpy(packet->info.c_struct.cmd->host_command_params_reg,
787 cmd->host_command_parameters,
788 sizeof(packet->info.c_struct.cmd->host_command_params_reg));
789
790 list_del(element);
791 DEC_STAT(&priv->msg_free_stat);
792
793 list_add_tail(element, &priv->msg_pend_list);
794 INC_STAT(&priv->msg_pend_stat);
795
796 ipw2100_tx_send_commands(priv);
797 ipw2100_tx_send_data(priv);
798
799 spin_unlock_irqrestore(&priv->low_lock, flags);
800
801 /*
802 * We must wait for this command to complete before another
803 * command can be sent... but if we wait more than 3 seconds
804 * then there is a problem.
805 */
806
807 err =
808 wait_event_interruptible_timeout(priv->wait_command_queue,
809 !(priv->
810 status & STATUS_CMD_ACTIVE),
811 HOST_COMPLETE_TIMEOUT);
812
813 if (err == 0) {
814 IPW_DEBUG_INFO("Command completion failed out after %dms.\n",
815 1000 * (HOST_COMPLETE_TIMEOUT / HZ));
816 priv->fatal_error = IPW2100_ERR_MSG_TIMEOUT;
817 priv->status &= ~STATUS_CMD_ACTIVE;
818 schedule_reset(priv);
819 return -EIO;
820 }
821
822 if (priv->fatal_error) {
823 printk(KERN_WARNING DRV_NAME ": %s: firmware fatal error\n",
824 priv->net_dev->name);
825 return -EIO;
826 }
827
828 /* !!!!! HACK TEST !!!!!
829 * When lots of debug trace statements are enabled, the driver
830 * doesn't seem to have as many firmware restart cycles...
831 *
832 * As a test, we're sticking in a 1/100s delay here */
833 schedule_timeout_uninterruptible(msecs_to_jiffies(10));
834
835 return 0;
836
837 fail_unlock:
838 spin_unlock_irqrestore(&priv->low_lock, flags);
839
840 return err;
841 }
842
843 /*
844 * Verify the values and data access of the hardware
845 * No locks needed or used. No functions called.
846 */
847 static int ipw2100_verify(struct ipw2100_priv *priv)
848 {
849 u32 data1, data2;
850 u32 address;
851
852 u32 val1 = 0x76543210;
853 u32 val2 = 0xFEDCBA98;
854
855 /* Domain 0 check - all values should be DOA_DEBUG */
856 for (address = IPW_REG_DOA_DEBUG_AREA_START;
857 address < IPW_REG_DOA_DEBUG_AREA_END; address += sizeof(u32)) {
858 read_register(priv->net_dev, address, &data1);
859 if (data1 != IPW_DATA_DOA_DEBUG_VALUE)
860 return -EIO;
861 }
862
863 /* Domain 1 check - use arbitrary read/write compare */
864 for (address = 0; address < 5; address++) {
865 /* The memory area is not used now */
866 write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32,
867 val1);
868 write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36,
869 val2);
870 read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32,
871 &data1);
872 read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36,
873 &data2);
874 if (val1 == data1 && val2 == data2)
875 return 0;
876 }
877
878 return -EIO;
879 }
880
881 /*
882 *
883 * Loop until the CARD_DISABLED bit is the same value as the
884 * supplied parameter
885 *
886 * TODO: See if it would be more efficient to do a wait/wake
887 * cycle and have the completion event trigger the wakeup
888 *
889 */
890 #define IPW_CARD_DISABLE_COMPLETE_WAIT 100 // 100 milli
891 static int ipw2100_wait_for_card_state(struct ipw2100_priv *priv, int state)
892 {
893 int i;
894 u32 card_state;
895 u32 len = sizeof(card_state);
896 int err;
897
898 for (i = 0; i <= IPW_CARD_DISABLE_COMPLETE_WAIT * 1000; i += 50) {
899 err = ipw2100_get_ordinal(priv, IPW_ORD_CARD_DISABLED,
900 &card_state, &len);
901 if (err) {
902 IPW_DEBUG_INFO("Query of CARD_DISABLED ordinal "
903 "failed.\n");
904 return 0;
905 }
906
907 /* We'll break out if either the HW state says it is
908 * in the state we want, or if HOST_COMPLETE command
909 * finishes */
910 if ((card_state == state) ||
911 ((priv->status & STATUS_ENABLED) ?
912 IPW_HW_STATE_ENABLED : IPW_HW_STATE_DISABLED) == state) {
913 if (state == IPW_HW_STATE_ENABLED)
914 priv->status |= STATUS_ENABLED;
915 else
916 priv->status &= ~STATUS_ENABLED;
917
918 return 0;
919 }
920
921 udelay(50);
922 }
923
924 IPW_DEBUG_INFO("ipw2100_wait_for_card_state to %s state timed out\n",
925 state ? "DISABLED" : "ENABLED");
926 return -EIO;
927 }
928
929 /*********************************************************************
930 Procedure : sw_reset_and_clock
931 Purpose : Asserts s/w reset, asserts clock initialization
932 and waits for clock stabilization
933 ********************************************************************/
934 static int sw_reset_and_clock(struct ipw2100_priv *priv)
935 {
936 int i;
937 u32 r;
938
939 // assert s/w reset
940 write_register(priv->net_dev, IPW_REG_RESET_REG,
941 IPW_AUX_HOST_RESET_REG_SW_RESET);
942
943 // wait for clock stabilization
944 for (i = 0; i < 1000; i++) {
945 udelay(IPW_WAIT_RESET_ARC_COMPLETE_DELAY);
946
947 // check clock ready bit
948 read_register(priv->net_dev, IPW_REG_RESET_REG, &r);
949 if (r & IPW_AUX_HOST_RESET_REG_PRINCETON_RESET)
950 break;
951 }
952
953 if (i == 1000)
954 return -EIO; // TODO: better error value
955
956 /* set "initialization complete" bit to move adapter to
957 * D0 state */
958 write_register(priv->net_dev, IPW_REG_GP_CNTRL,
959 IPW_AUX_HOST_GP_CNTRL_BIT_INIT_DONE);
960
961 /* wait for clock stabilization */
962 for (i = 0; i < 10000; i++) {
963 udelay(IPW_WAIT_CLOCK_STABILIZATION_DELAY * 4);
964
965 /* check clock ready bit */
966 read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r);
967 if (r & IPW_AUX_HOST_GP_CNTRL_BIT_CLOCK_READY)
968 break;
969 }
970
971 if (i == 10000)
972 return -EIO; /* TODO: better error value */
973
974 /* set D0 standby bit */
975 read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r);
976 write_register(priv->net_dev, IPW_REG_GP_CNTRL,
977 r | IPW_AUX_HOST_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY);
978
979 return 0;
980 }
981
982 /*********************************************************************
983 Procedure : ipw2100_download_firmware
984 Purpose : Initiaze adapter after power on.
985 The sequence is:
986 1. assert s/w reset first!
987 2. awake clocks & wait for clock stabilization
988 3. hold ARC (don't ask me why...)
989 4. load Dino ucode and reset/clock init again
990 5. zero-out shared mem
991 6. download f/w
992 *******************************************************************/
993 static int ipw2100_download_firmware(struct ipw2100_priv *priv)
994 {
995 u32 address;
996 int err;
997
998 #ifndef CONFIG_PM
999 /* Fetch the firmware and microcode */
1000 struct ipw2100_fw ipw2100_firmware;
1001 #endif
1002
1003 if (priv->fatal_error) {
1004 IPW_DEBUG_ERROR("%s: ipw2100_download_firmware called after "
1005 "fatal error %d. Interface must be brought down.\n",
1006 priv->net_dev->name, priv->fatal_error);
1007 return -EINVAL;
1008 }
1009 #ifdef CONFIG_PM
1010 if (!ipw2100_firmware.version) {
1011 err = ipw2100_get_firmware(priv, &ipw2100_firmware);
1012 if (err) {
1013 IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n",
1014 priv->net_dev->name, err);
1015 priv->fatal_error = IPW2100_ERR_FW_LOAD;
1016 goto fail;
1017 }
1018 }
1019 #else
1020 err = ipw2100_get_firmware(priv, &ipw2100_firmware);
1021 if (err) {
1022 IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n",
1023 priv->net_dev->name, err);
1024 priv->fatal_error = IPW2100_ERR_FW_LOAD;
1025 goto fail;
1026 }
1027 #endif
1028 priv->firmware_version = ipw2100_firmware.version;
1029
1030 /* s/w reset and clock stabilization */
1031 err = sw_reset_and_clock(priv);
1032 if (err) {
1033 IPW_DEBUG_ERROR("%s: sw_reset_and_clock failed: %d\n",
1034 priv->net_dev->name, err);
1035 goto fail;
1036 }
1037
1038 err = ipw2100_verify(priv);
1039 if (err) {
1040 IPW_DEBUG_ERROR("%s: ipw2100_verify failed: %d\n",
1041 priv->net_dev->name, err);
1042 goto fail;
1043 }
1044
1045 /* Hold ARC */
1046 write_nic_dword(priv->net_dev,
1047 IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x80000000);
1048
1049 /* allow ARC to run */
1050 write_register(priv->net_dev, IPW_REG_RESET_REG, 0);
1051
1052 /* load microcode */
1053 err = ipw2100_ucode_download(priv, &ipw2100_firmware);
1054 if (err) {
1055 printk(KERN_ERR DRV_NAME ": %s: Error loading microcode: %d\n",
1056 priv->net_dev->name, err);
1057 goto fail;
1058 }
1059
1060 /* release ARC */
1061 write_nic_dword(priv->net_dev,
1062 IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x00000000);
1063
1064 /* s/w reset and clock stabilization (again!!!) */
1065 err = sw_reset_and_clock(priv);
1066 if (err) {
1067 printk(KERN_ERR DRV_NAME
1068 ": %s: sw_reset_and_clock failed: %d\n",
1069 priv->net_dev->name, err);
1070 goto fail;
1071 }
1072
1073 /* load f/w */
1074 err = ipw2100_fw_download(priv, &ipw2100_firmware);
1075 if (err) {
1076 IPW_DEBUG_ERROR("%s: Error loading firmware: %d\n",
1077 priv->net_dev->name, err);
1078 goto fail;
1079 }
1080 #ifndef CONFIG_PM
1081 /*
1082 * When the .resume method of the driver is called, the other
1083 * part of the system, i.e. the ide driver could still stay in
1084 * the suspend stage. This prevents us from loading the firmware
1085 * from the disk. --YZ
1086 */
1087
1088 /* free any storage allocated for firmware image */
1089 ipw2100_release_firmware(priv, &ipw2100_firmware);
1090 #endif
1091
1092 /* zero out Domain 1 area indirectly (Si requirement) */
1093 for (address = IPW_HOST_FW_SHARED_AREA0;
1094 address < IPW_HOST_FW_SHARED_AREA0_END; address += 4)
1095 write_nic_dword(priv->net_dev, address, 0);
1096 for (address = IPW_HOST_FW_SHARED_AREA1;
1097 address < IPW_HOST_FW_SHARED_AREA1_END; address += 4)
1098 write_nic_dword(priv->net_dev, address, 0);
1099 for (address = IPW_HOST_FW_SHARED_AREA2;
1100 address < IPW_HOST_FW_SHARED_AREA2_END; address += 4)
1101 write_nic_dword(priv->net_dev, address, 0);
1102 for (address = IPW_HOST_FW_SHARED_AREA3;
1103 address < IPW_HOST_FW_SHARED_AREA3_END; address += 4)
1104 write_nic_dword(priv->net_dev, address, 0);
1105 for (address = IPW_HOST_FW_INTERRUPT_AREA;
1106 address < IPW_HOST_FW_INTERRUPT_AREA_END; address += 4)
1107 write_nic_dword(priv->net_dev, address, 0);
1108
1109 return 0;
1110
1111 fail:
1112 ipw2100_release_firmware(priv, &ipw2100_firmware);
1113 return err;
1114 }
1115
1116 static inline void ipw2100_enable_interrupts(struct ipw2100_priv *priv)
1117 {
1118 if (priv->status & STATUS_INT_ENABLED)
1119 return;
1120 priv->status |= STATUS_INT_ENABLED;
1121 write_register(priv->net_dev, IPW_REG_INTA_MASK, IPW_INTERRUPT_MASK);
1122 }
1123
1124 static inline void ipw2100_disable_interrupts(struct ipw2100_priv *priv)
1125 {
1126 if (!(priv->status & STATUS_INT_ENABLED))
1127 return;
1128 priv->status &= ~STATUS_INT_ENABLED;
1129 write_register(priv->net_dev, IPW_REG_INTA_MASK, 0x0);
1130 }
1131
1132 static void ipw2100_initialize_ordinals(struct ipw2100_priv *priv)
1133 {
1134 struct ipw2100_ordinals *ord = &priv->ordinals;
1135
1136 IPW_DEBUG_INFO("enter\n");
1137
1138 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_1,
1139 &ord->table1_addr);
1140
1141 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_2,
1142 &ord->table2_addr);
1143
1144 read_nic_dword(priv->net_dev, ord->table1_addr, &ord->table1_size);
1145 read_nic_dword(priv->net_dev, ord->table2_addr, &ord->table2_size);
1146
1147 ord->table2_size &= 0x0000FFFF;
1148
1149 IPW_DEBUG_INFO("table 1 size: %d\n", ord->table1_size);
1150 IPW_DEBUG_INFO("table 2 size: %d\n", ord->table2_size);
1151 IPW_DEBUG_INFO("exit\n");
1152 }
1153
1154 static inline void ipw2100_hw_set_gpio(struct ipw2100_priv *priv)
1155 {
1156 u32 reg = 0;
1157 /*
1158 * Set GPIO 3 writable by FW; GPIO 1 writable
1159 * by driver and enable clock
1160 */
1161 reg = (IPW_BIT_GPIO_GPIO3_MASK | IPW_BIT_GPIO_GPIO1_ENABLE |
1162 IPW_BIT_GPIO_LED_OFF);
1163 write_register(priv->net_dev, IPW_REG_GPIO, reg);
1164 }
1165
1166 static int rf_kill_active(struct ipw2100_priv *priv)
1167 {
1168 #define MAX_RF_KILL_CHECKS 5
1169 #define RF_KILL_CHECK_DELAY 40
1170
1171 unsigned short value = 0;
1172 u32 reg = 0;
1173 int i;
1174
1175 if (!(priv->hw_features & HW_FEATURE_RFKILL)) {
1176 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, false);
1177 priv->status &= ~STATUS_RF_KILL_HW;
1178 return 0;
1179 }
1180
1181 for (i = 0; i < MAX_RF_KILL_CHECKS; i++) {
1182 udelay(RF_KILL_CHECK_DELAY);
1183 read_register(priv->net_dev, IPW_REG_GPIO, &reg);
1184 value = (value << 1) | ((reg & IPW_BIT_GPIO_RF_KILL) ? 0 : 1);
1185 }
1186
1187 if (value == 0) {
1188 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, true);
1189 priv->status |= STATUS_RF_KILL_HW;
1190 } else {
1191 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, false);
1192 priv->status &= ~STATUS_RF_KILL_HW;
1193 }
1194
1195 return (value == 0);
1196 }
1197
1198 static int ipw2100_get_hw_features(struct ipw2100_priv *priv)
1199 {
1200 u32 addr, len;
1201 u32 val;
1202
1203 /*
1204 * EEPROM_SRAM_DB_START_ADDRESS using ordinal in ordinal table 1
1205 */
1206 len = sizeof(addr);
1207 if (ipw2100_get_ordinal
1208 (priv, IPW_ORD_EEPROM_SRAM_DB_BLOCK_START_ADDRESS, &addr, &len)) {
1209 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1210 __LINE__);
1211 return -EIO;
1212 }
1213
1214 IPW_DEBUG_INFO("EEPROM address: %08X\n", addr);
1215
1216 /*
1217 * EEPROM version is the byte at offset 0xfd in firmware
1218 * We read 4 bytes, then shift out the byte we actually want */
1219 read_nic_dword(priv->net_dev, addr + 0xFC, &val);
1220 priv->eeprom_version = (val >> 24) & 0xFF;
1221 IPW_DEBUG_INFO("EEPROM version: %d\n", priv->eeprom_version);
1222
1223 /*
1224 * HW RF Kill enable is bit 0 in byte at offset 0x21 in firmware
1225 *
1226 * notice that the EEPROM bit is reverse polarity, i.e.
1227 * bit = 0 signifies HW RF kill switch is supported
1228 * bit = 1 signifies HW RF kill switch is NOT supported
1229 */
1230 read_nic_dword(priv->net_dev, addr + 0x20, &val);
1231 if (!((val >> 24) & 0x01))
1232 priv->hw_features |= HW_FEATURE_RFKILL;
1233
1234 IPW_DEBUG_INFO("HW RF Kill: %ssupported.\n",
1235 (priv->hw_features & HW_FEATURE_RFKILL) ? "" : "not ");
1236
1237 return 0;
1238 }
1239
1240 /*
1241 * Start firmware execution after power on and intialization
1242 * The sequence is:
1243 * 1. Release ARC
1244 * 2. Wait for f/w initialization completes;
1245 */
1246 static int ipw2100_start_adapter(struct ipw2100_priv *priv)
1247 {
1248 int i;
1249 u32 inta, inta_mask, gpio;
1250
1251 IPW_DEBUG_INFO("enter\n");
1252
1253 if (priv->status & STATUS_RUNNING)
1254 return 0;
1255
1256 /*
1257 * Initialize the hw - drive adapter to DO state by setting
1258 * init_done bit. Wait for clk_ready bit and Download
1259 * fw & dino ucode
1260 */
1261 if (ipw2100_download_firmware(priv)) {
1262 printk(KERN_ERR DRV_NAME
1263 ": %s: Failed to power on the adapter.\n",
1264 priv->net_dev->name);
1265 return -EIO;
1266 }
1267
1268 /* Clear the Tx, Rx and Msg queues and the r/w indexes
1269 * in the firmware RBD and TBD ring queue */
1270 ipw2100_queues_initialize(priv);
1271
1272 ipw2100_hw_set_gpio(priv);
1273
1274 /* TODO -- Look at disabling interrupts here to make sure none
1275 * get fired during FW initialization */
1276
1277 /* Release ARC - clear reset bit */
1278 write_register(priv->net_dev, IPW_REG_RESET_REG, 0);
1279
1280 /* wait for f/w intialization complete */
1281 IPW_DEBUG_FW("Waiting for f/w initialization to complete...\n");
1282 i = 5000;
1283 do {
1284 schedule_timeout_uninterruptible(msecs_to_jiffies(40));
1285 /* Todo... wait for sync command ... */
1286
1287 read_register(priv->net_dev, IPW_REG_INTA, &inta);
1288
1289 /* check "init done" bit */
1290 if (inta & IPW2100_INTA_FW_INIT_DONE) {
1291 /* reset "init done" bit */
1292 write_register(priv->net_dev, IPW_REG_INTA,
1293 IPW2100_INTA_FW_INIT_DONE);
1294 break;
1295 }
1296
1297 /* check error conditions : we check these after the firmware
1298 * check so that if there is an error, the interrupt handler
1299 * will see it and the adapter will be reset */
1300 if (inta &
1301 (IPW2100_INTA_FATAL_ERROR | IPW2100_INTA_PARITY_ERROR)) {
1302 /* clear error conditions */
1303 write_register(priv->net_dev, IPW_REG_INTA,
1304 IPW2100_INTA_FATAL_ERROR |
1305 IPW2100_INTA_PARITY_ERROR);
1306 }
1307 } while (--i);
1308
1309 /* Clear out any pending INTAs since we aren't supposed to have
1310 * interrupts enabled at this point... */
1311 read_register(priv->net_dev, IPW_REG_INTA, &inta);
1312 read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask);
1313 inta &= IPW_INTERRUPT_MASK;
1314 /* Clear out any pending interrupts */
1315 if (inta & inta_mask)
1316 write_register(priv->net_dev, IPW_REG_INTA, inta);
1317
1318 IPW_DEBUG_FW("f/w initialization complete: %s\n",
1319 i ? "SUCCESS" : "FAILED");
1320
1321 if (!i) {
1322 printk(KERN_WARNING DRV_NAME
1323 ": %s: Firmware did not initialize.\n",
1324 priv->net_dev->name);
1325 return -EIO;
1326 }
1327
1328 /* allow firmware to write to GPIO1 & GPIO3 */
1329 read_register(priv->net_dev, IPW_REG_GPIO, &gpio);
1330
1331 gpio |= (IPW_BIT_GPIO_GPIO1_MASK | IPW_BIT_GPIO_GPIO3_MASK);
1332
1333 write_register(priv->net_dev, IPW_REG_GPIO, gpio);
1334
1335 /* Ready to receive commands */
1336 priv->status |= STATUS_RUNNING;
1337
1338 /* The adapter has been reset; we are not associated */
1339 priv->status &= ~(STATUS_ASSOCIATING | STATUS_ASSOCIATED);
1340
1341 IPW_DEBUG_INFO("exit\n");
1342
1343 return 0;
1344 }
1345
1346 static inline void ipw2100_reset_fatalerror(struct ipw2100_priv *priv)
1347 {
1348 if (!priv->fatal_error)
1349 return;
1350
1351 priv->fatal_errors[priv->fatal_index++] = priv->fatal_error;
1352 priv->fatal_index %= IPW2100_ERROR_QUEUE;
1353 priv->fatal_error = 0;
1354 }
1355
1356 /* NOTE: Our interrupt is disabled when this method is called */
1357 static int ipw2100_power_cycle_adapter(struct ipw2100_priv *priv)
1358 {
1359 u32 reg;
1360 int i;
1361
1362 IPW_DEBUG_INFO("Power cycling the hardware.\n");
1363
1364 ipw2100_hw_set_gpio(priv);
1365
1366 /* Step 1. Stop Master Assert */
1367 write_register(priv->net_dev, IPW_REG_RESET_REG,
1368 IPW_AUX_HOST_RESET_REG_STOP_MASTER);
1369
1370 /* Step 2. Wait for stop Master Assert
1371 * (not more than 50us, otherwise ret error */
1372 i = 5;
1373 do {
1374 udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY);
1375 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
1376
1377 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
1378 break;
1379 } while (--i);
1380
1381 priv->status &= ~STATUS_RESET_PENDING;
1382
1383 if (!i) {
1384 IPW_DEBUG_INFO
1385 ("exit - waited too long for master assert stop\n");
1386 return -EIO;
1387 }
1388
1389 write_register(priv->net_dev, IPW_REG_RESET_REG,
1390 IPW_AUX_HOST_RESET_REG_SW_RESET);
1391
1392 /* Reset any fatal_error conditions */
1393 ipw2100_reset_fatalerror(priv);
1394
1395 /* At this point, the adapter is now stopped and disabled */
1396 priv->status &= ~(STATUS_RUNNING | STATUS_ASSOCIATING |
1397 STATUS_ASSOCIATED | STATUS_ENABLED);
1398
1399 return 0;
1400 }
1401
1402 /*
1403 * Send the CARD_DISABLE_PHY_OFF command to the card to disable it
1404 *
1405 * After disabling, if the card was associated, a STATUS_ASSN_LOST will be sent.
1406 *
1407 * STATUS_CARD_DISABLE_NOTIFICATION will be sent regardless of
1408 * if STATUS_ASSN_LOST is sent.
1409 */
1410 static int ipw2100_hw_phy_off(struct ipw2100_priv *priv)
1411 {
1412
1413 #define HW_PHY_OFF_LOOP_DELAY (HZ / 5000)
1414
1415 struct host_command cmd = {
1416 .host_command = CARD_DISABLE_PHY_OFF,
1417 .host_command_sequence = 0,
1418 .host_command_length = 0,
1419 };
1420 int err, i;
1421 u32 val1, val2;
1422
1423 IPW_DEBUG_HC("CARD_DISABLE_PHY_OFF\n");
1424
1425 /* Turn off the radio */
1426 err = ipw2100_hw_send_command(priv, &cmd);
1427 if (err)
1428 return err;
1429
1430 for (i = 0; i < 2500; i++) {
1431 read_nic_dword(priv->net_dev, IPW2100_CONTROL_REG, &val1);
1432 read_nic_dword(priv->net_dev, IPW2100_COMMAND, &val2);
1433
1434 if ((val1 & IPW2100_CONTROL_PHY_OFF) &&
1435 (val2 & IPW2100_COMMAND_PHY_OFF))
1436 return 0;
1437
1438 schedule_timeout_uninterruptible(HW_PHY_OFF_LOOP_DELAY);
1439 }
1440
1441 return -EIO;
1442 }
1443
1444 static int ipw2100_enable_adapter(struct ipw2100_priv *priv)
1445 {
1446 struct host_command cmd = {
1447 .host_command = HOST_COMPLETE,
1448 .host_command_sequence = 0,
1449 .host_command_length = 0
1450 };
1451 int err = 0;
1452
1453 IPW_DEBUG_HC("HOST_COMPLETE\n");
1454
1455 if (priv->status & STATUS_ENABLED)
1456 return 0;
1457
1458 mutex_lock(&priv->adapter_mutex);
1459
1460 if (rf_kill_active(priv)) {
1461 IPW_DEBUG_HC("Command aborted due to RF kill active.\n");
1462 goto fail_up;
1463 }
1464
1465 err = ipw2100_hw_send_command(priv, &cmd);
1466 if (err) {
1467 IPW_DEBUG_INFO("Failed to send HOST_COMPLETE command\n");
1468 goto fail_up;
1469 }
1470
1471 err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_ENABLED);
1472 if (err) {
1473 IPW_DEBUG_INFO("%s: card not responding to init command.\n",
1474 priv->net_dev->name);
1475 goto fail_up;
1476 }
1477
1478 if (priv->stop_hang_check) {
1479 priv->stop_hang_check = 0;
1480 schedule_delayed_work(&priv->hang_check, HZ / 2);
1481 }
1482
1483 fail_up:
1484 mutex_unlock(&priv->adapter_mutex);
1485 return err;
1486 }
1487
1488 static int ipw2100_hw_stop_adapter(struct ipw2100_priv *priv)
1489 {
1490 #define HW_POWER_DOWN_DELAY (msecs_to_jiffies(100))
1491
1492 struct host_command cmd = {
1493 .host_command = HOST_PRE_POWER_DOWN,
1494 .host_command_sequence = 0,
1495 .host_command_length = 0,
1496 };
1497 int err, i;
1498 u32 reg;
1499
1500 if (!(priv->status & STATUS_RUNNING))
1501 return 0;
1502
1503 priv->status |= STATUS_STOPPING;
1504
1505 /* We can only shut down the card if the firmware is operational. So,
1506 * if we haven't reset since a fatal_error, then we can not send the
1507 * shutdown commands. */
1508 if (!priv->fatal_error) {
1509 /* First, make sure the adapter is enabled so that the PHY_OFF
1510 * command can shut it down */
1511 ipw2100_enable_adapter(priv);
1512
1513 err = ipw2100_hw_phy_off(priv);
1514 if (err)
1515 printk(KERN_WARNING DRV_NAME
1516 ": Error disabling radio %d\n", err);
1517
1518 /*
1519 * If in D0-standby mode going directly to D3 may cause a
1520 * PCI bus violation. Therefore we must change out of the D0
1521 * state.
1522 *
1523 * Sending the PREPARE_FOR_POWER_DOWN will restrict the
1524 * hardware from going into standby mode and will transition
1525 * out of D0-standby if it is already in that state.
1526 *
1527 * STATUS_PREPARE_POWER_DOWN_COMPLETE will be sent by the
1528 * driver upon completion. Once received, the driver can
1529 * proceed to the D3 state.
1530 *
1531 * Prepare for power down command to fw. This command would
1532 * take HW out of D0-standby and prepare it for D3 state.
1533 *
1534 * Currently FW does not support event notification for this
1535 * event. Therefore, skip waiting for it. Just wait a fixed
1536 * 100ms
1537 */
1538 IPW_DEBUG_HC("HOST_PRE_POWER_DOWN\n");
1539
1540 err = ipw2100_hw_send_command(priv, &cmd);
1541 if (err)
1542 printk(KERN_WARNING DRV_NAME ": "
1543 "%s: Power down command failed: Error %d\n",
1544 priv->net_dev->name, err);
1545 else
1546 schedule_timeout_uninterruptible(HW_POWER_DOWN_DELAY);
1547 }
1548
1549 priv->status &= ~STATUS_ENABLED;
1550
1551 /*
1552 * Set GPIO 3 writable by FW; GPIO 1 writable
1553 * by driver and enable clock
1554 */
1555 ipw2100_hw_set_gpio(priv);
1556
1557 /*
1558 * Power down adapter. Sequence:
1559 * 1. Stop master assert (RESET_REG[9]=1)
1560 * 2. Wait for stop master (RESET_REG[8]==1)
1561 * 3. S/w reset assert (RESET_REG[7] = 1)
1562 */
1563
1564 /* Stop master assert */
1565 write_register(priv->net_dev, IPW_REG_RESET_REG,
1566 IPW_AUX_HOST_RESET_REG_STOP_MASTER);
1567
1568 /* wait stop master not more than 50 usec.
1569 * Otherwise return error. */
1570 for (i = 5; i > 0; i--) {
1571 udelay(10);
1572
1573 /* Check master stop bit */
1574 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
1575
1576 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
1577 break;
1578 }
1579
1580 if (i == 0)
1581 printk(KERN_WARNING DRV_NAME
1582 ": %s: Could now power down adapter.\n",
1583 priv->net_dev->name);
1584
1585 /* assert s/w reset */
1586 write_register(priv->net_dev, IPW_REG_RESET_REG,
1587 IPW_AUX_HOST_RESET_REG_SW_RESET);
1588
1589 priv->status &= ~(STATUS_RUNNING | STATUS_STOPPING);
1590
1591 return 0;
1592 }
1593
1594 static int ipw2100_disable_adapter(struct ipw2100_priv *priv)
1595 {
1596 struct host_command cmd = {
1597 .host_command = CARD_DISABLE,
1598 .host_command_sequence = 0,
1599 .host_command_length = 0
1600 };
1601 int err = 0;
1602
1603 IPW_DEBUG_HC("CARD_DISABLE\n");
1604
1605 if (!(priv->status & STATUS_ENABLED))
1606 return 0;
1607
1608 /* Make sure we clear the associated state */
1609 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1610
1611 if (!priv->stop_hang_check) {
1612 priv->stop_hang_check = 1;
1613 cancel_delayed_work(&priv->hang_check);
1614 }
1615
1616 mutex_lock(&priv->adapter_mutex);
1617
1618 err = ipw2100_hw_send_command(priv, &cmd);
1619 if (err) {
1620 printk(KERN_WARNING DRV_NAME
1621 ": exit - failed to send CARD_DISABLE command\n");
1622 goto fail_up;
1623 }
1624
1625 err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_DISABLED);
1626 if (err) {
1627 printk(KERN_WARNING DRV_NAME
1628 ": exit - card failed to change to DISABLED\n");
1629 goto fail_up;
1630 }
1631
1632 IPW_DEBUG_INFO("TODO: implement scan state machine\n");
1633
1634 fail_up:
1635 mutex_unlock(&priv->adapter_mutex);
1636 return err;
1637 }
1638
1639 static int ipw2100_set_scan_options(struct ipw2100_priv *priv)
1640 {
1641 struct host_command cmd = {
1642 .host_command = SET_SCAN_OPTIONS,
1643 .host_command_sequence = 0,
1644 .host_command_length = 8
1645 };
1646 int err;
1647
1648 IPW_DEBUG_INFO("enter\n");
1649
1650 IPW_DEBUG_SCAN("setting scan options\n");
1651
1652 cmd.host_command_parameters[0] = 0;
1653
1654 if (!(priv->config & CFG_ASSOCIATE))
1655 cmd.host_command_parameters[0] |= IPW_SCAN_NOASSOCIATE;
1656 if ((priv->ieee->sec.flags & SEC_ENABLED) && priv->ieee->sec.enabled)
1657 cmd.host_command_parameters[0] |= IPW_SCAN_MIXED_CELL;
1658 if (priv->config & CFG_PASSIVE_SCAN)
1659 cmd.host_command_parameters[0] |= IPW_SCAN_PASSIVE;
1660
1661 cmd.host_command_parameters[1] = priv->channel_mask;
1662
1663 err = ipw2100_hw_send_command(priv, &cmd);
1664
1665 IPW_DEBUG_HC("SET_SCAN_OPTIONS 0x%04X\n",
1666 cmd.host_command_parameters[0]);
1667
1668 return err;
1669 }
1670
1671 static int ipw2100_start_scan(struct ipw2100_priv *priv)
1672 {
1673 struct host_command cmd = {
1674 .host_command = BROADCAST_SCAN,
1675 .host_command_sequence = 0,
1676 .host_command_length = 4
1677 };
1678 int err;
1679
1680 IPW_DEBUG_HC("START_SCAN\n");
1681
1682 cmd.host_command_parameters[0] = 0;
1683
1684 /* No scanning if in monitor mode */
1685 if (priv->ieee->iw_mode == IW_MODE_MONITOR)
1686 return 1;
1687
1688 if (priv->status & STATUS_SCANNING) {
1689 IPW_DEBUG_SCAN("Scan requested while already in scan...\n");
1690 return 0;
1691 }
1692
1693 IPW_DEBUG_INFO("enter\n");
1694
1695 /* Not clearing here; doing so makes iwlist always return nothing...
1696 *
1697 * We should modify the table logic to use aging tables vs. clearing
1698 * the table on each scan start.
1699 */
1700 IPW_DEBUG_SCAN("starting scan\n");
1701
1702 priv->status |= STATUS_SCANNING;
1703 err = ipw2100_hw_send_command(priv, &cmd);
1704 if (err)
1705 priv->status &= ~STATUS_SCANNING;
1706
1707 IPW_DEBUG_INFO("exit\n");
1708
1709 return err;
1710 }
1711
1712 static const struct libipw_geo ipw_geos[] = {
1713 { /* Restricted */
1714 "---",
1715 .bg_channels = 14,
1716 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
1717 {2427, 4}, {2432, 5}, {2437, 6},
1718 {2442, 7}, {2447, 8}, {2452, 9},
1719 {2457, 10}, {2462, 11}, {2467, 12},
1720 {2472, 13}, {2484, 14}},
1721 },
1722 };
1723
1724 static int ipw2100_up(struct ipw2100_priv *priv, int deferred)
1725 {
1726 unsigned long flags;
1727 int rc = 0;
1728 u32 lock;
1729 u32 ord_len = sizeof(lock);
1730
1731 /* Age scan list entries found before suspend */
1732 if (priv->suspend_time) {
1733 libipw_networks_age(priv->ieee, priv->suspend_time);
1734 priv->suspend_time = 0;
1735 }
1736
1737 /* Quiet if manually disabled. */
1738 if (priv->status & STATUS_RF_KILL_SW) {
1739 IPW_DEBUG_INFO("%s: Radio is disabled by Manual Disable "
1740 "switch\n", priv->net_dev->name);
1741 return 0;
1742 }
1743
1744 /* the ipw2100 hardware really doesn't want power management delays
1745 * longer than 175usec
1746 */
1747 pm_qos_update_request(&ipw2100_pm_qos_req, 175);
1748
1749 /* If the interrupt is enabled, turn it off... */
1750 spin_lock_irqsave(&priv->low_lock, flags);
1751 ipw2100_disable_interrupts(priv);
1752
1753 /* Reset any fatal_error conditions */
1754 ipw2100_reset_fatalerror(priv);
1755 spin_unlock_irqrestore(&priv->low_lock, flags);
1756
1757 if (priv->status & STATUS_POWERED ||
1758 (priv->status & STATUS_RESET_PENDING)) {
1759 /* Power cycle the card ... */
1760 if (ipw2100_power_cycle_adapter(priv)) {
1761 printk(KERN_WARNING DRV_NAME
1762 ": %s: Could not cycle adapter.\n",
1763 priv->net_dev->name);
1764 rc = 1;
1765 goto exit;
1766 }
1767 } else
1768 priv->status |= STATUS_POWERED;
1769
1770 /* Load the firmware, start the clocks, etc. */
1771 if (ipw2100_start_adapter(priv)) {
1772 printk(KERN_ERR DRV_NAME
1773 ": %s: Failed to start the firmware.\n",
1774 priv->net_dev->name);
1775 rc = 1;
1776 goto exit;
1777 }
1778
1779 ipw2100_initialize_ordinals(priv);
1780
1781 /* Determine capabilities of this particular HW configuration */
1782 if (ipw2100_get_hw_features(priv)) {
1783 printk(KERN_ERR DRV_NAME
1784 ": %s: Failed to determine HW features.\n",
1785 priv->net_dev->name);
1786 rc = 1;
1787 goto exit;
1788 }
1789
1790 /* Initialize the geo */
1791 if (libipw_set_geo(priv->ieee, &ipw_geos[0])) {
1792 printk(KERN_WARNING DRV_NAME "Could not set geo\n");
1793 return 0;
1794 }
1795 priv->ieee->freq_band = LIBIPW_24GHZ_BAND;
1796
1797 lock = LOCK_NONE;
1798 if (ipw2100_set_ordinal(priv, IPW_ORD_PERS_DB_LOCK, &lock, &ord_len)) {
1799 printk(KERN_ERR DRV_NAME
1800 ": %s: Failed to clear ordinal lock.\n",
1801 priv->net_dev->name);
1802 rc = 1;
1803 goto exit;
1804 }
1805
1806 priv->status &= ~STATUS_SCANNING;
1807
1808 if (rf_kill_active(priv)) {
1809 printk(KERN_INFO "%s: Radio is disabled by RF switch.\n",
1810 priv->net_dev->name);
1811
1812 if (priv->stop_rf_kill) {
1813 priv->stop_rf_kill = 0;
1814 schedule_delayed_work(&priv->rf_kill,
1815 round_jiffies_relative(HZ));
1816 }
1817
1818 deferred = 1;
1819 }
1820
1821 /* Turn on the interrupt so that commands can be processed */
1822 ipw2100_enable_interrupts(priv);
1823
1824 /* Send all of the commands that must be sent prior to
1825 * HOST_COMPLETE */
1826 if (ipw2100_adapter_setup(priv)) {
1827 printk(KERN_ERR DRV_NAME ": %s: Failed to start the card.\n",
1828 priv->net_dev->name);
1829 rc = 1;
1830 goto exit;
1831 }
1832
1833 if (!deferred) {
1834 /* Enable the adapter - sends HOST_COMPLETE */
1835 if (ipw2100_enable_adapter(priv)) {
1836 printk(KERN_ERR DRV_NAME ": "
1837 "%s: failed in call to enable adapter.\n",
1838 priv->net_dev->name);
1839 ipw2100_hw_stop_adapter(priv);
1840 rc = 1;
1841 goto exit;
1842 }
1843
1844 /* Start a scan . . . */
1845 ipw2100_set_scan_options(priv);
1846 ipw2100_start_scan(priv);
1847 }
1848
1849 exit:
1850 return rc;
1851 }
1852
1853 static void ipw2100_down(struct ipw2100_priv *priv)
1854 {
1855 unsigned long flags;
1856 union iwreq_data wrqu = {
1857 .ap_addr = {
1858 .sa_family = ARPHRD_ETHER}
1859 };
1860 int associated = priv->status & STATUS_ASSOCIATED;
1861
1862 /* Kill the RF switch timer */
1863 if (!priv->stop_rf_kill) {
1864 priv->stop_rf_kill = 1;
1865 cancel_delayed_work(&priv->rf_kill);
1866 }
1867
1868 /* Kill the firmware hang check timer */
1869 if (!priv->stop_hang_check) {
1870 priv->stop_hang_check = 1;
1871 cancel_delayed_work(&priv->hang_check);
1872 }
1873
1874 /* Kill any pending resets */
1875 if (priv->status & STATUS_RESET_PENDING)
1876 cancel_delayed_work(&priv->reset_work);
1877
1878 /* Make sure the interrupt is on so that FW commands will be
1879 * processed correctly */
1880 spin_lock_irqsave(&priv->low_lock, flags);
1881 ipw2100_enable_interrupts(priv);
1882 spin_unlock_irqrestore(&priv->low_lock, flags);
1883
1884 if (ipw2100_hw_stop_adapter(priv))
1885 printk(KERN_ERR DRV_NAME ": %s: Error stopping adapter.\n",
1886 priv->net_dev->name);
1887
1888 /* Do not disable the interrupt until _after_ we disable
1889 * the adaptor. Otherwise the CARD_DISABLE command will never
1890 * be ack'd by the firmware */
1891 spin_lock_irqsave(&priv->low_lock, flags);
1892 ipw2100_disable_interrupts(priv);
1893 spin_unlock_irqrestore(&priv->low_lock, flags);
1894
1895 pm_qos_update_request(&ipw2100_pm_qos_req, PM_QOS_DEFAULT_VALUE);
1896
1897 /* We have to signal any supplicant if we are disassociating */
1898 if (associated)
1899 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1900
1901 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1902 netif_carrier_off(priv->net_dev);
1903 netif_stop_queue(priv->net_dev);
1904 }
1905
1906 /* Called by register_netdev() */
1907 static int ipw2100_net_init(struct net_device *dev)
1908 {
1909 struct ipw2100_priv *priv = libipw_priv(dev);
1910
1911 return ipw2100_up(priv, 1);
1912 }
1913
1914 static int ipw2100_wdev_init(struct net_device *dev)
1915 {
1916 struct ipw2100_priv *priv = libipw_priv(dev);
1917 const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
1918 struct wireless_dev *wdev = &priv->ieee->wdev;
1919 int i;
1920
1921 memcpy(wdev->wiphy->perm_addr, priv->mac_addr, ETH_ALEN);
1922
1923 /* fill-out priv->ieee->bg_band */
1924 if (geo->bg_channels) {
1925 struct ieee80211_supported_band *bg_band = &priv->ieee->bg_band;
1926
1927 bg_band->band = IEEE80211_BAND_2GHZ;
1928 bg_band->n_channels = geo->bg_channels;
1929 bg_band->channels = kcalloc(geo->bg_channels,
1930 sizeof(struct ieee80211_channel),
1931 GFP_KERNEL);
1932 if (!bg_band->channels) {
1933 ipw2100_down(priv);
1934 return -ENOMEM;
1935 }
1936 /* translate geo->bg to bg_band.channels */
1937 for (i = 0; i < geo->bg_channels; i++) {
1938 bg_band->channels[i].band = IEEE80211_BAND_2GHZ;
1939 bg_band->channels[i].center_freq = geo->bg[i].freq;
1940 bg_band->channels[i].hw_value = geo->bg[i].channel;
1941 bg_band->channels[i].max_power = geo->bg[i].max_power;
1942 if (geo->bg[i].flags & LIBIPW_CH_PASSIVE_ONLY)
1943 bg_band->channels[i].flags |=
1944 IEEE80211_CHAN_PASSIVE_SCAN;
1945 if (geo->bg[i].flags & LIBIPW_CH_NO_IBSS)
1946 bg_band->channels[i].flags |=
1947 IEEE80211_CHAN_NO_IBSS;
1948 if (geo->bg[i].flags & LIBIPW_CH_RADAR_DETECT)
1949 bg_band->channels[i].flags |=
1950 IEEE80211_CHAN_RADAR;
1951 /* No equivalent for LIBIPW_CH_80211H_RULES,
1952 LIBIPW_CH_UNIFORM_SPREADING, or
1953 LIBIPW_CH_B_ONLY... */
1954 }
1955 /* point at bitrate info */
1956 bg_band->bitrates = ipw2100_bg_rates;
1957 bg_band->n_bitrates = RATE_COUNT;
1958
1959 wdev->wiphy->bands[IEEE80211_BAND_2GHZ] = bg_band;
1960 }
1961
1962 wdev->wiphy->cipher_suites = ipw_cipher_suites;
1963 wdev->wiphy->n_cipher_suites = ARRAY_SIZE(ipw_cipher_suites);
1964
1965 set_wiphy_dev(wdev->wiphy, &priv->pci_dev->dev);
1966 if (wiphy_register(wdev->wiphy))
1967 return -EIO;
1968 return 0;
1969 }
1970
1971 static void ipw2100_reset_adapter(struct work_struct *work)
1972 {
1973 struct ipw2100_priv *priv =
1974 container_of(work, struct ipw2100_priv, reset_work.work);
1975 unsigned long flags;
1976 union iwreq_data wrqu = {
1977 .ap_addr = {
1978 .sa_family = ARPHRD_ETHER}
1979 };
1980 int associated = priv->status & STATUS_ASSOCIATED;
1981
1982 spin_lock_irqsave(&priv->low_lock, flags);
1983 IPW_DEBUG_INFO(": %s: Restarting adapter.\n", priv->net_dev->name);
1984 priv->resets++;
1985 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1986 priv->status |= STATUS_SECURITY_UPDATED;
1987
1988 /* Force a power cycle even if interface hasn't been opened
1989 * yet */
1990 cancel_delayed_work(&priv->reset_work);
1991 priv->status |= STATUS_RESET_PENDING;
1992 spin_unlock_irqrestore(&priv->low_lock, flags);
1993
1994 mutex_lock(&priv->action_mutex);
1995 /* stop timed checks so that they don't interfere with reset */
1996 priv->stop_hang_check = 1;
1997 cancel_delayed_work(&priv->hang_check);
1998
1999 /* We have to signal any supplicant if we are disassociating */
2000 if (associated)
2001 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
2002
2003 ipw2100_up(priv, 0);
2004 mutex_unlock(&priv->action_mutex);
2005
2006 }
2007
2008 static void isr_indicate_associated(struct ipw2100_priv *priv, u32 status)
2009 {
2010
2011 #define MAC_ASSOCIATION_READ_DELAY (HZ)
2012 int ret;
2013 unsigned int len, essid_len;
2014 char essid[IW_ESSID_MAX_SIZE];
2015 u32 txrate;
2016 u32 chan;
2017 char *txratename;
2018 u8 bssid[ETH_ALEN];
2019 DECLARE_SSID_BUF(ssid);
2020
2021 /*
2022 * TBD: BSSID is usually 00:00:00:00:00:00 here and not
2023 * an actual MAC of the AP. Seems like FW sets this
2024 * address too late. Read it later and expose through
2025 * /proc or schedule a later task to query and update
2026 */
2027
2028 essid_len = IW_ESSID_MAX_SIZE;
2029 ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_SSID,
2030 essid, &essid_len);
2031 if (ret) {
2032 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
2033 __LINE__);
2034 return;
2035 }
2036
2037 len = sizeof(u32);
2038 ret = ipw2100_get_ordinal(priv, IPW_ORD_CURRENT_TX_RATE, &txrate, &len);
2039 if (ret) {
2040 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
2041 __LINE__);
2042 return;
2043 }
2044
2045 len = sizeof(u32);
2046 ret = ipw2100_get_ordinal(priv, IPW_ORD_OUR_FREQ, &chan, &len);
2047 if (ret) {
2048 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
2049 __LINE__);
2050 return;
2051 }
2052 len = ETH_ALEN;
2053 ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID, &bssid, &len);
2054 if (ret) {
2055 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
2056 __LINE__);
2057 return;
2058 }
2059 memcpy(priv->ieee->bssid, bssid, ETH_ALEN);
2060
2061 switch (txrate) {
2062 case TX_RATE_1_MBIT:
2063 txratename = "1Mbps";
2064 break;
2065 case TX_RATE_2_MBIT:
2066 txratename = "2Mbsp";
2067 break;
2068 case TX_RATE_5_5_MBIT:
2069 txratename = "5.5Mbps";
2070 break;
2071 case TX_RATE_11_MBIT:
2072 txratename = "11Mbps";
2073 break;
2074 default:
2075 IPW_DEBUG_INFO("Unknown rate: %d\n", txrate);
2076 txratename = "unknown rate";
2077 break;
2078 }
2079
2080 IPW_DEBUG_INFO("%s: Associated with '%s' at %s, channel %d (BSSID=%pM)\n",
2081 priv->net_dev->name, print_ssid(ssid, essid, essid_len),
2082 txratename, chan, bssid);
2083
2084 /* now we copy read ssid into dev */
2085 if (!(priv->config & CFG_STATIC_ESSID)) {
2086 priv->essid_len = min((u8) essid_len, (u8) IW_ESSID_MAX_SIZE);
2087 memcpy(priv->essid, essid, priv->essid_len);
2088 }
2089 priv->channel = chan;
2090 memcpy(priv->bssid, bssid, ETH_ALEN);
2091
2092 priv->status |= STATUS_ASSOCIATING;
2093 priv->connect_start = get_seconds();
2094
2095 schedule_delayed_work(&priv->wx_event_work, HZ / 10);
2096 }
2097
2098 static int ipw2100_set_essid(struct ipw2100_priv *priv, char *essid,
2099 int length, int batch_mode)
2100 {
2101 int ssid_len = min(length, IW_ESSID_MAX_SIZE);
2102 struct host_command cmd = {
2103 .host_command = SSID,
2104 .host_command_sequence = 0,
2105 .host_command_length = ssid_len
2106 };
2107 int err;
2108 DECLARE_SSID_BUF(ssid);
2109
2110 IPW_DEBUG_HC("SSID: '%s'\n", print_ssid(ssid, essid, ssid_len));
2111
2112 if (ssid_len)
2113 memcpy(cmd.host_command_parameters, essid, ssid_len);
2114
2115 if (!batch_mode) {
2116 err = ipw2100_disable_adapter(priv);
2117 if (err)
2118 return err;
2119 }
2120
2121 /* Bug in FW currently doesn't honor bit 0 in SET_SCAN_OPTIONS to
2122 * disable auto association -- so we cheat by setting a bogus SSID */
2123 if (!ssid_len && !(priv->config & CFG_ASSOCIATE)) {
2124 int i;
2125 u8 *bogus = (u8 *) cmd.host_command_parameters;
2126 for (i = 0; i < IW_ESSID_MAX_SIZE; i++)
2127 bogus[i] = 0x18 + i;
2128 cmd.host_command_length = IW_ESSID_MAX_SIZE;
2129 }
2130
2131 /* NOTE: We always send the SSID command even if the provided ESSID is
2132 * the same as what we currently think is set. */
2133
2134 err = ipw2100_hw_send_command(priv, &cmd);
2135 if (!err) {
2136 memset(priv->essid + ssid_len, 0, IW_ESSID_MAX_SIZE - ssid_len);
2137 memcpy(priv->essid, essid, ssid_len);
2138 priv->essid_len = ssid_len;
2139 }
2140
2141 if (!batch_mode) {
2142 if (ipw2100_enable_adapter(priv))
2143 err = -EIO;
2144 }
2145
2146 return err;
2147 }
2148
2149 static void isr_indicate_association_lost(struct ipw2100_priv *priv, u32 status)
2150 {
2151 DECLARE_SSID_BUF(ssid);
2152
2153 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | IPW_DL_ASSOC,
2154 "disassociated: '%s' %pM\n",
2155 print_ssid(ssid, priv->essid, priv->essid_len),
2156 priv->bssid);
2157
2158 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
2159
2160 if (priv->status & STATUS_STOPPING) {
2161 IPW_DEBUG_INFO("Card is stopping itself, discard ASSN_LOST.\n");
2162 return;
2163 }
2164
2165 memset(priv->bssid, 0, ETH_ALEN);
2166 memset(priv->ieee->bssid, 0, ETH_ALEN);
2167
2168 netif_carrier_off(priv->net_dev);
2169 netif_stop_queue(priv->net_dev);
2170
2171 if (!(priv->status & STATUS_RUNNING))
2172 return;
2173
2174 if (priv->status & STATUS_SECURITY_UPDATED)
2175 schedule_delayed_work(&priv->security_work, 0);
2176
2177 schedule_delayed_work(&priv->wx_event_work, 0);
2178 }
2179
2180 static void isr_indicate_rf_kill(struct ipw2100_priv *priv, u32 status)
2181 {
2182 IPW_DEBUG_INFO("%s: RF Kill state changed to radio OFF.\n",
2183 priv->net_dev->name);
2184
2185 /* RF_KILL is now enabled (else we wouldn't be here) */
2186 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, true);
2187 priv->status |= STATUS_RF_KILL_HW;
2188
2189 /* Make sure the RF Kill check timer is running */
2190 priv->stop_rf_kill = 0;
2191 cancel_delayed_work(&priv->rf_kill);
2192 schedule_delayed_work(&priv->rf_kill, round_jiffies_relative(HZ));
2193 }
2194
2195 static void send_scan_event(void *data)
2196 {
2197 struct ipw2100_priv *priv = data;
2198 union iwreq_data wrqu;
2199
2200 wrqu.data.length = 0;
2201 wrqu.data.flags = 0;
2202 wireless_send_event(priv->net_dev, SIOCGIWSCAN, &wrqu, NULL);
2203 }
2204
2205 static void ipw2100_scan_event_later(struct work_struct *work)
2206 {
2207 send_scan_event(container_of(work, struct ipw2100_priv,
2208 scan_event_later.work));
2209 }
2210
2211 static void ipw2100_scan_event_now(struct work_struct *work)
2212 {
2213 send_scan_event(container_of(work, struct ipw2100_priv,
2214 scan_event_now));
2215 }
2216
2217 static void isr_scan_complete(struct ipw2100_priv *priv, u32 status)
2218 {
2219 IPW_DEBUG_SCAN("scan complete\n");
2220 /* Age the scan results... */
2221 priv->ieee->scans++;
2222 priv->status &= ~STATUS_SCANNING;
2223
2224 /* Only userspace-requested scan completion events go out immediately */
2225 if (!priv->user_requested_scan) {
2226 if (!delayed_work_pending(&priv->scan_event_later))
2227 schedule_delayed_work(&priv->scan_event_later,
2228 round_jiffies_relative(msecs_to_jiffies(4000)));
2229 } else {
2230 priv->user_requested_scan = 0;
2231 cancel_delayed_work(&priv->scan_event_later);
2232 schedule_work(&priv->scan_event_now);
2233 }
2234 }
2235
2236 #ifdef CONFIG_IPW2100_DEBUG
2237 #define IPW2100_HANDLER(v, f) { v, f, # v }
2238 struct ipw2100_status_indicator {
2239 int status;
2240 void (*cb) (struct ipw2100_priv * priv, u32 status);
2241 char *name;
2242 };
2243 #else
2244 #define IPW2100_HANDLER(v, f) { v, f }
2245 struct ipw2100_status_indicator {
2246 int status;
2247 void (*cb) (struct ipw2100_priv * priv, u32 status);
2248 };
2249 #endif /* CONFIG_IPW2100_DEBUG */
2250
2251 static void isr_indicate_scanning(struct ipw2100_priv *priv, u32 status)
2252 {
2253 IPW_DEBUG_SCAN("Scanning...\n");
2254 priv->status |= STATUS_SCANNING;
2255 }
2256
2257 static const struct ipw2100_status_indicator status_handlers[] = {
2258 IPW2100_HANDLER(IPW_STATE_INITIALIZED, NULL),
2259 IPW2100_HANDLER(IPW_STATE_COUNTRY_FOUND, NULL),
2260 IPW2100_HANDLER(IPW_STATE_ASSOCIATED, isr_indicate_associated),
2261 IPW2100_HANDLER(IPW_STATE_ASSN_LOST, isr_indicate_association_lost),
2262 IPW2100_HANDLER(IPW_STATE_ASSN_CHANGED, NULL),
2263 IPW2100_HANDLER(IPW_STATE_SCAN_COMPLETE, isr_scan_complete),
2264 IPW2100_HANDLER(IPW_STATE_ENTERED_PSP, NULL),
2265 IPW2100_HANDLER(IPW_STATE_LEFT_PSP, NULL),
2266 IPW2100_HANDLER(IPW_STATE_RF_KILL, isr_indicate_rf_kill),
2267 IPW2100_HANDLER(IPW_STATE_DISABLED, NULL),
2268 IPW2100_HANDLER(IPW_STATE_POWER_DOWN, NULL),
2269 IPW2100_HANDLER(IPW_STATE_SCANNING, isr_indicate_scanning),
2270 IPW2100_HANDLER(-1, NULL)
2271 };
2272
2273 static void isr_status_change(struct ipw2100_priv *priv, int status)
2274 {
2275 int i;
2276
2277 if (status == IPW_STATE_SCANNING &&
2278 priv->status & STATUS_ASSOCIATED &&
2279 !(priv->status & STATUS_SCANNING)) {
2280 IPW_DEBUG_INFO("Scan detected while associated, with "
2281 "no scan request. Restarting firmware.\n");
2282
2283 /* Wake up any sleeping jobs */
2284 schedule_reset(priv);
2285 }
2286
2287 for (i = 0; status_handlers[i].status != -1; i++) {
2288 if (status == status_handlers[i].status) {
2289 IPW_DEBUG_NOTIF("Status change: %s\n",
2290 status_handlers[i].name);
2291 if (status_handlers[i].cb)
2292 status_handlers[i].cb(priv, status);
2293 priv->wstats.status = status;
2294 return;
2295 }
2296 }
2297
2298 IPW_DEBUG_NOTIF("unknown status received: %04x\n", status);
2299 }
2300
2301 static void isr_rx_complete_command(struct ipw2100_priv *priv,
2302 struct ipw2100_cmd_header *cmd)
2303 {
2304 #ifdef CONFIG_IPW2100_DEBUG
2305 if (cmd->host_command_reg < ARRAY_SIZE(command_types)) {
2306 IPW_DEBUG_HC("Command completed '%s (%d)'\n",
2307 command_types[cmd->host_command_reg],
2308 cmd->host_command_reg);
2309 }
2310 #endif
2311 if (cmd->host_command_reg == HOST_COMPLETE)
2312 priv->status |= STATUS_ENABLED;
2313
2314 if (cmd->host_command_reg == CARD_DISABLE)
2315 priv->status &= ~STATUS_ENABLED;
2316
2317 priv->status &= ~STATUS_CMD_ACTIVE;
2318
2319 wake_up_interruptible(&priv->wait_command_queue);
2320 }
2321
2322 #ifdef CONFIG_IPW2100_DEBUG
2323 static const char *frame_types[] = {
2324 "COMMAND_STATUS_VAL",
2325 "STATUS_CHANGE_VAL",
2326 "P80211_DATA_VAL",
2327 "P8023_DATA_VAL",
2328 "HOST_NOTIFICATION_VAL"
2329 };
2330 #endif
2331
2332 static int ipw2100_alloc_skb(struct ipw2100_priv *priv,
2333 struct ipw2100_rx_packet *packet)
2334 {
2335 packet->skb = dev_alloc_skb(sizeof(struct ipw2100_rx));
2336 if (!packet->skb)
2337 return -ENOMEM;
2338
2339 packet->rxp = (struct ipw2100_rx *)packet->skb->data;
2340 packet->dma_addr = pci_map_single(priv->pci_dev, packet->skb->data,
2341 sizeof(struct ipw2100_rx),
2342 PCI_DMA_FROMDEVICE);
2343 /* NOTE: pci_map_single does not return an error code, and 0 is a valid
2344 * dma_addr */
2345
2346 return 0;
2347 }
2348
2349 #define SEARCH_ERROR 0xffffffff
2350 #define SEARCH_FAIL 0xfffffffe
2351 #define SEARCH_SUCCESS 0xfffffff0
2352 #define SEARCH_DISCARD 0
2353 #define SEARCH_SNAPSHOT 1
2354
2355 #define SNAPSHOT_ADDR(ofs) (priv->snapshot[((ofs) >> 12) & 0xff] + ((ofs) & 0xfff))
2356 static void ipw2100_snapshot_free(struct ipw2100_priv *priv)
2357 {
2358 int i;
2359 if (!priv->snapshot[0])
2360 return;
2361 for (i = 0; i < 0x30; i++)
2362 kfree(priv->snapshot[i]);
2363 priv->snapshot[0] = NULL;
2364 }
2365
2366 #ifdef IPW2100_DEBUG_C3
2367 static int ipw2100_snapshot_alloc(struct ipw2100_priv *priv)
2368 {
2369 int i;
2370 if (priv->snapshot[0])
2371 return 1;
2372 for (i = 0; i < 0x30; i++) {
2373 priv->snapshot[i] = kmalloc(0x1000, GFP_ATOMIC);
2374 if (!priv->snapshot[i]) {
2375 IPW_DEBUG_INFO("%s: Error allocating snapshot "
2376 "buffer %d\n", priv->net_dev->name, i);
2377 while (i > 0)
2378 kfree(priv->snapshot[--i]);
2379 priv->snapshot[0] = NULL;
2380 return 0;
2381 }
2382 }
2383
2384 return 1;
2385 }
2386
2387 static u32 ipw2100_match_buf(struct ipw2100_priv *priv, u8 * in_buf,
2388 size_t len, int mode)
2389 {
2390 u32 i, j;
2391 u32 tmp;
2392 u8 *s, *d;
2393 u32 ret;
2394
2395 s = in_buf;
2396 if (mode == SEARCH_SNAPSHOT) {
2397 if (!ipw2100_snapshot_alloc(priv))
2398 mode = SEARCH_DISCARD;
2399 }
2400
2401 for (ret = SEARCH_FAIL, i = 0; i < 0x30000; i += 4) {
2402 read_nic_dword(priv->net_dev, i, &tmp);
2403 if (mode == SEARCH_SNAPSHOT)
2404 *(u32 *) SNAPSHOT_ADDR(i) = tmp;
2405 if (ret == SEARCH_FAIL) {
2406 d = (u8 *) & tmp;
2407 for (j = 0; j < 4; j++) {
2408 if (*s != *d) {
2409 s = in_buf;
2410 continue;
2411 }
2412
2413 s++;
2414 d++;
2415
2416 if ((s - in_buf) == len)
2417 ret = (i + j) - len + 1;
2418 }
2419 } else if (mode == SEARCH_DISCARD)
2420 return ret;
2421 }
2422
2423 return ret;
2424 }
2425 #endif
2426
2427 /*
2428 *
2429 * 0) Disconnect the SKB from the firmware (just unmap)
2430 * 1) Pack the ETH header into the SKB
2431 * 2) Pass the SKB to the network stack
2432 *
2433 * When packet is provided by the firmware, it contains the following:
2434 *
2435 * . libipw_hdr
2436 * . libipw_snap_hdr
2437 *
2438 * The size of the constructed ethernet
2439 *
2440 */
2441 #ifdef IPW2100_RX_DEBUG
2442 static u8 packet_data[IPW_RX_NIC_BUFFER_LENGTH];
2443 #endif
2444
2445 static void ipw2100_corruption_detected(struct ipw2100_priv *priv, int i)
2446 {
2447 #ifdef IPW2100_DEBUG_C3
2448 struct ipw2100_status *status = &priv->status_queue.drv[i];
2449 u32 match, reg;
2450 int j;
2451 #endif
2452
2453 IPW_DEBUG_INFO(": PCI latency error detected at 0x%04zX.\n",
2454 i * sizeof(struct ipw2100_status));
2455
2456 #ifdef IPW2100_DEBUG_C3
2457 /* Halt the firmware so we can get a good image */
2458 write_register(priv->net_dev, IPW_REG_RESET_REG,
2459 IPW_AUX_HOST_RESET_REG_STOP_MASTER);
2460 j = 5;
2461 do {
2462 udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY);
2463 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
2464
2465 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
2466 break;
2467 } while (j--);
2468
2469 match = ipw2100_match_buf(priv, (u8 *) status,
2470 sizeof(struct ipw2100_status),
2471 SEARCH_SNAPSHOT);
2472 if (match < SEARCH_SUCCESS)
2473 IPW_DEBUG_INFO("%s: DMA status match in Firmware at "
2474 "offset 0x%06X, length %d:\n",
2475 priv->net_dev->name, match,
2476 sizeof(struct ipw2100_status));
2477 else
2478 IPW_DEBUG_INFO("%s: No DMA status match in "
2479 "Firmware.\n", priv->net_dev->name);
2480
2481 printk_buf((u8 *) priv->status_queue.drv,
2482 sizeof(struct ipw2100_status) * RX_QUEUE_LENGTH);
2483 #endif
2484
2485 priv->fatal_error = IPW2100_ERR_C3_CORRUPTION;
2486 priv->net_dev->stats.rx_errors++;
2487 schedule_reset(priv);
2488 }
2489
2490 static void isr_rx(struct ipw2100_priv *priv, int i,
2491 struct libipw_rx_stats *stats)
2492 {
2493 struct net_device *dev = priv->net_dev;
2494 struct ipw2100_status *status = &priv->status_queue.drv[i];
2495 struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
2496
2497 IPW_DEBUG_RX("Handler...\n");
2498
2499 if (unlikely(status->frame_size > skb_tailroom(packet->skb))) {
2500 IPW_DEBUG_INFO("%s: frame_size (%u) > skb_tailroom (%u)!"
2501 " Dropping.\n",
2502 dev->name,
2503 status->frame_size, skb_tailroom(packet->skb));
2504 dev->stats.rx_errors++;
2505 return;
2506 }
2507
2508 if (unlikely(!netif_running(dev))) {
2509 dev->stats.rx_errors++;
2510 priv->wstats.discard.misc++;
2511 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
2512 return;
2513 }
2514
2515 if (unlikely(priv->ieee->iw_mode != IW_MODE_MONITOR &&
2516 !(priv->status & STATUS_ASSOCIATED))) {
2517 IPW_DEBUG_DROP("Dropping packet while not associated.\n");
2518 priv->wstats.discard.misc++;
2519 return;
2520 }
2521
2522 pci_unmap_single(priv->pci_dev,
2523 packet->dma_addr,
2524 sizeof(struct ipw2100_rx), PCI_DMA_FROMDEVICE);
2525
2526 skb_put(packet->skb, status->frame_size);
2527
2528 #ifdef IPW2100_RX_DEBUG
2529 /* Make a copy of the frame so we can dump it to the logs if
2530 * libipw_rx fails */
2531 skb_copy_from_linear_data(packet->skb, packet_data,
2532 min_t(u32, status->frame_size,
2533 IPW_RX_NIC_BUFFER_LENGTH));
2534 #endif
2535
2536 if (!libipw_rx(priv->ieee, packet->skb, stats)) {
2537 #ifdef IPW2100_RX_DEBUG
2538 IPW_DEBUG_DROP("%s: Non consumed packet:\n",
2539 dev->name);
2540 printk_buf(IPW_DL_DROP, packet_data, status->frame_size);
2541 #endif
2542 dev->stats.rx_errors++;
2543
2544 /* libipw_rx failed, so it didn't free the SKB */
2545 dev_kfree_skb_any(packet->skb);
2546 packet->skb = NULL;
2547 }
2548
2549 /* We need to allocate a new SKB and attach it to the RDB. */
2550 if (unlikely(ipw2100_alloc_skb(priv, packet))) {
2551 printk(KERN_WARNING DRV_NAME ": "
2552 "%s: Unable to allocate SKB onto RBD ring - disabling "
2553 "adapter.\n", dev->name);
2554 /* TODO: schedule adapter shutdown */
2555 IPW_DEBUG_INFO("TODO: Shutdown adapter...\n");
2556 }
2557
2558 /* Update the RDB entry */
2559 priv->rx_queue.drv[i].host_addr = packet->dma_addr;
2560 }
2561
2562 #ifdef CONFIG_IPW2100_MONITOR
2563
2564 static void isr_rx_monitor(struct ipw2100_priv *priv, int i,
2565 struct libipw_rx_stats *stats)
2566 {
2567 struct net_device *dev = priv->net_dev;
2568 struct ipw2100_status *status = &priv->status_queue.drv[i];
2569 struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
2570
2571 /* Magic struct that slots into the radiotap header -- no reason
2572 * to build this manually element by element, we can write it much
2573 * more efficiently than we can parse it. ORDER MATTERS HERE */
2574 struct ipw_rt_hdr {
2575 struct ieee80211_radiotap_header rt_hdr;
2576 s8 rt_dbmsignal; /* signal in dbM, kluged to signed */
2577 } *ipw_rt;
2578
2579 IPW_DEBUG_RX("Handler...\n");
2580
2581 if (unlikely(status->frame_size > skb_tailroom(packet->skb) -
2582 sizeof(struct ipw_rt_hdr))) {
2583 IPW_DEBUG_INFO("%s: frame_size (%u) > skb_tailroom (%u)!"
2584 " Dropping.\n",
2585 dev->name,
2586 status->frame_size,
2587 skb_tailroom(packet->skb));
2588 dev->stats.rx_errors++;
2589 return;
2590 }
2591
2592 if (unlikely(!netif_running(dev))) {
2593 dev->stats.rx_errors++;
2594 priv->wstats.discard.misc++;
2595 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
2596 return;
2597 }
2598
2599 if (unlikely(priv->config & CFG_CRC_CHECK &&
2600 status->flags & IPW_STATUS_FLAG_CRC_ERROR)) {
2601 IPW_DEBUG_RX("CRC error in packet. Dropping.\n");
2602 dev->stats.rx_errors++;
2603 return;
2604 }
2605
2606 pci_unmap_single(priv->pci_dev, packet->dma_addr,
2607 sizeof(struct ipw2100_rx), PCI_DMA_FROMDEVICE);
2608 memmove(packet->skb->data + sizeof(struct ipw_rt_hdr),
2609 packet->skb->data, status->frame_size);
2610
2611 ipw_rt = (struct ipw_rt_hdr *) packet->skb->data;
2612
2613 ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
2614 ipw_rt->rt_hdr.it_pad = 0; /* always good to zero */
2615 ipw_rt->rt_hdr.it_len = cpu_to_le16(sizeof(struct ipw_rt_hdr)); /* total hdr+data */
2616
2617 ipw_rt->rt_hdr.it_present = cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
2618
2619 ipw_rt->rt_dbmsignal = status->rssi + IPW2100_RSSI_TO_DBM;
2620
2621 skb_put(packet->skb, status->frame_size + sizeof(struct ipw_rt_hdr));
2622
2623 if (!libipw_rx(priv->ieee, packet->skb, stats)) {
2624 dev->stats.rx_errors++;
2625
2626 /* libipw_rx failed, so it didn't free the SKB */
2627 dev_kfree_skb_any(packet->skb);
2628 packet->skb = NULL;
2629 }
2630
2631 /* We need to allocate a new SKB and attach it to the RDB. */
2632 if (unlikely(ipw2100_alloc_skb(priv, packet))) {
2633 IPW_DEBUG_WARNING(
2634 "%s: Unable to allocate SKB onto RBD ring - disabling "
2635 "adapter.\n", dev->name);
2636 /* TODO: schedule adapter shutdown */
2637 IPW_DEBUG_INFO("TODO: Shutdown adapter...\n");
2638 }
2639
2640 /* Update the RDB entry */
2641 priv->rx_queue.drv[i].host_addr = packet->dma_addr;
2642 }
2643
2644 #endif
2645
2646 static int ipw2100_corruption_check(struct ipw2100_priv *priv, int i)
2647 {
2648 struct ipw2100_status *status = &priv->status_queue.drv[i];
2649 struct ipw2100_rx *u = priv->rx_buffers[i].rxp;
2650 u16 frame_type = status->status_fields & STATUS_TYPE_MASK;
2651
2652 switch (frame_type) {
2653 case COMMAND_STATUS_VAL:
2654 return (status->frame_size != sizeof(u->rx_data.command));
2655 case STATUS_CHANGE_VAL:
2656 return (status->frame_size != sizeof(u->rx_data.status));
2657 case HOST_NOTIFICATION_VAL:
2658 return (status->frame_size < sizeof(u->rx_data.notification));
2659 case P80211_DATA_VAL:
2660 case P8023_DATA_VAL:
2661 #ifdef CONFIG_IPW2100_MONITOR
2662 return 0;
2663 #else
2664 switch (WLAN_FC_GET_TYPE(le16_to_cpu(u->rx_data.header.frame_ctl))) {
2665 case IEEE80211_FTYPE_MGMT:
2666 case IEEE80211_FTYPE_CTL:
2667 return 0;
2668 case IEEE80211_FTYPE_DATA:
2669 return (status->frame_size >
2670 IPW_MAX_802_11_PAYLOAD_LENGTH);
2671 }
2672 #endif
2673 }
2674
2675 return 1;
2676 }
2677
2678 /*
2679 * ipw2100 interrupts are disabled at this point, and the ISR
2680 * is the only code that calls this method. So, we do not need
2681 * to play with any locks.
2682 *
2683 * RX Queue works as follows:
2684 *
2685 * Read index - firmware places packet in entry identified by the
2686 * Read index and advances Read index. In this manner,
2687 * Read index will always point to the next packet to
2688 * be filled--but not yet valid.
2689 *
2690 * Write index - driver fills this entry with an unused RBD entry.
2691 * This entry has not filled by the firmware yet.
2692 *
2693 * In between the W and R indexes are the RBDs that have been received
2694 * but not yet processed.
2695 *
2696 * The process of handling packets will start at WRITE + 1 and advance
2697 * until it reaches the READ index.
2698 *
2699 * The WRITE index is cached in the variable 'priv->rx_queue.next'.
2700 *
2701 */
2702 static void __ipw2100_rx_process(struct ipw2100_priv *priv)
2703 {
2704 struct ipw2100_bd_queue *rxq = &priv->rx_queue;
2705 struct ipw2100_status_queue *sq = &priv->status_queue;
2706 struct ipw2100_rx_packet *packet;
2707 u16 frame_type;
2708 u32 r, w, i, s;
2709 struct ipw2100_rx *u;
2710 struct libipw_rx_stats stats = {
2711 .mac_time = jiffies,
2712 };
2713
2714 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_READ_INDEX, &r);
2715 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, &w);
2716
2717 if (r >= rxq->entries) {
2718 IPW_DEBUG_RX("exit - bad read index\n");
2719 return;
2720 }
2721
2722 i = (rxq->next + 1) % rxq->entries;
2723 s = i;
2724 while (i != r) {
2725 /* IPW_DEBUG_RX("r = %d : w = %d : processing = %d\n",
2726 r, rxq->next, i); */
2727
2728 packet = &priv->rx_buffers[i];
2729
2730 /* Sync the DMA for the RX buffer so CPU is sure to get
2731 * the correct values */
2732 pci_dma_sync_single_for_cpu(priv->pci_dev, packet->dma_addr,
2733 sizeof(struct ipw2100_rx),
2734 PCI_DMA_FROMDEVICE);
2735
2736 if (unlikely(ipw2100_corruption_check(priv, i))) {
2737 ipw2100_corruption_detected(priv, i);
2738 goto increment;
2739 }
2740
2741 u = packet->rxp;
2742 frame_type = sq->drv[i].status_fields & STATUS_TYPE_MASK;
2743 stats.rssi = sq->drv[i].rssi + IPW2100_RSSI_TO_DBM;
2744 stats.len = sq->drv[i].frame_size;
2745
2746 stats.mask = 0;
2747 if (stats.rssi != 0)
2748 stats.mask |= LIBIPW_STATMASK_RSSI;
2749 stats.freq = LIBIPW_24GHZ_BAND;
2750
2751 IPW_DEBUG_RX("%s: '%s' frame type received (%d).\n",
2752 priv->net_dev->name, frame_types[frame_type],
2753 stats.len);
2754
2755 switch (frame_type) {
2756 case COMMAND_STATUS_VAL:
2757 /* Reset Rx watchdog */
2758 isr_rx_complete_command(priv, &u->rx_data.command);
2759 break;
2760
2761 case STATUS_CHANGE_VAL:
2762 isr_status_change(priv, u->rx_data.status);
2763 break;
2764
2765 case P80211_DATA_VAL:
2766 case P8023_DATA_VAL:
2767 #ifdef CONFIG_IPW2100_MONITOR
2768 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
2769 isr_rx_monitor(priv, i, &stats);
2770 break;
2771 }
2772 #endif
2773 if (stats.len < sizeof(struct libipw_hdr_3addr))
2774 break;
2775 switch (WLAN_FC_GET_TYPE(le16_to_cpu(u->rx_data.header.frame_ctl))) {
2776 case IEEE80211_FTYPE_MGMT:
2777 libipw_rx_mgt(priv->ieee,
2778 &u->rx_data.header, &stats);
2779 break;
2780
2781 case IEEE80211_FTYPE_CTL:
2782 break;
2783
2784 case IEEE80211_FTYPE_DATA:
2785 isr_rx(priv, i, &stats);
2786 break;
2787
2788 }
2789 break;
2790 }
2791
2792 increment:
2793 /* clear status field associated with this RBD */
2794 rxq->drv[i].status.info.field = 0;
2795
2796 i = (i + 1) % rxq->entries;
2797 }
2798
2799 if (i != s) {
2800 /* backtrack one entry, wrapping to end if at 0 */
2801 rxq->next = (i ? i : rxq->entries) - 1;
2802
2803 write_register(priv->net_dev,
2804 IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, rxq->next);
2805 }
2806 }
2807
2808 /*
2809 * __ipw2100_tx_process
2810 *
2811 * This routine will determine whether the next packet on
2812 * the fw_pend_list has been processed by the firmware yet.
2813 *
2814 * If not, then it does nothing and returns.
2815 *
2816 * If so, then it removes the item from the fw_pend_list, frees
2817 * any associated storage, and places the item back on the
2818 * free list of its source (either msg_free_list or tx_free_list)
2819 *
2820 * TX Queue works as follows:
2821 *
2822 * Read index - points to the next TBD that the firmware will
2823 * process. The firmware will read the data, and once
2824 * done processing, it will advance the Read index.
2825 *
2826 * Write index - driver fills this entry with an constructed TBD
2827 * entry. The Write index is not advanced until the
2828 * packet has been configured.
2829 *
2830 * In between the W and R indexes are the TBDs that have NOT been
2831 * processed. Lagging behind the R index are packets that have
2832 * been processed but have not been freed by the driver.
2833 *
2834 * In order to free old storage, an internal index will be maintained
2835 * that points to the next packet to be freed. When all used
2836 * packets have been freed, the oldest index will be the same as the
2837 * firmware's read index.
2838 *
2839 * The OLDEST index is cached in the variable 'priv->tx_queue.oldest'
2840 *
2841 * Because the TBD structure can not contain arbitrary data, the
2842 * driver must keep an internal queue of cached allocations such that
2843 * it can put that data back into the tx_free_list and msg_free_list
2844 * for use by future command and data packets.
2845 *
2846 */
2847 static int __ipw2100_tx_process(struct ipw2100_priv *priv)
2848 {
2849 struct ipw2100_bd_queue *txq = &priv->tx_queue;
2850 struct ipw2100_bd *tbd;
2851 struct list_head *element;
2852 struct ipw2100_tx_packet *packet;
2853 int descriptors_used;
2854 int e, i;
2855 u32 r, w, frag_num = 0;
2856
2857 if (list_empty(&priv->fw_pend_list))
2858 return 0;
2859
2860 element = priv->fw_pend_list.next;
2861
2862 packet = list_entry(element, struct ipw2100_tx_packet, list);
2863 tbd = &txq->drv[packet->index];
2864
2865 /* Determine how many TBD entries must be finished... */
2866 switch (packet->type) {
2867 case COMMAND:
2868 /* COMMAND uses only one slot; don't advance */
2869 descriptors_used = 1;
2870 e = txq->oldest;
2871 break;
2872
2873 case DATA:
2874 /* DATA uses two slots; advance and loop position. */
2875 descriptors_used = tbd->num_fragments;
2876 frag_num = tbd->num_fragments - 1;
2877 e = txq->oldest + frag_num;
2878 e %= txq->entries;
2879 break;
2880
2881 default:
2882 printk(KERN_WARNING DRV_NAME ": %s: Bad fw_pend_list entry!\n",
2883 priv->net_dev->name);
2884 return 0;
2885 }
2886
2887 /* if the last TBD is not done by NIC yet, then packet is
2888 * not ready to be released.
2889 *
2890 */
2891 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX,
2892 &r);
2893 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
2894 &w);
2895 if (w != txq->next)
2896 printk(KERN_WARNING DRV_NAME ": %s: write index mismatch\n",
2897 priv->net_dev->name);
2898
2899 /*
2900 * txq->next is the index of the last packet written txq->oldest is
2901 * the index of the r is the index of the next packet to be read by
2902 * firmware
2903 */
2904
2905 /*
2906 * Quick graphic to help you visualize the following
2907 * if / else statement
2908 *
2909 * ===>| s---->|===============
2910 * e>|
2911 * | a | b | c | d | e | f | g | h | i | j | k | l
2912 * r---->|
2913 * w
2914 *
2915 * w - updated by driver
2916 * r - updated by firmware
2917 * s - start of oldest BD entry (txq->oldest)
2918 * e - end of oldest BD entry
2919 *
2920 */
2921 if (!((r <= w && (e < r || e >= w)) || (e < r && e >= w))) {
2922 IPW_DEBUG_TX("exit - no processed packets ready to release.\n");
2923 return 0;
2924 }
2925
2926 list_del(element);
2927 DEC_STAT(&priv->fw_pend_stat);
2928
2929 #ifdef CONFIG_IPW2100_DEBUG
2930 {
2931 i = txq->oldest;
2932 IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i,
2933 &txq->drv[i],
2934 (u32) (txq->nic + i * sizeof(struct ipw2100_bd)),
2935 txq->drv[i].host_addr, txq->drv[i].buf_length);
2936
2937 if (packet->type == DATA) {
2938 i = (i + 1) % txq->entries;
2939
2940 IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i,
2941 &txq->drv[i],
2942 (u32) (txq->nic + i *
2943 sizeof(struct ipw2100_bd)),
2944 (u32) txq->drv[i].host_addr,
2945 txq->drv[i].buf_length);
2946 }
2947 }
2948 #endif
2949
2950 switch (packet->type) {
2951 case DATA:
2952 if (txq->drv[txq->oldest].status.info.fields.txType != 0)
2953 printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch. "
2954 "Expecting DATA TBD but pulled "
2955 "something else: ids %d=%d.\n",
2956 priv->net_dev->name, txq->oldest, packet->index);
2957
2958 /* DATA packet; we have to unmap and free the SKB */
2959 for (i = 0; i < frag_num; i++) {
2960 tbd = &txq->drv[(packet->index + 1 + i) % txq->entries];
2961
2962 IPW_DEBUG_TX("TX%d P=%08x L=%d\n",
2963 (packet->index + 1 + i) % txq->entries,
2964 tbd->host_addr, tbd->buf_length);
2965
2966 pci_unmap_single(priv->pci_dev,
2967 tbd->host_addr,
2968 tbd->buf_length, PCI_DMA_TODEVICE);
2969 }
2970
2971 libipw_txb_free(packet->info.d_struct.txb);
2972 packet->info.d_struct.txb = NULL;
2973
2974 list_add_tail(element, &priv->tx_free_list);
2975 INC_STAT(&priv->tx_free_stat);
2976
2977 /* We have a free slot in the Tx queue, so wake up the
2978 * transmit layer if it is stopped. */
2979 if (priv->status & STATUS_ASSOCIATED)
2980 netif_wake_queue(priv->net_dev);
2981
2982 /* A packet was processed by the hardware, so update the
2983 * watchdog */
2984 priv->net_dev->trans_start = jiffies;
2985
2986 break;
2987
2988 case COMMAND:
2989 if (txq->drv[txq->oldest].status.info.fields.txType != 1)
2990 printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch. "
2991 "Expecting COMMAND TBD but pulled "
2992 "something else: ids %d=%d.\n",
2993 priv->net_dev->name, txq->oldest, packet->index);
2994
2995 #ifdef CONFIG_IPW2100_DEBUG
2996 if (packet->info.c_struct.cmd->host_command_reg <
2997 ARRAY_SIZE(command_types))
2998 IPW_DEBUG_TX("Command '%s (%d)' processed: %d.\n",
2999 command_types[packet->info.c_struct.cmd->
3000 host_command_reg],
3001 packet->info.c_struct.cmd->
3002 host_command_reg,
3003 packet->info.c_struct.cmd->cmd_status_reg);
3004 #endif
3005
3006 list_add_tail(element, &priv->msg_free_list);
3007 INC_STAT(&priv->msg_free_stat);
3008 break;
3009 }
3010
3011 /* advance oldest used TBD pointer to start of next entry */
3012 txq->oldest = (e + 1) % txq->entries;
3013 /* increase available TBDs number */
3014 txq->available += descriptors_used;
3015 SET_STAT(&priv->txq_stat, txq->available);
3016
3017 IPW_DEBUG_TX("packet latency (send to process) %ld jiffies\n",
3018 jiffies - packet->jiffy_start);
3019
3020 return (!list_empty(&priv->fw_pend_list));
3021 }
3022
3023 static inline void __ipw2100_tx_complete(struct ipw2100_priv *priv)
3024 {
3025 int i = 0;
3026
3027 while (__ipw2100_tx_process(priv) && i < 200)
3028 i++;
3029
3030 if (i == 200) {
3031 printk(KERN_WARNING DRV_NAME ": "
3032 "%s: Driver is running slow (%d iters).\n",
3033 priv->net_dev->name, i);
3034 }
3035 }
3036
3037 static void ipw2100_tx_send_commands(struct ipw2100_priv *priv)
3038 {
3039 struct list_head *element;
3040 struct ipw2100_tx_packet *packet;
3041 struct ipw2100_bd_queue *txq = &priv->tx_queue;
3042 struct ipw2100_bd *tbd;
3043 int next = txq->next;
3044
3045 while (!list_empty(&priv->msg_pend_list)) {
3046 /* if there isn't enough space in TBD queue, then
3047 * don't stuff a new one in.
3048 * NOTE: 3 are needed as a command will take one,
3049 * and there is a minimum of 2 that must be
3050 * maintained between the r and w indexes
3051 */
3052 if (txq->available <= 3) {
3053 IPW_DEBUG_TX("no room in tx_queue\n");
3054 break;
3055 }
3056
3057 element = priv->msg_pend_list.next;
3058 list_del(element);
3059 DEC_STAT(&priv->msg_pend_stat);
3060
3061 packet = list_entry(element, struct ipw2100_tx_packet, list);
3062
3063 IPW_DEBUG_TX("using TBD at virt=%p, phys=%04X\n",
3064 &txq->drv[txq->next],
3065 (u32) (txq->nic + txq->next *
3066 sizeof(struct ipw2100_bd)));
3067
3068 packet->index = txq->next;
3069
3070 tbd = &txq->drv[txq->next];
3071
3072 /* initialize TBD */
3073 tbd->host_addr = packet->info.c_struct.cmd_phys;
3074 tbd->buf_length = sizeof(struct ipw2100_cmd_header);
3075 /* not marking number of fragments causes problems
3076 * with f/w debug version */
3077 tbd->num_fragments = 1;
3078 tbd->status.info.field =
3079 IPW_BD_STATUS_TX_FRAME_COMMAND |
3080 IPW_BD_STATUS_TX_INTERRUPT_ENABLE;
3081
3082 /* update TBD queue counters */
3083 txq->next++;
3084 txq->next %= txq->entries;
3085 txq->available--;
3086 DEC_STAT(&priv->txq_stat);
3087
3088 list_add_tail(element, &priv->fw_pend_list);
3089 INC_STAT(&priv->fw_pend_stat);
3090 }
3091
3092 if (txq->next != next) {
3093 /* kick off the DMA by notifying firmware the
3094 * write index has moved; make sure TBD stores are sync'd */
3095 wmb();
3096 write_register(priv->net_dev,
3097 IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
3098 txq->next);
3099 }
3100 }
3101
3102 /*
3103 * ipw2100_tx_send_data
3104 *
3105 */
3106 static void ipw2100_tx_send_data(struct ipw2100_priv *priv)
3107 {
3108 struct list_head *element;
3109 struct ipw2100_tx_packet *packet;
3110 struct ipw2100_bd_queue *txq = &priv->tx_queue;
3111 struct ipw2100_bd *tbd;
3112 int next = txq->next;
3113 int i = 0;
3114 struct ipw2100_data_header *ipw_hdr;
3115 struct libipw_hdr_3addr *hdr;
3116
3117 while (!list_empty(&priv->tx_pend_list)) {
3118 /* if there isn't enough space in TBD queue, then
3119 * don't stuff a new one in.
3120 * NOTE: 4 are needed as a data will take two,
3121 * and there is a minimum of 2 that must be
3122 * maintained between the r and w indexes
3123 */
3124 element = priv->tx_pend_list.next;
3125 packet = list_entry(element, struct ipw2100_tx_packet, list);
3126
3127 if (unlikely(1 + packet->info.d_struct.txb->nr_frags >
3128 IPW_MAX_BDS)) {
3129 /* TODO: Support merging buffers if more than
3130 * IPW_MAX_BDS are used */
3131 IPW_DEBUG_INFO("%s: Maximum BD threshold exceeded. "
3132 "Increase fragmentation level.\n",
3133 priv->net_dev->name);
3134 }
3135
3136 if (txq->available <= 3 + packet->info.d_struct.txb->nr_frags) {
3137 IPW_DEBUG_TX("no room in tx_queue\n");
3138 break;
3139 }
3140
3141 list_del(element);
3142 DEC_STAT(&priv->tx_pend_stat);
3143
3144 tbd = &txq->drv[txq->next];
3145
3146 packet->index = txq->next;
3147
3148 ipw_hdr = packet->info.d_struct.data;
3149 hdr = (struct libipw_hdr_3addr *)packet->info.d_struct.txb->
3150 fragments[0]->data;
3151
3152 if (priv->ieee->iw_mode == IW_MODE_INFRA) {
3153 /* To DS: Addr1 = BSSID, Addr2 = SA,
3154 Addr3 = DA */
3155 memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN);
3156 memcpy(ipw_hdr->dst_addr, hdr->addr3, ETH_ALEN);
3157 } else if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
3158 /* not From/To DS: Addr1 = DA, Addr2 = SA,
3159 Addr3 = BSSID */
3160 memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN);
3161 memcpy(ipw_hdr->dst_addr, hdr->addr1, ETH_ALEN);
3162 }
3163
3164 ipw_hdr->host_command_reg = SEND;
3165 ipw_hdr->host_command_reg1 = 0;
3166
3167 /* For now we only support host based encryption */
3168 ipw_hdr->needs_encryption = 0;
3169 ipw_hdr->encrypted = packet->info.d_struct.txb->encrypted;
3170 if (packet->info.d_struct.txb->nr_frags > 1)
3171 ipw_hdr->fragment_size =
3172 packet->info.d_struct.txb->frag_size -
3173 LIBIPW_3ADDR_LEN;
3174 else
3175 ipw_hdr->fragment_size = 0;
3176
3177 tbd->host_addr = packet->info.d_struct.data_phys;
3178 tbd->buf_length = sizeof(struct ipw2100_data_header);
3179 tbd->num_fragments = 1 + packet->info.d_struct.txb->nr_frags;
3180 tbd->status.info.field =
3181 IPW_BD_STATUS_TX_FRAME_802_3 |
3182 IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT;
3183 txq->next++;
3184 txq->next %= txq->entries;
3185
3186 IPW_DEBUG_TX("data header tbd TX%d P=%08x L=%d\n",
3187 packet->index, tbd->host_addr, tbd->buf_length);
3188 #ifdef CONFIG_IPW2100_DEBUG
3189 if (packet->info.d_struct.txb->nr_frags > 1)
3190 IPW_DEBUG_FRAG("fragment Tx: %d frames\n",
3191 packet->info.d_struct.txb->nr_frags);
3192 #endif
3193
3194 for (i = 0; i < packet->info.d_struct.txb->nr_frags; i++) {
3195 tbd = &txq->drv[txq->next];
3196 if (i == packet->info.d_struct.txb->nr_frags - 1)
3197 tbd->status.info.field =
3198 IPW_BD_STATUS_TX_FRAME_802_3 |
3199 IPW_BD_STATUS_TX_INTERRUPT_ENABLE;
3200 else
3201 tbd->status.info.field =
3202 IPW_BD_STATUS_TX_FRAME_802_3 |
3203 IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT;
3204
3205 tbd->buf_length = packet->info.d_struct.txb->
3206 fragments[i]->len - LIBIPW_3ADDR_LEN;
3207
3208 tbd->host_addr = pci_map_single(priv->pci_dev,
3209 packet->info.d_struct.
3210 txb->fragments[i]->
3211 data +
3212 LIBIPW_3ADDR_LEN,
3213 tbd->buf_length,
3214 PCI_DMA_TODEVICE);
3215
3216 IPW_DEBUG_TX("data frag tbd TX%d P=%08x L=%d\n",
3217 txq->next, tbd->host_addr,
3218 tbd->buf_length);
3219
3220 pci_dma_sync_single_for_device(priv->pci_dev,
3221 tbd->host_addr,
3222 tbd->buf_length,
3223 PCI_DMA_TODEVICE);
3224
3225 txq->next++;
3226 txq->next %= txq->entries;
3227 }
3228
3229 txq->available -= 1 + packet->info.d_struct.txb->nr_frags;
3230 SET_STAT(&priv->txq_stat, txq->available);
3231
3232 list_add_tail(element, &priv->fw_pend_list);
3233 INC_STAT(&priv->fw_pend_stat);
3234 }
3235
3236 if (txq->next != next) {
3237 /* kick off the DMA by notifying firmware the
3238 * write index has moved; make sure TBD stores are sync'd */
3239 write_register(priv->net_dev,
3240 IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
3241 txq->next);
3242 }
3243 }
3244
3245 static void ipw2100_irq_tasklet(struct ipw2100_priv *priv)
3246 {
3247 struct net_device *dev = priv->net_dev;
3248 unsigned long flags;
3249 u32 inta, tmp;
3250
3251 spin_lock_irqsave(&priv->low_lock, flags);
3252 ipw2100_disable_interrupts(priv);
3253
3254 read_register(dev, IPW_REG_INTA, &inta);
3255
3256 IPW_DEBUG_ISR("enter - INTA: 0x%08lX\n",
3257 (unsigned long)inta & IPW_INTERRUPT_MASK);
3258
3259 priv->in_isr++;
3260 priv->interrupts++;
3261
3262 /* We do not loop and keep polling for more interrupts as this
3263 * is frowned upon and doesn't play nicely with other potentially
3264 * chained IRQs */
3265 IPW_DEBUG_ISR("INTA: 0x%08lX\n",
3266 (unsigned long)inta & IPW_INTERRUPT_MASK);
3267
3268 if (inta & IPW2100_INTA_FATAL_ERROR) {
3269 printk(KERN_WARNING DRV_NAME
3270 ": Fatal interrupt. Scheduling firmware restart.\n");
3271 priv->inta_other++;
3272 write_register(dev, IPW_REG_INTA, IPW2100_INTA_FATAL_ERROR);
3273
3274 read_nic_dword(dev, IPW_NIC_FATAL_ERROR, &priv->fatal_error);
3275 IPW_DEBUG_INFO("%s: Fatal error value: 0x%08X\n",
3276 priv->net_dev->name, priv->fatal_error);
3277
3278 read_nic_dword(dev, IPW_ERROR_ADDR(priv->fatal_error), &tmp);
3279 IPW_DEBUG_INFO("%s: Fatal error address value: 0x%08X\n",
3280 priv->net_dev->name, tmp);
3281
3282 /* Wake up any sleeping jobs */
3283 schedule_reset(priv);
3284 }
3285
3286 if (inta & IPW2100_INTA_PARITY_ERROR) {
3287 printk(KERN_ERR DRV_NAME
3288 ": ***** PARITY ERROR INTERRUPT !!!!\n");
3289 priv->inta_other++;
3290 write_register(dev, IPW_REG_INTA, IPW2100_INTA_PARITY_ERROR);
3291 }
3292
3293 if (inta & IPW2100_INTA_RX_TRANSFER) {
3294 IPW_DEBUG_ISR("RX interrupt\n");
3295
3296 priv->rx_interrupts++;
3297
3298 write_register(dev, IPW_REG_INTA, IPW2100_INTA_RX_TRANSFER);
3299
3300 __ipw2100_rx_process(priv);
3301 __ipw2100_tx_complete(priv);
3302 }
3303
3304 if (inta & IPW2100_INTA_TX_TRANSFER) {
3305 IPW_DEBUG_ISR("TX interrupt\n");
3306
3307 priv->tx_interrupts++;
3308
3309 write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_TRANSFER);
3310
3311 __ipw2100_tx_complete(priv);
3312 ipw2100_tx_send_commands(priv);
3313 ipw2100_tx_send_data(priv);
3314 }
3315
3316 if (inta & IPW2100_INTA_TX_COMPLETE) {
3317 IPW_DEBUG_ISR("TX complete\n");
3318 priv->inta_other++;
3319 write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_COMPLETE);
3320
3321 __ipw2100_tx_complete(priv);
3322 }
3323
3324 if (inta & IPW2100_INTA_EVENT_INTERRUPT) {
3325 /* ipw2100_handle_event(dev); */
3326 priv->inta_other++;
3327 write_register(dev, IPW_REG_INTA, IPW2100_INTA_EVENT_INTERRUPT);
3328 }
3329
3330 if (inta & IPW2100_INTA_FW_INIT_DONE) {
3331 IPW_DEBUG_ISR("FW init done interrupt\n");
3332 priv->inta_other++;
3333
3334 read_register(dev, IPW_REG_INTA, &tmp);
3335 if (tmp & (IPW2100_INTA_FATAL_ERROR |
3336 IPW2100_INTA_PARITY_ERROR)) {
3337 write_register(dev, IPW_REG_INTA,
3338 IPW2100_INTA_FATAL_ERROR |
3339 IPW2100_INTA_PARITY_ERROR);
3340 }
3341
3342 write_register(dev, IPW_REG_INTA, IPW2100_INTA_FW_INIT_DONE);
3343 }
3344
3345 if (inta & IPW2100_INTA_STATUS_CHANGE) {
3346 IPW_DEBUG_ISR("Status change interrupt\n");
3347 priv->inta_other++;
3348 write_register(dev, IPW_REG_INTA, IPW2100_INTA_STATUS_CHANGE);
3349 }
3350
3351 if (inta & IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE) {
3352 IPW_DEBUG_ISR("slave host mode interrupt\n");
3353 priv->inta_other++;
3354 write_register(dev, IPW_REG_INTA,
3355 IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE);
3356 }
3357
3358 priv->in_isr--;
3359 ipw2100_enable_interrupts(priv);
3360
3361 spin_unlock_irqrestore(&priv->low_lock, flags);
3362
3363 IPW_DEBUG_ISR("exit\n");
3364 }
3365
3366 static irqreturn_t ipw2100_interrupt(int irq, void *data)
3367 {
3368 struct ipw2100_priv *priv = data;
3369 u32 inta, inta_mask;
3370
3371 if (!data)
3372 return IRQ_NONE;
3373
3374 spin_lock(&priv->low_lock);
3375
3376 /* We check to see if we should be ignoring interrupts before
3377 * we touch the hardware. During ucode load if we try and handle
3378 * an interrupt we can cause keyboard problems as well as cause
3379 * the ucode to fail to initialize */
3380 if (!(priv->status & STATUS_INT_ENABLED)) {
3381 /* Shared IRQ */
3382 goto none;
3383 }
3384
3385 read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask);
3386 read_register(priv->net_dev, IPW_REG_INTA, &inta);
3387
3388 if (inta == 0xFFFFFFFF) {
3389 /* Hardware disappeared */
3390 printk(KERN_WARNING DRV_NAME ": IRQ INTA == 0xFFFFFFFF\n");
3391 goto none;
3392 }
3393
3394 inta &= IPW_INTERRUPT_MASK;
3395
3396 if (!(inta & inta_mask)) {
3397 /* Shared interrupt */
3398 goto none;
3399 }
3400
3401 /* We disable the hardware interrupt here just to prevent unneeded
3402 * calls to be made. We disable this again within the actual
3403 * work tasklet, so if another part of the code re-enables the
3404 * interrupt, that is fine */
3405 ipw2100_disable_interrupts(priv);
3406
3407 tasklet_schedule(&priv->irq_tasklet);
3408 spin_unlock(&priv->low_lock);
3409
3410 return IRQ_HANDLED;
3411 none:
3412 spin_unlock(&priv->low_lock);
3413 return IRQ_NONE;
3414 }
3415
3416 static netdev_tx_t ipw2100_tx(struct libipw_txb *txb,
3417 struct net_device *dev, int pri)
3418 {
3419 struct ipw2100_priv *priv = libipw_priv(dev);
3420 struct list_head *element;
3421 struct ipw2100_tx_packet *packet;
3422 unsigned long flags;
3423
3424 spin_lock_irqsave(&priv->low_lock, flags);
3425
3426 if (!(priv->status & STATUS_ASSOCIATED)) {
3427 IPW_DEBUG_INFO("Can not transmit when not connected.\n");
3428 priv->net_dev->stats.tx_carrier_errors++;
3429 netif_stop_queue(dev);
3430 goto fail_unlock;
3431 }
3432
3433 if (list_empty(&priv->tx_free_list))
3434 goto fail_unlock;
3435
3436 element = priv->tx_free_list.next;
3437 packet = list_entry(element, struct ipw2100_tx_packet, list);
3438
3439 packet->info.d_struct.txb = txb;
3440
3441 IPW_DEBUG_TX("Sending fragment (%d bytes):\n", txb->fragments[0]->len);
3442 printk_buf(IPW_DL_TX, txb->fragments[0]->data, txb->fragments[0]->len);
3443
3444 packet->jiffy_start = jiffies;
3445
3446 list_del(element);
3447 DEC_STAT(&priv->tx_free_stat);
3448
3449 list_add_tail(element, &priv->tx_pend_list);
3450 INC_STAT(&priv->tx_pend_stat);
3451
3452 ipw2100_tx_send_data(priv);
3453
3454 spin_unlock_irqrestore(&priv->low_lock, flags);
3455 return NETDEV_TX_OK;
3456
3457 fail_unlock:
3458 netif_stop_queue(dev);
3459 spin_unlock_irqrestore(&priv->low_lock, flags);
3460 return NETDEV_TX_BUSY;
3461 }
3462
3463 static int ipw2100_msg_allocate(struct ipw2100_priv *priv)
3464 {
3465 int i, j, err = -EINVAL;
3466 void *v;
3467 dma_addr_t p;
3468
3469 priv->msg_buffers =
3470 kmalloc(IPW_COMMAND_POOL_SIZE * sizeof(struct ipw2100_tx_packet),
3471 GFP_KERNEL);
3472 if (!priv->msg_buffers)
3473 return -ENOMEM;
3474
3475 for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) {
3476 v = pci_alloc_consistent(priv->pci_dev,
3477 sizeof(struct ipw2100_cmd_header), &p);
3478 if (!v) {
3479 printk(KERN_ERR DRV_NAME ": "
3480 "%s: PCI alloc failed for msg "
3481 "buffers.\n", priv->net_dev->name);
3482 err = -ENOMEM;
3483 break;
3484 }
3485
3486 memset(v, 0, sizeof(struct ipw2100_cmd_header));
3487
3488 priv->msg_buffers[i].type = COMMAND;
3489 priv->msg_buffers[i].info.c_struct.cmd =
3490 (struct ipw2100_cmd_header *)v;
3491 priv->msg_buffers[i].info.c_struct.cmd_phys = p;
3492 }
3493
3494 if (i == IPW_COMMAND_POOL_SIZE)
3495 return 0;
3496
3497 for (j = 0; j < i; j++) {
3498 pci_free_consistent(priv->pci_dev,
3499 sizeof(struct ipw2100_cmd_header),
3500 priv->msg_buffers[j].info.c_struct.cmd,
3501 priv->msg_buffers[j].info.c_struct.
3502 cmd_phys);
3503 }
3504
3505 kfree(priv->msg_buffers);
3506 priv->msg_buffers = NULL;
3507
3508 return err;
3509 }
3510
3511 static int ipw2100_msg_initialize(struct ipw2100_priv *priv)
3512 {
3513 int i;
3514
3515 INIT_LIST_HEAD(&priv->msg_free_list);
3516 INIT_LIST_HEAD(&priv->msg_pend_list);
3517
3518 for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++)
3519 list_add_tail(&priv->msg_buffers[i].list, &priv->msg_free_list);
3520 SET_STAT(&priv->msg_free_stat, i);
3521
3522 return 0;
3523 }
3524
3525 static void ipw2100_msg_free(struct ipw2100_priv *priv)
3526 {
3527 int i;
3528
3529 if (!priv->msg_buffers)
3530 return;
3531
3532 for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) {
3533 pci_free_consistent(priv->pci_dev,
3534 sizeof(struct ipw2100_cmd_header),
3535 priv->msg_buffers[i].info.c_struct.cmd,
3536 priv->msg_buffers[i].info.c_struct.
3537 cmd_phys);
3538 }
3539
3540 kfree(priv->msg_buffers);
3541 priv->msg_buffers = NULL;
3542 }
3543
3544 static ssize_t show_pci(struct device *d, struct device_attribute *attr,
3545 char *buf)
3546 {
3547 struct pci_dev *pci_dev = container_of(d, struct pci_dev, dev);
3548 char *out = buf;
3549 int i, j;
3550 u32 val;
3551
3552 for (i = 0; i < 16; i++) {
3553 out += sprintf(out, "[%08X] ", i * 16);
3554 for (j = 0; j < 16; j += 4) {
3555 pci_read_config_dword(pci_dev, i * 16 + j, &val);
3556 out += sprintf(out, "%08X ", val);
3557 }
3558 out += sprintf(out, "\n");
3559 }
3560
3561 return out - buf;
3562 }
3563
3564 static DEVICE_ATTR(pci, S_IRUGO, show_pci, NULL);
3565
3566 static ssize_t show_cfg(struct device *d, struct device_attribute *attr,
3567 char *buf)
3568 {
3569 struct ipw2100_priv *p = dev_get_drvdata(d);
3570 return sprintf(buf, "0x%08x\n", (int)p->config);
3571 }
3572
3573 static DEVICE_ATTR(cfg, S_IRUGO, show_cfg, NULL);
3574
3575 static ssize_t show_status(struct device *d, struct device_attribute *attr,
3576 char *buf)
3577 {
3578 struct ipw2100_priv *p = dev_get_drvdata(d);
3579 return sprintf(buf, "0x%08x\n", (int)p->status);
3580 }
3581
3582 static DEVICE_ATTR(status, S_IRUGO, show_status, NULL);
3583
3584 static ssize_t show_capability(struct device *d, struct device_attribute *attr,
3585 char *buf)
3586 {
3587 struct ipw2100_priv *p = dev_get_drvdata(d);
3588 return sprintf(buf, "0x%08x\n", (int)p->capability);
3589 }
3590
3591 static DEVICE_ATTR(capability, S_IRUGO, show_capability, NULL);
3592
3593 #define IPW2100_REG(x) { IPW_ ##x, #x }
3594 static const struct {
3595 u32 addr;
3596 const char *name;
3597 } hw_data[] = {
3598 IPW2100_REG(REG_GP_CNTRL),
3599 IPW2100_REG(REG_GPIO),
3600 IPW2100_REG(REG_INTA),
3601 IPW2100_REG(REG_INTA_MASK), IPW2100_REG(REG_RESET_REG),};
3602 #define IPW2100_NIC(x, s) { x, #x, s }
3603 static const struct {
3604 u32 addr;
3605 const char *name;
3606 size_t size;
3607 } nic_data[] = {
3608 IPW2100_NIC(IPW2100_CONTROL_REG, 2),
3609 IPW2100_NIC(0x210014, 1), IPW2100_NIC(0x210000, 1),};
3610 #define IPW2100_ORD(x, d) { IPW_ORD_ ##x, #x, d }
3611 static const struct {
3612 u8 index;
3613 const char *name;
3614 const char *desc;
3615 } ord_data[] = {
3616 IPW2100_ORD(STAT_TX_HOST_REQUESTS, "requested Host Tx's (MSDU)"),
3617 IPW2100_ORD(STAT_TX_HOST_COMPLETE,
3618 "successful Host Tx's (MSDU)"),
3619 IPW2100_ORD(STAT_TX_DIR_DATA,
3620 "successful Directed Tx's (MSDU)"),
3621 IPW2100_ORD(STAT_TX_DIR_DATA1,
3622 "successful Directed Tx's (MSDU) @ 1MB"),
3623 IPW2100_ORD(STAT_TX_DIR_DATA2,
3624 "successful Directed Tx's (MSDU) @ 2MB"),
3625 IPW2100_ORD(STAT_TX_DIR_DATA5_5,
3626 "successful Directed Tx's (MSDU) @ 5_5MB"),
3627 IPW2100_ORD(STAT_TX_DIR_DATA11,
3628 "successful Directed Tx's (MSDU) @ 11MB"),
3629 IPW2100_ORD(STAT_TX_NODIR_DATA1,
3630 "successful Non_Directed Tx's (MSDU) @ 1MB"),
3631 IPW2100_ORD(STAT_TX_NODIR_DATA2,
3632 "successful Non_Directed Tx's (MSDU) @ 2MB"),
3633 IPW2100_ORD(STAT_TX_NODIR_DATA5_5,
3634 "successful Non_Directed Tx's (MSDU) @ 5.5MB"),
3635 IPW2100_ORD(STAT_TX_NODIR_DATA11,
3636 "successful Non_Directed Tx's (MSDU) @ 11MB"),
3637 IPW2100_ORD(STAT_NULL_DATA, "successful NULL data Tx's"),
3638 IPW2100_ORD(STAT_TX_RTS, "successful Tx RTS"),
3639 IPW2100_ORD(STAT_TX_CTS, "successful Tx CTS"),
3640 IPW2100_ORD(STAT_TX_ACK, "successful Tx ACK"),
3641 IPW2100_ORD(STAT_TX_ASSN, "successful Association Tx's"),
3642 IPW2100_ORD(STAT_TX_ASSN_RESP,
3643 "successful Association response Tx's"),
3644 IPW2100_ORD(STAT_TX_REASSN,
3645 "successful Reassociation Tx's"),
3646 IPW2100_ORD(STAT_TX_REASSN_RESP,
3647 "successful Reassociation response Tx's"),
3648 IPW2100_ORD(STAT_TX_PROBE,
3649 "probes successfully transmitted"),
3650 IPW2100_ORD(STAT_TX_PROBE_RESP,
3651 "probe responses successfully transmitted"),
3652 IPW2100_ORD(STAT_TX_BEACON, "tx beacon"),
3653 IPW2100_ORD(STAT_TX_ATIM, "Tx ATIM"),
3654 IPW2100_ORD(STAT_TX_DISASSN,
3655 "successful Disassociation TX"),
3656 IPW2100_ORD(STAT_TX_AUTH, "successful Authentication Tx"),
3657 IPW2100_ORD(STAT_TX_DEAUTH,
3658 "successful Deauthentication TX"),
3659 IPW2100_ORD(STAT_TX_TOTAL_BYTES,
3660 "Total successful Tx data bytes"),
3661 IPW2100_ORD(STAT_TX_RETRIES, "Tx retries"),
3662 IPW2100_ORD(STAT_TX_RETRY1, "Tx retries at 1MBPS"),
3663 IPW2100_ORD(STAT_TX_RETRY2, "Tx retries at 2MBPS"),
3664 IPW2100_ORD(STAT_TX_RETRY5_5, "Tx retries at 5.5MBPS"),
3665 IPW2100_ORD(STAT_TX_RETRY11, "Tx retries at 11MBPS"),
3666 IPW2100_ORD(STAT_TX_FAILURES, "Tx Failures"),
3667 IPW2100_ORD(STAT_TX_MAX_TRIES_IN_HOP,
3668 "times max tries in a hop failed"),
3669 IPW2100_ORD(STAT_TX_DISASSN_FAIL,
3670 "times disassociation failed"),
3671 IPW2100_ORD(STAT_TX_ERR_CTS, "missed/bad CTS frames"),
3672 IPW2100_ORD(STAT_TX_ERR_ACK, "tx err due to acks"),
3673 IPW2100_ORD(STAT_RX_HOST, "packets passed to host"),
3674 IPW2100_ORD(STAT_RX_DIR_DATA, "directed packets"),
3675 IPW2100_ORD(STAT_RX_DIR_DATA1, "directed packets at 1MB"),
3676 IPW2100_ORD(STAT_RX_DIR_DATA2, "directed packets at 2MB"),
3677 IPW2100_ORD(STAT_RX_DIR_DATA5_5,
3678 "directed packets at 5.5MB"),
3679 IPW2100_ORD(STAT_RX_DIR_DATA11, "directed packets at 11MB"),
3680 IPW2100_ORD(STAT_RX_NODIR_DATA, "nondirected packets"),
3681 IPW2100_ORD(STAT_RX_NODIR_DATA1,
3682 "nondirected packets at 1MB"),
3683 IPW2100_ORD(STAT_RX_NODIR_DATA2,
3684 "nondirected packets at 2MB"),
3685 IPW2100_ORD(STAT_RX_NODIR_DATA5_5,
3686 "nondirected packets at 5.5MB"),
3687 IPW2100_ORD(STAT_RX_NODIR_DATA11,
3688 "nondirected packets at 11MB"),
3689 IPW2100_ORD(STAT_RX_NULL_DATA, "null data rx's"),
3690 IPW2100_ORD(STAT_RX_RTS, "Rx RTS"), IPW2100_ORD(STAT_RX_CTS,
3691 "Rx CTS"),
3692 IPW2100_ORD(STAT_RX_ACK, "Rx ACK"),
3693 IPW2100_ORD(STAT_RX_CFEND, "Rx CF End"),
3694 IPW2100_ORD(STAT_RX_CFEND_ACK, "Rx CF End + CF Ack"),
3695 IPW2100_ORD(STAT_RX_ASSN, "Association Rx's"),
3696 IPW2100_ORD(STAT_RX_ASSN_RESP, "Association response Rx's"),
3697 IPW2100_ORD(STAT_RX_REASSN, "Reassociation Rx's"),
3698 IPW2100_ORD(STAT_RX_REASSN_RESP,
3699 "Reassociation response Rx's"),
3700 IPW2100_ORD(STAT_RX_PROBE, "probe Rx's"),
3701 IPW2100_ORD(STAT_RX_PROBE_RESP, "probe response Rx's"),
3702 IPW2100_ORD(STAT_RX_BEACON, "Rx beacon"),
3703 IPW2100_ORD(STAT_RX_ATIM, "Rx ATIM"),
3704 IPW2100_ORD(STAT_RX_DISASSN, "disassociation Rx"),
3705 IPW2100_ORD(STAT_RX_AUTH, "authentication Rx"),
3706 IPW2100_ORD(STAT_RX_DEAUTH, "deauthentication Rx"),
3707 IPW2100_ORD(STAT_RX_TOTAL_BYTES,
3708 "Total rx data bytes received"),
3709 IPW2100_ORD(STAT_RX_ERR_CRC, "packets with Rx CRC error"),
3710 IPW2100_ORD(STAT_RX_ERR_CRC1, "Rx CRC errors at 1MB"),
3711 IPW2100_ORD(STAT_RX_ERR_CRC2, "Rx CRC errors at 2MB"),
3712 IPW2100_ORD(STAT_RX_ERR_CRC5_5, "Rx CRC errors at 5.5MB"),
3713 IPW2100_ORD(STAT_RX_ERR_CRC11, "Rx CRC errors at 11MB"),
3714 IPW2100_ORD(STAT_RX_DUPLICATE1,
3715 "duplicate rx packets at 1MB"),
3716 IPW2100_ORD(STAT_RX_DUPLICATE2,
3717 "duplicate rx packets at 2MB"),
3718 IPW2100_ORD(STAT_RX_DUPLICATE5_5,
3719 "duplicate rx packets at 5.5MB"),
3720 IPW2100_ORD(STAT_RX_DUPLICATE11,
3721 "duplicate rx packets at 11MB"),
3722 IPW2100_ORD(STAT_RX_DUPLICATE, "duplicate rx packets"),
3723 IPW2100_ORD(PERS_DB_LOCK, "locking fw permanent db"),
3724 IPW2100_ORD(PERS_DB_SIZE, "size of fw permanent db"),
3725 IPW2100_ORD(PERS_DB_ADDR, "address of fw permanent db"),
3726 IPW2100_ORD(STAT_RX_INVALID_PROTOCOL,
3727 "rx frames with invalid protocol"),
3728 IPW2100_ORD(SYS_BOOT_TIME, "Boot time"),
3729 IPW2100_ORD(STAT_RX_NO_BUFFER,
3730 "rx frames rejected due to no buffer"),
3731 IPW2100_ORD(STAT_RX_MISSING_FRAG,
3732 "rx frames dropped due to missing fragment"),
3733 IPW2100_ORD(STAT_RX_ORPHAN_FRAG,
3734 "rx frames dropped due to non-sequential fragment"),
3735 IPW2100_ORD(STAT_RX_ORPHAN_FRAME,
3736 "rx frames dropped due to unmatched 1st frame"),
3737 IPW2100_ORD(STAT_RX_FRAG_AGEOUT,
3738 "rx frames dropped due to uncompleted frame"),
3739 IPW2100_ORD(STAT_RX_ICV_ERRORS,
3740 "ICV errors during decryption"),
3741 IPW2100_ORD(STAT_PSP_SUSPENSION, "times adapter suspended"),
3742 IPW2100_ORD(STAT_PSP_BCN_TIMEOUT, "beacon timeout"),
3743 IPW2100_ORD(STAT_PSP_POLL_TIMEOUT,
3744 "poll response timeouts"),
3745 IPW2100_ORD(STAT_PSP_NONDIR_TIMEOUT,
3746 "timeouts waiting for last {broad,multi}cast pkt"),
3747 IPW2100_ORD(STAT_PSP_RX_DTIMS, "PSP DTIMs received"),
3748 IPW2100_ORD(STAT_PSP_RX_TIMS, "PSP TIMs received"),
3749 IPW2100_ORD(STAT_PSP_STATION_ID, "PSP Station ID"),
3750 IPW2100_ORD(LAST_ASSN_TIME, "RTC time of last association"),
3751 IPW2100_ORD(STAT_PERCENT_MISSED_BCNS,
3752 "current calculation of % missed beacons"),
3753 IPW2100_ORD(STAT_PERCENT_RETRIES,
3754 "current calculation of % missed tx retries"),
3755 IPW2100_ORD(ASSOCIATED_AP_PTR,
3756 "0 if not associated, else pointer to AP table entry"),
3757 IPW2100_ORD(AVAILABLE_AP_CNT,
3758 "AP's decsribed in the AP table"),
3759 IPW2100_ORD(AP_LIST_PTR, "Ptr to list of available APs"),
3760 IPW2100_ORD(STAT_AP_ASSNS, "associations"),
3761 IPW2100_ORD(STAT_ASSN_FAIL, "association failures"),
3762 IPW2100_ORD(STAT_ASSN_RESP_FAIL,
3763 "failures due to response fail"),
3764 IPW2100_ORD(STAT_FULL_SCANS, "full scans"),
3765 IPW2100_ORD(CARD_DISABLED, "Card Disabled"),
3766 IPW2100_ORD(STAT_ROAM_INHIBIT,
3767 "times roaming was inhibited due to activity"),
3768 IPW2100_ORD(RSSI_AT_ASSN,
3769 "RSSI of associated AP at time of association"),
3770 IPW2100_ORD(STAT_ASSN_CAUSE1,
3771 "reassociation: no probe response or TX on hop"),
3772 IPW2100_ORD(STAT_ASSN_CAUSE2,
3773 "reassociation: poor tx/rx quality"),
3774 IPW2100_ORD(STAT_ASSN_CAUSE3,
3775 "reassociation: tx/rx quality (excessive AP load"),
3776 IPW2100_ORD(STAT_ASSN_CAUSE4,
3777 "reassociation: AP RSSI level"),
3778 IPW2100_ORD(STAT_ASSN_CAUSE5,
3779 "reassociations due to load leveling"),
3780 IPW2100_ORD(STAT_AUTH_FAIL, "times authentication failed"),
3781 IPW2100_ORD(STAT_AUTH_RESP_FAIL,
3782 "times authentication response failed"),
3783 IPW2100_ORD(STATION_TABLE_CNT,
3784 "entries in association table"),
3785 IPW2100_ORD(RSSI_AVG_CURR, "Current avg RSSI"),
3786 IPW2100_ORD(POWER_MGMT_MODE, "Power mode - 0=CAM, 1=PSP"),
3787 IPW2100_ORD(COUNTRY_CODE,
3788 "IEEE country code as recv'd from beacon"),
3789 IPW2100_ORD(COUNTRY_CHANNELS,
3790 "channels supported by country"),
3791 IPW2100_ORD(RESET_CNT, "adapter resets (warm)"),
3792 IPW2100_ORD(BEACON_INTERVAL, "Beacon interval"),
3793 IPW2100_ORD(ANTENNA_DIVERSITY,
3794 "TRUE if antenna diversity is disabled"),
3795 IPW2100_ORD(DTIM_PERIOD, "beacon intervals between DTIMs"),
3796 IPW2100_ORD(OUR_FREQ,
3797 "current radio freq lower digits - channel ID"),
3798 IPW2100_ORD(RTC_TIME, "current RTC time"),
3799 IPW2100_ORD(PORT_TYPE, "operating mode"),
3800 IPW2100_ORD(CURRENT_TX_RATE, "current tx rate"),
3801 IPW2100_ORD(SUPPORTED_RATES, "supported tx rates"),
3802 IPW2100_ORD(ATIM_WINDOW, "current ATIM Window"),
3803 IPW2100_ORD(BASIC_RATES, "basic tx rates"),
3804 IPW2100_ORD(NIC_HIGHEST_RATE, "NIC highest tx rate"),
3805 IPW2100_ORD(AP_HIGHEST_RATE, "AP highest tx rate"),
3806 IPW2100_ORD(CAPABILITIES,
3807 "Management frame capability field"),
3808 IPW2100_ORD(AUTH_TYPE, "Type of authentication"),
3809 IPW2100_ORD(RADIO_TYPE, "Adapter card platform type"),
3810 IPW2100_ORD(RTS_THRESHOLD,
3811 "Min packet length for RTS handshaking"),
3812 IPW2100_ORD(INT_MODE, "International mode"),
3813 IPW2100_ORD(FRAGMENTATION_THRESHOLD,
3814 "protocol frag threshold"),
3815 IPW2100_ORD(EEPROM_SRAM_DB_BLOCK_START_ADDRESS,
3816 "EEPROM offset in SRAM"),
3817 IPW2100_ORD(EEPROM_SRAM_DB_BLOCK_SIZE,
3818 "EEPROM size in SRAM"),
3819 IPW2100_ORD(EEPROM_SKU_CAPABILITY, "EEPROM SKU Capability"),
3820 IPW2100_ORD(EEPROM_IBSS_11B_CHANNELS,
3821 "EEPROM IBSS 11b channel set"),
3822 IPW2100_ORD(MAC_VERSION, "MAC Version"),
3823 IPW2100_ORD(MAC_REVISION, "MAC Revision"),
3824 IPW2100_ORD(RADIO_VERSION, "Radio Version"),
3825 IPW2100_ORD(NIC_MANF_DATE_TIME, "MANF Date/Time STAMP"),
3826 IPW2100_ORD(UCODE_VERSION, "Ucode Version"),};
3827
3828 static ssize_t show_registers(struct device *d, struct device_attribute *attr,
3829 char *buf)
3830 {
3831 int i;
3832 struct ipw2100_priv *priv = dev_get_drvdata(d);
3833 struct net_device *dev = priv->net_dev;
3834 char *out = buf;
3835 u32 val = 0;
3836
3837 out += sprintf(out, "%30s [Address ] : Hex\n", "Register");
3838
3839 for (i = 0; i < ARRAY_SIZE(hw_data); i++) {
3840 read_register(dev, hw_data[i].addr, &val);
3841 out += sprintf(out, "%30s [%08X] : %08X\n",
3842 hw_data[i].name, hw_data[i].addr, val);
3843 }
3844
3845 return out - buf;
3846 }
3847
3848 static DEVICE_ATTR(registers, S_IRUGO, show_registers, NULL);
3849
3850 static ssize_t show_hardware(struct device *d, struct device_attribute *attr,
3851 char *buf)
3852 {
3853 struct ipw2100_priv *priv = dev_get_drvdata(d);
3854 struct net_device *dev = priv->net_dev;
3855 char *out = buf;
3856 int i;
3857
3858 out += sprintf(out, "%30s [Address ] : Hex\n", "NIC entry");
3859
3860 for (i = 0; i < ARRAY_SIZE(nic_data); i++) {
3861 u8 tmp8;
3862 u16 tmp16;
3863 u32 tmp32;
3864
3865 switch (nic_data[i].size) {
3866 case 1:
3867 read_nic_byte(dev, nic_data[i].addr, &tmp8);
3868 out += sprintf(out, "%30s [%08X] : %02X\n",
3869 nic_data[i].name, nic_data[i].addr,
3870 tmp8);
3871 break;
3872 case 2:
3873 read_nic_word(dev, nic_data[i].addr, &tmp16);
3874 out += sprintf(out, "%30s [%08X] : %04X\n",
3875 nic_data[i].name, nic_data[i].addr,
3876 tmp16);
3877 break;
3878 case 4:
3879 read_nic_dword(dev, nic_data[i].addr, &tmp32);
3880 out += sprintf(out, "%30s [%08X] : %08X\n",
3881 nic_data[i].name, nic_data[i].addr,
3882 tmp32);
3883 break;
3884 }
3885 }
3886 return out - buf;
3887 }
3888
3889 static DEVICE_ATTR(hardware, S_IRUGO, show_hardware, NULL);
3890
3891 static ssize_t show_memory(struct device *d, struct device_attribute *attr,
3892 char *buf)
3893 {
3894 struct ipw2100_priv *priv = dev_get_drvdata(d);
3895 struct net_device *dev = priv->net_dev;
3896 static unsigned long loop = 0;
3897 int len = 0;
3898 u32 buffer[4];
3899 int i;
3900 char line[81];
3901
3902 if (loop >= 0x30000)
3903 loop = 0;
3904
3905 /* sysfs provides us PAGE_SIZE buffer */
3906 while (len < PAGE_SIZE - 128 && loop < 0x30000) {
3907
3908 if (priv->snapshot[0])
3909 for (i = 0; i < 4; i++)
3910 buffer[i] =
3911 *(u32 *) SNAPSHOT_ADDR(loop + i * 4);
3912 else
3913 for (i = 0; i < 4; i++)
3914 read_nic_dword(dev, loop + i * 4, &buffer[i]);
3915
3916 if (priv->dump_raw)
3917 len += sprintf(buf + len,
3918 "%c%c%c%c"
3919 "%c%c%c%c"
3920 "%c%c%c%c"
3921 "%c%c%c%c",
3922 ((u8 *) buffer)[0x0],
3923 ((u8 *) buffer)[0x1],
3924 ((u8 *) buffer)[0x2],
3925 ((u8 *) buffer)[0x3],
3926 ((u8 *) buffer)[0x4],
3927 ((u8 *) buffer)[0x5],
3928 ((u8 *) buffer)[0x6],
3929 ((u8 *) buffer)[0x7],
3930 ((u8 *) buffer)[0x8],
3931 ((u8 *) buffer)[0x9],
3932 ((u8 *) buffer)[0xa],
3933 ((u8 *) buffer)[0xb],
3934 ((u8 *) buffer)[0xc],
3935 ((u8 *) buffer)[0xd],
3936 ((u8 *) buffer)[0xe],
3937 ((u8 *) buffer)[0xf]);
3938 else
3939 len += sprintf(buf + len, "%s\n",
3940 snprint_line(line, sizeof(line),
3941 (u8 *) buffer, 16, loop));
3942 loop += 16;
3943 }
3944
3945 return len;
3946 }
3947
3948 static ssize_t store_memory(struct device *d, struct device_attribute *attr,
3949 const char *buf, size_t count)
3950 {
3951 struct ipw2100_priv *priv = dev_get_drvdata(d);
3952 struct net_device *dev = priv->net_dev;
3953 const char *p = buf;
3954
3955 (void)dev; /* kill unused-var warning for debug-only code */
3956
3957 if (count < 1)
3958 return count;
3959
3960 if (p[0] == '1' ||
3961 (count >= 2 && tolower(p[0]) == 'o' && tolower(p[1]) == 'n')) {
3962 IPW_DEBUG_INFO("%s: Setting memory dump to RAW mode.\n",
3963 dev->name);
3964 priv->dump_raw = 1;
3965
3966 } else if (p[0] == '0' || (count >= 2 && tolower(p[0]) == 'o' &&
3967 tolower(p[1]) == 'f')) {
3968 IPW_DEBUG_INFO("%s: Setting memory dump to HEX mode.\n",
3969 dev->name);
3970 priv->dump_raw = 0;
3971
3972 } else if (tolower(p[0]) == 'r') {
3973 IPW_DEBUG_INFO("%s: Resetting firmware snapshot.\n", dev->name);
3974 ipw2100_snapshot_free(priv);
3975
3976 } else
3977 IPW_DEBUG_INFO("%s: Usage: 0|on = HEX, 1|off = RAW, "
3978 "reset = clear memory snapshot\n", dev->name);
3979
3980 return count;
3981 }
3982
3983 static DEVICE_ATTR(memory, S_IWUSR | S_IRUGO, show_memory, store_memory);
3984
3985 static ssize_t show_ordinals(struct device *d, struct device_attribute *attr,
3986 char *buf)
3987 {
3988 struct ipw2100_priv *priv = dev_get_drvdata(d);
3989 u32 val = 0;
3990 int len = 0;
3991 u32 val_len;
3992 static int loop = 0;
3993
3994 if (priv->status & STATUS_RF_KILL_MASK)
3995 return 0;
3996
3997 if (loop >= ARRAY_SIZE(ord_data))
3998 loop = 0;
3999
4000 /* sysfs provides us PAGE_SIZE buffer */
4001 while (len < PAGE_SIZE - 128 && loop < ARRAY_SIZE(ord_data)) {
4002 val_len = sizeof(u32);
4003
4004 if (ipw2100_get_ordinal(priv, ord_data[loop].index, &val,
4005 &val_len))
4006 len += sprintf(buf + len, "[0x%02X] = ERROR %s\n",
4007 ord_data[loop].index,
4008 ord_data[loop].desc);
4009 else
4010 len += sprintf(buf + len, "[0x%02X] = 0x%08X %s\n",
4011 ord_data[loop].index, val,
4012 ord_data[loop].desc);
4013 loop++;
4014 }
4015
4016 return len;
4017 }
4018
4019 static DEVICE_ATTR(ordinals, S_IRUGO, show_ordinals, NULL);
4020
4021 static ssize_t show_stats(struct device *d, struct device_attribute *attr,
4022 char *buf)
4023 {
4024 struct ipw2100_priv *priv = dev_get_drvdata(d);
4025 char *out = buf;
4026
4027 out += sprintf(out, "interrupts: %d {tx: %d, rx: %d, other: %d}\n",
4028 priv->interrupts, priv->tx_interrupts,
4029 priv->rx_interrupts, priv->inta_other);
4030 out += sprintf(out, "firmware resets: %d\n", priv->resets);
4031 out += sprintf(out, "firmware hangs: %d\n", priv->hangs);
4032 #ifdef CONFIG_IPW2100_DEBUG
4033 out += sprintf(out, "packet mismatch image: %s\n",
4034 priv->snapshot[0] ? "YES" : "NO");
4035 #endif
4036
4037 return out - buf;
4038 }
4039
4040 static DEVICE_ATTR(stats, S_IRUGO, show_stats, NULL);
4041
4042 static int ipw2100_switch_mode(struct ipw2100_priv *priv, u32 mode)
4043 {
4044 int err;
4045
4046 if (mode == priv->ieee->iw_mode)
4047 return 0;
4048
4049 err = ipw2100_disable_adapter(priv);
4050 if (err) {
4051 printk(KERN_ERR DRV_NAME ": %s: Could not disable adapter %d\n",
4052 priv->net_dev->name, err);
4053 return err;
4054 }
4055
4056 switch (mode) {
4057 case IW_MODE_INFRA:
4058 priv->net_dev->type = ARPHRD_ETHER;
4059 break;
4060 case IW_MODE_ADHOC:
4061 priv->net_dev->type = ARPHRD_ETHER;
4062 break;
4063 #ifdef CONFIG_IPW2100_MONITOR
4064 case IW_MODE_MONITOR:
4065 priv->last_mode = priv->ieee->iw_mode;
4066 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
4067 break;
4068 #endif /* CONFIG_IPW2100_MONITOR */
4069 }
4070
4071 priv->ieee->iw_mode = mode;
4072
4073 #ifdef CONFIG_PM
4074 /* Indicate ipw2100_download_firmware download firmware
4075 * from disk instead of memory. */
4076 ipw2100_firmware.version = 0;
4077 #endif
4078
4079 printk(KERN_INFO "%s: Resetting on mode change.\n", priv->net_dev->name);
4080 priv->reset_backoff = 0;
4081 schedule_reset(priv);
4082
4083 return 0;
4084 }
4085
4086 static ssize_t show_internals(struct device *d, struct device_attribute *attr,
4087 char *buf)
4088 {
4089 struct ipw2100_priv *priv = dev_get_drvdata(d);
4090 int len = 0;
4091
4092 #define DUMP_VAR(x,y) len += sprintf(buf + len, # x ": %" y "\n", priv-> x)
4093
4094 if (priv->status & STATUS_ASSOCIATED)
4095 len += sprintf(buf + len, "connected: %lu\n",
4096 get_seconds() - priv->connect_start);
4097 else
4098 len += sprintf(buf + len, "not connected\n");
4099
4100 DUMP_VAR(ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx], "p");
4101 DUMP_VAR(status, "08lx");
4102 DUMP_VAR(config, "08lx");
4103 DUMP_VAR(capability, "08lx");
4104
4105 len +=
4106 sprintf(buf + len, "last_rtc: %lu\n",
4107 (unsigned long)priv->last_rtc);
4108
4109 DUMP_VAR(fatal_error, "d");
4110 DUMP_VAR(stop_hang_check, "d");
4111 DUMP_VAR(stop_rf_kill, "d");
4112 DUMP_VAR(messages_sent, "d");
4113
4114 DUMP_VAR(tx_pend_stat.value, "d");
4115 DUMP_VAR(tx_pend_stat.hi, "d");
4116
4117 DUMP_VAR(tx_free_stat.value, "d");
4118 DUMP_VAR(tx_free_stat.lo, "d");
4119
4120 DUMP_VAR(msg_free_stat.value, "d");
4121 DUMP_VAR(msg_free_stat.lo, "d");
4122
4123 DUMP_VAR(msg_pend_stat.value, "d");
4124 DUMP_VAR(msg_pend_stat.hi, "d");
4125
4126 DUMP_VAR(fw_pend_stat.value, "d");
4127 DUMP_VAR(fw_pend_stat.hi, "d");
4128
4129 DUMP_VAR(txq_stat.value, "d");
4130 DUMP_VAR(txq_stat.lo, "d");
4131
4132 DUMP_VAR(ieee->scans, "d");
4133 DUMP_VAR(reset_backoff, "d");
4134
4135 return len;
4136 }
4137
4138 static DEVICE_ATTR(internals, S_IRUGO, show_internals, NULL);
4139
4140 static ssize_t show_bssinfo(struct device *d, struct device_attribute *attr,
4141 char *buf)
4142 {
4143 struct ipw2100_priv *priv = dev_get_drvdata(d);
4144 char essid[IW_ESSID_MAX_SIZE + 1];
4145 u8 bssid[ETH_ALEN];
4146 u32 chan = 0;
4147 char *out = buf;
4148 unsigned int length;
4149 int ret;
4150
4151 if (priv->status & STATUS_RF_KILL_MASK)
4152 return 0;
4153
4154 memset(essid, 0, sizeof(essid));
4155 memset(bssid, 0, sizeof(bssid));
4156
4157 length = IW_ESSID_MAX_SIZE;
4158 ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_SSID, essid, &length);
4159 if (ret)
4160 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4161 __LINE__);
4162
4163 length = sizeof(bssid);
4164 ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID,
4165 bssid, &length);
4166 if (ret)
4167 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4168 __LINE__);
4169
4170 length = sizeof(u32);
4171 ret = ipw2100_get_ordinal(priv, IPW_ORD_OUR_FREQ, &chan, &length);
4172 if (ret)
4173 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4174 __LINE__);
4175
4176 out += sprintf(out, "ESSID: %s\n", essid);
4177 out += sprintf(out, "BSSID: %pM\n", bssid);
4178 out += sprintf(out, "Channel: %d\n", chan);
4179
4180 return out - buf;
4181 }
4182
4183 static DEVICE_ATTR(bssinfo, S_IRUGO, show_bssinfo, NULL);
4184
4185 #ifdef CONFIG_IPW2100_DEBUG
4186 static ssize_t show_debug_level(struct device_driver *d, char *buf)
4187 {
4188 return sprintf(buf, "0x%08X\n", ipw2100_debug_level);
4189 }
4190
4191 static ssize_t store_debug_level(struct device_driver *d,
4192 const char *buf, size_t count)
4193 {
4194 char *p = (char *)buf;
4195 u32 val;
4196
4197 if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
4198 p++;
4199 if (p[0] == 'x' || p[0] == 'X')
4200 p++;
4201 val = simple_strtoul(p, &p, 16);
4202 } else
4203 val = simple_strtoul(p, &p, 10);
4204 if (p == buf)
4205 IPW_DEBUG_INFO(": %s is not in hex or decimal form.\n", buf);
4206 else
4207 ipw2100_debug_level = val;
4208
4209 return strnlen(buf, count);
4210 }
4211
4212 static DRIVER_ATTR(debug_level, S_IWUSR | S_IRUGO, show_debug_level,
4213 store_debug_level);
4214 #endif /* CONFIG_IPW2100_DEBUG */
4215
4216 static ssize_t show_fatal_error(struct device *d,
4217 struct device_attribute *attr, char *buf)
4218 {
4219 struct ipw2100_priv *priv = dev_get_drvdata(d);
4220 char *out = buf;
4221 int i;
4222
4223 if (priv->fatal_error)
4224 out += sprintf(out, "0x%08X\n", priv->fatal_error);
4225 else
4226 out += sprintf(out, "0\n");
4227
4228 for (i = 1; i <= IPW2100_ERROR_QUEUE; i++) {
4229 if (!priv->fatal_errors[(priv->fatal_index - i) %
4230 IPW2100_ERROR_QUEUE])
4231 continue;
4232
4233 out += sprintf(out, "%d. 0x%08X\n", i,
4234 priv->fatal_errors[(priv->fatal_index - i) %
4235 IPW2100_ERROR_QUEUE]);
4236 }
4237
4238 return out - buf;
4239 }
4240
4241 static ssize_t store_fatal_error(struct device *d,
4242 struct device_attribute *attr, const char *buf,
4243 size_t count)
4244 {
4245 struct ipw2100_priv *priv = dev_get_drvdata(d);
4246 schedule_reset(priv);
4247 return count;
4248 }
4249
4250 static DEVICE_ATTR(fatal_error, S_IWUSR | S_IRUGO, show_fatal_error,
4251 store_fatal_error);
4252
4253 static ssize_t show_scan_age(struct device *d, struct device_attribute *attr,
4254 char *buf)
4255 {
4256 struct ipw2100_priv *priv = dev_get_drvdata(d);
4257 return sprintf(buf, "%d\n", priv->ieee->scan_age);
4258 }
4259
4260 static ssize_t store_scan_age(struct device *d, struct device_attribute *attr,
4261 const char *buf, size_t count)
4262 {
4263 struct ipw2100_priv *priv = dev_get_drvdata(d);
4264 struct net_device *dev = priv->net_dev;
4265 char buffer[] = "00000000";
4266 unsigned long len =
4267 (sizeof(buffer) - 1) > count ? count : sizeof(buffer) - 1;
4268 unsigned long val;
4269 char *p = buffer;
4270
4271 (void)dev; /* kill unused-var warning for debug-only code */
4272
4273 IPW_DEBUG_INFO("enter\n");
4274
4275 strncpy(buffer, buf, len);
4276 buffer[len] = 0;
4277
4278 if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
4279 p++;
4280 if (p[0] == 'x' || p[0] == 'X')
4281 p++;
4282 val = simple_strtoul(p, &p, 16);
4283 } else
4284 val = simple_strtoul(p, &p, 10);
4285 if (p == buffer) {
4286 IPW_DEBUG_INFO("%s: user supplied invalid value.\n", dev->name);
4287 } else {
4288 priv->ieee->scan_age = val;
4289 IPW_DEBUG_INFO("set scan_age = %u\n", priv->ieee->scan_age);
4290 }
4291
4292 IPW_DEBUG_INFO("exit\n");
4293 return len;
4294 }
4295
4296 static DEVICE_ATTR(scan_age, S_IWUSR | S_IRUGO, show_scan_age, store_scan_age);
4297
4298 static ssize_t show_rf_kill(struct device *d, struct device_attribute *attr,
4299 char *buf)
4300 {
4301 /* 0 - RF kill not enabled
4302 1 - SW based RF kill active (sysfs)
4303 2 - HW based RF kill active
4304 3 - Both HW and SW baed RF kill active */
4305 struct ipw2100_priv *priv = dev_get_drvdata(d);
4306 int val = ((priv->status & STATUS_RF_KILL_SW) ? 0x1 : 0x0) |
4307 (rf_kill_active(priv) ? 0x2 : 0x0);
4308 return sprintf(buf, "%i\n", val);
4309 }
4310
4311 static int ipw_radio_kill_sw(struct ipw2100_priv *priv, int disable_radio)
4312 {
4313 if ((disable_radio ? 1 : 0) ==
4314 (priv->status & STATUS_RF_KILL_SW ? 1 : 0))
4315 return 0;
4316
4317 IPW_DEBUG_RF_KILL("Manual SW RF Kill set to: RADIO %s\n",
4318 disable_radio ? "OFF" : "ON");
4319
4320 mutex_lock(&priv->action_mutex);
4321
4322 if (disable_radio) {
4323 priv->status |= STATUS_RF_KILL_SW;
4324 ipw2100_down(priv);
4325 } else {
4326 priv->status &= ~STATUS_RF_KILL_SW;
4327 if (rf_kill_active(priv)) {
4328 IPW_DEBUG_RF_KILL("Can not turn radio back on - "
4329 "disabled by HW switch\n");
4330 /* Make sure the RF_KILL check timer is running */
4331 priv->stop_rf_kill = 0;
4332 cancel_delayed_work(&priv->rf_kill);
4333 schedule_delayed_work(&priv->rf_kill,
4334 round_jiffies_relative(HZ));
4335 } else
4336 schedule_reset(priv);
4337 }
4338
4339 mutex_unlock(&priv->action_mutex);
4340 return 1;
4341 }
4342
4343 static ssize_t store_rf_kill(struct device *d, struct device_attribute *attr,
4344 const char *buf, size_t count)
4345 {
4346 struct ipw2100_priv *priv = dev_get_drvdata(d);
4347 ipw_radio_kill_sw(priv, buf[0] == '1');
4348 return count;
4349 }
4350
4351 static DEVICE_ATTR(rf_kill, S_IWUSR | S_IRUGO, show_rf_kill, store_rf_kill);
4352
4353 static struct attribute *ipw2100_sysfs_entries[] = {
4354 &dev_attr_hardware.attr,
4355 &dev_attr_registers.attr,
4356 &dev_attr_ordinals.attr,
4357 &dev_attr_pci.attr,
4358 &dev_attr_stats.attr,
4359 &dev_attr_internals.attr,
4360 &dev_attr_bssinfo.attr,
4361 &dev_attr_memory.attr,
4362 &dev_attr_scan_age.attr,
4363 &dev_attr_fatal_error.attr,
4364 &dev_attr_rf_kill.attr,
4365 &dev_attr_cfg.attr,
4366 &dev_attr_status.attr,
4367 &dev_attr_capability.attr,
4368 NULL,
4369 };
4370
4371 static struct attribute_group ipw2100_attribute_group = {
4372 .attrs = ipw2100_sysfs_entries,
4373 };
4374
4375 static int status_queue_allocate(struct ipw2100_priv *priv, int entries)
4376 {
4377 struct ipw2100_status_queue *q = &priv->status_queue;
4378
4379 IPW_DEBUG_INFO("enter\n");
4380
4381 q->size = entries * sizeof(struct ipw2100_status);
4382 q->drv =
4383 (struct ipw2100_status *)pci_alloc_consistent(priv->pci_dev,
4384 q->size, &q->nic);
4385 if (!q->drv) {
4386 IPW_DEBUG_WARNING("Can not allocate status queue.\n");
4387 return -ENOMEM;
4388 }
4389
4390 memset(q->drv, 0, q->size);
4391
4392 IPW_DEBUG_INFO("exit\n");
4393
4394 return 0;
4395 }
4396
4397 static void status_queue_free(struct ipw2100_priv *priv)
4398 {
4399 IPW_DEBUG_INFO("enter\n");
4400
4401 if (priv->status_queue.drv) {
4402 pci_free_consistent(priv->pci_dev, priv->status_queue.size,
4403 priv->status_queue.drv,
4404 priv->status_queue.nic);
4405 priv->status_queue.drv = NULL;
4406 }
4407
4408 IPW_DEBUG_INFO("exit\n");
4409 }
4410
4411 static int bd_queue_allocate(struct ipw2100_priv *priv,
4412 struct ipw2100_bd_queue *q, int entries)
4413 {
4414 IPW_DEBUG_INFO("enter\n");
4415
4416 memset(q, 0, sizeof(struct ipw2100_bd_queue));
4417
4418 q->entries = entries;
4419 q->size = entries * sizeof(struct ipw2100_bd);
4420 q->drv = pci_alloc_consistent(priv->pci_dev, q->size, &q->nic);
4421 if (!q->drv) {
4422 IPW_DEBUG_INFO
4423 ("can't allocate shared memory for buffer descriptors\n");
4424 return -ENOMEM;
4425 }
4426 memset(q->drv, 0, q->size);
4427
4428 IPW_DEBUG_INFO("exit\n");
4429
4430 return 0;
4431 }
4432
4433 static void bd_queue_free(struct ipw2100_priv *priv, struct ipw2100_bd_queue *q)
4434 {
4435 IPW_DEBUG_INFO("enter\n");
4436
4437 if (!q)
4438 return;
4439
4440 if (q->drv) {
4441 pci_free_consistent(priv->pci_dev, q->size, q->drv, q->nic);
4442 q->drv = NULL;
4443 }
4444
4445 IPW_DEBUG_INFO("exit\n");
4446 }
4447
4448 static void bd_queue_initialize(struct ipw2100_priv *priv,
4449 struct ipw2100_bd_queue *q, u32 base, u32 size,
4450 u32 r, u32 w)
4451 {
4452 IPW_DEBUG_INFO("enter\n");
4453
4454 IPW_DEBUG_INFO("initializing bd queue at virt=%p, phys=%08x\n", q->drv,
4455 (u32) q->nic);
4456
4457 write_register(priv->net_dev, base, q->nic);
4458 write_register(priv->net_dev, size, q->entries);
4459 write_register(priv->net_dev, r, q->oldest);
4460 write_register(priv->net_dev, w, q->next);
4461
4462 IPW_DEBUG_INFO("exit\n");
4463 }
4464
4465 static void ipw2100_kill_works(struct ipw2100_priv *priv)
4466 {
4467 priv->stop_rf_kill = 1;
4468 priv->stop_hang_check = 1;
4469 cancel_delayed_work_sync(&priv->reset_work);
4470 cancel_delayed_work_sync(&priv->security_work);
4471 cancel_delayed_work_sync(&priv->wx_event_work);
4472 cancel_delayed_work_sync(&priv->hang_check);
4473 cancel_delayed_work_sync(&priv->rf_kill);
4474 cancel_work_sync(&priv->scan_event_now);
4475 cancel_delayed_work_sync(&priv->scan_event_later);
4476 }
4477
4478 static int ipw2100_tx_allocate(struct ipw2100_priv *priv)
4479 {
4480 int i, j, err = -EINVAL;
4481 void *v;
4482 dma_addr_t p;
4483
4484 IPW_DEBUG_INFO("enter\n");
4485
4486 err = bd_queue_allocate(priv, &priv->tx_queue, TX_QUEUE_LENGTH);
4487 if (err) {
4488 IPW_DEBUG_ERROR("%s: failed bd_queue_allocate\n",
4489 priv->net_dev->name);
4490 return err;
4491 }
4492
4493 priv->tx_buffers =
4494 kmalloc(TX_PENDED_QUEUE_LENGTH * sizeof(struct ipw2100_tx_packet),
4495 GFP_ATOMIC);
4496 if (!priv->tx_buffers) {
4497 printk(KERN_ERR DRV_NAME
4498 ": %s: alloc failed form tx buffers.\n",
4499 priv->net_dev->name);
4500 bd_queue_free(priv, &priv->tx_queue);
4501 return -ENOMEM;
4502 }
4503
4504 for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4505 v = pci_alloc_consistent(priv->pci_dev,
4506 sizeof(struct ipw2100_data_header),
4507 &p);
4508 if (!v) {
4509 printk(KERN_ERR DRV_NAME
4510 ": %s: PCI alloc failed for tx " "buffers.\n",
4511 priv->net_dev->name);
4512 err = -ENOMEM;
4513 break;
4514 }
4515
4516 priv->tx_buffers[i].type = DATA;
4517 priv->tx_buffers[i].info.d_struct.data =
4518 (struct ipw2100_data_header *)v;
4519 priv->tx_buffers[i].info.d_struct.data_phys = p;
4520 priv->tx_buffers[i].info.d_struct.txb = NULL;
4521 }
4522
4523 if (i == TX_PENDED_QUEUE_LENGTH)
4524 return 0;
4525
4526 for (j = 0; j < i; j++) {
4527 pci_free_consistent(priv->pci_dev,
4528 sizeof(struct ipw2100_data_header),
4529 priv->tx_buffers[j].info.d_struct.data,
4530 priv->tx_buffers[j].info.d_struct.
4531 data_phys);
4532 }
4533
4534 kfree(priv->tx_buffers);
4535 priv->tx_buffers = NULL;
4536
4537 return err;
4538 }
4539
4540 static void ipw2100_tx_initialize(struct ipw2100_priv *priv)
4541 {
4542 int i;
4543
4544 IPW_DEBUG_INFO("enter\n");
4545
4546 /*
4547 * reinitialize packet info lists
4548 */
4549 INIT_LIST_HEAD(&priv->fw_pend_list);
4550 INIT_STAT(&priv->fw_pend_stat);
4551
4552 /*
4553 * reinitialize lists
4554 */
4555 INIT_LIST_HEAD(&priv->tx_pend_list);
4556 INIT_LIST_HEAD(&priv->tx_free_list);
4557 INIT_STAT(&priv->tx_pend_stat);
4558 INIT_STAT(&priv->tx_free_stat);
4559
4560 for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4561 /* We simply drop any SKBs that have been queued for
4562 * transmit */
4563 if (priv->tx_buffers[i].info.d_struct.txb) {
4564 libipw_txb_free(priv->tx_buffers[i].info.d_struct.
4565 txb);
4566 priv->tx_buffers[i].info.d_struct.txb = NULL;
4567 }
4568
4569 list_add_tail(&priv->tx_buffers[i].list, &priv->tx_free_list);
4570 }
4571
4572 SET_STAT(&priv->tx_free_stat, i);
4573
4574 priv->tx_queue.oldest = 0;
4575 priv->tx_queue.available = priv->tx_queue.entries;
4576 priv->tx_queue.next = 0;
4577 INIT_STAT(&priv->txq_stat);
4578 SET_STAT(&priv->txq_stat, priv->tx_queue.available);
4579
4580 bd_queue_initialize(priv, &priv->tx_queue,
4581 IPW_MEM_HOST_SHARED_TX_QUEUE_BD_BASE,
4582 IPW_MEM_HOST_SHARED_TX_QUEUE_BD_SIZE,
4583 IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX,
4584 IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX);
4585
4586 IPW_DEBUG_INFO("exit\n");
4587
4588 }
4589
4590 static void ipw2100_tx_free(struct ipw2100_priv *priv)
4591 {
4592 int i;
4593
4594 IPW_DEBUG_INFO("enter\n");
4595
4596 bd_queue_free(priv, &priv->tx_queue);
4597
4598 if (!priv->tx_buffers)
4599 return;
4600
4601 for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4602 if (priv->tx_buffers[i].info.d_struct.txb) {
4603 libipw_txb_free(priv->tx_buffers[i].info.d_struct.
4604 txb);
4605 priv->tx_buffers[i].info.d_struct.txb = NULL;
4606 }
4607 if (priv->tx_buffers[i].info.d_struct.data)
4608 pci_free_consistent(priv->pci_dev,
4609 sizeof(struct ipw2100_data_header),
4610 priv->tx_buffers[i].info.d_struct.
4611 data,
4612 priv->tx_buffers[i].info.d_struct.
4613 data_phys);
4614 }
4615
4616 kfree(priv->tx_buffers);
4617 priv->tx_buffers = NULL;
4618
4619 IPW_DEBUG_INFO("exit\n");
4620 }
4621
4622 static int ipw2100_rx_allocate(struct ipw2100_priv *priv)
4623 {
4624 int i, j, err = -EINVAL;
4625
4626 IPW_DEBUG_INFO("enter\n");
4627
4628 err = bd_queue_allocate(priv, &priv->rx_queue, RX_QUEUE_LENGTH);
4629 if (err) {
4630 IPW_DEBUG_INFO("failed bd_queue_allocate\n");
4631 return err;
4632 }
4633
4634 err = status_queue_allocate(priv, RX_QUEUE_LENGTH);
4635 if (err) {
4636 IPW_DEBUG_INFO("failed status_queue_allocate\n");
4637 bd_queue_free(priv, &priv->rx_queue);
4638 return err;
4639 }
4640
4641 /*
4642 * allocate packets
4643 */
4644 priv->rx_buffers = kmalloc(RX_QUEUE_LENGTH *
4645 sizeof(struct ipw2100_rx_packet),
4646 GFP_KERNEL);
4647 if (!priv->rx_buffers) {
4648 IPW_DEBUG_INFO("can't allocate rx packet buffer table\n");
4649
4650 bd_queue_free(priv, &priv->rx_queue);
4651
4652 status_queue_free(priv);
4653
4654 return -ENOMEM;
4655 }
4656
4657 for (i = 0; i < RX_QUEUE_LENGTH; i++) {
4658 struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
4659
4660 err = ipw2100_alloc_skb(priv, packet);
4661 if (unlikely(err)) {
4662 err = -ENOMEM;
4663 break;
4664 }
4665
4666 /* The BD holds the cache aligned address */
4667 priv->rx_queue.drv[i].host_addr = packet->dma_addr;
4668 priv->rx_queue.drv[i].buf_length = IPW_RX_NIC_BUFFER_LENGTH;
4669 priv->status_queue.drv[i].status_fields = 0;
4670 }
4671
4672 if (i == RX_QUEUE_LENGTH)
4673 return 0;
4674
4675 for (j = 0; j < i; j++) {
4676 pci_unmap_single(priv->pci_dev, priv->rx_buffers[j].dma_addr,
4677 sizeof(struct ipw2100_rx_packet),
4678 PCI_DMA_FROMDEVICE);
4679 dev_kfree_skb(priv->rx_buffers[j].skb);
4680 }
4681
4682 kfree(priv->rx_buffers);
4683 priv->rx_buffers = NULL;
4684
4685 bd_queue_free(priv, &priv->rx_queue);
4686
4687 status_queue_free(priv);
4688
4689 return err;
4690 }
4691
4692 static void ipw2100_rx_initialize(struct ipw2100_priv *priv)
4693 {
4694 IPW_DEBUG_INFO("enter\n");
4695
4696 priv->rx_queue.oldest = 0;
4697 priv->rx_queue.available = priv->rx_queue.entries - 1;
4698 priv->rx_queue.next = priv->rx_queue.entries - 1;
4699
4700 INIT_STAT(&priv->rxq_stat);
4701 SET_STAT(&priv->rxq_stat, priv->rx_queue.available);
4702
4703 bd_queue_initialize(priv, &priv->rx_queue,
4704 IPW_MEM_HOST_SHARED_RX_BD_BASE,
4705 IPW_MEM_HOST_SHARED_RX_BD_SIZE,
4706 IPW_MEM_HOST_SHARED_RX_READ_INDEX,
4707 IPW_MEM_HOST_SHARED_RX_WRITE_INDEX);
4708
4709 /* set up the status queue */
4710 write_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_STATUS_BASE,
4711 priv->status_queue.nic);
4712
4713 IPW_DEBUG_INFO("exit\n");
4714 }
4715
4716 static void ipw2100_rx_free(struct ipw2100_priv *priv)
4717 {
4718 int i;
4719
4720 IPW_DEBUG_INFO("enter\n");
4721
4722 bd_queue_free(priv, &priv->rx_queue);
4723 status_queue_free(priv);
4724
4725 if (!priv->rx_buffers)
4726 return;
4727
4728 for (i = 0; i < RX_QUEUE_LENGTH; i++) {
4729 if (priv->rx_buffers[i].rxp) {
4730 pci_unmap_single(priv->pci_dev,
4731 priv->rx_buffers[i].dma_addr,
4732 sizeof(struct ipw2100_rx),
4733 PCI_DMA_FROMDEVICE);
4734 dev_kfree_skb(priv->rx_buffers[i].skb);
4735 }
4736 }
4737
4738 kfree(priv->rx_buffers);
4739 priv->rx_buffers = NULL;
4740
4741 IPW_DEBUG_INFO("exit\n");
4742 }
4743
4744 static int ipw2100_read_mac_address(struct ipw2100_priv *priv)
4745 {
4746 u32 length = ETH_ALEN;
4747 u8 addr[ETH_ALEN];
4748
4749 int err;
4750
4751 err = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ADAPTER_MAC, addr, &length);
4752 if (err) {
4753 IPW_DEBUG_INFO("MAC address read failed\n");
4754 return -EIO;
4755 }
4756
4757 memcpy(priv->net_dev->dev_addr, addr, ETH_ALEN);
4758 IPW_DEBUG_INFO("card MAC is %pM\n", priv->net_dev->dev_addr);
4759
4760 return 0;
4761 }
4762
4763 /********************************************************************
4764 *
4765 * Firmware Commands
4766 *
4767 ********************************************************************/
4768
4769 static int ipw2100_set_mac_address(struct ipw2100_priv *priv, int batch_mode)
4770 {
4771 struct host_command cmd = {
4772 .host_command = ADAPTER_ADDRESS,
4773 .host_command_sequence = 0,
4774 .host_command_length = ETH_ALEN
4775 };
4776 int err;
4777
4778 IPW_DEBUG_HC("SET_MAC_ADDRESS\n");
4779
4780 IPW_DEBUG_INFO("enter\n");
4781
4782 if (priv->config & CFG_CUSTOM_MAC) {
4783 memcpy(cmd.host_command_parameters, priv->mac_addr, ETH_ALEN);
4784 memcpy(priv->net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
4785 } else
4786 memcpy(cmd.host_command_parameters, priv->net_dev->dev_addr,
4787 ETH_ALEN);
4788
4789 err = ipw2100_hw_send_command(priv, &cmd);
4790
4791 IPW_DEBUG_INFO("exit\n");
4792 return err;
4793 }
4794
4795 static int ipw2100_set_port_type(struct ipw2100_priv *priv, u32 port_type,
4796 int batch_mode)
4797 {
4798 struct host_command cmd = {
4799 .host_command = PORT_TYPE,
4800 .host_command_sequence = 0,
4801 .host_command_length = sizeof(u32)
4802 };
4803 int err;
4804
4805 switch (port_type) {
4806 case IW_MODE_INFRA:
4807 cmd.host_command_parameters[0] = IPW_BSS;
4808 break;
4809 case IW_MODE_ADHOC:
4810 cmd.host_command_parameters[0] = IPW_IBSS;
4811 break;
4812 }
4813
4814 IPW_DEBUG_HC("PORT_TYPE: %s\n",
4815 port_type == IPW_IBSS ? "Ad-Hoc" : "Managed");
4816
4817 if (!batch_mode) {
4818 err = ipw2100_disable_adapter(priv);
4819 if (err) {
4820 printk(KERN_ERR DRV_NAME
4821 ": %s: Could not disable adapter %d\n",
4822 priv->net_dev->name, err);
4823 return err;
4824 }
4825 }
4826
4827 /* send cmd to firmware */
4828 err = ipw2100_hw_send_command(priv, &cmd);
4829
4830 if (!batch_mode)
4831 ipw2100_enable_adapter(priv);
4832
4833 return err;
4834 }
4835
4836 static int ipw2100_set_channel(struct ipw2100_priv *priv, u32 channel,
4837 int batch_mode)
4838 {
4839 struct host_command cmd = {
4840 .host_command = CHANNEL,
4841 .host_command_sequence = 0,
4842 .host_command_length = sizeof(u32)
4843 };
4844 int err;
4845
4846 cmd.host_command_parameters[0] = channel;
4847
4848 IPW_DEBUG_HC("CHANNEL: %d\n", channel);
4849
4850 /* If BSS then we don't support channel selection */
4851 if (priv->ieee->iw_mode == IW_MODE_INFRA)
4852 return 0;
4853
4854 if ((channel != 0) &&
4855 ((channel < REG_MIN_CHANNEL) || (channel > REG_MAX_CHANNEL)))
4856 return -EINVAL;
4857
4858 if (!batch_mode) {
4859 err = ipw2100_disable_adapter(priv);
4860 if (err)
4861 return err;
4862 }
4863
4864 err = ipw2100_hw_send_command(priv, &cmd);
4865 if (err) {
4866 IPW_DEBUG_INFO("Failed to set channel to %d", channel);
4867 return err;
4868 }
4869
4870 if (channel)
4871 priv->config |= CFG_STATIC_CHANNEL;
4872 else
4873 priv->config &= ~CFG_STATIC_CHANNEL;
4874
4875 priv->channel = channel;
4876
4877 if (!batch_mode) {
4878 err = ipw2100_enable_adapter(priv);
4879 if (err)
4880 return err;
4881 }
4882
4883 return 0;
4884 }
4885
4886 static int ipw2100_system_config(struct ipw2100_priv *priv, int batch_mode)
4887 {
4888 struct host_command cmd = {
4889 .host_command = SYSTEM_CONFIG,
4890 .host_command_sequence = 0,
4891 .host_command_length = 12,
4892 };
4893 u32 ibss_mask, len = sizeof(u32);
4894 int err;
4895
4896 /* Set system configuration */
4897
4898 if (!batch_mode) {
4899 err = ipw2100_disable_adapter(priv);
4900 if (err)
4901 return err;
4902 }
4903
4904 if (priv->ieee->iw_mode == IW_MODE_ADHOC)
4905 cmd.host_command_parameters[0] |= IPW_CFG_IBSS_AUTO_START;
4906
4907 cmd.host_command_parameters[0] |= IPW_CFG_IBSS_MASK |
4908 IPW_CFG_BSS_MASK | IPW_CFG_802_1x_ENABLE;
4909
4910 if (!(priv->config & CFG_LONG_PREAMBLE))
4911 cmd.host_command_parameters[0] |= IPW_CFG_PREAMBLE_AUTO;
4912
4913 err = ipw2100_get_ordinal(priv,
4914 IPW_ORD_EEPROM_IBSS_11B_CHANNELS,
4915 &ibss_mask, &len);
4916 if (err)
4917 ibss_mask = IPW_IBSS_11B_DEFAULT_MASK;
4918
4919 cmd.host_command_parameters[1] = REG_CHANNEL_MASK;
4920 cmd.host_command_parameters[2] = REG_CHANNEL_MASK & ibss_mask;
4921
4922 /* 11b only */
4923 /*cmd.host_command_parameters[0] |= DIVERSITY_ANTENNA_A; */
4924
4925 err = ipw2100_hw_send_command(priv, &cmd);
4926 if (err)
4927 return err;
4928
4929 /* If IPv6 is configured in the kernel then we don't want to filter out all
4930 * of the multicast packets as IPv6 needs some. */
4931 #if !defined(CONFIG_IPV6) && !defined(CONFIG_IPV6_MODULE)
4932 cmd.host_command = ADD_MULTICAST;
4933 cmd.host_command_sequence = 0;
4934 cmd.host_command_length = 0;
4935
4936 ipw2100_hw_send_command(priv, &cmd);
4937 #endif
4938 if (!batch_mode) {
4939 err = ipw2100_enable_adapter(priv);
4940 if (err)
4941 return err;
4942 }
4943
4944 return 0;
4945 }
4946
4947 static int ipw2100_set_tx_rates(struct ipw2100_priv *priv, u32 rate,
4948 int batch_mode)
4949 {
4950 struct host_command cmd = {
4951 .host_command = BASIC_TX_RATES,
4952 .host_command_sequence = 0,
4953 .host_command_length = 4
4954 };
4955 int err;
4956
4957 cmd.host_command_parameters[0] = rate & TX_RATE_MASK;
4958
4959 if (!batch_mode) {
4960 err = ipw2100_disable_adapter(priv);
4961 if (err)
4962 return err;
4963 }
4964
4965 /* Set BASIC TX Rate first */
4966 ipw2100_hw_send_command(priv, &cmd);
4967
4968 /* Set TX Rate */
4969 cmd.host_command = TX_RATES;
4970 ipw2100_hw_send_command(priv, &cmd);
4971
4972 /* Set MSDU TX Rate */
4973 cmd.host_command = MSDU_TX_RATES;
4974 ipw2100_hw_send_command(priv, &cmd);
4975
4976 if (!batch_mode) {
4977 err = ipw2100_enable_adapter(priv);
4978 if (err)
4979 return err;
4980 }
4981
4982 priv->tx_rates = rate;
4983
4984 return 0;
4985 }
4986
4987 static int ipw2100_set_power_mode(struct ipw2100_priv *priv, int power_level)
4988 {
4989 struct host_command cmd = {
4990 .host_command = POWER_MODE,
4991 .host_command_sequence = 0,
4992 .host_command_length = 4
4993 };
4994 int err;
4995
4996 cmd.host_command_parameters[0] = power_level;
4997
4998 err = ipw2100_hw_send_command(priv, &cmd);
4999 if (err)
5000 return err;
5001
5002 if (power_level == IPW_POWER_MODE_CAM)
5003 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
5004 else
5005 priv->power_mode = IPW_POWER_ENABLED | power_level;
5006
5007 #ifdef IPW2100_TX_POWER
5008 if (priv->port_type == IBSS && priv->adhoc_power != DFTL_IBSS_TX_POWER) {
5009 /* Set beacon interval */
5010 cmd.host_command = TX_POWER_INDEX;
5011 cmd.host_command_parameters[0] = (u32) priv->adhoc_power;
5012
5013 err = ipw2100_hw_send_command(priv, &cmd);
5014 if (err)
5015 return err;
5016 }
5017 #endif
5018
5019 return 0;
5020 }
5021
5022 static int ipw2100_set_rts_threshold(struct ipw2100_priv *priv, u32 threshold)
5023 {
5024 struct host_command cmd = {
5025 .host_command = RTS_THRESHOLD,
5026 .host_command_sequence = 0,
5027 .host_command_length = 4
5028 };
5029 int err;
5030
5031 if (threshold & RTS_DISABLED)
5032 cmd.host_command_parameters[0] = MAX_RTS_THRESHOLD;
5033 else
5034 cmd.host_command_parameters[0] = threshold & ~RTS_DISABLED;
5035
5036 err = ipw2100_hw_send_command(priv, &cmd);
5037 if (err)
5038 return err;
5039
5040 priv->rts_threshold = threshold;
5041
5042 return 0;
5043 }
5044
5045 #if 0
5046 int ipw2100_set_fragmentation_threshold(struct ipw2100_priv *priv,
5047 u32 threshold, int batch_mode)
5048 {
5049 struct host_command cmd = {
5050 .host_command = FRAG_THRESHOLD,
5051 .host_command_sequence = 0,
5052 .host_command_length = 4,
5053 .host_command_parameters[0] = 0,
5054 };
5055 int err;
5056
5057 if (!batch_mode) {
5058 err = ipw2100_disable_adapter(priv);
5059 if (err)
5060 return err;
5061 }
5062
5063 if (threshold == 0)
5064 threshold = DEFAULT_FRAG_THRESHOLD;
5065 else {
5066 threshold = max(threshold, MIN_FRAG_THRESHOLD);
5067 threshold = min(threshold, MAX_FRAG_THRESHOLD);
5068 }
5069
5070 cmd.host_command_parameters[0] = threshold;
5071
5072 IPW_DEBUG_HC("FRAG_THRESHOLD: %u\n", threshold);
5073
5074 err = ipw2100_hw_send_command(priv, &cmd);
5075
5076 if (!batch_mode)
5077 ipw2100_enable_adapter(priv);
5078
5079 if (!err)
5080 priv->frag_threshold = threshold;
5081
5082 return err;
5083 }
5084 #endif
5085
5086 static int ipw2100_set_short_retry(struct ipw2100_priv *priv, u32 retry)
5087 {
5088 struct host_command cmd = {
5089 .host_command = SHORT_RETRY_LIMIT,
5090 .host_command_sequence = 0,
5091 .host_command_length = 4
5092 };
5093 int err;
5094
5095 cmd.host_command_parameters[0] = retry;
5096
5097 err = ipw2100_hw_send_command(priv, &cmd);
5098 if (err)
5099 return err;
5100
5101 priv->short_retry_limit = retry;
5102
5103 return 0;
5104 }
5105
5106 static int ipw2100_set_long_retry(struct ipw2100_priv *priv, u32 retry)
5107 {
5108 struct host_command cmd = {
5109 .host_command = LONG_RETRY_LIMIT,
5110 .host_command_sequence = 0,
5111 .host_command_length = 4
5112 };
5113 int err;
5114
5115 cmd.host_command_parameters[0] = retry;
5116
5117 err = ipw2100_hw_send_command(priv, &cmd);
5118 if (err)
5119 return err;
5120
5121 priv->long_retry_limit = retry;
5122
5123 return 0;
5124 }
5125
5126 static int ipw2100_set_mandatory_bssid(struct ipw2100_priv *priv, u8 * bssid,
5127 int batch_mode)
5128 {
5129 struct host_command cmd = {
5130 .host_command = MANDATORY_BSSID,
5131 .host_command_sequence = 0,
5132 .host_command_length = (bssid == NULL) ? 0 : ETH_ALEN
5133 };
5134 int err;
5135
5136 #ifdef CONFIG_IPW2100_DEBUG
5137 if (bssid != NULL)
5138 IPW_DEBUG_HC("MANDATORY_BSSID: %pM\n", bssid);
5139 else
5140 IPW_DEBUG_HC("MANDATORY_BSSID: <clear>\n");
5141 #endif
5142 /* if BSSID is empty then we disable mandatory bssid mode */
5143 if (bssid != NULL)
5144 memcpy(cmd.host_command_parameters, bssid, ETH_ALEN);
5145
5146 if (!batch_mode) {
5147 err = ipw2100_disable_adapter(priv);
5148 if (err)
5149 return err;
5150 }
5151
5152 err = ipw2100_hw_send_command(priv, &cmd);
5153
5154 if (!batch_mode)
5155 ipw2100_enable_adapter(priv);
5156
5157 return err;
5158 }
5159
5160 static int ipw2100_disassociate_bssid(struct ipw2100_priv *priv)
5161 {
5162 struct host_command cmd = {
5163 .host_command = DISASSOCIATION_BSSID,
5164 .host_command_sequence = 0,
5165 .host_command_length = ETH_ALEN
5166 };
5167 int err;
5168 int len;
5169
5170 IPW_DEBUG_HC("DISASSOCIATION_BSSID\n");
5171
5172 len = ETH_ALEN;
5173 /* The Firmware currently ignores the BSSID and just disassociates from
5174 * the currently associated AP -- but in the off chance that a future
5175 * firmware does use the BSSID provided here, we go ahead and try and
5176 * set it to the currently associated AP's BSSID */
5177 memcpy(cmd.host_command_parameters, priv->bssid, ETH_ALEN);
5178
5179 err = ipw2100_hw_send_command(priv, &cmd);
5180
5181 return err;
5182 }
5183
5184 static int ipw2100_set_wpa_ie(struct ipw2100_priv *,
5185 struct ipw2100_wpa_assoc_frame *, int)
5186 __attribute__ ((unused));
5187
5188 static int ipw2100_set_wpa_ie(struct ipw2100_priv *priv,
5189 struct ipw2100_wpa_assoc_frame *wpa_frame,
5190 int batch_mode)
5191 {
5192 struct host_command cmd = {
5193 .host_command = SET_WPA_IE,
5194 .host_command_sequence = 0,
5195 .host_command_length = sizeof(struct ipw2100_wpa_assoc_frame),
5196 };
5197 int err;
5198
5199 IPW_DEBUG_HC("SET_WPA_IE\n");
5200
5201 if (!batch_mode) {
5202 err = ipw2100_disable_adapter(priv);
5203 if (err)
5204 return err;
5205 }
5206
5207 memcpy(cmd.host_command_parameters, wpa_frame,
5208 sizeof(struct ipw2100_wpa_assoc_frame));
5209
5210 err = ipw2100_hw_send_command(priv, &cmd);
5211
5212 if (!batch_mode) {
5213 if (ipw2100_enable_adapter(priv))
5214 err = -EIO;
5215 }
5216
5217 return err;
5218 }
5219
5220 struct security_info_params {
5221 u32 allowed_ciphers;
5222 u16 version;
5223 u8 auth_mode;
5224 u8 replay_counters_number;
5225 u8 unicast_using_group;
5226 } __packed;
5227
5228 static int ipw2100_set_security_information(struct ipw2100_priv *priv,
5229 int auth_mode,
5230 int security_level,
5231 int unicast_using_group,
5232 int batch_mode)
5233 {
5234 struct host_command cmd = {
5235 .host_command = SET_SECURITY_INFORMATION,
5236 .host_command_sequence = 0,
5237 .host_command_length = sizeof(struct security_info_params)
5238 };
5239 struct security_info_params *security =
5240 (struct security_info_params *)&cmd.host_command_parameters;
5241 int err;
5242 memset(security, 0, sizeof(*security));
5243
5244 /* If shared key AP authentication is turned on, then we need to
5245 * configure the firmware to try and use it.
5246 *
5247 * Actual data encryption/decryption is handled by the host. */
5248 security->auth_mode = auth_mode;
5249 security->unicast_using_group = unicast_using_group;
5250
5251 switch (security_level) {
5252 default:
5253 case SEC_LEVEL_0:
5254 security->allowed_ciphers = IPW_NONE_CIPHER;
5255 break;
5256 case SEC_LEVEL_1:
5257 security->allowed_ciphers = IPW_WEP40_CIPHER |
5258 IPW_WEP104_CIPHER;
5259 break;
5260 case SEC_LEVEL_2:
5261 security->allowed_ciphers = IPW_WEP40_CIPHER |
5262 IPW_WEP104_CIPHER | IPW_TKIP_CIPHER;
5263 break;
5264 case SEC_LEVEL_2_CKIP:
5265 security->allowed_ciphers = IPW_WEP40_CIPHER |
5266 IPW_WEP104_CIPHER | IPW_CKIP_CIPHER;
5267 break;
5268 case SEC_LEVEL_3:
5269 security->allowed_ciphers = IPW_WEP40_CIPHER |
5270 IPW_WEP104_CIPHER | IPW_TKIP_CIPHER | IPW_CCMP_CIPHER;
5271 break;
5272 }
5273
5274 IPW_DEBUG_HC
5275 ("SET_SECURITY_INFORMATION: auth:%d cipher:0x%02X (level %d)\n",
5276 security->auth_mode, security->allowed_ciphers, security_level);
5277
5278 security->replay_counters_number = 0;
5279
5280 if (!batch_mode) {
5281 err = ipw2100_disable_adapter(priv);
5282 if (err)
5283 return err;
5284 }
5285
5286 err = ipw2100_hw_send_command(priv, &cmd);
5287
5288 if (!batch_mode)
5289 ipw2100_enable_adapter(priv);
5290
5291 return err;
5292 }
5293
5294 static int ipw2100_set_tx_power(struct ipw2100_priv *priv, u32 tx_power)
5295 {
5296 struct host_command cmd = {
5297 .host_command = TX_POWER_INDEX,
5298 .host_command_sequence = 0,
5299 .host_command_length = 4
5300 };
5301 int err = 0;
5302 u32 tmp = tx_power;
5303
5304 if (tx_power != IPW_TX_POWER_DEFAULT)
5305 tmp = (tx_power - IPW_TX_POWER_MIN_DBM) * 16 /
5306 (IPW_TX_POWER_MAX_DBM - IPW_TX_POWER_MIN_DBM);
5307
5308 cmd.host_command_parameters[0] = tmp;
5309
5310 if (priv->ieee->iw_mode == IW_MODE_ADHOC)
5311 err = ipw2100_hw_send_command(priv, &cmd);
5312 if (!err)
5313 priv->tx_power = tx_power;
5314
5315 return 0;
5316 }
5317
5318 static int ipw2100_set_ibss_beacon_interval(struct ipw2100_priv *priv,
5319 u32 interval, int batch_mode)
5320 {
5321 struct host_command cmd = {
5322 .host_command = BEACON_INTERVAL,
5323 .host_command_sequence = 0,
5324 .host_command_length = 4
5325 };
5326 int err;
5327
5328 cmd.host_command_parameters[0] = interval;
5329
5330 IPW_DEBUG_INFO("enter\n");
5331
5332 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5333 if (!batch_mode) {
5334 err = ipw2100_disable_adapter(priv);
5335 if (err)
5336 return err;
5337 }
5338
5339 ipw2100_hw_send_command(priv, &cmd);
5340
5341 if (!batch_mode) {
5342 err = ipw2100_enable_adapter(priv);
5343 if (err)
5344 return err;
5345 }
5346 }
5347
5348 IPW_DEBUG_INFO("exit\n");
5349
5350 return 0;
5351 }
5352
5353 static void ipw2100_queues_initialize(struct ipw2100_priv *priv)
5354 {
5355 ipw2100_tx_initialize(priv);
5356 ipw2100_rx_initialize(priv);
5357 ipw2100_msg_initialize(priv);
5358 }
5359
5360 static void ipw2100_queues_free(struct ipw2100_priv *priv)
5361 {
5362 ipw2100_tx_free(priv);
5363 ipw2100_rx_free(priv);
5364 ipw2100_msg_free(priv);
5365 }
5366
5367 static int ipw2100_queues_allocate(struct ipw2100_priv *priv)
5368 {
5369 if (ipw2100_tx_allocate(priv) ||
5370 ipw2100_rx_allocate(priv) || ipw2100_msg_allocate(priv))
5371 goto fail;
5372
5373 return 0;
5374
5375 fail:
5376 ipw2100_tx_free(priv);
5377 ipw2100_rx_free(priv);
5378 ipw2100_msg_free(priv);
5379 return -ENOMEM;
5380 }
5381
5382 #define IPW_PRIVACY_CAPABLE 0x0008
5383
5384 static int ipw2100_set_wep_flags(struct ipw2100_priv *priv, u32 flags,
5385 int batch_mode)
5386 {
5387 struct host_command cmd = {
5388 .host_command = WEP_FLAGS,
5389 .host_command_sequence = 0,
5390 .host_command_length = 4
5391 };
5392 int err;
5393
5394 cmd.host_command_parameters[0] = flags;
5395
5396 IPW_DEBUG_HC("WEP_FLAGS: flags = 0x%08X\n", flags);
5397
5398 if (!batch_mode) {
5399 err = ipw2100_disable_adapter(priv);
5400 if (err) {
5401 printk(KERN_ERR DRV_NAME
5402 ": %s: Could not disable adapter %d\n",
5403 priv->net_dev->name, err);
5404 return err;
5405 }
5406 }
5407
5408 /* send cmd to firmware */
5409 err = ipw2100_hw_send_command(priv, &cmd);
5410
5411 if (!batch_mode)
5412 ipw2100_enable_adapter(priv);
5413
5414 return err;
5415 }
5416
5417 struct ipw2100_wep_key {
5418 u8 idx;
5419 u8 len;
5420 u8 key[13];
5421 };
5422
5423 /* Macros to ease up priting WEP keys */
5424 #define WEP_FMT_64 "%02X%02X%02X%02X-%02X"
5425 #define WEP_FMT_128 "%02X%02X%02X%02X-%02X%02X%02X%02X-%02X%02X%02X"
5426 #define WEP_STR_64(x) x[0],x[1],x[2],x[3],x[4]
5427 #define WEP_STR_128(x) x[0],x[1],x[2],x[3],x[4],x[5],x[6],x[7],x[8],x[9],x[10]
5428
5429 /**
5430 * Set a the wep key
5431 *
5432 * @priv: struct to work on
5433 * @idx: index of the key we want to set
5434 * @key: ptr to the key data to set
5435 * @len: length of the buffer at @key
5436 * @batch_mode: FIXME perform the operation in batch mode, not
5437 * disabling the device.
5438 *
5439 * @returns 0 if OK, < 0 errno code on error.
5440 *
5441 * Fill out a command structure with the new wep key, length an
5442 * index and send it down the wire.
5443 */
5444 static int ipw2100_set_key(struct ipw2100_priv *priv,
5445 int idx, char *key, int len, int batch_mode)
5446 {
5447 int keylen = len ? (len <= 5 ? 5 : 13) : 0;
5448 struct host_command cmd = {
5449 .host_command = WEP_KEY_INFO,
5450 .host_command_sequence = 0,
5451 .host_command_length = sizeof(struct ipw2100_wep_key),
5452 };
5453 struct ipw2100_wep_key *wep_key = (void *)cmd.host_command_parameters;
5454 int err;
5455
5456 IPW_DEBUG_HC("WEP_KEY_INFO: index = %d, len = %d/%d\n",
5457 idx, keylen, len);
5458
5459 /* NOTE: We don't check cached values in case the firmware was reset
5460 * or some other problem is occurring. If the user is setting the key,
5461 * then we push the change */
5462
5463 wep_key->idx = idx;
5464 wep_key->len = keylen;
5465
5466 if (keylen) {
5467 memcpy(wep_key->key, key, len);
5468 memset(wep_key->key + len, 0, keylen - len);
5469 }
5470
5471 /* Will be optimized out on debug not being configured in */
5472 if (keylen == 0)
5473 IPW_DEBUG_WEP("%s: Clearing key %d\n",
5474 priv->net_dev->name, wep_key->idx);
5475 else if (keylen == 5)
5476 IPW_DEBUG_WEP("%s: idx: %d, len: %d key: " WEP_FMT_64 "\n",
5477 priv->net_dev->name, wep_key->idx, wep_key->len,
5478 WEP_STR_64(wep_key->key));
5479 else
5480 IPW_DEBUG_WEP("%s: idx: %d, len: %d key: " WEP_FMT_128
5481 "\n",
5482 priv->net_dev->name, wep_key->idx, wep_key->len,
5483 WEP_STR_128(wep_key->key));
5484
5485 if (!batch_mode) {
5486 err = ipw2100_disable_adapter(priv);
5487 /* FIXME: IPG: shouldn't this prink be in _disable_adapter()? */
5488 if (err) {
5489 printk(KERN_ERR DRV_NAME
5490 ": %s: Could not disable adapter %d\n",
5491 priv->net_dev->name, err);
5492 return err;
5493 }
5494 }
5495
5496 /* send cmd to firmware */
5497 err = ipw2100_hw_send_command(priv, &cmd);
5498
5499 if (!batch_mode) {
5500 int err2 = ipw2100_enable_adapter(priv);
5501 if (err == 0)
5502 err = err2;
5503 }
5504 return err;
5505 }
5506
5507 static int ipw2100_set_key_index(struct ipw2100_priv *priv,
5508 int idx, int batch_mode)
5509 {
5510 struct host_command cmd = {
5511 .host_command = WEP_KEY_INDEX,
5512 .host_command_sequence = 0,
5513 .host_command_length = 4,
5514 .host_command_parameters = {idx},
5515 };
5516 int err;
5517
5518 IPW_DEBUG_HC("WEP_KEY_INDEX: index = %d\n", idx);
5519
5520 if (idx < 0 || idx > 3)
5521 return -EINVAL;
5522
5523 if (!batch_mode) {
5524 err = ipw2100_disable_adapter(priv);
5525 if (err) {
5526 printk(KERN_ERR DRV_NAME
5527 ": %s: Could not disable adapter %d\n",
5528 priv->net_dev->name, err);
5529 return err;
5530 }
5531 }
5532
5533 /* send cmd to firmware */
5534 err = ipw2100_hw_send_command(priv, &cmd);
5535
5536 if (!batch_mode)
5537 ipw2100_enable_adapter(priv);
5538
5539 return err;
5540 }
5541
5542 static int ipw2100_configure_security(struct ipw2100_priv *priv, int batch_mode)
5543 {
5544 int i, err, auth_mode, sec_level, use_group;
5545
5546 if (!(priv->status & STATUS_RUNNING))
5547 return 0;
5548
5549 if (!batch_mode) {
5550 err = ipw2100_disable_adapter(priv);
5551 if (err)
5552 return err;
5553 }
5554
5555 if (!priv->ieee->sec.enabled) {
5556 err =
5557 ipw2100_set_security_information(priv, IPW_AUTH_OPEN,
5558 SEC_LEVEL_0, 0, 1);
5559 } else {
5560 auth_mode = IPW_AUTH_OPEN;
5561 if (priv->ieee->sec.flags & SEC_AUTH_MODE) {
5562 if (priv->ieee->sec.auth_mode == WLAN_AUTH_SHARED_KEY)
5563 auth_mode = IPW_AUTH_SHARED;
5564 else if (priv->ieee->sec.auth_mode == WLAN_AUTH_LEAP)
5565 auth_mode = IPW_AUTH_LEAP_CISCO_ID;
5566 }
5567
5568 sec_level = SEC_LEVEL_0;
5569 if (priv->ieee->sec.flags & SEC_LEVEL)
5570 sec_level = priv->ieee->sec.level;
5571
5572 use_group = 0;
5573 if (priv->ieee->sec.flags & SEC_UNICAST_GROUP)
5574 use_group = priv->ieee->sec.unicast_uses_group;
5575
5576 err =
5577 ipw2100_set_security_information(priv, auth_mode, sec_level,
5578 use_group, 1);
5579 }
5580
5581 if (err)
5582 goto exit;
5583
5584 if (priv->ieee->sec.enabled) {
5585 for (i = 0; i < 4; i++) {
5586 if (!(priv->ieee->sec.flags & (1 << i))) {
5587 memset(priv->ieee->sec.keys[i], 0, WEP_KEY_LEN);
5588 priv->ieee->sec.key_sizes[i] = 0;
5589 } else {
5590 err = ipw2100_set_key(priv, i,
5591 priv->ieee->sec.keys[i],
5592 priv->ieee->sec.
5593 key_sizes[i], 1);
5594 if (err)
5595 goto exit;
5596 }
5597 }
5598
5599 ipw2100_set_key_index(priv, priv->ieee->crypt_info.tx_keyidx, 1);
5600 }
5601
5602 /* Always enable privacy so the Host can filter WEP packets if
5603 * encrypted data is sent up */
5604 err =
5605 ipw2100_set_wep_flags(priv,
5606 priv->ieee->sec.
5607 enabled ? IPW_PRIVACY_CAPABLE : 0, 1);
5608 if (err)
5609 goto exit;
5610
5611 priv->status &= ~STATUS_SECURITY_UPDATED;
5612
5613 exit:
5614 if (!batch_mode)
5615 ipw2100_enable_adapter(priv);
5616
5617 return err;
5618 }
5619
5620 static void ipw2100_security_work(struct work_struct *work)
5621 {
5622 struct ipw2100_priv *priv =
5623 container_of(work, struct ipw2100_priv, security_work.work);
5624
5625 /* If we happen to have reconnected before we get a chance to
5626 * process this, then update the security settings--which causes
5627 * a disassociation to occur */
5628 if (!(priv->status & STATUS_ASSOCIATED) &&
5629 priv->status & STATUS_SECURITY_UPDATED)
5630 ipw2100_configure_security(priv, 0);
5631 }
5632
5633 static void shim__set_security(struct net_device *dev,
5634 struct libipw_security *sec)
5635 {
5636 struct ipw2100_priv *priv = libipw_priv(dev);
5637 int i, force_update = 0;
5638
5639 mutex_lock(&priv->action_mutex);
5640 if (!(priv->status & STATUS_INITIALIZED))
5641 goto done;
5642
5643 for (i = 0; i < 4; i++) {
5644 if (sec->flags & (1 << i)) {
5645 priv->ieee->sec.key_sizes[i] = sec->key_sizes[i];
5646 if (sec->key_sizes[i] == 0)
5647 priv->ieee->sec.flags &= ~(1 << i);
5648 else
5649 memcpy(priv->ieee->sec.keys[i], sec->keys[i],
5650 sec->key_sizes[i]);
5651 if (sec->level == SEC_LEVEL_1) {
5652 priv->ieee->sec.flags |= (1 << i);
5653 priv->status |= STATUS_SECURITY_UPDATED;
5654 } else
5655 priv->ieee->sec.flags &= ~(1 << i);
5656 }
5657 }
5658
5659 if ((sec->flags & SEC_ACTIVE_KEY) &&
5660 priv->ieee->sec.active_key != sec->active_key) {
5661 if (sec->active_key <= 3) {
5662 priv->ieee->sec.active_key = sec->active_key;
5663 priv->ieee->sec.flags |= SEC_ACTIVE_KEY;
5664 } else
5665 priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
5666
5667 priv->status |= STATUS_SECURITY_UPDATED;
5668 }
5669
5670 if ((sec->flags & SEC_AUTH_MODE) &&
5671 (priv->ieee->sec.auth_mode != sec->auth_mode)) {
5672 priv->ieee->sec.auth_mode = sec->auth_mode;
5673 priv->ieee->sec.flags |= SEC_AUTH_MODE;
5674 priv->status |= STATUS_SECURITY_UPDATED;
5675 }
5676
5677 if (sec->flags & SEC_ENABLED && priv->ieee->sec.enabled != sec->enabled) {
5678 priv->ieee->sec.flags |= SEC_ENABLED;
5679 priv->ieee->sec.enabled = sec->enabled;
5680 priv->status |= STATUS_SECURITY_UPDATED;
5681 force_update = 1;
5682 }
5683
5684 if (sec->flags & SEC_ENCRYPT)
5685 priv->ieee->sec.encrypt = sec->encrypt;
5686
5687 if (sec->flags & SEC_LEVEL && priv->ieee->sec.level != sec->level) {
5688 priv->ieee->sec.level = sec->level;
5689 priv->ieee->sec.flags |= SEC_LEVEL;
5690 priv->status |= STATUS_SECURITY_UPDATED;
5691 }
5692
5693 IPW_DEBUG_WEP("Security flags: %c %c%c%c%c %c%c%c%c\n",
5694 priv->ieee->sec.flags & (1 << 8) ? '1' : '0',
5695 priv->ieee->sec.flags & (1 << 7) ? '1' : '0',
5696 priv->ieee->sec.flags & (1 << 6) ? '1' : '0',
5697 priv->ieee->sec.flags & (1 << 5) ? '1' : '0',
5698 priv->ieee->sec.flags & (1 << 4) ? '1' : '0',
5699 priv->ieee->sec.flags & (1 << 3) ? '1' : '0',
5700 priv->ieee->sec.flags & (1 << 2) ? '1' : '0',
5701 priv->ieee->sec.flags & (1 << 1) ? '1' : '0',
5702 priv->ieee->sec.flags & (1 << 0) ? '1' : '0');
5703
5704 /* As a temporary work around to enable WPA until we figure out why
5705 * wpa_supplicant toggles the security capability of the driver, which
5706 * forces a disassocation with force_update...
5707 *
5708 * if (force_update || !(priv->status & STATUS_ASSOCIATED))*/
5709 if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)))
5710 ipw2100_configure_security(priv, 0);
5711 done:
5712 mutex_unlock(&priv->action_mutex);
5713 }
5714
5715 static int ipw2100_adapter_setup(struct ipw2100_priv *priv)
5716 {
5717 int err;
5718 int batch_mode = 1;
5719 u8 *bssid;
5720
5721 IPW_DEBUG_INFO("enter\n");
5722
5723 err = ipw2100_disable_adapter(priv);
5724 if (err)
5725 return err;
5726 #ifdef CONFIG_IPW2100_MONITOR
5727 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
5728 err = ipw2100_set_channel(priv, priv->channel, batch_mode);
5729 if (err)
5730 return err;
5731
5732 IPW_DEBUG_INFO("exit\n");
5733
5734 return 0;
5735 }
5736 #endif /* CONFIG_IPW2100_MONITOR */
5737
5738 err = ipw2100_read_mac_address(priv);
5739 if (err)
5740 return -EIO;
5741
5742 err = ipw2100_set_mac_address(priv, batch_mode);
5743 if (err)
5744 return err;
5745
5746 err = ipw2100_set_port_type(priv, priv->ieee->iw_mode, batch_mode);
5747 if (err)
5748 return err;
5749
5750 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5751 err = ipw2100_set_channel(priv, priv->channel, batch_mode);
5752 if (err)
5753 return err;
5754 }
5755
5756 err = ipw2100_system_config(priv, batch_mode);
5757 if (err)
5758 return err;
5759
5760 err = ipw2100_set_tx_rates(priv, priv->tx_rates, batch_mode);
5761 if (err)
5762 return err;
5763
5764 /* Default to power mode OFF */
5765 err = ipw2100_set_power_mode(priv, IPW_POWER_MODE_CAM);
5766 if (err)
5767 return err;
5768
5769 err = ipw2100_set_rts_threshold(priv, priv->rts_threshold);
5770 if (err)
5771 return err;
5772
5773 if (priv->config & CFG_STATIC_BSSID)
5774 bssid = priv->bssid;
5775 else
5776 bssid = NULL;
5777 err = ipw2100_set_mandatory_bssid(priv, bssid, batch_mode);
5778 if (err)
5779 return err;
5780
5781 if (priv->config & CFG_STATIC_ESSID)
5782 err = ipw2100_set_essid(priv, priv->essid, priv->essid_len,
5783 batch_mode);
5784 else
5785 err = ipw2100_set_essid(priv, NULL, 0, batch_mode);
5786 if (err)
5787 return err;
5788
5789 err = ipw2100_configure_security(priv, batch_mode);
5790 if (err)
5791 return err;
5792
5793 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5794 err =
5795 ipw2100_set_ibss_beacon_interval(priv,
5796 priv->beacon_interval,
5797 batch_mode);
5798 if (err)
5799 return err;
5800
5801 err = ipw2100_set_tx_power(priv, priv->tx_power);
5802 if (err)
5803 return err;
5804 }
5805
5806 /*
5807 err = ipw2100_set_fragmentation_threshold(
5808 priv, priv->frag_threshold, batch_mode);
5809 if (err)
5810 return err;
5811 */
5812
5813 IPW_DEBUG_INFO("exit\n");
5814
5815 return 0;
5816 }
5817
5818 /*************************************************************************
5819 *
5820 * EXTERNALLY CALLED METHODS
5821 *
5822 *************************************************************************/
5823
5824 /* This method is called by the network layer -- not to be confused with
5825 * ipw2100_set_mac_address() declared above called by this driver (and this
5826 * method as well) to talk to the firmware */
5827 static int ipw2100_set_address(struct net_device *dev, void *p)
5828 {
5829 struct ipw2100_priv *priv = libipw_priv(dev);
5830 struct sockaddr *addr = p;
5831 int err = 0;
5832
5833 if (!is_valid_ether_addr(addr->sa_data))
5834 return -EADDRNOTAVAIL;
5835
5836 mutex_lock(&priv->action_mutex);
5837
5838 priv->config |= CFG_CUSTOM_MAC;
5839 memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
5840
5841 err = ipw2100_set_mac_address(priv, 0);
5842 if (err)
5843 goto done;
5844
5845 priv->reset_backoff = 0;
5846 mutex_unlock(&priv->action_mutex);
5847 ipw2100_reset_adapter(&priv->reset_work.work);
5848 return 0;
5849
5850 done:
5851 mutex_unlock(&priv->action_mutex);
5852 return err;
5853 }
5854
5855 static int ipw2100_open(struct net_device *dev)
5856 {
5857 struct ipw2100_priv *priv = libipw_priv(dev);
5858 unsigned long flags;
5859 IPW_DEBUG_INFO("dev->open\n");
5860
5861 spin_lock_irqsave(&priv->low_lock, flags);
5862 if (priv->status & STATUS_ASSOCIATED) {
5863 netif_carrier_on(dev);
5864 netif_start_queue(dev);
5865 }
5866 spin_unlock_irqrestore(&priv->low_lock, flags);
5867
5868 return 0;
5869 }
5870
5871 static int ipw2100_close(struct net_device *dev)
5872 {
5873 struct ipw2100_priv *priv = libipw_priv(dev);
5874 unsigned long flags;
5875 struct list_head *element;
5876 struct ipw2100_tx_packet *packet;
5877
5878 IPW_DEBUG_INFO("enter\n");
5879
5880 spin_lock_irqsave(&priv->low_lock, flags);
5881
5882 if (priv->status & STATUS_ASSOCIATED)
5883 netif_carrier_off(dev);
5884 netif_stop_queue(dev);
5885
5886 /* Flush the TX queue ... */
5887 while (!list_empty(&priv->tx_pend_list)) {
5888 element = priv->tx_pend_list.next;
5889 packet = list_entry(element, struct ipw2100_tx_packet, list);
5890
5891 list_del(element);
5892 DEC_STAT(&priv->tx_pend_stat);
5893
5894 libipw_txb_free(packet->info.d_struct.txb);
5895 packet->info.d_struct.txb = NULL;
5896
5897 list_add_tail(element, &priv->tx_free_list);
5898 INC_STAT(&priv->tx_free_stat);
5899 }
5900 spin_unlock_irqrestore(&priv->low_lock, flags);
5901
5902 IPW_DEBUG_INFO("exit\n");
5903
5904 return 0;
5905 }
5906
5907 /*
5908 * TODO: Fix this function... its just wrong
5909 */
5910 static void ipw2100_tx_timeout(struct net_device *dev)
5911 {
5912 struct ipw2100_priv *priv = libipw_priv(dev);
5913
5914 dev->stats.tx_errors++;
5915
5916 #ifdef CONFIG_IPW2100_MONITOR
5917 if (priv->ieee->iw_mode == IW_MODE_MONITOR)
5918 return;
5919 #endif
5920
5921 IPW_DEBUG_INFO("%s: TX timed out. Scheduling firmware restart.\n",
5922 dev->name);
5923 schedule_reset(priv);
5924 }
5925
5926 static int ipw2100_wpa_enable(struct ipw2100_priv *priv, int value)
5927 {
5928 /* This is called when wpa_supplicant loads and closes the driver
5929 * interface. */
5930 priv->ieee->wpa_enabled = value;
5931 return 0;
5932 }
5933
5934 static int ipw2100_wpa_set_auth_algs(struct ipw2100_priv *priv, int value)
5935 {
5936
5937 struct libipw_device *ieee = priv->ieee;
5938 struct libipw_security sec = {
5939 .flags = SEC_AUTH_MODE,
5940 };
5941 int ret = 0;
5942
5943 if (value & IW_AUTH_ALG_SHARED_KEY) {
5944 sec.auth_mode = WLAN_AUTH_SHARED_KEY;
5945 ieee->open_wep = 0;
5946 } else if (value & IW_AUTH_ALG_OPEN_SYSTEM) {
5947 sec.auth_mode = WLAN_AUTH_OPEN;
5948 ieee->open_wep = 1;
5949 } else if (value & IW_AUTH_ALG_LEAP) {
5950 sec.auth_mode = WLAN_AUTH_LEAP;
5951 ieee->open_wep = 1;
5952 } else
5953 return -EINVAL;
5954
5955 if (ieee->set_security)
5956 ieee->set_security(ieee->dev, &sec);
5957 else
5958 ret = -EOPNOTSUPP;
5959
5960 return ret;
5961 }
5962
5963 static void ipw2100_wpa_assoc_frame(struct ipw2100_priv *priv,
5964 char *wpa_ie, int wpa_ie_len)
5965 {
5966
5967 struct ipw2100_wpa_assoc_frame frame;
5968
5969 frame.fixed_ie_mask = 0;
5970
5971 /* copy WPA IE */
5972 memcpy(frame.var_ie, wpa_ie, wpa_ie_len);
5973 frame.var_ie_len = wpa_ie_len;
5974
5975 /* make sure WPA is enabled */
5976 ipw2100_wpa_enable(priv, 1);
5977 ipw2100_set_wpa_ie(priv, &frame, 0);
5978 }
5979
5980 static void ipw_ethtool_get_drvinfo(struct net_device *dev,
5981 struct ethtool_drvinfo *info)
5982 {
5983 struct ipw2100_priv *priv = libipw_priv(dev);
5984 char fw_ver[64], ucode_ver[64];
5985
5986 strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
5987 strlcpy(info->version, DRV_VERSION, sizeof(info->version));
5988
5989 ipw2100_get_fwversion(priv, fw_ver, sizeof(fw_ver));
5990 ipw2100_get_ucodeversion(priv, ucode_ver, sizeof(ucode_ver));
5991
5992 snprintf(info->fw_version, sizeof(info->fw_version), "%s:%d:%s",
5993 fw_ver, priv->eeprom_version, ucode_ver);
5994
5995 strlcpy(info->bus_info, pci_name(priv->pci_dev),
5996 sizeof(info->bus_info));
5997 }
5998
5999 static u32 ipw2100_ethtool_get_link(struct net_device *dev)
6000 {
6001 struct ipw2100_priv *priv = libipw_priv(dev);
6002 return (priv->status & STATUS_ASSOCIATED) ? 1 : 0;
6003 }
6004
6005 static const struct ethtool_ops ipw2100_ethtool_ops = {
6006 .get_link = ipw2100_ethtool_get_link,
6007 .get_drvinfo = ipw_ethtool_get_drvinfo,
6008 };
6009
6010 static void ipw2100_hang_check(struct work_struct *work)
6011 {
6012 struct ipw2100_priv *priv =
6013 container_of(work, struct ipw2100_priv, hang_check.work);
6014 unsigned long flags;
6015 u32 rtc = 0xa5a5a5a5;
6016 u32 len = sizeof(rtc);
6017 int restart = 0;
6018
6019 spin_lock_irqsave(&priv->low_lock, flags);
6020
6021 if (priv->fatal_error != 0) {
6022 /* If fatal_error is set then we need to restart */
6023 IPW_DEBUG_INFO("%s: Hardware fatal error detected.\n",
6024 priv->net_dev->name);
6025
6026 restart = 1;
6027 } else if (ipw2100_get_ordinal(priv, IPW_ORD_RTC_TIME, &rtc, &len) ||
6028 (rtc == priv->last_rtc)) {
6029 /* Check if firmware is hung */
6030 IPW_DEBUG_INFO("%s: Firmware RTC stalled.\n",
6031 priv->net_dev->name);
6032
6033 restart = 1;
6034 }
6035
6036 if (restart) {
6037 /* Kill timer */
6038 priv->stop_hang_check = 1;
6039 priv->hangs++;
6040
6041 /* Restart the NIC */
6042 schedule_reset(priv);
6043 }
6044
6045 priv->last_rtc = rtc;
6046
6047 if (!priv->stop_hang_check)
6048 schedule_delayed_work(&priv->hang_check, HZ / 2);
6049
6050 spin_unlock_irqrestore(&priv->low_lock, flags);
6051 }
6052
6053 static void ipw2100_rf_kill(struct work_struct *work)
6054 {
6055 struct ipw2100_priv *priv =
6056 container_of(work, struct ipw2100_priv, rf_kill.work);
6057 unsigned long flags;
6058
6059 spin_lock_irqsave(&priv->low_lock, flags);
6060
6061 if (rf_kill_active(priv)) {
6062 IPW_DEBUG_RF_KILL("RF Kill active, rescheduling GPIO check\n");
6063 if (!priv->stop_rf_kill)
6064 schedule_delayed_work(&priv->rf_kill,
6065 round_jiffies_relative(HZ));
6066 goto exit_unlock;
6067 }
6068
6069 /* RF Kill is now disabled, so bring the device back up */
6070
6071 if (!(priv->status & STATUS_RF_KILL_MASK)) {
6072 IPW_DEBUG_RF_KILL("HW RF Kill no longer active, restarting "
6073 "device\n");
6074 schedule_reset(priv);
6075 } else
6076 IPW_DEBUG_RF_KILL("HW RF Kill deactivated. SW RF Kill still "
6077 "enabled\n");
6078
6079 exit_unlock:
6080 spin_unlock_irqrestore(&priv->low_lock, flags);
6081 }
6082
6083 static void ipw2100_irq_tasklet(struct ipw2100_priv *priv);
6084
6085 static const struct net_device_ops ipw2100_netdev_ops = {
6086 .ndo_open = ipw2100_open,
6087 .ndo_stop = ipw2100_close,
6088 .ndo_start_xmit = libipw_xmit,
6089 .ndo_change_mtu = libipw_change_mtu,
6090 .ndo_init = ipw2100_net_init,
6091 .ndo_tx_timeout = ipw2100_tx_timeout,
6092 .ndo_set_mac_address = ipw2100_set_address,
6093 .ndo_validate_addr = eth_validate_addr,
6094 };
6095
6096 /* Look into using netdev destructor to shutdown libipw? */
6097
6098 static struct net_device *ipw2100_alloc_device(struct pci_dev *pci_dev,
6099 void __iomem * ioaddr)
6100 {
6101 struct ipw2100_priv *priv;
6102 struct net_device *dev;
6103
6104 dev = alloc_libipw(sizeof(struct ipw2100_priv), 0);
6105 if (!dev)
6106 return NULL;
6107 priv = libipw_priv(dev);
6108 priv->ieee = netdev_priv(dev);
6109 priv->pci_dev = pci_dev;
6110 priv->net_dev = dev;
6111 priv->ioaddr = ioaddr;
6112
6113 priv->ieee->hard_start_xmit = ipw2100_tx;
6114 priv->ieee->set_security = shim__set_security;
6115
6116 priv->ieee->perfect_rssi = -20;
6117 priv->ieee->worst_rssi = -85;
6118
6119 dev->netdev_ops = &ipw2100_netdev_ops;
6120 dev->ethtool_ops = &ipw2100_ethtool_ops;
6121 dev->wireless_handlers = &ipw2100_wx_handler_def;
6122 priv->wireless_data.libipw = priv->ieee;
6123 dev->wireless_data = &priv->wireless_data;
6124 dev->watchdog_timeo = 3 * HZ;
6125 dev->irq = 0;
6126
6127 /* NOTE: We don't use the wireless_handlers hook
6128 * in dev as the system will start throwing WX requests
6129 * to us before we're actually initialized and it just
6130 * ends up causing problems. So, we just handle
6131 * the WX extensions through the ipw2100_ioctl interface */
6132
6133 /* memset() puts everything to 0, so we only have explicitly set
6134 * those values that need to be something else */
6135
6136 /* If power management is turned on, default to AUTO mode */
6137 priv->power_mode = IPW_POWER_AUTO;
6138
6139 #ifdef CONFIG_IPW2100_MONITOR
6140 priv->config |= CFG_CRC_CHECK;
6141 #endif
6142 priv->ieee->wpa_enabled = 0;
6143 priv->ieee->drop_unencrypted = 0;
6144 priv->ieee->privacy_invoked = 0;
6145 priv->ieee->ieee802_1x = 1;
6146
6147 /* Set module parameters */
6148 switch (network_mode) {
6149 case 1:
6150 priv->ieee->iw_mode = IW_MODE_ADHOC;
6151 break;
6152 #ifdef CONFIG_IPW2100_MONITOR
6153 case 2:
6154 priv->ieee->iw_mode = IW_MODE_MONITOR;
6155 break;
6156 #endif
6157 default:
6158 case 0:
6159 priv->ieee->iw_mode = IW_MODE_INFRA;
6160 break;
6161 }
6162
6163 if (disable == 1)
6164 priv->status |= STATUS_RF_KILL_SW;
6165
6166 if (channel != 0 &&
6167 ((channel >= REG_MIN_CHANNEL) && (channel <= REG_MAX_CHANNEL))) {
6168 priv->config |= CFG_STATIC_CHANNEL;
6169 priv->channel = channel;
6170 }
6171
6172 if (associate)
6173 priv->config |= CFG_ASSOCIATE;
6174
6175 priv->beacon_interval = DEFAULT_BEACON_INTERVAL;
6176 priv->short_retry_limit = DEFAULT_SHORT_RETRY_LIMIT;
6177 priv->long_retry_limit = DEFAULT_LONG_RETRY_LIMIT;
6178 priv->rts_threshold = DEFAULT_RTS_THRESHOLD | RTS_DISABLED;
6179 priv->frag_threshold = DEFAULT_FTS | FRAG_DISABLED;
6180 priv->tx_power = IPW_TX_POWER_DEFAULT;
6181 priv->tx_rates = DEFAULT_TX_RATES;
6182
6183 strcpy(priv->nick, "ipw2100");
6184
6185 spin_lock_init(&priv->low_lock);
6186 mutex_init(&priv->action_mutex);
6187 mutex_init(&priv->adapter_mutex);
6188
6189 init_waitqueue_head(&priv->wait_command_queue);
6190
6191 netif_carrier_off(dev);
6192
6193 INIT_LIST_HEAD(&priv->msg_free_list);
6194 INIT_LIST_HEAD(&priv->msg_pend_list);
6195 INIT_STAT(&priv->msg_free_stat);
6196 INIT_STAT(&priv->msg_pend_stat);
6197
6198 INIT_LIST_HEAD(&priv->tx_free_list);
6199 INIT_LIST_HEAD(&priv->tx_pend_list);
6200 INIT_STAT(&priv->tx_free_stat);
6201 INIT_STAT(&priv->tx_pend_stat);
6202
6203 INIT_LIST_HEAD(&priv->fw_pend_list);
6204 INIT_STAT(&priv->fw_pend_stat);
6205
6206 INIT_DELAYED_WORK(&priv->reset_work, ipw2100_reset_adapter);
6207 INIT_DELAYED_WORK(&priv->security_work, ipw2100_security_work);
6208 INIT_DELAYED_WORK(&priv->wx_event_work, ipw2100_wx_event_work);
6209 INIT_DELAYED_WORK(&priv->hang_check, ipw2100_hang_check);
6210 INIT_DELAYED_WORK(&priv->rf_kill, ipw2100_rf_kill);
6211 INIT_WORK(&priv->scan_event_now, ipw2100_scan_event_now);
6212 INIT_DELAYED_WORK(&priv->scan_event_later, ipw2100_scan_event_later);
6213
6214 tasklet_init(&priv->irq_tasklet, (void (*)(unsigned long))
6215 ipw2100_irq_tasklet, (unsigned long)priv);
6216
6217 /* NOTE: We do not start the deferred work for status checks yet */
6218 priv->stop_rf_kill = 1;
6219 priv->stop_hang_check = 1;
6220
6221 return dev;
6222 }
6223
6224 static int ipw2100_pci_init_one(struct pci_dev *pci_dev,
6225 const struct pci_device_id *ent)
6226 {
6227 void __iomem *ioaddr;
6228 struct net_device *dev = NULL;
6229 struct ipw2100_priv *priv = NULL;
6230 int err = 0;
6231 int registered = 0;
6232 u32 val;
6233
6234 IPW_DEBUG_INFO("enter\n");
6235
6236 if (!(pci_resource_flags(pci_dev, 0) & IORESOURCE_MEM)) {
6237 IPW_DEBUG_INFO("weird - resource type is not memory\n");
6238 err = -ENODEV;
6239 goto out;
6240 }
6241
6242 ioaddr = pci_iomap(pci_dev, 0, 0);
6243 if (!ioaddr) {
6244 printk(KERN_WARNING DRV_NAME
6245 "Error calling ioremap_nocache.\n");
6246 err = -EIO;
6247 goto fail;
6248 }
6249
6250 /* allocate and initialize our net_device */
6251 dev = ipw2100_alloc_device(pci_dev, ioaddr);
6252 if (!dev) {
6253 printk(KERN_WARNING DRV_NAME
6254 "Error calling ipw2100_alloc_device.\n");
6255 err = -ENOMEM;
6256 goto fail;
6257 }
6258
6259 /* set up PCI mappings for device */
6260 err = pci_enable_device(pci_dev);
6261 if (err) {
6262 printk(KERN_WARNING DRV_NAME
6263 "Error calling pci_enable_device.\n");
6264 return err;
6265 }
6266
6267 priv = libipw_priv(dev);
6268
6269 pci_set_master(pci_dev);
6270 pci_set_drvdata(pci_dev, priv);
6271
6272 err = pci_set_dma_mask(pci_dev, DMA_BIT_MASK(32));
6273 if (err) {
6274 printk(KERN_WARNING DRV_NAME
6275 "Error calling pci_set_dma_mask.\n");
6276 pci_disable_device(pci_dev);
6277 return err;
6278 }
6279
6280 err = pci_request_regions(pci_dev, DRV_NAME);
6281 if (err) {
6282 printk(KERN_WARNING DRV_NAME
6283 "Error calling pci_request_regions.\n");
6284 pci_disable_device(pci_dev);
6285 return err;
6286 }
6287
6288 /* We disable the RETRY_TIMEOUT register (0x41) to keep
6289 * PCI Tx retries from interfering with C3 CPU state */
6290 pci_read_config_dword(pci_dev, 0x40, &val);
6291 if ((val & 0x0000ff00) != 0)
6292 pci_write_config_dword(pci_dev, 0x40, val & 0xffff00ff);
6293
6294 pci_set_power_state(pci_dev, PCI_D0);
6295
6296 if (!ipw2100_hw_is_adapter_in_system(dev)) {
6297 printk(KERN_WARNING DRV_NAME
6298 "Device not found via register read.\n");
6299 err = -ENODEV;
6300 goto fail;
6301 }
6302
6303 SET_NETDEV_DEV(dev, &pci_dev->dev);
6304
6305 /* Force interrupts to be shut off on the device */
6306 priv->status |= STATUS_INT_ENABLED;
6307 ipw2100_disable_interrupts(priv);
6308
6309 /* Allocate and initialize the Tx/Rx queues and lists */
6310 if (ipw2100_queues_allocate(priv)) {
6311 printk(KERN_WARNING DRV_NAME
6312 "Error calling ipw2100_queues_allocate.\n");
6313 err = -ENOMEM;
6314 goto fail;
6315 }
6316 ipw2100_queues_initialize(priv);
6317
6318 err = request_irq(pci_dev->irq,
6319 ipw2100_interrupt, IRQF_SHARED, dev->name, priv);
6320 if (err) {
6321 printk(KERN_WARNING DRV_NAME
6322 "Error calling request_irq: %d.\n", pci_dev->irq);
6323 goto fail;
6324 }
6325 dev->irq = pci_dev->irq;
6326
6327 IPW_DEBUG_INFO("Attempting to register device...\n");
6328
6329 printk(KERN_INFO DRV_NAME
6330 ": Detected Intel PRO/Wireless 2100 Network Connection\n");
6331
6332 err = ipw2100_wdev_init(dev);
6333 if (err)
6334 goto fail;
6335 registered = 1;
6336
6337 /* Bring up the interface. Pre 0.46, after we registered the
6338 * network device we would call ipw2100_up. This introduced a race
6339 * condition with newer hotplug configurations (network was coming
6340 * up and making calls before the device was initialized).
6341 *
6342 * If we called ipw2100_up before we registered the device, then the
6343 * device name wasn't registered. So, we instead use the net_dev->init
6344 * member to call a function that then just turns and calls ipw2100_up.
6345 * net_dev->init is called after name allocation but before the
6346 * notifier chain is called */
6347 err = register_netdev(dev);
6348 if (err) {
6349 printk(KERN_WARNING DRV_NAME
6350 "Error calling register_netdev.\n");
6351 goto fail;
6352 }
6353 registered = 2;
6354
6355 mutex_lock(&priv->action_mutex);
6356
6357 IPW_DEBUG_INFO("%s: Bound to %s\n", dev->name, pci_name(pci_dev));
6358
6359 /* perform this after register_netdev so that dev->name is set */
6360 err = sysfs_create_group(&pci_dev->dev.kobj, &ipw2100_attribute_group);
6361 if (err)
6362 goto fail_unlock;
6363
6364 /* If the RF Kill switch is disabled, go ahead and complete the
6365 * startup sequence */
6366 if (!(priv->status & STATUS_RF_KILL_MASK)) {
6367 /* Enable the adapter - sends HOST_COMPLETE */
6368 if (ipw2100_enable_adapter(priv)) {
6369 printk(KERN_WARNING DRV_NAME
6370 ": %s: failed in call to enable adapter.\n",
6371 priv->net_dev->name);
6372 ipw2100_hw_stop_adapter(priv);
6373 err = -EIO;
6374 goto fail_unlock;
6375 }
6376
6377 /* Start a scan . . . */
6378 ipw2100_set_scan_options(priv);
6379 ipw2100_start_scan(priv);
6380 }
6381
6382 IPW_DEBUG_INFO("exit\n");
6383
6384 priv->status |= STATUS_INITIALIZED;
6385
6386 mutex_unlock(&priv->action_mutex);
6387 out:
6388 return err;
6389
6390 fail_unlock:
6391 mutex_unlock(&priv->action_mutex);
6392 fail:
6393 if (dev) {
6394 if (registered >= 2)
6395 unregister_netdev(dev);
6396
6397 if (registered) {
6398 wiphy_unregister(priv->ieee->wdev.wiphy);
6399 kfree(priv->ieee->bg_band.channels);
6400 }
6401
6402 ipw2100_hw_stop_adapter(priv);
6403
6404 ipw2100_disable_interrupts(priv);
6405
6406 if (dev->irq)
6407 free_irq(dev->irq, priv);
6408
6409 ipw2100_kill_works(priv);
6410
6411 /* These are safe to call even if they weren't allocated */
6412 ipw2100_queues_free(priv);
6413 sysfs_remove_group(&pci_dev->dev.kobj,
6414 &ipw2100_attribute_group);
6415
6416 free_libipw(dev, 0);
6417 pci_set_drvdata(pci_dev, NULL);
6418 }
6419
6420 pci_iounmap(pci_dev, ioaddr);
6421
6422 pci_release_regions(pci_dev);
6423 pci_disable_device(pci_dev);
6424 goto out;
6425 }
6426
6427 static void __devexit ipw2100_pci_remove_one(struct pci_dev *pci_dev)
6428 {
6429 struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6430 struct net_device *dev = priv->net_dev;
6431
6432 mutex_lock(&priv->action_mutex);
6433
6434 priv->status &= ~STATUS_INITIALIZED;
6435
6436 sysfs_remove_group(&pci_dev->dev.kobj, &ipw2100_attribute_group);
6437
6438 #ifdef CONFIG_PM
6439 if (ipw2100_firmware.version)
6440 ipw2100_release_firmware(priv, &ipw2100_firmware);
6441 #endif
6442 /* Take down the hardware */
6443 ipw2100_down(priv);
6444
6445 /* Release the mutex so that the network subsystem can
6446 * complete any needed calls into the driver... */
6447 mutex_unlock(&priv->action_mutex);
6448
6449 /* Unregister the device first - this results in close()
6450 * being called if the device is open. If we free storage
6451 * first, then close() will crash.
6452 * FIXME: remove the comment above. */
6453 unregister_netdev(dev);
6454
6455 ipw2100_kill_works(priv);
6456
6457 ipw2100_queues_free(priv);
6458
6459 /* Free potential debugging firmware snapshot */
6460 ipw2100_snapshot_free(priv);
6461
6462 free_irq(dev->irq, priv);
6463
6464 pci_iounmap(pci_dev, priv->ioaddr);
6465
6466 /* wiphy_unregister needs to be here, before free_libipw */
6467 wiphy_unregister(priv->ieee->wdev.wiphy);
6468 kfree(priv->ieee->bg_band.channels);
6469 free_libipw(dev, 0);
6470
6471 pci_release_regions(pci_dev);
6472 pci_disable_device(pci_dev);
6473
6474 IPW_DEBUG_INFO("exit\n");
6475 }
6476
6477 #ifdef CONFIG_PM
6478 static int ipw2100_suspend(struct pci_dev *pci_dev, pm_message_t state)
6479 {
6480 struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6481 struct net_device *dev = priv->net_dev;
6482
6483 IPW_DEBUG_INFO("%s: Going into suspend...\n", dev->name);
6484
6485 mutex_lock(&priv->action_mutex);
6486 if (priv->status & STATUS_INITIALIZED) {
6487 /* Take down the device; powers it off, etc. */
6488 ipw2100_down(priv);
6489 }
6490
6491 /* Remove the PRESENT state of the device */
6492 netif_device_detach(dev);
6493
6494 pci_save_state(pci_dev);
6495 pci_disable_device(pci_dev);
6496 pci_set_power_state(pci_dev, PCI_D3hot);
6497
6498 priv->suspend_at = get_seconds();
6499
6500 mutex_unlock(&priv->action_mutex);
6501
6502 return 0;
6503 }
6504
6505 static int ipw2100_resume(struct pci_dev *pci_dev)
6506 {
6507 struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6508 struct net_device *dev = priv->net_dev;
6509 int err;
6510 u32 val;
6511
6512 if (IPW2100_PM_DISABLED)
6513 return 0;
6514
6515 mutex_lock(&priv->action_mutex);
6516
6517 IPW_DEBUG_INFO("%s: Coming out of suspend...\n", dev->name);
6518
6519 pci_set_power_state(pci_dev, PCI_D0);
6520 err = pci_enable_device(pci_dev);
6521 if (err) {
6522 printk(KERN_ERR "%s: pci_enable_device failed on resume\n",
6523 dev->name);
6524 mutex_unlock(&priv->action_mutex);
6525 return err;
6526 }
6527 pci_restore_state(pci_dev);
6528
6529 /*
6530 * Suspend/Resume resets the PCI configuration space, so we have to
6531 * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
6532 * from interfering with C3 CPU state. pci_restore_state won't help
6533 * here since it only restores the first 64 bytes pci config header.
6534 */
6535 pci_read_config_dword(pci_dev, 0x40, &val);
6536 if ((val & 0x0000ff00) != 0)
6537 pci_write_config_dword(pci_dev, 0x40, val & 0xffff00ff);
6538
6539 /* Set the device back into the PRESENT state; this will also wake
6540 * the queue of needed */
6541 netif_device_attach(dev);
6542
6543 priv->suspend_time = get_seconds() - priv->suspend_at;
6544
6545 /* Bring the device back up */
6546 if (!(priv->status & STATUS_RF_KILL_SW))
6547 ipw2100_up(priv, 0);
6548
6549 mutex_unlock(&priv->action_mutex);
6550
6551 return 0;
6552 }
6553 #endif
6554
6555 static void ipw2100_shutdown(struct pci_dev *pci_dev)
6556 {
6557 struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6558
6559 /* Take down the device; powers it off, etc. */
6560 ipw2100_down(priv);
6561
6562 pci_disable_device(pci_dev);
6563 }
6564
6565 #define IPW2100_DEV_ID(x) { PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, x }
6566
6567 static DEFINE_PCI_DEVICE_TABLE(ipw2100_pci_id_table) = {
6568 IPW2100_DEV_ID(0x2520), /* IN 2100A mPCI 3A */
6569 IPW2100_DEV_ID(0x2521), /* IN 2100A mPCI 3B */
6570 IPW2100_DEV_ID(0x2524), /* IN 2100A mPCI 3B */
6571 IPW2100_DEV_ID(0x2525), /* IN 2100A mPCI 3B */
6572 IPW2100_DEV_ID(0x2526), /* IN 2100A mPCI Gen A3 */
6573 IPW2100_DEV_ID(0x2522), /* IN 2100 mPCI 3B */
6574 IPW2100_DEV_ID(0x2523), /* IN 2100 mPCI 3A */
6575 IPW2100_DEV_ID(0x2527), /* IN 2100 mPCI 3B */
6576 IPW2100_DEV_ID(0x2528), /* IN 2100 mPCI 3B */
6577 IPW2100_DEV_ID(0x2529), /* IN 2100 mPCI 3B */
6578 IPW2100_DEV_ID(0x252B), /* IN 2100 mPCI 3A */
6579 IPW2100_DEV_ID(0x252C), /* IN 2100 mPCI 3A */
6580 IPW2100_DEV_ID(0x252D), /* IN 2100 mPCI 3A */
6581
6582 IPW2100_DEV_ID(0x2550), /* IB 2100A mPCI 3B */
6583 IPW2100_DEV_ID(0x2551), /* IB 2100 mPCI 3B */
6584 IPW2100_DEV_ID(0x2553), /* IB 2100 mPCI 3B */
6585 IPW2100_DEV_ID(0x2554), /* IB 2100 mPCI 3B */
6586 IPW2100_DEV_ID(0x2555), /* IB 2100 mPCI 3B */
6587
6588 IPW2100_DEV_ID(0x2560), /* DE 2100A mPCI 3A */
6589 IPW2100_DEV_ID(0x2562), /* DE 2100A mPCI 3A */
6590 IPW2100_DEV_ID(0x2563), /* DE 2100A mPCI 3A */
6591 IPW2100_DEV_ID(0x2561), /* DE 2100 mPCI 3A */
6592 IPW2100_DEV_ID(0x2565), /* DE 2100 mPCI 3A */
6593 IPW2100_DEV_ID(0x2566), /* DE 2100 mPCI 3A */
6594 IPW2100_DEV_ID(0x2567), /* DE 2100 mPCI 3A */
6595
6596 IPW2100_DEV_ID(0x2570), /* GA 2100 mPCI 3B */
6597
6598 IPW2100_DEV_ID(0x2580), /* TO 2100A mPCI 3B */
6599 IPW2100_DEV_ID(0x2582), /* TO 2100A mPCI 3B */
6600 IPW2100_DEV_ID(0x2583), /* TO 2100A mPCI 3B */
6601 IPW2100_DEV_ID(0x2581), /* TO 2100 mPCI 3B */
6602 IPW2100_DEV_ID(0x2585), /* TO 2100 mPCI 3B */
6603 IPW2100_DEV_ID(0x2586), /* TO 2100 mPCI 3B */
6604 IPW2100_DEV_ID(0x2587), /* TO 2100 mPCI 3B */
6605
6606 IPW2100_DEV_ID(0x2590), /* SO 2100A mPCI 3B */
6607 IPW2100_DEV_ID(0x2592), /* SO 2100A mPCI 3B */
6608 IPW2100_DEV_ID(0x2591), /* SO 2100 mPCI 3B */
6609 IPW2100_DEV_ID(0x2593), /* SO 2100 mPCI 3B */
6610 IPW2100_DEV_ID(0x2596), /* SO 2100 mPCI 3B */
6611 IPW2100_DEV_ID(0x2598), /* SO 2100 mPCI 3B */
6612
6613 IPW2100_DEV_ID(0x25A0), /* HP 2100 mPCI 3B */
6614 {0,},
6615 };
6616
6617 MODULE_DEVICE_TABLE(pci, ipw2100_pci_id_table);
6618
6619 static struct pci_driver ipw2100_pci_driver = {
6620 .name = DRV_NAME,
6621 .id_table = ipw2100_pci_id_table,
6622 .probe = ipw2100_pci_init_one,
6623 .remove = __devexit_p(ipw2100_pci_remove_one),
6624 #ifdef CONFIG_PM
6625 .suspend = ipw2100_suspend,
6626 .resume = ipw2100_resume,
6627 #endif
6628 .shutdown = ipw2100_shutdown,
6629 };
6630
6631 /**
6632 * Initialize the ipw2100 driver/module
6633 *
6634 * @returns 0 if ok, < 0 errno node con error.
6635 *
6636 * Note: we cannot init the /proc stuff until the PCI driver is there,
6637 * or we risk an unlikely race condition on someone accessing
6638 * uninitialized data in the PCI dev struct through /proc.
6639 */
6640 static int __init ipw2100_init(void)
6641 {
6642 int ret;
6643
6644 printk(KERN_INFO DRV_NAME ": %s, %s\n", DRV_DESCRIPTION, DRV_VERSION);
6645 printk(KERN_INFO DRV_NAME ": %s\n", DRV_COPYRIGHT);
6646
6647 pm_qos_add_request(&ipw2100_pm_qos_req, PM_QOS_CPU_DMA_LATENCY,
6648 PM_QOS_DEFAULT_VALUE);
6649
6650 ret = pci_register_driver(&ipw2100_pci_driver);
6651 if (ret)
6652 goto out;
6653
6654 #ifdef CONFIG_IPW2100_DEBUG
6655 ipw2100_debug_level = debug;
6656 ret = driver_create_file(&ipw2100_pci_driver.driver,
6657 &driver_attr_debug_level);
6658 #endif
6659
6660 out:
6661 return ret;
6662 }
6663
6664 /**
6665 * Cleanup ipw2100 driver registration
6666 */
6667 static void __exit ipw2100_exit(void)
6668 {
6669 /* FIXME: IPG: check that we have no instances of the devices open */
6670 #ifdef CONFIG_IPW2100_DEBUG
6671 driver_remove_file(&ipw2100_pci_driver.driver,
6672 &driver_attr_debug_level);
6673 #endif
6674 pci_unregister_driver(&ipw2100_pci_driver);
6675 pm_qos_remove_request(&ipw2100_pm_qos_req);
6676 }
6677
6678 module_init(ipw2100_init);
6679 module_exit(ipw2100_exit);
6680
6681 static int ipw2100_wx_get_name(struct net_device *dev,
6682 struct iw_request_info *info,
6683 union iwreq_data *wrqu, char *extra)
6684 {
6685 /*
6686 * This can be called at any time. No action lock required
6687 */
6688
6689 struct ipw2100_priv *priv = libipw_priv(dev);
6690 if (!(priv->status & STATUS_ASSOCIATED))
6691 strcpy(wrqu->name, "unassociated");
6692 else
6693 snprintf(wrqu->name, IFNAMSIZ, "IEEE 802.11b");
6694
6695 IPW_DEBUG_WX("Name: %s\n", wrqu->name);
6696 return 0;
6697 }
6698
6699 static int ipw2100_wx_set_freq(struct net_device *dev,
6700 struct iw_request_info *info,
6701 union iwreq_data *wrqu, char *extra)
6702 {
6703 struct ipw2100_priv *priv = libipw_priv(dev);
6704 struct iw_freq *fwrq = &wrqu->freq;
6705 int err = 0;
6706
6707 if (priv->ieee->iw_mode == IW_MODE_INFRA)
6708 return -EOPNOTSUPP;
6709
6710 mutex_lock(&priv->action_mutex);
6711 if (!(priv->status & STATUS_INITIALIZED)) {
6712 err = -EIO;
6713 goto done;
6714 }
6715
6716 /* if setting by freq convert to channel */
6717 if (fwrq->e == 1) {
6718 if ((fwrq->m >= (int)2.412e8 && fwrq->m <= (int)2.487e8)) {
6719 int f = fwrq->m / 100000;
6720 int c = 0;
6721
6722 while ((c < REG_MAX_CHANNEL) &&
6723 (f != ipw2100_frequencies[c]))
6724 c++;
6725
6726 /* hack to fall through */
6727 fwrq->e = 0;
6728 fwrq->m = c + 1;
6729 }
6730 }
6731
6732 if (fwrq->e > 0 || fwrq->m > 1000) {
6733 err = -EOPNOTSUPP;
6734 goto done;
6735 } else { /* Set the channel */
6736 IPW_DEBUG_WX("SET Freq/Channel -> %d\n", fwrq->m);
6737 err = ipw2100_set_channel(priv, fwrq->m, 0);
6738 }
6739
6740 done:
6741 mutex_unlock(&priv->action_mutex);
6742 return err;
6743 }
6744
6745 static int ipw2100_wx_get_freq(struct net_device *dev,
6746 struct iw_request_info *info,
6747 union iwreq_data *wrqu, char *extra)
6748 {
6749 /*
6750 * This can be called at any time. No action lock required
6751 */
6752
6753 struct ipw2100_priv *priv = libipw_priv(dev);
6754
6755 wrqu->freq.e = 0;
6756
6757 /* If we are associated, trying to associate, or have a statically
6758 * configured CHANNEL then return that; otherwise return ANY */
6759 if (priv->config & CFG_STATIC_CHANNEL ||
6760 priv->status & STATUS_ASSOCIATED)
6761 wrqu->freq.m = priv->channel;
6762 else
6763 wrqu->freq.m = 0;
6764
6765 IPW_DEBUG_WX("GET Freq/Channel -> %d\n", priv->channel);
6766 return 0;
6767
6768 }
6769
6770 static int ipw2100_wx_set_mode(struct net_device *dev,
6771 struct iw_request_info *info,
6772 union iwreq_data *wrqu, char *extra)
6773 {
6774 struct ipw2100_priv *priv = libipw_priv(dev);
6775 int err = 0;
6776
6777 IPW_DEBUG_WX("SET Mode -> %d\n", wrqu->mode);
6778
6779 if (wrqu->mode == priv->ieee->iw_mode)
6780 return 0;
6781
6782 mutex_lock(&priv->action_mutex);
6783 if (!(priv->status & STATUS_INITIALIZED)) {
6784 err = -EIO;
6785 goto done;
6786 }
6787
6788 switch (wrqu->mode) {
6789 #ifdef CONFIG_IPW2100_MONITOR
6790 case IW_MODE_MONITOR:
6791 err = ipw2100_switch_mode(priv, IW_MODE_MONITOR);
6792 break;
6793 #endif /* CONFIG_IPW2100_MONITOR */
6794 case IW_MODE_ADHOC:
6795 err = ipw2100_switch_mode(priv, IW_MODE_ADHOC);
6796 break;
6797 case IW_MODE_INFRA:
6798 case IW_MODE_AUTO:
6799 default:
6800 err = ipw2100_switch_mode(priv, IW_MODE_INFRA);
6801 break;
6802 }
6803
6804 done:
6805 mutex_unlock(&priv->action_mutex);
6806 return err;
6807 }
6808
6809 static int ipw2100_wx_get_mode(struct net_device *dev,
6810 struct iw_request_info *info,
6811 union iwreq_data *wrqu, char *extra)
6812 {
6813 /*
6814 * This can be called at any time. No action lock required
6815 */
6816
6817 struct ipw2100_priv *priv = libipw_priv(dev);
6818
6819 wrqu->mode = priv->ieee->iw_mode;
6820 IPW_DEBUG_WX("GET Mode -> %d\n", wrqu->mode);
6821
6822 return 0;
6823 }
6824
6825 #define POWER_MODES 5
6826
6827 /* Values are in microsecond */
6828 static const s32 timeout_duration[POWER_MODES] = {
6829 350000,
6830 250000,
6831 75000,
6832 37000,
6833 25000,
6834 };
6835
6836 static const s32 period_duration[POWER_MODES] = {
6837 400000,
6838 700000,
6839 1000000,
6840 1000000,
6841 1000000
6842 };
6843
6844 static int ipw2100_wx_get_range(struct net_device *dev,
6845 struct iw_request_info *info,
6846 union iwreq_data *wrqu, char *extra)
6847 {
6848 /*
6849 * This can be called at any time. No action lock required
6850 */
6851
6852 struct ipw2100_priv *priv = libipw_priv(dev);
6853 struct iw_range *range = (struct iw_range *)extra;
6854 u16 val;
6855 int i, level;
6856
6857 wrqu->data.length = sizeof(*range);
6858 memset(range, 0, sizeof(*range));
6859
6860 /* Let's try to keep this struct in the same order as in
6861 * linux/include/wireless.h
6862 */
6863
6864 /* TODO: See what values we can set, and remove the ones we can't
6865 * set, or fill them with some default data.
6866 */
6867
6868 /* ~5 Mb/s real (802.11b) */
6869 range->throughput = 5 * 1000 * 1000;
6870
6871 // range->sensitivity; /* signal level threshold range */
6872
6873 range->max_qual.qual = 100;
6874 /* TODO: Find real max RSSI and stick here */
6875 range->max_qual.level = 0;
6876 range->max_qual.noise = 0;
6877 range->max_qual.updated = 7; /* Updated all three */
6878
6879 range->avg_qual.qual = 70; /* > 8% missed beacons is 'bad' */
6880 /* TODO: Find real 'good' to 'bad' threshold value for RSSI */
6881 range->avg_qual.level = 20 + IPW2100_RSSI_TO_DBM;
6882 range->avg_qual.noise = 0;
6883 range->avg_qual.updated = 7; /* Updated all three */
6884
6885 range->num_bitrates = RATE_COUNT;
6886
6887 for (i = 0; i < RATE_COUNT && i < IW_MAX_BITRATES; i++) {
6888 range->bitrate[i] = ipw2100_bg_rates[i].bitrate * 100 * 1000;
6889 }
6890
6891 range->min_rts = MIN_RTS_THRESHOLD;
6892 range->max_rts = MAX_RTS_THRESHOLD;
6893 range->min_frag = MIN_FRAG_THRESHOLD;
6894 range->max_frag = MAX_FRAG_THRESHOLD;
6895
6896 range->min_pmp = period_duration[0]; /* Minimal PM period */
6897 range->max_pmp = period_duration[POWER_MODES - 1]; /* Maximal PM period */
6898 range->min_pmt = timeout_duration[POWER_MODES - 1]; /* Minimal PM timeout */
6899 range->max_pmt = timeout_duration[0]; /* Maximal PM timeout */
6900
6901 /* How to decode max/min PM period */
6902 range->pmp_flags = IW_POWER_PERIOD;
6903 /* How to decode max/min PM period */
6904 range->pmt_flags = IW_POWER_TIMEOUT;
6905 /* What PM options are supported */
6906 range->pm_capa = IW_POWER_TIMEOUT | IW_POWER_PERIOD;
6907
6908 range->encoding_size[0] = 5;
6909 range->encoding_size[1] = 13; /* Different token sizes */
6910 range->num_encoding_sizes = 2; /* Number of entry in the list */
6911 range->max_encoding_tokens = WEP_KEYS; /* Max number of tokens */
6912 // range->encoding_login_index; /* token index for login token */
6913
6914 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
6915 range->txpower_capa = IW_TXPOW_DBM;
6916 range->num_txpower = IW_MAX_TXPOWER;
6917 for (i = 0, level = (IPW_TX_POWER_MAX_DBM * 16);
6918 i < IW_MAX_TXPOWER;
6919 i++, level -=
6920 ((IPW_TX_POWER_MAX_DBM -
6921 IPW_TX_POWER_MIN_DBM) * 16) / (IW_MAX_TXPOWER - 1))
6922 range->txpower[i] = level / 16;
6923 } else {
6924 range->txpower_capa = 0;
6925 range->num_txpower = 0;
6926 }
6927
6928 /* Set the Wireless Extension versions */
6929 range->we_version_compiled = WIRELESS_EXT;
6930 range->we_version_source = 18;
6931
6932 // range->retry_capa; /* What retry options are supported */
6933 // range->retry_flags; /* How to decode max/min retry limit */
6934 // range->r_time_flags; /* How to decode max/min retry life */
6935 // range->min_retry; /* Minimal number of retries */
6936 // range->max_retry; /* Maximal number of retries */
6937 // range->min_r_time; /* Minimal retry lifetime */
6938 // range->max_r_time; /* Maximal retry lifetime */
6939
6940 range->num_channels = FREQ_COUNT;
6941
6942 val = 0;
6943 for (i = 0; i < FREQ_COUNT; i++) {
6944 // TODO: Include only legal frequencies for some countries
6945 // if (local->channel_mask & (1 << i)) {
6946 range->freq[val].i = i + 1;
6947 range->freq[val].m = ipw2100_frequencies[i] * 100000;
6948 range->freq[val].e = 1;
6949 val++;
6950 // }
6951 if (val == IW_MAX_FREQUENCIES)
6952 break;
6953 }
6954 range->num_frequency = val;
6955
6956 /* Event capability (kernel + driver) */
6957 range->event_capa[0] = (IW_EVENT_CAPA_K_0 |
6958 IW_EVENT_CAPA_MASK(SIOCGIWAP));
6959 range->event_capa[1] = IW_EVENT_CAPA_K_1;
6960
6961 range->enc_capa = IW_ENC_CAPA_WPA | IW_ENC_CAPA_WPA2 |
6962 IW_ENC_CAPA_CIPHER_TKIP | IW_ENC_CAPA_CIPHER_CCMP;
6963
6964 IPW_DEBUG_WX("GET Range\n");
6965
6966 return 0;
6967 }
6968
6969 static int ipw2100_wx_set_wap(struct net_device *dev,
6970 struct iw_request_info *info,
6971 union iwreq_data *wrqu, char *extra)
6972 {
6973 struct ipw2100_priv *priv = libipw_priv(dev);
6974 int err = 0;
6975
6976 static const unsigned char any[] = {
6977 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
6978 };
6979 static const unsigned char off[] = {
6980 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
6981 };
6982
6983 // sanity checks
6984 if (wrqu->ap_addr.sa_family != ARPHRD_ETHER)
6985 return -EINVAL;
6986
6987 mutex_lock(&priv->action_mutex);
6988 if (!(priv->status & STATUS_INITIALIZED)) {
6989 err = -EIO;
6990 goto done;
6991 }
6992
6993 if (!memcmp(any, wrqu->ap_addr.sa_data, ETH_ALEN) ||
6994 !memcmp(off, wrqu->ap_addr.sa_data, ETH_ALEN)) {
6995 /* we disable mandatory BSSID association */
6996 IPW_DEBUG_WX("exit - disable mandatory BSSID\n");
6997 priv->config &= ~CFG_STATIC_BSSID;
6998 err = ipw2100_set_mandatory_bssid(priv, NULL, 0);
6999 goto done;
7000 }
7001
7002 priv->config |= CFG_STATIC_BSSID;
7003 memcpy(priv->mandatory_bssid_mac, wrqu->ap_addr.sa_data, ETH_ALEN);
7004
7005 err = ipw2100_set_mandatory_bssid(priv, wrqu->ap_addr.sa_data, 0);
7006
7007 IPW_DEBUG_WX("SET BSSID -> %pM\n", wrqu->ap_addr.sa_data);
7008
7009 done:
7010 mutex_unlock(&priv->action_mutex);
7011 return err;
7012 }
7013
7014 static int ipw2100_wx_get_wap(struct net_device *dev,
7015 struct iw_request_info *info,
7016 union iwreq_data *wrqu, char *extra)
7017 {
7018 /*
7019 * This can be called at any time. No action lock required
7020 */
7021
7022 struct ipw2100_priv *priv = libipw_priv(dev);
7023
7024 /* If we are associated, trying to associate, or have a statically
7025 * configured BSSID then return that; otherwise return ANY */
7026 if (priv->config & CFG_STATIC_BSSID || priv->status & STATUS_ASSOCIATED) {
7027 wrqu->ap_addr.sa_family = ARPHRD_ETHER;
7028 memcpy(wrqu->ap_addr.sa_data, priv->bssid, ETH_ALEN);
7029 } else
7030 memset(wrqu->ap_addr.sa_data, 0, ETH_ALEN);
7031
7032 IPW_DEBUG_WX("Getting WAP BSSID: %pM\n", wrqu->ap_addr.sa_data);
7033 return 0;
7034 }
7035
7036 static int ipw2100_wx_set_essid(struct net_device *dev,
7037 struct iw_request_info *info,
7038 union iwreq_data *wrqu, char *extra)
7039 {
7040 struct ipw2100_priv *priv = libipw_priv(dev);
7041 char *essid = ""; /* ANY */
7042 int length = 0;
7043 int err = 0;
7044 DECLARE_SSID_BUF(ssid);
7045
7046 mutex_lock(&priv->action_mutex);
7047 if (!(priv->status & STATUS_INITIALIZED)) {
7048 err = -EIO;
7049 goto done;
7050 }
7051
7052 if (wrqu->essid.flags && wrqu->essid.length) {
7053 length = wrqu->essid.length;
7054 essid = extra;
7055 }
7056
7057 if (length == 0) {
7058 IPW_DEBUG_WX("Setting ESSID to ANY\n");
7059 priv->config &= ~CFG_STATIC_ESSID;
7060 err = ipw2100_set_essid(priv, NULL, 0, 0);
7061 goto done;
7062 }
7063
7064 length = min(length, IW_ESSID_MAX_SIZE);
7065
7066 priv->config |= CFG_STATIC_ESSID;
7067
7068 if (priv->essid_len == length && !memcmp(priv->essid, extra, length)) {
7069 IPW_DEBUG_WX("ESSID set to current ESSID.\n");
7070 err = 0;
7071 goto done;
7072 }
7073
7074 IPW_DEBUG_WX("Setting ESSID: '%s' (%d)\n",
7075 print_ssid(ssid, essid, length), length);
7076
7077 priv->essid_len = length;
7078 memcpy(priv->essid, essid, priv->essid_len);
7079
7080 err = ipw2100_set_essid(priv, essid, length, 0);
7081
7082 done:
7083 mutex_unlock(&priv->action_mutex);
7084 return err;
7085 }
7086
7087 static int ipw2100_wx_get_essid(struct net_device *dev,
7088 struct iw_request_info *info,
7089 union iwreq_data *wrqu, char *extra)
7090 {
7091 /*
7092 * This can be called at any time. No action lock required
7093 */
7094
7095 struct ipw2100_priv *priv = libipw_priv(dev);
7096 DECLARE_SSID_BUF(ssid);
7097
7098 /* If we are associated, trying to associate, or have a statically
7099 * configured ESSID then return that; otherwise return ANY */
7100 if (priv->config & CFG_STATIC_ESSID || priv->status & STATUS_ASSOCIATED) {
7101 IPW_DEBUG_WX("Getting essid: '%s'\n",
7102 print_ssid(ssid, priv->essid, priv->essid_len));
7103 memcpy(extra, priv->essid, priv->essid_len);
7104 wrqu->essid.length = priv->essid_len;
7105 wrqu->essid.flags = 1; /* active */
7106 } else {
7107 IPW_DEBUG_WX("Getting essid: ANY\n");
7108 wrqu->essid.length = 0;
7109 wrqu->essid.flags = 0; /* active */
7110 }
7111
7112 return 0;
7113 }
7114
7115 static int ipw2100_wx_set_nick(struct net_device *dev,
7116 struct iw_request_info *info,
7117 union iwreq_data *wrqu, char *extra)
7118 {
7119 /*
7120 * This can be called at any time. No action lock required
7121 */
7122
7123 struct ipw2100_priv *priv = libipw_priv(dev);
7124
7125 if (wrqu->data.length > IW_ESSID_MAX_SIZE)
7126 return -E2BIG;
7127
7128 wrqu->data.length = min((size_t) wrqu->data.length, sizeof(priv->nick));
7129 memset(priv->nick, 0, sizeof(priv->nick));
7130 memcpy(priv->nick, extra, wrqu->data.length);
7131
7132 IPW_DEBUG_WX("SET Nickname -> %s\n", priv->nick);
7133
7134 return 0;
7135 }
7136
7137 static int ipw2100_wx_get_nick(struct net_device *dev,
7138 struct iw_request_info *info,
7139 union iwreq_data *wrqu, char *extra)
7140 {
7141 /*
7142 * This can be called at any time. No action lock required
7143 */
7144
7145 struct ipw2100_priv *priv = libipw_priv(dev);
7146
7147 wrqu->data.length = strlen(priv->nick);
7148 memcpy(extra, priv->nick, wrqu->data.length);
7149 wrqu->data.flags = 1; /* active */
7150
7151 IPW_DEBUG_WX("GET Nickname -> %s\n", extra);
7152
7153 return 0;
7154 }
7155
7156 static int ipw2100_wx_set_rate(struct net_device *dev,
7157 struct iw_request_info *info,
7158 union iwreq_data *wrqu, char *extra)
7159 {
7160 struct ipw2100_priv *priv = libipw_priv(dev);
7161 u32 target_rate = wrqu->bitrate.value;
7162 u32 rate;
7163 int err = 0;
7164
7165 mutex_lock(&priv->action_mutex);
7166 if (!(priv->status & STATUS_INITIALIZED)) {
7167 err = -EIO;
7168 goto done;
7169 }
7170
7171 rate = 0;
7172
7173 if (target_rate == 1000000 ||
7174 (!wrqu->bitrate.fixed && target_rate > 1000000))
7175 rate |= TX_RATE_1_MBIT;
7176 if (target_rate == 2000000 ||
7177 (!wrqu->bitrate.fixed && target_rate > 2000000))
7178 rate |= TX_RATE_2_MBIT;
7179 if (target_rate == 5500000 ||
7180 (!wrqu->bitrate.fixed && target_rate > 5500000))
7181 rate |= TX_RATE_5_5_MBIT;
7182 if (target_rate == 11000000 ||
7183 (!wrqu->bitrate.fixed && target_rate > 11000000))
7184 rate |= TX_RATE_11_MBIT;
7185 if (rate == 0)
7186 rate = DEFAULT_TX_RATES;
7187
7188 err = ipw2100_set_tx_rates(priv, rate, 0);
7189
7190 IPW_DEBUG_WX("SET Rate -> %04X\n", rate);
7191 done:
7192 mutex_unlock(&priv->action_mutex);
7193 return err;
7194 }
7195
7196 static int ipw2100_wx_get_rate(struct net_device *dev,
7197 struct iw_request_info *info,
7198 union iwreq_data *wrqu, char *extra)
7199 {
7200 struct ipw2100_priv *priv = libipw_priv(dev);
7201 int val;
7202 unsigned int len = sizeof(val);
7203 int err = 0;
7204
7205 if (!(priv->status & STATUS_ENABLED) ||
7206 priv->status & STATUS_RF_KILL_MASK ||
7207 !(priv->status & STATUS_ASSOCIATED)) {
7208 wrqu->bitrate.value = 0;
7209 return 0;
7210 }
7211
7212 mutex_lock(&priv->action_mutex);
7213 if (!(priv->status & STATUS_INITIALIZED)) {
7214 err = -EIO;
7215 goto done;
7216 }
7217
7218 err = ipw2100_get_ordinal(priv, IPW_ORD_CURRENT_TX_RATE, &val, &len);
7219 if (err) {
7220 IPW_DEBUG_WX("failed querying ordinals.\n");
7221 goto done;
7222 }
7223
7224 switch (val & TX_RATE_MASK) {
7225 case TX_RATE_1_MBIT:
7226 wrqu->bitrate.value = 1000000;
7227 break;
7228 case TX_RATE_2_MBIT:
7229 wrqu->bitrate.value = 2000000;
7230 break;
7231 case TX_RATE_5_5_MBIT:
7232 wrqu->bitrate.value = 5500000;
7233 break;
7234 case TX_RATE_11_MBIT:
7235 wrqu->bitrate.value = 11000000;
7236 break;
7237 default:
7238 wrqu->bitrate.value = 0;
7239 }
7240
7241 IPW_DEBUG_WX("GET Rate -> %d\n", wrqu->bitrate.value);
7242
7243 done:
7244 mutex_unlock(&priv->action_mutex);
7245 return err;
7246 }
7247
7248 static int ipw2100_wx_set_rts(struct net_device *dev,
7249 struct iw_request_info *info,
7250 union iwreq_data *wrqu, char *extra)
7251 {
7252 struct ipw2100_priv *priv = libipw_priv(dev);
7253 int value, err;
7254
7255 /* Auto RTS not yet supported */
7256 if (wrqu->rts.fixed == 0)
7257 return -EINVAL;
7258
7259 mutex_lock(&priv->action_mutex);
7260 if (!(priv->status & STATUS_INITIALIZED)) {
7261 err = -EIO;
7262 goto done;
7263 }
7264
7265 if (wrqu->rts.disabled)
7266 value = priv->rts_threshold | RTS_DISABLED;
7267 else {
7268 if (wrqu->rts.value < 1 || wrqu->rts.value > 2304) {
7269 err = -EINVAL;
7270 goto done;
7271 }
7272 value = wrqu->rts.value;
7273 }
7274
7275 err = ipw2100_set_rts_threshold(priv, value);
7276
7277 IPW_DEBUG_WX("SET RTS Threshold -> 0x%08X\n", value);
7278 done:
7279 mutex_unlock(&priv->action_mutex);
7280 return err;
7281 }
7282
7283 static int ipw2100_wx_get_rts(struct net_device *dev,
7284 struct iw_request_info *info,
7285 union iwreq_data *wrqu, char *extra)
7286 {
7287 /*
7288 * This can be called at any time. No action lock required
7289 */
7290
7291 struct ipw2100_priv *priv = libipw_priv(dev);
7292
7293 wrqu->rts.value = priv->rts_threshold & ~RTS_DISABLED;
7294 wrqu->rts.fixed = 1; /* no auto select */
7295
7296 /* If RTS is set to the default value, then it is disabled */
7297 wrqu->rts.disabled = (priv->rts_threshold & RTS_DISABLED) ? 1 : 0;
7298
7299 IPW_DEBUG_WX("GET RTS Threshold -> 0x%08X\n", wrqu->rts.value);
7300
7301 return 0;
7302 }
7303
7304 static int ipw2100_wx_set_txpow(struct net_device *dev,
7305 struct iw_request_info *info,
7306 union iwreq_data *wrqu, char *extra)
7307 {
7308 struct ipw2100_priv *priv = libipw_priv(dev);
7309 int err = 0, value;
7310
7311 if (ipw_radio_kill_sw(priv, wrqu->txpower.disabled))
7312 return -EINPROGRESS;
7313
7314 if (priv->ieee->iw_mode != IW_MODE_ADHOC)
7315 return 0;
7316
7317 if ((wrqu->txpower.flags & IW_TXPOW_TYPE) != IW_TXPOW_DBM)
7318 return -EINVAL;
7319
7320 if (wrqu->txpower.fixed == 0)
7321 value = IPW_TX_POWER_DEFAULT;
7322 else {
7323 if (wrqu->txpower.value < IPW_TX_POWER_MIN_DBM ||
7324 wrqu->txpower.value > IPW_TX_POWER_MAX_DBM)
7325 return -EINVAL;
7326
7327 value = wrqu->txpower.value;
7328 }
7329
7330 mutex_lock(&priv->action_mutex);
7331 if (!(priv->status & STATUS_INITIALIZED)) {
7332 err = -EIO;
7333 goto done;
7334 }
7335
7336 err = ipw2100_set_tx_power(priv, value);
7337
7338 IPW_DEBUG_WX("SET TX Power -> %d\n", value);
7339
7340 done:
7341 mutex_unlock(&priv->action_mutex);
7342 return err;
7343 }
7344
7345 static int ipw2100_wx_get_txpow(struct net_device *dev,
7346 struct iw_request_info *info,
7347 union iwreq_data *wrqu, char *extra)
7348 {
7349 /*
7350 * This can be called at any time. No action lock required
7351 */
7352
7353 struct ipw2100_priv *priv = libipw_priv(dev);
7354
7355 wrqu->txpower.disabled = (priv->status & STATUS_RF_KILL_MASK) ? 1 : 0;
7356
7357 if (priv->tx_power == IPW_TX_POWER_DEFAULT) {
7358 wrqu->txpower.fixed = 0;
7359 wrqu->txpower.value = IPW_TX_POWER_MAX_DBM;
7360 } else {
7361 wrqu->txpower.fixed = 1;
7362 wrqu->txpower.value = priv->tx_power;
7363 }
7364
7365 wrqu->txpower.flags = IW_TXPOW_DBM;
7366
7367 IPW_DEBUG_WX("GET TX Power -> %d\n", wrqu->txpower.value);
7368
7369 return 0;
7370 }
7371
7372 static int ipw2100_wx_set_frag(struct net_device *dev,
7373 struct iw_request_info *info,
7374 union iwreq_data *wrqu, char *extra)
7375 {
7376 /*
7377 * This can be called at any time. No action lock required
7378 */
7379
7380 struct ipw2100_priv *priv = libipw_priv(dev);
7381
7382 if (!wrqu->frag.fixed)
7383 return -EINVAL;
7384
7385 if (wrqu->frag.disabled) {
7386 priv->frag_threshold |= FRAG_DISABLED;
7387 priv->ieee->fts = DEFAULT_FTS;
7388 } else {
7389 if (wrqu->frag.value < MIN_FRAG_THRESHOLD ||
7390 wrqu->frag.value > MAX_FRAG_THRESHOLD)
7391 return -EINVAL;
7392
7393 priv->ieee->fts = wrqu->frag.value & ~0x1;
7394 priv->frag_threshold = priv->ieee->fts;
7395 }
7396
7397 IPW_DEBUG_WX("SET Frag Threshold -> %d\n", priv->ieee->fts);
7398
7399 return 0;
7400 }
7401
7402 static int ipw2100_wx_get_frag(struct net_device *dev,
7403 struct iw_request_info *info,
7404 union iwreq_data *wrqu, char *extra)
7405 {
7406 /*
7407 * This can be called at any time. No action lock required
7408 */
7409
7410 struct ipw2100_priv *priv = libipw_priv(dev);
7411 wrqu->frag.value = priv->frag_threshold & ~FRAG_DISABLED;
7412 wrqu->frag.fixed = 0; /* no auto select */
7413 wrqu->frag.disabled = (priv->frag_threshold & FRAG_DISABLED) ? 1 : 0;
7414
7415 IPW_DEBUG_WX("GET Frag Threshold -> %d\n", wrqu->frag.value);
7416
7417 return 0;
7418 }
7419
7420 static int ipw2100_wx_set_retry(struct net_device *dev,
7421 struct iw_request_info *info,
7422 union iwreq_data *wrqu, char *extra)
7423 {
7424 struct ipw2100_priv *priv = libipw_priv(dev);
7425 int err = 0;
7426
7427 if (wrqu->retry.flags & IW_RETRY_LIFETIME || wrqu->retry.disabled)
7428 return -EINVAL;
7429
7430 if (!(wrqu->retry.flags & IW_RETRY_LIMIT))
7431 return 0;
7432
7433 mutex_lock(&priv->action_mutex);
7434 if (!(priv->status & STATUS_INITIALIZED)) {
7435 err = -EIO;
7436 goto done;
7437 }
7438
7439 if (wrqu->retry.flags & IW_RETRY_SHORT) {
7440 err = ipw2100_set_short_retry(priv, wrqu->retry.value);
7441 IPW_DEBUG_WX("SET Short Retry Limit -> %d\n",
7442 wrqu->retry.value);
7443 goto done;
7444 }
7445
7446 if (wrqu->retry.flags & IW_RETRY_LONG) {
7447 err = ipw2100_set_long_retry(priv, wrqu->retry.value);
7448 IPW_DEBUG_WX("SET Long Retry Limit -> %d\n",
7449 wrqu->retry.value);
7450 goto done;
7451 }
7452
7453 err = ipw2100_set_short_retry(priv, wrqu->retry.value);
7454 if (!err)
7455 err = ipw2100_set_long_retry(priv, wrqu->retry.value);
7456
7457 IPW_DEBUG_WX("SET Both Retry Limits -> %d\n", wrqu->retry.value);
7458
7459 done:
7460 mutex_unlock(&priv->action_mutex);
7461 return err;
7462 }
7463
7464 static int ipw2100_wx_get_retry(struct net_device *dev,
7465 struct iw_request_info *info,
7466 union iwreq_data *wrqu, char *extra)
7467 {
7468 /*
7469 * This can be called at any time. No action lock required
7470 */
7471
7472 struct ipw2100_priv *priv = libipw_priv(dev);
7473
7474 wrqu->retry.disabled = 0; /* can't be disabled */
7475
7476 if ((wrqu->retry.flags & IW_RETRY_TYPE) == IW_RETRY_LIFETIME)
7477 return -EINVAL;
7478
7479 if (wrqu->retry.flags & IW_RETRY_LONG) {
7480 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_LONG;
7481 wrqu->retry.value = priv->long_retry_limit;
7482 } else {
7483 wrqu->retry.flags =
7484 (priv->short_retry_limit !=
7485 priv->long_retry_limit) ?
7486 IW_RETRY_LIMIT | IW_RETRY_SHORT : IW_RETRY_LIMIT;
7487
7488 wrqu->retry.value = priv->short_retry_limit;
7489 }
7490
7491 IPW_DEBUG_WX("GET Retry -> %d\n", wrqu->retry.value);
7492
7493 return 0;
7494 }
7495
7496 static int ipw2100_wx_set_scan(struct net_device *dev,
7497 struct iw_request_info *info,
7498 union iwreq_data *wrqu, char *extra)
7499 {
7500 struct ipw2100_priv *priv = libipw_priv(dev);
7501 int err = 0;
7502
7503 mutex_lock(&priv->action_mutex);
7504 if (!(priv->status & STATUS_INITIALIZED)) {
7505 err = -EIO;
7506 goto done;
7507 }
7508
7509 IPW_DEBUG_WX("Initiating scan...\n");
7510
7511 priv->user_requested_scan = 1;
7512 if (ipw2100_set_scan_options(priv) || ipw2100_start_scan(priv)) {
7513 IPW_DEBUG_WX("Start scan failed.\n");
7514
7515 /* TODO: Mark a scan as pending so when hardware initialized
7516 * a scan starts */
7517 }
7518
7519 done:
7520 mutex_unlock(&priv->action_mutex);
7521 return err;
7522 }
7523
7524 static int ipw2100_wx_get_scan(struct net_device *dev,
7525 struct iw_request_info *info,
7526 union iwreq_data *wrqu, char *extra)
7527 {
7528 /*
7529 * This can be called at any time. No action lock required
7530 */
7531
7532 struct ipw2100_priv *priv = libipw_priv(dev);
7533 return libipw_wx_get_scan(priv->ieee, info, wrqu, extra);
7534 }
7535
7536 /*
7537 * Implementation based on code in hostap-driver v0.1.3 hostap_ioctl.c
7538 */
7539 static int ipw2100_wx_set_encode(struct net_device *dev,
7540 struct iw_request_info *info,
7541 union iwreq_data *wrqu, char *key)
7542 {
7543 /*
7544 * No check of STATUS_INITIALIZED required
7545 */
7546
7547 struct ipw2100_priv *priv = libipw_priv(dev);
7548 return libipw_wx_set_encode(priv->ieee, info, wrqu, key);
7549 }
7550
7551 static int ipw2100_wx_get_encode(struct net_device *dev,
7552 struct iw_request_info *info,
7553 union iwreq_data *wrqu, char *key)
7554 {
7555 /*
7556 * This can be called at any time. No action lock required
7557 */
7558
7559 struct ipw2100_priv *priv = libipw_priv(dev);
7560 return libipw_wx_get_encode(priv->ieee, info, wrqu, key);
7561 }
7562
7563 static int ipw2100_wx_set_power(struct net_device *dev,
7564 struct iw_request_info *info,
7565 union iwreq_data *wrqu, char *extra)
7566 {
7567 struct ipw2100_priv *priv = libipw_priv(dev);
7568 int err = 0;
7569
7570 mutex_lock(&priv->action_mutex);
7571 if (!(priv->status & STATUS_INITIALIZED)) {
7572 err = -EIO;
7573 goto done;
7574 }
7575
7576 if (wrqu->power.disabled) {
7577 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
7578 err = ipw2100_set_power_mode(priv, IPW_POWER_MODE_CAM);
7579 IPW_DEBUG_WX("SET Power Management Mode -> off\n");
7580 goto done;
7581 }
7582
7583 switch (wrqu->power.flags & IW_POWER_MODE) {
7584 case IW_POWER_ON: /* If not specified */
7585 case IW_POWER_MODE: /* If set all mask */
7586 case IW_POWER_ALL_R: /* If explicitly state all */
7587 break;
7588 default: /* Otherwise we don't support it */
7589 IPW_DEBUG_WX("SET PM Mode: %X not supported.\n",
7590 wrqu->power.flags);
7591 err = -EOPNOTSUPP;
7592 goto done;
7593 }
7594
7595 /* If the user hasn't specified a power management mode yet, default
7596 * to BATTERY */
7597 priv->power_mode = IPW_POWER_ENABLED | priv->power_mode;
7598 err = ipw2100_set_power_mode(priv, IPW_POWER_LEVEL(priv->power_mode));
7599
7600 IPW_DEBUG_WX("SET Power Management Mode -> 0x%02X\n", priv->power_mode);
7601
7602 done:
7603 mutex_unlock(&priv->action_mutex);
7604 return err;
7605
7606 }
7607
7608 static int ipw2100_wx_get_power(struct net_device *dev,
7609 struct iw_request_info *info,
7610 union iwreq_data *wrqu, char *extra)
7611 {
7612 /*
7613 * This can be called at any time. No action lock required
7614 */
7615
7616 struct ipw2100_priv *priv = libipw_priv(dev);
7617
7618 if (!(priv->power_mode & IPW_POWER_ENABLED))
7619 wrqu->power.disabled = 1;
7620 else {
7621 wrqu->power.disabled = 0;
7622 wrqu->power.flags = 0;
7623 }
7624
7625 IPW_DEBUG_WX("GET Power Management Mode -> %02X\n", priv->power_mode);
7626
7627 return 0;
7628 }
7629
7630 /*
7631 * WE-18 WPA support
7632 */
7633
7634 /* SIOCSIWGENIE */
7635 static int ipw2100_wx_set_genie(struct net_device *dev,
7636 struct iw_request_info *info,
7637 union iwreq_data *wrqu, char *extra)
7638 {
7639
7640 struct ipw2100_priv *priv = libipw_priv(dev);
7641 struct libipw_device *ieee = priv->ieee;
7642 u8 *buf;
7643
7644 if (!ieee->wpa_enabled)
7645 return -EOPNOTSUPP;
7646
7647 if (wrqu->data.length > MAX_WPA_IE_LEN ||
7648 (wrqu->data.length && extra == NULL))
7649 return -EINVAL;
7650
7651 if (wrqu->data.length) {
7652 buf = kmemdup(extra, wrqu->data.length, GFP_KERNEL);
7653 if (buf == NULL)
7654 return -ENOMEM;
7655
7656 kfree(ieee->wpa_ie);
7657 ieee->wpa_ie = buf;
7658 ieee->wpa_ie_len = wrqu->data.length;
7659 } else {
7660 kfree(ieee->wpa_ie);
7661 ieee->wpa_ie = NULL;
7662 ieee->wpa_ie_len = 0;
7663 }
7664
7665 ipw2100_wpa_assoc_frame(priv, ieee->wpa_ie, ieee->wpa_ie_len);
7666
7667 return 0;
7668 }
7669
7670 /* SIOCGIWGENIE */
7671 static int ipw2100_wx_get_genie(struct net_device *dev,
7672 struct iw_request_info *info,
7673 union iwreq_data *wrqu, char *extra)
7674 {
7675 struct ipw2100_priv *priv = libipw_priv(dev);
7676 struct libipw_device *ieee = priv->ieee;
7677
7678 if (ieee->wpa_ie_len == 0 || ieee->wpa_ie == NULL) {
7679 wrqu->data.length = 0;
7680 return 0;
7681 }
7682
7683 if (wrqu->data.length < ieee->wpa_ie_len)
7684 return -E2BIG;
7685
7686 wrqu->data.length = ieee->wpa_ie_len;
7687 memcpy(extra, ieee->wpa_ie, ieee->wpa_ie_len);
7688
7689 return 0;
7690 }
7691
7692 /* SIOCSIWAUTH */
7693 static int ipw2100_wx_set_auth(struct net_device *dev,
7694 struct iw_request_info *info,
7695 union iwreq_data *wrqu, char *extra)
7696 {
7697 struct ipw2100_priv *priv = libipw_priv(dev);
7698 struct libipw_device *ieee = priv->ieee;
7699 struct iw_param *param = &wrqu->param;
7700 struct lib80211_crypt_data *crypt;
7701 unsigned long flags;
7702 int ret = 0;
7703
7704 switch (param->flags & IW_AUTH_INDEX) {
7705 case IW_AUTH_WPA_VERSION:
7706 case IW_AUTH_CIPHER_PAIRWISE:
7707 case IW_AUTH_CIPHER_GROUP:
7708 case IW_AUTH_KEY_MGMT:
7709 /*
7710 * ipw2200 does not use these parameters
7711 */
7712 break;
7713
7714 case IW_AUTH_TKIP_COUNTERMEASURES:
7715 crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx];
7716 if (!crypt || !crypt->ops->set_flags || !crypt->ops->get_flags)
7717 break;
7718
7719 flags = crypt->ops->get_flags(crypt->priv);
7720
7721 if (param->value)
7722 flags |= IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
7723 else
7724 flags &= ~IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
7725
7726 crypt->ops->set_flags(flags, crypt->priv);
7727
7728 break;
7729
7730 case IW_AUTH_DROP_UNENCRYPTED:{
7731 /* HACK:
7732 *
7733 * wpa_supplicant calls set_wpa_enabled when the driver
7734 * is loaded and unloaded, regardless of if WPA is being
7735 * used. No other calls are made which can be used to
7736 * determine if encryption will be used or not prior to
7737 * association being expected. If encryption is not being
7738 * used, drop_unencrypted is set to false, else true -- we
7739 * can use this to determine if the CAP_PRIVACY_ON bit should
7740 * be set.
7741 */
7742 struct libipw_security sec = {
7743 .flags = SEC_ENABLED,
7744 .enabled = param->value,
7745 };
7746 priv->ieee->drop_unencrypted = param->value;
7747 /* We only change SEC_LEVEL for open mode. Others
7748 * are set by ipw_wpa_set_encryption.
7749 */
7750 if (!param->value) {
7751 sec.flags |= SEC_LEVEL;
7752 sec.level = SEC_LEVEL_0;
7753 } else {
7754 sec.flags |= SEC_LEVEL;
7755 sec.level = SEC_LEVEL_1;
7756 }
7757 if (priv->ieee->set_security)
7758 priv->ieee->set_security(priv->ieee->dev, &sec);
7759 break;
7760 }
7761
7762 case IW_AUTH_80211_AUTH_ALG:
7763 ret = ipw2100_wpa_set_auth_algs(priv, param->value);
7764 break;
7765
7766 case IW_AUTH_WPA_ENABLED:
7767 ret = ipw2100_wpa_enable(priv, param->value);
7768 break;
7769
7770 case IW_AUTH_RX_UNENCRYPTED_EAPOL:
7771 ieee->ieee802_1x = param->value;
7772 break;
7773
7774 //case IW_AUTH_ROAMING_CONTROL:
7775 case IW_AUTH_PRIVACY_INVOKED:
7776 ieee->privacy_invoked = param->value;
7777 break;
7778
7779 default:
7780 return -EOPNOTSUPP;
7781 }
7782 return ret;
7783 }
7784
7785 /* SIOCGIWAUTH */
7786 static int ipw2100_wx_get_auth(struct net_device *dev,
7787 struct iw_request_info *info,
7788 union iwreq_data *wrqu, char *extra)
7789 {
7790 struct ipw2100_priv *priv = libipw_priv(dev);
7791 struct libipw_device *ieee = priv->ieee;
7792 struct lib80211_crypt_data *crypt;
7793 struct iw_param *param = &wrqu->param;
7794 int ret = 0;
7795
7796 switch (param->flags & IW_AUTH_INDEX) {
7797 case IW_AUTH_WPA_VERSION:
7798 case IW_AUTH_CIPHER_PAIRWISE:
7799 case IW_AUTH_CIPHER_GROUP:
7800 case IW_AUTH_KEY_MGMT:
7801 /*
7802 * wpa_supplicant will control these internally
7803 */
7804 ret = -EOPNOTSUPP;
7805 break;
7806
7807 case IW_AUTH_TKIP_COUNTERMEASURES:
7808 crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx];
7809 if (!crypt || !crypt->ops->get_flags) {
7810 IPW_DEBUG_WARNING("Can't get TKIP countermeasures: "
7811 "crypt not set!\n");
7812 break;
7813 }
7814
7815 param->value = (crypt->ops->get_flags(crypt->priv) &
7816 IEEE80211_CRYPTO_TKIP_COUNTERMEASURES) ? 1 : 0;
7817
7818 break;
7819
7820 case IW_AUTH_DROP_UNENCRYPTED:
7821 param->value = ieee->drop_unencrypted;
7822 break;
7823
7824 case IW_AUTH_80211_AUTH_ALG:
7825 param->value = priv->ieee->sec.auth_mode;
7826 break;
7827
7828 case IW_AUTH_WPA_ENABLED:
7829 param->value = ieee->wpa_enabled;
7830 break;
7831
7832 case IW_AUTH_RX_UNENCRYPTED_EAPOL:
7833 param->value = ieee->ieee802_1x;
7834 break;
7835
7836 case IW_AUTH_ROAMING_CONTROL:
7837 case IW_AUTH_PRIVACY_INVOKED:
7838 param->value = ieee->privacy_invoked;
7839 break;
7840
7841 default:
7842 return -EOPNOTSUPP;
7843 }
7844 return 0;
7845 }
7846
7847 /* SIOCSIWENCODEEXT */
7848 static int ipw2100_wx_set_encodeext(struct net_device *dev,
7849 struct iw_request_info *info,
7850 union iwreq_data *wrqu, char *extra)
7851 {
7852 struct ipw2100_priv *priv = libipw_priv(dev);
7853 return libipw_wx_set_encodeext(priv->ieee, info, wrqu, extra);
7854 }
7855
7856 /* SIOCGIWENCODEEXT */
7857 static int ipw2100_wx_get_encodeext(struct net_device *dev,
7858 struct iw_request_info *info,
7859 union iwreq_data *wrqu, char *extra)
7860 {
7861 struct ipw2100_priv *priv = libipw_priv(dev);
7862 return libipw_wx_get_encodeext(priv->ieee, info, wrqu, extra);
7863 }
7864
7865 /* SIOCSIWMLME */
7866 static int ipw2100_wx_set_mlme(struct net_device *dev,
7867 struct iw_request_info *info,
7868 union iwreq_data *wrqu, char *extra)
7869 {
7870 struct ipw2100_priv *priv = libipw_priv(dev);
7871 struct iw_mlme *mlme = (struct iw_mlme *)extra;
7872 __le16 reason;
7873
7874 reason = cpu_to_le16(mlme->reason_code);
7875
7876 switch (mlme->cmd) {
7877 case IW_MLME_DEAUTH:
7878 // silently ignore
7879 break;
7880
7881 case IW_MLME_DISASSOC:
7882 ipw2100_disassociate_bssid(priv);
7883 break;
7884
7885 default:
7886 return -EOPNOTSUPP;
7887 }
7888 return 0;
7889 }
7890
7891 /*
7892 *
7893 * IWPRIV handlers
7894 *
7895 */
7896 #ifdef CONFIG_IPW2100_MONITOR
7897 static int ipw2100_wx_set_promisc(struct net_device *dev,
7898 struct iw_request_info *info,
7899 union iwreq_data *wrqu, char *extra)
7900 {
7901 struct ipw2100_priv *priv = libipw_priv(dev);
7902 int *parms = (int *)extra;
7903 int enable = (parms[0] > 0);
7904 int err = 0;
7905
7906 mutex_lock(&priv->action_mutex);
7907 if (!(priv->status & STATUS_INITIALIZED)) {
7908 err = -EIO;
7909 goto done;
7910 }
7911
7912 if (enable) {
7913 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
7914 err = ipw2100_set_channel(priv, parms[1], 0);
7915 goto done;
7916 }
7917 priv->channel = parms[1];
7918 err = ipw2100_switch_mode(priv, IW_MODE_MONITOR);
7919 } else {
7920 if (priv->ieee->iw_mode == IW_MODE_MONITOR)
7921 err = ipw2100_switch_mode(priv, priv->last_mode);
7922 }
7923 done:
7924 mutex_unlock(&priv->action_mutex);
7925 return err;
7926 }
7927
7928 static int ipw2100_wx_reset(struct net_device *dev,
7929 struct iw_request_info *info,
7930 union iwreq_data *wrqu, char *extra)
7931 {
7932 struct ipw2100_priv *priv = libipw_priv(dev);
7933 if (priv->status & STATUS_INITIALIZED)
7934 schedule_reset(priv);
7935 return 0;
7936 }
7937
7938 #endif
7939
7940 static int ipw2100_wx_set_powermode(struct net_device *dev,
7941 struct iw_request_info *info,
7942 union iwreq_data *wrqu, char *extra)
7943 {
7944 struct ipw2100_priv *priv = libipw_priv(dev);
7945 int err = 0, mode = *(int *)extra;
7946
7947 mutex_lock(&priv->action_mutex);
7948 if (!(priv->status & STATUS_INITIALIZED)) {
7949 err = -EIO;
7950 goto done;
7951 }
7952
7953 if ((mode < 0) || (mode > POWER_MODES))
7954 mode = IPW_POWER_AUTO;
7955
7956 if (IPW_POWER_LEVEL(priv->power_mode) != mode)
7957 err = ipw2100_set_power_mode(priv, mode);
7958 done:
7959 mutex_unlock(&priv->action_mutex);
7960 return err;
7961 }
7962
7963 #define MAX_POWER_STRING 80
7964 static int ipw2100_wx_get_powermode(struct net_device *dev,
7965 struct iw_request_info *info,
7966 union iwreq_data *wrqu, char *extra)
7967 {
7968 /*
7969 * This can be called at any time. No action lock required
7970 */
7971
7972 struct ipw2100_priv *priv = libipw_priv(dev);
7973 int level = IPW_POWER_LEVEL(priv->power_mode);
7974 s32 timeout, period;
7975
7976 if (!(priv->power_mode & IPW_POWER_ENABLED)) {
7977 snprintf(extra, MAX_POWER_STRING,
7978 "Power save level: %d (Off)", level);
7979 } else {
7980 switch (level) {
7981 case IPW_POWER_MODE_CAM:
7982 snprintf(extra, MAX_POWER_STRING,
7983 "Power save level: %d (None)", level);
7984 break;
7985 case IPW_POWER_AUTO:
7986 snprintf(extra, MAX_POWER_STRING,
7987 "Power save level: %d (Auto)", level);
7988 break;
7989 default:
7990 timeout = timeout_duration[level - 1] / 1000;
7991 period = period_duration[level - 1] / 1000;
7992 snprintf(extra, MAX_POWER_STRING,
7993 "Power save level: %d "
7994 "(Timeout %dms, Period %dms)",
7995 level, timeout, period);
7996 }
7997 }
7998
7999 wrqu->data.length = strlen(extra) + 1;
8000
8001 return 0;
8002 }
8003
8004 static int ipw2100_wx_set_preamble(struct net_device *dev,
8005 struct iw_request_info *info,
8006 union iwreq_data *wrqu, char *extra)
8007 {
8008 struct ipw2100_priv *priv = libipw_priv(dev);
8009 int err, mode = *(int *)extra;
8010
8011 mutex_lock(&priv->action_mutex);
8012 if (!(priv->status & STATUS_INITIALIZED)) {
8013 err = -EIO;
8014 goto done;
8015 }
8016
8017 if (mode == 1)
8018 priv->config |= CFG_LONG_PREAMBLE;
8019 else if (mode == 0)
8020 priv->config &= ~CFG_LONG_PREAMBLE;
8021 else {
8022 err = -EINVAL;
8023 goto done;
8024 }
8025
8026 err = ipw2100_system_config(priv, 0);
8027
8028 done:
8029 mutex_unlock(&priv->action_mutex);
8030 return err;
8031 }
8032
8033 static int ipw2100_wx_get_preamble(struct net_device *dev,
8034 struct iw_request_info *info,
8035 union iwreq_data *wrqu, char *extra)
8036 {
8037 /*
8038 * This can be called at any time. No action lock required
8039 */
8040
8041 struct ipw2100_priv *priv = libipw_priv(dev);
8042
8043 if (priv->config & CFG_LONG_PREAMBLE)
8044 snprintf(wrqu->name, IFNAMSIZ, "long (1)");
8045 else
8046 snprintf(wrqu->name, IFNAMSIZ, "auto (0)");
8047
8048 return 0;
8049 }
8050
8051 #ifdef CONFIG_IPW2100_MONITOR
8052 static int ipw2100_wx_set_crc_check(struct net_device *dev,
8053 struct iw_request_info *info,
8054 union iwreq_data *wrqu, char *extra)
8055 {
8056 struct ipw2100_priv *priv = libipw_priv(dev);
8057 int err, mode = *(int *)extra;
8058
8059 mutex_lock(&priv->action_mutex);
8060 if (!(priv->status & STATUS_INITIALIZED)) {
8061 err = -EIO;
8062 goto done;
8063 }
8064
8065 if (mode == 1)
8066 priv->config |= CFG_CRC_CHECK;
8067 else if (mode == 0)
8068 priv->config &= ~CFG_CRC_CHECK;
8069 else {
8070 err = -EINVAL;
8071 goto done;
8072 }
8073 err = 0;
8074
8075 done:
8076 mutex_unlock(&priv->action_mutex);
8077 return err;
8078 }
8079
8080 static int ipw2100_wx_get_crc_check(struct net_device *dev,
8081 struct iw_request_info *info,
8082 union iwreq_data *wrqu, char *extra)
8083 {
8084 /*
8085 * This can be called at any time. No action lock required
8086 */
8087
8088 struct ipw2100_priv *priv = libipw_priv(dev);
8089
8090 if (priv->config & CFG_CRC_CHECK)
8091 snprintf(wrqu->name, IFNAMSIZ, "CRC checked (1)");
8092 else
8093 snprintf(wrqu->name, IFNAMSIZ, "CRC ignored (0)");
8094
8095 return 0;
8096 }
8097 #endif /* CONFIG_IPW2100_MONITOR */
8098
8099 static iw_handler ipw2100_wx_handlers[] = {
8100 IW_HANDLER(SIOCGIWNAME, ipw2100_wx_get_name),
8101 IW_HANDLER(SIOCSIWFREQ, ipw2100_wx_set_freq),
8102 IW_HANDLER(SIOCGIWFREQ, ipw2100_wx_get_freq),
8103 IW_HANDLER(SIOCSIWMODE, ipw2100_wx_set_mode),
8104 IW_HANDLER(SIOCGIWMODE, ipw2100_wx_get_mode),
8105 IW_HANDLER(SIOCGIWRANGE, ipw2100_wx_get_range),
8106 IW_HANDLER(SIOCSIWAP, ipw2100_wx_set_wap),
8107 IW_HANDLER(SIOCGIWAP, ipw2100_wx_get_wap),
8108 IW_HANDLER(SIOCSIWMLME, ipw2100_wx_set_mlme),
8109 IW_HANDLER(SIOCSIWSCAN, ipw2100_wx_set_scan),
8110 IW_HANDLER(SIOCGIWSCAN, ipw2100_wx_get_scan),
8111 IW_HANDLER(SIOCSIWESSID, ipw2100_wx_set_essid),
8112 IW_HANDLER(SIOCGIWESSID, ipw2100_wx_get_essid),
8113 IW_HANDLER(SIOCSIWNICKN, ipw2100_wx_set_nick),
8114 IW_HANDLER(SIOCGIWNICKN, ipw2100_wx_get_nick),
8115 IW_HANDLER(SIOCSIWRATE, ipw2100_wx_set_rate),
8116 IW_HANDLER(SIOCGIWRATE, ipw2100_wx_get_rate),
8117 IW_HANDLER(SIOCSIWRTS, ipw2100_wx_set_rts),
8118 IW_HANDLER(SIOCGIWRTS, ipw2100_wx_get_rts),
8119 IW_HANDLER(SIOCSIWFRAG, ipw2100_wx_set_frag),
8120 IW_HANDLER(SIOCGIWFRAG, ipw2100_wx_get_frag),
8121 IW_HANDLER(SIOCSIWTXPOW, ipw2100_wx_set_txpow),
8122 IW_HANDLER(SIOCGIWTXPOW, ipw2100_wx_get_txpow),
8123 IW_HANDLER(SIOCSIWRETRY, ipw2100_wx_set_retry),
8124 IW_HANDLER(SIOCGIWRETRY, ipw2100_wx_get_retry),
8125 IW_HANDLER(SIOCSIWENCODE, ipw2100_wx_set_encode),
8126 IW_HANDLER(SIOCGIWENCODE, ipw2100_wx_get_encode),
8127 IW_HANDLER(SIOCSIWPOWER, ipw2100_wx_set_power),
8128 IW_HANDLER(SIOCGIWPOWER, ipw2100_wx_get_power),
8129 IW_HANDLER(SIOCSIWGENIE, ipw2100_wx_set_genie),
8130 IW_HANDLER(SIOCGIWGENIE, ipw2100_wx_get_genie),
8131 IW_HANDLER(SIOCSIWAUTH, ipw2100_wx_set_auth),
8132 IW_HANDLER(SIOCGIWAUTH, ipw2100_wx_get_auth),
8133 IW_HANDLER(SIOCSIWENCODEEXT, ipw2100_wx_set_encodeext),
8134 IW_HANDLER(SIOCGIWENCODEEXT, ipw2100_wx_get_encodeext),
8135 };
8136
8137 #define IPW2100_PRIV_SET_MONITOR SIOCIWFIRSTPRIV
8138 #define IPW2100_PRIV_RESET SIOCIWFIRSTPRIV+1
8139 #define IPW2100_PRIV_SET_POWER SIOCIWFIRSTPRIV+2
8140 #define IPW2100_PRIV_GET_POWER SIOCIWFIRSTPRIV+3
8141 #define IPW2100_PRIV_SET_LONGPREAMBLE SIOCIWFIRSTPRIV+4
8142 #define IPW2100_PRIV_GET_LONGPREAMBLE SIOCIWFIRSTPRIV+5
8143 #define IPW2100_PRIV_SET_CRC_CHECK SIOCIWFIRSTPRIV+6
8144 #define IPW2100_PRIV_GET_CRC_CHECK SIOCIWFIRSTPRIV+7
8145
8146 static const struct iw_priv_args ipw2100_private_args[] = {
8147
8148 #ifdef CONFIG_IPW2100_MONITOR
8149 {
8150 IPW2100_PRIV_SET_MONITOR,
8151 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 2, 0, "monitor"},
8152 {
8153 IPW2100_PRIV_RESET,
8154 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "reset"},
8155 #endif /* CONFIG_IPW2100_MONITOR */
8156
8157 {
8158 IPW2100_PRIV_SET_POWER,
8159 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_power"},
8160 {
8161 IPW2100_PRIV_GET_POWER,
8162 0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_POWER_STRING,
8163 "get_power"},
8164 {
8165 IPW2100_PRIV_SET_LONGPREAMBLE,
8166 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_preamble"},
8167 {
8168 IPW2100_PRIV_GET_LONGPREAMBLE,
8169 0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ, "get_preamble"},
8170 #ifdef CONFIG_IPW2100_MONITOR
8171 {
8172 IPW2100_PRIV_SET_CRC_CHECK,
8173 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_crc_check"},
8174 {
8175 IPW2100_PRIV_GET_CRC_CHECK,
8176 0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ, "get_crc_check"},
8177 #endif /* CONFIG_IPW2100_MONITOR */
8178 };
8179
8180 static iw_handler ipw2100_private_handler[] = {
8181 #ifdef CONFIG_IPW2100_MONITOR
8182 ipw2100_wx_set_promisc,
8183 ipw2100_wx_reset,
8184 #else /* CONFIG_IPW2100_MONITOR */
8185 NULL,
8186 NULL,
8187 #endif /* CONFIG_IPW2100_MONITOR */
8188 ipw2100_wx_set_powermode,
8189 ipw2100_wx_get_powermode,
8190 ipw2100_wx_set_preamble,
8191 ipw2100_wx_get_preamble,
8192 #ifdef CONFIG_IPW2100_MONITOR
8193 ipw2100_wx_set_crc_check,
8194 ipw2100_wx_get_crc_check,
8195 #else /* CONFIG_IPW2100_MONITOR */
8196 NULL,
8197 NULL,
8198 #endif /* CONFIG_IPW2100_MONITOR */
8199 };
8200
8201 /*
8202 * Get wireless statistics.
8203 * Called by /proc/net/wireless
8204 * Also called by SIOCGIWSTATS
8205 */
8206 static struct iw_statistics *ipw2100_wx_wireless_stats(struct net_device *dev)
8207 {
8208 enum {
8209 POOR = 30,
8210 FAIR = 60,
8211 GOOD = 80,
8212 VERY_GOOD = 90,
8213 EXCELLENT = 95,
8214 PERFECT = 100
8215 };
8216 int rssi_qual;
8217 int tx_qual;
8218 int beacon_qual;
8219 int quality;
8220
8221 struct ipw2100_priv *priv = libipw_priv(dev);
8222 struct iw_statistics *wstats;
8223 u32 rssi, tx_retries, missed_beacons, tx_failures;
8224 u32 ord_len = sizeof(u32);
8225
8226 if (!priv)
8227 return (struct iw_statistics *)NULL;
8228
8229 wstats = &priv->wstats;
8230
8231 /* if hw is disabled, then ipw2100_get_ordinal() can't be called.
8232 * ipw2100_wx_wireless_stats seems to be called before fw is
8233 * initialized. STATUS_ASSOCIATED will only be set if the hw is up
8234 * and associated; if not associcated, the values are all meaningless
8235 * anyway, so set them all to NULL and INVALID */
8236 if (!(priv->status & STATUS_ASSOCIATED)) {
8237 wstats->miss.beacon = 0;
8238 wstats->discard.retries = 0;
8239 wstats->qual.qual = 0;
8240 wstats->qual.level = 0;
8241 wstats->qual.noise = 0;
8242 wstats->qual.updated = 7;
8243 wstats->qual.updated |= IW_QUAL_NOISE_INVALID |
8244 IW_QUAL_QUAL_INVALID | IW_QUAL_LEVEL_INVALID;
8245 return wstats;
8246 }
8247
8248 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_PERCENT_MISSED_BCNS,
8249 &missed_beacons, &ord_len))
8250 goto fail_get_ordinal;
8251
8252 /* If we don't have a connection the quality and level is 0 */
8253 if (!(priv->status & STATUS_ASSOCIATED)) {
8254 wstats->qual.qual = 0;
8255 wstats->qual.level = 0;
8256 } else {
8257 if (ipw2100_get_ordinal(priv, IPW_ORD_RSSI_AVG_CURR,
8258 &rssi, &ord_len))
8259 goto fail_get_ordinal;
8260 wstats->qual.level = rssi + IPW2100_RSSI_TO_DBM;
8261 if (rssi < 10)
8262 rssi_qual = rssi * POOR / 10;
8263 else if (rssi < 15)
8264 rssi_qual = (rssi - 10) * (FAIR - POOR) / 5 + POOR;
8265 else if (rssi < 20)
8266 rssi_qual = (rssi - 15) * (GOOD - FAIR) / 5 + FAIR;
8267 else if (rssi < 30)
8268 rssi_qual = (rssi - 20) * (VERY_GOOD - GOOD) /
8269 10 + GOOD;
8270 else
8271 rssi_qual = (rssi - 30) * (PERFECT - VERY_GOOD) /
8272 10 + VERY_GOOD;
8273
8274 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_PERCENT_RETRIES,
8275 &tx_retries, &ord_len))
8276 goto fail_get_ordinal;
8277
8278 if (tx_retries > 75)
8279 tx_qual = (90 - tx_retries) * POOR / 15;
8280 else if (tx_retries > 70)
8281 tx_qual = (75 - tx_retries) * (FAIR - POOR) / 5 + POOR;
8282 else if (tx_retries > 65)
8283 tx_qual = (70 - tx_retries) * (GOOD - FAIR) / 5 + FAIR;
8284 else if (tx_retries > 50)
8285 tx_qual = (65 - tx_retries) * (VERY_GOOD - GOOD) /
8286 15 + GOOD;
8287 else
8288 tx_qual = (50 - tx_retries) *
8289 (PERFECT - VERY_GOOD) / 50 + VERY_GOOD;
8290
8291 if (missed_beacons > 50)
8292 beacon_qual = (60 - missed_beacons) * POOR / 10;
8293 else if (missed_beacons > 40)
8294 beacon_qual = (50 - missed_beacons) * (FAIR - POOR) /
8295 10 + POOR;
8296 else if (missed_beacons > 32)
8297 beacon_qual = (40 - missed_beacons) * (GOOD - FAIR) /
8298 18 + FAIR;
8299 else if (missed_beacons > 20)
8300 beacon_qual = (32 - missed_beacons) *
8301 (VERY_GOOD - GOOD) / 20 + GOOD;
8302 else
8303 beacon_qual = (20 - missed_beacons) *
8304 (PERFECT - VERY_GOOD) / 20 + VERY_GOOD;
8305
8306 quality = min(tx_qual, rssi_qual);
8307 quality = min(beacon_qual, quality);
8308
8309 #ifdef CONFIG_IPW2100_DEBUG
8310 if (beacon_qual == quality)
8311 IPW_DEBUG_WX("Quality clamped by Missed Beacons\n");
8312 else if (tx_qual == quality)
8313 IPW_DEBUG_WX("Quality clamped by Tx Retries\n");
8314 else if (quality != 100)
8315 IPW_DEBUG_WX("Quality clamped by Signal Strength\n");
8316 else
8317 IPW_DEBUG_WX("Quality not clamped.\n");
8318 #endif
8319
8320 wstats->qual.qual = quality;
8321 wstats->qual.level = rssi + IPW2100_RSSI_TO_DBM;
8322 }
8323
8324 wstats->qual.noise = 0;
8325 wstats->qual.updated = 7;
8326 wstats->qual.updated |= IW_QUAL_NOISE_INVALID;
8327
8328 /* FIXME: this is percent and not a # */
8329 wstats->miss.beacon = missed_beacons;
8330
8331 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURES,
8332 &tx_failures, &ord_len))
8333 goto fail_get_ordinal;
8334 wstats->discard.retries = tx_failures;
8335
8336 return wstats;
8337
8338 fail_get_ordinal:
8339 IPW_DEBUG_WX("failed querying ordinals.\n");
8340
8341 return (struct iw_statistics *)NULL;
8342 }
8343
8344 static struct iw_handler_def ipw2100_wx_handler_def = {
8345 .standard = ipw2100_wx_handlers,
8346 .num_standard = ARRAY_SIZE(ipw2100_wx_handlers),
8347 .num_private = ARRAY_SIZE(ipw2100_private_handler),
8348 .num_private_args = ARRAY_SIZE(ipw2100_private_args),
8349 .private = (iw_handler *) ipw2100_private_handler,
8350 .private_args = (struct iw_priv_args *)ipw2100_private_args,
8351 .get_wireless_stats = ipw2100_wx_wireless_stats,
8352 };
8353
8354 static void ipw2100_wx_event_work(struct work_struct *work)
8355 {
8356 struct ipw2100_priv *priv =
8357 container_of(work, struct ipw2100_priv, wx_event_work.work);
8358 union iwreq_data wrqu;
8359 unsigned int len = ETH_ALEN;
8360
8361 if (priv->status & STATUS_STOPPING)
8362 return;
8363
8364 mutex_lock(&priv->action_mutex);
8365
8366 IPW_DEBUG_WX("enter\n");
8367
8368 mutex_unlock(&priv->action_mutex);
8369
8370 wrqu.ap_addr.sa_family = ARPHRD_ETHER;
8371
8372 /* Fetch BSSID from the hardware */
8373 if (!(priv->status & (STATUS_ASSOCIATING | STATUS_ASSOCIATED)) ||
8374 priv->status & STATUS_RF_KILL_MASK ||
8375 ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID,
8376 &priv->bssid, &len)) {
8377 memset(wrqu.ap_addr.sa_data, 0, ETH_ALEN);
8378 } else {
8379 /* We now have the BSSID, so can finish setting to the full
8380 * associated state */
8381 memcpy(wrqu.ap_addr.sa_data, priv->bssid, ETH_ALEN);
8382 memcpy(priv->ieee->bssid, priv->bssid, ETH_ALEN);
8383 priv->status &= ~STATUS_ASSOCIATING;
8384 priv->status |= STATUS_ASSOCIATED;
8385 netif_carrier_on(priv->net_dev);
8386 netif_wake_queue(priv->net_dev);
8387 }
8388
8389 if (!(priv->status & STATUS_ASSOCIATED)) {
8390 IPW_DEBUG_WX("Configuring ESSID\n");
8391 mutex_lock(&priv->action_mutex);
8392 /* This is a disassociation event, so kick the firmware to
8393 * look for another AP */
8394 if (priv->config & CFG_STATIC_ESSID)
8395 ipw2100_set_essid(priv, priv->essid, priv->essid_len,
8396 0);
8397 else
8398 ipw2100_set_essid(priv, NULL, 0, 0);
8399 mutex_unlock(&priv->action_mutex);
8400 }
8401
8402 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
8403 }
8404
8405 #define IPW2100_FW_MAJOR_VERSION 1
8406 #define IPW2100_FW_MINOR_VERSION 3
8407
8408 #define IPW2100_FW_MINOR(x) ((x & 0xff) >> 8)
8409 #define IPW2100_FW_MAJOR(x) (x & 0xff)
8410
8411 #define IPW2100_FW_VERSION ((IPW2100_FW_MINOR_VERSION << 8) | \
8412 IPW2100_FW_MAJOR_VERSION)
8413
8414 #define IPW2100_FW_PREFIX "ipw2100-" __stringify(IPW2100_FW_MAJOR_VERSION) \
8415 "." __stringify(IPW2100_FW_MINOR_VERSION)
8416
8417 #define IPW2100_FW_NAME(x) IPW2100_FW_PREFIX "" x ".fw"
8418
8419 /*
8420
8421 BINARY FIRMWARE HEADER FORMAT
8422
8423 offset length desc
8424 0 2 version
8425 2 2 mode == 0:BSS,1:IBSS,2:MONITOR
8426 4 4 fw_len
8427 8 4 uc_len
8428 C fw_len firmware data
8429 12 + fw_len uc_len microcode data
8430
8431 */
8432
8433 struct ipw2100_fw_header {
8434 short version;
8435 short mode;
8436 unsigned int fw_size;
8437 unsigned int uc_size;
8438 } __packed;
8439
8440 static int ipw2100_mod_firmware_load(struct ipw2100_fw *fw)
8441 {
8442 struct ipw2100_fw_header *h =
8443 (struct ipw2100_fw_header *)fw->fw_entry->data;
8444
8445 if (IPW2100_FW_MAJOR(h->version) != IPW2100_FW_MAJOR_VERSION) {
8446 printk(KERN_WARNING DRV_NAME ": Firmware image not compatible "
8447 "(detected version id of %u). "
8448 "See Documentation/networking/README.ipw2100\n",
8449 h->version);
8450 return 1;
8451 }
8452
8453 fw->version = h->version;
8454 fw->fw.data = fw->fw_entry->data + sizeof(struct ipw2100_fw_header);
8455 fw->fw.size = h->fw_size;
8456 fw->uc.data = fw->fw.data + h->fw_size;
8457 fw->uc.size = h->uc_size;
8458
8459 return 0;
8460 }
8461
8462 static int ipw2100_get_firmware(struct ipw2100_priv *priv,
8463 struct ipw2100_fw *fw)
8464 {
8465 char *fw_name;
8466 int rc;
8467
8468 IPW_DEBUG_INFO("%s: Using hotplug firmware load.\n",
8469 priv->net_dev->name);
8470
8471 switch (priv->ieee->iw_mode) {
8472 case IW_MODE_ADHOC:
8473 fw_name = IPW2100_FW_NAME("-i");
8474 break;
8475 #ifdef CONFIG_IPW2100_MONITOR
8476 case IW_MODE_MONITOR:
8477 fw_name = IPW2100_FW_NAME("-p");
8478 break;
8479 #endif
8480 case IW_MODE_INFRA:
8481 default:
8482 fw_name = IPW2100_FW_NAME("");
8483 break;
8484 }
8485
8486 rc = request_firmware(&fw->fw_entry, fw_name, &priv->pci_dev->dev);
8487
8488 if (rc < 0) {
8489 printk(KERN_ERR DRV_NAME ": "
8490 "%s: Firmware '%s' not available or load failed.\n",
8491 priv->net_dev->name, fw_name);
8492 return rc;
8493 }
8494 IPW_DEBUG_INFO("firmware data %p size %zd\n", fw->fw_entry->data,
8495 fw->fw_entry->size);
8496
8497 ipw2100_mod_firmware_load(fw);
8498
8499 return 0;
8500 }
8501
8502 MODULE_FIRMWARE(IPW2100_FW_NAME("-i"));
8503 #ifdef CONFIG_IPW2100_MONITOR
8504 MODULE_FIRMWARE(IPW2100_FW_NAME("-p"));
8505 #endif
8506 MODULE_FIRMWARE(IPW2100_FW_NAME(""));
8507
8508 static void ipw2100_release_firmware(struct ipw2100_priv *priv,
8509 struct ipw2100_fw *fw)
8510 {
8511 fw->version = 0;
8512 release_firmware(fw->fw_entry);
8513 fw->fw_entry = NULL;
8514 }
8515
8516 static int ipw2100_get_fwversion(struct ipw2100_priv *priv, char *buf,
8517 size_t max)
8518 {
8519 char ver[MAX_FW_VERSION_LEN];
8520 u32 len = MAX_FW_VERSION_LEN;
8521 u32 tmp;
8522 int i;
8523 /* firmware version is an ascii string (max len of 14) */
8524 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_FW_VER_NUM, ver, &len))
8525 return -EIO;
8526 tmp = max;
8527 if (len >= max)
8528 len = max - 1;
8529 for (i = 0; i < len; i++)
8530 buf[i] = ver[i];
8531 buf[i] = '\0';
8532 return tmp;
8533 }
8534
8535 static int ipw2100_get_ucodeversion(struct ipw2100_priv *priv, char *buf,
8536 size_t max)
8537 {
8538 u32 ver;
8539 u32 len = sizeof(ver);
8540 /* microcode version is a 32 bit integer */
8541 if (ipw2100_get_ordinal(priv, IPW_ORD_UCODE_VERSION, &ver, &len))
8542 return -EIO;
8543 return snprintf(buf, max, "%08X", ver);
8544 }
8545
8546 /*
8547 * On exit, the firmware will have been freed from the fw list
8548 */
8549 static int ipw2100_fw_download(struct ipw2100_priv *priv, struct ipw2100_fw *fw)
8550 {
8551 /* firmware is constructed of N contiguous entries, each entry is
8552 * structured as:
8553 *
8554 * offset sie desc
8555 * 0 4 address to write to
8556 * 4 2 length of data run
8557 * 6 length data
8558 */
8559 unsigned int addr;
8560 unsigned short len;
8561
8562 const unsigned char *firmware_data = fw->fw.data;
8563 unsigned int firmware_data_left = fw->fw.size;
8564
8565 while (firmware_data_left > 0) {
8566 addr = *(u32 *) (firmware_data);
8567 firmware_data += 4;
8568 firmware_data_left -= 4;
8569
8570 len = *(u16 *) (firmware_data);
8571 firmware_data += 2;
8572 firmware_data_left -= 2;
8573
8574 if (len > 32) {
8575 printk(KERN_ERR DRV_NAME ": "
8576 "Invalid firmware run-length of %d bytes\n",
8577 len);
8578 return -EINVAL;
8579 }
8580
8581 write_nic_memory(priv->net_dev, addr, len, firmware_data);
8582 firmware_data += len;
8583 firmware_data_left -= len;
8584 }
8585
8586 return 0;
8587 }
8588
8589 struct symbol_alive_response {
8590 u8 cmd_id;
8591 u8 seq_num;
8592 u8 ucode_rev;
8593 u8 eeprom_valid;
8594 u16 valid_flags;
8595 u8 IEEE_addr[6];
8596 u16 flags;
8597 u16 pcb_rev;
8598 u16 clock_settle_time; // 1us LSB
8599 u16 powerup_settle_time; // 1us LSB
8600 u16 hop_settle_time; // 1us LSB
8601 u8 date[3]; // month, day, year
8602 u8 time[2]; // hours, minutes
8603 u8 ucode_valid;
8604 };
8605
8606 static int ipw2100_ucode_download(struct ipw2100_priv *priv,
8607 struct ipw2100_fw *fw)
8608 {
8609 struct net_device *dev = priv->net_dev;
8610 const unsigned char *microcode_data = fw->uc.data;
8611 unsigned int microcode_data_left = fw->uc.size;
8612 void __iomem *reg = priv->ioaddr;
8613
8614 struct symbol_alive_response response;
8615 int i, j;
8616 u8 data;
8617
8618 /* Symbol control */
8619 write_nic_word(dev, IPW2100_CONTROL_REG, 0x703);
8620 readl(reg);
8621 write_nic_word(dev, IPW2100_CONTROL_REG, 0x707);
8622 readl(reg);
8623
8624 /* HW config */
8625 write_nic_byte(dev, 0x210014, 0x72); /* fifo width =16 */
8626 readl(reg);
8627 write_nic_byte(dev, 0x210014, 0x72); /* fifo width =16 */
8628 readl(reg);
8629
8630 /* EN_CS_ACCESS bit to reset control store pointer */
8631 write_nic_byte(dev, 0x210000, 0x40);
8632 readl(reg);
8633 write_nic_byte(dev, 0x210000, 0x0);
8634 readl(reg);
8635 write_nic_byte(dev, 0x210000, 0x40);
8636 readl(reg);
8637
8638 /* copy microcode from buffer into Symbol */
8639
8640 while (microcode_data_left > 0) {
8641 write_nic_byte(dev, 0x210010, *microcode_data++);
8642 write_nic_byte(dev, 0x210010, *microcode_data++);
8643 microcode_data_left -= 2;
8644 }
8645
8646 /* EN_CS_ACCESS bit to reset the control store pointer */
8647 write_nic_byte(dev, 0x210000, 0x0);
8648 readl(reg);
8649
8650 /* Enable System (Reg 0)
8651 * first enable causes garbage in RX FIFO */
8652 write_nic_byte(dev, 0x210000, 0x0);
8653 readl(reg);
8654 write_nic_byte(dev, 0x210000, 0x80);
8655 readl(reg);
8656
8657 /* Reset External Baseband Reg */
8658 write_nic_word(dev, IPW2100_CONTROL_REG, 0x703);
8659 readl(reg);
8660 write_nic_word(dev, IPW2100_CONTROL_REG, 0x707);
8661 readl(reg);
8662
8663 /* HW Config (Reg 5) */
8664 write_nic_byte(dev, 0x210014, 0x72); // fifo width =16
8665 readl(reg);
8666 write_nic_byte(dev, 0x210014, 0x72); // fifo width =16
8667 readl(reg);
8668
8669 /* Enable System (Reg 0)
8670 * second enable should be OK */
8671 write_nic_byte(dev, 0x210000, 0x00); // clear enable system
8672 readl(reg);
8673 write_nic_byte(dev, 0x210000, 0x80); // set enable system
8674
8675 /* check Symbol is enabled - upped this from 5 as it wasn't always
8676 * catching the update */
8677 for (i = 0; i < 10; i++) {
8678 udelay(10);
8679
8680 /* check Dino is enabled bit */
8681 read_nic_byte(dev, 0x210000, &data);
8682 if (data & 0x1)
8683 break;
8684 }
8685
8686 if (i == 10) {
8687 printk(KERN_ERR DRV_NAME ": %s: Error initializing Symbol\n",
8688 dev->name);
8689 return -EIO;
8690 }
8691
8692 /* Get Symbol alive response */
8693 for (i = 0; i < 30; i++) {
8694 /* Read alive response structure */
8695 for (j = 0;
8696 j < (sizeof(struct symbol_alive_response) >> 1); j++)
8697 read_nic_word(dev, 0x210004, ((u16 *) & response) + j);
8698
8699 if ((response.cmd_id == 1) && (response.ucode_valid == 0x1))
8700 break;
8701 udelay(10);
8702 }
8703
8704 if (i == 30) {
8705 printk(KERN_ERR DRV_NAME
8706 ": %s: No response from Symbol - hw not alive\n",
8707 dev->name);
8708 printk_buf(IPW_DL_ERROR, (u8 *) & response, sizeof(response));
8709 return -EIO;
8710 }
8711
8712 return 0;
8713 }