Merge branch 'linus'
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / net / wireless / ipw2100.c
1 /******************************************************************************
2
3 Copyright(c) 2003 - 2006 Intel Corporation. All rights reserved.
4
5 This program is free software; you can redistribute it and/or modify it
6 under the terms of version 2 of the GNU General Public License as
7 published by the Free Software Foundation.
8
9 This program is distributed in the hope that it will be useful, but WITHOUT
10 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 more details.
13
14 You should have received a copy of the GNU General Public License along with
15 this program; if not, write to the Free Software Foundation, Inc., 59
16 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17
18 The full GNU General Public License is included in this distribution in the
19 file called LICENSE.
20
21 Contact Information:
22 James P. Ketrenos <ipw2100-admin@linux.intel.com>
23 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24
25 Portions of this file are based on the sample_* files provided by Wireless
26 Extensions 0.26 package and copyright (c) 1997-2003 Jean Tourrilhes
27 <jt@hpl.hp.com>
28
29 Portions of this file are based on the Host AP project,
30 Copyright (c) 2001-2002, SSH Communications Security Corp and Jouni Malinen
31 <jkmaline@cc.hut.fi>
32 Copyright (c) 2002-2003, Jouni Malinen <jkmaline@cc.hut.fi>
33
34 Portions of ipw2100_mod_firmware_load, ipw2100_do_mod_firmware_load, and
35 ipw2100_fw_load are loosely based on drivers/sound/sound_firmware.c
36 available in the 2.4.25 kernel sources, and are copyright (c) Alan Cox
37
38 ******************************************************************************/
39 /*
40
41 Initial driver on which this is based was developed by Janusz Gorycki,
42 Maciej Urbaniak, and Maciej Sosnowski.
43
44 Promiscuous mode support added by Jacek Wysoczynski and Maciej Urbaniak.
45
46 Theory of Operation
47
48 Tx - Commands and Data
49
50 Firmware and host share a circular queue of Transmit Buffer Descriptors (TBDs)
51 Each TBD contains a pointer to the physical (dma_addr_t) address of data being
52 sent to the firmware as well as the length of the data.
53
54 The host writes to the TBD queue at the WRITE index. The WRITE index points
55 to the _next_ packet to be written and is advanced when after the TBD has been
56 filled.
57
58 The firmware pulls from the TBD queue at the READ index. The READ index points
59 to the currently being read entry, and is advanced once the firmware is
60 done with a packet.
61
62 When data is sent to the firmware, the first TBD is used to indicate to the
63 firmware if a Command or Data is being sent. If it is Command, all of the
64 command information is contained within the physical address referred to by the
65 TBD. If it is Data, the first TBD indicates the type of data packet, number
66 of fragments, etc. The next TBD then referrs to the actual packet location.
67
68 The Tx flow cycle is as follows:
69
70 1) ipw2100_tx() is called by kernel with SKB to transmit
71 2) Packet is move from the tx_free_list and appended to the transmit pending
72 list (tx_pend_list)
73 3) work is scheduled to move pending packets into the shared circular queue.
74 4) when placing packet in the circular queue, the incoming SKB is DMA mapped
75 to a physical address. That address is entered into a TBD. Two TBDs are
76 filled out. The first indicating a data packet, the second referring to the
77 actual payload data.
78 5) the packet is removed from tx_pend_list and placed on the end of the
79 firmware pending list (fw_pend_list)
80 6) firmware is notified that the WRITE index has
81 7) Once the firmware has processed the TBD, INTA is triggered.
82 8) For each Tx interrupt received from the firmware, the READ index is checked
83 to see which TBDs are done being processed.
84 9) For each TBD that has been processed, the ISR pulls the oldest packet
85 from the fw_pend_list.
86 10)The packet structure contained in the fw_pend_list is then used
87 to unmap the DMA address and to free the SKB originally passed to the driver
88 from the kernel.
89 11)The packet structure is placed onto the tx_free_list
90
91 The above steps are the same for commands, only the msg_free_list/msg_pend_list
92 are used instead of tx_free_list/tx_pend_list
93
94 ...
95
96 Critical Sections / Locking :
97
98 There are two locks utilized. The first is the low level lock (priv->low_lock)
99 that protects the following:
100
101 - Access to the Tx/Rx queue lists via priv->low_lock. The lists are as follows:
102
103 tx_free_list : Holds pre-allocated Tx buffers.
104 TAIL modified in __ipw2100_tx_process()
105 HEAD modified in ipw2100_tx()
106
107 tx_pend_list : Holds used Tx buffers waiting to go into the TBD ring
108 TAIL modified ipw2100_tx()
109 HEAD modified by ipw2100_tx_send_data()
110
111 msg_free_list : Holds pre-allocated Msg (Command) buffers
112 TAIL modified in __ipw2100_tx_process()
113 HEAD modified in ipw2100_hw_send_command()
114
115 msg_pend_list : Holds used Msg buffers waiting to go into the TBD ring
116 TAIL modified in ipw2100_hw_send_command()
117 HEAD modified in ipw2100_tx_send_commands()
118
119 The flow of data on the TX side is as follows:
120
121 MSG_FREE_LIST + COMMAND => MSG_PEND_LIST => TBD => MSG_FREE_LIST
122 TX_FREE_LIST + DATA => TX_PEND_LIST => TBD => TX_FREE_LIST
123
124 The methods that work on the TBD ring are protected via priv->low_lock.
125
126 - The internal data state of the device itself
127 - Access to the firmware read/write indexes for the BD queues
128 and associated logic
129
130 All external entry functions are locked with the priv->action_lock to ensure
131 that only one external action is invoked at a time.
132
133
134 */
135
136 #include <linux/compiler.h>
137 #include <linux/config.h>
138 #include <linux/errno.h>
139 #include <linux/if_arp.h>
140 #include <linux/in6.h>
141 #include <linux/in.h>
142 #include <linux/ip.h>
143 #include <linux/kernel.h>
144 #include <linux/kmod.h>
145 #include <linux/module.h>
146 #include <linux/netdevice.h>
147 #include <linux/ethtool.h>
148 #include <linux/pci.h>
149 #include <linux/dma-mapping.h>
150 #include <linux/proc_fs.h>
151 #include <linux/skbuff.h>
152 #include <asm/uaccess.h>
153 #include <asm/io.h>
154 #define __KERNEL_SYSCALLS__
155 #include <linux/fs.h>
156 #include <linux/mm.h>
157 #include <linux/slab.h>
158 #include <linux/unistd.h>
159 #include <linux/stringify.h>
160 #include <linux/tcp.h>
161 #include <linux/types.h>
162 #include <linux/version.h>
163 #include <linux/time.h>
164 #include <linux/firmware.h>
165 #include <linux/acpi.h>
166 #include <linux/ctype.h>
167
168 #include "ipw2100.h"
169
170 #define IPW2100_VERSION "git-1.2.2"
171
172 #define DRV_NAME "ipw2100"
173 #define DRV_VERSION IPW2100_VERSION
174 #define DRV_DESCRIPTION "Intel(R) PRO/Wireless 2100 Network Driver"
175 #define DRV_COPYRIGHT "Copyright(c) 2003-2006 Intel Corporation"
176
177 /* Debugging stuff */
178 #ifdef CONFIG_IPW2100_DEBUG
179 #define CONFIG_IPW2100_RX_DEBUG /* Reception debugging */
180 #endif
181
182 MODULE_DESCRIPTION(DRV_DESCRIPTION);
183 MODULE_VERSION(DRV_VERSION);
184 MODULE_AUTHOR(DRV_COPYRIGHT);
185 MODULE_LICENSE("GPL");
186
187 static int debug = 0;
188 static int mode = 0;
189 static int channel = 0;
190 static int associate = 1;
191 static int disable = 0;
192 #ifdef CONFIG_PM
193 static struct ipw2100_fw ipw2100_firmware;
194 #endif
195
196 #include <linux/moduleparam.h>
197 module_param(debug, int, 0444);
198 module_param(mode, int, 0444);
199 module_param(channel, int, 0444);
200 module_param(associate, int, 0444);
201 module_param(disable, int, 0444);
202
203 MODULE_PARM_DESC(debug, "debug level");
204 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS,2=Monitor)");
205 MODULE_PARM_DESC(channel, "channel");
206 MODULE_PARM_DESC(associate, "auto associate when scanning (default on)");
207 MODULE_PARM_DESC(disable, "manually disable the radio (default 0 [radio on])");
208
209 static u32 ipw2100_debug_level = IPW_DL_NONE;
210
211 #ifdef CONFIG_IPW2100_DEBUG
212 #define IPW_DEBUG(level, message...) \
213 do { \
214 if (ipw2100_debug_level & (level)) { \
215 printk(KERN_DEBUG "ipw2100: %c %s ", \
216 in_interrupt() ? 'I' : 'U', __FUNCTION__); \
217 printk(message); \
218 } \
219 } while (0)
220 #else
221 #define IPW_DEBUG(level, message...) do {} while (0)
222 #endif /* CONFIG_IPW2100_DEBUG */
223
224 #ifdef CONFIG_IPW2100_DEBUG
225 static const char *command_types[] = {
226 "undefined",
227 "unused", /* HOST_ATTENTION */
228 "HOST_COMPLETE",
229 "unused", /* SLEEP */
230 "unused", /* HOST_POWER_DOWN */
231 "unused",
232 "SYSTEM_CONFIG",
233 "unused", /* SET_IMR */
234 "SSID",
235 "MANDATORY_BSSID",
236 "AUTHENTICATION_TYPE",
237 "ADAPTER_ADDRESS",
238 "PORT_TYPE",
239 "INTERNATIONAL_MODE",
240 "CHANNEL",
241 "RTS_THRESHOLD",
242 "FRAG_THRESHOLD",
243 "POWER_MODE",
244 "TX_RATES",
245 "BASIC_TX_RATES",
246 "WEP_KEY_INFO",
247 "unused",
248 "unused",
249 "unused",
250 "unused",
251 "WEP_KEY_INDEX",
252 "WEP_FLAGS",
253 "ADD_MULTICAST",
254 "CLEAR_ALL_MULTICAST",
255 "BEACON_INTERVAL",
256 "ATIM_WINDOW",
257 "CLEAR_STATISTICS",
258 "undefined",
259 "undefined",
260 "undefined",
261 "undefined",
262 "TX_POWER_INDEX",
263 "undefined",
264 "undefined",
265 "undefined",
266 "undefined",
267 "undefined",
268 "undefined",
269 "BROADCAST_SCAN",
270 "CARD_DISABLE",
271 "PREFERRED_BSSID",
272 "SET_SCAN_OPTIONS",
273 "SCAN_DWELL_TIME",
274 "SWEEP_TABLE",
275 "AP_OR_STATION_TABLE",
276 "GROUP_ORDINALS",
277 "SHORT_RETRY_LIMIT",
278 "LONG_RETRY_LIMIT",
279 "unused", /* SAVE_CALIBRATION */
280 "unused", /* RESTORE_CALIBRATION */
281 "undefined",
282 "undefined",
283 "undefined",
284 "HOST_PRE_POWER_DOWN",
285 "unused", /* HOST_INTERRUPT_COALESCING */
286 "undefined",
287 "CARD_DISABLE_PHY_OFF",
288 "MSDU_TX_RATES" "undefined",
289 "undefined",
290 "SET_STATION_STAT_BITS",
291 "CLEAR_STATIONS_STAT_BITS",
292 "LEAP_ROGUE_MODE",
293 "SET_SECURITY_INFORMATION",
294 "DISASSOCIATION_BSSID",
295 "SET_WPA_ASS_IE"
296 };
297 #endif
298
299 /* Pre-decl until we get the code solid and then we can clean it up */
300 static void ipw2100_tx_send_commands(struct ipw2100_priv *priv);
301 static void ipw2100_tx_send_data(struct ipw2100_priv *priv);
302 static int ipw2100_adapter_setup(struct ipw2100_priv *priv);
303
304 static void ipw2100_queues_initialize(struct ipw2100_priv *priv);
305 static void ipw2100_queues_free(struct ipw2100_priv *priv);
306 static int ipw2100_queues_allocate(struct ipw2100_priv *priv);
307
308 static int ipw2100_fw_download(struct ipw2100_priv *priv,
309 struct ipw2100_fw *fw);
310 static int ipw2100_get_firmware(struct ipw2100_priv *priv,
311 struct ipw2100_fw *fw);
312 static int ipw2100_get_fwversion(struct ipw2100_priv *priv, char *buf,
313 size_t max);
314 static int ipw2100_get_ucodeversion(struct ipw2100_priv *priv, char *buf,
315 size_t max);
316 static void ipw2100_release_firmware(struct ipw2100_priv *priv,
317 struct ipw2100_fw *fw);
318 static int ipw2100_ucode_download(struct ipw2100_priv *priv,
319 struct ipw2100_fw *fw);
320 static void ipw2100_wx_event_work(struct ipw2100_priv *priv);
321 static struct iw_statistics *ipw2100_wx_wireless_stats(struct net_device *dev);
322 static struct iw_handler_def ipw2100_wx_handler_def;
323
324 static inline void read_register(struct net_device *dev, u32 reg, u32 * val)
325 {
326 *val = readl((void __iomem *)(dev->base_addr + reg));
327 IPW_DEBUG_IO("r: 0x%08X => 0x%08X\n", reg, *val);
328 }
329
330 static inline void write_register(struct net_device *dev, u32 reg, u32 val)
331 {
332 writel(val, (void __iomem *)(dev->base_addr + reg));
333 IPW_DEBUG_IO("w: 0x%08X <= 0x%08X\n", reg, val);
334 }
335
336 static inline void read_register_word(struct net_device *dev, u32 reg,
337 u16 * val)
338 {
339 *val = readw((void __iomem *)(dev->base_addr + reg));
340 IPW_DEBUG_IO("r: 0x%08X => %04X\n", reg, *val);
341 }
342
343 static inline void read_register_byte(struct net_device *dev, u32 reg, u8 * val)
344 {
345 *val = readb((void __iomem *)(dev->base_addr + reg));
346 IPW_DEBUG_IO("r: 0x%08X => %02X\n", reg, *val);
347 }
348
349 static inline void write_register_word(struct net_device *dev, u32 reg, u16 val)
350 {
351 writew(val, (void __iomem *)(dev->base_addr + reg));
352 IPW_DEBUG_IO("w: 0x%08X <= %04X\n", reg, val);
353 }
354
355 static inline void write_register_byte(struct net_device *dev, u32 reg, u8 val)
356 {
357 writeb(val, (void __iomem *)(dev->base_addr + reg));
358 IPW_DEBUG_IO("w: 0x%08X =< %02X\n", reg, val);
359 }
360
361 static inline void read_nic_dword(struct net_device *dev, u32 addr, u32 * val)
362 {
363 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
364 addr & IPW_REG_INDIRECT_ADDR_MASK);
365 read_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
366 }
367
368 static inline void write_nic_dword(struct net_device *dev, u32 addr, u32 val)
369 {
370 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
371 addr & IPW_REG_INDIRECT_ADDR_MASK);
372 write_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
373 }
374
375 static inline void read_nic_word(struct net_device *dev, u32 addr, u16 * val)
376 {
377 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
378 addr & IPW_REG_INDIRECT_ADDR_MASK);
379 read_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
380 }
381
382 static inline void write_nic_word(struct net_device *dev, u32 addr, u16 val)
383 {
384 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
385 addr & IPW_REG_INDIRECT_ADDR_MASK);
386 write_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
387 }
388
389 static inline void read_nic_byte(struct net_device *dev, u32 addr, u8 * val)
390 {
391 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
392 addr & IPW_REG_INDIRECT_ADDR_MASK);
393 read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
394 }
395
396 static inline void write_nic_byte(struct net_device *dev, u32 addr, u8 val)
397 {
398 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
399 addr & IPW_REG_INDIRECT_ADDR_MASK);
400 write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
401 }
402
403 static inline void write_nic_auto_inc_address(struct net_device *dev, u32 addr)
404 {
405 write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS,
406 addr & IPW_REG_INDIRECT_ADDR_MASK);
407 }
408
409 static inline void write_nic_dword_auto_inc(struct net_device *dev, u32 val)
410 {
411 write_register(dev, IPW_REG_AUTOINCREMENT_DATA, val);
412 }
413
414 static void write_nic_memory(struct net_device *dev, u32 addr, u32 len,
415 const u8 * buf)
416 {
417 u32 aligned_addr;
418 u32 aligned_len;
419 u32 dif_len;
420 u32 i;
421
422 /* read first nibble byte by byte */
423 aligned_addr = addr & (~0x3);
424 dif_len = addr - aligned_addr;
425 if (dif_len) {
426 /* Start reading at aligned_addr + dif_len */
427 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
428 aligned_addr);
429 for (i = dif_len; i < 4; i++, buf++)
430 write_register_byte(dev,
431 IPW_REG_INDIRECT_ACCESS_DATA + i,
432 *buf);
433
434 len -= dif_len;
435 aligned_addr += 4;
436 }
437
438 /* read DWs through autoincrement registers */
439 write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr);
440 aligned_len = len & (~0x3);
441 for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4)
442 write_register(dev, IPW_REG_AUTOINCREMENT_DATA, *(u32 *) buf);
443
444 /* copy the last nibble */
445 dif_len = len - aligned_len;
446 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr);
447 for (i = 0; i < dif_len; i++, buf++)
448 write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i,
449 *buf);
450 }
451
452 static void read_nic_memory(struct net_device *dev, u32 addr, u32 len,
453 u8 * buf)
454 {
455 u32 aligned_addr;
456 u32 aligned_len;
457 u32 dif_len;
458 u32 i;
459
460 /* read first nibble byte by byte */
461 aligned_addr = addr & (~0x3);
462 dif_len = addr - aligned_addr;
463 if (dif_len) {
464 /* Start reading at aligned_addr + dif_len */
465 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
466 aligned_addr);
467 for (i = dif_len; i < 4; i++, buf++)
468 read_register_byte(dev,
469 IPW_REG_INDIRECT_ACCESS_DATA + i,
470 buf);
471
472 len -= dif_len;
473 aligned_addr += 4;
474 }
475
476 /* read DWs through autoincrement registers */
477 write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr);
478 aligned_len = len & (~0x3);
479 for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4)
480 read_register(dev, IPW_REG_AUTOINCREMENT_DATA, (u32 *) buf);
481
482 /* copy the last nibble */
483 dif_len = len - aligned_len;
484 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr);
485 for (i = 0; i < dif_len; i++, buf++)
486 read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i, buf);
487 }
488
489 static inline int ipw2100_hw_is_adapter_in_system(struct net_device *dev)
490 {
491 return (dev->base_addr &&
492 (readl
493 ((void __iomem *)(dev->base_addr +
494 IPW_REG_DOA_DEBUG_AREA_START))
495 == IPW_DATA_DOA_DEBUG_VALUE));
496 }
497
498 static int ipw2100_get_ordinal(struct ipw2100_priv *priv, u32 ord,
499 void *val, u32 * len)
500 {
501 struct ipw2100_ordinals *ordinals = &priv->ordinals;
502 u32 addr;
503 u32 field_info;
504 u16 field_len;
505 u16 field_count;
506 u32 total_length;
507
508 if (ordinals->table1_addr == 0) {
509 printk(KERN_WARNING DRV_NAME ": attempt to use fw ordinals "
510 "before they have been loaded.\n");
511 return -EINVAL;
512 }
513
514 if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) {
515 if (*len < IPW_ORD_TAB_1_ENTRY_SIZE) {
516 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
517
518 printk(KERN_WARNING DRV_NAME
519 ": ordinal buffer length too small, need %zd\n",
520 IPW_ORD_TAB_1_ENTRY_SIZE);
521
522 return -EINVAL;
523 }
524
525 read_nic_dword(priv->net_dev,
526 ordinals->table1_addr + (ord << 2), &addr);
527 read_nic_dword(priv->net_dev, addr, val);
528
529 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
530
531 return 0;
532 }
533
534 if (IS_ORDINAL_TABLE_TWO(ordinals, ord)) {
535
536 ord -= IPW_START_ORD_TAB_2;
537
538 /* get the address of statistic */
539 read_nic_dword(priv->net_dev,
540 ordinals->table2_addr + (ord << 3), &addr);
541
542 /* get the second DW of statistics ;
543 * two 16-bit words - first is length, second is count */
544 read_nic_dword(priv->net_dev,
545 ordinals->table2_addr + (ord << 3) + sizeof(u32),
546 &field_info);
547
548 /* get each entry length */
549 field_len = *((u16 *) & field_info);
550
551 /* get number of entries */
552 field_count = *(((u16 *) & field_info) + 1);
553
554 /* abort if no enought memory */
555 total_length = field_len * field_count;
556 if (total_length > *len) {
557 *len = total_length;
558 return -EINVAL;
559 }
560
561 *len = total_length;
562 if (!total_length)
563 return 0;
564
565 /* read the ordinal data from the SRAM */
566 read_nic_memory(priv->net_dev, addr, total_length, val);
567
568 return 0;
569 }
570
571 printk(KERN_WARNING DRV_NAME ": ordinal %d neither in table 1 nor "
572 "in table 2\n", ord);
573
574 return -EINVAL;
575 }
576
577 static int ipw2100_set_ordinal(struct ipw2100_priv *priv, u32 ord, u32 * val,
578 u32 * len)
579 {
580 struct ipw2100_ordinals *ordinals = &priv->ordinals;
581 u32 addr;
582
583 if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) {
584 if (*len != IPW_ORD_TAB_1_ENTRY_SIZE) {
585 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
586 IPW_DEBUG_INFO("wrong size\n");
587 return -EINVAL;
588 }
589
590 read_nic_dword(priv->net_dev,
591 ordinals->table1_addr + (ord << 2), &addr);
592
593 write_nic_dword(priv->net_dev, addr, *val);
594
595 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
596
597 return 0;
598 }
599
600 IPW_DEBUG_INFO("wrong table\n");
601 if (IS_ORDINAL_TABLE_TWO(ordinals, ord))
602 return -EINVAL;
603
604 return -EINVAL;
605 }
606
607 static char *snprint_line(char *buf, size_t count,
608 const u8 * data, u32 len, u32 ofs)
609 {
610 int out, i, j, l;
611 char c;
612
613 out = snprintf(buf, count, "%08X", ofs);
614
615 for (l = 0, i = 0; i < 2; i++) {
616 out += snprintf(buf + out, count - out, " ");
617 for (j = 0; j < 8 && l < len; j++, l++)
618 out += snprintf(buf + out, count - out, "%02X ",
619 data[(i * 8 + j)]);
620 for (; j < 8; j++)
621 out += snprintf(buf + out, count - out, " ");
622 }
623
624 out += snprintf(buf + out, count - out, " ");
625 for (l = 0, i = 0; i < 2; i++) {
626 out += snprintf(buf + out, count - out, " ");
627 for (j = 0; j < 8 && l < len; j++, l++) {
628 c = data[(i * 8 + j)];
629 if (!isascii(c) || !isprint(c))
630 c = '.';
631
632 out += snprintf(buf + out, count - out, "%c", c);
633 }
634
635 for (; j < 8; j++)
636 out += snprintf(buf + out, count - out, " ");
637 }
638
639 return buf;
640 }
641
642 static void printk_buf(int level, const u8 * data, u32 len)
643 {
644 char line[81];
645 u32 ofs = 0;
646 if (!(ipw2100_debug_level & level))
647 return;
648
649 while (len) {
650 printk(KERN_DEBUG "%s\n",
651 snprint_line(line, sizeof(line), &data[ofs],
652 min(len, 16U), ofs));
653 ofs += 16;
654 len -= min(len, 16U);
655 }
656 }
657
658 #define MAX_RESET_BACKOFF 10
659
660 static void schedule_reset(struct ipw2100_priv *priv)
661 {
662 unsigned long now = get_seconds();
663
664 /* If we haven't received a reset request within the backoff period,
665 * then we can reset the backoff interval so this reset occurs
666 * immediately */
667 if (priv->reset_backoff &&
668 (now - priv->last_reset > priv->reset_backoff))
669 priv->reset_backoff = 0;
670
671 priv->last_reset = get_seconds();
672
673 if (!(priv->status & STATUS_RESET_PENDING)) {
674 IPW_DEBUG_INFO("%s: Scheduling firmware restart (%ds).\n",
675 priv->net_dev->name, priv->reset_backoff);
676 netif_carrier_off(priv->net_dev);
677 netif_stop_queue(priv->net_dev);
678 priv->status |= STATUS_RESET_PENDING;
679 if (priv->reset_backoff)
680 queue_delayed_work(priv->workqueue, &priv->reset_work,
681 priv->reset_backoff * HZ);
682 else
683 queue_work(priv->workqueue, &priv->reset_work);
684
685 if (priv->reset_backoff < MAX_RESET_BACKOFF)
686 priv->reset_backoff++;
687
688 wake_up_interruptible(&priv->wait_command_queue);
689 } else
690 IPW_DEBUG_INFO("%s: Firmware restart already in progress.\n",
691 priv->net_dev->name);
692
693 }
694
695 #define HOST_COMPLETE_TIMEOUT (2 * HZ)
696 static int ipw2100_hw_send_command(struct ipw2100_priv *priv,
697 struct host_command *cmd)
698 {
699 struct list_head *element;
700 struct ipw2100_tx_packet *packet;
701 unsigned long flags;
702 int err = 0;
703
704 IPW_DEBUG_HC("Sending %s command (#%d), %d bytes\n",
705 command_types[cmd->host_command], cmd->host_command,
706 cmd->host_command_length);
707 printk_buf(IPW_DL_HC, (u8 *) cmd->host_command_parameters,
708 cmd->host_command_length);
709
710 spin_lock_irqsave(&priv->low_lock, flags);
711
712 if (priv->fatal_error) {
713 IPW_DEBUG_INFO
714 ("Attempt to send command while hardware in fatal error condition.\n");
715 err = -EIO;
716 goto fail_unlock;
717 }
718
719 if (!(priv->status & STATUS_RUNNING)) {
720 IPW_DEBUG_INFO
721 ("Attempt to send command while hardware is not running.\n");
722 err = -EIO;
723 goto fail_unlock;
724 }
725
726 if (priv->status & STATUS_CMD_ACTIVE) {
727 IPW_DEBUG_INFO
728 ("Attempt to send command while another command is pending.\n");
729 err = -EBUSY;
730 goto fail_unlock;
731 }
732
733 if (list_empty(&priv->msg_free_list)) {
734 IPW_DEBUG_INFO("no available msg buffers\n");
735 goto fail_unlock;
736 }
737
738 priv->status |= STATUS_CMD_ACTIVE;
739 priv->messages_sent++;
740
741 element = priv->msg_free_list.next;
742
743 packet = list_entry(element, struct ipw2100_tx_packet, list);
744 packet->jiffy_start = jiffies;
745
746 /* initialize the firmware command packet */
747 packet->info.c_struct.cmd->host_command_reg = cmd->host_command;
748 packet->info.c_struct.cmd->host_command_reg1 = cmd->host_command1;
749 packet->info.c_struct.cmd->host_command_len_reg =
750 cmd->host_command_length;
751 packet->info.c_struct.cmd->sequence = cmd->host_command_sequence;
752
753 memcpy(packet->info.c_struct.cmd->host_command_params_reg,
754 cmd->host_command_parameters,
755 sizeof(packet->info.c_struct.cmd->host_command_params_reg));
756
757 list_del(element);
758 DEC_STAT(&priv->msg_free_stat);
759
760 list_add_tail(element, &priv->msg_pend_list);
761 INC_STAT(&priv->msg_pend_stat);
762
763 ipw2100_tx_send_commands(priv);
764 ipw2100_tx_send_data(priv);
765
766 spin_unlock_irqrestore(&priv->low_lock, flags);
767
768 /*
769 * We must wait for this command to complete before another
770 * command can be sent... but if we wait more than 3 seconds
771 * then there is a problem.
772 */
773
774 err =
775 wait_event_interruptible_timeout(priv->wait_command_queue,
776 !(priv->
777 status & STATUS_CMD_ACTIVE),
778 HOST_COMPLETE_TIMEOUT);
779
780 if (err == 0) {
781 IPW_DEBUG_INFO("Command completion failed out after %dms.\n",
782 1000 * (HOST_COMPLETE_TIMEOUT / HZ));
783 priv->fatal_error = IPW2100_ERR_MSG_TIMEOUT;
784 priv->status &= ~STATUS_CMD_ACTIVE;
785 schedule_reset(priv);
786 return -EIO;
787 }
788
789 if (priv->fatal_error) {
790 printk(KERN_WARNING DRV_NAME ": %s: firmware fatal error\n",
791 priv->net_dev->name);
792 return -EIO;
793 }
794
795 /* !!!!! HACK TEST !!!!!
796 * When lots of debug trace statements are enabled, the driver
797 * doesn't seem to have as many firmware restart cycles...
798 *
799 * As a test, we're sticking in a 1/100s delay here */
800 schedule_timeout_uninterruptible(msecs_to_jiffies(10));
801
802 return 0;
803
804 fail_unlock:
805 spin_unlock_irqrestore(&priv->low_lock, flags);
806
807 return err;
808 }
809
810 /*
811 * Verify the values and data access of the hardware
812 * No locks needed or used. No functions called.
813 */
814 static int ipw2100_verify(struct ipw2100_priv *priv)
815 {
816 u32 data1, data2;
817 u32 address;
818
819 u32 val1 = 0x76543210;
820 u32 val2 = 0xFEDCBA98;
821
822 /* Domain 0 check - all values should be DOA_DEBUG */
823 for (address = IPW_REG_DOA_DEBUG_AREA_START;
824 address < IPW_REG_DOA_DEBUG_AREA_END; address += sizeof(u32)) {
825 read_register(priv->net_dev, address, &data1);
826 if (data1 != IPW_DATA_DOA_DEBUG_VALUE)
827 return -EIO;
828 }
829
830 /* Domain 1 check - use arbitrary read/write compare */
831 for (address = 0; address < 5; address++) {
832 /* The memory area is not used now */
833 write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32,
834 val1);
835 write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36,
836 val2);
837 read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32,
838 &data1);
839 read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36,
840 &data2);
841 if (val1 == data1 && val2 == data2)
842 return 0;
843 }
844
845 return -EIO;
846 }
847
848 /*
849 *
850 * Loop until the CARD_DISABLED bit is the same value as the
851 * supplied parameter
852 *
853 * TODO: See if it would be more efficient to do a wait/wake
854 * cycle and have the completion event trigger the wakeup
855 *
856 */
857 #define IPW_CARD_DISABLE_COMPLETE_WAIT 100 // 100 milli
858 static int ipw2100_wait_for_card_state(struct ipw2100_priv *priv, int state)
859 {
860 int i;
861 u32 card_state;
862 u32 len = sizeof(card_state);
863 int err;
864
865 for (i = 0; i <= IPW_CARD_DISABLE_COMPLETE_WAIT * 1000; i += 50) {
866 err = ipw2100_get_ordinal(priv, IPW_ORD_CARD_DISABLED,
867 &card_state, &len);
868 if (err) {
869 IPW_DEBUG_INFO("Query of CARD_DISABLED ordinal "
870 "failed.\n");
871 return 0;
872 }
873
874 /* We'll break out if either the HW state says it is
875 * in the state we want, or if HOST_COMPLETE command
876 * finishes */
877 if ((card_state == state) ||
878 ((priv->status & STATUS_ENABLED) ?
879 IPW_HW_STATE_ENABLED : IPW_HW_STATE_DISABLED) == state) {
880 if (state == IPW_HW_STATE_ENABLED)
881 priv->status |= STATUS_ENABLED;
882 else
883 priv->status &= ~STATUS_ENABLED;
884
885 return 0;
886 }
887
888 udelay(50);
889 }
890
891 IPW_DEBUG_INFO("ipw2100_wait_for_card_state to %s state timed out\n",
892 state ? "DISABLED" : "ENABLED");
893 return -EIO;
894 }
895
896 /*********************************************************************
897 Procedure : sw_reset_and_clock
898 Purpose : Asserts s/w reset, asserts clock initialization
899 and waits for clock stabilization
900 ********************************************************************/
901 static int sw_reset_and_clock(struct ipw2100_priv *priv)
902 {
903 int i;
904 u32 r;
905
906 // assert s/w reset
907 write_register(priv->net_dev, IPW_REG_RESET_REG,
908 IPW_AUX_HOST_RESET_REG_SW_RESET);
909
910 // wait for clock stabilization
911 for (i = 0; i < 1000; i++) {
912 udelay(IPW_WAIT_RESET_ARC_COMPLETE_DELAY);
913
914 // check clock ready bit
915 read_register(priv->net_dev, IPW_REG_RESET_REG, &r);
916 if (r & IPW_AUX_HOST_RESET_REG_PRINCETON_RESET)
917 break;
918 }
919
920 if (i == 1000)
921 return -EIO; // TODO: better error value
922
923 /* set "initialization complete" bit to move adapter to
924 * D0 state */
925 write_register(priv->net_dev, IPW_REG_GP_CNTRL,
926 IPW_AUX_HOST_GP_CNTRL_BIT_INIT_DONE);
927
928 /* wait for clock stabilization */
929 for (i = 0; i < 10000; i++) {
930 udelay(IPW_WAIT_CLOCK_STABILIZATION_DELAY * 4);
931
932 /* check clock ready bit */
933 read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r);
934 if (r & IPW_AUX_HOST_GP_CNTRL_BIT_CLOCK_READY)
935 break;
936 }
937
938 if (i == 10000)
939 return -EIO; /* TODO: better error value */
940
941 /* set D0 standby bit */
942 read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r);
943 write_register(priv->net_dev, IPW_REG_GP_CNTRL,
944 r | IPW_AUX_HOST_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY);
945
946 return 0;
947 }
948
949 /*********************************************************************
950 Procedure : ipw2100_download_firmware
951 Purpose : Initiaze adapter after power on.
952 The sequence is:
953 1. assert s/w reset first!
954 2. awake clocks & wait for clock stabilization
955 3. hold ARC (don't ask me why...)
956 4. load Dino ucode and reset/clock init again
957 5. zero-out shared mem
958 6. download f/w
959 *******************************************************************/
960 static int ipw2100_download_firmware(struct ipw2100_priv *priv)
961 {
962 u32 address;
963 int err;
964
965 #ifndef CONFIG_PM
966 /* Fetch the firmware and microcode */
967 struct ipw2100_fw ipw2100_firmware;
968 #endif
969
970 if (priv->fatal_error) {
971 IPW_DEBUG_ERROR("%s: ipw2100_download_firmware called after "
972 "fatal error %d. Interface must be brought down.\n",
973 priv->net_dev->name, priv->fatal_error);
974 return -EINVAL;
975 }
976 #ifdef CONFIG_PM
977 if (!ipw2100_firmware.version) {
978 err = ipw2100_get_firmware(priv, &ipw2100_firmware);
979 if (err) {
980 IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n",
981 priv->net_dev->name, err);
982 priv->fatal_error = IPW2100_ERR_FW_LOAD;
983 goto fail;
984 }
985 }
986 #else
987 err = ipw2100_get_firmware(priv, &ipw2100_firmware);
988 if (err) {
989 IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n",
990 priv->net_dev->name, err);
991 priv->fatal_error = IPW2100_ERR_FW_LOAD;
992 goto fail;
993 }
994 #endif
995 priv->firmware_version = ipw2100_firmware.version;
996
997 /* s/w reset and clock stabilization */
998 err = sw_reset_and_clock(priv);
999 if (err) {
1000 IPW_DEBUG_ERROR("%s: sw_reset_and_clock failed: %d\n",
1001 priv->net_dev->name, err);
1002 goto fail;
1003 }
1004
1005 err = ipw2100_verify(priv);
1006 if (err) {
1007 IPW_DEBUG_ERROR("%s: ipw2100_verify failed: %d\n",
1008 priv->net_dev->name, err);
1009 goto fail;
1010 }
1011
1012 /* Hold ARC */
1013 write_nic_dword(priv->net_dev,
1014 IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x80000000);
1015
1016 /* allow ARC to run */
1017 write_register(priv->net_dev, IPW_REG_RESET_REG, 0);
1018
1019 /* load microcode */
1020 err = ipw2100_ucode_download(priv, &ipw2100_firmware);
1021 if (err) {
1022 printk(KERN_ERR DRV_NAME ": %s: Error loading microcode: %d\n",
1023 priv->net_dev->name, err);
1024 goto fail;
1025 }
1026
1027 /* release ARC */
1028 write_nic_dword(priv->net_dev,
1029 IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x00000000);
1030
1031 /* s/w reset and clock stabilization (again!!!) */
1032 err = sw_reset_and_clock(priv);
1033 if (err) {
1034 printk(KERN_ERR DRV_NAME
1035 ": %s: sw_reset_and_clock failed: %d\n",
1036 priv->net_dev->name, err);
1037 goto fail;
1038 }
1039
1040 /* load f/w */
1041 err = ipw2100_fw_download(priv, &ipw2100_firmware);
1042 if (err) {
1043 IPW_DEBUG_ERROR("%s: Error loading firmware: %d\n",
1044 priv->net_dev->name, err);
1045 goto fail;
1046 }
1047 #ifndef CONFIG_PM
1048 /*
1049 * When the .resume method of the driver is called, the other
1050 * part of the system, i.e. the ide driver could still stay in
1051 * the suspend stage. This prevents us from loading the firmware
1052 * from the disk. --YZ
1053 */
1054
1055 /* free any storage allocated for firmware image */
1056 ipw2100_release_firmware(priv, &ipw2100_firmware);
1057 #endif
1058
1059 /* zero out Domain 1 area indirectly (Si requirement) */
1060 for (address = IPW_HOST_FW_SHARED_AREA0;
1061 address < IPW_HOST_FW_SHARED_AREA0_END; address += 4)
1062 write_nic_dword(priv->net_dev, address, 0);
1063 for (address = IPW_HOST_FW_SHARED_AREA1;
1064 address < IPW_HOST_FW_SHARED_AREA1_END; address += 4)
1065 write_nic_dword(priv->net_dev, address, 0);
1066 for (address = IPW_HOST_FW_SHARED_AREA2;
1067 address < IPW_HOST_FW_SHARED_AREA2_END; address += 4)
1068 write_nic_dword(priv->net_dev, address, 0);
1069 for (address = IPW_HOST_FW_SHARED_AREA3;
1070 address < IPW_HOST_FW_SHARED_AREA3_END; address += 4)
1071 write_nic_dword(priv->net_dev, address, 0);
1072 for (address = IPW_HOST_FW_INTERRUPT_AREA;
1073 address < IPW_HOST_FW_INTERRUPT_AREA_END; address += 4)
1074 write_nic_dword(priv->net_dev, address, 0);
1075
1076 return 0;
1077
1078 fail:
1079 ipw2100_release_firmware(priv, &ipw2100_firmware);
1080 return err;
1081 }
1082
1083 static inline void ipw2100_enable_interrupts(struct ipw2100_priv *priv)
1084 {
1085 if (priv->status & STATUS_INT_ENABLED)
1086 return;
1087 priv->status |= STATUS_INT_ENABLED;
1088 write_register(priv->net_dev, IPW_REG_INTA_MASK, IPW_INTERRUPT_MASK);
1089 }
1090
1091 static inline void ipw2100_disable_interrupts(struct ipw2100_priv *priv)
1092 {
1093 if (!(priv->status & STATUS_INT_ENABLED))
1094 return;
1095 priv->status &= ~STATUS_INT_ENABLED;
1096 write_register(priv->net_dev, IPW_REG_INTA_MASK, 0x0);
1097 }
1098
1099 static void ipw2100_initialize_ordinals(struct ipw2100_priv *priv)
1100 {
1101 struct ipw2100_ordinals *ord = &priv->ordinals;
1102
1103 IPW_DEBUG_INFO("enter\n");
1104
1105 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_1,
1106 &ord->table1_addr);
1107
1108 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_2,
1109 &ord->table2_addr);
1110
1111 read_nic_dword(priv->net_dev, ord->table1_addr, &ord->table1_size);
1112 read_nic_dword(priv->net_dev, ord->table2_addr, &ord->table2_size);
1113
1114 ord->table2_size &= 0x0000FFFF;
1115
1116 IPW_DEBUG_INFO("table 1 size: %d\n", ord->table1_size);
1117 IPW_DEBUG_INFO("table 2 size: %d\n", ord->table2_size);
1118 IPW_DEBUG_INFO("exit\n");
1119 }
1120
1121 static inline void ipw2100_hw_set_gpio(struct ipw2100_priv *priv)
1122 {
1123 u32 reg = 0;
1124 /*
1125 * Set GPIO 3 writable by FW; GPIO 1 writable
1126 * by driver and enable clock
1127 */
1128 reg = (IPW_BIT_GPIO_GPIO3_MASK | IPW_BIT_GPIO_GPIO1_ENABLE |
1129 IPW_BIT_GPIO_LED_OFF);
1130 write_register(priv->net_dev, IPW_REG_GPIO, reg);
1131 }
1132
1133 static int rf_kill_active(struct ipw2100_priv *priv)
1134 {
1135 #define MAX_RF_KILL_CHECKS 5
1136 #define RF_KILL_CHECK_DELAY 40
1137
1138 unsigned short value = 0;
1139 u32 reg = 0;
1140 int i;
1141
1142 if (!(priv->hw_features & HW_FEATURE_RFKILL)) {
1143 priv->status &= ~STATUS_RF_KILL_HW;
1144 return 0;
1145 }
1146
1147 for (i = 0; i < MAX_RF_KILL_CHECKS; i++) {
1148 udelay(RF_KILL_CHECK_DELAY);
1149 read_register(priv->net_dev, IPW_REG_GPIO, &reg);
1150 value = (value << 1) | ((reg & IPW_BIT_GPIO_RF_KILL) ? 0 : 1);
1151 }
1152
1153 if (value == 0)
1154 priv->status |= STATUS_RF_KILL_HW;
1155 else
1156 priv->status &= ~STATUS_RF_KILL_HW;
1157
1158 return (value == 0);
1159 }
1160
1161 static int ipw2100_get_hw_features(struct ipw2100_priv *priv)
1162 {
1163 u32 addr, len;
1164 u32 val;
1165
1166 /*
1167 * EEPROM_SRAM_DB_START_ADDRESS using ordinal in ordinal table 1
1168 */
1169 len = sizeof(addr);
1170 if (ipw2100_get_ordinal
1171 (priv, IPW_ORD_EEPROM_SRAM_DB_BLOCK_START_ADDRESS, &addr, &len)) {
1172 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1173 __LINE__);
1174 return -EIO;
1175 }
1176
1177 IPW_DEBUG_INFO("EEPROM address: %08X\n", addr);
1178
1179 /*
1180 * EEPROM version is the byte at offset 0xfd in firmware
1181 * We read 4 bytes, then shift out the byte we actually want */
1182 read_nic_dword(priv->net_dev, addr + 0xFC, &val);
1183 priv->eeprom_version = (val >> 24) & 0xFF;
1184 IPW_DEBUG_INFO("EEPROM version: %d\n", priv->eeprom_version);
1185
1186 /*
1187 * HW RF Kill enable is bit 0 in byte at offset 0x21 in firmware
1188 *
1189 * notice that the EEPROM bit is reverse polarity, i.e.
1190 * bit = 0 signifies HW RF kill switch is supported
1191 * bit = 1 signifies HW RF kill switch is NOT supported
1192 */
1193 read_nic_dword(priv->net_dev, addr + 0x20, &val);
1194 if (!((val >> 24) & 0x01))
1195 priv->hw_features |= HW_FEATURE_RFKILL;
1196
1197 IPW_DEBUG_INFO("HW RF Kill: %ssupported.\n",
1198 (priv->hw_features & HW_FEATURE_RFKILL) ? "" : "not ");
1199
1200 return 0;
1201 }
1202
1203 /*
1204 * Start firmware execution after power on and intialization
1205 * The sequence is:
1206 * 1. Release ARC
1207 * 2. Wait for f/w initialization completes;
1208 */
1209 static int ipw2100_start_adapter(struct ipw2100_priv *priv)
1210 {
1211 int i;
1212 u32 inta, inta_mask, gpio;
1213
1214 IPW_DEBUG_INFO("enter\n");
1215
1216 if (priv->status & STATUS_RUNNING)
1217 return 0;
1218
1219 /*
1220 * Initialize the hw - drive adapter to DO state by setting
1221 * init_done bit. Wait for clk_ready bit and Download
1222 * fw & dino ucode
1223 */
1224 if (ipw2100_download_firmware(priv)) {
1225 printk(KERN_ERR DRV_NAME
1226 ": %s: Failed to power on the adapter.\n",
1227 priv->net_dev->name);
1228 return -EIO;
1229 }
1230
1231 /* Clear the Tx, Rx and Msg queues and the r/w indexes
1232 * in the firmware RBD and TBD ring queue */
1233 ipw2100_queues_initialize(priv);
1234
1235 ipw2100_hw_set_gpio(priv);
1236
1237 /* TODO -- Look at disabling interrupts here to make sure none
1238 * get fired during FW initialization */
1239
1240 /* Release ARC - clear reset bit */
1241 write_register(priv->net_dev, IPW_REG_RESET_REG, 0);
1242
1243 /* wait for f/w intialization complete */
1244 IPW_DEBUG_FW("Waiting for f/w initialization to complete...\n");
1245 i = 5000;
1246 do {
1247 schedule_timeout_uninterruptible(msecs_to_jiffies(40));
1248 /* Todo... wait for sync command ... */
1249
1250 read_register(priv->net_dev, IPW_REG_INTA, &inta);
1251
1252 /* check "init done" bit */
1253 if (inta & IPW2100_INTA_FW_INIT_DONE) {
1254 /* reset "init done" bit */
1255 write_register(priv->net_dev, IPW_REG_INTA,
1256 IPW2100_INTA_FW_INIT_DONE);
1257 break;
1258 }
1259
1260 /* check error conditions : we check these after the firmware
1261 * check so that if there is an error, the interrupt handler
1262 * will see it and the adapter will be reset */
1263 if (inta &
1264 (IPW2100_INTA_FATAL_ERROR | IPW2100_INTA_PARITY_ERROR)) {
1265 /* clear error conditions */
1266 write_register(priv->net_dev, IPW_REG_INTA,
1267 IPW2100_INTA_FATAL_ERROR |
1268 IPW2100_INTA_PARITY_ERROR);
1269 }
1270 } while (i--);
1271
1272 /* Clear out any pending INTAs since we aren't supposed to have
1273 * interrupts enabled at this point... */
1274 read_register(priv->net_dev, IPW_REG_INTA, &inta);
1275 read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask);
1276 inta &= IPW_INTERRUPT_MASK;
1277 /* Clear out any pending interrupts */
1278 if (inta & inta_mask)
1279 write_register(priv->net_dev, IPW_REG_INTA, inta);
1280
1281 IPW_DEBUG_FW("f/w initialization complete: %s\n",
1282 i ? "SUCCESS" : "FAILED");
1283
1284 if (!i) {
1285 printk(KERN_WARNING DRV_NAME
1286 ": %s: Firmware did not initialize.\n",
1287 priv->net_dev->name);
1288 return -EIO;
1289 }
1290
1291 /* allow firmware to write to GPIO1 & GPIO3 */
1292 read_register(priv->net_dev, IPW_REG_GPIO, &gpio);
1293
1294 gpio |= (IPW_BIT_GPIO_GPIO1_MASK | IPW_BIT_GPIO_GPIO3_MASK);
1295
1296 write_register(priv->net_dev, IPW_REG_GPIO, gpio);
1297
1298 /* Ready to receive commands */
1299 priv->status |= STATUS_RUNNING;
1300
1301 /* The adapter has been reset; we are not associated */
1302 priv->status &= ~(STATUS_ASSOCIATING | STATUS_ASSOCIATED);
1303
1304 IPW_DEBUG_INFO("exit\n");
1305
1306 return 0;
1307 }
1308
1309 static inline void ipw2100_reset_fatalerror(struct ipw2100_priv *priv)
1310 {
1311 if (!priv->fatal_error)
1312 return;
1313
1314 priv->fatal_errors[priv->fatal_index++] = priv->fatal_error;
1315 priv->fatal_index %= IPW2100_ERROR_QUEUE;
1316 priv->fatal_error = 0;
1317 }
1318
1319 /* NOTE: Our interrupt is disabled when this method is called */
1320 static int ipw2100_power_cycle_adapter(struct ipw2100_priv *priv)
1321 {
1322 u32 reg;
1323 int i;
1324
1325 IPW_DEBUG_INFO("Power cycling the hardware.\n");
1326
1327 ipw2100_hw_set_gpio(priv);
1328
1329 /* Step 1. Stop Master Assert */
1330 write_register(priv->net_dev, IPW_REG_RESET_REG,
1331 IPW_AUX_HOST_RESET_REG_STOP_MASTER);
1332
1333 /* Step 2. Wait for stop Master Assert
1334 * (not more then 50us, otherwise ret error */
1335 i = 5;
1336 do {
1337 udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY);
1338 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
1339
1340 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
1341 break;
1342 } while (i--);
1343
1344 priv->status &= ~STATUS_RESET_PENDING;
1345
1346 if (!i) {
1347 IPW_DEBUG_INFO
1348 ("exit - waited too long for master assert stop\n");
1349 return -EIO;
1350 }
1351
1352 write_register(priv->net_dev, IPW_REG_RESET_REG,
1353 IPW_AUX_HOST_RESET_REG_SW_RESET);
1354
1355 /* Reset any fatal_error conditions */
1356 ipw2100_reset_fatalerror(priv);
1357
1358 /* At this point, the adapter is now stopped and disabled */
1359 priv->status &= ~(STATUS_RUNNING | STATUS_ASSOCIATING |
1360 STATUS_ASSOCIATED | STATUS_ENABLED);
1361
1362 return 0;
1363 }
1364
1365 /*
1366 * Send the CARD_DISABLE_PHY_OFF comamnd to the card to disable it
1367 *
1368 * After disabling, if the card was associated, a STATUS_ASSN_LOST will be sent.
1369 *
1370 * STATUS_CARD_DISABLE_NOTIFICATION will be sent regardless of
1371 * if STATUS_ASSN_LOST is sent.
1372 */
1373 static int ipw2100_hw_phy_off(struct ipw2100_priv *priv)
1374 {
1375
1376 #define HW_PHY_OFF_LOOP_DELAY (HZ / 5000)
1377
1378 struct host_command cmd = {
1379 .host_command = CARD_DISABLE_PHY_OFF,
1380 .host_command_sequence = 0,
1381 .host_command_length = 0,
1382 };
1383 int err, i;
1384 u32 val1, val2;
1385
1386 IPW_DEBUG_HC("CARD_DISABLE_PHY_OFF\n");
1387
1388 /* Turn off the radio */
1389 err = ipw2100_hw_send_command(priv, &cmd);
1390 if (err)
1391 return err;
1392
1393 for (i = 0; i < 2500; i++) {
1394 read_nic_dword(priv->net_dev, IPW2100_CONTROL_REG, &val1);
1395 read_nic_dword(priv->net_dev, IPW2100_COMMAND, &val2);
1396
1397 if ((val1 & IPW2100_CONTROL_PHY_OFF) &&
1398 (val2 & IPW2100_COMMAND_PHY_OFF))
1399 return 0;
1400
1401 schedule_timeout_uninterruptible(HW_PHY_OFF_LOOP_DELAY);
1402 }
1403
1404 return -EIO;
1405 }
1406
1407 static int ipw2100_enable_adapter(struct ipw2100_priv *priv)
1408 {
1409 struct host_command cmd = {
1410 .host_command = HOST_COMPLETE,
1411 .host_command_sequence = 0,
1412 .host_command_length = 0
1413 };
1414 int err = 0;
1415
1416 IPW_DEBUG_HC("HOST_COMPLETE\n");
1417
1418 if (priv->status & STATUS_ENABLED)
1419 return 0;
1420
1421 mutex_lock(&priv->adapter_mutex);
1422
1423 if (rf_kill_active(priv)) {
1424 IPW_DEBUG_HC("Command aborted due to RF kill active.\n");
1425 goto fail_up;
1426 }
1427
1428 err = ipw2100_hw_send_command(priv, &cmd);
1429 if (err) {
1430 IPW_DEBUG_INFO("Failed to send HOST_COMPLETE command\n");
1431 goto fail_up;
1432 }
1433
1434 err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_ENABLED);
1435 if (err) {
1436 IPW_DEBUG_INFO("%s: card not responding to init command.\n",
1437 priv->net_dev->name);
1438 goto fail_up;
1439 }
1440
1441 if (priv->stop_hang_check) {
1442 priv->stop_hang_check = 0;
1443 queue_delayed_work(priv->workqueue, &priv->hang_check, HZ / 2);
1444 }
1445
1446 fail_up:
1447 mutex_unlock(&priv->adapter_mutex);
1448 return err;
1449 }
1450
1451 static int ipw2100_hw_stop_adapter(struct ipw2100_priv *priv)
1452 {
1453 #define HW_POWER_DOWN_DELAY (msecs_to_jiffies(100))
1454
1455 struct host_command cmd = {
1456 .host_command = HOST_PRE_POWER_DOWN,
1457 .host_command_sequence = 0,
1458 .host_command_length = 0,
1459 };
1460 int err, i;
1461 u32 reg;
1462
1463 if (!(priv->status & STATUS_RUNNING))
1464 return 0;
1465
1466 priv->status |= STATUS_STOPPING;
1467
1468 /* We can only shut down the card if the firmware is operational. So,
1469 * if we haven't reset since a fatal_error, then we can not send the
1470 * shutdown commands. */
1471 if (!priv->fatal_error) {
1472 /* First, make sure the adapter is enabled so that the PHY_OFF
1473 * command can shut it down */
1474 ipw2100_enable_adapter(priv);
1475
1476 err = ipw2100_hw_phy_off(priv);
1477 if (err)
1478 printk(KERN_WARNING DRV_NAME
1479 ": Error disabling radio %d\n", err);
1480
1481 /*
1482 * If in D0-standby mode going directly to D3 may cause a
1483 * PCI bus violation. Therefore we must change out of the D0
1484 * state.
1485 *
1486 * Sending the PREPARE_FOR_POWER_DOWN will restrict the
1487 * hardware from going into standby mode and will transition
1488 * out of D0-standy if it is already in that state.
1489 *
1490 * STATUS_PREPARE_POWER_DOWN_COMPLETE will be sent by the
1491 * driver upon completion. Once received, the driver can
1492 * proceed to the D3 state.
1493 *
1494 * Prepare for power down command to fw. This command would
1495 * take HW out of D0-standby and prepare it for D3 state.
1496 *
1497 * Currently FW does not support event notification for this
1498 * event. Therefore, skip waiting for it. Just wait a fixed
1499 * 100ms
1500 */
1501 IPW_DEBUG_HC("HOST_PRE_POWER_DOWN\n");
1502
1503 err = ipw2100_hw_send_command(priv, &cmd);
1504 if (err)
1505 printk(KERN_WARNING DRV_NAME ": "
1506 "%s: Power down command failed: Error %d\n",
1507 priv->net_dev->name, err);
1508 else
1509 schedule_timeout_uninterruptible(HW_POWER_DOWN_DELAY);
1510 }
1511
1512 priv->status &= ~STATUS_ENABLED;
1513
1514 /*
1515 * Set GPIO 3 writable by FW; GPIO 1 writable
1516 * by driver and enable clock
1517 */
1518 ipw2100_hw_set_gpio(priv);
1519
1520 /*
1521 * Power down adapter. Sequence:
1522 * 1. Stop master assert (RESET_REG[9]=1)
1523 * 2. Wait for stop master (RESET_REG[8]==1)
1524 * 3. S/w reset assert (RESET_REG[7] = 1)
1525 */
1526
1527 /* Stop master assert */
1528 write_register(priv->net_dev, IPW_REG_RESET_REG,
1529 IPW_AUX_HOST_RESET_REG_STOP_MASTER);
1530
1531 /* wait stop master not more than 50 usec.
1532 * Otherwise return error. */
1533 for (i = 5; i > 0; i--) {
1534 udelay(10);
1535
1536 /* Check master stop bit */
1537 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
1538
1539 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
1540 break;
1541 }
1542
1543 if (i == 0)
1544 printk(KERN_WARNING DRV_NAME
1545 ": %s: Could now power down adapter.\n",
1546 priv->net_dev->name);
1547
1548 /* assert s/w reset */
1549 write_register(priv->net_dev, IPW_REG_RESET_REG,
1550 IPW_AUX_HOST_RESET_REG_SW_RESET);
1551
1552 priv->status &= ~(STATUS_RUNNING | STATUS_STOPPING);
1553
1554 return 0;
1555 }
1556
1557 static int ipw2100_disable_adapter(struct ipw2100_priv *priv)
1558 {
1559 struct host_command cmd = {
1560 .host_command = CARD_DISABLE,
1561 .host_command_sequence = 0,
1562 .host_command_length = 0
1563 };
1564 int err = 0;
1565
1566 IPW_DEBUG_HC("CARD_DISABLE\n");
1567
1568 if (!(priv->status & STATUS_ENABLED))
1569 return 0;
1570
1571 /* Make sure we clear the associated state */
1572 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1573
1574 if (!priv->stop_hang_check) {
1575 priv->stop_hang_check = 1;
1576 cancel_delayed_work(&priv->hang_check);
1577 }
1578
1579 mutex_lock(&priv->adapter_mutex);
1580
1581 err = ipw2100_hw_send_command(priv, &cmd);
1582 if (err) {
1583 printk(KERN_WARNING DRV_NAME
1584 ": exit - failed to send CARD_DISABLE command\n");
1585 goto fail_up;
1586 }
1587
1588 err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_DISABLED);
1589 if (err) {
1590 printk(KERN_WARNING DRV_NAME
1591 ": exit - card failed to change to DISABLED\n");
1592 goto fail_up;
1593 }
1594
1595 IPW_DEBUG_INFO("TODO: implement scan state machine\n");
1596
1597 fail_up:
1598 mutex_unlock(&priv->adapter_mutex);
1599 return err;
1600 }
1601
1602 static int ipw2100_set_scan_options(struct ipw2100_priv *priv)
1603 {
1604 struct host_command cmd = {
1605 .host_command = SET_SCAN_OPTIONS,
1606 .host_command_sequence = 0,
1607 .host_command_length = 8
1608 };
1609 int err;
1610
1611 IPW_DEBUG_INFO("enter\n");
1612
1613 IPW_DEBUG_SCAN("setting scan options\n");
1614
1615 cmd.host_command_parameters[0] = 0;
1616
1617 if (!(priv->config & CFG_ASSOCIATE))
1618 cmd.host_command_parameters[0] |= IPW_SCAN_NOASSOCIATE;
1619 if ((priv->ieee->sec.flags & SEC_ENABLED) && priv->ieee->sec.enabled)
1620 cmd.host_command_parameters[0] |= IPW_SCAN_MIXED_CELL;
1621 if (priv->config & CFG_PASSIVE_SCAN)
1622 cmd.host_command_parameters[0] |= IPW_SCAN_PASSIVE;
1623
1624 cmd.host_command_parameters[1] = priv->channel_mask;
1625
1626 err = ipw2100_hw_send_command(priv, &cmd);
1627
1628 IPW_DEBUG_HC("SET_SCAN_OPTIONS 0x%04X\n",
1629 cmd.host_command_parameters[0]);
1630
1631 return err;
1632 }
1633
1634 static int ipw2100_start_scan(struct ipw2100_priv *priv)
1635 {
1636 struct host_command cmd = {
1637 .host_command = BROADCAST_SCAN,
1638 .host_command_sequence = 0,
1639 .host_command_length = 4
1640 };
1641 int err;
1642
1643 IPW_DEBUG_HC("START_SCAN\n");
1644
1645 cmd.host_command_parameters[0] = 0;
1646
1647 /* No scanning if in monitor mode */
1648 if (priv->ieee->iw_mode == IW_MODE_MONITOR)
1649 return 1;
1650
1651 if (priv->status & STATUS_SCANNING) {
1652 IPW_DEBUG_SCAN("Scan requested while already in scan...\n");
1653 return 0;
1654 }
1655
1656 IPW_DEBUG_INFO("enter\n");
1657
1658 /* Not clearing here; doing so makes iwlist always return nothing...
1659 *
1660 * We should modify the table logic to use aging tables vs. clearing
1661 * the table on each scan start.
1662 */
1663 IPW_DEBUG_SCAN("starting scan\n");
1664
1665 priv->status |= STATUS_SCANNING;
1666 err = ipw2100_hw_send_command(priv, &cmd);
1667 if (err)
1668 priv->status &= ~STATUS_SCANNING;
1669
1670 IPW_DEBUG_INFO("exit\n");
1671
1672 return err;
1673 }
1674
1675 static const struct ieee80211_geo ipw_geos[] = {
1676 { /* Restricted */
1677 "---",
1678 .bg_channels = 14,
1679 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
1680 {2427, 4}, {2432, 5}, {2437, 6},
1681 {2442, 7}, {2447, 8}, {2452, 9},
1682 {2457, 10}, {2462, 11}, {2467, 12},
1683 {2472, 13}, {2484, 14}},
1684 },
1685 };
1686
1687 static int ipw2100_up(struct ipw2100_priv *priv, int deferred)
1688 {
1689 unsigned long flags;
1690 int rc = 0;
1691 u32 lock;
1692 u32 ord_len = sizeof(lock);
1693
1694 /* Quite if manually disabled. */
1695 if (priv->status & STATUS_RF_KILL_SW) {
1696 IPW_DEBUG_INFO("%s: Radio is disabled by Manual Disable "
1697 "switch\n", priv->net_dev->name);
1698 return 0;
1699 }
1700
1701 /* If the interrupt is enabled, turn it off... */
1702 spin_lock_irqsave(&priv->low_lock, flags);
1703 ipw2100_disable_interrupts(priv);
1704
1705 /* Reset any fatal_error conditions */
1706 ipw2100_reset_fatalerror(priv);
1707 spin_unlock_irqrestore(&priv->low_lock, flags);
1708
1709 if (priv->status & STATUS_POWERED ||
1710 (priv->status & STATUS_RESET_PENDING)) {
1711 /* Power cycle the card ... */
1712 if (ipw2100_power_cycle_adapter(priv)) {
1713 printk(KERN_WARNING DRV_NAME
1714 ": %s: Could not cycle adapter.\n",
1715 priv->net_dev->name);
1716 rc = 1;
1717 goto exit;
1718 }
1719 } else
1720 priv->status |= STATUS_POWERED;
1721
1722 /* Load the firmware, start the clocks, etc. */
1723 if (ipw2100_start_adapter(priv)) {
1724 printk(KERN_ERR DRV_NAME
1725 ": %s: Failed to start the firmware.\n",
1726 priv->net_dev->name);
1727 rc = 1;
1728 goto exit;
1729 }
1730
1731 ipw2100_initialize_ordinals(priv);
1732
1733 /* Determine capabilities of this particular HW configuration */
1734 if (ipw2100_get_hw_features(priv)) {
1735 printk(KERN_ERR DRV_NAME
1736 ": %s: Failed to determine HW features.\n",
1737 priv->net_dev->name);
1738 rc = 1;
1739 goto exit;
1740 }
1741
1742 /* Initialize the geo */
1743 if (ieee80211_set_geo(priv->ieee, &ipw_geos[0])) {
1744 printk(KERN_WARNING DRV_NAME "Could not set geo\n");
1745 return 0;
1746 }
1747 priv->ieee->freq_band = IEEE80211_24GHZ_BAND;
1748
1749 lock = LOCK_NONE;
1750 if (ipw2100_set_ordinal(priv, IPW_ORD_PERS_DB_LOCK, &lock, &ord_len)) {
1751 printk(KERN_ERR DRV_NAME
1752 ": %s: Failed to clear ordinal lock.\n",
1753 priv->net_dev->name);
1754 rc = 1;
1755 goto exit;
1756 }
1757
1758 priv->status &= ~STATUS_SCANNING;
1759
1760 if (rf_kill_active(priv)) {
1761 printk(KERN_INFO "%s: Radio is disabled by RF switch.\n",
1762 priv->net_dev->name);
1763
1764 if (priv->stop_rf_kill) {
1765 priv->stop_rf_kill = 0;
1766 queue_delayed_work(priv->workqueue, &priv->rf_kill, HZ);
1767 }
1768
1769 deferred = 1;
1770 }
1771
1772 /* Turn on the interrupt so that commands can be processed */
1773 ipw2100_enable_interrupts(priv);
1774
1775 /* Send all of the commands that must be sent prior to
1776 * HOST_COMPLETE */
1777 if (ipw2100_adapter_setup(priv)) {
1778 printk(KERN_ERR DRV_NAME ": %s: Failed to start the card.\n",
1779 priv->net_dev->name);
1780 rc = 1;
1781 goto exit;
1782 }
1783
1784 if (!deferred) {
1785 /* Enable the adapter - sends HOST_COMPLETE */
1786 if (ipw2100_enable_adapter(priv)) {
1787 printk(KERN_ERR DRV_NAME ": "
1788 "%s: failed in call to enable adapter.\n",
1789 priv->net_dev->name);
1790 ipw2100_hw_stop_adapter(priv);
1791 rc = 1;
1792 goto exit;
1793 }
1794
1795 /* Start a scan . . . */
1796 ipw2100_set_scan_options(priv);
1797 ipw2100_start_scan(priv);
1798 }
1799
1800 exit:
1801 return rc;
1802 }
1803
1804 /* Called by register_netdev() */
1805 static int ipw2100_net_init(struct net_device *dev)
1806 {
1807 struct ipw2100_priv *priv = ieee80211_priv(dev);
1808 return ipw2100_up(priv, 1);
1809 }
1810
1811 static void ipw2100_down(struct ipw2100_priv *priv)
1812 {
1813 unsigned long flags;
1814 union iwreq_data wrqu = {
1815 .ap_addr = {
1816 .sa_family = ARPHRD_ETHER}
1817 };
1818 int associated = priv->status & STATUS_ASSOCIATED;
1819
1820 /* Kill the RF switch timer */
1821 if (!priv->stop_rf_kill) {
1822 priv->stop_rf_kill = 1;
1823 cancel_delayed_work(&priv->rf_kill);
1824 }
1825
1826 /* Kill the firmare hang check timer */
1827 if (!priv->stop_hang_check) {
1828 priv->stop_hang_check = 1;
1829 cancel_delayed_work(&priv->hang_check);
1830 }
1831
1832 /* Kill any pending resets */
1833 if (priv->status & STATUS_RESET_PENDING)
1834 cancel_delayed_work(&priv->reset_work);
1835
1836 /* Make sure the interrupt is on so that FW commands will be
1837 * processed correctly */
1838 spin_lock_irqsave(&priv->low_lock, flags);
1839 ipw2100_enable_interrupts(priv);
1840 spin_unlock_irqrestore(&priv->low_lock, flags);
1841
1842 if (ipw2100_hw_stop_adapter(priv))
1843 printk(KERN_ERR DRV_NAME ": %s: Error stopping adapter.\n",
1844 priv->net_dev->name);
1845
1846 /* Do not disable the interrupt until _after_ we disable
1847 * the adaptor. Otherwise the CARD_DISABLE command will never
1848 * be ack'd by the firmware */
1849 spin_lock_irqsave(&priv->low_lock, flags);
1850 ipw2100_disable_interrupts(priv);
1851 spin_unlock_irqrestore(&priv->low_lock, flags);
1852
1853 #ifdef ACPI_CSTATE_LIMIT_DEFINED
1854 if (priv->config & CFG_C3_DISABLED) {
1855 IPW_DEBUG_INFO(": Resetting C3 transitions.\n");
1856 acpi_set_cstate_limit(priv->cstate_limit);
1857 priv->config &= ~CFG_C3_DISABLED;
1858 }
1859 #endif
1860
1861 /* We have to signal any supplicant if we are disassociating */
1862 if (associated)
1863 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1864
1865 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1866 netif_carrier_off(priv->net_dev);
1867 netif_stop_queue(priv->net_dev);
1868 }
1869
1870 static void ipw2100_reset_adapter(struct ipw2100_priv *priv)
1871 {
1872 unsigned long flags;
1873 union iwreq_data wrqu = {
1874 .ap_addr = {
1875 .sa_family = ARPHRD_ETHER}
1876 };
1877 int associated = priv->status & STATUS_ASSOCIATED;
1878
1879 spin_lock_irqsave(&priv->low_lock, flags);
1880 IPW_DEBUG_INFO(": %s: Restarting adapter.\n", priv->net_dev->name);
1881 priv->resets++;
1882 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1883 priv->status |= STATUS_SECURITY_UPDATED;
1884
1885 /* Force a power cycle even if interface hasn't been opened
1886 * yet */
1887 cancel_delayed_work(&priv->reset_work);
1888 priv->status |= STATUS_RESET_PENDING;
1889 spin_unlock_irqrestore(&priv->low_lock, flags);
1890
1891 mutex_lock(&priv->action_mutex);
1892 /* stop timed checks so that they don't interfere with reset */
1893 priv->stop_hang_check = 1;
1894 cancel_delayed_work(&priv->hang_check);
1895
1896 /* We have to signal any supplicant if we are disassociating */
1897 if (associated)
1898 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1899
1900 ipw2100_up(priv, 0);
1901 mutex_unlock(&priv->action_mutex);
1902
1903 }
1904
1905 static void isr_indicate_associated(struct ipw2100_priv *priv, u32 status)
1906 {
1907
1908 #define MAC_ASSOCIATION_READ_DELAY (HZ)
1909 int ret, len, essid_len;
1910 char essid[IW_ESSID_MAX_SIZE];
1911 u32 txrate;
1912 u32 chan;
1913 char *txratename;
1914 u8 bssid[ETH_ALEN];
1915
1916 /*
1917 * TBD: BSSID is usually 00:00:00:00:00:00 here and not
1918 * an actual MAC of the AP. Seems like FW sets this
1919 * address too late. Read it later and expose through
1920 * /proc or schedule a later task to query and update
1921 */
1922
1923 essid_len = IW_ESSID_MAX_SIZE;
1924 ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_SSID,
1925 essid, &essid_len);
1926 if (ret) {
1927 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1928 __LINE__);
1929 return;
1930 }
1931
1932 len = sizeof(u32);
1933 ret = ipw2100_get_ordinal(priv, IPW_ORD_CURRENT_TX_RATE, &txrate, &len);
1934 if (ret) {
1935 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1936 __LINE__);
1937 return;
1938 }
1939
1940 len = sizeof(u32);
1941 ret = ipw2100_get_ordinal(priv, IPW_ORD_OUR_FREQ, &chan, &len);
1942 if (ret) {
1943 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1944 __LINE__);
1945 return;
1946 }
1947 len = ETH_ALEN;
1948 ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID, &bssid, &len);
1949 if (ret) {
1950 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1951 __LINE__);
1952 return;
1953 }
1954 memcpy(priv->ieee->bssid, bssid, ETH_ALEN);
1955
1956 switch (txrate) {
1957 case TX_RATE_1_MBIT:
1958 txratename = "1Mbps";
1959 break;
1960 case TX_RATE_2_MBIT:
1961 txratename = "2Mbsp";
1962 break;
1963 case TX_RATE_5_5_MBIT:
1964 txratename = "5.5Mbps";
1965 break;
1966 case TX_RATE_11_MBIT:
1967 txratename = "11Mbps";
1968 break;
1969 default:
1970 IPW_DEBUG_INFO("Unknown rate: %d\n", txrate);
1971 txratename = "unknown rate";
1972 break;
1973 }
1974
1975 IPW_DEBUG_INFO("%s: Associated with '%s' at %s, channel %d (BSSID="
1976 MAC_FMT ")\n",
1977 priv->net_dev->name, escape_essid(essid, essid_len),
1978 txratename, chan, MAC_ARG(bssid));
1979
1980 /* now we copy read ssid into dev */
1981 if (!(priv->config & CFG_STATIC_ESSID)) {
1982 priv->essid_len = min((u8) essid_len, (u8) IW_ESSID_MAX_SIZE);
1983 memcpy(priv->essid, essid, priv->essid_len);
1984 }
1985 priv->channel = chan;
1986 memcpy(priv->bssid, bssid, ETH_ALEN);
1987
1988 priv->status |= STATUS_ASSOCIATING;
1989 priv->connect_start = get_seconds();
1990
1991 queue_delayed_work(priv->workqueue, &priv->wx_event_work, HZ / 10);
1992 }
1993
1994 static int ipw2100_set_essid(struct ipw2100_priv *priv, char *essid,
1995 int length, int batch_mode)
1996 {
1997 int ssid_len = min(length, IW_ESSID_MAX_SIZE);
1998 struct host_command cmd = {
1999 .host_command = SSID,
2000 .host_command_sequence = 0,
2001 .host_command_length = ssid_len
2002 };
2003 int err;
2004
2005 IPW_DEBUG_HC("SSID: '%s'\n", escape_essid(essid, ssid_len));
2006
2007 if (ssid_len)
2008 memcpy(cmd.host_command_parameters, essid, ssid_len);
2009
2010 if (!batch_mode) {
2011 err = ipw2100_disable_adapter(priv);
2012 if (err)
2013 return err;
2014 }
2015
2016 /* Bug in FW currently doesn't honor bit 0 in SET_SCAN_OPTIONS to
2017 * disable auto association -- so we cheat by setting a bogus SSID */
2018 if (!ssid_len && !(priv->config & CFG_ASSOCIATE)) {
2019 int i;
2020 u8 *bogus = (u8 *) cmd.host_command_parameters;
2021 for (i = 0; i < IW_ESSID_MAX_SIZE; i++)
2022 bogus[i] = 0x18 + i;
2023 cmd.host_command_length = IW_ESSID_MAX_SIZE;
2024 }
2025
2026 /* NOTE: We always send the SSID command even if the provided ESSID is
2027 * the same as what we currently think is set. */
2028
2029 err = ipw2100_hw_send_command(priv, &cmd);
2030 if (!err) {
2031 memset(priv->essid + ssid_len, 0, IW_ESSID_MAX_SIZE - ssid_len);
2032 memcpy(priv->essid, essid, ssid_len);
2033 priv->essid_len = ssid_len;
2034 }
2035
2036 if (!batch_mode) {
2037 if (ipw2100_enable_adapter(priv))
2038 err = -EIO;
2039 }
2040
2041 return err;
2042 }
2043
2044 static void isr_indicate_association_lost(struct ipw2100_priv *priv, u32 status)
2045 {
2046 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | IPW_DL_ASSOC,
2047 "disassociated: '%s' " MAC_FMT " \n",
2048 escape_essid(priv->essid, priv->essid_len),
2049 MAC_ARG(priv->bssid));
2050
2051 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
2052
2053 if (priv->status & STATUS_STOPPING) {
2054 IPW_DEBUG_INFO("Card is stopping itself, discard ASSN_LOST.\n");
2055 return;
2056 }
2057
2058 memset(priv->bssid, 0, ETH_ALEN);
2059 memset(priv->ieee->bssid, 0, ETH_ALEN);
2060
2061 netif_carrier_off(priv->net_dev);
2062 netif_stop_queue(priv->net_dev);
2063
2064 if (!(priv->status & STATUS_RUNNING))
2065 return;
2066
2067 if (priv->status & STATUS_SECURITY_UPDATED)
2068 queue_work(priv->workqueue, &priv->security_work);
2069
2070 queue_work(priv->workqueue, &priv->wx_event_work);
2071 }
2072
2073 static void isr_indicate_rf_kill(struct ipw2100_priv *priv, u32 status)
2074 {
2075 IPW_DEBUG_INFO("%s: RF Kill state changed to radio OFF.\n",
2076 priv->net_dev->name);
2077
2078 /* RF_KILL is now enabled (else we wouldn't be here) */
2079 priv->status |= STATUS_RF_KILL_HW;
2080
2081 #ifdef ACPI_CSTATE_LIMIT_DEFINED
2082 if (priv->config & CFG_C3_DISABLED) {
2083 IPW_DEBUG_INFO(": Resetting C3 transitions.\n");
2084 acpi_set_cstate_limit(priv->cstate_limit);
2085 priv->config &= ~CFG_C3_DISABLED;
2086 }
2087 #endif
2088
2089 /* Make sure the RF Kill check timer is running */
2090 priv->stop_rf_kill = 0;
2091 cancel_delayed_work(&priv->rf_kill);
2092 queue_delayed_work(priv->workqueue, &priv->rf_kill, HZ);
2093 }
2094
2095 static void isr_scan_complete(struct ipw2100_priv *priv, u32 status)
2096 {
2097 IPW_DEBUG_SCAN("scan complete\n");
2098 /* Age the scan results... */
2099 priv->ieee->scans++;
2100 priv->status &= ~STATUS_SCANNING;
2101 }
2102
2103 #ifdef CONFIG_IPW2100_DEBUG
2104 #define IPW2100_HANDLER(v, f) { v, f, # v }
2105 struct ipw2100_status_indicator {
2106 int status;
2107 void (*cb) (struct ipw2100_priv * priv, u32 status);
2108 char *name;
2109 };
2110 #else
2111 #define IPW2100_HANDLER(v, f) { v, f }
2112 struct ipw2100_status_indicator {
2113 int status;
2114 void (*cb) (struct ipw2100_priv * priv, u32 status);
2115 };
2116 #endif /* CONFIG_IPW2100_DEBUG */
2117
2118 static void isr_indicate_scanning(struct ipw2100_priv *priv, u32 status)
2119 {
2120 IPW_DEBUG_SCAN("Scanning...\n");
2121 priv->status |= STATUS_SCANNING;
2122 }
2123
2124 static const struct ipw2100_status_indicator status_handlers[] = {
2125 IPW2100_HANDLER(IPW_STATE_INITIALIZED, NULL),
2126 IPW2100_HANDLER(IPW_STATE_COUNTRY_FOUND, NULL),
2127 IPW2100_HANDLER(IPW_STATE_ASSOCIATED, isr_indicate_associated),
2128 IPW2100_HANDLER(IPW_STATE_ASSN_LOST, isr_indicate_association_lost),
2129 IPW2100_HANDLER(IPW_STATE_ASSN_CHANGED, NULL),
2130 IPW2100_HANDLER(IPW_STATE_SCAN_COMPLETE, isr_scan_complete),
2131 IPW2100_HANDLER(IPW_STATE_ENTERED_PSP, NULL),
2132 IPW2100_HANDLER(IPW_STATE_LEFT_PSP, NULL),
2133 IPW2100_HANDLER(IPW_STATE_RF_KILL, isr_indicate_rf_kill),
2134 IPW2100_HANDLER(IPW_STATE_DISABLED, NULL),
2135 IPW2100_HANDLER(IPW_STATE_POWER_DOWN, NULL),
2136 IPW2100_HANDLER(IPW_STATE_SCANNING, isr_indicate_scanning),
2137 IPW2100_HANDLER(-1, NULL)
2138 };
2139
2140 static void isr_status_change(struct ipw2100_priv *priv, int status)
2141 {
2142 int i;
2143
2144 if (status == IPW_STATE_SCANNING &&
2145 priv->status & STATUS_ASSOCIATED &&
2146 !(priv->status & STATUS_SCANNING)) {
2147 IPW_DEBUG_INFO("Scan detected while associated, with "
2148 "no scan request. Restarting firmware.\n");
2149
2150 /* Wake up any sleeping jobs */
2151 schedule_reset(priv);
2152 }
2153
2154 for (i = 0; status_handlers[i].status != -1; i++) {
2155 if (status == status_handlers[i].status) {
2156 IPW_DEBUG_NOTIF("Status change: %s\n",
2157 status_handlers[i].name);
2158 if (status_handlers[i].cb)
2159 status_handlers[i].cb(priv, status);
2160 priv->wstats.status = status;
2161 return;
2162 }
2163 }
2164
2165 IPW_DEBUG_NOTIF("unknown status received: %04x\n", status);
2166 }
2167
2168 static void isr_rx_complete_command(struct ipw2100_priv *priv,
2169 struct ipw2100_cmd_header *cmd)
2170 {
2171 #ifdef CONFIG_IPW2100_DEBUG
2172 if (cmd->host_command_reg < ARRAY_SIZE(command_types)) {
2173 IPW_DEBUG_HC("Command completed '%s (%d)'\n",
2174 command_types[cmd->host_command_reg],
2175 cmd->host_command_reg);
2176 }
2177 #endif
2178 if (cmd->host_command_reg == HOST_COMPLETE)
2179 priv->status |= STATUS_ENABLED;
2180
2181 if (cmd->host_command_reg == CARD_DISABLE)
2182 priv->status &= ~STATUS_ENABLED;
2183
2184 priv->status &= ~STATUS_CMD_ACTIVE;
2185
2186 wake_up_interruptible(&priv->wait_command_queue);
2187 }
2188
2189 #ifdef CONFIG_IPW2100_DEBUG
2190 static const char *frame_types[] = {
2191 "COMMAND_STATUS_VAL",
2192 "STATUS_CHANGE_VAL",
2193 "P80211_DATA_VAL",
2194 "P8023_DATA_VAL",
2195 "HOST_NOTIFICATION_VAL"
2196 };
2197 #endif
2198
2199 static int ipw2100_alloc_skb(struct ipw2100_priv *priv,
2200 struct ipw2100_rx_packet *packet)
2201 {
2202 packet->skb = dev_alloc_skb(sizeof(struct ipw2100_rx));
2203 if (!packet->skb)
2204 return -ENOMEM;
2205
2206 packet->rxp = (struct ipw2100_rx *)packet->skb->data;
2207 packet->dma_addr = pci_map_single(priv->pci_dev, packet->skb->data,
2208 sizeof(struct ipw2100_rx),
2209 PCI_DMA_FROMDEVICE);
2210 /* NOTE: pci_map_single does not return an error code, and 0 is a valid
2211 * dma_addr */
2212
2213 return 0;
2214 }
2215
2216 #define SEARCH_ERROR 0xffffffff
2217 #define SEARCH_FAIL 0xfffffffe
2218 #define SEARCH_SUCCESS 0xfffffff0
2219 #define SEARCH_DISCARD 0
2220 #define SEARCH_SNAPSHOT 1
2221
2222 #define SNAPSHOT_ADDR(ofs) (priv->snapshot[((ofs) >> 12) & 0xff] + ((ofs) & 0xfff))
2223 static void ipw2100_snapshot_free(struct ipw2100_priv *priv)
2224 {
2225 int i;
2226 if (!priv->snapshot[0])
2227 return;
2228 for (i = 0; i < 0x30; i++)
2229 kfree(priv->snapshot[i]);
2230 priv->snapshot[0] = NULL;
2231 }
2232
2233 #ifdef CONFIG_IPW2100_DEBUG_C3
2234 static int ipw2100_snapshot_alloc(struct ipw2100_priv *priv)
2235 {
2236 int i;
2237 if (priv->snapshot[0])
2238 return 1;
2239 for (i = 0; i < 0x30; i++) {
2240 priv->snapshot[i] = (u8 *) kmalloc(0x1000, GFP_ATOMIC);
2241 if (!priv->snapshot[i]) {
2242 IPW_DEBUG_INFO("%s: Error allocating snapshot "
2243 "buffer %d\n", priv->net_dev->name, i);
2244 while (i > 0)
2245 kfree(priv->snapshot[--i]);
2246 priv->snapshot[0] = NULL;
2247 return 0;
2248 }
2249 }
2250
2251 return 1;
2252 }
2253
2254 static u32 ipw2100_match_buf(struct ipw2100_priv *priv, u8 * in_buf,
2255 size_t len, int mode)
2256 {
2257 u32 i, j;
2258 u32 tmp;
2259 u8 *s, *d;
2260 u32 ret;
2261
2262 s = in_buf;
2263 if (mode == SEARCH_SNAPSHOT) {
2264 if (!ipw2100_snapshot_alloc(priv))
2265 mode = SEARCH_DISCARD;
2266 }
2267
2268 for (ret = SEARCH_FAIL, i = 0; i < 0x30000; i += 4) {
2269 read_nic_dword(priv->net_dev, i, &tmp);
2270 if (mode == SEARCH_SNAPSHOT)
2271 *(u32 *) SNAPSHOT_ADDR(i) = tmp;
2272 if (ret == SEARCH_FAIL) {
2273 d = (u8 *) & tmp;
2274 for (j = 0; j < 4; j++) {
2275 if (*s != *d) {
2276 s = in_buf;
2277 continue;
2278 }
2279
2280 s++;
2281 d++;
2282
2283 if ((s - in_buf) == len)
2284 ret = (i + j) - len + 1;
2285 }
2286 } else if (mode == SEARCH_DISCARD)
2287 return ret;
2288 }
2289
2290 return ret;
2291 }
2292 #endif
2293
2294 /*
2295 *
2296 * 0) Disconnect the SKB from the firmware (just unmap)
2297 * 1) Pack the ETH header into the SKB
2298 * 2) Pass the SKB to the network stack
2299 *
2300 * When packet is provided by the firmware, it contains the following:
2301 *
2302 * . ieee80211_hdr
2303 * . ieee80211_snap_hdr
2304 *
2305 * The size of the constructed ethernet
2306 *
2307 */
2308 #ifdef CONFIG_IPW2100_RX_DEBUG
2309 static u8 packet_data[IPW_RX_NIC_BUFFER_LENGTH];
2310 #endif
2311
2312 static void ipw2100_corruption_detected(struct ipw2100_priv *priv, int i)
2313 {
2314 #ifdef CONFIG_IPW2100_DEBUG_C3
2315 struct ipw2100_status *status = &priv->status_queue.drv[i];
2316 u32 match, reg;
2317 int j;
2318 #endif
2319 #ifdef ACPI_CSTATE_LIMIT_DEFINED
2320 int limit;
2321 #endif
2322
2323 IPW_DEBUG_INFO(": PCI latency error detected at 0x%04zX.\n",
2324 i * sizeof(struct ipw2100_status));
2325
2326 #ifdef ACPI_CSTATE_LIMIT_DEFINED
2327 IPW_DEBUG_INFO(": Disabling C3 transitions.\n");
2328 limit = acpi_get_cstate_limit();
2329 if (limit > 2) {
2330 priv->cstate_limit = limit;
2331 acpi_set_cstate_limit(2);
2332 priv->config |= CFG_C3_DISABLED;
2333 }
2334 #endif
2335
2336 #ifdef CONFIG_IPW2100_DEBUG_C3
2337 /* Halt the fimrware so we can get a good image */
2338 write_register(priv->net_dev, IPW_REG_RESET_REG,
2339 IPW_AUX_HOST_RESET_REG_STOP_MASTER);
2340 j = 5;
2341 do {
2342 udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY);
2343 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
2344
2345 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
2346 break;
2347 } while (j--);
2348
2349 match = ipw2100_match_buf(priv, (u8 *) status,
2350 sizeof(struct ipw2100_status),
2351 SEARCH_SNAPSHOT);
2352 if (match < SEARCH_SUCCESS)
2353 IPW_DEBUG_INFO("%s: DMA status match in Firmware at "
2354 "offset 0x%06X, length %d:\n",
2355 priv->net_dev->name, match,
2356 sizeof(struct ipw2100_status));
2357 else
2358 IPW_DEBUG_INFO("%s: No DMA status match in "
2359 "Firmware.\n", priv->net_dev->name);
2360
2361 printk_buf((u8 *) priv->status_queue.drv,
2362 sizeof(struct ipw2100_status) * RX_QUEUE_LENGTH);
2363 #endif
2364
2365 priv->fatal_error = IPW2100_ERR_C3_CORRUPTION;
2366 priv->ieee->stats.rx_errors++;
2367 schedule_reset(priv);
2368 }
2369
2370 static void isr_rx(struct ipw2100_priv *priv, int i,
2371 struct ieee80211_rx_stats *stats)
2372 {
2373 struct ipw2100_status *status = &priv->status_queue.drv[i];
2374 struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
2375
2376 IPW_DEBUG_RX("Handler...\n");
2377
2378 if (unlikely(status->frame_size > skb_tailroom(packet->skb))) {
2379 IPW_DEBUG_INFO("%s: frame_size (%u) > skb_tailroom (%u)!"
2380 " Dropping.\n",
2381 priv->net_dev->name,
2382 status->frame_size, skb_tailroom(packet->skb));
2383 priv->ieee->stats.rx_errors++;
2384 return;
2385 }
2386
2387 if (unlikely(!netif_running(priv->net_dev))) {
2388 priv->ieee->stats.rx_errors++;
2389 priv->wstats.discard.misc++;
2390 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
2391 return;
2392 }
2393
2394 if (unlikely(priv->ieee->iw_mode != IW_MODE_MONITOR &&
2395 !(priv->status & STATUS_ASSOCIATED))) {
2396 IPW_DEBUG_DROP("Dropping packet while not associated.\n");
2397 priv->wstats.discard.misc++;
2398 return;
2399 }
2400
2401 pci_unmap_single(priv->pci_dev,
2402 packet->dma_addr,
2403 sizeof(struct ipw2100_rx), PCI_DMA_FROMDEVICE);
2404
2405 skb_put(packet->skb, status->frame_size);
2406
2407 #ifdef CONFIG_IPW2100_RX_DEBUG
2408 /* Make a copy of the frame so we can dump it to the logs if
2409 * ieee80211_rx fails */
2410 memcpy(packet_data, packet->skb->data,
2411 min_t(u32, status->frame_size, IPW_RX_NIC_BUFFER_LENGTH));
2412 #endif
2413
2414 if (!ieee80211_rx(priv->ieee, packet->skb, stats)) {
2415 #ifdef CONFIG_IPW2100_RX_DEBUG
2416 IPW_DEBUG_DROP("%s: Non consumed packet:\n",
2417 priv->net_dev->name);
2418 printk_buf(IPW_DL_DROP, packet_data, status->frame_size);
2419 #endif
2420 priv->ieee->stats.rx_errors++;
2421
2422 /* ieee80211_rx failed, so it didn't free the SKB */
2423 dev_kfree_skb_any(packet->skb);
2424 packet->skb = NULL;
2425 }
2426
2427 /* We need to allocate a new SKB and attach it to the RDB. */
2428 if (unlikely(ipw2100_alloc_skb(priv, packet))) {
2429 printk(KERN_WARNING DRV_NAME ": "
2430 "%s: Unable to allocate SKB onto RBD ring - disabling "
2431 "adapter.\n", priv->net_dev->name);
2432 /* TODO: schedule adapter shutdown */
2433 IPW_DEBUG_INFO("TODO: Shutdown adapter...\n");
2434 }
2435
2436 /* Update the RDB entry */
2437 priv->rx_queue.drv[i].host_addr = packet->dma_addr;
2438 }
2439
2440 #ifdef CONFIG_IPW2100_MONITOR
2441
2442 static void isr_rx_monitor(struct ipw2100_priv *priv, int i,
2443 struct ieee80211_rx_stats *stats)
2444 {
2445 struct ipw2100_status *status = &priv->status_queue.drv[i];
2446 struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
2447
2448 /* Magic struct that slots into the radiotap header -- no reason
2449 * to build this manually element by element, we can write it much
2450 * more efficiently than we can parse it. ORDER MATTERS HERE */
2451 struct ipw_rt_hdr {
2452 struct ieee80211_radiotap_header rt_hdr;
2453 s8 rt_dbmsignal; /* signal in dbM, kluged to signed */
2454 } *ipw_rt;
2455
2456 IPW_DEBUG_RX("Handler...\n");
2457
2458 if (unlikely(status->frame_size > skb_tailroom(packet->skb) -
2459 sizeof(struct ipw_rt_hdr))) {
2460 IPW_DEBUG_INFO("%s: frame_size (%u) > skb_tailroom (%u)!"
2461 " Dropping.\n",
2462 priv->net_dev->name,
2463 status->frame_size,
2464 skb_tailroom(packet->skb));
2465 priv->ieee->stats.rx_errors++;
2466 return;
2467 }
2468
2469 if (unlikely(!netif_running(priv->net_dev))) {
2470 priv->ieee->stats.rx_errors++;
2471 priv->wstats.discard.misc++;
2472 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
2473 return;
2474 }
2475
2476 if (unlikely(priv->config & CFG_CRC_CHECK &&
2477 status->flags & IPW_STATUS_FLAG_CRC_ERROR)) {
2478 IPW_DEBUG_RX("CRC error in packet. Dropping.\n");
2479 priv->ieee->stats.rx_errors++;
2480 return;
2481 }
2482
2483 pci_unmap_single(priv->pci_dev, packet->dma_addr,
2484 sizeof(struct ipw2100_rx), PCI_DMA_FROMDEVICE);
2485 memmove(packet->skb->data + sizeof(struct ipw_rt_hdr),
2486 packet->skb->data, status->frame_size);
2487
2488 ipw_rt = (struct ipw_rt_hdr *) packet->skb->data;
2489
2490 ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
2491 ipw_rt->rt_hdr.it_pad = 0; /* always good to zero */
2492 ipw_rt->rt_hdr.it_len = sizeof(struct ipw_rt_hdr); /* total hdr+data */
2493
2494 ipw_rt->rt_hdr.it_present = 1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL;
2495
2496 ipw_rt->rt_dbmsignal = status->rssi + IPW2100_RSSI_TO_DBM;
2497
2498 skb_put(packet->skb, status->frame_size + sizeof(struct ipw_rt_hdr));
2499
2500 if (!ieee80211_rx(priv->ieee, packet->skb, stats)) {
2501 priv->ieee->stats.rx_errors++;
2502
2503 /* ieee80211_rx failed, so it didn't free the SKB */
2504 dev_kfree_skb_any(packet->skb);
2505 packet->skb = NULL;
2506 }
2507
2508 /* We need to allocate a new SKB and attach it to the RDB. */
2509 if (unlikely(ipw2100_alloc_skb(priv, packet))) {
2510 IPW_DEBUG_WARNING(
2511 "%s: Unable to allocate SKB onto RBD ring - disabling "
2512 "adapter.\n", priv->net_dev->name);
2513 /* TODO: schedule adapter shutdown */
2514 IPW_DEBUG_INFO("TODO: Shutdown adapter...\n");
2515 }
2516
2517 /* Update the RDB entry */
2518 priv->rx_queue.drv[i].host_addr = packet->dma_addr;
2519 }
2520
2521 #endif
2522
2523 static int ipw2100_corruption_check(struct ipw2100_priv *priv, int i)
2524 {
2525 struct ipw2100_status *status = &priv->status_queue.drv[i];
2526 struct ipw2100_rx *u = priv->rx_buffers[i].rxp;
2527 u16 frame_type = status->status_fields & STATUS_TYPE_MASK;
2528
2529 switch (frame_type) {
2530 case COMMAND_STATUS_VAL:
2531 return (status->frame_size != sizeof(u->rx_data.command));
2532 case STATUS_CHANGE_VAL:
2533 return (status->frame_size != sizeof(u->rx_data.status));
2534 case HOST_NOTIFICATION_VAL:
2535 return (status->frame_size < sizeof(u->rx_data.notification));
2536 case P80211_DATA_VAL:
2537 case P8023_DATA_VAL:
2538 #ifdef CONFIG_IPW2100_MONITOR
2539 return 0;
2540 #else
2541 switch (WLAN_FC_GET_TYPE(u->rx_data.header.frame_ctl)) {
2542 case IEEE80211_FTYPE_MGMT:
2543 case IEEE80211_FTYPE_CTL:
2544 return 0;
2545 case IEEE80211_FTYPE_DATA:
2546 return (status->frame_size >
2547 IPW_MAX_802_11_PAYLOAD_LENGTH);
2548 }
2549 #endif
2550 }
2551
2552 return 1;
2553 }
2554
2555 /*
2556 * ipw2100 interrupts are disabled at this point, and the ISR
2557 * is the only code that calls this method. So, we do not need
2558 * to play with any locks.
2559 *
2560 * RX Queue works as follows:
2561 *
2562 * Read index - firmware places packet in entry identified by the
2563 * Read index and advances Read index. In this manner,
2564 * Read index will always point to the next packet to
2565 * be filled--but not yet valid.
2566 *
2567 * Write index - driver fills this entry with an unused RBD entry.
2568 * This entry has not filled by the firmware yet.
2569 *
2570 * In between the W and R indexes are the RBDs that have been received
2571 * but not yet processed.
2572 *
2573 * The process of handling packets will start at WRITE + 1 and advance
2574 * until it reaches the READ index.
2575 *
2576 * The WRITE index is cached in the variable 'priv->rx_queue.next'.
2577 *
2578 */
2579 static void __ipw2100_rx_process(struct ipw2100_priv *priv)
2580 {
2581 struct ipw2100_bd_queue *rxq = &priv->rx_queue;
2582 struct ipw2100_status_queue *sq = &priv->status_queue;
2583 struct ipw2100_rx_packet *packet;
2584 u16 frame_type;
2585 u32 r, w, i, s;
2586 struct ipw2100_rx *u;
2587 struct ieee80211_rx_stats stats = {
2588 .mac_time = jiffies,
2589 };
2590
2591 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_READ_INDEX, &r);
2592 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, &w);
2593
2594 if (r >= rxq->entries) {
2595 IPW_DEBUG_RX("exit - bad read index\n");
2596 return;
2597 }
2598
2599 i = (rxq->next + 1) % rxq->entries;
2600 s = i;
2601 while (i != r) {
2602 /* IPW_DEBUG_RX("r = %d : w = %d : processing = %d\n",
2603 r, rxq->next, i); */
2604
2605 packet = &priv->rx_buffers[i];
2606
2607 /* Sync the DMA for the STATUS buffer so CPU is sure to get
2608 * the correct values */
2609 pci_dma_sync_single_for_cpu(priv->pci_dev,
2610 sq->nic +
2611 sizeof(struct ipw2100_status) * i,
2612 sizeof(struct ipw2100_status),
2613 PCI_DMA_FROMDEVICE);
2614
2615 /* Sync the DMA for the RX buffer so CPU is sure to get
2616 * the correct values */
2617 pci_dma_sync_single_for_cpu(priv->pci_dev, packet->dma_addr,
2618 sizeof(struct ipw2100_rx),
2619 PCI_DMA_FROMDEVICE);
2620
2621 if (unlikely(ipw2100_corruption_check(priv, i))) {
2622 ipw2100_corruption_detected(priv, i);
2623 goto increment;
2624 }
2625
2626 u = packet->rxp;
2627 frame_type = sq->drv[i].status_fields & STATUS_TYPE_MASK;
2628 stats.rssi = sq->drv[i].rssi + IPW2100_RSSI_TO_DBM;
2629 stats.len = sq->drv[i].frame_size;
2630
2631 stats.mask = 0;
2632 if (stats.rssi != 0)
2633 stats.mask |= IEEE80211_STATMASK_RSSI;
2634 stats.freq = IEEE80211_24GHZ_BAND;
2635
2636 IPW_DEBUG_RX("%s: '%s' frame type received (%d).\n",
2637 priv->net_dev->name, frame_types[frame_type],
2638 stats.len);
2639
2640 switch (frame_type) {
2641 case COMMAND_STATUS_VAL:
2642 /* Reset Rx watchdog */
2643 isr_rx_complete_command(priv, &u->rx_data.command);
2644 break;
2645
2646 case STATUS_CHANGE_VAL:
2647 isr_status_change(priv, u->rx_data.status);
2648 break;
2649
2650 case P80211_DATA_VAL:
2651 case P8023_DATA_VAL:
2652 #ifdef CONFIG_IPW2100_MONITOR
2653 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
2654 isr_rx_monitor(priv, i, &stats);
2655 break;
2656 }
2657 #endif
2658 if (stats.len < sizeof(u->rx_data.header))
2659 break;
2660 switch (WLAN_FC_GET_TYPE(u->rx_data.header.frame_ctl)) {
2661 case IEEE80211_FTYPE_MGMT:
2662 ieee80211_rx_mgt(priv->ieee,
2663 &u->rx_data.header, &stats);
2664 break;
2665
2666 case IEEE80211_FTYPE_CTL:
2667 break;
2668
2669 case IEEE80211_FTYPE_DATA:
2670 isr_rx(priv, i, &stats);
2671 break;
2672
2673 }
2674 break;
2675 }
2676
2677 increment:
2678 /* clear status field associated with this RBD */
2679 rxq->drv[i].status.info.field = 0;
2680
2681 i = (i + 1) % rxq->entries;
2682 }
2683
2684 if (i != s) {
2685 /* backtrack one entry, wrapping to end if at 0 */
2686 rxq->next = (i ? i : rxq->entries) - 1;
2687
2688 write_register(priv->net_dev,
2689 IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, rxq->next);
2690 }
2691 }
2692
2693 /*
2694 * __ipw2100_tx_process
2695 *
2696 * This routine will determine whether the next packet on
2697 * the fw_pend_list has been processed by the firmware yet.
2698 *
2699 * If not, then it does nothing and returns.
2700 *
2701 * If so, then it removes the item from the fw_pend_list, frees
2702 * any associated storage, and places the item back on the
2703 * free list of its source (either msg_free_list or tx_free_list)
2704 *
2705 * TX Queue works as follows:
2706 *
2707 * Read index - points to the next TBD that the firmware will
2708 * process. The firmware will read the data, and once
2709 * done processing, it will advance the Read index.
2710 *
2711 * Write index - driver fills this entry with an constructed TBD
2712 * entry. The Write index is not advanced until the
2713 * packet has been configured.
2714 *
2715 * In between the W and R indexes are the TBDs that have NOT been
2716 * processed. Lagging behind the R index are packets that have
2717 * been processed but have not been freed by the driver.
2718 *
2719 * In order to free old storage, an internal index will be maintained
2720 * that points to the next packet to be freed. When all used
2721 * packets have been freed, the oldest index will be the same as the
2722 * firmware's read index.
2723 *
2724 * The OLDEST index is cached in the variable 'priv->tx_queue.oldest'
2725 *
2726 * Because the TBD structure can not contain arbitrary data, the
2727 * driver must keep an internal queue of cached allocations such that
2728 * it can put that data back into the tx_free_list and msg_free_list
2729 * for use by future command and data packets.
2730 *
2731 */
2732 static int __ipw2100_tx_process(struct ipw2100_priv *priv)
2733 {
2734 struct ipw2100_bd_queue *txq = &priv->tx_queue;
2735 struct ipw2100_bd *tbd;
2736 struct list_head *element;
2737 struct ipw2100_tx_packet *packet;
2738 int descriptors_used;
2739 int e, i;
2740 u32 r, w, frag_num = 0;
2741
2742 if (list_empty(&priv->fw_pend_list))
2743 return 0;
2744
2745 element = priv->fw_pend_list.next;
2746
2747 packet = list_entry(element, struct ipw2100_tx_packet, list);
2748 tbd = &txq->drv[packet->index];
2749
2750 /* Determine how many TBD entries must be finished... */
2751 switch (packet->type) {
2752 case COMMAND:
2753 /* COMMAND uses only one slot; don't advance */
2754 descriptors_used = 1;
2755 e = txq->oldest;
2756 break;
2757
2758 case DATA:
2759 /* DATA uses two slots; advance and loop position. */
2760 descriptors_used = tbd->num_fragments;
2761 frag_num = tbd->num_fragments - 1;
2762 e = txq->oldest + frag_num;
2763 e %= txq->entries;
2764 break;
2765
2766 default:
2767 printk(KERN_WARNING DRV_NAME ": %s: Bad fw_pend_list entry!\n",
2768 priv->net_dev->name);
2769 return 0;
2770 }
2771
2772 /* if the last TBD is not done by NIC yet, then packet is
2773 * not ready to be released.
2774 *
2775 */
2776 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX,
2777 &r);
2778 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
2779 &w);
2780 if (w != txq->next)
2781 printk(KERN_WARNING DRV_NAME ": %s: write index mismatch\n",
2782 priv->net_dev->name);
2783
2784 /*
2785 * txq->next is the index of the last packet written txq->oldest is
2786 * the index of the r is the index of the next packet to be read by
2787 * firmware
2788 */
2789
2790 /*
2791 * Quick graphic to help you visualize the following
2792 * if / else statement
2793 *
2794 * ===>| s---->|===============
2795 * e>|
2796 * | a | b | c | d | e | f | g | h | i | j | k | l
2797 * r---->|
2798 * w
2799 *
2800 * w - updated by driver
2801 * r - updated by firmware
2802 * s - start of oldest BD entry (txq->oldest)
2803 * e - end of oldest BD entry
2804 *
2805 */
2806 if (!((r <= w && (e < r || e >= w)) || (e < r && e >= w))) {
2807 IPW_DEBUG_TX("exit - no processed packets ready to release.\n");
2808 return 0;
2809 }
2810
2811 list_del(element);
2812 DEC_STAT(&priv->fw_pend_stat);
2813
2814 #ifdef CONFIG_IPW2100_DEBUG
2815 {
2816 int i = txq->oldest;
2817 IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i,
2818 &txq->drv[i],
2819 (u32) (txq->nic + i * sizeof(struct ipw2100_bd)),
2820 txq->drv[i].host_addr, txq->drv[i].buf_length);
2821
2822 if (packet->type == DATA) {
2823 i = (i + 1) % txq->entries;
2824
2825 IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i,
2826 &txq->drv[i],
2827 (u32) (txq->nic + i *
2828 sizeof(struct ipw2100_bd)),
2829 (u32) txq->drv[i].host_addr,
2830 txq->drv[i].buf_length);
2831 }
2832 }
2833 #endif
2834
2835 switch (packet->type) {
2836 case DATA:
2837 if (txq->drv[txq->oldest].status.info.fields.txType != 0)
2838 printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch. "
2839 "Expecting DATA TBD but pulled "
2840 "something else: ids %d=%d.\n",
2841 priv->net_dev->name, txq->oldest, packet->index);
2842
2843 /* DATA packet; we have to unmap and free the SKB */
2844 for (i = 0; i < frag_num; i++) {
2845 tbd = &txq->drv[(packet->index + 1 + i) % txq->entries];
2846
2847 IPW_DEBUG_TX("TX%d P=%08x L=%d\n",
2848 (packet->index + 1 + i) % txq->entries,
2849 tbd->host_addr, tbd->buf_length);
2850
2851 pci_unmap_single(priv->pci_dev,
2852 tbd->host_addr,
2853 tbd->buf_length, PCI_DMA_TODEVICE);
2854 }
2855
2856 ieee80211_txb_free(packet->info.d_struct.txb);
2857 packet->info.d_struct.txb = NULL;
2858
2859 list_add_tail(element, &priv->tx_free_list);
2860 INC_STAT(&priv->tx_free_stat);
2861
2862 /* We have a free slot in the Tx queue, so wake up the
2863 * transmit layer if it is stopped. */
2864 if (priv->status & STATUS_ASSOCIATED)
2865 netif_wake_queue(priv->net_dev);
2866
2867 /* A packet was processed by the hardware, so update the
2868 * watchdog */
2869 priv->net_dev->trans_start = jiffies;
2870
2871 break;
2872
2873 case COMMAND:
2874 if (txq->drv[txq->oldest].status.info.fields.txType != 1)
2875 printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch. "
2876 "Expecting COMMAND TBD but pulled "
2877 "something else: ids %d=%d.\n",
2878 priv->net_dev->name, txq->oldest, packet->index);
2879
2880 #ifdef CONFIG_IPW2100_DEBUG
2881 if (packet->info.c_struct.cmd->host_command_reg <
2882 sizeof(command_types) / sizeof(*command_types))
2883 IPW_DEBUG_TX("Command '%s (%d)' processed: %d.\n",
2884 command_types[packet->info.c_struct.cmd->
2885 host_command_reg],
2886 packet->info.c_struct.cmd->
2887 host_command_reg,
2888 packet->info.c_struct.cmd->cmd_status_reg);
2889 #endif
2890
2891 list_add_tail(element, &priv->msg_free_list);
2892 INC_STAT(&priv->msg_free_stat);
2893 break;
2894 }
2895
2896 /* advance oldest used TBD pointer to start of next entry */
2897 txq->oldest = (e + 1) % txq->entries;
2898 /* increase available TBDs number */
2899 txq->available += descriptors_used;
2900 SET_STAT(&priv->txq_stat, txq->available);
2901
2902 IPW_DEBUG_TX("packet latency (send to process) %ld jiffies\n",
2903 jiffies - packet->jiffy_start);
2904
2905 return (!list_empty(&priv->fw_pend_list));
2906 }
2907
2908 static inline void __ipw2100_tx_complete(struct ipw2100_priv *priv)
2909 {
2910 int i = 0;
2911
2912 while (__ipw2100_tx_process(priv) && i < 200)
2913 i++;
2914
2915 if (i == 200) {
2916 printk(KERN_WARNING DRV_NAME ": "
2917 "%s: Driver is running slow (%d iters).\n",
2918 priv->net_dev->name, i);
2919 }
2920 }
2921
2922 static void ipw2100_tx_send_commands(struct ipw2100_priv *priv)
2923 {
2924 struct list_head *element;
2925 struct ipw2100_tx_packet *packet;
2926 struct ipw2100_bd_queue *txq = &priv->tx_queue;
2927 struct ipw2100_bd *tbd;
2928 int next = txq->next;
2929
2930 while (!list_empty(&priv->msg_pend_list)) {
2931 /* if there isn't enough space in TBD queue, then
2932 * don't stuff a new one in.
2933 * NOTE: 3 are needed as a command will take one,
2934 * and there is a minimum of 2 that must be
2935 * maintained between the r and w indexes
2936 */
2937 if (txq->available <= 3) {
2938 IPW_DEBUG_TX("no room in tx_queue\n");
2939 break;
2940 }
2941
2942 element = priv->msg_pend_list.next;
2943 list_del(element);
2944 DEC_STAT(&priv->msg_pend_stat);
2945
2946 packet = list_entry(element, struct ipw2100_tx_packet, list);
2947
2948 IPW_DEBUG_TX("using TBD at virt=%p, phys=%p\n",
2949 &txq->drv[txq->next],
2950 (void *)(txq->nic + txq->next *
2951 sizeof(struct ipw2100_bd)));
2952
2953 packet->index = txq->next;
2954
2955 tbd = &txq->drv[txq->next];
2956
2957 /* initialize TBD */
2958 tbd->host_addr = packet->info.c_struct.cmd_phys;
2959 tbd->buf_length = sizeof(struct ipw2100_cmd_header);
2960 /* not marking number of fragments causes problems
2961 * with f/w debug version */
2962 tbd->num_fragments = 1;
2963 tbd->status.info.field =
2964 IPW_BD_STATUS_TX_FRAME_COMMAND |
2965 IPW_BD_STATUS_TX_INTERRUPT_ENABLE;
2966
2967 /* update TBD queue counters */
2968 txq->next++;
2969 txq->next %= txq->entries;
2970 txq->available--;
2971 DEC_STAT(&priv->txq_stat);
2972
2973 list_add_tail(element, &priv->fw_pend_list);
2974 INC_STAT(&priv->fw_pend_stat);
2975 }
2976
2977 if (txq->next != next) {
2978 /* kick off the DMA by notifying firmware the
2979 * write index has moved; make sure TBD stores are sync'd */
2980 wmb();
2981 write_register(priv->net_dev,
2982 IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
2983 txq->next);
2984 }
2985 }
2986
2987 /*
2988 * ipw2100_tx_send_data
2989 *
2990 */
2991 static void ipw2100_tx_send_data(struct ipw2100_priv *priv)
2992 {
2993 struct list_head *element;
2994 struct ipw2100_tx_packet *packet;
2995 struct ipw2100_bd_queue *txq = &priv->tx_queue;
2996 struct ipw2100_bd *tbd;
2997 int next = txq->next;
2998 int i = 0;
2999 struct ipw2100_data_header *ipw_hdr;
3000 struct ieee80211_hdr_3addr *hdr;
3001
3002 while (!list_empty(&priv->tx_pend_list)) {
3003 /* if there isn't enough space in TBD queue, then
3004 * don't stuff a new one in.
3005 * NOTE: 4 are needed as a data will take two,
3006 * and there is a minimum of 2 that must be
3007 * maintained between the r and w indexes
3008 */
3009 element = priv->tx_pend_list.next;
3010 packet = list_entry(element, struct ipw2100_tx_packet, list);
3011
3012 if (unlikely(1 + packet->info.d_struct.txb->nr_frags >
3013 IPW_MAX_BDS)) {
3014 /* TODO: Support merging buffers if more than
3015 * IPW_MAX_BDS are used */
3016 IPW_DEBUG_INFO("%s: Maximum BD theshold exceeded. "
3017 "Increase fragmentation level.\n",
3018 priv->net_dev->name);
3019 }
3020
3021 if (txq->available <= 3 + packet->info.d_struct.txb->nr_frags) {
3022 IPW_DEBUG_TX("no room in tx_queue\n");
3023 break;
3024 }
3025
3026 list_del(element);
3027 DEC_STAT(&priv->tx_pend_stat);
3028
3029 tbd = &txq->drv[txq->next];
3030
3031 packet->index = txq->next;
3032
3033 ipw_hdr = packet->info.d_struct.data;
3034 hdr = (struct ieee80211_hdr_3addr *)packet->info.d_struct.txb->
3035 fragments[0]->data;
3036
3037 if (priv->ieee->iw_mode == IW_MODE_INFRA) {
3038 /* To DS: Addr1 = BSSID, Addr2 = SA,
3039 Addr3 = DA */
3040 memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN);
3041 memcpy(ipw_hdr->dst_addr, hdr->addr3, ETH_ALEN);
3042 } else if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
3043 /* not From/To DS: Addr1 = DA, Addr2 = SA,
3044 Addr3 = BSSID */
3045 memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN);
3046 memcpy(ipw_hdr->dst_addr, hdr->addr1, ETH_ALEN);
3047 }
3048
3049 ipw_hdr->host_command_reg = SEND;
3050 ipw_hdr->host_command_reg1 = 0;
3051
3052 /* For now we only support host based encryption */
3053 ipw_hdr->needs_encryption = 0;
3054 ipw_hdr->encrypted = packet->info.d_struct.txb->encrypted;
3055 if (packet->info.d_struct.txb->nr_frags > 1)
3056 ipw_hdr->fragment_size =
3057 packet->info.d_struct.txb->frag_size -
3058 IEEE80211_3ADDR_LEN;
3059 else
3060 ipw_hdr->fragment_size = 0;
3061
3062 tbd->host_addr = packet->info.d_struct.data_phys;
3063 tbd->buf_length = sizeof(struct ipw2100_data_header);
3064 tbd->num_fragments = 1 + packet->info.d_struct.txb->nr_frags;
3065 tbd->status.info.field =
3066 IPW_BD_STATUS_TX_FRAME_802_3 |
3067 IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT;
3068 txq->next++;
3069 txq->next %= txq->entries;
3070
3071 IPW_DEBUG_TX("data header tbd TX%d P=%08x L=%d\n",
3072 packet->index, tbd->host_addr, tbd->buf_length);
3073 #ifdef CONFIG_IPW2100_DEBUG
3074 if (packet->info.d_struct.txb->nr_frags > 1)
3075 IPW_DEBUG_FRAG("fragment Tx: %d frames\n",
3076 packet->info.d_struct.txb->nr_frags);
3077 #endif
3078
3079 for (i = 0; i < packet->info.d_struct.txb->nr_frags; i++) {
3080 tbd = &txq->drv[txq->next];
3081 if (i == packet->info.d_struct.txb->nr_frags - 1)
3082 tbd->status.info.field =
3083 IPW_BD_STATUS_TX_FRAME_802_3 |
3084 IPW_BD_STATUS_TX_INTERRUPT_ENABLE;
3085 else
3086 tbd->status.info.field =
3087 IPW_BD_STATUS_TX_FRAME_802_3 |
3088 IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT;
3089
3090 tbd->buf_length = packet->info.d_struct.txb->
3091 fragments[i]->len - IEEE80211_3ADDR_LEN;
3092
3093 tbd->host_addr = pci_map_single(priv->pci_dev,
3094 packet->info.d_struct.
3095 txb->fragments[i]->
3096 data +
3097 IEEE80211_3ADDR_LEN,
3098 tbd->buf_length,
3099 PCI_DMA_TODEVICE);
3100
3101 IPW_DEBUG_TX("data frag tbd TX%d P=%08x L=%d\n",
3102 txq->next, tbd->host_addr,
3103 tbd->buf_length);
3104
3105 pci_dma_sync_single_for_device(priv->pci_dev,
3106 tbd->host_addr,
3107 tbd->buf_length,
3108 PCI_DMA_TODEVICE);
3109
3110 txq->next++;
3111 txq->next %= txq->entries;
3112 }
3113
3114 txq->available -= 1 + packet->info.d_struct.txb->nr_frags;
3115 SET_STAT(&priv->txq_stat, txq->available);
3116
3117 list_add_tail(element, &priv->fw_pend_list);
3118 INC_STAT(&priv->fw_pend_stat);
3119 }
3120
3121 if (txq->next != next) {
3122 /* kick off the DMA by notifying firmware the
3123 * write index has moved; make sure TBD stores are sync'd */
3124 write_register(priv->net_dev,
3125 IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
3126 txq->next);
3127 }
3128 return;
3129 }
3130
3131 static void ipw2100_irq_tasklet(struct ipw2100_priv *priv)
3132 {
3133 struct net_device *dev = priv->net_dev;
3134 unsigned long flags;
3135 u32 inta, tmp;
3136
3137 spin_lock_irqsave(&priv->low_lock, flags);
3138 ipw2100_disable_interrupts(priv);
3139
3140 read_register(dev, IPW_REG_INTA, &inta);
3141
3142 IPW_DEBUG_ISR("enter - INTA: 0x%08lX\n",
3143 (unsigned long)inta & IPW_INTERRUPT_MASK);
3144
3145 priv->in_isr++;
3146 priv->interrupts++;
3147
3148 /* We do not loop and keep polling for more interrupts as this
3149 * is frowned upon and doesn't play nicely with other potentially
3150 * chained IRQs */
3151 IPW_DEBUG_ISR("INTA: 0x%08lX\n",
3152 (unsigned long)inta & IPW_INTERRUPT_MASK);
3153
3154 if (inta & IPW2100_INTA_FATAL_ERROR) {
3155 printk(KERN_WARNING DRV_NAME
3156 ": Fatal interrupt. Scheduling firmware restart.\n");
3157 priv->inta_other++;
3158 write_register(dev, IPW_REG_INTA, IPW2100_INTA_FATAL_ERROR);
3159
3160 read_nic_dword(dev, IPW_NIC_FATAL_ERROR, &priv->fatal_error);
3161 IPW_DEBUG_INFO("%s: Fatal error value: 0x%08X\n",
3162 priv->net_dev->name, priv->fatal_error);
3163
3164 read_nic_dword(dev, IPW_ERROR_ADDR(priv->fatal_error), &tmp);
3165 IPW_DEBUG_INFO("%s: Fatal error address value: 0x%08X\n",
3166 priv->net_dev->name, tmp);
3167
3168 /* Wake up any sleeping jobs */
3169 schedule_reset(priv);
3170 }
3171
3172 if (inta & IPW2100_INTA_PARITY_ERROR) {
3173 printk(KERN_ERR DRV_NAME
3174 ": ***** PARITY ERROR INTERRUPT !!!! \n");
3175 priv->inta_other++;
3176 write_register(dev, IPW_REG_INTA, IPW2100_INTA_PARITY_ERROR);
3177 }
3178
3179 if (inta & IPW2100_INTA_RX_TRANSFER) {
3180 IPW_DEBUG_ISR("RX interrupt\n");
3181
3182 priv->rx_interrupts++;
3183
3184 write_register(dev, IPW_REG_INTA, IPW2100_INTA_RX_TRANSFER);
3185
3186 __ipw2100_rx_process(priv);
3187 __ipw2100_tx_complete(priv);
3188 }
3189
3190 if (inta & IPW2100_INTA_TX_TRANSFER) {
3191 IPW_DEBUG_ISR("TX interrupt\n");
3192
3193 priv->tx_interrupts++;
3194
3195 write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_TRANSFER);
3196
3197 __ipw2100_tx_complete(priv);
3198 ipw2100_tx_send_commands(priv);
3199 ipw2100_tx_send_data(priv);
3200 }
3201
3202 if (inta & IPW2100_INTA_TX_COMPLETE) {
3203 IPW_DEBUG_ISR("TX complete\n");
3204 priv->inta_other++;
3205 write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_COMPLETE);
3206
3207 __ipw2100_tx_complete(priv);
3208 }
3209
3210 if (inta & IPW2100_INTA_EVENT_INTERRUPT) {
3211 /* ipw2100_handle_event(dev); */
3212 priv->inta_other++;
3213 write_register(dev, IPW_REG_INTA, IPW2100_INTA_EVENT_INTERRUPT);
3214 }
3215
3216 if (inta & IPW2100_INTA_FW_INIT_DONE) {
3217 IPW_DEBUG_ISR("FW init done interrupt\n");
3218 priv->inta_other++;
3219
3220 read_register(dev, IPW_REG_INTA, &tmp);
3221 if (tmp & (IPW2100_INTA_FATAL_ERROR |
3222 IPW2100_INTA_PARITY_ERROR)) {
3223 write_register(dev, IPW_REG_INTA,
3224 IPW2100_INTA_FATAL_ERROR |
3225 IPW2100_INTA_PARITY_ERROR);
3226 }
3227
3228 write_register(dev, IPW_REG_INTA, IPW2100_INTA_FW_INIT_DONE);
3229 }
3230
3231 if (inta & IPW2100_INTA_STATUS_CHANGE) {
3232 IPW_DEBUG_ISR("Status change interrupt\n");
3233 priv->inta_other++;
3234 write_register(dev, IPW_REG_INTA, IPW2100_INTA_STATUS_CHANGE);
3235 }
3236
3237 if (inta & IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE) {
3238 IPW_DEBUG_ISR("slave host mode interrupt\n");
3239 priv->inta_other++;
3240 write_register(dev, IPW_REG_INTA,
3241 IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE);
3242 }
3243
3244 priv->in_isr--;
3245 ipw2100_enable_interrupts(priv);
3246
3247 spin_unlock_irqrestore(&priv->low_lock, flags);
3248
3249 IPW_DEBUG_ISR("exit\n");
3250 }
3251
3252 static irqreturn_t ipw2100_interrupt(int irq, void *data, struct pt_regs *regs)
3253 {
3254 struct ipw2100_priv *priv = data;
3255 u32 inta, inta_mask;
3256
3257 if (!data)
3258 return IRQ_NONE;
3259
3260 spin_lock(&priv->low_lock);
3261
3262 /* We check to see if we should be ignoring interrupts before
3263 * we touch the hardware. During ucode load if we try and handle
3264 * an interrupt we can cause keyboard problems as well as cause
3265 * the ucode to fail to initialize */
3266 if (!(priv->status & STATUS_INT_ENABLED)) {
3267 /* Shared IRQ */
3268 goto none;
3269 }
3270
3271 read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask);
3272 read_register(priv->net_dev, IPW_REG_INTA, &inta);
3273
3274 if (inta == 0xFFFFFFFF) {
3275 /* Hardware disappeared */
3276 printk(KERN_WARNING DRV_NAME ": IRQ INTA == 0xFFFFFFFF\n");
3277 goto none;
3278 }
3279
3280 inta &= IPW_INTERRUPT_MASK;
3281
3282 if (!(inta & inta_mask)) {
3283 /* Shared interrupt */
3284 goto none;
3285 }
3286
3287 /* We disable the hardware interrupt here just to prevent unneeded
3288 * calls to be made. We disable this again within the actual
3289 * work tasklet, so if another part of the code re-enables the
3290 * interrupt, that is fine */
3291 ipw2100_disable_interrupts(priv);
3292
3293 tasklet_schedule(&priv->irq_tasklet);
3294 spin_unlock(&priv->low_lock);
3295
3296 return IRQ_HANDLED;
3297 none:
3298 spin_unlock(&priv->low_lock);
3299 return IRQ_NONE;
3300 }
3301
3302 static int ipw2100_tx(struct ieee80211_txb *txb, struct net_device *dev,
3303 int pri)
3304 {
3305 struct ipw2100_priv *priv = ieee80211_priv(dev);
3306 struct list_head *element;
3307 struct ipw2100_tx_packet *packet;
3308 unsigned long flags;
3309
3310 spin_lock_irqsave(&priv->low_lock, flags);
3311
3312 if (!(priv->status & STATUS_ASSOCIATED)) {
3313 IPW_DEBUG_INFO("Can not transmit when not connected.\n");
3314 priv->ieee->stats.tx_carrier_errors++;
3315 netif_stop_queue(dev);
3316 goto fail_unlock;
3317 }
3318
3319 if (list_empty(&priv->tx_free_list))
3320 goto fail_unlock;
3321
3322 element = priv->tx_free_list.next;
3323 packet = list_entry(element, struct ipw2100_tx_packet, list);
3324
3325 packet->info.d_struct.txb = txb;
3326
3327 IPW_DEBUG_TX("Sending fragment (%d bytes):\n", txb->fragments[0]->len);
3328 printk_buf(IPW_DL_TX, txb->fragments[0]->data, txb->fragments[0]->len);
3329
3330 packet->jiffy_start = jiffies;
3331
3332 list_del(element);
3333 DEC_STAT(&priv->tx_free_stat);
3334
3335 list_add_tail(element, &priv->tx_pend_list);
3336 INC_STAT(&priv->tx_pend_stat);
3337
3338 ipw2100_tx_send_data(priv);
3339
3340 spin_unlock_irqrestore(&priv->low_lock, flags);
3341 return 0;
3342
3343 fail_unlock:
3344 netif_stop_queue(dev);
3345 spin_unlock_irqrestore(&priv->low_lock, flags);
3346 return 1;
3347 }
3348
3349 static int ipw2100_msg_allocate(struct ipw2100_priv *priv)
3350 {
3351 int i, j, err = -EINVAL;
3352 void *v;
3353 dma_addr_t p;
3354
3355 priv->msg_buffers =
3356 (struct ipw2100_tx_packet *)kmalloc(IPW_COMMAND_POOL_SIZE *
3357 sizeof(struct
3358 ipw2100_tx_packet),
3359 GFP_KERNEL);
3360 if (!priv->msg_buffers) {
3361 printk(KERN_ERR DRV_NAME ": %s: PCI alloc failed for msg "
3362 "buffers.\n", priv->net_dev->name);
3363 return -ENOMEM;
3364 }
3365
3366 for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) {
3367 v = pci_alloc_consistent(priv->pci_dev,
3368 sizeof(struct ipw2100_cmd_header), &p);
3369 if (!v) {
3370 printk(KERN_ERR DRV_NAME ": "
3371 "%s: PCI alloc failed for msg "
3372 "buffers.\n", priv->net_dev->name);
3373 err = -ENOMEM;
3374 break;
3375 }
3376
3377 memset(v, 0, sizeof(struct ipw2100_cmd_header));
3378
3379 priv->msg_buffers[i].type = COMMAND;
3380 priv->msg_buffers[i].info.c_struct.cmd =
3381 (struct ipw2100_cmd_header *)v;
3382 priv->msg_buffers[i].info.c_struct.cmd_phys = p;
3383 }
3384
3385 if (i == IPW_COMMAND_POOL_SIZE)
3386 return 0;
3387
3388 for (j = 0; j < i; j++) {
3389 pci_free_consistent(priv->pci_dev,
3390 sizeof(struct ipw2100_cmd_header),
3391 priv->msg_buffers[j].info.c_struct.cmd,
3392 priv->msg_buffers[j].info.c_struct.
3393 cmd_phys);
3394 }
3395
3396 kfree(priv->msg_buffers);
3397 priv->msg_buffers = NULL;
3398
3399 return err;
3400 }
3401
3402 static int ipw2100_msg_initialize(struct ipw2100_priv *priv)
3403 {
3404 int i;
3405
3406 INIT_LIST_HEAD(&priv->msg_free_list);
3407 INIT_LIST_HEAD(&priv->msg_pend_list);
3408
3409 for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++)
3410 list_add_tail(&priv->msg_buffers[i].list, &priv->msg_free_list);
3411 SET_STAT(&priv->msg_free_stat, i);
3412
3413 return 0;
3414 }
3415
3416 static void ipw2100_msg_free(struct ipw2100_priv *priv)
3417 {
3418 int i;
3419
3420 if (!priv->msg_buffers)
3421 return;
3422
3423 for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) {
3424 pci_free_consistent(priv->pci_dev,
3425 sizeof(struct ipw2100_cmd_header),
3426 priv->msg_buffers[i].info.c_struct.cmd,
3427 priv->msg_buffers[i].info.c_struct.
3428 cmd_phys);
3429 }
3430
3431 kfree(priv->msg_buffers);
3432 priv->msg_buffers = NULL;
3433 }
3434
3435 static ssize_t show_pci(struct device *d, struct device_attribute *attr,
3436 char *buf)
3437 {
3438 struct pci_dev *pci_dev = container_of(d, struct pci_dev, dev);
3439 char *out = buf;
3440 int i, j;
3441 u32 val;
3442
3443 for (i = 0; i < 16; i++) {
3444 out += sprintf(out, "[%08X] ", i * 16);
3445 for (j = 0; j < 16; j += 4) {
3446 pci_read_config_dword(pci_dev, i * 16 + j, &val);
3447 out += sprintf(out, "%08X ", val);
3448 }
3449 out += sprintf(out, "\n");
3450 }
3451
3452 return out - buf;
3453 }
3454
3455 static DEVICE_ATTR(pci, S_IRUGO, show_pci, NULL);
3456
3457 static ssize_t show_cfg(struct device *d, struct device_attribute *attr,
3458 char *buf)
3459 {
3460 struct ipw2100_priv *p = d->driver_data;
3461 return sprintf(buf, "0x%08x\n", (int)p->config);
3462 }
3463
3464 static DEVICE_ATTR(cfg, S_IRUGO, show_cfg, NULL);
3465
3466 static ssize_t show_status(struct device *d, struct device_attribute *attr,
3467 char *buf)
3468 {
3469 struct ipw2100_priv *p = d->driver_data;
3470 return sprintf(buf, "0x%08x\n", (int)p->status);
3471 }
3472
3473 static DEVICE_ATTR(status, S_IRUGO, show_status, NULL);
3474
3475 static ssize_t show_capability(struct device *d, struct device_attribute *attr,
3476 char *buf)
3477 {
3478 struct ipw2100_priv *p = d->driver_data;
3479 return sprintf(buf, "0x%08x\n", (int)p->capability);
3480 }
3481
3482 static DEVICE_ATTR(capability, S_IRUGO, show_capability, NULL);
3483
3484 #define IPW2100_REG(x) { IPW_ ##x, #x }
3485 static const struct {
3486 u32 addr;
3487 const char *name;
3488 } hw_data[] = {
3489 IPW2100_REG(REG_GP_CNTRL),
3490 IPW2100_REG(REG_GPIO),
3491 IPW2100_REG(REG_INTA),
3492 IPW2100_REG(REG_INTA_MASK), IPW2100_REG(REG_RESET_REG),};
3493 #define IPW2100_NIC(x, s) { x, #x, s }
3494 static const struct {
3495 u32 addr;
3496 const char *name;
3497 size_t size;
3498 } nic_data[] = {
3499 IPW2100_NIC(IPW2100_CONTROL_REG, 2),
3500 IPW2100_NIC(0x210014, 1), IPW2100_NIC(0x210000, 1),};
3501 #define IPW2100_ORD(x, d) { IPW_ORD_ ##x, #x, d }
3502 static const struct {
3503 u8 index;
3504 const char *name;
3505 const char *desc;
3506 } ord_data[] = {
3507 IPW2100_ORD(STAT_TX_HOST_REQUESTS, "requested Host Tx's (MSDU)"),
3508 IPW2100_ORD(STAT_TX_HOST_COMPLETE,
3509 "successful Host Tx's (MSDU)"),
3510 IPW2100_ORD(STAT_TX_DIR_DATA,
3511 "successful Directed Tx's (MSDU)"),
3512 IPW2100_ORD(STAT_TX_DIR_DATA1,
3513 "successful Directed Tx's (MSDU) @ 1MB"),
3514 IPW2100_ORD(STAT_TX_DIR_DATA2,
3515 "successful Directed Tx's (MSDU) @ 2MB"),
3516 IPW2100_ORD(STAT_TX_DIR_DATA5_5,
3517 "successful Directed Tx's (MSDU) @ 5_5MB"),
3518 IPW2100_ORD(STAT_TX_DIR_DATA11,
3519 "successful Directed Tx's (MSDU) @ 11MB"),
3520 IPW2100_ORD(STAT_TX_NODIR_DATA1,
3521 "successful Non_Directed Tx's (MSDU) @ 1MB"),
3522 IPW2100_ORD(STAT_TX_NODIR_DATA2,
3523 "successful Non_Directed Tx's (MSDU) @ 2MB"),
3524 IPW2100_ORD(STAT_TX_NODIR_DATA5_5,
3525 "successful Non_Directed Tx's (MSDU) @ 5.5MB"),
3526 IPW2100_ORD(STAT_TX_NODIR_DATA11,
3527 "successful Non_Directed Tx's (MSDU) @ 11MB"),
3528 IPW2100_ORD(STAT_NULL_DATA, "successful NULL data Tx's"),
3529 IPW2100_ORD(STAT_TX_RTS, "successful Tx RTS"),
3530 IPW2100_ORD(STAT_TX_CTS, "successful Tx CTS"),
3531 IPW2100_ORD(STAT_TX_ACK, "successful Tx ACK"),
3532 IPW2100_ORD(STAT_TX_ASSN, "successful Association Tx's"),
3533 IPW2100_ORD(STAT_TX_ASSN_RESP,
3534 "successful Association response Tx's"),
3535 IPW2100_ORD(STAT_TX_REASSN,
3536 "successful Reassociation Tx's"),
3537 IPW2100_ORD(STAT_TX_REASSN_RESP,
3538 "successful Reassociation response Tx's"),
3539 IPW2100_ORD(STAT_TX_PROBE,
3540 "probes successfully transmitted"),
3541 IPW2100_ORD(STAT_TX_PROBE_RESP,
3542 "probe responses successfully transmitted"),
3543 IPW2100_ORD(STAT_TX_BEACON, "tx beacon"),
3544 IPW2100_ORD(STAT_TX_ATIM, "Tx ATIM"),
3545 IPW2100_ORD(STAT_TX_DISASSN,
3546 "successful Disassociation TX"),
3547 IPW2100_ORD(STAT_TX_AUTH, "successful Authentication Tx"),
3548 IPW2100_ORD(STAT_TX_DEAUTH,
3549 "successful Deauthentication TX"),
3550 IPW2100_ORD(STAT_TX_TOTAL_BYTES,
3551 "Total successful Tx data bytes"),
3552 IPW2100_ORD(STAT_TX_RETRIES, "Tx retries"),
3553 IPW2100_ORD(STAT_TX_RETRY1, "Tx retries at 1MBPS"),
3554 IPW2100_ORD(STAT_TX_RETRY2, "Tx retries at 2MBPS"),
3555 IPW2100_ORD(STAT_TX_RETRY5_5, "Tx retries at 5.5MBPS"),
3556 IPW2100_ORD(STAT_TX_RETRY11, "Tx retries at 11MBPS"),
3557 IPW2100_ORD(STAT_TX_FAILURES, "Tx Failures"),
3558 IPW2100_ORD(STAT_TX_MAX_TRIES_IN_HOP,
3559 "times max tries in a hop failed"),
3560 IPW2100_ORD(STAT_TX_DISASSN_FAIL,
3561 "times disassociation failed"),
3562 IPW2100_ORD(STAT_TX_ERR_CTS, "missed/bad CTS frames"),
3563 IPW2100_ORD(STAT_TX_ERR_ACK, "tx err due to acks"),
3564 IPW2100_ORD(STAT_RX_HOST, "packets passed to host"),
3565 IPW2100_ORD(STAT_RX_DIR_DATA, "directed packets"),
3566 IPW2100_ORD(STAT_RX_DIR_DATA1, "directed packets at 1MB"),
3567 IPW2100_ORD(STAT_RX_DIR_DATA2, "directed packets at 2MB"),
3568 IPW2100_ORD(STAT_RX_DIR_DATA5_5,
3569 "directed packets at 5.5MB"),
3570 IPW2100_ORD(STAT_RX_DIR_DATA11, "directed packets at 11MB"),
3571 IPW2100_ORD(STAT_RX_NODIR_DATA, "nondirected packets"),
3572 IPW2100_ORD(STAT_RX_NODIR_DATA1,
3573 "nondirected packets at 1MB"),
3574 IPW2100_ORD(STAT_RX_NODIR_DATA2,
3575 "nondirected packets at 2MB"),
3576 IPW2100_ORD(STAT_RX_NODIR_DATA5_5,
3577 "nondirected packets at 5.5MB"),
3578 IPW2100_ORD(STAT_RX_NODIR_DATA11,
3579 "nondirected packets at 11MB"),
3580 IPW2100_ORD(STAT_RX_NULL_DATA, "null data rx's"),
3581 IPW2100_ORD(STAT_RX_RTS, "Rx RTS"), IPW2100_ORD(STAT_RX_CTS,
3582 "Rx CTS"),
3583 IPW2100_ORD(STAT_RX_ACK, "Rx ACK"),
3584 IPW2100_ORD(STAT_RX_CFEND, "Rx CF End"),
3585 IPW2100_ORD(STAT_RX_CFEND_ACK, "Rx CF End + CF Ack"),
3586 IPW2100_ORD(STAT_RX_ASSN, "Association Rx's"),
3587 IPW2100_ORD(STAT_RX_ASSN_RESP, "Association response Rx's"),
3588 IPW2100_ORD(STAT_RX_REASSN, "Reassociation Rx's"),
3589 IPW2100_ORD(STAT_RX_REASSN_RESP,
3590 "Reassociation response Rx's"),
3591 IPW2100_ORD(STAT_RX_PROBE, "probe Rx's"),
3592 IPW2100_ORD(STAT_RX_PROBE_RESP, "probe response Rx's"),
3593 IPW2100_ORD(STAT_RX_BEACON, "Rx beacon"),
3594 IPW2100_ORD(STAT_RX_ATIM, "Rx ATIM"),
3595 IPW2100_ORD(STAT_RX_DISASSN, "disassociation Rx"),
3596 IPW2100_ORD(STAT_RX_AUTH, "authentication Rx"),
3597 IPW2100_ORD(STAT_RX_DEAUTH, "deauthentication Rx"),
3598 IPW2100_ORD(STAT_RX_TOTAL_BYTES,
3599 "Total rx data bytes received"),
3600 IPW2100_ORD(STAT_RX_ERR_CRC, "packets with Rx CRC error"),
3601 IPW2100_ORD(STAT_RX_ERR_CRC1, "Rx CRC errors at 1MB"),
3602 IPW2100_ORD(STAT_RX_ERR_CRC2, "Rx CRC errors at 2MB"),
3603 IPW2100_ORD(STAT_RX_ERR_CRC5_5, "Rx CRC errors at 5.5MB"),
3604 IPW2100_ORD(STAT_RX_ERR_CRC11, "Rx CRC errors at 11MB"),
3605 IPW2100_ORD(STAT_RX_DUPLICATE1,
3606 "duplicate rx packets at 1MB"),
3607 IPW2100_ORD(STAT_RX_DUPLICATE2,
3608 "duplicate rx packets at 2MB"),
3609 IPW2100_ORD(STAT_RX_DUPLICATE5_5,
3610 "duplicate rx packets at 5.5MB"),
3611 IPW2100_ORD(STAT_RX_DUPLICATE11,
3612 "duplicate rx packets at 11MB"),
3613 IPW2100_ORD(STAT_RX_DUPLICATE, "duplicate rx packets"),
3614 IPW2100_ORD(PERS_DB_LOCK, "locking fw permanent db"),
3615 IPW2100_ORD(PERS_DB_SIZE, "size of fw permanent db"),
3616 IPW2100_ORD(PERS_DB_ADDR, "address of fw permanent db"),
3617 IPW2100_ORD(STAT_RX_INVALID_PROTOCOL,
3618 "rx frames with invalid protocol"),
3619 IPW2100_ORD(SYS_BOOT_TIME, "Boot time"),
3620 IPW2100_ORD(STAT_RX_NO_BUFFER,
3621 "rx frames rejected due to no buffer"),
3622 IPW2100_ORD(STAT_RX_MISSING_FRAG,
3623 "rx frames dropped due to missing fragment"),
3624 IPW2100_ORD(STAT_RX_ORPHAN_FRAG,
3625 "rx frames dropped due to non-sequential fragment"),
3626 IPW2100_ORD(STAT_RX_ORPHAN_FRAME,
3627 "rx frames dropped due to unmatched 1st frame"),
3628 IPW2100_ORD(STAT_RX_FRAG_AGEOUT,
3629 "rx frames dropped due to uncompleted frame"),
3630 IPW2100_ORD(STAT_RX_ICV_ERRORS,
3631 "ICV errors during decryption"),
3632 IPW2100_ORD(STAT_PSP_SUSPENSION, "times adapter suspended"),
3633 IPW2100_ORD(STAT_PSP_BCN_TIMEOUT, "beacon timeout"),
3634 IPW2100_ORD(STAT_PSP_POLL_TIMEOUT,
3635 "poll response timeouts"),
3636 IPW2100_ORD(STAT_PSP_NONDIR_TIMEOUT,
3637 "timeouts waiting for last {broad,multi}cast pkt"),
3638 IPW2100_ORD(STAT_PSP_RX_DTIMS, "PSP DTIMs received"),
3639 IPW2100_ORD(STAT_PSP_RX_TIMS, "PSP TIMs received"),
3640 IPW2100_ORD(STAT_PSP_STATION_ID, "PSP Station ID"),
3641 IPW2100_ORD(LAST_ASSN_TIME, "RTC time of last association"),
3642 IPW2100_ORD(STAT_PERCENT_MISSED_BCNS,
3643 "current calculation of % missed beacons"),
3644 IPW2100_ORD(STAT_PERCENT_RETRIES,
3645 "current calculation of % missed tx retries"),
3646 IPW2100_ORD(ASSOCIATED_AP_PTR,
3647 "0 if not associated, else pointer to AP table entry"),
3648 IPW2100_ORD(AVAILABLE_AP_CNT,
3649 "AP's decsribed in the AP table"),
3650 IPW2100_ORD(AP_LIST_PTR, "Ptr to list of available APs"),
3651 IPW2100_ORD(STAT_AP_ASSNS, "associations"),
3652 IPW2100_ORD(STAT_ASSN_FAIL, "association failures"),
3653 IPW2100_ORD(STAT_ASSN_RESP_FAIL,
3654 "failures due to response fail"),
3655 IPW2100_ORD(STAT_FULL_SCANS, "full scans"),
3656 IPW2100_ORD(CARD_DISABLED, "Card Disabled"),
3657 IPW2100_ORD(STAT_ROAM_INHIBIT,
3658 "times roaming was inhibited due to activity"),
3659 IPW2100_ORD(RSSI_AT_ASSN,
3660 "RSSI of associated AP at time of association"),
3661 IPW2100_ORD(STAT_ASSN_CAUSE1,
3662 "reassociation: no probe response or TX on hop"),
3663 IPW2100_ORD(STAT_ASSN_CAUSE2,
3664 "reassociation: poor tx/rx quality"),
3665 IPW2100_ORD(STAT_ASSN_CAUSE3,
3666 "reassociation: tx/rx quality (excessive AP load"),
3667 IPW2100_ORD(STAT_ASSN_CAUSE4,
3668 "reassociation: AP RSSI level"),
3669 IPW2100_ORD(STAT_ASSN_CAUSE5,
3670 "reassociations due to load leveling"),
3671 IPW2100_ORD(STAT_AUTH_FAIL, "times authentication failed"),
3672 IPW2100_ORD(STAT_AUTH_RESP_FAIL,
3673 "times authentication response failed"),
3674 IPW2100_ORD(STATION_TABLE_CNT,
3675 "entries in association table"),
3676 IPW2100_ORD(RSSI_AVG_CURR, "Current avg RSSI"),
3677 IPW2100_ORD(POWER_MGMT_MODE, "Power mode - 0=CAM, 1=PSP"),
3678 IPW2100_ORD(COUNTRY_CODE,
3679 "IEEE country code as recv'd from beacon"),
3680 IPW2100_ORD(COUNTRY_CHANNELS,
3681 "channels suported by country"),
3682 IPW2100_ORD(RESET_CNT, "adapter resets (warm)"),
3683 IPW2100_ORD(BEACON_INTERVAL, "Beacon interval"),
3684 IPW2100_ORD(ANTENNA_DIVERSITY,
3685 "TRUE if antenna diversity is disabled"),
3686 IPW2100_ORD(DTIM_PERIOD, "beacon intervals between DTIMs"),
3687 IPW2100_ORD(OUR_FREQ,
3688 "current radio freq lower digits - channel ID"),
3689 IPW2100_ORD(RTC_TIME, "current RTC time"),
3690 IPW2100_ORD(PORT_TYPE, "operating mode"),
3691 IPW2100_ORD(CURRENT_TX_RATE, "current tx rate"),
3692 IPW2100_ORD(SUPPORTED_RATES, "supported tx rates"),
3693 IPW2100_ORD(ATIM_WINDOW, "current ATIM Window"),
3694 IPW2100_ORD(BASIC_RATES, "basic tx rates"),
3695 IPW2100_ORD(NIC_HIGHEST_RATE, "NIC highest tx rate"),
3696 IPW2100_ORD(AP_HIGHEST_RATE, "AP highest tx rate"),
3697 IPW2100_ORD(CAPABILITIES,
3698 "Management frame capability field"),
3699 IPW2100_ORD(AUTH_TYPE, "Type of authentication"),
3700 IPW2100_ORD(RADIO_TYPE, "Adapter card platform type"),
3701 IPW2100_ORD(RTS_THRESHOLD,
3702 "Min packet length for RTS handshaking"),
3703 IPW2100_ORD(INT_MODE, "International mode"),
3704 IPW2100_ORD(FRAGMENTATION_THRESHOLD,
3705 "protocol frag threshold"),
3706 IPW2100_ORD(EEPROM_SRAM_DB_BLOCK_START_ADDRESS,
3707 "EEPROM offset in SRAM"),
3708 IPW2100_ORD(EEPROM_SRAM_DB_BLOCK_SIZE,
3709 "EEPROM size in SRAM"),
3710 IPW2100_ORD(EEPROM_SKU_CAPABILITY, "EEPROM SKU Capability"),
3711 IPW2100_ORD(EEPROM_IBSS_11B_CHANNELS,
3712 "EEPROM IBSS 11b channel set"),
3713 IPW2100_ORD(MAC_VERSION, "MAC Version"),
3714 IPW2100_ORD(MAC_REVISION, "MAC Revision"),
3715 IPW2100_ORD(RADIO_VERSION, "Radio Version"),
3716 IPW2100_ORD(NIC_MANF_DATE_TIME, "MANF Date/Time STAMP"),
3717 IPW2100_ORD(UCODE_VERSION, "Ucode Version"),};
3718
3719 static ssize_t show_registers(struct device *d, struct device_attribute *attr,
3720 char *buf)
3721 {
3722 int i;
3723 struct ipw2100_priv *priv = dev_get_drvdata(d);
3724 struct net_device *dev = priv->net_dev;
3725 char *out = buf;
3726 u32 val = 0;
3727
3728 out += sprintf(out, "%30s [Address ] : Hex\n", "Register");
3729
3730 for (i = 0; i < (sizeof(hw_data) / sizeof(*hw_data)); i++) {
3731 read_register(dev, hw_data[i].addr, &val);
3732 out += sprintf(out, "%30s [%08X] : %08X\n",
3733 hw_data[i].name, hw_data[i].addr, val);
3734 }
3735
3736 return out - buf;
3737 }
3738
3739 static DEVICE_ATTR(registers, S_IRUGO, show_registers, NULL);
3740
3741 static ssize_t show_hardware(struct device *d, struct device_attribute *attr,
3742 char *buf)
3743 {
3744 struct ipw2100_priv *priv = dev_get_drvdata(d);
3745 struct net_device *dev = priv->net_dev;
3746 char *out = buf;
3747 int i;
3748
3749 out += sprintf(out, "%30s [Address ] : Hex\n", "NIC entry");
3750
3751 for (i = 0; i < (sizeof(nic_data) / sizeof(*nic_data)); i++) {
3752 u8 tmp8;
3753 u16 tmp16;
3754 u32 tmp32;
3755
3756 switch (nic_data[i].size) {
3757 case 1:
3758 read_nic_byte(dev, nic_data[i].addr, &tmp8);
3759 out += sprintf(out, "%30s [%08X] : %02X\n",
3760 nic_data[i].name, nic_data[i].addr,
3761 tmp8);
3762 break;
3763 case 2:
3764 read_nic_word(dev, nic_data[i].addr, &tmp16);
3765 out += sprintf(out, "%30s [%08X] : %04X\n",
3766 nic_data[i].name, nic_data[i].addr,
3767 tmp16);
3768 break;
3769 case 4:
3770 read_nic_dword(dev, nic_data[i].addr, &tmp32);
3771 out += sprintf(out, "%30s [%08X] : %08X\n",
3772 nic_data[i].name, nic_data[i].addr,
3773 tmp32);
3774 break;
3775 }
3776 }
3777 return out - buf;
3778 }
3779
3780 static DEVICE_ATTR(hardware, S_IRUGO, show_hardware, NULL);
3781
3782 static ssize_t show_memory(struct device *d, struct device_attribute *attr,
3783 char *buf)
3784 {
3785 struct ipw2100_priv *priv = dev_get_drvdata(d);
3786 struct net_device *dev = priv->net_dev;
3787 static unsigned long loop = 0;
3788 int len = 0;
3789 u32 buffer[4];
3790 int i;
3791 char line[81];
3792
3793 if (loop >= 0x30000)
3794 loop = 0;
3795
3796 /* sysfs provides us PAGE_SIZE buffer */
3797 while (len < PAGE_SIZE - 128 && loop < 0x30000) {
3798
3799 if (priv->snapshot[0])
3800 for (i = 0; i < 4; i++)
3801 buffer[i] =
3802 *(u32 *) SNAPSHOT_ADDR(loop + i * 4);
3803 else
3804 for (i = 0; i < 4; i++)
3805 read_nic_dword(dev, loop + i * 4, &buffer[i]);
3806
3807 if (priv->dump_raw)
3808 len += sprintf(buf + len,
3809 "%c%c%c%c"
3810 "%c%c%c%c"
3811 "%c%c%c%c"
3812 "%c%c%c%c",
3813 ((u8 *) buffer)[0x0],
3814 ((u8 *) buffer)[0x1],
3815 ((u8 *) buffer)[0x2],
3816 ((u8 *) buffer)[0x3],
3817 ((u8 *) buffer)[0x4],
3818 ((u8 *) buffer)[0x5],
3819 ((u8 *) buffer)[0x6],
3820 ((u8 *) buffer)[0x7],
3821 ((u8 *) buffer)[0x8],
3822 ((u8 *) buffer)[0x9],
3823 ((u8 *) buffer)[0xa],
3824 ((u8 *) buffer)[0xb],
3825 ((u8 *) buffer)[0xc],
3826 ((u8 *) buffer)[0xd],
3827 ((u8 *) buffer)[0xe],
3828 ((u8 *) buffer)[0xf]);
3829 else
3830 len += sprintf(buf + len, "%s\n",
3831 snprint_line(line, sizeof(line),
3832 (u8 *) buffer, 16, loop));
3833 loop += 16;
3834 }
3835
3836 return len;
3837 }
3838
3839 static ssize_t store_memory(struct device *d, struct device_attribute *attr,
3840 const char *buf, size_t count)
3841 {
3842 struct ipw2100_priv *priv = dev_get_drvdata(d);
3843 struct net_device *dev = priv->net_dev;
3844 const char *p = buf;
3845
3846 (void)dev; /* kill unused-var warning for debug-only code */
3847
3848 if (count < 1)
3849 return count;
3850
3851 if (p[0] == '1' ||
3852 (count >= 2 && tolower(p[0]) == 'o' && tolower(p[1]) == 'n')) {
3853 IPW_DEBUG_INFO("%s: Setting memory dump to RAW mode.\n",
3854 dev->name);
3855 priv->dump_raw = 1;
3856
3857 } else if (p[0] == '0' || (count >= 2 && tolower(p[0]) == 'o' &&
3858 tolower(p[1]) == 'f')) {
3859 IPW_DEBUG_INFO("%s: Setting memory dump to HEX mode.\n",
3860 dev->name);
3861 priv->dump_raw = 0;
3862
3863 } else if (tolower(p[0]) == 'r') {
3864 IPW_DEBUG_INFO("%s: Resetting firmware snapshot.\n", dev->name);
3865 ipw2100_snapshot_free(priv);
3866
3867 } else
3868 IPW_DEBUG_INFO("%s: Usage: 0|on = HEX, 1|off = RAW, "
3869 "reset = clear memory snapshot\n", dev->name);
3870
3871 return count;
3872 }
3873
3874 static DEVICE_ATTR(memory, S_IWUSR | S_IRUGO, show_memory, store_memory);
3875
3876 static ssize_t show_ordinals(struct device *d, struct device_attribute *attr,
3877 char *buf)
3878 {
3879 struct ipw2100_priv *priv = dev_get_drvdata(d);
3880 u32 val = 0;
3881 int len = 0;
3882 u32 val_len;
3883 static int loop = 0;
3884
3885 if (priv->status & STATUS_RF_KILL_MASK)
3886 return 0;
3887
3888 if (loop >= sizeof(ord_data) / sizeof(*ord_data))
3889 loop = 0;
3890
3891 /* sysfs provides us PAGE_SIZE buffer */
3892 while (len < PAGE_SIZE - 128 &&
3893 loop < (sizeof(ord_data) / sizeof(*ord_data))) {
3894
3895 val_len = sizeof(u32);
3896
3897 if (ipw2100_get_ordinal(priv, ord_data[loop].index, &val,
3898 &val_len))
3899 len += sprintf(buf + len, "[0x%02X] = ERROR %s\n",
3900 ord_data[loop].index,
3901 ord_data[loop].desc);
3902 else
3903 len += sprintf(buf + len, "[0x%02X] = 0x%08X %s\n",
3904 ord_data[loop].index, val,
3905 ord_data[loop].desc);
3906 loop++;
3907 }
3908
3909 return len;
3910 }
3911
3912 static DEVICE_ATTR(ordinals, S_IRUGO, show_ordinals, NULL);
3913
3914 static ssize_t show_stats(struct device *d, struct device_attribute *attr,
3915 char *buf)
3916 {
3917 struct ipw2100_priv *priv = dev_get_drvdata(d);
3918 char *out = buf;
3919
3920 out += sprintf(out, "interrupts: %d {tx: %d, rx: %d, other: %d}\n",
3921 priv->interrupts, priv->tx_interrupts,
3922 priv->rx_interrupts, priv->inta_other);
3923 out += sprintf(out, "firmware resets: %d\n", priv->resets);
3924 out += sprintf(out, "firmware hangs: %d\n", priv->hangs);
3925 #ifdef CONFIG_IPW2100_DEBUG
3926 out += sprintf(out, "packet mismatch image: %s\n",
3927 priv->snapshot[0] ? "YES" : "NO");
3928 #endif
3929
3930 return out - buf;
3931 }
3932
3933 static DEVICE_ATTR(stats, S_IRUGO, show_stats, NULL);
3934
3935 static int ipw2100_switch_mode(struct ipw2100_priv *priv, u32 mode)
3936 {
3937 int err;
3938
3939 if (mode == priv->ieee->iw_mode)
3940 return 0;
3941
3942 err = ipw2100_disable_adapter(priv);
3943 if (err) {
3944 printk(KERN_ERR DRV_NAME ": %s: Could not disable adapter %d\n",
3945 priv->net_dev->name, err);
3946 return err;
3947 }
3948
3949 switch (mode) {
3950 case IW_MODE_INFRA:
3951 priv->net_dev->type = ARPHRD_ETHER;
3952 break;
3953 case IW_MODE_ADHOC:
3954 priv->net_dev->type = ARPHRD_ETHER;
3955 break;
3956 #ifdef CONFIG_IPW2100_MONITOR
3957 case IW_MODE_MONITOR:
3958 priv->last_mode = priv->ieee->iw_mode;
3959 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
3960 break;
3961 #endif /* CONFIG_IPW2100_MONITOR */
3962 }
3963
3964 priv->ieee->iw_mode = mode;
3965
3966 #ifdef CONFIG_PM
3967 /* Indicate ipw2100_download_firmware download firmware
3968 * from disk instead of memory. */
3969 ipw2100_firmware.version = 0;
3970 #endif
3971
3972 printk(KERN_INFO "%s: Reseting on mode change.\n", priv->net_dev->name);
3973 priv->reset_backoff = 0;
3974 schedule_reset(priv);
3975
3976 return 0;
3977 }
3978
3979 static ssize_t show_internals(struct device *d, struct device_attribute *attr,
3980 char *buf)
3981 {
3982 struct ipw2100_priv *priv = dev_get_drvdata(d);
3983 int len = 0;
3984
3985 #define DUMP_VAR(x,y) len += sprintf(buf + len, # x ": %" y "\n", priv-> x)
3986
3987 if (priv->status & STATUS_ASSOCIATED)
3988 len += sprintf(buf + len, "connected: %lu\n",
3989 get_seconds() - priv->connect_start);
3990 else
3991 len += sprintf(buf + len, "not connected\n");
3992
3993 DUMP_VAR(ieee->crypt[priv->ieee->tx_keyidx], "p");
3994 DUMP_VAR(status, "08lx");
3995 DUMP_VAR(config, "08lx");
3996 DUMP_VAR(capability, "08lx");
3997
3998 len +=
3999 sprintf(buf + len, "last_rtc: %lu\n",
4000 (unsigned long)priv->last_rtc);
4001
4002 DUMP_VAR(fatal_error, "d");
4003 DUMP_VAR(stop_hang_check, "d");
4004 DUMP_VAR(stop_rf_kill, "d");
4005 DUMP_VAR(messages_sent, "d");
4006
4007 DUMP_VAR(tx_pend_stat.value, "d");
4008 DUMP_VAR(tx_pend_stat.hi, "d");
4009
4010 DUMP_VAR(tx_free_stat.value, "d");
4011 DUMP_VAR(tx_free_stat.lo, "d");
4012
4013 DUMP_VAR(msg_free_stat.value, "d");
4014 DUMP_VAR(msg_free_stat.lo, "d");
4015
4016 DUMP_VAR(msg_pend_stat.value, "d");
4017 DUMP_VAR(msg_pend_stat.hi, "d");
4018
4019 DUMP_VAR(fw_pend_stat.value, "d");
4020 DUMP_VAR(fw_pend_stat.hi, "d");
4021
4022 DUMP_VAR(txq_stat.value, "d");
4023 DUMP_VAR(txq_stat.lo, "d");
4024
4025 DUMP_VAR(ieee->scans, "d");
4026 DUMP_VAR(reset_backoff, "d");
4027
4028 return len;
4029 }
4030
4031 static DEVICE_ATTR(internals, S_IRUGO, show_internals, NULL);
4032
4033 static ssize_t show_bssinfo(struct device *d, struct device_attribute *attr,
4034 char *buf)
4035 {
4036 struct ipw2100_priv *priv = dev_get_drvdata(d);
4037 char essid[IW_ESSID_MAX_SIZE + 1];
4038 u8 bssid[ETH_ALEN];
4039 u32 chan = 0;
4040 char *out = buf;
4041 int length;
4042 int ret;
4043
4044 if (priv->status & STATUS_RF_KILL_MASK)
4045 return 0;
4046
4047 memset(essid, 0, sizeof(essid));
4048 memset(bssid, 0, sizeof(bssid));
4049
4050 length = IW_ESSID_MAX_SIZE;
4051 ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_SSID, essid, &length);
4052 if (ret)
4053 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4054 __LINE__);
4055
4056 length = sizeof(bssid);
4057 ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID,
4058 bssid, &length);
4059 if (ret)
4060 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4061 __LINE__);
4062
4063 length = sizeof(u32);
4064 ret = ipw2100_get_ordinal(priv, IPW_ORD_OUR_FREQ, &chan, &length);
4065 if (ret)
4066 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4067 __LINE__);
4068
4069 out += sprintf(out, "ESSID: %s\n", essid);
4070 out += sprintf(out, "BSSID: %02x:%02x:%02x:%02x:%02x:%02x\n",
4071 bssid[0], bssid[1], bssid[2],
4072 bssid[3], bssid[4], bssid[5]);
4073 out += sprintf(out, "Channel: %d\n", chan);
4074
4075 return out - buf;
4076 }
4077
4078 static DEVICE_ATTR(bssinfo, S_IRUGO, show_bssinfo, NULL);
4079
4080 #ifdef CONFIG_IPW2100_DEBUG
4081 static ssize_t show_debug_level(struct device_driver *d, char *buf)
4082 {
4083 return sprintf(buf, "0x%08X\n", ipw2100_debug_level);
4084 }
4085
4086 static ssize_t store_debug_level(struct device_driver *d,
4087 const char *buf, size_t count)
4088 {
4089 char *p = (char *)buf;
4090 u32 val;
4091
4092 if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
4093 p++;
4094 if (p[0] == 'x' || p[0] == 'X')
4095 p++;
4096 val = simple_strtoul(p, &p, 16);
4097 } else
4098 val = simple_strtoul(p, &p, 10);
4099 if (p == buf)
4100 IPW_DEBUG_INFO(": %s is not in hex or decimal form.\n", buf);
4101 else
4102 ipw2100_debug_level = val;
4103
4104 return strnlen(buf, count);
4105 }
4106
4107 static DRIVER_ATTR(debug_level, S_IWUSR | S_IRUGO, show_debug_level,
4108 store_debug_level);
4109 #endif /* CONFIG_IPW2100_DEBUG */
4110
4111 static ssize_t show_fatal_error(struct device *d,
4112 struct device_attribute *attr, char *buf)
4113 {
4114 struct ipw2100_priv *priv = dev_get_drvdata(d);
4115 char *out = buf;
4116 int i;
4117
4118 if (priv->fatal_error)
4119 out += sprintf(out, "0x%08X\n", priv->fatal_error);
4120 else
4121 out += sprintf(out, "0\n");
4122
4123 for (i = 1; i <= IPW2100_ERROR_QUEUE; i++) {
4124 if (!priv->fatal_errors[(priv->fatal_index - i) %
4125 IPW2100_ERROR_QUEUE])
4126 continue;
4127
4128 out += sprintf(out, "%d. 0x%08X\n", i,
4129 priv->fatal_errors[(priv->fatal_index - i) %
4130 IPW2100_ERROR_QUEUE]);
4131 }
4132
4133 return out - buf;
4134 }
4135
4136 static ssize_t store_fatal_error(struct device *d,
4137 struct device_attribute *attr, const char *buf,
4138 size_t count)
4139 {
4140 struct ipw2100_priv *priv = dev_get_drvdata(d);
4141 schedule_reset(priv);
4142 return count;
4143 }
4144
4145 static DEVICE_ATTR(fatal_error, S_IWUSR | S_IRUGO, show_fatal_error,
4146 store_fatal_error);
4147
4148 static ssize_t show_scan_age(struct device *d, struct device_attribute *attr,
4149 char *buf)
4150 {
4151 struct ipw2100_priv *priv = dev_get_drvdata(d);
4152 return sprintf(buf, "%d\n", priv->ieee->scan_age);
4153 }
4154
4155 static ssize_t store_scan_age(struct device *d, struct device_attribute *attr,
4156 const char *buf, size_t count)
4157 {
4158 struct ipw2100_priv *priv = dev_get_drvdata(d);
4159 struct net_device *dev = priv->net_dev;
4160 char buffer[] = "00000000";
4161 unsigned long len =
4162 (sizeof(buffer) - 1) > count ? count : sizeof(buffer) - 1;
4163 unsigned long val;
4164 char *p = buffer;
4165
4166 (void)dev; /* kill unused-var warning for debug-only code */
4167
4168 IPW_DEBUG_INFO("enter\n");
4169
4170 strncpy(buffer, buf, len);
4171 buffer[len] = 0;
4172
4173 if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
4174 p++;
4175 if (p[0] == 'x' || p[0] == 'X')
4176 p++;
4177 val = simple_strtoul(p, &p, 16);
4178 } else
4179 val = simple_strtoul(p, &p, 10);
4180 if (p == buffer) {
4181 IPW_DEBUG_INFO("%s: user supplied invalid value.\n", dev->name);
4182 } else {
4183 priv->ieee->scan_age = val;
4184 IPW_DEBUG_INFO("set scan_age = %u\n", priv->ieee->scan_age);
4185 }
4186
4187 IPW_DEBUG_INFO("exit\n");
4188 return len;
4189 }
4190
4191 static DEVICE_ATTR(scan_age, S_IWUSR | S_IRUGO, show_scan_age, store_scan_age);
4192
4193 static ssize_t show_rf_kill(struct device *d, struct device_attribute *attr,
4194 char *buf)
4195 {
4196 /* 0 - RF kill not enabled
4197 1 - SW based RF kill active (sysfs)
4198 2 - HW based RF kill active
4199 3 - Both HW and SW baed RF kill active */
4200 struct ipw2100_priv *priv = (struct ipw2100_priv *)d->driver_data;
4201 int val = ((priv->status & STATUS_RF_KILL_SW) ? 0x1 : 0x0) |
4202 (rf_kill_active(priv) ? 0x2 : 0x0);
4203 return sprintf(buf, "%i\n", val);
4204 }
4205
4206 static int ipw_radio_kill_sw(struct ipw2100_priv *priv, int disable_radio)
4207 {
4208 if ((disable_radio ? 1 : 0) ==
4209 (priv->status & STATUS_RF_KILL_SW ? 1 : 0))
4210 return 0;
4211
4212 IPW_DEBUG_RF_KILL("Manual SW RF Kill set to: RADIO %s\n",
4213 disable_radio ? "OFF" : "ON");
4214
4215 mutex_lock(&priv->action_mutex);
4216
4217 if (disable_radio) {
4218 priv->status |= STATUS_RF_KILL_SW;
4219 ipw2100_down(priv);
4220 } else {
4221 priv->status &= ~STATUS_RF_KILL_SW;
4222 if (rf_kill_active(priv)) {
4223 IPW_DEBUG_RF_KILL("Can not turn radio back on - "
4224 "disabled by HW switch\n");
4225 /* Make sure the RF_KILL check timer is running */
4226 priv->stop_rf_kill = 0;
4227 cancel_delayed_work(&priv->rf_kill);
4228 queue_delayed_work(priv->workqueue, &priv->rf_kill, HZ);
4229 } else
4230 schedule_reset(priv);
4231 }
4232
4233 mutex_unlock(&priv->action_mutex);
4234 return 1;
4235 }
4236
4237 static ssize_t store_rf_kill(struct device *d, struct device_attribute *attr,
4238 const char *buf, size_t count)
4239 {
4240 struct ipw2100_priv *priv = dev_get_drvdata(d);
4241 ipw_radio_kill_sw(priv, buf[0] == '1');
4242 return count;
4243 }
4244
4245 static DEVICE_ATTR(rf_kill, S_IWUSR | S_IRUGO, show_rf_kill, store_rf_kill);
4246
4247 static struct attribute *ipw2100_sysfs_entries[] = {
4248 &dev_attr_hardware.attr,
4249 &dev_attr_registers.attr,
4250 &dev_attr_ordinals.attr,
4251 &dev_attr_pci.attr,
4252 &dev_attr_stats.attr,
4253 &dev_attr_internals.attr,
4254 &dev_attr_bssinfo.attr,
4255 &dev_attr_memory.attr,
4256 &dev_attr_scan_age.attr,
4257 &dev_attr_fatal_error.attr,
4258 &dev_attr_rf_kill.attr,
4259 &dev_attr_cfg.attr,
4260 &dev_attr_status.attr,
4261 &dev_attr_capability.attr,
4262 NULL,
4263 };
4264
4265 static struct attribute_group ipw2100_attribute_group = {
4266 .attrs = ipw2100_sysfs_entries,
4267 };
4268
4269 static int status_queue_allocate(struct ipw2100_priv *priv, int entries)
4270 {
4271 struct ipw2100_status_queue *q = &priv->status_queue;
4272
4273 IPW_DEBUG_INFO("enter\n");
4274
4275 q->size = entries * sizeof(struct ipw2100_status);
4276 q->drv =
4277 (struct ipw2100_status *)pci_alloc_consistent(priv->pci_dev,
4278 q->size, &q->nic);
4279 if (!q->drv) {
4280 IPW_DEBUG_WARNING("Can not allocate status queue.\n");
4281 return -ENOMEM;
4282 }
4283
4284 memset(q->drv, 0, q->size);
4285
4286 IPW_DEBUG_INFO("exit\n");
4287
4288 return 0;
4289 }
4290
4291 static void status_queue_free(struct ipw2100_priv *priv)
4292 {
4293 IPW_DEBUG_INFO("enter\n");
4294
4295 if (priv->status_queue.drv) {
4296 pci_free_consistent(priv->pci_dev, priv->status_queue.size,
4297 priv->status_queue.drv,
4298 priv->status_queue.nic);
4299 priv->status_queue.drv = NULL;
4300 }
4301
4302 IPW_DEBUG_INFO("exit\n");
4303 }
4304
4305 static int bd_queue_allocate(struct ipw2100_priv *priv,
4306 struct ipw2100_bd_queue *q, int entries)
4307 {
4308 IPW_DEBUG_INFO("enter\n");
4309
4310 memset(q, 0, sizeof(struct ipw2100_bd_queue));
4311
4312 q->entries = entries;
4313 q->size = entries * sizeof(struct ipw2100_bd);
4314 q->drv = pci_alloc_consistent(priv->pci_dev, q->size, &q->nic);
4315 if (!q->drv) {
4316 IPW_DEBUG_INFO
4317 ("can't allocate shared memory for buffer descriptors\n");
4318 return -ENOMEM;
4319 }
4320 memset(q->drv, 0, q->size);
4321
4322 IPW_DEBUG_INFO("exit\n");
4323
4324 return 0;
4325 }
4326
4327 static void bd_queue_free(struct ipw2100_priv *priv, struct ipw2100_bd_queue *q)
4328 {
4329 IPW_DEBUG_INFO("enter\n");
4330
4331 if (!q)
4332 return;
4333
4334 if (q->drv) {
4335 pci_free_consistent(priv->pci_dev, q->size, q->drv, q->nic);
4336 q->drv = NULL;
4337 }
4338
4339 IPW_DEBUG_INFO("exit\n");
4340 }
4341
4342 static void bd_queue_initialize(struct ipw2100_priv *priv,
4343 struct ipw2100_bd_queue *q, u32 base, u32 size,
4344 u32 r, u32 w)
4345 {
4346 IPW_DEBUG_INFO("enter\n");
4347
4348 IPW_DEBUG_INFO("initializing bd queue at virt=%p, phys=%08x\n", q->drv,
4349 (u32) q->nic);
4350
4351 write_register(priv->net_dev, base, q->nic);
4352 write_register(priv->net_dev, size, q->entries);
4353 write_register(priv->net_dev, r, q->oldest);
4354 write_register(priv->net_dev, w, q->next);
4355
4356 IPW_DEBUG_INFO("exit\n");
4357 }
4358
4359 static void ipw2100_kill_workqueue(struct ipw2100_priv *priv)
4360 {
4361 if (priv->workqueue) {
4362 priv->stop_rf_kill = 1;
4363 priv->stop_hang_check = 1;
4364 cancel_delayed_work(&priv->reset_work);
4365 cancel_delayed_work(&priv->security_work);
4366 cancel_delayed_work(&priv->wx_event_work);
4367 cancel_delayed_work(&priv->hang_check);
4368 cancel_delayed_work(&priv->rf_kill);
4369 destroy_workqueue(priv->workqueue);
4370 priv->workqueue = NULL;
4371 }
4372 }
4373
4374 static int ipw2100_tx_allocate(struct ipw2100_priv *priv)
4375 {
4376 int i, j, err = -EINVAL;
4377 void *v;
4378 dma_addr_t p;
4379
4380 IPW_DEBUG_INFO("enter\n");
4381
4382 err = bd_queue_allocate(priv, &priv->tx_queue, TX_QUEUE_LENGTH);
4383 if (err) {
4384 IPW_DEBUG_ERROR("%s: failed bd_queue_allocate\n",
4385 priv->net_dev->name);
4386 return err;
4387 }
4388
4389 priv->tx_buffers =
4390 (struct ipw2100_tx_packet *)kmalloc(TX_PENDED_QUEUE_LENGTH *
4391 sizeof(struct
4392 ipw2100_tx_packet),
4393 GFP_ATOMIC);
4394 if (!priv->tx_buffers) {
4395 printk(KERN_ERR DRV_NAME
4396 ": %s: alloc failed form tx buffers.\n",
4397 priv->net_dev->name);
4398 bd_queue_free(priv, &priv->tx_queue);
4399 return -ENOMEM;
4400 }
4401
4402 for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4403 v = pci_alloc_consistent(priv->pci_dev,
4404 sizeof(struct ipw2100_data_header),
4405 &p);
4406 if (!v) {
4407 printk(KERN_ERR DRV_NAME
4408 ": %s: PCI alloc failed for tx " "buffers.\n",
4409 priv->net_dev->name);
4410 err = -ENOMEM;
4411 break;
4412 }
4413
4414 priv->tx_buffers[i].type = DATA;
4415 priv->tx_buffers[i].info.d_struct.data =
4416 (struct ipw2100_data_header *)v;
4417 priv->tx_buffers[i].info.d_struct.data_phys = p;
4418 priv->tx_buffers[i].info.d_struct.txb = NULL;
4419 }
4420
4421 if (i == TX_PENDED_QUEUE_LENGTH)
4422 return 0;
4423
4424 for (j = 0; j < i; j++) {
4425 pci_free_consistent(priv->pci_dev,
4426 sizeof(struct ipw2100_data_header),
4427 priv->tx_buffers[j].info.d_struct.data,
4428 priv->tx_buffers[j].info.d_struct.
4429 data_phys);
4430 }
4431
4432 kfree(priv->tx_buffers);
4433 priv->tx_buffers = NULL;
4434
4435 return err;
4436 }
4437
4438 static void ipw2100_tx_initialize(struct ipw2100_priv *priv)
4439 {
4440 int i;
4441
4442 IPW_DEBUG_INFO("enter\n");
4443
4444 /*
4445 * reinitialize packet info lists
4446 */
4447 INIT_LIST_HEAD(&priv->fw_pend_list);
4448 INIT_STAT(&priv->fw_pend_stat);
4449
4450 /*
4451 * reinitialize lists
4452 */
4453 INIT_LIST_HEAD(&priv->tx_pend_list);
4454 INIT_LIST_HEAD(&priv->tx_free_list);
4455 INIT_STAT(&priv->tx_pend_stat);
4456 INIT_STAT(&priv->tx_free_stat);
4457
4458 for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4459 /* We simply drop any SKBs that have been queued for
4460 * transmit */
4461 if (priv->tx_buffers[i].info.d_struct.txb) {
4462 ieee80211_txb_free(priv->tx_buffers[i].info.d_struct.
4463 txb);
4464 priv->tx_buffers[i].info.d_struct.txb = NULL;
4465 }
4466
4467 list_add_tail(&priv->tx_buffers[i].list, &priv->tx_free_list);
4468 }
4469
4470 SET_STAT(&priv->tx_free_stat, i);
4471
4472 priv->tx_queue.oldest = 0;
4473 priv->tx_queue.available = priv->tx_queue.entries;
4474 priv->tx_queue.next = 0;
4475 INIT_STAT(&priv->txq_stat);
4476 SET_STAT(&priv->txq_stat, priv->tx_queue.available);
4477
4478 bd_queue_initialize(priv, &priv->tx_queue,
4479 IPW_MEM_HOST_SHARED_TX_QUEUE_BD_BASE,
4480 IPW_MEM_HOST_SHARED_TX_QUEUE_BD_SIZE,
4481 IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX,
4482 IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX);
4483
4484 IPW_DEBUG_INFO("exit\n");
4485
4486 }
4487
4488 static void ipw2100_tx_free(struct ipw2100_priv *priv)
4489 {
4490 int i;
4491
4492 IPW_DEBUG_INFO("enter\n");
4493
4494 bd_queue_free(priv, &priv->tx_queue);
4495
4496 if (!priv->tx_buffers)
4497 return;
4498
4499 for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4500 if (priv->tx_buffers[i].info.d_struct.txb) {
4501 ieee80211_txb_free(priv->tx_buffers[i].info.d_struct.
4502 txb);
4503 priv->tx_buffers[i].info.d_struct.txb = NULL;
4504 }
4505 if (priv->tx_buffers[i].info.d_struct.data)
4506 pci_free_consistent(priv->pci_dev,
4507 sizeof(struct ipw2100_data_header),
4508 priv->tx_buffers[i].info.d_struct.
4509 data,
4510 priv->tx_buffers[i].info.d_struct.
4511 data_phys);
4512 }
4513
4514 kfree(priv->tx_buffers);
4515 priv->tx_buffers = NULL;
4516
4517 IPW_DEBUG_INFO("exit\n");
4518 }
4519
4520 static int ipw2100_rx_allocate(struct ipw2100_priv *priv)
4521 {
4522 int i, j, err = -EINVAL;
4523
4524 IPW_DEBUG_INFO("enter\n");
4525
4526 err = bd_queue_allocate(priv, &priv->rx_queue, RX_QUEUE_LENGTH);
4527 if (err) {
4528 IPW_DEBUG_INFO("failed bd_queue_allocate\n");
4529 return err;
4530 }
4531
4532 err = status_queue_allocate(priv, RX_QUEUE_LENGTH);
4533 if (err) {
4534 IPW_DEBUG_INFO("failed status_queue_allocate\n");
4535 bd_queue_free(priv, &priv->rx_queue);
4536 return err;
4537 }
4538
4539 /*
4540 * allocate packets
4541 */
4542 priv->rx_buffers = (struct ipw2100_rx_packet *)
4543 kmalloc(RX_QUEUE_LENGTH * sizeof(struct ipw2100_rx_packet),
4544 GFP_KERNEL);
4545 if (!priv->rx_buffers) {
4546 IPW_DEBUG_INFO("can't allocate rx packet buffer table\n");
4547
4548 bd_queue_free(priv, &priv->rx_queue);
4549
4550 status_queue_free(priv);
4551
4552 return -ENOMEM;
4553 }
4554
4555 for (i = 0; i < RX_QUEUE_LENGTH; i++) {
4556 struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
4557
4558 err = ipw2100_alloc_skb(priv, packet);
4559 if (unlikely(err)) {
4560 err = -ENOMEM;
4561 break;
4562 }
4563
4564 /* The BD holds the cache aligned address */
4565 priv->rx_queue.drv[i].host_addr = packet->dma_addr;
4566 priv->rx_queue.drv[i].buf_length = IPW_RX_NIC_BUFFER_LENGTH;
4567 priv->status_queue.drv[i].status_fields = 0;
4568 }
4569
4570 if (i == RX_QUEUE_LENGTH)
4571 return 0;
4572
4573 for (j = 0; j < i; j++) {
4574 pci_unmap_single(priv->pci_dev, priv->rx_buffers[j].dma_addr,
4575 sizeof(struct ipw2100_rx_packet),
4576 PCI_DMA_FROMDEVICE);
4577 dev_kfree_skb(priv->rx_buffers[j].skb);
4578 }
4579
4580 kfree(priv->rx_buffers);
4581 priv->rx_buffers = NULL;
4582
4583 bd_queue_free(priv, &priv->rx_queue);
4584
4585 status_queue_free(priv);
4586
4587 return err;
4588 }
4589
4590 static void ipw2100_rx_initialize(struct ipw2100_priv *priv)
4591 {
4592 IPW_DEBUG_INFO("enter\n");
4593
4594 priv->rx_queue.oldest = 0;
4595 priv->rx_queue.available = priv->rx_queue.entries - 1;
4596 priv->rx_queue.next = priv->rx_queue.entries - 1;
4597
4598 INIT_STAT(&priv->rxq_stat);
4599 SET_STAT(&priv->rxq_stat, priv->rx_queue.available);
4600
4601 bd_queue_initialize(priv, &priv->rx_queue,
4602 IPW_MEM_HOST_SHARED_RX_BD_BASE,
4603 IPW_MEM_HOST_SHARED_RX_BD_SIZE,
4604 IPW_MEM_HOST_SHARED_RX_READ_INDEX,
4605 IPW_MEM_HOST_SHARED_RX_WRITE_INDEX);
4606
4607 /* set up the status queue */
4608 write_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_STATUS_BASE,
4609 priv->status_queue.nic);
4610
4611 IPW_DEBUG_INFO("exit\n");
4612 }
4613
4614 static void ipw2100_rx_free(struct ipw2100_priv *priv)
4615 {
4616 int i;
4617
4618 IPW_DEBUG_INFO("enter\n");
4619
4620 bd_queue_free(priv, &priv->rx_queue);
4621 status_queue_free(priv);
4622
4623 if (!priv->rx_buffers)
4624 return;
4625
4626 for (i = 0; i < RX_QUEUE_LENGTH; i++) {
4627 if (priv->rx_buffers[i].rxp) {
4628 pci_unmap_single(priv->pci_dev,
4629 priv->rx_buffers[i].dma_addr,
4630 sizeof(struct ipw2100_rx),
4631 PCI_DMA_FROMDEVICE);
4632 dev_kfree_skb(priv->rx_buffers[i].skb);
4633 }
4634 }
4635
4636 kfree(priv->rx_buffers);
4637 priv->rx_buffers = NULL;
4638
4639 IPW_DEBUG_INFO("exit\n");
4640 }
4641
4642 static int ipw2100_read_mac_address(struct ipw2100_priv *priv)
4643 {
4644 u32 length = ETH_ALEN;
4645 u8 mac[ETH_ALEN];
4646
4647 int err;
4648
4649 err = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ADAPTER_MAC, mac, &length);
4650 if (err) {
4651 IPW_DEBUG_INFO("MAC address read failed\n");
4652 return -EIO;
4653 }
4654 IPW_DEBUG_INFO("card MAC is %02X:%02X:%02X:%02X:%02X:%02X\n",
4655 mac[0], mac[1], mac[2], mac[3], mac[4], mac[5]);
4656
4657 memcpy(priv->net_dev->dev_addr, mac, ETH_ALEN);
4658
4659 return 0;
4660 }
4661
4662 /********************************************************************
4663 *
4664 * Firmware Commands
4665 *
4666 ********************************************************************/
4667
4668 static int ipw2100_set_mac_address(struct ipw2100_priv *priv, int batch_mode)
4669 {
4670 struct host_command cmd = {
4671 .host_command = ADAPTER_ADDRESS,
4672 .host_command_sequence = 0,
4673 .host_command_length = ETH_ALEN
4674 };
4675 int err;
4676
4677 IPW_DEBUG_HC("SET_MAC_ADDRESS\n");
4678
4679 IPW_DEBUG_INFO("enter\n");
4680
4681 if (priv->config & CFG_CUSTOM_MAC) {
4682 memcpy(cmd.host_command_parameters, priv->mac_addr, ETH_ALEN);
4683 memcpy(priv->net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
4684 } else
4685 memcpy(cmd.host_command_parameters, priv->net_dev->dev_addr,
4686 ETH_ALEN);
4687
4688 err = ipw2100_hw_send_command(priv, &cmd);
4689
4690 IPW_DEBUG_INFO("exit\n");
4691 return err;
4692 }
4693
4694 static int ipw2100_set_port_type(struct ipw2100_priv *priv, u32 port_type,
4695 int batch_mode)
4696 {
4697 struct host_command cmd = {
4698 .host_command = PORT_TYPE,
4699 .host_command_sequence = 0,
4700 .host_command_length = sizeof(u32)
4701 };
4702 int err;
4703
4704 switch (port_type) {
4705 case IW_MODE_INFRA:
4706 cmd.host_command_parameters[0] = IPW_BSS;
4707 break;
4708 case IW_MODE_ADHOC:
4709 cmd.host_command_parameters[0] = IPW_IBSS;
4710 break;
4711 }
4712
4713 IPW_DEBUG_HC("PORT_TYPE: %s\n",
4714 port_type == IPW_IBSS ? "Ad-Hoc" : "Managed");
4715
4716 if (!batch_mode) {
4717 err = ipw2100_disable_adapter(priv);
4718 if (err) {
4719 printk(KERN_ERR DRV_NAME
4720 ": %s: Could not disable adapter %d\n",
4721 priv->net_dev->name, err);
4722 return err;
4723 }
4724 }
4725
4726 /* send cmd to firmware */
4727 err = ipw2100_hw_send_command(priv, &cmd);
4728
4729 if (!batch_mode)
4730 ipw2100_enable_adapter(priv);
4731
4732 return err;
4733 }
4734
4735 static int ipw2100_set_channel(struct ipw2100_priv *priv, u32 channel,
4736 int batch_mode)
4737 {
4738 struct host_command cmd = {
4739 .host_command = CHANNEL,
4740 .host_command_sequence = 0,
4741 .host_command_length = sizeof(u32)
4742 };
4743 int err;
4744
4745 cmd.host_command_parameters[0] = channel;
4746
4747 IPW_DEBUG_HC("CHANNEL: %d\n", channel);
4748
4749 /* If BSS then we don't support channel selection */
4750 if (priv->ieee->iw_mode == IW_MODE_INFRA)
4751 return 0;
4752
4753 if ((channel != 0) &&
4754 ((channel < REG_MIN_CHANNEL) || (channel > REG_MAX_CHANNEL)))
4755 return -EINVAL;
4756
4757 if (!batch_mode) {
4758 err = ipw2100_disable_adapter(priv);
4759 if (err)
4760 return err;
4761 }
4762
4763 err = ipw2100_hw_send_command(priv, &cmd);
4764 if (err) {
4765 IPW_DEBUG_INFO("Failed to set channel to %d", channel);
4766 return err;
4767 }
4768
4769 if (channel)
4770 priv->config |= CFG_STATIC_CHANNEL;
4771 else
4772 priv->config &= ~CFG_STATIC_CHANNEL;
4773
4774 priv->channel = channel;
4775
4776 if (!batch_mode) {
4777 err = ipw2100_enable_adapter(priv);
4778 if (err)
4779 return err;
4780 }
4781
4782 return 0;
4783 }
4784
4785 static int ipw2100_system_config(struct ipw2100_priv *priv, int batch_mode)
4786 {
4787 struct host_command cmd = {
4788 .host_command = SYSTEM_CONFIG,
4789 .host_command_sequence = 0,
4790 .host_command_length = 12,
4791 };
4792 u32 ibss_mask, len = sizeof(u32);
4793 int err;
4794
4795 /* Set system configuration */
4796
4797 if (!batch_mode) {
4798 err = ipw2100_disable_adapter(priv);
4799 if (err)
4800 return err;
4801 }
4802
4803 if (priv->ieee->iw_mode == IW_MODE_ADHOC)
4804 cmd.host_command_parameters[0] |= IPW_CFG_IBSS_AUTO_START;
4805
4806 cmd.host_command_parameters[0] |= IPW_CFG_IBSS_MASK |
4807 IPW_CFG_BSS_MASK | IPW_CFG_802_1x_ENABLE;
4808
4809 if (!(priv->config & CFG_LONG_PREAMBLE))
4810 cmd.host_command_parameters[0] |= IPW_CFG_PREAMBLE_AUTO;
4811
4812 err = ipw2100_get_ordinal(priv,
4813 IPW_ORD_EEPROM_IBSS_11B_CHANNELS,
4814 &ibss_mask, &len);
4815 if (err)
4816 ibss_mask = IPW_IBSS_11B_DEFAULT_MASK;
4817
4818 cmd.host_command_parameters[1] = REG_CHANNEL_MASK;
4819 cmd.host_command_parameters[2] = REG_CHANNEL_MASK & ibss_mask;
4820
4821 /* 11b only */
4822 /*cmd.host_command_parameters[0] |= DIVERSITY_ANTENNA_A; */
4823
4824 err = ipw2100_hw_send_command(priv, &cmd);
4825 if (err)
4826 return err;
4827
4828 /* If IPv6 is configured in the kernel then we don't want to filter out all
4829 * of the multicast packets as IPv6 needs some. */
4830 #if !defined(CONFIG_IPV6) && !defined(CONFIG_IPV6_MODULE)
4831 cmd.host_command = ADD_MULTICAST;
4832 cmd.host_command_sequence = 0;
4833 cmd.host_command_length = 0;
4834
4835 ipw2100_hw_send_command(priv, &cmd);
4836 #endif
4837 if (!batch_mode) {
4838 err = ipw2100_enable_adapter(priv);
4839 if (err)
4840 return err;
4841 }
4842
4843 return 0;
4844 }
4845
4846 static int ipw2100_set_tx_rates(struct ipw2100_priv *priv, u32 rate,
4847 int batch_mode)
4848 {
4849 struct host_command cmd = {
4850 .host_command = BASIC_TX_RATES,
4851 .host_command_sequence = 0,
4852 .host_command_length = 4
4853 };
4854 int err;
4855
4856 cmd.host_command_parameters[0] = rate & TX_RATE_MASK;
4857
4858 if (!batch_mode) {
4859 err = ipw2100_disable_adapter(priv);
4860 if (err)
4861 return err;
4862 }
4863
4864 /* Set BASIC TX Rate first */
4865 ipw2100_hw_send_command(priv, &cmd);
4866
4867 /* Set TX Rate */
4868 cmd.host_command = TX_RATES;
4869 ipw2100_hw_send_command(priv, &cmd);
4870
4871 /* Set MSDU TX Rate */
4872 cmd.host_command = MSDU_TX_RATES;
4873 ipw2100_hw_send_command(priv, &cmd);
4874
4875 if (!batch_mode) {
4876 err = ipw2100_enable_adapter(priv);
4877 if (err)
4878 return err;
4879 }
4880
4881 priv->tx_rates = rate;
4882
4883 return 0;
4884 }
4885
4886 static int ipw2100_set_power_mode(struct ipw2100_priv *priv, int power_level)
4887 {
4888 struct host_command cmd = {
4889 .host_command = POWER_MODE,
4890 .host_command_sequence = 0,
4891 .host_command_length = 4
4892 };
4893 int err;
4894
4895 cmd.host_command_parameters[0] = power_level;
4896
4897 err = ipw2100_hw_send_command(priv, &cmd);
4898 if (err)
4899 return err;
4900
4901 if (power_level == IPW_POWER_MODE_CAM)
4902 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
4903 else
4904 priv->power_mode = IPW_POWER_ENABLED | power_level;
4905
4906 #ifdef CONFIG_IPW2100_TX_POWER
4907 if (priv->port_type == IBSS && priv->adhoc_power != DFTL_IBSS_TX_POWER) {
4908 /* Set beacon interval */
4909 cmd.host_command = TX_POWER_INDEX;
4910 cmd.host_command_parameters[0] = (u32) priv->adhoc_power;
4911
4912 err = ipw2100_hw_send_command(priv, &cmd);
4913 if (err)
4914 return err;
4915 }
4916 #endif
4917
4918 return 0;
4919 }
4920
4921 static int ipw2100_set_rts_threshold(struct ipw2100_priv *priv, u32 threshold)
4922 {
4923 struct host_command cmd = {
4924 .host_command = RTS_THRESHOLD,
4925 .host_command_sequence = 0,
4926 .host_command_length = 4
4927 };
4928 int err;
4929
4930 if (threshold & RTS_DISABLED)
4931 cmd.host_command_parameters[0] = MAX_RTS_THRESHOLD;
4932 else
4933 cmd.host_command_parameters[0] = threshold & ~RTS_DISABLED;
4934
4935 err = ipw2100_hw_send_command(priv, &cmd);
4936 if (err)
4937 return err;
4938
4939 priv->rts_threshold = threshold;
4940
4941 return 0;
4942 }
4943
4944 #if 0
4945 int ipw2100_set_fragmentation_threshold(struct ipw2100_priv *priv,
4946 u32 threshold, int batch_mode)
4947 {
4948 struct host_command cmd = {
4949 .host_command = FRAG_THRESHOLD,
4950 .host_command_sequence = 0,
4951 .host_command_length = 4,
4952 .host_command_parameters[0] = 0,
4953 };
4954 int err;
4955
4956 if (!batch_mode) {
4957 err = ipw2100_disable_adapter(priv);
4958 if (err)
4959 return err;
4960 }
4961
4962 if (threshold == 0)
4963 threshold = DEFAULT_FRAG_THRESHOLD;
4964 else {
4965 threshold = max(threshold, MIN_FRAG_THRESHOLD);
4966 threshold = min(threshold, MAX_FRAG_THRESHOLD);
4967 }
4968
4969 cmd.host_command_parameters[0] = threshold;
4970
4971 IPW_DEBUG_HC("FRAG_THRESHOLD: %u\n", threshold);
4972
4973 err = ipw2100_hw_send_command(priv, &cmd);
4974
4975 if (!batch_mode)
4976 ipw2100_enable_adapter(priv);
4977
4978 if (!err)
4979 priv->frag_threshold = threshold;
4980
4981 return err;
4982 }
4983 #endif
4984
4985 static int ipw2100_set_short_retry(struct ipw2100_priv *priv, u32 retry)
4986 {
4987 struct host_command cmd = {
4988 .host_command = SHORT_RETRY_LIMIT,
4989 .host_command_sequence = 0,
4990 .host_command_length = 4
4991 };
4992 int err;
4993
4994 cmd.host_command_parameters[0] = retry;
4995
4996 err = ipw2100_hw_send_command(priv, &cmd);
4997 if (err)
4998 return err;
4999
5000 priv->short_retry_limit = retry;
5001
5002 return 0;
5003 }
5004
5005 static int ipw2100_set_long_retry(struct ipw2100_priv *priv, u32 retry)
5006 {
5007 struct host_command cmd = {
5008 .host_command = LONG_RETRY_LIMIT,
5009 .host_command_sequence = 0,
5010 .host_command_length = 4
5011 };
5012 int err;
5013
5014 cmd.host_command_parameters[0] = retry;
5015
5016 err = ipw2100_hw_send_command(priv, &cmd);
5017 if (err)
5018 return err;
5019
5020 priv->long_retry_limit = retry;
5021
5022 return 0;
5023 }
5024
5025 static int ipw2100_set_mandatory_bssid(struct ipw2100_priv *priv, u8 * bssid,
5026 int batch_mode)
5027 {
5028 struct host_command cmd = {
5029 .host_command = MANDATORY_BSSID,
5030 .host_command_sequence = 0,
5031 .host_command_length = (bssid == NULL) ? 0 : ETH_ALEN
5032 };
5033 int err;
5034
5035 #ifdef CONFIG_IPW2100_DEBUG
5036 if (bssid != NULL)
5037 IPW_DEBUG_HC("MANDATORY_BSSID: %02X:%02X:%02X:%02X:%02X:%02X\n",
5038 bssid[0], bssid[1], bssid[2], bssid[3], bssid[4],
5039 bssid[5]);
5040 else
5041 IPW_DEBUG_HC("MANDATORY_BSSID: <clear>\n");
5042 #endif
5043 /* if BSSID is empty then we disable mandatory bssid mode */
5044 if (bssid != NULL)
5045 memcpy(cmd.host_command_parameters, bssid, ETH_ALEN);
5046
5047 if (!batch_mode) {
5048 err = ipw2100_disable_adapter(priv);
5049 if (err)
5050 return err;
5051 }
5052
5053 err = ipw2100_hw_send_command(priv, &cmd);
5054
5055 if (!batch_mode)
5056 ipw2100_enable_adapter(priv);
5057
5058 return err;
5059 }
5060
5061 static int ipw2100_disassociate_bssid(struct ipw2100_priv *priv)
5062 {
5063 struct host_command cmd = {
5064 .host_command = DISASSOCIATION_BSSID,
5065 .host_command_sequence = 0,
5066 .host_command_length = ETH_ALEN
5067 };
5068 int err;
5069 int len;
5070
5071 IPW_DEBUG_HC("DISASSOCIATION_BSSID\n");
5072
5073 len = ETH_ALEN;
5074 /* The Firmware currently ignores the BSSID and just disassociates from
5075 * the currently associated AP -- but in the off chance that a future
5076 * firmware does use the BSSID provided here, we go ahead and try and
5077 * set it to the currently associated AP's BSSID */
5078 memcpy(cmd.host_command_parameters, priv->bssid, ETH_ALEN);
5079
5080 err = ipw2100_hw_send_command(priv, &cmd);
5081
5082 return err;
5083 }
5084
5085 static int ipw2100_set_wpa_ie(struct ipw2100_priv *,
5086 struct ipw2100_wpa_assoc_frame *, int)
5087 __attribute__ ((unused));
5088
5089 static int ipw2100_set_wpa_ie(struct ipw2100_priv *priv,
5090 struct ipw2100_wpa_assoc_frame *wpa_frame,
5091 int batch_mode)
5092 {
5093 struct host_command cmd = {
5094 .host_command = SET_WPA_IE,
5095 .host_command_sequence = 0,
5096 .host_command_length = sizeof(struct ipw2100_wpa_assoc_frame),
5097 };
5098 int err;
5099
5100 IPW_DEBUG_HC("SET_WPA_IE\n");
5101
5102 if (!batch_mode) {
5103 err = ipw2100_disable_adapter(priv);
5104 if (err)
5105 return err;
5106 }
5107
5108 memcpy(cmd.host_command_parameters, wpa_frame,
5109 sizeof(struct ipw2100_wpa_assoc_frame));
5110
5111 err = ipw2100_hw_send_command(priv, &cmd);
5112
5113 if (!batch_mode) {
5114 if (ipw2100_enable_adapter(priv))
5115 err = -EIO;
5116 }
5117
5118 return err;
5119 }
5120
5121 struct security_info_params {
5122 u32 allowed_ciphers;
5123 u16 version;
5124 u8 auth_mode;
5125 u8 replay_counters_number;
5126 u8 unicast_using_group;
5127 } __attribute__ ((packed));
5128
5129 static int ipw2100_set_security_information(struct ipw2100_priv *priv,
5130 int auth_mode,
5131 int security_level,
5132 int unicast_using_group,
5133 int batch_mode)
5134 {
5135 struct host_command cmd = {
5136 .host_command = SET_SECURITY_INFORMATION,
5137 .host_command_sequence = 0,
5138 .host_command_length = sizeof(struct security_info_params)
5139 };
5140 struct security_info_params *security =
5141 (struct security_info_params *)&cmd.host_command_parameters;
5142 int err;
5143 memset(security, 0, sizeof(*security));
5144
5145 /* If shared key AP authentication is turned on, then we need to
5146 * configure the firmware to try and use it.
5147 *
5148 * Actual data encryption/decryption is handled by the host. */
5149 security->auth_mode = auth_mode;
5150 security->unicast_using_group = unicast_using_group;
5151
5152 switch (security_level) {
5153 default:
5154 case SEC_LEVEL_0:
5155 security->allowed_ciphers = IPW_NONE_CIPHER;
5156 break;
5157 case SEC_LEVEL_1:
5158 security->allowed_ciphers = IPW_WEP40_CIPHER |
5159 IPW_WEP104_CIPHER;
5160 break;
5161 case SEC_LEVEL_2:
5162 security->allowed_ciphers = IPW_WEP40_CIPHER |
5163 IPW_WEP104_CIPHER | IPW_TKIP_CIPHER;
5164 break;
5165 case SEC_LEVEL_2_CKIP:
5166 security->allowed_ciphers = IPW_WEP40_CIPHER |
5167 IPW_WEP104_CIPHER | IPW_CKIP_CIPHER;
5168 break;
5169 case SEC_LEVEL_3:
5170 security->allowed_ciphers = IPW_WEP40_CIPHER |
5171 IPW_WEP104_CIPHER | IPW_TKIP_CIPHER | IPW_CCMP_CIPHER;
5172 break;
5173 }
5174
5175 IPW_DEBUG_HC
5176 ("SET_SECURITY_INFORMATION: auth:%d cipher:0x%02X (level %d)\n",
5177 security->auth_mode, security->allowed_ciphers, security_level);
5178
5179 security->replay_counters_number = 0;
5180
5181 if (!batch_mode) {
5182 err = ipw2100_disable_adapter(priv);
5183 if (err)
5184 return err;
5185 }
5186
5187 err = ipw2100_hw_send_command(priv, &cmd);
5188
5189 if (!batch_mode)
5190 ipw2100_enable_adapter(priv);
5191
5192 return err;
5193 }
5194
5195 static int ipw2100_set_tx_power(struct ipw2100_priv *priv, u32 tx_power)
5196 {
5197 struct host_command cmd = {
5198 .host_command = TX_POWER_INDEX,
5199 .host_command_sequence = 0,
5200 .host_command_length = 4
5201 };
5202 int err = 0;
5203 u32 tmp = tx_power;
5204
5205 if (tx_power != IPW_TX_POWER_DEFAULT)
5206 tmp = (tx_power - IPW_TX_POWER_MIN_DBM) * 16 /
5207 (IPW_TX_POWER_MAX_DBM - IPW_TX_POWER_MIN_DBM);
5208
5209 cmd.host_command_parameters[0] = tmp;
5210
5211 if (priv->ieee->iw_mode == IW_MODE_ADHOC)
5212 err = ipw2100_hw_send_command(priv, &cmd);
5213 if (!err)
5214 priv->tx_power = tx_power;
5215
5216 return 0;
5217 }
5218
5219 static int ipw2100_set_ibss_beacon_interval(struct ipw2100_priv *priv,
5220 u32 interval, int batch_mode)
5221 {
5222 struct host_command cmd = {
5223 .host_command = BEACON_INTERVAL,
5224 .host_command_sequence = 0,
5225 .host_command_length = 4
5226 };
5227 int err;
5228
5229 cmd.host_command_parameters[0] = interval;
5230
5231 IPW_DEBUG_INFO("enter\n");
5232
5233 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5234 if (!batch_mode) {
5235 err = ipw2100_disable_adapter(priv);
5236 if (err)
5237 return err;
5238 }
5239
5240 ipw2100_hw_send_command(priv, &cmd);
5241
5242 if (!batch_mode) {
5243 err = ipw2100_enable_adapter(priv);
5244 if (err)
5245 return err;
5246 }
5247 }
5248
5249 IPW_DEBUG_INFO("exit\n");
5250
5251 return 0;
5252 }
5253
5254 void ipw2100_queues_initialize(struct ipw2100_priv *priv)
5255 {
5256 ipw2100_tx_initialize(priv);
5257 ipw2100_rx_initialize(priv);
5258 ipw2100_msg_initialize(priv);
5259 }
5260
5261 void ipw2100_queues_free(struct ipw2100_priv *priv)
5262 {
5263 ipw2100_tx_free(priv);
5264 ipw2100_rx_free(priv);
5265 ipw2100_msg_free(priv);
5266 }
5267
5268 int ipw2100_queues_allocate(struct ipw2100_priv *priv)
5269 {
5270 if (ipw2100_tx_allocate(priv) ||
5271 ipw2100_rx_allocate(priv) || ipw2100_msg_allocate(priv))
5272 goto fail;
5273
5274 return 0;
5275
5276 fail:
5277 ipw2100_tx_free(priv);
5278 ipw2100_rx_free(priv);
5279 ipw2100_msg_free(priv);
5280 return -ENOMEM;
5281 }
5282
5283 #define IPW_PRIVACY_CAPABLE 0x0008
5284
5285 static int ipw2100_set_wep_flags(struct ipw2100_priv *priv, u32 flags,
5286 int batch_mode)
5287 {
5288 struct host_command cmd = {
5289 .host_command = WEP_FLAGS,
5290 .host_command_sequence = 0,
5291 .host_command_length = 4
5292 };
5293 int err;
5294
5295 cmd.host_command_parameters[0] = flags;
5296
5297 IPW_DEBUG_HC("WEP_FLAGS: flags = 0x%08X\n", flags);
5298
5299 if (!batch_mode) {
5300 err = ipw2100_disable_adapter(priv);
5301 if (err) {
5302 printk(KERN_ERR DRV_NAME
5303 ": %s: Could not disable adapter %d\n",
5304 priv->net_dev->name, err);
5305 return err;
5306 }
5307 }
5308
5309 /* send cmd to firmware */
5310 err = ipw2100_hw_send_command(priv, &cmd);
5311
5312 if (!batch_mode)
5313 ipw2100_enable_adapter(priv);
5314
5315 return err;
5316 }
5317
5318 struct ipw2100_wep_key {
5319 u8 idx;
5320 u8 len;
5321 u8 key[13];
5322 };
5323
5324 /* Macros to ease up priting WEP keys */
5325 #define WEP_FMT_64 "%02X%02X%02X%02X-%02X"
5326 #define WEP_FMT_128 "%02X%02X%02X%02X-%02X%02X%02X%02X-%02X%02X%02X"
5327 #define WEP_STR_64(x) x[0],x[1],x[2],x[3],x[4]
5328 #define WEP_STR_128(x) x[0],x[1],x[2],x[3],x[4],x[5],x[6],x[7],x[8],x[9],x[10]
5329
5330 /**
5331 * Set a the wep key
5332 *
5333 * @priv: struct to work on
5334 * @idx: index of the key we want to set
5335 * @key: ptr to the key data to set
5336 * @len: length of the buffer at @key
5337 * @batch_mode: FIXME perform the operation in batch mode, not
5338 * disabling the device.
5339 *
5340 * @returns 0 if OK, < 0 errno code on error.
5341 *
5342 * Fill out a command structure with the new wep key, length an
5343 * index and send it down the wire.
5344 */
5345 static int ipw2100_set_key(struct ipw2100_priv *priv,
5346 int idx, char *key, int len, int batch_mode)
5347 {
5348 int keylen = len ? (len <= 5 ? 5 : 13) : 0;
5349 struct host_command cmd = {
5350 .host_command = WEP_KEY_INFO,
5351 .host_command_sequence = 0,
5352 .host_command_length = sizeof(struct ipw2100_wep_key),
5353 };
5354 struct ipw2100_wep_key *wep_key = (void *)cmd.host_command_parameters;
5355 int err;
5356
5357 IPW_DEBUG_HC("WEP_KEY_INFO: index = %d, len = %d/%d\n",
5358 idx, keylen, len);
5359
5360 /* NOTE: We don't check cached values in case the firmware was reset
5361 * or some other problem is occuring. If the user is setting the key,
5362 * then we push the change */
5363
5364 wep_key->idx = idx;
5365 wep_key->len = keylen;
5366
5367 if (keylen) {
5368 memcpy(wep_key->key, key, len);
5369 memset(wep_key->key + len, 0, keylen - len);
5370 }
5371
5372 /* Will be optimized out on debug not being configured in */
5373 if (keylen == 0)
5374 IPW_DEBUG_WEP("%s: Clearing key %d\n",
5375 priv->net_dev->name, wep_key->idx);
5376 else if (keylen == 5)
5377 IPW_DEBUG_WEP("%s: idx: %d, len: %d key: " WEP_FMT_64 "\n",
5378 priv->net_dev->name, wep_key->idx, wep_key->len,
5379 WEP_STR_64(wep_key->key));
5380 else
5381 IPW_DEBUG_WEP("%s: idx: %d, len: %d key: " WEP_FMT_128
5382 "\n",
5383 priv->net_dev->name, wep_key->idx, wep_key->len,
5384 WEP_STR_128(wep_key->key));
5385
5386 if (!batch_mode) {
5387 err = ipw2100_disable_adapter(priv);
5388 /* FIXME: IPG: shouldn't this prink be in _disable_adapter()? */
5389 if (err) {
5390 printk(KERN_ERR DRV_NAME
5391 ": %s: Could not disable adapter %d\n",
5392 priv->net_dev->name, err);
5393 return err;
5394 }
5395 }
5396
5397 /* send cmd to firmware */
5398 err = ipw2100_hw_send_command(priv, &cmd);
5399
5400 if (!batch_mode) {
5401 int err2 = ipw2100_enable_adapter(priv);
5402 if (err == 0)
5403 err = err2;
5404 }
5405 return err;
5406 }
5407
5408 static int ipw2100_set_key_index(struct ipw2100_priv *priv,
5409 int idx, int batch_mode)
5410 {
5411 struct host_command cmd = {
5412 .host_command = WEP_KEY_INDEX,
5413 .host_command_sequence = 0,
5414 .host_command_length = 4,
5415 .host_command_parameters = {idx},
5416 };
5417 int err;
5418
5419 IPW_DEBUG_HC("WEP_KEY_INDEX: index = %d\n", idx);
5420
5421 if (idx < 0 || idx > 3)
5422 return -EINVAL;
5423
5424 if (!batch_mode) {
5425 err = ipw2100_disable_adapter(priv);
5426 if (err) {
5427 printk(KERN_ERR DRV_NAME
5428 ": %s: Could not disable adapter %d\n",
5429 priv->net_dev->name, err);
5430 return err;
5431 }
5432 }
5433
5434 /* send cmd to firmware */
5435 err = ipw2100_hw_send_command(priv, &cmd);
5436
5437 if (!batch_mode)
5438 ipw2100_enable_adapter(priv);
5439
5440 return err;
5441 }
5442
5443 static int ipw2100_configure_security(struct ipw2100_priv *priv, int batch_mode)
5444 {
5445 int i, err, auth_mode, sec_level, use_group;
5446
5447 if (!(priv->status & STATUS_RUNNING))
5448 return 0;
5449
5450 if (!batch_mode) {
5451 err = ipw2100_disable_adapter(priv);
5452 if (err)
5453 return err;
5454 }
5455
5456 if (!priv->ieee->sec.enabled) {
5457 err =
5458 ipw2100_set_security_information(priv, IPW_AUTH_OPEN,
5459 SEC_LEVEL_0, 0, 1);
5460 } else {
5461 auth_mode = IPW_AUTH_OPEN;
5462 if (priv->ieee->sec.flags & SEC_AUTH_MODE) {
5463 if (priv->ieee->sec.auth_mode == WLAN_AUTH_SHARED_KEY)
5464 auth_mode = IPW_AUTH_SHARED;
5465 else if (priv->ieee->sec.auth_mode == WLAN_AUTH_LEAP)
5466 auth_mode = IPW_AUTH_LEAP_CISCO_ID;
5467 }
5468
5469 sec_level = SEC_LEVEL_0;
5470 if (priv->ieee->sec.flags & SEC_LEVEL)
5471 sec_level = priv->ieee->sec.level;
5472
5473 use_group = 0;
5474 if (priv->ieee->sec.flags & SEC_UNICAST_GROUP)
5475 use_group = priv->ieee->sec.unicast_uses_group;
5476
5477 err =
5478 ipw2100_set_security_information(priv, auth_mode, sec_level,
5479 use_group, 1);
5480 }
5481
5482 if (err)
5483 goto exit;
5484
5485 if (priv->ieee->sec.enabled) {
5486 for (i = 0; i < 4; i++) {
5487 if (!(priv->ieee->sec.flags & (1 << i))) {
5488 memset(priv->ieee->sec.keys[i], 0, WEP_KEY_LEN);
5489 priv->ieee->sec.key_sizes[i] = 0;
5490 } else {
5491 err = ipw2100_set_key(priv, i,
5492 priv->ieee->sec.keys[i],
5493 priv->ieee->sec.
5494 key_sizes[i], 1);
5495 if (err)
5496 goto exit;
5497 }
5498 }
5499
5500 ipw2100_set_key_index(priv, priv->ieee->tx_keyidx, 1);
5501 }
5502
5503 /* Always enable privacy so the Host can filter WEP packets if
5504 * encrypted data is sent up */
5505 err =
5506 ipw2100_set_wep_flags(priv,
5507 priv->ieee->sec.
5508 enabled ? IPW_PRIVACY_CAPABLE : 0, 1);
5509 if (err)
5510 goto exit;
5511
5512 priv->status &= ~STATUS_SECURITY_UPDATED;
5513
5514 exit:
5515 if (!batch_mode)
5516 ipw2100_enable_adapter(priv);
5517
5518 return err;
5519 }
5520
5521 static void ipw2100_security_work(struct ipw2100_priv *priv)
5522 {
5523 /* If we happen to have reconnected before we get a chance to
5524 * process this, then update the security settings--which causes
5525 * a disassociation to occur */
5526 if (!(priv->status & STATUS_ASSOCIATED) &&
5527 priv->status & STATUS_SECURITY_UPDATED)
5528 ipw2100_configure_security(priv, 0);
5529 }
5530
5531 static void shim__set_security(struct net_device *dev,
5532 struct ieee80211_security *sec)
5533 {
5534 struct ipw2100_priv *priv = ieee80211_priv(dev);
5535 int i, force_update = 0;
5536
5537 mutex_lock(&priv->action_mutex);
5538 if (!(priv->status & STATUS_INITIALIZED))
5539 goto done;
5540
5541 for (i = 0; i < 4; i++) {
5542 if (sec->flags & (1 << i)) {
5543 priv->ieee->sec.key_sizes[i] = sec->key_sizes[i];
5544 if (sec->key_sizes[i] == 0)
5545 priv->ieee->sec.flags &= ~(1 << i);
5546 else
5547 memcpy(priv->ieee->sec.keys[i], sec->keys[i],
5548 sec->key_sizes[i]);
5549 if (sec->level == SEC_LEVEL_1) {
5550 priv->ieee->sec.flags |= (1 << i);
5551 priv->status |= STATUS_SECURITY_UPDATED;
5552 } else
5553 priv->ieee->sec.flags &= ~(1 << i);
5554 }
5555 }
5556
5557 if ((sec->flags & SEC_ACTIVE_KEY) &&
5558 priv->ieee->sec.active_key != sec->active_key) {
5559 if (sec->active_key <= 3) {
5560 priv->ieee->sec.active_key = sec->active_key;
5561 priv->ieee->sec.flags |= SEC_ACTIVE_KEY;
5562 } else
5563 priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
5564
5565 priv->status |= STATUS_SECURITY_UPDATED;
5566 }
5567
5568 if ((sec->flags & SEC_AUTH_MODE) &&
5569 (priv->ieee->sec.auth_mode != sec->auth_mode)) {
5570 priv->ieee->sec.auth_mode = sec->auth_mode;
5571 priv->ieee->sec.flags |= SEC_AUTH_MODE;
5572 priv->status |= STATUS_SECURITY_UPDATED;
5573 }
5574
5575 if (sec->flags & SEC_ENABLED && priv->ieee->sec.enabled != sec->enabled) {
5576 priv->ieee->sec.flags |= SEC_ENABLED;
5577 priv->ieee->sec.enabled = sec->enabled;
5578 priv->status |= STATUS_SECURITY_UPDATED;
5579 force_update = 1;
5580 }
5581
5582 if (sec->flags & SEC_ENCRYPT)
5583 priv->ieee->sec.encrypt = sec->encrypt;
5584
5585 if (sec->flags & SEC_LEVEL && priv->ieee->sec.level != sec->level) {
5586 priv->ieee->sec.level = sec->level;
5587 priv->ieee->sec.flags |= SEC_LEVEL;
5588 priv->status |= STATUS_SECURITY_UPDATED;
5589 }
5590
5591 IPW_DEBUG_WEP("Security flags: %c %c%c%c%c %c%c%c%c\n",
5592 priv->ieee->sec.flags & (1 << 8) ? '1' : '0',
5593 priv->ieee->sec.flags & (1 << 7) ? '1' : '0',
5594 priv->ieee->sec.flags & (1 << 6) ? '1' : '0',
5595 priv->ieee->sec.flags & (1 << 5) ? '1' : '0',
5596 priv->ieee->sec.flags & (1 << 4) ? '1' : '0',
5597 priv->ieee->sec.flags & (1 << 3) ? '1' : '0',
5598 priv->ieee->sec.flags & (1 << 2) ? '1' : '0',
5599 priv->ieee->sec.flags & (1 << 1) ? '1' : '0',
5600 priv->ieee->sec.flags & (1 << 0) ? '1' : '0');
5601
5602 /* As a temporary work around to enable WPA until we figure out why
5603 * wpa_supplicant toggles the security capability of the driver, which
5604 * forces a disassocation with force_update...
5605 *
5606 * if (force_update || !(priv->status & STATUS_ASSOCIATED))*/
5607 if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)))
5608 ipw2100_configure_security(priv, 0);
5609 done:
5610 mutex_unlock(&priv->action_mutex);
5611 }
5612
5613 static int ipw2100_adapter_setup(struct ipw2100_priv *priv)
5614 {
5615 int err;
5616 int batch_mode = 1;
5617 u8 *bssid;
5618
5619 IPW_DEBUG_INFO("enter\n");
5620
5621 err = ipw2100_disable_adapter(priv);
5622 if (err)
5623 return err;
5624 #ifdef CONFIG_IPW2100_MONITOR
5625 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
5626 err = ipw2100_set_channel(priv, priv->channel, batch_mode);
5627 if (err)
5628 return err;
5629
5630 IPW_DEBUG_INFO("exit\n");
5631
5632 return 0;
5633 }
5634 #endif /* CONFIG_IPW2100_MONITOR */
5635
5636 err = ipw2100_read_mac_address(priv);
5637 if (err)
5638 return -EIO;
5639
5640 err = ipw2100_set_mac_address(priv, batch_mode);
5641 if (err)
5642 return err;
5643
5644 err = ipw2100_set_port_type(priv, priv->ieee->iw_mode, batch_mode);
5645 if (err)
5646 return err;
5647
5648 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5649 err = ipw2100_set_channel(priv, priv->channel, batch_mode);
5650 if (err)
5651 return err;
5652 }
5653
5654 err = ipw2100_system_config(priv, batch_mode);
5655 if (err)
5656 return err;
5657
5658 err = ipw2100_set_tx_rates(priv, priv->tx_rates, batch_mode);
5659 if (err)
5660 return err;
5661
5662 /* Default to power mode OFF */
5663 err = ipw2100_set_power_mode(priv, IPW_POWER_MODE_CAM);
5664 if (err)
5665 return err;
5666
5667 err = ipw2100_set_rts_threshold(priv, priv->rts_threshold);
5668 if (err)
5669 return err;
5670
5671 if (priv->config & CFG_STATIC_BSSID)
5672 bssid = priv->bssid;
5673 else
5674 bssid = NULL;
5675 err = ipw2100_set_mandatory_bssid(priv, bssid, batch_mode);
5676 if (err)
5677 return err;
5678
5679 if (priv->config & CFG_STATIC_ESSID)
5680 err = ipw2100_set_essid(priv, priv->essid, priv->essid_len,
5681 batch_mode);
5682 else
5683 err = ipw2100_set_essid(priv, NULL, 0, batch_mode);
5684 if (err)
5685 return err;
5686
5687 err = ipw2100_configure_security(priv, batch_mode);
5688 if (err)
5689 return err;
5690
5691 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5692 err =
5693 ipw2100_set_ibss_beacon_interval(priv,
5694 priv->beacon_interval,
5695 batch_mode);
5696 if (err)
5697 return err;
5698
5699 err = ipw2100_set_tx_power(priv, priv->tx_power);
5700 if (err)
5701 return err;
5702 }
5703
5704 /*
5705 err = ipw2100_set_fragmentation_threshold(
5706 priv, priv->frag_threshold, batch_mode);
5707 if (err)
5708 return err;
5709 */
5710
5711 IPW_DEBUG_INFO("exit\n");
5712
5713 return 0;
5714 }
5715
5716 /*************************************************************************
5717 *
5718 * EXTERNALLY CALLED METHODS
5719 *
5720 *************************************************************************/
5721
5722 /* This method is called by the network layer -- not to be confused with
5723 * ipw2100_set_mac_address() declared above called by this driver (and this
5724 * method as well) to talk to the firmware */
5725 static int ipw2100_set_address(struct net_device *dev, void *p)
5726 {
5727 struct ipw2100_priv *priv = ieee80211_priv(dev);
5728 struct sockaddr *addr = p;
5729 int err = 0;
5730
5731 if (!is_valid_ether_addr(addr->sa_data))
5732 return -EADDRNOTAVAIL;
5733
5734 mutex_lock(&priv->action_mutex);
5735
5736 priv->config |= CFG_CUSTOM_MAC;
5737 memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
5738
5739 err = ipw2100_set_mac_address(priv, 0);
5740 if (err)
5741 goto done;
5742
5743 priv->reset_backoff = 0;
5744 mutex_unlock(&priv->action_mutex);
5745 ipw2100_reset_adapter(priv);
5746 return 0;
5747
5748 done:
5749 mutex_unlock(&priv->action_mutex);
5750 return err;
5751 }
5752
5753 static int ipw2100_open(struct net_device *dev)
5754 {
5755 struct ipw2100_priv *priv = ieee80211_priv(dev);
5756 unsigned long flags;
5757 IPW_DEBUG_INFO("dev->open\n");
5758
5759 spin_lock_irqsave(&priv->low_lock, flags);
5760 if (priv->status & STATUS_ASSOCIATED) {
5761 netif_carrier_on(dev);
5762 netif_start_queue(dev);
5763 }
5764 spin_unlock_irqrestore(&priv->low_lock, flags);
5765
5766 return 0;
5767 }
5768
5769 static int ipw2100_close(struct net_device *dev)
5770 {
5771 struct ipw2100_priv *priv = ieee80211_priv(dev);
5772 unsigned long flags;
5773 struct list_head *element;
5774 struct ipw2100_tx_packet *packet;
5775
5776 IPW_DEBUG_INFO("enter\n");
5777
5778 spin_lock_irqsave(&priv->low_lock, flags);
5779
5780 if (priv->status & STATUS_ASSOCIATED)
5781 netif_carrier_off(dev);
5782 netif_stop_queue(dev);
5783
5784 /* Flush the TX queue ... */
5785 while (!list_empty(&priv->tx_pend_list)) {
5786 element = priv->tx_pend_list.next;
5787 packet = list_entry(element, struct ipw2100_tx_packet, list);
5788
5789 list_del(element);
5790 DEC_STAT(&priv->tx_pend_stat);
5791
5792 ieee80211_txb_free(packet->info.d_struct.txb);
5793 packet->info.d_struct.txb = NULL;
5794
5795 list_add_tail(element, &priv->tx_free_list);
5796 INC_STAT(&priv->tx_free_stat);
5797 }
5798 spin_unlock_irqrestore(&priv->low_lock, flags);
5799
5800 IPW_DEBUG_INFO("exit\n");
5801
5802 return 0;
5803 }
5804
5805 /*
5806 * TODO: Fix this function... its just wrong
5807 */
5808 static void ipw2100_tx_timeout(struct net_device *dev)
5809 {
5810 struct ipw2100_priv *priv = ieee80211_priv(dev);
5811
5812 priv->ieee->stats.tx_errors++;
5813
5814 #ifdef CONFIG_IPW2100_MONITOR
5815 if (priv->ieee->iw_mode == IW_MODE_MONITOR)
5816 return;
5817 #endif
5818
5819 IPW_DEBUG_INFO("%s: TX timed out. Scheduling firmware restart.\n",
5820 dev->name);
5821 schedule_reset(priv);
5822 }
5823
5824 /*
5825 * TODO: reimplement it so that it reads statistics
5826 * from the adapter using ordinal tables
5827 * instead of/in addition to collecting them
5828 * in the driver
5829 */
5830 static struct net_device_stats *ipw2100_stats(struct net_device *dev)
5831 {
5832 struct ipw2100_priv *priv = ieee80211_priv(dev);
5833
5834 return &priv->ieee->stats;
5835 }
5836
5837 static int ipw2100_wpa_enable(struct ipw2100_priv *priv, int value)
5838 {
5839 /* This is called when wpa_supplicant loads and closes the driver
5840 * interface. */
5841 priv->ieee->wpa_enabled = value;
5842 return 0;
5843 }
5844
5845 static int ipw2100_wpa_set_auth_algs(struct ipw2100_priv *priv, int value)
5846 {
5847
5848 struct ieee80211_device *ieee = priv->ieee;
5849 struct ieee80211_security sec = {
5850 .flags = SEC_AUTH_MODE,
5851 };
5852 int ret = 0;
5853
5854 if (value & IW_AUTH_ALG_SHARED_KEY) {
5855 sec.auth_mode = WLAN_AUTH_SHARED_KEY;
5856 ieee->open_wep = 0;
5857 } else if (value & IW_AUTH_ALG_OPEN_SYSTEM) {
5858 sec.auth_mode = WLAN_AUTH_OPEN;
5859 ieee->open_wep = 1;
5860 } else if (value & IW_AUTH_ALG_LEAP) {
5861 sec.auth_mode = WLAN_AUTH_LEAP;
5862 ieee->open_wep = 1;
5863 } else
5864 return -EINVAL;
5865
5866 if (ieee->set_security)
5867 ieee->set_security(ieee->dev, &sec);
5868 else
5869 ret = -EOPNOTSUPP;
5870
5871 return ret;
5872 }
5873
5874 static void ipw2100_wpa_assoc_frame(struct ipw2100_priv *priv,
5875 char *wpa_ie, int wpa_ie_len)
5876 {
5877
5878 struct ipw2100_wpa_assoc_frame frame;
5879
5880 frame.fixed_ie_mask = 0;
5881
5882 /* copy WPA IE */
5883 memcpy(frame.var_ie, wpa_ie, wpa_ie_len);
5884 frame.var_ie_len = wpa_ie_len;
5885
5886 /* make sure WPA is enabled */
5887 ipw2100_wpa_enable(priv, 1);
5888 ipw2100_set_wpa_ie(priv, &frame, 0);
5889 }
5890
5891 static void ipw_ethtool_get_drvinfo(struct net_device *dev,
5892 struct ethtool_drvinfo *info)
5893 {
5894 struct ipw2100_priv *priv = ieee80211_priv(dev);
5895 char fw_ver[64], ucode_ver[64];
5896
5897 strcpy(info->driver, DRV_NAME);
5898 strcpy(info->version, DRV_VERSION);
5899
5900 ipw2100_get_fwversion(priv, fw_ver, sizeof(fw_ver));
5901 ipw2100_get_ucodeversion(priv, ucode_ver, sizeof(ucode_ver));
5902
5903 snprintf(info->fw_version, sizeof(info->fw_version), "%s:%d:%s",
5904 fw_ver, priv->eeprom_version, ucode_ver);
5905
5906 strcpy(info->bus_info, pci_name(priv->pci_dev));
5907 }
5908
5909 static u32 ipw2100_ethtool_get_link(struct net_device *dev)
5910 {
5911 struct ipw2100_priv *priv = ieee80211_priv(dev);
5912 return (priv->status & STATUS_ASSOCIATED) ? 1 : 0;
5913 }
5914
5915 static struct ethtool_ops ipw2100_ethtool_ops = {
5916 .get_link = ipw2100_ethtool_get_link,
5917 .get_drvinfo = ipw_ethtool_get_drvinfo,
5918 };
5919
5920 static void ipw2100_hang_check(void *adapter)
5921 {
5922 struct ipw2100_priv *priv = adapter;
5923 unsigned long flags;
5924 u32 rtc = 0xa5a5a5a5;
5925 u32 len = sizeof(rtc);
5926 int restart = 0;
5927
5928 spin_lock_irqsave(&priv->low_lock, flags);
5929
5930 if (priv->fatal_error != 0) {
5931 /* If fatal_error is set then we need to restart */
5932 IPW_DEBUG_INFO("%s: Hardware fatal error detected.\n",
5933 priv->net_dev->name);
5934
5935 restart = 1;
5936 } else if (ipw2100_get_ordinal(priv, IPW_ORD_RTC_TIME, &rtc, &len) ||
5937 (rtc == priv->last_rtc)) {
5938 /* Check if firmware is hung */
5939 IPW_DEBUG_INFO("%s: Firmware RTC stalled.\n",
5940 priv->net_dev->name);
5941
5942 restart = 1;
5943 }
5944
5945 if (restart) {
5946 /* Kill timer */
5947 priv->stop_hang_check = 1;
5948 priv->hangs++;
5949
5950 /* Restart the NIC */
5951 schedule_reset(priv);
5952 }
5953
5954 priv->last_rtc = rtc;
5955
5956 if (!priv->stop_hang_check)
5957 queue_delayed_work(priv->workqueue, &priv->hang_check, HZ / 2);
5958
5959 spin_unlock_irqrestore(&priv->low_lock, flags);
5960 }
5961
5962 static void ipw2100_rf_kill(void *adapter)
5963 {
5964 struct ipw2100_priv *priv = adapter;
5965 unsigned long flags;
5966
5967 spin_lock_irqsave(&priv->low_lock, flags);
5968
5969 if (rf_kill_active(priv)) {
5970 IPW_DEBUG_RF_KILL("RF Kill active, rescheduling GPIO check\n");
5971 if (!priv->stop_rf_kill)
5972 queue_delayed_work(priv->workqueue, &priv->rf_kill, HZ);
5973 goto exit_unlock;
5974 }
5975
5976 /* RF Kill is now disabled, so bring the device back up */
5977
5978 if (!(priv->status & STATUS_RF_KILL_MASK)) {
5979 IPW_DEBUG_RF_KILL("HW RF Kill no longer active, restarting "
5980 "device\n");
5981 schedule_reset(priv);
5982 } else
5983 IPW_DEBUG_RF_KILL("HW RF Kill deactivated. SW RF Kill still "
5984 "enabled\n");
5985
5986 exit_unlock:
5987 spin_unlock_irqrestore(&priv->low_lock, flags);
5988 }
5989
5990 static void ipw2100_irq_tasklet(struct ipw2100_priv *priv);
5991
5992 /* Look into using netdev destructor to shutdown ieee80211? */
5993
5994 static struct net_device *ipw2100_alloc_device(struct pci_dev *pci_dev,
5995 void __iomem * base_addr,
5996 unsigned long mem_start,
5997 unsigned long mem_len)
5998 {
5999 struct ipw2100_priv *priv;
6000 struct net_device *dev;
6001
6002 dev = alloc_ieee80211(sizeof(struct ipw2100_priv));
6003 if (!dev)
6004 return NULL;
6005 priv = ieee80211_priv(dev);
6006 priv->ieee = netdev_priv(dev);
6007 priv->pci_dev = pci_dev;
6008 priv->net_dev = dev;
6009
6010 priv->ieee->hard_start_xmit = ipw2100_tx;
6011 priv->ieee->set_security = shim__set_security;
6012
6013 priv->ieee->perfect_rssi = -20;
6014 priv->ieee->worst_rssi = -85;
6015
6016 dev->open = ipw2100_open;
6017 dev->stop = ipw2100_close;
6018 dev->init = ipw2100_net_init;
6019 dev->get_stats = ipw2100_stats;
6020 dev->ethtool_ops = &ipw2100_ethtool_ops;
6021 dev->tx_timeout = ipw2100_tx_timeout;
6022 dev->wireless_handlers = &ipw2100_wx_handler_def;
6023 priv->wireless_data.ieee80211 = priv->ieee;
6024 dev->wireless_data = &priv->wireless_data;
6025 dev->set_mac_address = ipw2100_set_address;
6026 dev->watchdog_timeo = 3 * HZ;
6027 dev->irq = 0;
6028
6029 dev->base_addr = (unsigned long)base_addr;
6030 dev->mem_start = mem_start;
6031 dev->mem_end = dev->mem_start + mem_len - 1;
6032
6033 /* NOTE: We don't use the wireless_handlers hook
6034 * in dev as the system will start throwing WX requests
6035 * to us before we're actually initialized and it just
6036 * ends up causing problems. So, we just handle
6037 * the WX extensions through the ipw2100_ioctl interface */
6038
6039 /* memset() puts everything to 0, so we only have explicitely set
6040 * those values that need to be something else */
6041
6042 /* If power management is turned on, default to AUTO mode */
6043 priv->power_mode = IPW_POWER_AUTO;
6044
6045 #ifdef CONFIG_IPW2100_MONITOR
6046 priv->config |= CFG_CRC_CHECK;
6047 #endif
6048 priv->ieee->wpa_enabled = 0;
6049 priv->ieee->drop_unencrypted = 0;
6050 priv->ieee->privacy_invoked = 0;
6051 priv->ieee->ieee802_1x = 1;
6052
6053 /* Set module parameters */
6054 switch (mode) {
6055 case 1:
6056 priv->ieee->iw_mode = IW_MODE_ADHOC;
6057 break;
6058 #ifdef CONFIG_IPW2100_MONITOR
6059 case 2:
6060 priv->ieee->iw_mode = IW_MODE_MONITOR;
6061 break;
6062 #endif
6063 default:
6064 case 0:
6065 priv->ieee->iw_mode = IW_MODE_INFRA;
6066 break;
6067 }
6068
6069 if (disable == 1)
6070 priv->status |= STATUS_RF_KILL_SW;
6071
6072 if (channel != 0 &&
6073 ((channel >= REG_MIN_CHANNEL) && (channel <= REG_MAX_CHANNEL))) {
6074 priv->config |= CFG_STATIC_CHANNEL;
6075 priv->channel = channel;
6076 }
6077
6078 if (associate)
6079 priv->config |= CFG_ASSOCIATE;
6080
6081 priv->beacon_interval = DEFAULT_BEACON_INTERVAL;
6082 priv->short_retry_limit = DEFAULT_SHORT_RETRY_LIMIT;
6083 priv->long_retry_limit = DEFAULT_LONG_RETRY_LIMIT;
6084 priv->rts_threshold = DEFAULT_RTS_THRESHOLD | RTS_DISABLED;
6085 priv->frag_threshold = DEFAULT_FTS | FRAG_DISABLED;
6086 priv->tx_power = IPW_TX_POWER_DEFAULT;
6087 priv->tx_rates = DEFAULT_TX_RATES;
6088
6089 strcpy(priv->nick, "ipw2100");
6090
6091 spin_lock_init(&priv->low_lock);
6092 mutex_init(&priv->action_mutex);
6093 mutex_init(&priv->adapter_mutex);
6094
6095 init_waitqueue_head(&priv->wait_command_queue);
6096
6097 netif_carrier_off(dev);
6098
6099 INIT_LIST_HEAD(&priv->msg_free_list);
6100 INIT_LIST_HEAD(&priv->msg_pend_list);
6101 INIT_STAT(&priv->msg_free_stat);
6102 INIT_STAT(&priv->msg_pend_stat);
6103
6104 INIT_LIST_HEAD(&priv->tx_free_list);
6105 INIT_LIST_HEAD(&priv->tx_pend_list);
6106 INIT_STAT(&priv->tx_free_stat);
6107 INIT_STAT(&priv->tx_pend_stat);
6108
6109 INIT_LIST_HEAD(&priv->fw_pend_list);
6110 INIT_STAT(&priv->fw_pend_stat);
6111
6112 priv->workqueue = create_workqueue(DRV_NAME);
6113
6114 INIT_WORK(&priv->reset_work,
6115 (void (*)(void *))ipw2100_reset_adapter, priv);
6116 INIT_WORK(&priv->security_work,
6117 (void (*)(void *))ipw2100_security_work, priv);
6118 INIT_WORK(&priv->wx_event_work,
6119 (void (*)(void *))ipw2100_wx_event_work, priv);
6120 INIT_WORK(&priv->hang_check, ipw2100_hang_check, priv);
6121 INIT_WORK(&priv->rf_kill, ipw2100_rf_kill, priv);
6122
6123 tasklet_init(&priv->irq_tasklet, (void (*)(unsigned long))
6124 ipw2100_irq_tasklet, (unsigned long)priv);
6125
6126 /* NOTE: We do not start the deferred work for status checks yet */
6127 priv->stop_rf_kill = 1;
6128 priv->stop_hang_check = 1;
6129
6130 return dev;
6131 }
6132
6133 static int ipw2100_pci_init_one(struct pci_dev *pci_dev,
6134 const struct pci_device_id *ent)
6135 {
6136 unsigned long mem_start, mem_len, mem_flags;
6137 void __iomem *base_addr = NULL;
6138 struct net_device *dev = NULL;
6139 struct ipw2100_priv *priv = NULL;
6140 int err = 0;
6141 int registered = 0;
6142 u32 val;
6143
6144 IPW_DEBUG_INFO("enter\n");
6145
6146 mem_start = pci_resource_start(pci_dev, 0);
6147 mem_len = pci_resource_len(pci_dev, 0);
6148 mem_flags = pci_resource_flags(pci_dev, 0);
6149
6150 if ((mem_flags & IORESOURCE_MEM) != IORESOURCE_MEM) {
6151 IPW_DEBUG_INFO("weird - resource type is not memory\n");
6152 err = -ENODEV;
6153 goto fail;
6154 }
6155
6156 base_addr = ioremap_nocache(mem_start, mem_len);
6157 if (!base_addr) {
6158 printk(KERN_WARNING DRV_NAME
6159 "Error calling ioremap_nocache.\n");
6160 err = -EIO;
6161 goto fail;
6162 }
6163
6164 /* allocate and initialize our net_device */
6165 dev = ipw2100_alloc_device(pci_dev, base_addr, mem_start, mem_len);
6166 if (!dev) {
6167 printk(KERN_WARNING DRV_NAME
6168 "Error calling ipw2100_alloc_device.\n");
6169 err = -ENOMEM;
6170 goto fail;
6171 }
6172
6173 /* set up PCI mappings for device */
6174 err = pci_enable_device(pci_dev);
6175 if (err) {
6176 printk(KERN_WARNING DRV_NAME
6177 "Error calling pci_enable_device.\n");
6178 return err;
6179 }
6180
6181 priv = ieee80211_priv(dev);
6182
6183 pci_set_master(pci_dev);
6184 pci_set_drvdata(pci_dev, priv);
6185
6186 err = pci_set_dma_mask(pci_dev, DMA_32BIT_MASK);
6187 if (err) {
6188 printk(KERN_WARNING DRV_NAME
6189 "Error calling pci_set_dma_mask.\n");
6190 pci_disable_device(pci_dev);
6191 return err;
6192 }
6193
6194 err = pci_request_regions(pci_dev, DRV_NAME);
6195 if (err) {
6196 printk(KERN_WARNING DRV_NAME
6197 "Error calling pci_request_regions.\n");
6198 pci_disable_device(pci_dev);
6199 return err;
6200 }
6201
6202 /* We disable the RETRY_TIMEOUT register (0x41) to keep
6203 * PCI Tx retries from interfering with C3 CPU state */
6204 pci_read_config_dword(pci_dev, 0x40, &val);
6205 if ((val & 0x0000ff00) != 0)
6206 pci_write_config_dword(pci_dev, 0x40, val & 0xffff00ff);
6207
6208 pci_set_power_state(pci_dev, PCI_D0);
6209
6210 if (!ipw2100_hw_is_adapter_in_system(dev)) {
6211 printk(KERN_WARNING DRV_NAME
6212 "Device not found via register read.\n");
6213 err = -ENODEV;
6214 goto fail;
6215 }
6216
6217 SET_NETDEV_DEV(dev, &pci_dev->dev);
6218
6219 /* Force interrupts to be shut off on the device */
6220 priv->status |= STATUS_INT_ENABLED;
6221 ipw2100_disable_interrupts(priv);
6222
6223 /* Allocate and initialize the Tx/Rx queues and lists */
6224 if (ipw2100_queues_allocate(priv)) {
6225 printk(KERN_WARNING DRV_NAME
6226 "Error calilng ipw2100_queues_allocate.\n");
6227 err = -ENOMEM;
6228 goto fail;
6229 }
6230 ipw2100_queues_initialize(priv);
6231
6232 err = request_irq(pci_dev->irq,
6233 ipw2100_interrupt, SA_SHIRQ, dev->name, priv);
6234 if (err) {
6235 printk(KERN_WARNING DRV_NAME
6236 "Error calling request_irq: %d.\n", pci_dev->irq);
6237 goto fail;
6238 }
6239 dev->irq = pci_dev->irq;
6240
6241 IPW_DEBUG_INFO("Attempting to register device...\n");
6242
6243 SET_MODULE_OWNER(dev);
6244
6245 printk(KERN_INFO DRV_NAME
6246 ": Detected Intel PRO/Wireless 2100 Network Connection\n");
6247
6248 /* Bring up the interface. Pre 0.46, after we registered the
6249 * network device we would call ipw2100_up. This introduced a race
6250 * condition with newer hotplug configurations (network was coming
6251 * up and making calls before the device was initialized).
6252 *
6253 * If we called ipw2100_up before we registered the device, then the
6254 * device name wasn't registered. So, we instead use the net_dev->init
6255 * member to call a function that then just turns and calls ipw2100_up.
6256 * net_dev->init is called after name allocation but before the
6257 * notifier chain is called */
6258 mutex_lock(&priv->action_mutex);
6259 err = register_netdev(dev);
6260 if (err) {
6261 printk(KERN_WARNING DRV_NAME
6262 "Error calling register_netdev.\n");
6263 goto fail_unlock;
6264 }
6265 registered = 1;
6266
6267 IPW_DEBUG_INFO("%s: Bound to %s\n", dev->name, pci_name(pci_dev));
6268
6269 /* perform this after register_netdev so that dev->name is set */
6270 sysfs_create_group(&pci_dev->dev.kobj, &ipw2100_attribute_group);
6271
6272 /* If the RF Kill switch is disabled, go ahead and complete the
6273 * startup sequence */
6274 if (!(priv->status & STATUS_RF_KILL_MASK)) {
6275 /* Enable the adapter - sends HOST_COMPLETE */
6276 if (ipw2100_enable_adapter(priv)) {
6277 printk(KERN_WARNING DRV_NAME
6278 ": %s: failed in call to enable adapter.\n",
6279 priv->net_dev->name);
6280 ipw2100_hw_stop_adapter(priv);
6281 err = -EIO;
6282 goto fail_unlock;
6283 }
6284
6285 /* Start a scan . . . */
6286 ipw2100_set_scan_options(priv);
6287 ipw2100_start_scan(priv);
6288 }
6289
6290 IPW_DEBUG_INFO("exit\n");
6291
6292 priv->status |= STATUS_INITIALIZED;
6293
6294 mutex_unlock(&priv->action_mutex);
6295
6296 return 0;
6297
6298 fail_unlock:
6299 mutex_unlock(&priv->action_mutex);
6300
6301 fail:
6302 if (dev) {
6303 if (registered)
6304 unregister_netdev(dev);
6305
6306 ipw2100_hw_stop_adapter(priv);
6307
6308 ipw2100_disable_interrupts(priv);
6309
6310 if (dev->irq)
6311 free_irq(dev->irq, priv);
6312
6313 ipw2100_kill_workqueue(priv);
6314
6315 /* These are safe to call even if they weren't allocated */
6316 ipw2100_queues_free(priv);
6317 sysfs_remove_group(&pci_dev->dev.kobj,
6318 &ipw2100_attribute_group);
6319
6320 free_ieee80211(dev);
6321 pci_set_drvdata(pci_dev, NULL);
6322 }
6323
6324 if (base_addr)
6325 iounmap(base_addr);
6326
6327 pci_release_regions(pci_dev);
6328 pci_disable_device(pci_dev);
6329
6330 return err;
6331 }
6332
6333 static void __devexit ipw2100_pci_remove_one(struct pci_dev *pci_dev)
6334 {
6335 struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6336 struct net_device *dev;
6337
6338 if (priv) {
6339 mutex_lock(&priv->action_mutex);
6340
6341 priv->status &= ~STATUS_INITIALIZED;
6342
6343 dev = priv->net_dev;
6344 sysfs_remove_group(&pci_dev->dev.kobj,
6345 &ipw2100_attribute_group);
6346
6347 #ifdef CONFIG_PM
6348 if (ipw2100_firmware.version)
6349 ipw2100_release_firmware(priv, &ipw2100_firmware);
6350 #endif
6351 /* Take down the hardware */
6352 ipw2100_down(priv);
6353
6354 /* Release the mutex so that the network subsystem can
6355 * complete any needed calls into the driver... */
6356 mutex_unlock(&priv->action_mutex);
6357
6358 /* Unregister the device first - this results in close()
6359 * being called if the device is open. If we free storage
6360 * first, then close() will crash. */
6361 unregister_netdev(dev);
6362
6363 /* ipw2100_down will ensure that there is no more pending work
6364 * in the workqueue's, so we can safely remove them now. */
6365 ipw2100_kill_workqueue(priv);
6366
6367 ipw2100_queues_free(priv);
6368
6369 /* Free potential debugging firmware snapshot */
6370 ipw2100_snapshot_free(priv);
6371
6372 if (dev->irq)
6373 free_irq(dev->irq, priv);
6374
6375 if (dev->base_addr)
6376 iounmap((void __iomem *)dev->base_addr);
6377
6378 free_ieee80211(dev);
6379 }
6380
6381 pci_release_regions(pci_dev);
6382 pci_disable_device(pci_dev);
6383
6384 IPW_DEBUG_INFO("exit\n");
6385 }
6386
6387 #ifdef CONFIG_PM
6388 static int ipw2100_suspend(struct pci_dev *pci_dev, pm_message_t state)
6389 {
6390 struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6391 struct net_device *dev = priv->net_dev;
6392
6393 IPW_DEBUG_INFO("%s: Going into suspend...\n", dev->name);
6394
6395 mutex_lock(&priv->action_mutex);
6396 if (priv->status & STATUS_INITIALIZED) {
6397 /* Take down the device; powers it off, etc. */
6398 ipw2100_down(priv);
6399 }
6400
6401 /* Remove the PRESENT state of the device */
6402 netif_device_detach(dev);
6403
6404 pci_save_state(pci_dev);
6405 pci_disable_device(pci_dev);
6406 pci_set_power_state(pci_dev, PCI_D3hot);
6407
6408 mutex_unlock(&priv->action_mutex);
6409
6410 return 0;
6411 }
6412
6413 static int ipw2100_resume(struct pci_dev *pci_dev)
6414 {
6415 struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6416 struct net_device *dev = priv->net_dev;
6417 u32 val;
6418
6419 if (IPW2100_PM_DISABLED)
6420 return 0;
6421
6422 mutex_lock(&priv->action_mutex);
6423
6424 IPW_DEBUG_INFO("%s: Coming out of suspend...\n", dev->name);
6425
6426 pci_set_power_state(pci_dev, PCI_D0);
6427 pci_enable_device(pci_dev);
6428 pci_restore_state(pci_dev);
6429
6430 /*
6431 * Suspend/Resume resets the PCI configuration space, so we have to
6432 * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
6433 * from interfering with C3 CPU state. pci_restore_state won't help
6434 * here since it only restores the first 64 bytes pci config header.
6435 */
6436 pci_read_config_dword(pci_dev, 0x40, &val);
6437 if ((val & 0x0000ff00) != 0)
6438 pci_write_config_dword(pci_dev, 0x40, val & 0xffff00ff);
6439
6440 /* Set the device back into the PRESENT state; this will also wake
6441 * the queue of needed */
6442 netif_device_attach(dev);
6443
6444 /* Bring the device back up */
6445 if (!(priv->status & STATUS_RF_KILL_SW))
6446 ipw2100_up(priv, 0);
6447
6448 mutex_unlock(&priv->action_mutex);
6449
6450 return 0;
6451 }
6452 #endif
6453
6454 #define IPW2100_DEV_ID(x) { PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, x }
6455
6456 static struct pci_device_id ipw2100_pci_id_table[] __devinitdata = {
6457 IPW2100_DEV_ID(0x2520), /* IN 2100A mPCI 3A */
6458 IPW2100_DEV_ID(0x2521), /* IN 2100A mPCI 3B */
6459 IPW2100_DEV_ID(0x2524), /* IN 2100A mPCI 3B */
6460 IPW2100_DEV_ID(0x2525), /* IN 2100A mPCI 3B */
6461 IPW2100_DEV_ID(0x2526), /* IN 2100A mPCI Gen A3 */
6462 IPW2100_DEV_ID(0x2522), /* IN 2100 mPCI 3B */
6463 IPW2100_DEV_ID(0x2523), /* IN 2100 mPCI 3A */
6464 IPW2100_DEV_ID(0x2527), /* IN 2100 mPCI 3B */
6465 IPW2100_DEV_ID(0x2528), /* IN 2100 mPCI 3B */
6466 IPW2100_DEV_ID(0x2529), /* IN 2100 mPCI 3B */
6467 IPW2100_DEV_ID(0x252B), /* IN 2100 mPCI 3A */
6468 IPW2100_DEV_ID(0x252C), /* IN 2100 mPCI 3A */
6469 IPW2100_DEV_ID(0x252D), /* IN 2100 mPCI 3A */
6470
6471 IPW2100_DEV_ID(0x2550), /* IB 2100A mPCI 3B */
6472 IPW2100_DEV_ID(0x2551), /* IB 2100 mPCI 3B */
6473 IPW2100_DEV_ID(0x2553), /* IB 2100 mPCI 3B */
6474 IPW2100_DEV_ID(0x2554), /* IB 2100 mPCI 3B */
6475 IPW2100_DEV_ID(0x2555), /* IB 2100 mPCI 3B */
6476
6477 IPW2100_DEV_ID(0x2560), /* DE 2100A mPCI 3A */
6478 IPW2100_DEV_ID(0x2562), /* DE 2100A mPCI 3A */
6479 IPW2100_DEV_ID(0x2563), /* DE 2100A mPCI 3A */
6480 IPW2100_DEV_ID(0x2561), /* DE 2100 mPCI 3A */
6481 IPW2100_DEV_ID(0x2565), /* DE 2100 mPCI 3A */
6482 IPW2100_DEV_ID(0x2566), /* DE 2100 mPCI 3A */
6483 IPW2100_DEV_ID(0x2567), /* DE 2100 mPCI 3A */
6484
6485 IPW2100_DEV_ID(0x2570), /* GA 2100 mPCI 3B */
6486
6487 IPW2100_DEV_ID(0x2580), /* TO 2100A mPCI 3B */
6488 IPW2100_DEV_ID(0x2582), /* TO 2100A mPCI 3B */
6489 IPW2100_DEV_ID(0x2583), /* TO 2100A mPCI 3B */
6490 IPW2100_DEV_ID(0x2581), /* TO 2100 mPCI 3B */
6491 IPW2100_DEV_ID(0x2585), /* TO 2100 mPCI 3B */
6492 IPW2100_DEV_ID(0x2586), /* TO 2100 mPCI 3B */
6493 IPW2100_DEV_ID(0x2587), /* TO 2100 mPCI 3B */
6494
6495 IPW2100_DEV_ID(0x2590), /* SO 2100A mPCI 3B */
6496 IPW2100_DEV_ID(0x2592), /* SO 2100A mPCI 3B */
6497 IPW2100_DEV_ID(0x2591), /* SO 2100 mPCI 3B */
6498 IPW2100_DEV_ID(0x2593), /* SO 2100 mPCI 3B */
6499 IPW2100_DEV_ID(0x2596), /* SO 2100 mPCI 3B */
6500 IPW2100_DEV_ID(0x2598), /* SO 2100 mPCI 3B */
6501
6502 IPW2100_DEV_ID(0x25A0), /* HP 2100 mPCI 3B */
6503 {0,},
6504 };
6505
6506 MODULE_DEVICE_TABLE(pci, ipw2100_pci_id_table);
6507
6508 static struct pci_driver ipw2100_pci_driver = {
6509 .name = DRV_NAME,
6510 .id_table = ipw2100_pci_id_table,
6511 .probe = ipw2100_pci_init_one,
6512 .remove = __devexit_p(ipw2100_pci_remove_one),
6513 #ifdef CONFIG_PM
6514 .suspend = ipw2100_suspend,
6515 .resume = ipw2100_resume,
6516 #endif
6517 };
6518
6519 /**
6520 * Initialize the ipw2100 driver/module
6521 *
6522 * @returns 0 if ok, < 0 errno node con error.
6523 *
6524 * Note: we cannot init the /proc stuff until the PCI driver is there,
6525 * or we risk an unlikely race condition on someone accessing
6526 * uninitialized data in the PCI dev struct through /proc.
6527 */
6528 static int __init ipw2100_init(void)
6529 {
6530 int ret;
6531
6532 printk(KERN_INFO DRV_NAME ": %s, %s\n", DRV_DESCRIPTION, DRV_VERSION);
6533 printk(KERN_INFO DRV_NAME ": %s\n", DRV_COPYRIGHT);
6534
6535 ret = pci_module_init(&ipw2100_pci_driver);
6536
6537 #ifdef CONFIG_IPW2100_DEBUG
6538 ipw2100_debug_level = debug;
6539 driver_create_file(&ipw2100_pci_driver.driver,
6540 &driver_attr_debug_level);
6541 #endif
6542
6543 return ret;
6544 }
6545
6546 /**
6547 * Cleanup ipw2100 driver registration
6548 */
6549 static void __exit ipw2100_exit(void)
6550 {
6551 /* FIXME: IPG: check that we have no instances of the devices open */
6552 #ifdef CONFIG_IPW2100_DEBUG
6553 driver_remove_file(&ipw2100_pci_driver.driver,
6554 &driver_attr_debug_level);
6555 #endif
6556 pci_unregister_driver(&ipw2100_pci_driver);
6557 }
6558
6559 module_init(ipw2100_init);
6560 module_exit(ipw2100_exit);
6561
6562 #define WEXT_USECHANNELS 1
6563
6564 static const long ipw2100_frequencies[] = {
6565 2412, 2417, 2422, 2427,
6566 2432, 2437, 2442, 2447,
6567 2452, 2457, 2462, 2467,
6568 2472, 2484
6569 };
6570
6571 #define FREQ_COUNT (sizeof(ipw2100_frequencies) / \
6572 sizeof(ipw2100_frequencies[0]))
6573
6574 static const long ipw2100_rates_11b[] = {
6575 1000000,
6576 2000000,
6577 5500000,
6578 11000000
6579 };
6580
6581 #define RATE_COUNT (sizeof(ipw2100_rates_11b) / sizeof(ipw2100_rates_11b[0]))
6582
6583 static int ipw2100_wx_get_name(struct net_device *dev,
6584 struct iw_request_info *info,
6585 union iwreq_data *wrqu, char *extra)
6586 {
6587 /*
6588 * This can be called at any time. No action lock required
6589 */
6590
6591 struct ipw2100_priv *priv = ieee80211_priv(dev);
6592 if (!(priv->status & STATUS_ASSOCIATED))
6593 strcpy(wrqu->name, "unassociated");
6594 else
6595 snprintf(wrqu->name, IFNAMSIZ, "IEEE 802.11b");
6596
6597 IPW_DEBUG_WX("Name: %s\n", wrqu->name);
6598 return 0;
6599 }
6600
6601 static int ipw2100_wx_set_freq(struct net_device *dev,
6602 struct iw_request_info *info,
6603 union iwreq_data *wrqu, char *extra)
6604 {
6605 struct ipw2100_priv *priv = ieee80211_priv(dev);
6606 struct iw_freq *fwrq = &wrqu->freq;
6607 int err = 0;
6608
6609 if (priv->ieee->iw_mode == IW_MODE_INFRA)
6610 return -EOPNOTSUPP;
6611
6612 mutex_lock(&priv->action_mutex);
6613 if (!(priv->status & STATUS_INITIALIZED)) {
6614 err = -EIO;
6615 goto done;
6616 }
6617
6618 /* if setting by freq convert to channel */
6619 if (fwrq->e == 1) {
6620 if ((fwrq->m >= (int)2.412e8 && fwrq->m <= (int)2.487e8)) {
6621 int f = fwrq->m / 100000;
6622 int c = 0;
6623
6624 while ((c < REG_MAX_CHANNEL) &&
6625 (f != ipw2100_frequencies[c]))
6626 c++;
6627
6628 /* hack to fall through */
6629 fwrq->e = 0;
6630 fwrq->m = c + 1;
6631 }
6632 }
6633
6634 if (fwrq->e > 0 || fwrq->m > 1000) {
6635 err = -EOPNOTSUPP;
6636 goto done;
6637 } else { /* Set the channel */
6638 IPW_DEBUG_WX("SET Freq/Channel -> %d \n", fwrq->m);
6639 err = ipw2100_set_channel(priv, fwrq->m, 0);
6640 }
6641
6642 done:
6643 mutex_unlock(&priv->action_mutex);
6644 return err;
6645 }
6646
6647 static int ipw2100_wx_get_freq(struct net_device *dev,
6648 struct iw_request_info *info,
6649 union iwreq_data *wrqu, char *extra)
6650 {
6651 /*
6652 * This can be called at any time. No action lock required
6653 */
6654
6655 struct ipw2100_priv *priv = ieee80211_priv(dev);
6656
6657 wrqu->freq.e = 0;
6658
6659 /* If we are associated, trying to associate, or have a statically
6660 * configured CHANNEL then return that; otherwise return ANY */
6661 if (priv->config & CFG_STATIC_CHANNEL ||
6662 priv->status & STATUS_ASSOCIATED)
6663 wrqu->freq.m = priv->channel;
6664 else
6665 wrqu->freq.m = 0;
6666
6667 IPW_DEBUG_WX("GET Freq/Channel -> %d \n", priv->channel);
6668 return 0;
6669
6670 }
6671
6672 static int ipw2100_wx_set_mode(struct net_device *dev,
6673 struct iw_request_info *info,
6674 union iwreq_data *wrqu, char *extra)
6675 {
6676 struct ipw2100_priv *priv = ieee80211_priv(dev);
6677 int err = 0;
6678
6679 IPW_DEBUG_WX("SET Mode -> %d \n", wrqu->mode);
6680
6681 if (wrqu->mode == priv->ieee->iw_mode)
6682 return 0;
6683
6684 mutex_lock(&priv->action_mutex);
6685 if (!(priv->status & STATUS_INITIALIZED)) {
6686 err = -EIO;
6687 goto done;
6688 }
6689
6690 switch (wrqu->mode) {
6691 #ifdef CONFIG_IPW2100_MONITOR
6692 case IW_MODE_MONITOR:
6693 err = ipw2100_switch_mode(priv, IW_MODE_MONITOR);
6694 break;
6695 #endif /* CONFIG_IPW2100_MONITOR */
6696 case IW_MODE_ADHOC:
6697 err = ipw2100_switch_mode(priv, IW_MODE_ADHOC);
6698 break;
6699 case IW_MODE_INFRA:
6700 case IW_MODE_AUTO:
6701 default:
6702 err = ipw2100_switch_mode(priv, IW_MODE_INFRA);
6703 break;
6704 }
6705
6706 done:
6707 mutex_unlock(&priv->action_mutex);
6708 return err;
6709 }
6710
6711 static int ipw2100_wx_get_mode(struct net_device *dev,
6712 struct iw_request_info *info,
6713 union iwreq_data *wrqu, char *extra)
6714 {
6715 /*
6716 * This can be called at any time. No action lock required
6717 */
6718
6719 struct ipw2100_priv *priv = ieee80211_priv(dev);
6720
6721 wrqu->mode = priv->ieee->iw_mode;
6722 IPW_DEBUG_WX("GET Mode -> %d\n", wrqu->mode);
6723
6724 return 0;
6725 }
6726
6727 #define POWER_MODES 5
6728
6729 /* Values are in microsecond */
6730 static const s32 timeout_duration[POWER_MODES] = {
6731 350000,
6732 250000,
6733 75000,
6734 37000,
6735 25000,
6736 };
6737
6738 static const s32 period_duration[POWER_MODES] = {
6739 400000,
6740 700000,
6741 1000000,
6742 1000000,
6743 1000000
6744 };
6745
6746 static int ipw2100_wx_get_range(struct net_device *dev,
6747 struct iw_request_info *info,
6748 union iwreq_data *wrqu, char *extra)
6749 {
6750 /*
6751 * This can be called at any time. No action lock required
6752 */
6753
6754 struct ipw2100_priv *priv = ieee80211_priv(dev);
6755 struct iw_range *range = (struct iw_range *)extra;
6756 u16 val;
6757 int i, level;
6758
6759 wrqu->data.length = sizeof(*range);
6760 memset(range, 0, sizeof(*range));
6761
6762 /* Let's try to keep this struct in the same order as in
6763 * linux/include/wireless.h
6764 */
6765
6766 /* TODO: See what values we can set, and remove the ones we can't
6767 * set, or fill them with some default data.
6768 */
6769
6770 /* ~5 Mb/s real (802.11b) */
6771 range->throughput = 5 * 1000 * 1000;
6772
6773 // range->sensitivity; /* signal level threshold range */
6774
6775 range->max_qual.qual = 100;
6776 /* TODO: Find real max RSSI and stick here */
6777 range->max_qual.level = 0;
6778 range->max_qual.noise = 0;
6779 range->max_qual.updated = 7; /* Updated all three */
6780
6781 range->avg_qual.qual = 70; /* > 8% missed beacons is 'bad' */
6782 /* TODO: Find real 'good' to 'bad' threshol value for RSSI */
6783 range->avg_qual.level = 20 + IPW2100_RSSI_TO_DBM;
6784 range->avg_qual.noise = 0;
6785 range->avg_qual.updated = 7; /* Updated all three */
6786
6787 range->num_bitrates = RATE_COUNT;
6788
6789 for (i = 0; i < RATE_COUNT && i < IW_MAX_BITRATES; i++) {
6790 range->bitrate[i] = ipw2100_rates_11b[i];
6791 }
6792
6793 range->min_rts = MIN_RTS_THRESHOLD;
6794 range->max_rts = MAX_RTS_THRESHOLD;
6795 range->min_frag = MIN_FRAG_THRESHOLD;
6796 range->max_frag = MAX_FRAG_THRESHOLD;
6797
6798 range->min_pmp = period_duration[0]; /* Minimal PM period */
6799 range->max_pmp = period_duration[POWER_MODES - 1]; /* Maximal PM period */
6800 range->min_pmt = timeout_duration[POWER_MODES - 1]; /* Minimal PM timeout */
6801 range->max_pmt = timeout_duration[0]; /* Maximal PM timeout */
6802
6803 /* How to decode max/min PM period */
6804 range->pmp_flags = IW_POWER_PERIOD;
6805 /* How to decode max/min PM period */
6806 range->pmt_flags = IW_POWER_TIMEOUT;
6807 /* What PM options are supported */
6808 range->pm_capa = IW_POWER_TIMEOUT | IW_POWER_PERIOD;
6809
6810 range->encoding_size[0] = 5;
6811 range->encoding_size[1] = 13; /* Different token sizes */
6812 range->num_encoding_sizes = 2; /* Number of entry in the list */
6813 range->max_encoding_tokens = WEP_KEYS; /* Max number of tokens */
6814 // range->encoding_login_index; /* token index for login token */
6815
6816 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
6817 range->txpower_capa = IW_TXPOW_DBM;
6818 range->num_txpower = IW_MAX_TXPOWER;
6819 for (i = 0, level = (IPW_TX_POWER_MAX_DBM * 16);
6820 i < IW_MAX_TXPOWER;
6821 i++, level -=
6822 ((IPW_TX_POWER_MAX_DBM -
6823 IPW_TX_POWER_MIN_DBM) * 16) / (IW_MAX_TXPOWER - 1))
6824 range->txpower[i] = level / 16;
6825 } else {
6826 range->txpower_capa = 0;
6827 range->num_txpower = 0;
6828 }
6829
6830 /* Set the Wireless Extension versions */
6831 range->we_version_compiled = WIRELESS_EXT;
6832 range->we_version_source = 18;
6833
6834 // range->retry_capa; /* What retry options are supported */
6835 // range->retry_flags; /* How to decode max/min retry limit */
6836 // range->r_time_flags; /* How to decode max/min retry life */
6837 // range->min_retry; /* Minimal number of retries */
6838 // range->max_retry; /* Maximal number of retries */
6839 // range->min_r_time; /* Minimal retry lifetime */
6840 // range->max_r_time; /* Maximal retry lifetime */
6841
6842 range->num_channels = FREQ_COUNT;
6843
6844 val = 0;
6845 for (i = 0; i < FREQ_COUNT; i++) {
6846 // TODO: Include only legal frequencies for some countries
6847 // if (local->channel_mask & (1 << i)) {
6848 range->freq[val].i = i + 1;
6849 range->freq[val].m = ipw2100_frequencies[i] * 100000;
6850 range->freq[val].e = 1;
6851 val++;
6852 // }
6853 if (val == IW_MAX_FREQUENCIES)
6854 break;
6855 }
6856 range->num_frequency = val;
6857
6858 /* Event capability (kernel + driver) */
6859 range->event_capa[0] = (IW_EVENT_CAPA_K_0 |
6860 IW_EVENT_CAPA_MASK(SIOCGIWAP));
6861 range->event_capa[1] = IW_EVENT_CAPA_K_1;
6862
6863 range->enc_capa = IW_ENC_CAPA_WPA | IW_ENC_CAPA_WPA2 |
6864 IW_ENC_CAPA_CIPHER_TKIP | IW_ENC_CAPA_CIPHER_CCMP;
6865
6866 IPW_DEBUG_WX("GET Range\n");
6867
6868 return 0;
6869 }
6870
6871 static int ipw2100_wx_set_wap(struct net_device *dev,
6872 struct iw_request_info *info,
6873 union iwreq_data *wrqu, char *extra)
6874 {
6875 struct ipw2100_priv *priv = ieee80211_priv(dev);
6876 int err = 0;
6877
6878 static const unsigned char any[] = {
6879 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
6880 };
6881 static const unsigned char off[] = {
6882 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
6883 };
6884
6885 // sanity checks
6886 if (wrqu->ap_addr.sa_family != ARPHRD_ETHER)
6887 return -EINVAL;
6888
6889 mutex_lock(&priv->action_mutex);
6890 if (!(priv->status & STATUS_INITIALIZED)) {
6891 err = -EIO;
6892 goto done;
6893 }
6894
6895 if (!memcmp(any, wrqu->ap_addr.sa_data, ETH_ALEN) ||
6896 !memcmp(off, wrqu->ap_addr.sa_data, ETH_ALEN)) {
6897 /* we disable mandatory BSSID association */
6898 IPW_DEBUG_WX("exit - disable mandatory BSSID\n");
6899 priv->config &= ~CFG_STATIC_BSSID;
6900 err = ipw2100_set_mandatory_bssid(priv, NULL, 0);
6901 goto done;
6902 }
6903
6904 priv->config |= CFG_STATIC_BSSID;
6905 memcpy(priv->mandatory_bssid_mac, wrqu->ap_addr.sa_data, ETH_ALEN);
6906
6907 err = ipw2100_set_mandatory_bssid(priv, wrqu->ap_addr.sa_data, 0);
6908
6909 IPW_DEBUG_WX("SET BSSID -> %02X:%02X:%02X:%02X:%02X:%02X\n",
6910 wrqu->ap_addr.sa_data[0] & 0xff,
6911 wrqu->ap_addr.sa_data[1] & 0xff,
6912 wrqu->ap_addr.sa_data[2] & 0xff,
6913 wrqu->ap_addr.sa_data[3] & 0xff,
6914 wrqu->ap_addr.sa_data[4] & 0xff,
6915 wrqu->ap_addr.sa_data[5] & 0xff);
6916
6917 done:
6918 mutex_unlock(&priv->action_mutex);
6919 return err;
6920 }
6921
6922 static int ipw2100_wx_get_wap(struct net_device *dev,
6923 struct iw_request_info *info,
6924 union iwreq_data *wrqu, char *extra)
6925 {
6926 /*
6927 * This can be called at any time. No action lock required
6928 */
6929
6930 struct ipw2100_priv *priv = ieee80211_priv(dev);
6931
6932 /* If we are associated, trying to associate, or have a statically
6933 * configured BSSID then return that; otherwise return ANY */
6934 if (priv->config & CFG_STATIC_BSSID || priv->status & STATUS_ASSOCIATED) {
6935 wrqu->ap_addr.sa_family = ARPHRD_ETHER;
6936 memcpy(wrqu->ap_addr.sa_data, priv->bssid, ETH_ALEN);
6937 } else
6938 memset(wrqu->ap_addr.sa_data, 0, ETH_ALEN);
6939
6940 IPW_DEBUG_WX("Getting WAP BSSID: " MAC_FMT "\n",
6941 MAC_ARG(wrqu->ap_addr.sa_data));
6942 return 0;
6943 }
6944
6945 static int ipw2100_wx_set_essid(struct net_device *dev,
6946 struct iw_request_info *info,
6947 union iwreq_data *wrqu, char *extra)
6948 {
6949 struct ipw2100_priv *priv = ieee80211_priv(dev);
6950 char *essid = ""; /* ANY */
6951 int length = 0;
6952 int err = 0;
6953
6954 mutex_lock(&priv->action_mutex);
6955 if (!(priv->status & STATUS_INITIALIZED)) {
6956 err = -EIO;
6957 goto done;
6958 }
6959
6960 if (wrqu->essid.flags && wrqu->essid.length) {
6961 length = wrqu->essid.length - 1;
6962 essid = extra;
6963 }
6964
6965 if (length == 0) {
6966 IPW_DEBUG_WX("Setting ESSID to ANY\n");
6967 priv->config &= ~CFG_STATIC_ESSID;
6968 err = ipw2100_set_essid(priv, NULL, 0, 0);
6969 goto done;
6970 }
6971
6972 length = min(length, IW_ESSID_MAX_SIZE);
6973
6974 priv->config |= CFG_STATIC_ESSID;
6975
6976 if (priv->essid_len == length && !memcmp(priv->essid, extra, length)) {
6977 IPW_DEBUG_WX("ESSID set to current ESSID.\n");
6978 err = 0;
6979 goto done;
6980 }
6981
6982 IPW_DEBUG_WX("Setting ESSID: '%s' (%d)\n", escape_essid(essid, length),
6983 length);
6984
6985 priv->essid_len = length;
6986 memcpy(priv->essid, essid, priv->essid_len);
6987
6988 err = ipw2100_set_essid(priv, essid, length, 0);
6989
6990 done:
6991 mutex_unlock(&priv->action_mutex);
6992 return err;
6993 }
6994
6995 static int ipw2100_wx_get_essid(struct net_device *dev,
6996 struct iw_request_info *info,
6997 union iwreq_data *wrqu, char *extra)
6998 {
6999 /*
7000 * This can be called at any time. No action lock required
7001 */
7002
7003 struct ipw2100_priv *priv = ieee80211_priv(dev);
7004
7005 /* If we are associated, trying to associate, or have a statically
7006 * configured ESSID then return that; otherwise return ANY */
7007 if (priv->config & CFG_STATIC_ESSID || priv->status & STATUS_ASSOCIATED) {
7008 IPW_DEBUG_WX("Getting essid: '%s'\n",
7009 escape_essid(priv->essid, priv->essid_len));
7010 memcpy(extra, priv->essid, priv->essid_len);
7011 wrqu->essid.length = priv->essid_len;
7012 wrqu->essid.flags = 1; /* active */
7013 } else {
7014 IPW_DEBUG_WX("Getting essid: ANY\n");
7015 wrqu->essid.length = 0;
7016 wrqu->essid.flags = 0; /* active */
7017 }
7018
7019 return 0;
7020 }
7021
7022 static int ipw2100_wx_set_nick(struct net_device *dev,
7023 struct iw_request_info *info,
7024 union iwreq_data *wrqu, char *extra)
7025 {
7026 /*
7027 * This can be called at any time. No action lock required
7028 */
7029
7030 struct ipw2100_priv *priv = ieee80211_priv(dev);
7031
7032 if (wrqu->data.length > IW_ESSID_MAX_SIZE)
7033 return -E2BIG;
7034
7035 wrqu->data.length = min((size_t) wrqu->data.length, sizeof(priv->nick));
7036 memset(priv->nick, 0, sizeof(priv->nick));
7037 memcpy(priv->nick, extra, wrqu->data.length);
7038
7039 IPW_DEBUG_WX("SET Nickname -> %s \n", priv->nick);
7040
7041 return 0;
7042 }
7043
7044 static int ipw2100_wx_get_nick(struct net_device *dev,
7045 struct iw_request_info *info,
7046 union iwreq_data *wrqu, char *extra)
7047 {
7048 /*
7049 * This can be called at any time. No action lock required
7050 */
7051
7052 struct ipw2100_priv *priv = ieee80211_priv(dev);
7053
7054 wrqu->data.length = strlen(priv->nick) + 1;
7055 memcpy(extra, priv->nick, wrqu->data.length);
7056 wrqu->data.flags = 1; /* active */
7057
7058 IPW_DEBUG_WX("GET Nickname -> %s \n", extra);
7059
7060 return 0;
7061 }
7062
7063 static int ipw2100_wx_set_rate(struct net_device *dev,
7064 struct iw_request_info *info,
7065 union iwreq_data *wrqu, char *extra)
7066 {
7067 struct ipw2100_priv *priv = ieee80211_priv(dev);
7068 u32 target_rate = wrqu->bitrate.value;
7069 u32 rate;
7070 int err = 0;
7071
7072 mutex_lock(&priv->action_mutex);
7073 if (!(priv->status & STATUS_INITIALIZED)) {
7074 err = -EIO;
7075 goto done;
7076 }
7077
7078 rate = 0;
7079
7080 if (target_rate == 1000000 ||
7081 (!wrqu->bitrate.fixed && target_rate > 1000000))
7082 rate |= TX_RATE_1_MBIT;
7083 if (target_rate == 2000000 ||
7084 (!wrqu->bitrate.fixed && target_rate > 2000000))
7085 rate |= TX_RATE_2_MBIT;
7086 if (target_rate == 5500000 ||
7087 (!wrqu->bitrate.fixed && target_rate > 5500000))
7088 rate |= TX_RATE_5_5_MBIT;
7089 if (target_rate == 11000000 ||
7090 (!wrqu->bitrate.fixed && target_rate > 11000000))
7091 rate |= TX_RATE_11_MBIT;
7092 if (rate == 0)
7093 rate = DEFAULT_TX_RATES;
7094
7095 err = ipw2100_set_tx_rates(priv, rate, 0);
7096
7097 IPW_DEBUG_WX("SET Rate -> %04X \n", rate);
7098 done:
7099 mutex_unlock(&priv->action_mutex);
7100 return err;
7101 }
7102
7103 static int ipw2100_wx_get_rate(struct net_device *dev,
7104 struct iw_request_info *info,
7105 union iwreq_data *wrqu, char *extra)
7106 {
7107 struct ipw2100_priv *priv = ieee80211_priv(dev);
7108 int val;
7109 int len = sizeof(val);
7110 int err = 0;
7111
7112 if (!(priv->status & STATUS_ENABLED) ||
7113 priv->status & STATUS_RF_KILL_MASK ||
7114 !(priv->status & STATUS_ASSOCIATED)) {
7115 wrqu->bitrate.value = 0;
7116 return 0;
7117 }
7118
7119 mutex_lock(&priv->action_mutex);
7120 if (!(priv->status & STATUS_INITIALIZED)) {
7121 err = -EIO;
7122 goto done;
7123 }
7124
7125 err = ipw2100_get_ordinal(priv, IPW_ORD_CURRENT_TX_RATE, &val, &len);
7126 if (err) {
7127 IPW_DEBUG_WX("failed querying ordinals.\n");
7128 return err;
7129 }
7130
7131 switch (val & TX_RATE_MASK) {
7132 case TX_RATE_1_MBIT:
7133 wrqu->bitrate.value = 1000000;
7134 break;
7135 case TX_RATE_2_MBIT:
7136 wrqu->bitrate.value = 2000000;
7137 break;
7138 case TX_RATE_5_5_MBIT:
7139 wrqu->bitrate.value = 5500000;
7140 break;
7141 case TX_RATE_11_MBIT:
7142 wrqu->bitrate.value = 11000000;
7143 break;
7144 default:
7145 wrqu->bitrate.value = 0;
7146 }
7147
7148 IPW_DEBUG_WX("GET Rate -> %d \n", wrqu->bitrate.value);
7149
7150 done:
7151 mutex_unlock(&priv->action_mutex);
7152 return err;
7153 }
7154
7155 static int ipw2100_wx_set_rts(struct net_device *dev,
7156 struct iw_request_info *info,
7157 union iwreq_data *wrqu, char *extra)
7158 {
7159 struct ipw2100_priv *priv = ieee80211_priv(dev);
7160 int value, err;
7161
7162 /* Auto RTS not yet supported */
7163 if (wrqu->rts.fixed == 0)
7164 return -EINVAL;
7165
7166 mutex_lock(&priv->action_mutex);
7167 if (!(priv->status & STATUS_INITIALIZED)) {
7168 err = -EIO;
7169 goto done;
7170 }
7171
7172 if (wrqu->rts.disabled)
7173 value = priv->rts_threshold | RTS_DISABLED;
7174 else {
7175 if (wrqu->rts.value < 1 || wrqu->rts.value > 2304) {
7176 err = -EINVAL;
7177 goto done;
7178 }
7179 value = wrqu->rts.value;
7180 }
7181
7182 err = ipw2100_set_rts_threshold(priv, value);
7183
7184 IPW_DEBUG_WX("SET RTS Threshold -> 0x%08X \n", value);
7185 done:
7186 mutex_unlock(&priv->action_mutex);
7187 return err;
7188 }
7189
7190 static int ipw2100_wx_get_rts(struct net_device *dev,
7191 struct iw_request_info *info,
7192 union iwreq_data *wrqu, char *extra)
7193 {
7194 /*
7195 * This can be called at any time. No action lock required
7196 */
7197
7198 struct ipw2100_priv *priv = ieee80211_priv(dev);
7199
7200 wrqu->rts.value = priv->rts_threshold & ~RTS_DISABLED;
7201 wrqu->rts.fixed = 1; /* no auto select */
7202
7203 /* If RTS is set to the default value, then it is disabled */
7204 wrqu->rts.disabled = (priv->rts_threshold & RTS_DISABLED) ? 1 : 0;
7205
7206 IPW_DEBUG_WX("GET RTS Threshold -> 0x%08X \n", wrqu->rts.value);
7207
7208 return 0;
7209 }
7210
7211 static int ipw2100_wx_set_txpow(struct net_device *dev,
7212 struct iw_request_info *info,
7213 union iwreq_data *wrqu, char *extra)
7214 {
7215 struct ipw2100_priv *priv = ieee80211_priv(dev);
7216 int err = 0, value;
7217
7218 if (ipw_radio_kill_sw(priv, wrqu->txpower.disabled))
7219 return -EINPROGRESS;
7220
7221 if (priv->ieee->iw_mode != IW_MODE_ADHOC)
7222 return 0;
7223
7224 if ((wrqu->txpower.flags & IW_TXPOW_TYPE) != IW_TXPOW_DBM)
7225 return -EINVAL;
7226
7227 if (wrqu->txpower.fixed == 0)
7228 value = IPW_TX_POWER_DEFAULT;
7229 else {
7230 if (wrqu->txpower.value < IPW_TX_POWER_MIN_DBM ||
7231 wrqu->txpower.value > IPW_TX_POWER_MAX_DBM)
7232 return -EINVAL;
7233
7234 value = wrqu->txpower.value;
7235 }
7236
7237 mutex_lock(&priv->action_mutex);
7238 if (!(priv->status & STATUS_INITIALIZED)) {
7239 err = -EIO;
7240 goto done;
7241 }
7242
7243 err = ipw2100_set_tx_power(priv, value);
7244
7245 IPW_DEBUG_WX("SET TX Power -> %d \n", value);
7246
7247 done:
7248 mutex_unlock(&priv->action_mutex);
7249 return err;
7250 }
7251
7252 static int ipw2100_wx_get_txpow(struct net_device *dev,
7253 struct iw_request_info *info,
7254 union iwreq_data *wrqu, char *extra)
7255 {
7256 /*
7257 * This can be called at any time. No action lock required
7258 */
7259
7260 struct ipw2100_priv *priv = ieee80211_priv(dev);
7261
7262 wrqu->txpower.disabled = (priv->status & STATUS_RF_KILL_MASK) ? 1 : 0;
7263
7264 if (priv->tx_power == IPW_TX_POWER_DEFAULT) {
7265 wrqu->txpower.fixed = 0;
7266 wrqu->txpower.value = IPW_TX_POWER_MAX_DBM;
7267 } else {
7268 wrqu->txpower.fixed = 1;
7269 wrqu->txpower.value = priv->tx_power;
7270 }
7271
7272 wrqu->txpower.flags = IW_TXPOW_DBM;
7273
7274 IPW_DEBUG_WX("GET TX Power -> %d \n", wrqu->txpower.value);
7275
7276 return 0;
7277 }
7278
7279 static int ipw2100_wx_set_frag(struct net_device *dev,
7280 struct iw_request_info *info,
7281 union iwreq_data *wrqu, char *extra)
7282 {
7283 /*
7284 * This can be called at any time. No action lock required
7285 */
7286
7287 struct ipw2100_priv *priv = ieee80211_priv(dev);
7288
7289 if (!wrqu->frag.fixed)
7290 return -EINVAL;
7291
7292 if (wrqu->frag.disabled) {
7293 priv->frag_threshold |= FRAG_DISABLED;
7294 priv->ieee->fts = DEFAULT_FTS;
7295 } else {
7296 if (wrqu->frag.value < MIN_FRAG_THRESHOLD ||
7297 wrqu->frag.value > MAX_FRAG_THRESHOLD)
7298 return -EINVAL;
7299
7300 priv->ieee->fts = wrqu->frag.value & ~0x1;
7301 priv->frag_threshold = priv->ieee->fts;
7302 }
7303
7304 IPW_DEBUG_WX("SET Frag Threshold -> %d \n", priv->ieee->fts);
7305
7306 return 0;
7307 }
7308
7309 static int ipw2100_wx_get_frag(struct net_device *dev,
7310 struct iw_request_info *info,
7311 union iwreq_data *wrqu, char *extra)
7312 {
7313 /*
7314 * This can be called at any time. No action lock required
7315 */
7316
7317 struct ipw2100_priv *priv = ieee80211_priv(dev);
7318 wrqu->frag.value = priv->frag_threshold & ~FRAG_DISABLED;
7319 wrqu->frag.fixed = 0; /* no auto select */
7320 wrqu->frag.disabled = (priv->frag_threshold & FRAG_DISABLED) ? 1 : 0;
7321
7322 IPW_DEBUG_WX("GET Frag Threshold -> %d \n", wrqu->frag.value);
7323
7324 return 0;
7325 }
7326
7327 static int ipw2100_wx_set_retry(struct net_device *dev,
7328 struct iw_request_info *info,
7329 union iwreq_data *wrqu, char *extra)
7330 {
7331 struct ipw2100_priv *priv = ieee80211_priv(dev);
7332 int err = 0;
7333
7334 if (wrqu->retry.flags & IW_RETRY_LIFETIME || wrqu->retry.disabled)
7335 return -EINVAL;
7336
7337 if (!(wrqu->retry.flags & IW_RETRY_LIMIT))
7338 return 0;
7339
7340 mutex_lock(&priv->action_mutex);
7341 if (!(priv->status & STATUS_INITIALIZED)) {
7342 err = -EIO;
7343 goto done;
7344 }
7345
7346 if (wrqu->retry.flags & IW_RETRY_MIN) {
7347 err = ipw2100_set_short_retry(priv, wrqu->retry.value);
7348 IPW_DEBUG_WX("SET Short Retry Limit -> %d \n",
7349 wrqu->retry.value);
7350 goto done;
7351 }
7352
7353 if (wrqu->retry.flags & IW_RETRY_MAX) {
7354 err = ipw2100_set_long_retry(priv, wrqu->retry.value);
7355 IPW_DEBUG_WX("SET Long Retry Limit -> %d \n",
7356 wrqu->retry.value);
7357 goto done;
7358 }
7359
7360 err = ipw2100_set_short_retry(priv, wrqu->retry.value);
7361 if (!err)
7362 err = ipw2100_set_long_retry(priv, wrqu->retry.value);
7363
7364 IPW_DEBUG_WX("SET Both Retry Limits -> %d \n", wrqu->retry.value);
7365
7366 done:
7367 mutex_unlock(&priv->action_mutex);
7368 return err;
7369 }
7370
7371 static int ipw2100_wx_get_retry(struct net_device *dev,
7372 struct iw_request_info *info,
7373 union iwreq_data *wrqu, char *extra)
7374 {
7375 /*
7376 * This can be called at any time. No action lock required
7377 */
7378
7379 struct ipw2100_priv *priv = ieee80211_priv(dev);
7380
7381 wrqu->retry.disabled = 0; /* can't be disabled */
7382
7383 if ((wrqu->retry.flags & IW_RETRY_TYPE) == IW_RETRY_LIFETIME)
7384 return -EINVAL;
7385
7386 if (wrqu->retry.flags & IW_RETRY_MAX) {
7387 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_MAX;
7388 wrqu->retry.value = priv->long_retry_limit;
7389 } else {
7390 wrqu->retry.flags =
7391 (priv->short_retry_limit !=
7392 priv->long_retry_limit) ?
7393 IW_RETRY_LIMIT | IW_RETRY_MIN : IW_RETRY_LIMIT;
7394
7395 wrqu->retry.value = priv->short_retry_limit;
7396 }
7397
7398 IPW_DEBUG_WX("GET Retry -> %d \n", wrqu->retry.value);
7399
7400 return 0;
7401 }
7402
7403 static int ipw2100_wx_set_scan(struct net_device *dev,
7404 struct iw_request_info *info,
7405 union iwreq_data *wrqu, char *extra)
7406 {
7407 struct ipw2100_priv *priv = ieee80211_priv(dev);
7408 int err = 0;
7409
7410 mutex_lock(&priv->action_mutex);
7411 if (!(priv->status & STATUS_INITIALIZED)) {
7412 err = -EIO;
7413 goto done;
7414 }
7415
7416 IPW_DEBUG_WX("Initiating scan...\n");
7417 if (ipw2100_set_scan_options(priv) || ipw2100_start_scan(priv)) {
7418 IPW_DEBUG_WX("Start scan failed.\n");
7419
7420 /* TODO: Mark a scan as pending so when hardware initialized
7421 * a scan starts */
7422 }
7423
7424 done:
7425 mutex_unlock(&priv->action_mutex);
7426 return err;
7427 }
7428
7429 static int ipw2100_wx_get_scan(struct net_device *dev,
7430 struct iw_request_info *info,
7431 union iwreq_data *wrqu, char *extra)
7432 {
7433 /*
7434 * This can be called at any time. No action lock required
7435 */
7436
7437 struct ipw2100_priv *priv = ieee80211_priv(dev);
7438 return ieee80211_wx_get_scan(priv->ieee, info, wrqu, extra);
7439 }
7440
7441 /*
7442 * Implementation based on code in hostap-driver v0.1.3 hostap_ioctl.c
7443 */
7444 static int ipw2100_wx_set_encode(struct net_device *dev,
7445 struct iw_request_info *info,
7446 union iwreq_data *wrqu, char *key)
7447 {
7448 /*
7449 * No check of STATUS_INITIALIZED required
7450 */
7451
7452 struct ipw2100_priv *priv = ieee80211_priv(dev);
7453 return ieee80211_wx_set_encode(priv->ieee, info, wrqu, key);
7454 }
7455
7456 static int ipw2100_wx_get_encode(struct net_device *dev,
7457 struct iw_request_info *info,
7458 union iwreq_data *wrqu, char *key)
7459 {
7460 /*
7461 * This can be called at any time. No action lock required
7462 */
7463
7464 struct ipw2100_priv *priv = ieee80211_priv(dev);
7465 return ieee80211_wx_get_encode(priv->ieee, info, wrqu, key);
7466 }
7467
7468 static int ipw2100_wx_set_power(struct net_device *dev,
7469 struct iw_request_info *info,
7470 union iwreq_data *wrqu, char *extra)
7471 {
7472 struct ipw2100_priv *priv = ieee80211_priv(dev);
7473 int err = 0;
7474
7475 mutex_lock(&priv->action_mutex);
7476 if (!(priv->status & STATUS_INITIALIZED)) {
7477 err = -EIO;
7478 goto done;
7479 }
7480
7481 if (wrqu->power.disabled) {
7482 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
7483 err = ipw2100_set_power_mode(priv, IPW_POWER_MODE_CAM);
7484 IPW_DEBUG_WX("SET Power Management Mode -> off\n");
7485 goto done;
7486 }
7487
7488 switch (wrqu->power.flags & IW_POWER_MODE) {
7489 case IW_POWER_ON: /* If not specified */
7490 case IW_POWER_MODE: /* If set all mask */
7491 case IW_POWER_ALL_R: /* If explicitely state all */
7492 break;
7493 default: /* Otherwise we don't support it */
7494 IPW_DEBUG_WX("SET PM Mode: %X not supported.\n",
7495 wrqu->power.flags);
7496 err = -EOPNOTSUPP;
7497 goto done;
7498 }
7499
7500 /* If the user hasn't specified a power management mode yet, default
7501 * to BATTERY */
7502 priv->power_mode = IPW_POWER_ENABLED | priv->power_mode;
7503 err = ipw2100_set_power_mode(priv, IPW_POWER_LEVEL(priv->power_mode));
7504
7505 IPW_DEBUG_WX("SET Power Management Mode -> 0x%02X\n", priv->power_mode);
7506
7507 done:
7508 mutex_unlock(&priv->action_mutex);
7509 return err;
7510
7511 }
7512
7513 static int ipw2100_wx_get_power(struct net_device *dev,
7514 struct iw_request_info *info,
7515 union iwreq_data *wrqu, char *extra)
7516 {
7517 /*
7518 * This can be called at any time. No action lock required
7519 */
7520
7521 struct ipw2100_priv *priv = ieee80211_priv(dev);
7522
7523 if (!(priv->power_mode & IPW_POWER_ENABLED))
7524 wrqu->power.disabled = 1;
7525 else {
7526 wrqu->power.disabled = 0;
7527 wrqu->power.flags = 0;
7528 }
7529
7530 IPW_DEBUG_WX("GET Power Management Mode -> %02X\n", priv->power_mode);
7531
7532 return 0;
7533 }
7534
7535 /*
7536 * WE-18 WPA support
7537 */
7538
7539 /* SIOCSIWGENIE */
7540 static int ipw2100_wx_set_genie(struct net_device *dev,
7541 struct iw_request_info *info,
7542 union iwreq_data *wrqu, char *extra)
7543 {
7544
7545 struct ipw2100_priv *priv = ieee80211_priv(dev);
7546 struct ieee80211_device *ieee = priv->ieee;
7547 u8 *buf;
7548
7549 if (!ieee->wpa_enabled)
7550 return -EOPNOTSUPP;
7551
7552 if (wrqu->data.length > MAX_WPA_IE_LEN ||
7553 (wrqu->data.length && extra == NULL))
7554 return -EINVAL;
7555
7556 if (wrqu->data.length) {
7557 buf = kmalloc(wrqu->data.length, GFP_KERNEL);
7558 if (buf == NULL)
7559 return -ENOMEM;
7560
7561 memcpy(buf, extra, wrqu->data.length);
7562 kfree(ieee->wpa_ie);
7563 ieee->wpa_ie = buf;
7564 ieee->wpa_ie_len = wrqu->data.length;
7565 } else {
7566 kfree(ieee->wpa_ie);
7567 ieee->wpa_ie = NULL;
7568 ieee->wpa_ie_len = 0;
7569 }
7570
7571 ipw2100_wpa_assoc_frame(priv, ieee->wpa_ie, ieee->wpa_ie_len);
7572
7573 return 0;
7574 }
7575
7576 /* SIOCGIWGENIE */
7577 static int ipw2100_wx_get_genie(struct net_device *dev,
7578 struct iw_request_info *info,
7579 union iwreq_data *wrqu, char *extra)
7580 {
7581 struct ipw2100_priv *priv = ieee80211_priv(dev);
7582 struct ieee80211_device *ieee = priv->ieee;
7583
7584 if (ieee->wpa_ie_len == 0 || ieee->wpa_ie == NULL) {
7585 wrqu->data.length = 0;
7586 return 0;
7587 }
7588
7589 if (wrqu->data.length < ieee->wpa_ie_len)
7590 return -E2BIG;
7591
7592 wrqu->data.length = ieee->wpa_ie_len;
7593 memcpy(extra, ieee->wpa_ie, ieee->wpa_ie_len);
7594
7595 return 0;
7596 }
7597
7598 /* SIOCSIWAUTH */
7599 static int ipw2100_wx_set_auth(struct net_device *dev,
7600 struct iw_request_info *info,
7601 union iwreq_data *wrqu, char *extra)
7602 {
7603 struct ipw2100_priv *priv = ieee80211_priv(dev);
7604 struct ieee80211_device *ieee = priv->ieee;
7605 struct iw_param *param = &wrqu->param;
7606 struct ieee80211_crypt_data *crypt;
7607 unsigned long flags;
7608 int ret = 0;
7609
7610 switch (param->flags & IW_AUTH_INDEX) {
7611 case IW_AUTH_WPA_VERSION:
7612 case IW_AUTH_CIPHER_PAIRWISE:
7613 case IW_AUTH_CIPHER_GROUP:
7614 case IW_AUTH_KEY_MGMT:
7615 /*
7616 * ipw2200 does not use these parameters
7617 */
7618 break;
7619
7620 case IW_AUTH_TKIP_COUNTERMEASURES:
7621 crypt = priv->ieee->crypt[priv->ieee->tx_keyidx];
7622 if (!crypt || !crypt->ops->set_flags || !crypt->ops->get_flags)
7623 break;
7624
7625 flags = crypt->ops->get_flags(crypt->priv);
7626
7627 if (param->value)
7628 flags |= IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
7629 else
7630 flags &= ~IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
7631
7632 crypt->ops->set_flags(flags, crypt->priv);
7633
7634 break;
7635
7636 case IW_AUTH_DROP_UNENCRYPTED:{
7637 /* HACK:
7638 *
7639 * wpa_supplicant calls set_wpa_enabled when the driver
7640 * is loaded and unloaded, regardless of if WPA is being
7641 * used. No other calls are made which can be used to
7642 * determine if encryption will be used or not prior to
7643 * association being expected. If encryption is not being
7644 * used, drop_unencrypted is set to false, else true -- we
7645 * can use this to determine if the CAP_PRIVACY_ON bit should
7646 * be set.
7647 */
7648 struct ieee80211_security sec = {
7649 .flags = SEC_ENABLED,
7650 .enabled = param->value,
7651 };
7652 priv->ieee->drop_unencrypted = param->value;
7653 /* We only change SEC_LEVEL for open mode. Others
7654 * are set by ipw_wpa_set_encryption.
7655 */
7656 if (!param->value) {
7657 sec.flags |= SEC_LEVEL;
7658 sec.level = SEC_LEVEL_0;
7659 } else {
7660 sec.flags |= SEC_LEVEL;
7661 sec.level = SEC_LEVEL_1;
7662 }
7663 if (priv->ieee->set_security)
7664 priv->ieee->set_security(priv->ieee->dev, &sec);
7665 break;
7666 }
7667
7668 case IW_AUTH_80211_AUTH_ALG:
7669 ret = ipw2100_wpa_set_auth_algs(priv, param->value);
7670 break;
7671
7672 case IW_AUTH_WPA_ENABLED:
7673 ret = ipw2100_wpa_enable(priv, param->value);
7674 break;
7675
7676 case IW_AUTH_RX_UNENCRYPTED_EAPOL:
7677 ieee->ieee802_1x = param->value;
7678 break;
7679
7680 //case IW_AUTH_ROAMING_CONTROL:
7681 case IW_AUTH_PRIVACY_INVOKED:
7682 ieee->privacy_invoked = param->value;
7683 break;
7684
7685 default:
7686 return -EOPNOTSUPP;
7687 }
7688 return ret;
7689 }
7690
7691 /* SIOCGIWAUTH */
7692 static int ipw2100_wx_get_auth(struct net_device *dev,
7693 struct iw_request_info *info,
7694 union iwreq_data *wrqu, char *extra)
7695 {
7696 struct ipw2100_priv *priv = ieee80211_priv(dev);
7697 struct ieee80211_device *ieee = priv->ieee;
7698 struct ieee80211_crypt_data *crypt;
7699 struct iw_param *param = &wrqu->param;
7700 int ret = 0;
7701
7702 switch (param->flags & IW_AUTH_INDEX) {
7703 case IW_AUTH_WPA_VERSION:
7704 case IW_AUTH_CIPHER_PAIRWISE:
7705 case IW_AUTH_CIPHER_GROUP:
7706 case IW_AUTH_KEY_MGMT:
7707 /*
7708 * wpa_supplicant will control these internally
7709 */
7710 ret = -EOPNOTSUPP;
7711 break;
7712
7713 case IW_AUTH_TKIP_COUNTERMEASURES:
7714 crypt = priv->ieee->crypt[priv->ieee->tx_keyidx];
7715 if (!crypt || !crypt->ops->get_flags) {
7716 IPW_DEBUG_WARNING("Can't get TKIP countermeasures: "
7717 "crypt not set!\n");
7718 break;
7719 }
7720
7721 param->value = (crypt->ops->get_flags(crypt->priv) &
7722 IEEE80211_CRYPTO_TKIP_COUNTERMEASURES) ? 1 : 0;
7723
7724 break;
7725
7726 case IW_AUTH_DROP_UNENCRYPTED:
7727 param->value = ieee->drop_unencrypted;
7728 break;
7729
7730 case IW_AUTH_80211_AUTH_ALG:
7731 param->value = priv->ieee->sec.auth_mode;
7732 break;
7733
7734 case IW_AUTH_WPA_ENABLED:
7735 param->value = ieee->wpa_enabled;
7736 break;
7737
7738 case IW_AUTH_RX_UNENCRYPTED_EAPOL:
7739 param->value = ieee->ieee802_1x;
7740 break;
7741
7742 case IW_AUTH_ROAMING_CONTROL:
7743 case IW_AUTH_PRIVACY_INVOKED:
7744 param->value = ieee->privacy_invoked;
7745 break;
7746
7747 default:
7748 return -EOPNOTSUPP;
7749 }
7750 return 0;
7751 }
7752
7753 /* SIOCSIWENCODEEXT */
7754 static int ipw2100_wx_set_encodeext(struct net_device *dev,
7755 struct iw_request_info *info,
7756 union iwreq_data *wrqu, char *extra)
7757 {
7758 struct ipw2100_priv *priv = ieee80211_priv(dev);
7759 return ieee80211_wx_set_encodeext(priv->ieee, info, wrqu, extra);
7760 }
7761
7762 /* SIOCGIWENCODEEXT */
7763 static int ipw2100_wx_get_encodeext(struct net_device *dev,
7764 struct iw_request_info *info,
7765 union iwreq_data *wrqu, char *extra)
7766 {
7767 struct ipw2100_priv *priv = ieee80211_priv(dev);
7768 return ieee80211_wx_get_encodeext(priv->ieee, info, wrqu, extra);
7769 }
7770
7771 /* SIOCSIWMLME */
7772 static int ipw2100_wx_set_mlme(struct net_device *dev,
7773 struct iw_request_info *info,
7774 union iwreq_data *wrqu, char *extra)
7775 {
7776 struct ipw2100_priv *priv = ieee80211_priv(dev);
7777 struct iw_mlme *mlme = (struct iw_mlme *)extra;
7778 u16 reason;
7779
7780 reason = cpu_to_le16(mlme->reason_code);
7781
7782 switch (mlme->cmd) {
7783 case IW_MLME_DEAUTH:
7784 // silently ignore
7785 break;
7786
7787 case IW_MLME_DISASSOC:
7788 ipw2100_disassociate_bssid(priv);
7789 break;
7790
7791 default:
7792 return -EOPNOTSUPP;
7793 }
7794 return 0;
7795 }
7796
7797 /*
7798 *
7799 * IWPRIV handlers
7800 *
7801 */
7802 #ifdef CONFIG_IPW2100_MONITOR
7803 static int ipw2100_wx_set_promisc(struct net_device *dev,
7804 struct iw_request_info *info,
7805 union iwreq_data *wrqu, char *extra)
7806 {
7807 struct ipw2100_priv *priv = ieee80211_priv(dev);
7808 int *parms = (int *)extra;
7809 int enable = (parms[0] > 0);
7810 int err = 0;
7811
7812 mutex_lock(&priv->action_mutex);
7813 if (!(priv->status & STATUS_INITIALIZED)) {
7814 err = -EIO;
7815 goto done;
7816 }
7817
7818 if (enable) {
7819 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
7820 err = ipw2100_set_channel(priv, parms[1], 0);
7821 goto done;
7822 }
7823 priv->channel = parms[1];
7824 err = ipw2100_switch_mode(priv, IW_MODE_MONITOR);
7825 } else {
7826 if (priv->ieee->iw_mode == IW_MODE_MONITOR)
7827 err = ipw2100_switch_mode(priv, priv->last_mode);
7828 }
7829 done:
7830 mutex_unlock(&priv->action_mutex);
7831 return err;
7832 }
7833
7834 static int ipw2100_wx_reset(struct net_device *dev,
7835 struct iw_request_info *info,
7836 union iwreq_data *wrqu, char *extra)
7837 {
7838 struct ipw2100_priv *priv = ieee80211_priv(dev);
7839 if (priv->status & STATUS_INITIALIZED)
7840 schedule_reset(priv);
7841 return 0;
7842 }
7843
7844 #endif
7845
7846 static int ipw2100_wx_set_powermode(struct net_device *dev,
7847 struct iw_request_info *info,
7848 union iwreq_data *wrqu, char *extra)
7849 {
7850 struct ipw2100_priv *priv = ieee80211_priv(dev);
7851 int err = 0, mode = *(int *)extra;
7852
7853 mutex_lock(&priv->action_mutex);
7854 if (!(priv->status & STATUS_INITIALIZED)) {
7855 err = -EIO;
7856 goto done;
7857 }
7858
7859 if ((mode < 1) || (mode > POWER_MODES))
7860 mode = IPW_POWER_AUTO;
7861
7862 if (priv->power_mode != mode)
7863 err = ipw2100_set_power_mode(priv, mode);
7864 done:
7865 mutex_unlock(&priv->action_mutex);
7866 return err;
7867 }
7868
7869 #define MAX_POWER_STRING 80
7870 static int ipw2100_wx_get_powermode(struct net_device *dev,
7871 struct iw_request_info *info,
7872 union iwreq_data *wrqu, char *extra)
7873 {
7874 /*
7875 * This can be called at any time. No action lock required
7876 */
7877
7878 struct ipw2100_priv *priv = ieee80211_priv(dev);
7879 int level = IPW_POWER_LEVEL(priv->power_mode);
7880 s32 timeout, period;
7881
7882 if (!(priv->power_mode & IPW_POWER_ENABLED)) {
7883 snprintf(extra, MAX_POWER_STRING,
7884 "Power save level: %d (Off)", level);
7885 } else {
7886 switch (level) {
7887 case IPW_POWER_MODE_CAM:
7888 snprintf(extra, MAX_POWER_STRING,
7889 "Power save level: %d (None)", level);
7890 break;
7891 case IPW_POWER_AUTO:
7892 snprintf(extra, MAX_POWER_STRING,
7893 "Power save level: %d (Auto)", 0);
7894 break;
7895 default:
7896 timeout = timeout_duration[level - 1] / 1000;
7897 period = period_duration[level - 1] / 1000;
7898 snprintf(extra, MAX_POWER_STRING,
7899 "Power save level: %d "
7900 "(Timeout %dms, Period %dms)",
7901 level, timeout, period);
7902 }
7903 }
7904
7905 wrqu->data.length = strlen(extra) + 1;
7906
7907 return 0;
7908 }
7909
7910 static int ipw2100_wx_set_preamble(struct net_device *dev,
7911 struct iw_request_info *info,
7912 union iwreq_data *wrqu, char *extra)
7913 {
7914 struct ipw2100_priv *priv = ieee80211_priv(dev);
7915 int err, mode = *(int *)extra;
7916
7917 mutex_lock(&priv->action_mutex);
7918 if (!(priv->status & STATUS_INITIALIZED)) {
7919 err = -EIO;
7920 goto done;
7921 }
7922
7923 if (mode == 1)
7924 priv->config |= CFG_LONG_PREAMBLE;
7925 else if (mode == 0)
7926 priv->config &= ~CFG_LONG_PREAMBLE;
7927 else {
7928 err = -EINVAL;
7929 goto done;
7930 }
7931
7932 err = ipw2100_system_config(priv, 0);
7933
7934 done:
7935 mutex_unlock(&priv->action_mutex);
7936 return err;
7937 }
7938
7939 static int ipw2100_wx_get_preamble(struct net_device *dev,
7940 struct iw_request_info *info,
7941 union iwreq_data *wrqu, char *extra)
7942 {
7943 /*
7944 * This can be called at any time. No action lock required
7945 */
7946
7947 struct ipw2100_priv *priv = ieee80211_priv(dev);
7948
7949 if (priv->config & CFG_LONG_PREAMBLE)
7950 snprintf(wrqu->name, IFNAMSIZ, "long (1)");
7951 else
7952 snprintf(wrqu->name, IFNAMSIZ, "auto (0)");
7953
7954 return 0;
7955 }
7956
7957 #ifdef CONFIG_IPW2100_MONITOR
7958 static int ipw2100_wx_set_crc_check(struct net_device *dev,
7959 struct iw_request_info *info,
7960 union iwreq_data *wrqu, char *extra)
7961 {
7962 struct ipw2100_priv *priv = ieee80211_priv(dev);
7963 int err, mode = *(int *)extra;
7964
7965 mutex_lock(&priv->action_mutex);
7966 if (!(priv->status & STATUS_INITIALIZED)) {
7967 err = -EIO;
7968 goto done;
7969 }
7970
7971 if (mode == 1)
7972 priv->config |= CFG_CRC_CHECK;
7973 else if (mode == 0)
7974 priv->config &= ~CFG_CRC_CHECK;
7975 else {
7976 err = -EINVAL;
7977 goto done;
7978 }
7979 err = 0;
7980
7981 done:
7982 mutex_unlock(&priv->action_mutex);
7983 return err;
7984 }
7985
7986 static int ipw2100_wx_get_crc_check(struct net_device *dev,
7987 struct iw_request_info *info,
7988 union iwreq_data *wrqu, char *extra)
7989 {
7990 /*
7991 * This can be called at any time. No action lock required
7992 */
7993
7994 struct ipw2100_priv *priv = ieee80211_priv(dev);
7995
7996 if (priv->config & CFG_CRC_CHECK)
7997 snprintf(wrqu->name, IFNAMSIZ, "CRC checked (1)");
7998 else
7999 snprintf(wrqu->name, IFNAMSIZ, "CRC ignored (0)");
8000
8001 return 0;
8002 }
8003 #endif /* CONFIG_IPW2100_MONITOR */
8004
8005 static iw_handler ipw2100_wx_handlers[] = {
8006 NULL, /* SIOCSIWCOMMIT */
8007 ipw2100_wx_get_name, /* SIOCGIWNAME */
8008 NULL, /* SIOCSIWNWID */
8009 NULL, /* SIOCGIWNWID */
8010 ipw2100_wx_set_freq, /* SIOCSIWFREQ */
8011 ipw2100_wx_get_freq, /* SIOCGIWFREQ */
8012 ipw2100_wx_set_mode, /* SIOCSIWMODE */
8013 ipw2100_wx_get_mode, /* SIOCGIWMODE */
8014 NULL, /* SIOCSIWSENS */
8015 NULL, /* SIOCGIWSENS */
8016 NULL, /* SIOCSIWRANGE */
8017 ipw2100_wx_get_range, /* SIOCGIWRANGE */
8018 NULL, /* SIOCSIWPRIV */
8019 NULL, /* SIOCGIWPRIV */
8020 NULL, /* SIOCSIWSTATS */
8021 NULL, /* SIOCGIWSTATS */
8022 NULL, /* SIOCSIWSPY */
8023 NULL, /* SIOCGIWSPY */
8024 NULL, /* SIOCGIWTHRSPY */
8025 NULL, /* SIOCWIWTHRSPY */
8026 ipw2100_wx_set_wap, /* SIOCSIWAP */
8027 ipw2100_wx_get_wap, /* SIOCGIWAP */
8028 ipw2100_wx_set_mlme, /* SIOCSIWMLME */
8029 NULL, /* SIOCGIWAPLIST -- deprecated */
8030 ipw2100_wx_set_scan, /* SIOCSIWSCAN */
8031 ipw2100_wx_get_scan, /* SIOCGIWSCAN */
8032 ipw2100_wx_set_essid, /* SIOCSIWESSID */
8033 ipw2100_wx_get_essid, /* SIOCGIWESSID */
8034 ipw2100_wx_set_nick, /* SIOCSIWNICKN */
8035 ipw2100_wx_get_nick, /* SIOCGIWNICKN */
8036 NULL, /* -- hole -- */
8037 NULL, /* -- hole -- */
8038 ipw2100_wx_set_rate, /* SIOCSIWRATE */
8039 ipw2100_wx_get_rate, /* SIOCGIWRATE */
8040 ipw2100_wx_set_rts, /* SIOCSIWRTS */
8041 ipw2100_wx_get_rts, /* SIOCGIWRTS */
8042 ipw2100_wx_set_frag, /* SIOCSIWFRAG */
8043 ipw2100_wx_get_frag, /* SIOCGIWFRAG */
8044 ipw2100_wx_set_txpow, /* SIOCSIWTXPOW */
8045 ipw2100_wx_get_txpow, /* SIOCGIWTXPOW */
8046 ipw2100_wx_set_retry, /* SIOCSIWRETRY */
8047 ipw2100_wx_get_retry, /* SIOCGIWRETRY */
8048 ipw2100_wx_set_encode, /* SIOCSIWENCODE */
8049 ipw2100_wx_get_encode, /* SIOCGIWENCODE */
8050 ipw2100_wx_set_power, /* SIOCSIWPOWER */
8051 ipw2100_wx_get_power, /* SIOCGIWPOWER */
8052 NULL, /* -- hole -- */
8053 NULL, /* -- hole -- */
8054 ipw2100_wx_set_genie, /* SIOCSIWGENIE */
8055 ipw2100_wx_get_genie, /* SIOCGIWGENIE */
8056 ipw2100_wx_set_auth, /* SIOCSIWAUTH */
8057 ipw2100_wx_get_auth, /* SIOCGIWAUTH */
8058 ipw2100_wx_set_encodeext, /* SIOCSIWENCODEEXT */
8059 ipw2100_wx_get_encodeext, /* SIOCGIWENCODEEXT */
8060 NULL, /* SIOCSIWPMKSA */
8061 };
8062
8063 #define IPW2100_PRIV_SET_MONITOR SIOCIWFIRSTPRIV
8064 #define IPW2100_PRIV_RESET SIOCIWFIRSTPRIV+1
8065 #define IPW2100_PRIV_SET_POWER SIOCIWFIRSTPRIV+2
8066 #define IPW2100_PRIV_GET_POWER SIOCIWFIRSTPRIV+3
8067 #define IPW2100_PRIV_SET_LONGPREAMBLE SIOCIWFIRSTPRIV+4
8068 #define IPW2100_PRIV_GET_LONGPREAMBLE SIOCIWFIRSTPRIV+5
8069 #define IPW2100_PRIV_SET_CRC_CHECK SIOCIWFIRSTPRIV+6
8070 #define IPW2100_PRIV_GET_CRC_CHECK SIOCIWFIRSTPRIV+7
8071
8072 static const struct iw_priv_args ipw2100_private_args[] = {
8073
8074 #ifdef CONFIG_IPW2100_MONITOR
8075 {
8076 IPW2100_PRIV_SET_MONITOR,
8077 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 2, 0, "monitor"},
8078 {
8079 IPW2100_PRIV_RESET,
8080 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "reset"},
8081 #endif /* CONFIG_IPW2100_MONITOR */
8082
8083 {
8084 IPW2100_PRIV_SET_POWER,
8085 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_power"},
8086 {
8087 IPW2100_PRIV_GET_POWER,
8088 0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_POWER_STRING,
8089 "get_power"},
8090 {
8091 IPW2100_PRIV_SET_LONGPREAMBLE,
8092 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_preamble"},
8093 {
8094 IPW2100_PRIV_GET_LONGPREAMBLE,
8095 0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ, "get_preamble"},
8096 #ifdef CONFIG_IPW2100_MONITOR
8097 {
8098 IPW2100_PRIV_SET_CRC_CHECK,
8099 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_crc_check"},
8100 {
8101 IPW2100_PRIV_GET_CRC_CHECK,
8102 0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ, "get_crc_check"},
8103 #endif /* CONFIG_IPW2100_MONITOR */
8104 };
8105
8106 static iw_handler ipw2100_private_handler[] = {
8107 #ifdef CONFIG_IPW2100_MONITOR
8108 ipw2100_wx_set_promisc,
8109 ipw2100_wx_reset,
8110 #else /* CONFIG_IPW2100_MONITOR */
8111 NULL,
8112 NULL,
8113 #endif /* CONFIG_IPW2100_MONITOR */
8114 ipw2100_wx_set_powermode,
8115 ipw2100_wx_get_powermode,
8116 ipw2100_wx_set_preamble,
8117 ipw2100_wx_get_preamble,
8118 #ifdef CONFIG_IPW2100_MONITOR
8119 ipw2100_wx_set_crc_check,
8120 ipw2100_wx_get_crc_check,
8121 #else /* CONFIG_IPW2100_MONITOR */
8122 NULL,
8123 NULL,
8124 #endif /* CONFIG_IPW2100_MONITOR */
8125 };
8126
8127 /*
8128 * Get wireless statistics.
8129 * Called by /proc/net/wireless
8130 * Also called by SIOCGIWSTATS
8131 */
8132 static struct iw_statistics *ipw2100_wx_wireless_stats(struct net_device *dev)
8133 {
8134 enum {
8135 POOR = 30,
8136 FAIR = 60,
8137 GOOD = 80,
8138 VERY_GOOD = 90,
8139 EXCELLENT = 95,
8140 PERFECT = 100
8141 };
8142 int rssi_qual;
8143 int tx_qual;
8144 int beacon_qual;
8145
8146 struct ipw2100_priv *priv = ieee80211_priv(dev);
8147 struct iw_statistics *wstats;
8148 u32 rssi, quality, tx_retries, missed_beacons, tx_failures;
8149 u32 ord_len = sizeof(u32);
8150
8151 if (!priv)
8152 return (struct iw_statistics *)NULL;
8153
8154 wstats = &priv->wstats;
8155
8156 /* if hw is disabled, then ipw2100_get_ordinal() can't be called.
8157 * ipw2100_wx_wireless_stats seems to be called before fw is
8158 * initialized. STATUS_ASSOCIATED will only be set if the hw is up
8159 * and associated; if not associcated, the values are all meaningless
8160 * anyway, so set them all to NULL and INVALID */
8161 if (!(priv->status & STATUS_ASSOCIATED)) {
8162 wstats->miss.beacon = 0;
8163 wstats->discard.retries = 0;
8164 wstats->qual.qual = 0;
8165 wstats->qual.level = 0;
8166 wstats->qual.noise = 0;
8167 wstats->qual.updated = 7;
8168 wstats->qual.updated |= IW_QUAL_NOISE_INVALID |
8169 IW_QUAL_QUAL_INVALID | IW_QUAL_LEVEL_INVALID;
8170 return wstats;
8171 }
8172
8173 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_PERCENT_MISSED_BCNS,
8174 &missed_beacons, &ord_len))
8175 goto fail_get_ordinal;
8176
8177 /* If we don't have a connection the quality and level is 0 */
8178 if (!(priv->status & STATUS_ASSOCIATED)) {
8179 wstats->qual.qual = 0;
8180 wstats->qual.level = 0;
8181 } else {
8182 if (ipw2100_get_ordinal(priv, IPW_ORD_RSSI_AVG_CURR,
8183 &rssi, &ord_len))
8184 goto fail_get_ordinal;
8185 wstats->qual.level = rssi + IPW2100_RSSI_TO_DBM;
8186 if (rssi < 10)
8187 rssi_qual = rssi * POOR / 10;
8188 else if (rssi < 15)
8189 rssi_qual = (rssi - 10) * (FAIR - POOR) / 5 + POOR;
8190 else if (rssi < 20)
8191 rssi_qual = (rssi - 15) * (GOOD - FAIR) / 5 + FAIR;
8192 else if (rssi < 30)
8193 rssi_qual = (rssi - 20) * (VERY_GOOD - GOOD) /
8194 10 + GOOD;
8195 else
8196 rssi_qual = (rssi - 30) * (PERFECT - VERY_GOOD) /
8197 10 + VERY_GOOD;
8198
8199 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_PERCENT_RETRIES,
8200 &tx_retries, &ord_len))
8201 goto fail_get_ordinal;
8202
8203 if (tx_retries > 75)
8204 tx_qual = (90 - tx_retries) * POOR / 15;
8205 else if (tx_retries > 70)
8206 tx_qual = (75 - tx_retries) * (FAIR - POOR) / 5 + POOR;
8207 else if (tx_retries > 65)
8208 tx_qual = (70 - tx_retries) * (GOOD - FAIR) / 5 + FAIR;
8209 else if (tx_retries > 50)
8210 tx_qual = (65 - tx_retries) * (VERY_GOOD - GOOD) /
8211 15 + GOOD;
8212 else
8213 tx_qual = (50 - tx_retries) *
8214 (PERFECT - VERY_GOOD) / 50 + VERY_GOOD;
8215
8216 if (missed_beacons > 50)
8217 beacon_qual = (60 - missed_beacons) * POOR / 10;
8218 else if (missed_beacons > 40)
8219 beacon_qual = (50 - missed_beacons) * (FAIR - POOR) /
8220 10 + POOR;
8221 else if (missed_beacons > 32)
8222 beacon_qual = (40 - missed_beacons) * (GOOD - FAIR) /
8223 18 + FAIR;
8224 else if (missed_beacons > 20)
8225 beacon_qual = (32 - missed_beacons) *
8226 (VERY_GOOD - GOOD) / 20 + GOOD;
8227 else
8228 beacon_qual = (20 - missed_beacons) *
8229 (PERFECT - VERY_GOOD) / 20 + VERY_GOOD;
8230
8231 quality = min(beacon_qual, min(tx_qual, rssi_qual));
8232
8233 #ifdef CONFIG_IPW2100_DEBUG
8234 if (beacon_qual == quality)
8235 IPW_DEBUG_WX("Quality clamped by Missed Beacons\n");
8236 else if (tx_qual == quality)
8237 IPW_DEBUG_WX("Quality clamped by Tx Retries\n");
8238 else if (quality != 100)
8239 IPW_DEBUG_WX("Quality clamped by Signal Strength\n");
8240 else
8241 IPW_DEBUG_WX("Quality not clamped.\n");
8242 #endif
8243
8244 wstats->qual.qual = quality;
8245 wstats->qual.level = rssi + IPW2100_RSSI_TO_DBM;
8246 }
8247
8248 wstats->qual.noise = 0;
8249 wstats->qual.updated = 7;
8250 wstats->qual.updated |= IW_QUAL_NOISE_INVALID;
8251
8252 /* FIXME: this is percent and not a # */
8253 wstats->miss.beacon = missed_beacons;
8254
8255 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURES,
8256 &tx_failures, &ord_len))
8257 goto fail_get_ordinal;
8258 wstats->discard.retries = tx_failures;
8259
8260 return wstats;
8261
8262 fail_get_ordinal:
8263 IPW_DEBUG_WX("failed querying ordinals.\n");
8264
8265 return (struct iw_statistics *)NULL;
8266 }
8267
8268 static struct iw_handler_def ipw2100_wx_handler_def = {
8269 .standard = ipw2100_wx_handlers,
8270 .num_standard = sizeof(ipw2100_wx_handlers) / sizeof(iw_handler),
8271 .num_private = sizeof(ipw2100_private_handler) / sizeof(iw_handler),
8272 .num_private_args = sizeof(ipw2100_private_args) /
8273 sizeof(struct iw_priv_args),
8274 .private = (iw_handler *) ipw2100_private_handler,
8275 .private_args = (struct iw_priv_args *)ipw2100_private_args,
8276 .get_wireless_stats = ipw2100_wx_wireless_stats,
8277 };
8278
8279 static void ipw2100_wx_event_work(struct ipw2100_priv *priv)
8280 {
8281 union iwreq_data wrqu;
8282 int len = ETH_ALEN;
8283
8284 if (priv->status & STATUS_STOPPING)
8285 return;
8286
8287 mutex_lock(&priv->action_mutex);
8288
8289 IPW_DEBUG_WX("enter\n");
8290
8291 mutex_unlock(&priv->action_mutex);
8292
8293 wrqu.ap_addr.sa_family = ARPHRD_ETHER;
8294
8295 /* Fetch BSSID from the hardware */
8296 if (!(priv->status & (STATUS_ASSOCIATING | STATUS_ASSOCIATED)) ||
8297 priv->status & STATUS_RF_KILL_MASK ||
8298 ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID,
8299 &priv->bssid, &len)) {
8300 memset(wrqu.ap_addr.sa_data, 0, ETH_ALEN);
8301 } else {
8302 /* We now have the BSSID, so can finish setting to the full
8303 * associated state */
8304 memcpy(wrqu.ap_addr.sa_data, priv->bssid, ETH_ALEN);
8305 memcpy(priv->ieee->bssid, priv->bssid, ETH_ALEN);
8306 priv->status &= ~STATUS_ASSOCIATING;
8307 priv->status |= STATUS_ASSOCIATED;
8308 netif_carrier_on(priv->net_dev);
8309 netif_wake_queue(priv->net_dev);
8310 }
8311
8312 if (!(priv->status & STATUS_ASSOCIATED)) {
8313 IPW_DEBUG_WX("Configuring ESSID\n");
8314 mutex_lock(&priv->action_mutex);
8315 /* This is a disassociation event, so kick the firmware to
8316 * look for another AP */
8317 if (priv->config & CFG_STATIC_ESSID)
8318 ipw2100_set_essid(priv, priv->essid, priv->essid_len,
8319 0);
8320 else
8321 ipw2100_set_essid(priv, NULL, 0, 0);
8322 mutex_unlock(&priv->action_mutex);
8323 }
8324
8325 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
8326 }
8327
8328 #define IPW2100_FW_MAJOR_VERSION 1
8329 #define IPW2100_FW_MINOR_VERSION 3
8330
8331 #define IPW2100_FW_MINOR(x) ((x & 0xff) >> 8)
8332 #define IPW2100_FW_MAJOR(x) (x & 0xff)
8333
8334 #define IPW2100_FW_VERSION ((IPW2100_FW_MINOR_VERSION << 8) | \
8335 IPW2100_FW_MAJOR_VERSION)
8336
8337 #define IPW2100_FW_PREFIX "ipw2100-" __stringify(IPW2100_FW_MAJOR_VERSION) \
8338 "." __stringify(IPW2100_FW_MINOR_VERSION)
8339
8340 #define IPW2100_FW_NAME(x) IPW2100_FW_PREFIX "" x ".fw"
8341
8342 /*
8343
8344 BINARY FIRMWARE HEADER FORMAT
8345
8346 offset length desc
8347 0 2 version
8348 2 2 mode == 0:BSS,1:IBSS,2:MONITOR
8349 4 4 fw_len
8350 8 4 uc_len
8351 C fw_len firmware data
8352 12 + fw_len uc_len microcode data
8353
8354 */
8355
8356 struct ipw2100_fw_header {
8357 short version;
8358 short mode;
8359 unsigned int fw_size;
8360 unsigned int uc_size;
8361 } __attribute__ ((packed));
8362
8363 static int ipw2100_mod_firmware_load(struct ipw2100_fw *fw)
8364 {
8365 struct ipw2100_fw_header *h =
8366 (struct ipw2100_fw_header *)fw->fw_entry->data;
8367
8368 if (IPW2100_FW_MAJOR(h->version) != IPW2100_FW_MAJOR_VERSION) {
8369 printk(KERN_WARNING DRV_NAME ": Firmware image not compatible "
8370 "(detected version id of %u). "
8371 "See Documentation/networking/README.ipw2100\n",
8372 h->version);
8373 return 1;
8374 }
8375
8376 fw->version = h->version;
8377 fw->fw.data = fw->fw_entry->data + sizeof(struct ipw2100_fw_header);
8378 fw->fw.size = h->fw_size;
8379 fw->uc.data = fw->fw.data + h->fw_size;
8380 fw->uc.size = h->uc_size;
8381
8382 return 0;
8383 }
8384
8385 static int ipw2100_get_firmware(struct ipw2100_priv *priv,
8386 struct ipw2100_fw *fw)
8387 {
8388 char *fw_name;
8389 int rc;
8390
8391 IPW_DEBUG_INFO("%s: Using hotplug firmware load.\n",
8392 priv->net_dev->name);
8393
8394 switch (priv->ieee->iw_mode) {
8395 case IW_MODE_ADHOC:
8396 fw_name = IPW2100_FW_NAME("-i");
8397 break;
8398 #ifdef CONFIG_IPW2100_MONITOR
8399 case IW_MODE_MONITOR:
8400 fw_name = IPW2100_FW_NAME("-p");
8401 break;
8402 #endif
8403 case IW_MODE_INFRA:
8404 default:
8405 fw_name = IPW2100_FW_NAME("");
8406 break;
8407 }
8408
8409 rc = request_firmware(&fw->fw_entry, fw_name, &priv->pci_dev->dev);
8410
8411 if (rc < 0) {
8412 printk(KERN_ERR DRV_NAME ": "
8413 "%s: Firmware '%s' not available or load failed.\n",
8414 priv->net_dev->name, fw_name);
8415 return rc;
8416 }
8417 IPW_DEBUG_INFO("firmware data %p size %zd\n", fw->fw_entry->data,
8418 fw->fw_entry->size);
8419
8420 ipw2100_mod_firmware_load(fw);
8421
8422 return 0;
8423 }
8424
8425 static void ipw2100_release_firmware(struct ipw2100_priv *priv,
8426 struct ipw2100_fw *fw)
8427 {
8428 fw->version = 0;
8429 if (fw->fw_entry)
8430 release_firmware(fw->fw_entry);
8431 fw->fw_entry = NULL;
8432 }
8433
8434 static int ipw2100_get_fwversion(struct ipw2100_priv *priv, char *buf,
8435 size_t max)
8436 {
8437 char ver[MAX_FW_VERSION_LEN];
8438 u32 len = MAX_FW_VERSION_LEN;
8439 u32 tmp;
8440 int i;
8441 /* firmware version is an ascii string (max len of 14) */
8442 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_FW_VER_NUM, ver, &len))
8443 return -EIO;
8444 tmp = max;
8445 if (len >= max)
8446 len = max - 1;
8447 for (i = 0; i < len; i++)
8448 buf[i] = ver[i];
8449 buf[i] = '\0';
8450 return tmp;
8451 }
8452
8453 static int ipw2100_get_ucodeversion(struct ipw2100_priv *priv, char *buf,
8454 size_t max)
8455 {
8456 u32 ver;
8457 u32 len = sizeof(ver);
8458 /* microcode version is a 32 bit integer */
8459 if (ipw2100_get_ordinal(priv, IPW_ORD_UCODE_VERSION, &ver, &len))
8460 return -EIO;
8461 return snprintf(buf, max, "%08X", ver);
8462 }
8463
8464 /*
8465 * On exit, the firmware will have been freed from the fw list
8466 */
8467 static int ipw2100_fw_download(struct ipw2100_priv *priv, struct ipw2100_fw *fw)
8468 {
8469 /* firmware is constructed of N contiguous entries, each entry is
8470 * structured as:
8471 *
8472 * offset sie desc
8473 * 0 4 address to write to
8474 * 4 2 length of data run
8475 * 6 length data
8476 */
8477 unsigned int addr;
8478 unsigned short len;
8479
8480 const unsigned char *firmware_data = fw->fw.data;
8481 unsigned int firmware_data_left = fw->fw.size;
8482
8483 while (firmware_data_left > 0) {
8484 addr = *(u32 *) (firmware_data);
8485 firmware_data += 4;
8486 firmware_data_left -= 4;
8487
8488 len = *(u16 *) (firmware_data);
8489 firmware_data += 2;
8490 firmware_data_left -= 2;
8491
8492 if (len > 32) {
8493 printk(KERN_ERR DRV_NAME ": "
8494 "Invalid firmware run-length of %d bytes\n",
8495 len);
8496 return -EINVAL;
8497 }
8498
8499 write_nic_memory(priv->net_dev, addr, len, firmware_data);
8500 firmware_data += len;
8501 firmware_data_left -= len;
8502 }
8503
8504 return 0;
8505 }
8506
8507 struct symbol_alive_response {
8508 u8 cmd_id;
8509 u8 seq_num;
8510 u8 ucode_rev;
8511 u8 eeprom_valid;
8512 u16 valid_flags;
8513 u8 IEEE_addr[6];
8514 u16 flags;
8515 u16 pcb_rev;
8516 u16 clock_settle_time; // 1us LSB
8517 u16 powerup_settle_time; // 1us LSB
8518 u16 hop_settle_time; // 1us LSB
8519 u8 date[3]; // month, day, year
8520 u8 time[2]; // hours, minutes
8521 u8 ucode_valid;
8522 };
8523
8524 static int ipw2100_ucode_download(struct ipw2100_priv *priv,
8525 struct ipw2100_fw *fw)
8526 {
8527 struct net_device *dev = priv->net_dev;
8528 const unsigned char *microcode_data = fw->uc.data;
8529 unsigned int microcode_data_left = fw->uc.size;
8530 void __iomem *reg = (void __iomem *)dev->base_addr;
8531
8532 struct symbol_alive_response response;
8533 int i, j;
8534 u8 data;
8535
8536 /* Symbol control */
8537 write_nic_word(dev, IPW2100_CONTROL_REG, 0x703);
8538 readl(reg);
8539 write_nic_word(dev, IPW2100_CONTROL_REG, 0x707);
8540 readl(reg);
8541
8542 /* HW config */
8543 write_nic_byte(dev, 0x210014, 0x72); /* fifo width =16 */
8544 readl(reg);
8545 write_nic_byte(dev, 0x210014, 0x72); /* fifo width =16 */
8546 readl(reg);
8547
8548 /* EN_CS_ACCESS bit to reset control store pointer */
8549 write_nic_byte(dev, 0x210000, 0x40);
8550 readl(reg);
8551 write_nic_byte(dev, 0x210000, 0x0);
8552 readl(reg);
8553 write_nic_byte(dev, 0x210000, 0x40);
8554 readl(reg);
8555
8556 /* copy microcode from buffer into Symbol */
8557
8558 while (microcode_data_left > 0) {
8559 write_nic_byte(dev, 0x210010, *microcode_data++);
8560 write_nic_byte(dev, 0x210010, *microcode_data++);
8561 microcode_data_left -= 2;
8562 }
8563
8564 /* EN_CS_ACCESS bit to reset the control store pointer */
8565 write_nic_byte(dev, 0x210000, 0x0);
8566 readl(reg);
8567
8568 /* Enable System (Reg 0)
8569 * first enable causes garbage in RX FIFO */
8570 write_nic_byte(dev, 0x210000, 0x0);
8571 readl(reg);
8572 write_nic_byte(dev, 0x210000, 0x80);
8573 readl(reg);
8574
8575 /* Reset External Baseband Reg */
8576 write_nic_word(dev, IPW2100_CONTROL_REG, 0x703);
8577 readl(reg);
8578 write_nic_word(dev, IPW2100_CONTROL_REG, 0x707);
8579 readl(reg);
8580
8581 /* HW Config (Reg 5) */
8582 write_nic_byte(dev, 0x210014, 0x72); // fifo width =16
8583 readl(reg);
8584 write_nic_byte(dev, 0x210014, 0x72); // fifo width =16
8585 readl(reg);
8586
8587 /* Enable System (Reg 0)
8588 * second enable should be OK */
8589 write_nic_byte(dev, 0x210000, 0x00); // clear enable system
8590 readl(reg);
8591 write_nic_byte(dev, 0x210000, 0x80); // set enable system
8592
8593 /* check Symbol is enabled - upped this from 5 as it wasn't always
8594 * catching the update */
8595 for (i = 0; i < 10; i++) {
8596 udelay(10);
8597
8598 /* check Dino is enabled bit */
8599 read_nic_byte(dev, 0x210000, &data);
8600 if (data & 0x1)
8601 break;
8602 }
8603
8604 if (i == 10) {
8605 printk(KERN_ERR DRV_NAME ": %s: Error initializing Symbol\n",
8606 dev->name);
8607 return -EIO;
8608 }
8609
8610 /* Get Symbol alive response */
8611 for (i = 0; i < 30; i++) {
8612 /* Read alive response structure */
8613 for (j = 0;
8614 j < (sizeof(struct symbol_alive_response) >> 1); j++)
8615 read_nic_word(dev, 0x210004, ((u16 *) & response) + j);
8616
8617 if ((response.cmd_id == 1) && (response.ucode_valid == 0x1))
8618 break;
8619 udelay(10);
8620 }
8621
8622 if (i == 30) {
8623 printk(KERN_ERR DRV_NAME
8624 ": %s: No response from Symbol - hw not alive\n",
8625 dev->name);
8626 printk_buf(IPW_DL_ERROR, (u8 *) & response, sizeof(response));
8627 return -EIO;
8628 }
8629
8630 return 0;
8631 }